]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/slub.c
slub: relax CMPXCHG consistency restrictions
[mirror_ubuntu-focal-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
becfda68 163#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
149daaf3
LA
166/*
167 * These debug flags cannot use CMPXCHG because there might be consistency
168 * issues when checking or reading debug information
169 */
170#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
171 SLAB_TRACE)
172
173
fa5ec8a1 174/*
3de47213
DR
175 * Debugging flags that require metadata to be stored in the slab. These get
176 * disabled when slub_debug=O is used and a cache's min order increases with
177 * metadata.
fa5ec8a1 178 */
3de47213 179#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 180
210b5c06
CG
181#define OO_SHIFT 16
182#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 183#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 184
81819f0f 185/* Internal SLUB flags */
f90ec390 186#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 187#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 188
81819f0f
CL
189#ifdef CONFIG_SMP
190static struct notifier_block slab_notifier;
191#endif
192
02cbc874
CL
193/*
194 * Tracking user of a slab.
195 */
d6543e39 196#define TRACK_ADDRS_COUNT 16
02cbc874 197struct track {
ce71e27c 198 unsigned long addr; /* Called from address */
d6543e39
BG
199#ifdef CONFIG_STACKTRACE
200 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
201#endif
02cbc874
CL
202 int cpu; /* Was running on cpu */
203 int pid; /* Pid context */
204 unsigned long when; /* When did the operation occur */
205};
206
207enum track_item { TRACK_ALLOC, TRACK_FREE };
208
ab4d5ed5 209#ifdef CONFIG_SYSFS
81819f0f
CL
210static int sysfs_slab_add(struct kmem_cache *);
211static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 212static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 213#else
0c710013
CL
214static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
215static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
216 { return 0; }
107dab5c 217static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
218#endif
219
4fdccdfb 220static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
88da03a6
CL
223 /*
224 * The rmw is racy on a preemptible kernel but this is acceptable, so
225 * avoid this_cpu_add()'s irq-disable overhead.
226 */
227 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
6446faa2 235/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
236static inline int check_valid_pointer(struct kmem_cache *s,
237 struct page *page, const void *object)
238{
239 void *base;
240
a973e9dd 241 if (!object)
02cbc874
CL
242 return 1;
243
a973e9dd 244 base = page_address(page);
39b26464 245 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
246 (object - base) % s->size) {
247 return 0;
248 }
249
250 return 1;
251}
252
7656c72b
CL
253static inline void *get_freepointer(struct kmem_cache *s, void *object)
254{
255 return *(void **)(object + s->offset);
256}
257
0ad9500e
ED
258static void prefetch_freepointer(const struct kmem_cache *s, void *object)
259{
260 prefetch(object + s->offset);
261}
262
1393d9a1
CL
263static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
264{
265 void *p;
266
267#ifdef CONFIG_DEBUG_PAGEALLOC
268 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
269#else
270 p = get_freepointer(s, object);
271#endif
272 return p;
273}
274
7656c72b
CL
275static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276{
277 *(void **)(object + s->offset) = fp;
278}
279
280/* Loop over all objects in a slab */
224a88be
CL
281#define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
283 __p += (__s)->size)
284
54266640
WY
285#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
286 for (__p = (__addr), __idx = 1; __idx <= __objects;\
287 __p += (__s)->size, __idx++)
288
7656c72b
CL
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292 return (p - addr) / s->size;
293}
294
ab9a0f19
LJ
295static inline int order_objects(int order, unsigned long size, int reserved)
296{
297 return ((PAGE_SIZE << order) - reserved) / size;
298}
299
834f3d11 300static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 301 unsigned long size, int reserved)
834f3d11
CL
302{
303 struct kmem_cache_order_objects x = {
ab9a0f19 304 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
305 };
306
307 return x;
308}
309
310static inline int oo_order(struct kmem_cache_order_objects x)
311{
210b5c06 312 return x.x >> OO_SHIFT;
834f3d11
CL
313}
314
315static inline int oo_objects(struct kmem_cache_order_objects x)
316{
210b5c06 317 return x.x & OO_MASK;
834f3d11
CL
318}
319
881db7fb
CL
320/*
321 * Per slab locking using the pagelock
322 */
323static __always_inline void slab_lock(struct page *page)
324{
48c935ad 325 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
326 bit_spin_lock(PG_locked, &page->flags);
327}
328
329static __always_inline void slab_unlock(struct page *page)
330{
48c935ad 331 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
332 __bit_spin_unlock(PG_locked, &page->flags);
333}
334
a0320865
DH
335static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
336{
337 struct page tmp;
338 tmp.counters = counters_new;
339 /*
340 * page->counters can cover frozen/inuse/objects as well
341 * as page->_count. If we assign to ->counters directly
342 * we run the risk of losing updates to page->_count, so
343 * be careful and only assign to the fields we need.
344 */
345 page->frozen = tmp.frozen;
346 page->inuse = tmp.inuse;
347 page->objects = tmp.objects;
348}
349
1d07171c
CL
350/* Interrupts must be disabled (for the fallback code to work right) */
351static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
352 void *freelist_old, unsigned long counters_old,
353 void *freelist_new, unsigned long counters_new,
354 const char *n)
355{
356 VM_BUG_ON(!irqs_disabled());
2565409f
HC
357#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
358 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 359 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 360 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
361 freelist_old, counters_old,
362 freelist_new, counters_new))
6f6528a1 363 return true;
1d07171c
CL
364 } else
365#endif
366 {
367 slab_lock(page);
d0e0ac97
CG
368 if (page->freelist == freelist_old &&
369 page->counters == counters_old) {
1d07171c 370 page->freelist = freelist_new;
a0320865 371 set_page_slub_counters(page, counters_new);
1d07171c 372 slab_unlock(page);
6f6528a1 373 return true;
1d07171c
CL
374 }
375 slab_unlock(page);
376 }
377
378 cpu_relax();
379 stat(s, CMPXCHG_DOUBLE_FAIL);
380
381#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 382 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
383#endif
384
6f6528a1 385 return false;
1d07171c
CL
386}
387
b789ef51
CL
388static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
389 void *freelist_old, unsigned long counters_old,
390 void *freelist_new, unsigned long counters_new,
391 const char *n)
392{
2565409f
HC
393#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
394 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 395 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 396 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
397 freelist_old, counters_old,
398 freelist_new, counters_new))
6f6528a1 399 return true;
b789ef51
CL
400 } else
401#endif
402 {
1d07171c
CL
403 unsigned long flags;
404
405 local_irq_save(flags);
881db7fb 406 slab_lock(page);
d0e0ac97
CG
407 if (page->freelist == freelist_old &&
408 page->counters == counters_old) {
b789ef51 409 page->freelist = freelist_new;
a0320865 410 set_page_slub_counters(page, counters_new);
881db7fb 411 slab_unlock(page);
1d07171c 412 local_irq_restore(flags);
6f6528a1 413 return true;
b789ef51 414 }
881db7fb 415 slab_unlock(page);
1d07171c 416 local_irq_restore(flags);
b789ef51
CL
417 }
418
419 cpu_relax();
420 stat(s, CMPXCHG_DOUBLE_FAIL);
421
422#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 423 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
424#endif
425
6f6528a1 426 return false;
b789ef51
CL
427}
428
41ecc55b 429#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
430/*
431 * Determine a map of object in use on a page.
432 *
881db7fb 433 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
434 * not vanish from under us.
435 */
436static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
437{
438 void *p;
439 void *addr = page_address(page);
440
441 for (p = page->freelist; p; p = get_freepointer(s, p))
442 set_bit(slab_index(p, s, addr), map);
443}
444
41ecc55b
CL
445/*
446 * Debug settings:
447 */
89d3c87e 448#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 449static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
450#elif defined(CONFIG_KASAN)
451static int slub_debug = SLAB_STORE_USER;
f0630fff 452#else
41ecc55b 453static int slub_debug;
f0630fff 454#endif
41ecc55b
CL
455
456static char *slub_debug_slabs;
fa5ec8a1 457static int disable_higher_order_debug;
41ecc55b 458
a79316c6
AR
459/*
460 * slub is about to manipulate internal object metadata. This memory lies
461 * outside the range of the allocated object, so accessing it would normally
462 * be reported by kasan as a bounds error. metadata_access_enable() is used
463 * to tell kasan that these accesses are OK.
464 */
465static inline void metadata_access_enable(void)
466{
467 kasan_disable_current();
468}
469
470static inline void metadata_access_disable(void)
471{
472 kasan_enable_current();
473}
474
81819f0f
CL
475/*
476 * Object debugging
477 */
478static void print_section(char *text, u8 *addr, unsigned int length)
479{
a79316c6 480 metadata_access_enable();
ffc79d28
SAS
481 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
482 length, 1);
a79316c6 483 metadata_access_disable();
81819f0f
CL
484}
485
81819f0f
CL
486static struct track *get_track(struct kmem_cache *s, void *object,
487 enum track_item alloc)
488{
489 struct track *p;
490
491 if (s->offset)
492 p = object + s->offset + sizeof(void *);
493 else
494 p = object + s->inuse;
495
496 return p + alloc;
497}
498
499static void set_track(struct kmem_cache *s, void *object,
ce71e27c 500 enum track_item alloc, unsigned long addr)
81819f0f 501{
1a00df4a 502 struct track *p = get_track(s, object, alloc);
81819f0f 503
81819f0f 504 if (addr) {
d6543e39
BG
505#ifdef CONFIG_STACKTRACE
506 struct stack_trace trace;
507 int i;
508
509 trace.nr_entries = 0;
510 trace.max_entries = TRACK_ADDRS_COUNT;
511 trace.entries = p->addrs;
512 trace.skip = 3;
a79316c6 513 metadata_access_enable();
d6543e39 514 save_stack_trace(&trace);
a79316c6 515 metadata_access_disable();
d6543e39
BG
516
517 /* See rant in lockdep.c */
518 if (trace.nr_entries != 0 &&
519 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
520 trace.nr_entries--;
521
522 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
523 p->addrs[i] = 0;
524#endif
81819f0f
CL
525 p->addr = addr;
526 p->cpu = smp_processor_id();
88e4ccf2 527 p->pid = current->pid;
81819f0f
CL
528 p->when = jiffies;
529 } else
530 memset(p, 0, sizeof(struct track));
531}
532
81819f0f
CL
533static void init_tracking(struct kmem_cache *s, void *object)
534{
24922684
CL
535 if (!(s->flags & SLAB_STORE_USER))
536 return;
537
ce71e27c
EGM
538 set_track(s, object, TRACK_FREE, 0UL);
539 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
540}
541
542static void print_track(const char *s, struct track *t)
543{
544 if (!t->addr)
545 return;
546
f9f58285
FF
547 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
548 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
549#ifdef CONFIG_STACKTRACE
550 {
551 int i;
552 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
553 if (t->addrs[i])
f9f58285 554 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
555 else
556 break;
557 }
558#endif
24922684
CL
559}
560
561static void print_tracking(struct kmem_cache *s, void *object)
562{
563 if (!(s->flags & SLAB_STORE_USER))
564 return;
565
566 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
567 print_track("Freed", get_track(s, object, TRACK_FREE));
568}
569
570static void print_page_info(struct page *page)
571{
f9f58285 572 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 573 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
574
575}
576
577static void slab_bug(struct kmem_cache *s, char *fmt, ...)
578{
ecc42fbe 579 struct va_format vaf;
24922684 580 va_list args;
24922684
CL
581
582 va_start(args, fmt);
ecc42fbe
FF
583 vaf.fmt = fmt;
584 vaf.va = &args;
f9f58285 585 pr_err("=============================================================================\n");
ecc42fbe 586 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 587 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 588
373d4d09 589 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 590 va_end(args);
81819f0f
CL
591}
592
24922684
CL
593static void slab_fix(struct kmem_cache *s, char *fmt, ...)
594{
ecc42fbe 595 struct va_format vaf;
24922684 596 va_list args;
24922684
CL
597
598 va_start(args, fmt);
ecc42fbe
FF
599 vaf.fmt = fmt;
600 vaf.va = &args;
601 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 602 va_end(args);
24922684
CL
603}
604
605static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
606{
607 unsigned int off; /* Offset of last byte */
a973e9dd 608 u8 *addr = page_address(page);
24922684
CL
609
610 print_tracking(s, p);
611
612 print_page_info(page);
613
f9f58285
FF
614 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
615 p, p - addr, get_freepointer(s, p));
24922684
CL
616
617 if (p > addr + 16)
ffc79d28 618 print_section("Bytes b4 ", p - 16, 16);
81819f0f 619
3b0efdfa 620 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 621 PAGE_SIZE));
81819f0f 622 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
623 print_section("Redzone ", p + s->object_size,
624 s->inuse - s->object_size);
81819f0f 625
81819f0f
CL
626 if (s->offset)
627 off = s->offset + sizeof(void *);
628 else
629 off = s->inuse;
630
24922684 631 if (s->flags & SLAB_STORE_USER)
81819f0f 632 off += 2 * sizeof(struct track);
81819f0f
CL
633
634 if (off != s->size)
635 /* Beginning of the filler is the free pointer */
ffc79d28 636 print_section("Padding ", p + off, s->size - off);
24922684
CL
637
638 dump_stack();
81819f0f
CL
639}
640
75c66def 641void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
642 u8 *object, char *reason)
643{
3dc50637 644 slab_bug(s, "%s", reason);
24922684 645 print_trailer(s, page, object);
81819f0f
CL
646}
647
d0e0ac97
CG
648static void slab_err(struct kmem_cache *s, struct page *page,
649 const char *fmt, ...)
81819f0f
CL
650{
651 va_list args;
652 char buf[100];
653
24922684
CL
654 va_start(args, fmt);
655 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 656 va_end(args);
3dc50637 657 slab_bug(s, "%s", buf);
24922684 658 print_page_info(page);
81819f0f
CL
659 dump_stack();
660}
661
f7cb1933 662static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
663{
664 u8 *p = object;
665
666 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
667 memset(p, POISON_FREE, s->object_size - 1);
668 p[s->object_size - 1] = POISON_END;
81819f0f
CL
669 }
670
671 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 672 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
673}
674
24922684
CL
675static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
676 void *from, void *to)
677{
678 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
679 memset(from, data, to - from);
680}
681
682static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
683 u8 *object, char *what,
06428780 684 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
685{
686 u8 *fault;
687 u8 *end;
688
a79316c6 689 metadata_access_enable();
79824820 690 fault = memchr_inv(start, value, bytes);
a79316c6 691 metadata_access_disable();
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
f9f58285 700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
a79316c6 784 metadata_access_enable();
79824820 785 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 786 metadata_access_disable();
24922684
CL
787 if (!fault)
788 return 1;
789 while (end > fault && end[-1] == POISON_INUSE)
790 end--;
791
792 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 793 print_section("Padding ", end - remainder, remainder);
24922684 794
8a3d271d 795 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 796 return 0;
81819f0f
CL
797}
798
799static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 800 void *object, u8 val)
81819f0f
CL
801{
802 u8 *p = object;
3b0efdfa 803 u8 *endobject = object + s->object_size;
81819f0f
CL
804
805 if (s->flags & SLAB_RED_ZONE) {
24922684 806 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 807 endobject, val, s->inuse - s->object_size))
81819f0f 808 return 0;
81819f0f 809 } else {
3b0efdfa 810 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 811 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
812 endobject, POISON_INUSE,
813 s->inuse - s->object_size);
3adbefee 814 }
81819f0f
CL
815 }
816
817 if (s->flags & SLAB_POISON) {
f7cb1933 818 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 819 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 820 POISON_FREE, s->object_size - 1) ||
24922684 821 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 822 p + s->object_size - 1, POISON_END, 1)))
81819f0f 823 return 0;
81819f0f
CL
824 /*
825 * check_pad_bytes cleans up on its own.
826 */
827 check_pad_bytes(s, page, p);
828 }
829
f7cb1933 830 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
831 /*
832 * Object and freepointer overlap. Cannot check
833 * freepointer while object is allocated.
834 */
835 return 1;
836
837 /* Check free pointer validity */
838 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
839 object_err(s, page, p, "Freepointer corrupt");
840 /*
9f6c708e 841 * No choice but to zap it and thus lose the remainder
81819f0f 842 * of the free objects in this slab. May cause
672bba3a 843 * another error because the object count is now wrong.
81819f0f 844 */
a973e9dd 845 set_freepointer(s, p, NULL);
81819f0f
CL
846 return 0;
847 }
848 return 1;
849}
850
851static int check_slab(struct kmem_cache *s, struct page *page)
852{
39b26464
CL
853 int maxobj;
854
81819f0f
CL
855 VM_BUG_ON(!irqs_disabled());
856
857 if (!PageSlab(page)) {
24922684 858 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
859 return 0;
860 }
39b26464 861
ab9a0f19 862 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
863 if (page->objects > maxobj) {
864 slab_err(s, page, "objects %u > max %u",
f6edde9c 865 page->objects, maxobj);
39b26464
CL
866 return 0;
867 }
868 if (page->inuse > page->objects) {
24922684 869 slab_err(s, page, "inuse %u > max %u",
f6edde9c 870 page->inuse, page->objects);
81819f0f
CL
871 return 0;
872 }
873 /* Slab_pad_check fixes things up after itself */
874 slab_pad_check(s, page);
875 return 1;
876}
877
878/*
672bba3a
CL
879 * Determine if a certain object on a page is on the freelist. Must hold the
880 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
881 */
882static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
883{
884 int nr = 0;
881db7fb 885 void *fp;
81819f0f 886 void *object = NULL;
f6edde9c 887 int max_objects;
81819f0f 888
881db7fb 889 fp = page->freelist;
39b26464 890 while (fp && nr <= page->objects) {
81819f0f
CL
891 if (fp == search)
892 return 1;
893 if (!check_valid_pointer(s, page, fp)) {
894 if (object) {
895 object_err(s, page, object,
896 "Freechain corrupt");
a973e9dd 897 set_freepointer(s, object, NULL);
81819f0f 898 } else {
24922684 899 slab_err(s, page, "Freepointer corrupt");
a973e9dd 900 page->freelist = NULL;
39b26464 901 page->inuse = page->objects;
24922684 902 slab_fix(s, "Freelist cleared");
81819f0f
CL
903 return 0;
904 }
905 break;
906 }
907 object = fp;
908 fp = get_freepointer(s, object);
909 nr++;
910 }
911
ab9a0f19 912 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
913 if (max_objects > MAX_OBJS_PER_PAGE)
914 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
915
916 if (page->objects != max_objects) {
917 slab_err(s, page, "Wrong number of objects. Found %d but "
918 "should be %d", page->objects, max_objects);
919 page->objects = max_objects;
920 slab_fix(s, "Number of objects adjusted.");
921 }
39b26464 922 if (page->inuse != page->objects - nr) {
70d71228 923 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
924 "counted were %d", page->inuse, page->objects - nr);
925 page->inuse = page->objects - nr;
24922684 926 slab_fix(s, "Object count adjusted.");
81819f0f
CL
927 }
928 return search == NULL;
929}
930
0121c619
CL
931static void trace(struct kmem_cache *s, struct page *page, void *object,
932 int alloc)
3ec09742
CL
933{
934 if (s->flags & SLAB_TRACE) {
f9f58285 935 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
936 s->name,
937 alloc ? "alloc" : "free",
938 object, page->inuse,
939 page->freelist);
940
941 if (!alloc)
d0e0ac97
CG
942 print_section("Object ", (void *)object,
943 s->object_size);
3ec09742
CL
944
945 dump_stack();
946 }
947}
948
643b1138 949/*
672bba3a 950 * Tracking of fully allocated slabs for debugging purposes.
643b1138 951 */
5cc6eee8
CL
952static void add_full(struct kmem_cache *s,
953 struct kmem_cache_node *n, struct page *page)
643b1138 954{
5cc6eee8
CL
955 if (!(s->flags & SLAB_STORE_USER))
956 return;
957
255d0884 958 lockdep_assert_held(&n->list_lock);
643b1138 959 list_add(&page->lru, &n->full);
643b1138
CL
960}
961
c65c1877 962static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 963{
643b1138
CL
964 if (!(s->flags & SLAB_STORE_USER))
965 return;
966
255d0884 967 lockdep_assert_held(&n->list_lock);
643b1138 968 list_del(&page->lru);
643b1138
CL
969}
970
0f389ec6
CL
971/* Tracking of the number of slabs for debugging purposes */
972static inline unsigned long slabs_node(struct kmem_cache *s, int node)
973{
974 struct kmem_cache_node *n = get_node(s, node);
975
976 return atomic_long_read(&n->nr_slabs);
977}
978
26c02cf0
AB
979static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
980{
981 return atomic_long_read(&n->nr_slabs);
982}
983
205ab99d 984static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
985{
986 struct kmem_cache_node *n = get_node(s, node);
987
988 /*
989 * May be called early in order to allocate a slab for the
990 * kmem_cache_node structure. Solve the chicken-egg
991 * dilemma by deferring the increment of the count during
992 * bootstrap (see early_kmem_cache_node_alloc).
993 */
338b2642 994 if (likely(n)) {
0f389ec6 995 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
996 atomic_long_add(objects, &n->total_objects);
997 }
0f389ec6 998}
205ab99d 999static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1000{
1001 struct kmem_cache_node *n = get_node(s, node);
1002
1003 atomic_long_dec(&n->nr_slabs);
205ab99d 1004 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1005}
1006
1007/* Object debug checks for alloc/free paths */
3ec09742
CL
1008static void setup_object_debug(struct kmem_cache *s, struct page *page,
1009 void *object)
1010{
1011 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1012 return;
1013
f7cb1933 1014 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1015 init_tracking(s, object);
1016}
1017
becfda68 1018static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1019 struct page *page,
ce71e27c 1020 void *object, unsigned long addr)
81819f0f
CL
1021{
1022 if (!check_slab(s, page))
becfda68 1023 return 0;
81819f0f 1024
81819f0f
CL
1025 if (!check_valid_pointer(s, page, object)) {
1026 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1027 return 0;
81819f0f
CL
1028 }
1029
f7cb1933 1030 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1031 return 0;
1032
1033 return 1;
1034}
1035
1036static noinline int alloc_debug_processing(struct kmem_cache *s,
1037 struct page *page,
1038 void *object, unsigned long addr)
1039{
1040 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1041 if (!alloc_consistency_checks(s, page, object, addr))
1042 goto bad;
1043 }
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
becfda68
LA
1066static inline int free_consistency_checks(struct kmem_cache *s,
1067 struct page *page, void *object, unsigned long addr)
81819f0f 1068{
81819f0f 1069 if (!check_valid_pointer(s, page, object)) {
70d71228 1070 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1071 return 0;
81819f0f
CL
1072 }
1073
1074 if (on_freelist(s, page, object)) {
24922684 1075 object_err(s, page, object, "Object already free");
becfda68 1076 return 0;
81819f0f
CL
1077 }
1078
f7cb1933 1079 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1080 return 0;
81819f0f 1081
1b4f59e3 1082 if (unlikely(s != page->slab_cache)) {
3adbefee 1083 if (!PageSlab(page)) {
70d71228
CL
1084 slab_err(s, page, "Attempt to free object(0x%p) "
1085 "outside of slab", object);
1b4f59e3 1086 } else if (!page->slab_cache) {
f9f58285
FF
1087 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1088 object);
70d71228 1089 dump_stack();
06428780 1090 } else
24922684
CL
1091 object_err(s, page, object,
1092 "page slab pointer corrupt.");
becfda68
LA
1093 return 0;
1094 }
1095 return 1;
1096}
1097
1098/* Supports checking bulk free of a constructed freelist */
1099static noinline int free_debug_processing(
1100 struct kmem_cache *s, struct page *page,
1101 void *head, void *tail, int bulk_cnt,
1102 unsigned long addr)
1103{
1104 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1105 void *object = head;
1106 int cnt = 0;
1107 unsigned long uninitialized_var(flags);
1108 int ret = 0;
1109
1110 spin_lock_irqsave(&n->list_lock, flags);
1111 slab_lock(page);
1112
1113 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1114 if (!check_slab(s, page))
1115 goto out;
1116 }
1117
1118next_object:
1119 cnt++;
1120
1121 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1122 if (!free_consistency_checks(s, page, object, addr))
1123 goto out;
81819f0f 1124 }
3ec09742 1125
3ec09742
CL
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_FREE, addr);
1128 trace(s, page, object, 0);
81084651 1129 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1130 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1131
1132 /* Reached end of constructed freelist yet? */
1133 if (object != tail) {
1134 object = get_freepointer(s, object);
1135 goto next_object;
1136 }
804aa132
LA
1137 ret = 1;
1138
5c2e4bbb 1139out:
81084651
JDB
1140 if (cnt != bulk_cnt)
1141 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1142 bulk_cnt, cnt);
1143
881db7fb 1144 slab_unlock(page);
282acb43 1145 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1146 if (!ret)
1147 slab_fix(s, "Object at 0x%p not freed", object);
1148 return ret;
81819f0f
CL
1149}
1150
41ecc55b
CL
1151static int __init setup_slub_debug(char *str)
1152{
f0630fff
CL
1153 slub_debug = DEBUG_DEFAULT_FLAGS;
1154 if (*str++ != '=' || !*str)
1155 /*
1156 * No options specified. Switch on full debugging.
1157 */
1158 goto out;
1159
1160 if (*str == ',')
1161 /*
1162 * No options but restriction on slabs. This means full
1163 * debugging for slabs matching a pattern.
1164 */
1165 goto check_slabs;
1166
1167 slub_debug = 0;
1168 if (*str == '-')
1169 /*
1170 * Switch off all debugging measures.
1171 */
1172 goto out;
1173
1174 /*
1175 * Determine which debug features should be switched on
1176 */
06428780 1177 for (; *str && *str != ','; str++) {
f0630fff
CL
1178 switch (tolower(*str)) {
1179 case 'f':
becfda68 1180 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1181 break;
1182 case 'z':
1183 slub_debug |= SLAB_RED_ZONE;
1184 break;
1185 case 'p':
1186 slub_debug |= SLAB_POISON;
1187 break;
1188 case 'u':
1189 slub_debug |= SLAB_STORE_USER;
1190 break;
1191 case 't':
1192 slub_debug |= SLAB_TRACE;
1193 break;
4c13dd3b
DM
1194 case 'a':
1195 slub_debug |= SLAB_FAILSLAB;
1196 break;
08303a73
CA
1197 case 'o':
1198 /*
1199 * Avoid enabling debugging on caches if its minimum
1200 * order would increase as a result.
1201 */
1202 disable_higher_order_debug = 1;
1203 break;
f0630fff 1204 default:
f9f58285
FF
1205 pr_err("slub_debug option '%c' unknown. skipped\n",
1206 *str);
f0630fff 1207 }
41ecc55b
CL
1208 }
1209
f0630fff 1210check_slabs:
41ecc55b
CL
1211 if (*str == ',')
1212 slub_debug_slabs = str + 1;
f0630fff 1213out:
41ecc55b
CL
1214 return 1;
1215}
1216
1217__setup("slub_debug", setup_slub_debug);
1218
423c929c 1219unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1220 unsigned long flags, const char *name,
51cc5068 1221 void (*ctor)(void *))
41ecc55b
CL
1222{
1223 /*
e153362a 1224 * Enable debugging if selected on the kernel commandline.
41ecc55b 1225 */
c6f58d9b
CL
1226 if (slub_debug && (!slub_debug_slabs || (name &&
1227 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1228 flags |= slub_debug;
ba0268a8
CL
1229
1230 return flags;
41ecc55b 1231}
b4a64718 1232#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1233static inline void setup_object_debug(struct kmem_cache *s,
1234 struct page *page, void *object) {}
41ecc55b 1235
3ec09742 1236static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1237 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1238
282acb43 1239static inline int free_debug_processing(
81084651
JDB
1240 struct kmem_cache *s, struct page *page,
1241 void *head, void *tail, int bulk_cnt,
282acb43 1242 unsigned long addr) { return 0; }
41ecc55b 1243
41ecc55b
CL
1244static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1245 { return 1; }
1246static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1247 void *object, u8 val) { return 1; }
5cc6eee8
CL
1248static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1249 struct page *page) {}
c65c1877
PZ
1250static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1251 struct page *page) {}
423c929c 1252unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1253 unsigned long flags, const char *name,
51cc5068 1254 void (*ctor)(void *))
ba0268a8
CL
1255{
1256 return flags;
1257}
41ecc55b 1258#define slub_debug 0
0f389ec6 1259
fdaa45e9
IM
1260#define disable_higher_order_debug 0
1261
0f389ec6
CL
1262static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1263 { return 0; }
26c02cf0
AB
1264static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1265 { return 0; }
205ab99d
CL
1266static inline void inc_slabs_node(struct kmem_cache *s, int node,
1267 int objects) {}
1268static inline void dec_slabs_node(struct kmem_cache *s, int node,
1269 int objects) {}
7d550c56 1270
02e72cc6
AR
1271#endif /* CONFIG_SLUB_DEBUG */
1272
1273/*
1274 * Hooks for other subsystems that check memory allocations. In a typical
1275 * production configuration these hooks all should produce no code at all.
1276 */
d56791b3
RB
1277static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1278{
1279 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1280 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1281}
1282
1283static inline void kfree_hook(const void *x)
1284{
1285 kmemleak_free(x);
0316bec2 1286 kasan_kfree_large(x);
d56791b3
RB
1287}
1288
d56791b3
RB
1289static inline void slab_free_hook(struct kmem_cache *s, void *x)
1290{
1291 kmemleak_free_recursive(x, s->flags);
7d550c56 1292
02e72cc6
AR
1293 /*
1294 * Trouble is that we may no longer disable interrupts in the fast path
1295 * So in order to make the debug calls that expect irqs to be
1296 * disabled we need to disable interrupts temporarily.
1297 */
1298#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1299 {
1300 unsigned long flags;
1301
1302 local_irq_save(flags);
1303 kmemcheck_slab_free(s, x, s->object_size);
1304 debug_check_no_locks_freed(x, s->object_size);
1305 local_irq_restore(flags);
1306 }
1307#endif
1308 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1309 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1310
1311 kasan_slab_free(s, x);
02e72cc6 1312}
205ab99d 1313
81084651
JDB
1314static inline void slab_free_freelist_hook(struct kmem_cache *s,
1315 void *head, void *tail)
1316{
1317/*
1318 * Compiler cannot detect this function can be removed if slab_free_hook()
1319 * evaluates to nothing. Thus, catch all relevant config debug options here.
1320 */
1321#if defined(CONFIG_KMEMCHECK) || \
1322 defined(CONFIG_LOCKDEP) || \
1323 defined(CONFIG_DEBUG_KMEMLEAK) || \
1324 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1325 defined(CONFIG_KASAN)
1326
1327 void *object = head;
1328 void *tail_obj = tail ? : head;
1329
1330 do {
1331 slab_free_hook(s, object);
1332 } while ((object != tail_obj) &&
1333 (object = get_freepointer(s, object)));
1334#endif
1335}
1336
588f8ba9
TG
1337static void setup_object(struct kmem_cache *s, struct page *page,
1338 void *object)
1339{
1340 setup_object_debug(s, page, object);
1341 if (unlikely(s->ctor)) {
1342 kasan_unpoison_object_data(s, object);
1343 s->ctor(object);
1344 kasan_poison_object_data(s, object);
1345 }
1346}
1347
81819f0f
CL
1348/*
1349 * Slab allocation and freeing
1350 */
5dfb4175
VD
1351static inline struct page *alloc_slab_page(struct kmem_cache *s,
1352 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1353{
5dfb4175 1354 struct page *page;
65c3376a
CL
1355 int order = oo_order(oo);
1356
b1eeab67
VN
1357 flags |= __GFP_NOTRACK;
1358
2154a336 1359 if (node == NUMA_NO_NODE)
5dfb4175 1360 page = alloc_pages(flags, order);
65c3376a 1361 else
96db800f 1362 page = __alloc_pages_node(node, flags, order);
5dfb4175 1363
f3ccb2c4
VD
1364 if (page && memcg_charge_slab(page, flags, order, s)) {
1365 __free_pages(page, order);
1366 page = NULL;
1367 }
5dfb4175
VD
1368
1369 return page;
65c3376a
CL
1370}
1371
81819f0f
CL
1372static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1373{
06428780 1374 struct page *page;
834f3d11 1375 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1376 gfp_t alloc_gfp;
588f8ba9
TG
1377 void *start, *p;
1378 int idx, order;
81819f0f 1379
7e0528da
CL
1380 flags &= gfp_allowed_mask;
1381
d0164adc 1382 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1383 local_irq_enable();
1384
b7a49f0d 1385 flags |= s->allocflags;
e12ba74d 1386
ba52270d
PE
1387 /*
1388 * Let the initial higher-order allocation fail under memory pressure
1389 * so we fall-back to the minimum order allocation.
1390 */
1391 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1392 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1393 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1394
5dfb4175 1395 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1396 if (unlikely(!page)) {
1397 oo = s->min;
80c3a998 1398 alloc_gfp = flags;
65c3376a
CL
1399 /*
1400 * Allocation may have failed due to fragmentation.
1401 * Try a lower order alloc if possible
1402 */
5dfb4175 1403 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1404 if (unlikely(!page))
1405 goto out;
1406 stat(s, ORDER_FALLBACK);
65c3376a 1407 }
5a896d9e 1408
588f8ba9
TG
1409 if (kmemcheck_enabled &&
1410 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1411 int pages = 1 << oo_order(oo);
1412
80c3a998 1413 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1414
1415 /*
1416 * Objects from caches that have a constructor don't get
1417 * cleared when they're allocated, so we need to do it here.
1418 */
1419 if (s->ctor)
1420 kmemcheck_mark_uninitialized_pages(page, pages);
1421 else
1422 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1423 }
1424
834f3d11 1425 page->objects = oo_objects(oo);
81819f0f 1426
1f458cbf 1427 order = compound_order(page);
1b4f59e3 1428 page->slab_cache = s;
c03f94cc 1429 __SetPageSlab(page);
2f064f34 1430 if (page_is_pfmemalloc(page))
072bb0aa 1431 SetPageSlabPfmemalloc(page);
81819f0f
CL
1432
1433 start = page_address(page);
81819f0f
CL
1434
1435 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1436 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1437
0316bec2
AR
1438 kasan_poison_slab(page);
1439
54266640
WY
1440 for_each_object_idx(p, idx, s, start, page->objects) {
1441 setup_object(s, page, p);
1442 if (likely(idx < page->objects))
1443 set_freepointer(s, p, p + s->size);
1444 else
1445 set_freepointer(s, p, NULL);
81819f0f 1446 }
81819f0f
CL
1447
1448 page->freelist = start;
e6e82ea1 1449 page->inuse = page->objects;
8cb0a506 1450 page->frozen = 1;
588f8ba9 1451
81819f0f 1452out:
d0164adc 1453 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1454 local_irq_disable();
1455 if (!page)
1456 return NULL;
1457
1458 mod_zone_page_state(page_zone(page),
1459 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1460 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1461 1 << oo_order(oo));
1462
1463 inc_slabs_node(s, page_to_nid(page), page->objects);
1464
81819f0f
CL
1465 return page;
1466}
1467
588f8ba9
TG
1468static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1469{
1470 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1471 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1472 BUG();
1473 }
1474
1475 return allocate_slab(s,
1476 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1477}
1478
81819f0f
CL
1479static void __free_slab(struct kmem_cache *s, struct page *page)
1480{
834f3d11
CL
1481 int order = compound_order(page);
1482 int pages = 1 << order;
81819f0f 1483
becfda68 1484 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1485 void *p;
1486
1487 slab_pad_check(s, page);
224a88be
CL
1488 for_each_object(p, s, page_address(page),
1489 page->objects)
f7cb1933 1490 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1491 }
1492
b1eeab67 1493 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1494
81819f0f
CL
1495 mod_zone_page_state(page_zone(page),
1496 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1497 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1498 -pages);
81819f0f 1499
072bb0aa 1500 __ClearPageSlabPfmemalloc(page);
49bd5221 1501 __ClearPageSlab(page);
1f458cbf 1502
22b751c3 1503 page_mapcount_reset(page);
1eb5ac64
NP
1504 if (current->reclaim_state)
1505 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1506 __free_kmem_pages(page, order);
81819f0f
CL
1507}
1508
da9a638c
LJ
1509#define need_reserve_slab_rcu \
1510 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1511
81819f0f
CL
1512static void rcu_free_slab(struct rcu_head *h)
1513{
1514 struct page *page;
1515
da9a638c
LJ
1516 if (need_reserve_slab_rcu)
1517 page = virt_to_head_page(h);
1518 else
1519 page = container_of((struct list_head *)h, struct page, lru);
1520
1b4f59e3 1521 __free_slab(page->slab_cache, page);
81819f0f
CL
1522}
1523
1524static void free_slab(struct kmem_cache *s, struct page *page)
1525{
1526 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1527 struct rcu_head *head;
1528
1529 if (need_reserve_slab_rcu) {
1530 int order = compound_order(page);
1531 int offset = (PAGE_SIZE << order) - s->reserved;
1532
1533 VM_BUG_ON(s->reserved != sizeof(*head));
1534 head = page_address(page) + offset;
1535 } else {
bc4f610d 1536 head = &page->rcu_head;
da9a638c 1537 }
81819f0f
CL
1538
1539 call_rcu(head, rcu_free_slab);
1540 } else
1541 __free_slab(s, page);
1542}
1543
1544static void discard_slab(struct kmem_cache *s, struct page *page)
1545{
205ab99d 1546 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1547 free_slab(s, page);
1548}
1549
1550/*
5cc6eee8 1551 * Management of partially allocated slabs.
81819f0f 1552 */
1e4dd946
SR
1553static inline void
1554__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1555{
e95eed57 1556 n->nr_partial++;
136333d1 1557 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1558 list_add_tail(&page->lru, &n->partial);
1559 else
1560 list_add(&page->lru, &n->partial);
81819f0f
CL
1561}
1562
1e4dd946
SR
1563static inline void add_partial(struct kmem_cache_node *n,
1564 struct page *page, int tail)
62e346a8 1565{
c65c1877 1566 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1567 __add_partial(n, page, tail);
1568}
c65c1877 1569
1e4dd946
SR
1570static inline void remove_partial(struct kmem_cache_node *n,
1571 struct page *page)
1572{
1573 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1574 list_del(&page->lru);
1575 n->nr_partial--;
1e4dd946
SR
1576}
1577
81819f0f 1578/*
7ced3719
CL
1579 * Remove slab from the partial list, freeze it and
1580 * return the pointer to the freelist.
81819f0f 1581 *
497b66f2 1582 * Returns a list of objects or NULL if it fails.
81819f0f 1583 */
497b66f2 1584static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1585 struct kmem_cache_node *n, struct page *page,
633b0764 1586 int mode, int *objects)
81819f0f 1587{
2cfb7455
CL
1588 void *freelist;
1589 unsigned long counters;
1590 struct page new;
1591
c65c1877
PZ
1592 lockdep_assert_held(&n->list_lock);
1593
2cfb7455
CL
1594 /*
1595 * Zap the freelist and set the frozen bit.
1596 * The old freelist is the list of objects for the
1597 * per cpu allocation list.
1598 */
7ced3719
CL
1599 freelist = page->freelist;
1600 counters = page->counters;
1601 new.counters = counters;
633b0764 1602 *objects = new.objects - new.inuse;
23910c50 1603 if (mode) {
7ced3719 1604 new.inuse = page->objects;
23910c50
PE
1605 new.freelist = NULL;
1606 } else {
1607 new.freelist = freelist;
1608 }
2cfb7455 1609
a0132ac0 1610 VM_BUG_ON(new.frozen);
7ced3719 1611 new.frozen = 1;
2cfb7455 1612
7ced3719 1613 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1614 freelist, counters,
02d7633f 1615 new.freelist, new.counters,
7ced3719 1616 "acquire_slab"))
7ced3719 1617 return NULL;
2cfb7455
CL
1618
1619 remove_partial(n, page);
7ced3719 1620 WARN_ON(!freelist);
49e22585 1621 return freelist;
81819f0f
CL
1622}
1623
633b0764 1624static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1625static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1626
81819f0f 1627/*
672bba3a 1628 * Try to allocate a partial slab from a specific node.
81819f0f 1629 */
8ba00bb6
JK
1630static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1631 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1632{
49e22585
CL
1633 struct page *page, *page2;
1634 void *object = NULL;
633b0764
JK
1635 int available = 0;
1636 int objects;
81819f0f
CL
1637
1638 /*
1639 * Racy check. If we mistakenly see no partial slabs then we
1640 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1641 * partial slab and there is none available then get_partials()
1642 * will return NULL.
81819f0f
CL
1643 */
1644 if (!n || !n->nr_partial)
1645 return NULL;
1646
1647 spin_lock(&n->list_lock);
49e22585 1648 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1649 void *t;
49e22585 1650
8ba00bb6
JK
1651 if (!pfmemalloc_match(page, flags))
1652 continue;
1653
633b0764 1654 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1655 if (!t)
1656 break;
1657
633b0764 1658 available += objects;
12d79634 1659 if (!object) {
49e22585 1660 c->page = page;
49e22585 1661 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1662 object = t;
49e22585 1663 } else {
633b0764 1664 put_cpu_partial(s, page, 0);
8028dcea 1665 stat(s, CPU_PARTIAL_NODE);
49e22585 1666 }
345c905d
JK
1667 if (!kmem_cache_has_cpu_partial(s)
1668 || available > s->cpu_partial / 2)
49e22585
CL
1669 break;
1670
497b66f2 1671 }
81819f0f 1672 spin_unlock(&n->list_lock);
497b66f2 1673 return object;
81819f0f
CL
1674}
1675
1676/*
672bba3a 1677 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1678 */
de3ec035 1679static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1680 struct kmem_cache_cpu *c)
81819f0f
CL
1681{
1682#ifdef CONFIG_NUMA
1683 struct zonelist *zonelist;
dd1a239f 1684 struct zoneref *z;
54a6eb5c
MG
1685 struct zone *zone;
1686 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1687 void *object;
cc9a6c87 1688 unsigned int cpuset_mems_cookie;
81819f0f
CL
1689
1690 /*
672bba3a
CL
1691 * The defrag ratio allows a configuration of the tradeoffs between
1692 * inter node defragmentation and node local allocations. A lower
1693 * defrag_ratio increases the tendency to do local allocations
1694 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1695 *
672bba3a
CL
1696 * If the defrag_ratio is set to 0 then kmalloc() always
1697 * returns node local objects. If the ratio is higher then kmalloc()
1698 * may return off node objects because partial slabs are obtained
1699 * from other nodes and filled up.
81819f0f 1700 *
6446faa2 1701 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1702 * defrag_ratio = 1000) then every (well almost) allocation will
1703 * first attempt to defrag slab caches on other nodes. This means
1704 * scanning over all nodes to look for partial slabs which may be
1705 * expensive if we do it every time we are trying to find a slab
1706 * with available objects.
81819f0f 1707 */
9824601e
CL
1708 if (!s->remote_node_defrag_ratio ||
1709 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1710 return NULL;
1711
cc9a6c87 1712 do {
d26914d1 1713 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1714 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1715 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1716 struct kmem_cache_node *n;
1717
1718 n = get_node(s, zone_to_nid(zone));
1719
dee2f8aa 1720 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1721 n->nr_partial > s->min_partial) {
8ba00bb6 1722 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1723 if (object) {
1724 /*
d26914d1
MG
1725 * Don't check read_mems_allowed_retry()
1726 * here - if mems_allowed was updated in
1727 * parallel, that was a harmless race
1728 * between allocation and the cpuset
1729 * update
cc9a6c87 1730 */
cc9a6c87
MG
1731 return object;
1732 }
c0ff7453 1733 }
81819f0f 1734 }
d26914d1 1735 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1736#endif
1737 return NULL;
1738}
1739
1740/*
1741 * Get a partial page, lock it and return it.
1742 */
497b66f2 1743static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1744 struct kmem_cache_cpu *c)
81819f0f 1745{
497b66f2 1746 void *object;
a561ce00
JK
1747 int searchnode = node;
1748
1749 if (node == NUMA_NO_NODE)
1750 searchnode = numa_mem_id();
1751 else if (!node_present_pages(node))
1752 searchnode = node_to_mem_node(node);
81819f0f 1753
8ba00bb6 1754 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1755 if (object || node != NUMA_NO_NODE)
1756 return object;
81819f0f 1757
acd19fd1 1758 return get_any_partial(s, flags, c);
81819f0f
CL
1759}
1760
8a5ec0ba
CL
1761#ifdef CONFIG_PREEMPT
1762/*
1763 * Calculate the next globally unique transaction for disambiguiation
1764 * during cmpxchg. The transactions start with the cpu number and are then
1765 * incremented by CONFIG_NR_CPUS.
1766 */
1767#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1768#else
1769/*
1770 * No preemption supported therefore also no need to check for
1771 * different cpus.
1772 */
1773#define TID_STEP 1
1774#endif
1775
1776static inline unsigned long next_tid(unsigned long tid)
1777{
1778 return tid + TID_STEP;
1779}
1780
1781static inline unsigned int tid_to_cpu(unsigned long tid)
1782{
1783 return tid % TID_STEP;
1784}
1785
1786static inline unsigned long tid_to_event(unsigned long tid)
1787{
1788 return tid / TID_STEP;
1789}
1790
1791static inline unsigned int init_tid(int cpu)
1792{
1793 return cpu;
1794}
1795
1796static inline void note_cmpxchg_failure(const char *n,
1797 const struct kmem_cache *s, unsigned long tid)
1798{
1799#ifdef SLUB_DEBUG_CMPXCHG
1800 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1801
f9f58285 1802 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1803
1804#ifdef CONFIG_PREEMPT
1805 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1806 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1807 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1808 else
1809#endif
1810 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1811 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1812 tid_to_event(tid), tid_to_event(actual_tid));
1813 else
f9f58285 1814 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1815 actual_tid, tid, next_tid(tid));
1816#endif
4fdccdfb 1817 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1818}
1819
788e1aad 1820static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1821{
8a5ec0ba
CL
1822 int cpu;
1823
1824 for_each_possible_cpu(cpu)
1825 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1826}
2cfb7455 1827
81819f0f
CL
1828/*
1829 * Remove the cpu slab
1830 */
d0e0ac97
CG
1831static void deactivate_slab(struct kmem_cache *s, struct page *page,
1832 void *freelist)
81819f0f 1833{
2cfb7455 1834 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1835 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1836 int lock = 0;
1837 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1838 void *nextfree;
136333d1 1839 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1840 struct page new;
1841 struct page old;
1842
1843 if (page->freelist) {
84e554e6 1844 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1845 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1846 }
1847
894b8788 1848 /*
2cfb7455
CL
1849 * Stage one: Free all available per cpu objects back
1850 * to the page freelist while it is still frozen. Leave the
1851 * last one.
1852 *
1853 * There is no need to take the list->lock because the page
1854 * is still frozen.
1855 */
1856 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1857 void *prior;
1858 unsigned long counters;
1859
1860 do {
1861 prior = page->freelist;
1862 counters = page->counters;
1863 set_freepointer(s, freelist, prior);
1864 new.counters = counters;
1865 new.inuse--;
a0132ac0 1866 VM_BUG_ON(!new.frozen);
2cfb7455 1867
1d07171c 1868 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1869 prior, counters,
1870 freelist, new.counters,
1871 "drain percpu freelist"));
1872
1873 freelist = nextfree;
1874 }
1875
894b8788 1876 /*
2cfb7455
CL
1877 * Stage two: Ensure that the page is unfrozen while the
1878 * list presence reflects the actual number of objects
1879 * during unfreeze.
1880 *
1881 * We setup the list membership and then perform a cmpxchg
1882 * with the count. If there is a mismatch then the page
1883 * is not unfrozen but the page is on the wrong list.
1884 *
1885 * Then we restart the process which may have to remove
1886 * the page from the list that we just put it on again
1887 * because the number of objects in the slab may have
1888 * changed.
894b8788 1889 */
2cfb7455 1890redo:
894b8788 1891
2cfb7455
CL
1892 old.freelist = page->freelist;
1893 old.counters = page->counters;
a0132ac0 1894 VM_BUG_ON(!old.frozen);
7c2e132c 1895
2cfb7455
CL
1896 /* Determine target state of the slab */
1897 new.counters = old.counters;
1898 if (freelist) {
1899 new.inuse--;
1900 set_freepointer(s, freelist, old.freelist);
1901 new.freelist = freelist;
1902 } else
1903 new.freelist = old.freelist;
1904
1905 new.frozen = 0;
1906
8a5b20ae 1907 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1908 m = M_FREE;
1909 else if (new.freelist) {
1910 m = M_PARTIAL;
1911 if (!lock) {
1912 lock = 1;
1913 /*
1914 * Taking the spinlock removes the possiblity
1915 * that acquire_slab() will see a slab page that
1916 * is frozen
1917 */
1918 spin_lock(&n->list_lock);
1919 }
1920 } else {
1921 m = M_FULL;
1922 if (kmem_cache_debug(s) && !lock) {
1923 lock = 1;
1924 /*
1925 * This also ensures that the scanning of full
1926 * slabs from diagnostic functions will not see
1927 * any frozen slabs.
1928 */
1929 spin_lock(&n->list_lock);
1930 }
1931 }
1932
1933 if (l != m) {
1934
1935 if (l == M_PARTIAL)
1936
1937 remove_partial(n, page);
1938
1939 else if (l == M_FULL)
894b8788 1940
c65c1877 1941 remove_full(s, n, page);
2cfb7455
CL
1942
1943 if (m == M_PARTIAL) {
1944
1945 add_partial(n, page, tail);
136333d1 1946 stat(s, tail);
2cfb7455
CL
1947
1948 } else if (m == M_FULL) {
894b8788 1949
2cfb7455
CL
1950 stat(s, DEACTIVATE_FULL);
1951 add_full(s, n, page);
1952
1953 }
1954 }
1955
1956 l = m;
1d07171c 1957 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1958 old.freelist, old.counters,
1959 new.freelist, new.counters,
1960 "unfreezing slab"))
1961 goto redo;
1962
2cfb7455
CL
1963 if (lock)
1964 spin_unlock(&n->list_lock);
1965
1966 if (m == M_FREE) {
1967 stat(s, DEACTIVATE_EMPTY);
1968 discard_slab(s, page);
1969 stat(s, FREE_SLAB);
894b8788 1970 }
81819f0f
CL
1971}
1972
d24ac77f
JK
1973/*
1974 * Unfreeze all the cpu partial slabs.
1975 *
59a09917
CL
1976 * This function must be called with interrupts disabled
1977 * for the cpu using c (or some other guarantee must be there
1978 * to guarantee no concurrent accesses).
d24ac77f 1979 */
59a09917
CL
1980static void unfreeze_partials(struct kmem_cache *s,
1981 struct kmem_cache_cpu *c)
49e22585 1982{
345c905d 1983#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1984 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1985 struct page *page, *discard_page = NULL;
49e22585
CL
1986
1987 while ((page = c->partial)) {
49e22585
CL
1988 struct page new;
1989 struct page old;
1990
1991 c->partial = page->next;
43d77867
JK
1992
1993 n2 = get_node(s, page_to_nid(page));
1994 if (n != n2) {
1995 if (n)
1996 spin_unlock(&n->list_lock);
1997
1998 n = n2;
1999 spin_lock(&n->list_lock);
2000 }
49e22585
CL
2001
2002 do {
2003
2004 old.freelist = page->freelist;
2005 old.counters = page->counters;
a0132ac0 2006 VM_BUG_ON(!old.frozen);
49e22585
CL
2007
2008 new.counters = old.counters;
2009 new.freelist = old.freelist;
2010
2011 new.frozen = 0;
2012
d24ac77f 2013 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2014 old.freelist, old.counters,
2015 new.freelist, new.counters,
2016 "unfreezing slab"));
2017
8a5b20ae 2018 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2019 page->next = discard_page;
2020 discard_page = page;
43d77867
JK
2021 } else {
2022 add_partial(n, page, DEACTIVATE_TO_TAIL);
2023 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2024 }
2025 }
2026
2027 if (n)
2028 spin_unlock(&n->list_lock);
9ada1934
SL
2029
2030 while (discard_page) {
2031 page = discard_page;
2032 discard_page = discard_page->next;
2033
2034 stat(s, DEACTIVATE_EMPTY);
2035 discard_slab(s, page);
2036 stat(s, FREE_SLAB);
2037 }
345c905d 2038#endif
49e22585
CL
2039}
2040
2041/*
2042 * Put a page that was just frozen (in __slab_free) into a partial page
2043 * slot if available. This is done without interrupts disabled and without
2044 * preemption disabled. The cmpxchg is racy and may put the partial page
2045 * onto a random cpus partial slot.
2046 *
2047 * If we did not find a slot then simply move all the partials to the
2048 * per node partial list.
2049 */
633b0764 2050static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2051{
345c905d 2052#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2053 struct page *oldpage;
2054 int pages;
2055 int pobjects;
2056
d6e0b7fa 2057 preempt_disable();
49e22585
CL
2058 do {
2059 pages = 0;
2060 pobjects = 0;
2061 oldpage = this_cpu_read(s->cpu_slab->partial);
2062
2063 if (oldpage) {
2064 pobjects = oldpage->pobjects;
2065 pages = oldpage->pages;
2066 if (drain && pobjects > s->cpu_partial) {
2067 unsigned long flags;
2068 /*
2069 * partial array is full. Move the existing
2070 * set to the per node partial list.
2071 */
2072 local_irq_save(flags);
59a09917 2073 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2074 local_irq_restore(flags);
e24fc410 2075 oldpage = NULL;
49e22585
CL
2076 pobjects = 0;
2077 pages = 0;
8028dcea 2078 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2079 }
2080 }
2081
2082 pages++;
2083 pobjects += page->objects - page->inuse;
2084
2085 page->pages = pages;
2086 page->pobjects = pobjects;
2087 page->next = oldpage;
2088
d0e0ac97
CG
2089 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2090 != oldpage);
d6e0b7fa
VD
2091 if (unlikely(!s->cpu_partial)) {
2092 unsigned long flags;
2093
2094 local_irq_save(flags);
2095 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2096 local_irq_restore(flags);
2097 }
2098 preempt_enable();
345c905d 2099#endif
49e22585
CL
2100}
2101
dfb4f096 2102static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2103{
84e554e6 2104 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2105 deactivate_slab(s, c->page, c->freelist);
2106
2107 c->tid = next_tid(c->tid);
2108 c->page = NULL;
2109 c->freelist = NULL;
81819f0f
CL
2110}
2111
2112/*
2113 * Flush cpu slab.
6446faa2 2114 *
81819f0f
CL
2115 * Called from IPI handler with interrupts disabled.
2116 */
0c710013 2117static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2118{
9dfc6e68 2119 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2120
49e22585
CL
2121 if (likely(c)) {
2122 if (c->page)
2123 flush_slab(s, c);
2124
59a09917 2125 unfreeze_partials(s, c);
49e22585 2126 }
81819f0f
CL
2127}
2128
2129static void flush_cpu_slab(void *d)
2130{
2131 struct kmem_cache *s = d;
81819f0f 2132
dfb4f096 2133 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2134}
2135
a8364d55
GBY
2136static bool has_cpu_slab(int cpu, void *info)
2137{
2138 struct kmem_cache *s = info;
2139 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2140
02e1a9cd 2141 return c->page || c->partial;
a8364d55
GBY
2142}
2143
81819f0f
CL
2144static void flush_all(struct kmem_cache *s)
2145{
a8364d55 2146 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2147}
2148
dfb4f096
CL
2149/*
2150 * Check if the objects in a per cpu structure fit numa
2151 * locality expectations.
2152 */
57d437d2 2153static inline int node_match(struct page *page, int node)
dfb4f096
CL
2154{
2155#ifdef CONFIG_NUMA
4d7868e6 2156 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2157 return 0;
2158#endif
2159 return 1;
2160}
2161
9a02d699 2162#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2163static int count_free(struct page *page)
2164{
2165 return page->objects - page->inuse;
2166}
2167
9a02d699
DR
2168static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2169{
2170 return atomic_long_read(&n->total_objects);
2171}
2172#endif /* CONFIG_SLUB_DEBUG */
2173
2174#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2175static unsigned long count_partial(struct kmem_cache_node *n,
2176 int (*get_count)(struct page *))
2177{
2178 unsigned long flags;
2179 unsigned long x = 0;
2180 struct page *page;
2181
2182 spin_lock_irqsave(&n->list_lock, flags);
2183 list_for_each_entry(page, &n->partial, lru)
2184 x += get_count(page);
2185 spin_unlock_irqrestore(&n->list_lock, flags);
2186 return x;
2187}
9a02d699 2188#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2189
781b2ba6
PE
2190static noinline void
2191slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2192{
9a02d699
DR
2193#ifdef CONFIG_SLUB_DEBUG
2194 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2195 DEFAULT_RATELIMIT_BURST);
781b2ba6 2196 int node;
fa45dc25 2197 struct kmem_cache_node *n;
781b2ba6 2198
9a02d699
DR
2199 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2200 return;
2201
f9f58285 2202 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2203 nid, gfpflags);
f9f58285
FF
2204 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2205 s->name, s->object_size, s->size, oo_order(s->oo),
2206 oo_order(s->min));
781b2ba6 2207
3b0efdfa 2208 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2209 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2210 s->name);
fa5ec8a1 2211
fa45dc25 2212 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2213 unsigned long nr_slabs;
2214 unsigned long nr_objs;
2215 unsigned long nr_free;
2216
26c02cf0
AB
2217 nr_free = count_partial(n, count_free);
2218 nr_slabs = node_nr_slabs(n);
2219 nr_objs = node_nr_objs(n);
781b2ba6 2220
f9f58285 2221 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2222 node, nr_slabs, nr_objs, nr_free);
2223 }
9a02d699 2224#endif
781b2ba6
PE
2225}
2226
497b66f2
CL
2227static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2228 int node, struct kmem_cache_cpu **pc)
2229{
6faa6833 2230 void *freelist;
188fd063
CL
2231 struct kmem_cache_cpu *c = *pc;
2232 struct page *page;
497b66f2 2233
188fd063 2234 freelist = get_partial(s, flags, node, c);
497b66f2 2235
188fd063
CL
2236 if (freelist)
2237 return freelist;
2238
2239 page = new_slab(s, flags, node);
497b66f2 2240 if (page) {
7c8e0181 2241 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2242 if (c->page)
2243 flush_slab(s, c);
2244
2245 /*
2246 * No other reference to the page yet so we can
2247 * muck around with it freely without cmpxchg
2248 */
6faa6833 2249 freelist = page->freelist;
497b66f2
CL
2250 page->freelist = NULL;
2251
2252 stat(s, ALLOC_SLAB);
497b66f2
CL
2253 c->page = page;
2254 *pc = c;
2255 } else
6faa6833 2256 freelist = NULL;
497b66f2 2257
6faa6833 2258 return freelist;
497b66f2
CL
2259}
2260
072bb0aa
MG
2261static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2262{
2263 if (unlikely(PageSlabPfmemalloc(page)))
2264 return gfp_pfmemalloc_allowed(gfpflags);
2265
2266 return true;
2267}
2268
213eeb9f 2269/*
d0e0ac97
CG
2270 * Check the page->freelist of a page and either transfer the freelist to the
2271 * per cpu freelist or deactivate the page.
213eeb9f
CL
2272 *
2273 * The page is still frozen if the return value is not NULL.
2274 *
2275 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2276 *
2277 * This function must be called with interrupt disabled.
213eeb9f
CL
2278 */
2279static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2280{
2281 struct page new;
2282 unsigned long counters;
2283 void *freelist;
2284
2285 do {
2286 freelist = page->freelist;
2287 counters = page->counters;
6faa6833 2288
213eeb9f 2289 new.counters = counters;
a0132ac0 2290 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2291
2292 new.inuse = page->objects;
2293 new.frozen = freelist != NULL;
2294
d24ac77f 2295 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2296 freelist, counters,
2297 NULL, new.counters,
2298 "get_freelist"));
2299
2300 return freelist;
2301}
2302
81819f0f 2303/*
894b8788
CL
2304 * Slow path. The lockless freelist is empty or we need to perform
2305 * debugging duties.
2306 *
894b8788
CL
2307 * Processing is still very fast if new objects have been freed to the
2308 * regular freelist. In that case we simply take over the regular freelist
2309 * as the lockless freelist and zap the regular freelist.
81819f0f 2310 *
894b8788
CL
2311 * If that is not working then we fall back to the partial lists. We take the
2312 * first element of the freelist as the object to allocate now and move the
2313 * rest of the freelist to the lockless freelist.
81819f0f 2314 *
894b8788 2315 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2316 * we need to allocate a new slab. This is the slowest path since it involves
2317 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2318 *
2319 * Version of __slab_alloc to use when we know that interrupts are
2320 * already disabled (which is the case for bulk allocation).
81819f0f 2321 */
a380a3c7 2322static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2323 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2324{
6faa6833 2325 void *freelist;
f6e7def7 2326 struct page *page;
81819f0f 2327
f6e7def7
CL
2328 page = c->page;
2329 if (!page)
81819f0f 2330 goto new_slab;
49e22585 2331redo:
6faa6833 2332
57d437d2 2333 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2334 int searchnode = node;
2335
2336 if (node != NUMA_NO_NODE && !node_present_pages(node))
2337 searchnode = node_to_mem_node(node);
2338
2339 if (unlikely(!node_match(page, searchnode))) {
2340 stat(s, ALLOC_NODE_MISMATCH);
2341 deactivate_slab(s, page, c->freelist);
2342 c->page = NULL;
2343 c->freelist = NULL;
2344 goto new_slab;
2345 }
fc59c053 2346 }
6446faa2 2347
072bb0aa
MG
2348 /*
2349 * By rights, we should be searching for a slab page that was
2350 * PFMEMALLOC but right now, we are losing the pfmemalloc
2351 * information when the page leaves the per-cpu allocator
2352 */
2353 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2354 deactivate_slab(s, page, c->freelist);
2355 c->page = NULL;
2356 c->freelist = NULL;
2357 goto new_slab;
2358 }
2359
73736e03 2360 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2361 freelist = c->freelist;
2362 if (freelist)
73736e03 2363 goto load_freelist;
03e404af 2364
f6e7def7 2365 freelist = get_freelist(s, page);
6446faa2 2366
6faa6833 2367 if (!freelist) {
03e404af
CL
2368 c->page = NULL;
2369 stat(s, DEACTIVATE_BYPASS);
fc59c053 2370 goto new_slab;
03e404af 2371 }
6446faa2 2372
84e554e6 2373 stat(s, ALLOC_REFILL);
6446faa2 2374
894b8788 2375load_freelist:
507effea
CL
2376 /*
2377 * freelist is pointing to the list of objects to be used.
2378 * page is pointing to the page from which the objects are obtained.
2379 * That page must be frozen for per cpu allocations to work.
2380 */
a0132ac0 2381 VM_BUG_ON(!c->page->frozen);
6faa6833 2382 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2383 c->tid = next_tid(c->tid);
6faa6833 2384 return freelist;
81819f0f 2385
81819f0f 2386new_slab:
2cfb7455 2387
49e22585 2388 if (c->partial) {
f6e7def7
CL
2389 page = c->page = c->partial;
2390 c->partial = page->next;
49e22585
CL
2391 stat(s, CPU_PARTIAL_ALLOC);
2392 c->freelist = NULL;
2393 goto redo;
81819f0f
CL
2394 }
2395
188fd063 2396 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2397
f4697436 2398 if (unlikely(!freelist)) {
9a02d699 2399 slab_out_of_memory(s, gfpflags, node);
f4697436 2400 return NULL;
81819f0f 2401 }
2cfb7455 2402
f6e7def7 2403 page = c->page;
5091b74a 2404 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2405 goto load_freelist;
2cfb7455 2406
497b66f2 2407 /* Only entered in the debug case */
d0e0ac97
CG
2408 if (kmem_cache_debug(s) &&
2409 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2410 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2411
f6e7def7 2412 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2413 c->page = NULL;
2414 c->freelist = NULL;
6faa6833 2415 return freelist;
894b8788
CL
2416}
2417
a380a3c7
CL
2418/*
2419 * Another one that disabled interrupt and compensates for possible
2420 * cpu changes by refetching the per cpu area pointer.
2421 */
2422static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2423 unsigned long addr, struct kmem_cache_cpu *c)
2424{
2425 void *p;
2426 unsigned long flags;
2427
2428 local_irq_save(flags);
2429#ifdef CONFIG_PREEMPT
2430 /*
2431 * We may have been preempted and rescheduled on a different
2432 * cpu before disabling interrupts. Need to reload cpu area
2433 * pointer.
2434 */
2435 c = this_cpu_ptr(s->cpu_slab);
2436#endif
2437
2438 p = ___slab_alloc(s, gfpflags, node, addr, c);
2439 local_irq_restore(flags);
2440 return p;
2441}
2442
894b8788
CL
2443/*
2444 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2445 * have the fastpath folded into their functions. So no function call
2446 * overhead for requests that can be satisfied on the fastpath.
2447 *
2448 * The fastpath works by first checking if the lockless freelist can be used.
2449 * If not then __slab_alloc is called for slow processing.
2450 *
2451 * Otherwise we can simply pick the next object from the lockless free list.
2452 */
2b847c3c 2453static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2454 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2455{
03ec0ed5 2456 void *object;
dfb4f096 2457 struct kmem_cache_cpu *c;
57d437d2 2458 struct page *page;
8a5ec0ba 2459 unsigned long tid;
1f84260c 2460
8135be5a
VD
2461 s = slab_pre_alloc_hook(s, gfpflags);
2462 if (!s)
773ff60e 2463 return NULL;
8a5ec0ba 2464redo:
8a5ec0ba
CL
2465 /*
2466 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2467 * enabled. We may switch back and forth between cpus while
2468 * reading from one cpu area. That does not matter as long
2469 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2470 *
9aabf810
JK
2471 * We should guarantee that tid and kmem_cache are retrieved on
2472 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2473 * to check if it is matched or not.
8a5ec0ba 2474 */
9aabf810
JK
2475 do {
2476 tid = this_cpu_read(s->cpu_slab->tid);
2477 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2478 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2479 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2480
2481 /*
2482 * Irqless object alloc/free algorithm used here depends on sequence
2483 * of fetching cpu_slab's data. tid should be fetched before anything
2484 * on c to guarantee that object and page associated with previous tid
2485 * won't be used with current tid. If we fetch tid first, object and
2486 * page could be one associated with next tid and our alloc/free
2487 * request will be failed. In this case, we will retry. So, no problem.
2488 */
2489 barrier();
8a5ec0ba 2490
8a5ec0ba
CL
2491 /*
2492 * The transaction ids are globally unique per cpu and per operation on
2493 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2494 * occurs on the right processor and that there was no operation on the
2495 * linked list in between.
2496 */
8a5ec0ba 2497
9dfc6e68 2498 object = c->freelist;
57d437d2 2499 page = c->page;
8eae1492 2500 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2501 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2502 stat(s, ALLOC_SLOWPATH);
2503 } else {
0ad9500e
ED
2504 void *next_object = get_freepointer_safe(s, object);
2505
8a5ec0ba 2506 /*
25985edc 2507 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2508 * operation and if we are on the right processor.
2509 *
d0e0ac97
CG
2510 * The cmpxchg does the following atomically (without lock
2511 * semantics!)
8a5ec0ba
CL
2512 * 1. Relocate first pointer to the current per cpu area.
2513 * 2. Verify that tid and freelist have not been changed
2514 * 3. If they were not changed replace tid and freelist
2515 *
d0e0ac97
CG
2516 * Since this is without lock semantics the protection is only
2517 * against code executing on this cpu *not* from access by
2518 * other cpus.
8a5ec0ba 2519 */
933393f5 2520 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2521 s->cpu_slab->freelist, s->cpu_slab->tid,
2522 object, tid,
0ad9500e 2523 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2524
2525 note_cmpxchg_failure("slab_alloc", s, tid);
2526 goto redo;
2527 }
0ad9500e 2528 prefetch_freepointer(s, next_object);
84e554e6 2529 stat(s, ALLOC_FASTPATH);
894b8788 2530 }
8a5ec0ba 2531
74e2134f 2532 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2533 memset(object, 0, s->object_size);
d07dbea4 2534
03ec0ed5 2535 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2536
894b8788 2537 return object;
81819f0f
CL
2538}
2539
2b847c3c
EG
2540static __always_inline void *slab_alloc(struct kmem_cache *s,
2541 gfp_t gfpflags, unsigned long addr)
2542{
2543 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2544}
2545
81819f0f
CL
2546void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2547{
2b847c3c 2548 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2549
d0e0ac97
CG
2550 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2551 s->size, gfpflags);
5b882be4
EGM
2552
2553 return ret;
81819f0f
CL
2554}
2555EXPORT_SYMBOL(kmem_cache_alloc);
2556
0f24f128 2557#ifdef CONFIG_TRACING
4a92379b
RK
2558void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2559{
2b847c3c 2560 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2561 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2562 kasan_kmalloc(s, ret, size);
4a92379b
RK
2563 return ret;
2564}
2565EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2566#endif
2567
81819f0f
CL
2568#ifdef CONFIG_NUMA
2569void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2570{
2b847c3c 2571 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2572
ca2b84cb 2573 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2574 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2575
2576 return ret;
81819f0f
CL
2577}
2578EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2579
0f24f128 2580#ifdef CONFIG_TRACING
4a92379b 2581void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2582 gfp_t gfpflags,
4a92379b 2583 int node, size_t size)
5b882be4 2584{
2b847c3c 2585 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2586
2587 trace_kmalloc_node(_RET_IP_, ret,
2588 size, s->size, gfpflags, node);
0316bec2
AR
2589
2590 kasan_kmalloc(s, ret, size);
4a92379b 2591 return ret;
5b882be4 2592}
4a92379b 2593EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2594#endif
5d1f57e4 2595#endif
5b882be4 2596
81819f0f 2597/*
94e4d712 2598 * Slow path handling. This may still be called frequently since objects
894b8788 2599 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2600 *
894b8788
CL
2601 * So we still attempt to reduce cache line usage. Just take the slab
2602 * lock and free the item. If there is no additional partial page
2603 * handling required then we can return immediately.
81819f0f 2604 */
894b8788 2605static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2606 void *head, void *tail, int cnt,
2607 unsigned long addr)
2608
81819f0f
CL
2609{
2610 void *prior;
2cfb7455 2611 int was_frozen;
2cfb7455
CL
2612 struct page new;
2613 unsigned long counters;
2614 struct kmem_cache_node *n = NULL;
61728d1e 2615 unsigned long uninitialized_var(flags);
81819f0f 2616
8a5ec0ba 2617 stat(s, FREE_SLOWPATH);
81819f0f 2618
19c7ff9e 2619 if (kmem_cache_debug(s) &&
282acb43 2620 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2621 return;
6446faa2 2622
2cfb7455 2623 do {
837d678d
JK
2624 if (unlikely(n)) {
2625 spin_unlock_irqrestore(&n->list_lock, flags);
2626 n = NULL;
2627 }
2cfb7455
CL
2628 prior = page->freelist;
2629 counters = page->counters;
81084651 2630 set_freepointer(s, tail, prior);
2cfb7455
CL
2631 new.counters = counters;
2632 was_frozen = new.frozen;
81084651 2633 new.inuse -= cnt;
837d678d 2634 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2635
c65c1877 2636 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2637
2638 /*
d0e0ac97
CG
2639 * Slab was on no list before and will be
2640 * partially empty
2641 * We can defer the list move and instead
2642 * freeze it.
49e22585
CL
2643 */
2644 new.frozen = 1;
2645
c65c1877 2646 } else { /* Needs to be taken off a list */
49e22585 2647
b455def2 2648 n = get_node(s, page_to_nid(page));
49e22585
CL
2649 /*
2650 * Speculatively acquire the list_lock.
2651 * If the cmpxchg does not succeed then we may
2652 * drop the list_lock without any processing.
2653 *
2654 * Otherwise the list_lock will synchronize with
2655 * other processors updating the list of slabs.
2656 */
2657 spin_lock_irqsave(&n->list_lock, flags);
2658
2659 }
2cfb7455 2660 }
81819f0f 2661
2cfb7455
CL
2662 } while (!cmpxchg_double_slab(s, page,
2663 prior, counters,
81084651 2664 head, new.counters,
2cfb7455 2665 "__slab_free"));
81819f0f 2666
2cfb7455 2667 if (likely(!n)) {
49e22585
CL
2668
2669 /*
2670 * If we just froze the page then put it onto the
2671 * per cpu partial list.
2672 */
8028dcea 2673 if (new.frozen && !was_frozen) {
49e22585 2674 put_cpu_partial(s, page, 1);
8028dcea
AS
2675 stat(s, CPU_PARTIAL_FREE);
2676 }
49e22585 2677 /*
2cfb7455
CL
2678 * The list lock was not taken therefore no list
2679 * activity can be necessary.
2680 */
b455def2
L
2681 if (was_frozen)
2682 stat(s, FREE_FROZEN);
2683 return;
2684 }
81819f0f 2685
8a5b20ae 2686 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2687 goto slab_empty;
2688
81819f0f 2689 /*
837d678d
JK
2690 * Objects left in the slab. If it was not on the partial list before
2691 * then add it.
81819f0f 2692 */
345c905d
JK
2693 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2694 if (kmem_cache_debug(s))
c65c1877 2695 remove_full(s, n, page);
837d678d
JK
2696 add_partial(n, page, DEACTIVATE_TO_TAIL);
2697 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2698 }
80f08c19 2699 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2700 return;
2701
2702slab_empty:
a973e9dd 2703 if (prior) {
81819f0f 2704 /*
6fbabb20 2705 * Slab on the partial list.
81819f0f 2706 */
5cc6eee8 2707 remove_partial(n, page);
84e554e6 2708 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2709 } else {
6fbabb20 2710 /* Slab must be on the full list */
c65c1877
PZ
2711 remove_full(s, n, page);
2712 }
2cfb7455 2713
80f08c19 2714 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2715 stat(s, FREE_SLAB);
81819f0f 2716 discard_slab(s, page);
81819f0f
CL
2717}
2718
894b8788
CL
2719/*
2720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2721 * can perform fastpath freeing without additional function calls.
2722 *
2723 * The fastpath is only possible if we are freeing to the current cpu slab
2724 * of this processor. This typically the case if we have just allocated
2725 * the item before.
2726 *
2727 * If fastpath is not possible then fall back to __slab_free where we deal
2728 * with all sorts of special processing.
81084651
JDB
2729 *
2730 * Bulk free of a freelist with several objects (all pointing to the
2731 * same page) possible by specifying head and tail ptr, plus objects
2732 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2733 */
81084651
JDB
2734static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2735 void *head, void *tail, int cnt,
2736 unsigned long addr)
894b8788 2737{
81084651 2738 void *tail_obj = tail ? : head;
dfb4f096 2739 struct kmem_cache_cpu *c;
8a5ec0ba 2740 unsigned long tid;
1f84260c 2741
81084651 2742 slab_free_freelist_hook(s, head, tail);
c016b0bd 2743
8a5ec0ba
CL
2744redo:
2745 /*
2746 * Determine the currently cpus per cpu slab.
2747 * The cpu may change afterward. However that does not matter since
2748 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2749 * during the cmpxchg then the free will succeed.
8a5ec0ba 2750 */
9aabf810
JK
2751 do {
2752 tid = this_cpu_read(s->cpu_slab->tid);
2753 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2754 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2755 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2756
9aabf810
JK
2757 /* Same with comment on barrier() in slab_alloc_node() */
2758 barrier();
c016b0bd 2759
442b06bc 2760 if (likely(page == c->page)) {
81084651 2761 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2762
933393f5 2763 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2764 s->cpu_slab->freelist, s->cpu_slab->tid,
2765 c->freelist, tid,
81084651 2766 head, next_tid(tid)))) {
8a5ec0ba
CL
2767
2768 note_cmpxchg_failure("slab_free", s, tid);
2769 goto redo;
2770 }
84e554e6 2771 stat(s, FREE_FASTPATH);
894b8788 2772 } else
81084651 2773 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2774
894b8788
CL
2775}
2776
81819f0f
CL
2777void kmem_cache_free(struct kmem_cache *s, void *x)
2778{
b9ce5ef4
GC
2779 s = cache_from_obj(s, x);
2780 if (!s)
79576102 2781 return;
81084651 2782 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2783 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2784}
2785EXPORT_SYMBOL(kmem_cache_free);
2786
d0ecd894 2787struct detached_freelist {
fbd02630 2788 struct page *page;
d0ecd894
JDB
2789 void *tail;
2790 void *freelist;
2791 int cnt;
376bf125 2792 struct kmem_cache *s;
d0ecd894 2793};
fbd02630 2794
d0ecd894
JDB
2795/*
2796 * This function progressively scans the array with free objects (with
2797 * a limited look ahead) and extract objects belonging to the same
2798 * page. It builds a detached freelist directly within the given
2799 * page/objects. This can happen without any need for
2800 * synchronization, because the objects are owned by running process.
2801 * The freelist is build up as a single linked list in the objects.
2802 * The idea is, that this detached freelist can then be bulk
2803 * transferred to the real freelist(s), but only requiring a single
2804 * synchronization primitive. Look ahead in the array is limited due
2805 * to performance reasons.
2806 */
376bf125
JDB
2807static inline
2808int build_detached_freelist(struct kmem_cache *s, size_t size,
2809 void **p, struct detached_freelist *df)
d0ecd894
JDB
2810{
2811 size_t first_skipped_index = 0;
2812 int lookahead = 3;
2813 void *object;
ca257195 2814 struct page *page;
fbd02630 2815
d0ecd894
JDB
2816 /* Always re-init detached_freelist */
2817 df->page = NULL;
fbd02630 2818
d0ecd894
JDB
2819 do {
2820 object = p[--size];
ca257195 2821 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2822 } while (!object && size);
3eed034d 2823
d0ecd894
JDB
2824 if (!object)
2825 return 0;
fbd02630 2826
ca257195
JDB
2827 page = virt_to_head_page(object);
2828 if (!s) {
2829 /* Handle kalloc'ed objects */
2830 if (unlikely(!PageSlab(page))) {
2831 BUG_ON(!PageCompound(page));
2832 kfree_hook(object);
2833 __free_kmem_pages(page, compound_order(page));
2834 p[size] = NULL; /* mark object processed */
2835 return size;
2836 }
2837 /* Derive kmem_cache from object */
2838 df->s = page->slab_cache;
2839 } else {
2840 df->s = cache_from_obj(s, object); /* Support for memcg */
2841 }
376bf125 2842
d0ecd894 2843 /* Start new detached freelist */
ca257195 2844 df->page = page;
376bf125 2845 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
2846 df->tail = object;
2847 df->freelist = object;
2848 p[size] = NULL; /* mark object processed */
2849 df->cnt = 1;
2850
2851 while (size) {
2852 object = p[--size];
2853 if (!object)
2854 continue; /* Skip processed objects */
2855
2856 /* df->page is always set at this point */
2857 if (df->page == virt_to_head_page(object)) {
2858 /* Opportunity build freelist */
376bf125 2859 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
2860 df->freelist = object;
2861 df->cnt++;
2862 p[size] = NULL; /* mark object processed */
2863
2864 continue;
fbd02630 2865 }
d0ecd894
JDB
2866
2867 /* Limit look ahead search */
2868 if (!--lookahead)
2869 break;
2870
2871 if (!first_skipped_index)
2872 first_skipped_index = size + 1;
fbd02630 2873 }
d0ecd894
JDB
2874
2875 return first_skipped_index;
2876}
2877
d0ecd894 2878/* Note that interrupts must be enabled when calling this function. */
376bf125 2879void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
2880{
2881 if (WARN_ON(!size))
2882 return;
2883
2884 do {
2885 struct detached_freelist df;
2886
2887 size = build_detached_freelist(s, size, p, &df);
2888 if (unlikely(!df.page))
2889 continue;
2890
376bf125 2891 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 2892 } while (likely(size));
484748f0
CL
2893}
2894EXPORT_SYMBOL(kmem_cache_free_bulk);
2895
994eb764 2896/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2897int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2898 void **p)
484748f0 2899{
994eb764
JDB
2900 struct kmem_cache_cpu *c;
2901 int i;
2902
03ec0ed5
JDB
2903 /* memcg and kmem_cache debug support */
2904 s = slab_pre_alloc_hook(s, flags);
2905 if (unlikely(!s))
2906 return false;
994eb764
JDB
2907 /*
2908 * Drain objects in the per cpu slab, while disabling local
2909 * IRQs, which protects against PREEMPT and interrupts
2910 * handlers invoking normal fastpath.
2911 */
2912 local_irq_disable();
2913 c = this_cpu_ptr(s->cpu_slab);
2914
2915 for (i = 0; i < size; i++) {
2916 void *object = c->freelist;
2917
ebe909e0 2918 if (unlikely(!object)) {
ebe909e0
JDB
2919 /*
2920 * Invoking slow path likely have side-effect
2921 * of re-populating per CPU c->freelist
2922 */
87098373 2923 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2924 _RET_IP_, c);
87098373
CL
2925 if (unlikely(!p[i]))
2926 goto error;
2927
ebe909e0
JDB
2928 c = this_cpu_ptr(s->cpu_slab);
2929 continue; /* goto for-loop */
2930 }
994eb764
JDB
2931 c->freelist = get_freepointer(s, object);
2932 p[i] = object;
2933 }
2934 c->tid = next_tid(c->tid);
2935 local_irq_enable();
2936
2937 /* Clear memory outside IRQ disabled fastpath loop */
2938 if (unlikely(flags & __GFP_ZERO)) {
2939 int j;
2940
2941 for (j = 0; j < i; j++)
2942 memset(p[j], 0, s->object_size);
2943 }
2944
03ec0ed5
JDB
2945 /* memcg and kmem_cache debug support */
2946 slab_post_alloc_hook(s, flags, size, p);
865762a8 2947 return i;
87098373 2948error:
87098373 2949 local_irq_enable();
03ec0ed5
JDB
2950 slab_post_alloc_hook(s, flags, i, p);
2951 __kmem_cache_free_bulk(s, i, p);
865762a8 2952 return 0;
484748f0
CL
2953}
2954EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2955
2956
81819f0f 2957/*
672bba3a
CL
2958 * Object placement in a slab is made very easy because we always start at
2959 * offset 0. If we tune the size of the object to the alignment then we can
2960 * get the required alignment by putting one properly sized object after
2961 * another.
81819f0f
CL
2962 *
2963 * Notice that the allocation order determines the sizes of the per cpu
2964 * caches. Each processor has always one slab available for allocations.
2965 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2966 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2967 * locking overhead.
81819f0f
CL
2968 */
2969
2970/*
2971 * Mininum / Maximum order of slab pages. This influences locking overhead
2972 * and slab fragmentation. A higher order reduces the number of partial slabs
2973 * and increases the number of allocations possible without having to
2974 * take the list_lock.
2975 */
2976static int slub_min_order;
114e9e89 2977static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2978static int slub_min_objects;
81819f0f 2979
81819f0f
CL
2980/*
2981 * Calculate the order of allocation given an slab object size.
2982 *
672bba3a
CL
2983 * The order of allocation has significant impact on performance and other
2984 * system components. Generally order 0 allocations should be preferred since
2985 * order 0 does not cause fragmentation in the page allocator. Larger objects
2986 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2987 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2988 * would be wasted.
2989 *
2990 * In order to reach satisfactory performance we must ensure that a minimum
2991 * number of objects is in one slab. Otherwise we may generate too much
2992 * activity on the partial lists which requires taking the list_lock. This is
2993 * less a concern for large slabs though which are rarely used.
81819f0f 2994 *
672bba3a
CL
2995 * slub_max_order specifies the order where we begin to stop considering the
2996 * number of objects in a slab as critical. If we reach slub_max_order then
2997 * we try to keep the page order as low as possible. So we accept more waste
2998 * of space in favor of a small page order.
81819f0f 2999 *
672bba3a
CL
3000 * Higher order allocations also allow the placement of more objects in a
3001 * slab and thereby reduce object handling overhead. If the user has
3002 * requested a higher mininum order then we start with that one instead of
3003 * the smallest order which will fit the object.
81819f0f 3004 */
5e6d444e 3005static inline int slab_order(int size, int min_objects,
ab9a0f19 3006 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3007{
3008 int order;
3009 int rem;
6300ea75 3010 int min_order = slub_min_order;
81819f0f 3011
ab9a0f19 3012 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3013 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3014
9f835703 3015 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3016 order <= max_order; order++) {
81819f0f 3017
5e6d444e 3018 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3019
ab9a0f19 3020 rem = (slab_size - reserved) % size;
81819f0f 3021
5e6d444e 3022 if (rem <= slab_size / fract_leftover)
81819f0f 3023 break;
81819f0f 3024 }
672bba3a 3025
81819f0f
CL
3026 return order;
3027}
3028
ab9a0f19 3029static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3030{
3031 int order;
3032 int min_objects;
3033 int fraction;
e8120ff1 3034 int max_objects;
5e6d444e
CL
3035
3036 /*
3037 * Attempt to find best configuration for a slab. This
3038 * works by first attempting to generate a layout with
3039 * the best configuration and backing off gradually.
3040 *
422ff4d7 3041 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3042 * we reduce the minimum objects required in a slab.
3043 */
3044 min_objects = slub_min_objects;
9b2cd506
CL
3045 if (!min_objects)
3046 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3047 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3048 min_objects = min(min_objects, max_objects);
3049
5e6d444e 3050 while (min_objects > 1) {
c124f5b5 3051 fraction = 16;
5e6d444e
CL
3052 while (fraction >= 4) {
3053 order = slab_order(size, min_objects,
ab9a0f19 3054 slub_max_order, fraction, reserved);
5e6d444e
CL
3055 if (order <= slub_max_order)
3056 return order;
3057 fraction /= 2;
3058 }
5086c389 3059 min_objects--;
5e6d444e
CL
3060 }
3061
3062 /*
3063 * We were unable to place multiple objects in a slab. Now
3064 * lets see if we can place a single object there.
3065 */
ab9a0f19 3066 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3067 if (order <= slub_max_order)
3068 return order;
3069
3070 /*
3071 * Doh this slab cannot be placed using slub_max_order.
3072 */
ab9a0f19 3073 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3074 if (order < MAX_ORDER)
5e6d444e
CL
3075 return order;
3076 return -ENOSYS;
3077}
3078
5595cffc 3079static void
4053497d 3080init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3081{
3082 n->nr_partial = 0;
81819f0f
CL
3083 spin_lock_init(&n->list_lock);
3084 INIT_LIST_HEAD(&n->partial);
8ab1372f 3085#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3086 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3087 atomic_long_set(&n->total_objects, 0);
643b1138 3088 INIT_LIST_HEAD(&n->full);
8ab1372f 3089#endif
81819f0f
CL
3090}
3091
55136592 3092static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3093{
6c182dc0 3094 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3095 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3096
8a5ec0ba 3097 /*
d4d84fef
CM
3098 * Must align to double word boundary for the double cmpxchg
3099 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3100 */
d4d84fef
CM
3101 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3102 2 * sizeof(void *));
8a5ec0ba
CL
3103
3104 if (!s->cpu_slab)
3105 return 0;
3106
3107 init_kmem_cache_cpus(s);
4c93c355 3108
8a5ec0ba 3109 return 1;
4c93c355 3110}
4c93c355 3111
51df1142
CL
3112static struct kmem_cache *kmem_cache_node;
3113
81819f0f
CL
3114/*
3115 * No kmalloc_node yet so do it by hand. We know that this is the first
3116 * slab on the node for this slabcache. There are no concurrent accesses
3117 * possible.
3118 *
721ae22a
ZYW
3119 * Note that this function only works on the kmem_cache_node
3120 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3121 * memory on a fresh node that has no slab structures yet.
81819f0f 3122 */
55136592 3123static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3124{
3125 struct page *page;
3126 struct kmem_cache_node *n;
3127
51df1142 3128 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3129
51df1142 3130 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3131
3132 BUG_ON(!page);
a2f92ee7 3133 if (page_to_nid(page) != node) {
f9f58285
FF
3134 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3135 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3136 }
3137
81819f0f
CL
3138 n = page->freelist;
3139 BUG_ON(!n);
51df1142 3140 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3141 page->inuse = 1;
8cb0a506 3142 page->frozen = 0;
51df1142 3143 kmem_cache_node->node[node] = n;
8ab1372f 3144#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3145 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3146 init_tracking(kmem_cache_node, n);
8ab1372f 3147#endif
0316bec2 3148 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3149 init_kmem_cache_node(n);
51df1142 3150 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3151
67b6c900 3152 /*
1e4dd946
SR
3153 * No locks need to be taken here as it has just been
3154 * initialized and there is no concurrent access.
67b6c900 3155 */
1e4dd946 3156 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3157}
3158
3159static void free_kmem_cache_nodes(struct kmem_cache *s)
3160{
3161 int node;
fa45dc25 3162 struct kmem_cache_node *n;
81819f0f 3163
fa45dc25
CL
3164 for_each_kmem_cache_node(s, node, n) {
3165 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3166 s->node[node] = NULL;
3167 }
3168}
3169
52b4b950
DS
3170void __kmem_cache_release(struct kmem_cache *s)
3171{
3172 free_percpu(s->cpu_slab);
3173 free_kmem_cache_nodes(s);
3174}
3175
55136592 3176static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3177{
3178 int node;
81819f0f 3179
f64dc58c 3180 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3181 struct kmem_cache_node *n;
3182
73367bd8 3183 if (slab_state == DOWN) {
55136592 3184 early_kmem_cache_node_alloc(node);
73367bd8
AD
3185 continue;
3186 }
51df1142 3187 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3188 GFP_KERNEL, node);
81819f0f 3189
73367bd8
AD
3190 if (!n) {
3191 free_kmem_cache_nodes(s);
3192 return 0;
81819f0f 3193 }
73367bd8 3194
81819f0f 3195 s->node[node] = n;
4053497d 3196 init_kmem_cache_node(n);
81819f0f
CL
3197 }
3198 return 1;
3199}
81819f0f 3200
c0bdb232 3201static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3202{
3203 if (min < MIN_PARTIAL)
3204 min = MIN_PARTIAL;
3205 else if (min > MAX_PARTIAL)
3206 min = MAX_PARTIAL;
3207 s->min_partial = min;
3208}
3209
81819f0f
CL
3210/*
3211 * calculate_sizes() determines the order and the distribution of data within
3212 * a slab object.
3213 */
06b285dc 3214static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3215{
3216 unsigned long flags = s->flags;
3b0efdfa 3217 unsigned long size = s->object_size;
834f3d11 3218 int order;
81819f0f 3219
d8b42bf5
CL
3220 /*
3221 * Round up object size to the next word boundary. We can only
3222 * place the free pointer at word boundaries and this determines
3223 * the possible location of the free pointer.
3224 */
3225 size = ALIGN(size, sizeof(void *));
3226
3227#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3228 /*
3229 * Determine if we can poison the object itself. If the user of
3230 * the slab may touch the object after free or before allocation
3231 * then we should never poison the object itself.
3232 */
3233 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3234 !s->ctor)
81819f0f
CL
3235 s->flags |= __OBJECT_POISON;
3236 else
3237 s->flags &= ~__OBJECT_POISON;
3238
81819f0f
CL
3239
3240 /*
672bba3a 3241 * If we are Redzoning then check if there is some space between the
81819f0f 3242 * end of the object and the free pointer. If not then add an
672bba3a 3243 * additional word to have some bytes to store Redzone information.
81819f0f 3244 */
3b0efdfa 3245 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3246 size += sizeof(void *);
41ecc55b 3247#endif
81819f0f
CL
3248
3249 /*
672bba3a
CL
3250 * With that we have determined the number of bytes in actual use
3251 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3252 */
3253 s->inuse = size;
3254
3255 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3256 s->ctor)) {
81819f0f
CL
3257 /*
3258 * Relocate free pointer after the object if it is not
3259 * permitted to overwrite the first word of the object on
3260 * kmem_cache_free.
3261 *
3262 * This is the case if we do RCU, have a constructor or
3263 * destructor or are poisoning the objects.
3264 */
3265 s->offset = size;
3266 size += sizeof(void *);
3267 }
3268
c12b3c62 3269#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3270 if (flags & SLAB_STORE_USER)
3271 /*
3272 * Need to store information about allocs and frees after
3273 * the object.
3274 */
3275 size += 2 * sizeof(struct track);
3276
be7b3fbc 3277 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3278 /*
3279 * Add some empty padding so that we can catch
3280 * overwrites from earlier objects rather than let
3281 * tracking information or the free pointer be
0211a9c8 3282 * corrupted if a user writes before the start
81819f0f
CL
3283 * of the object.
3284 */
3285 size += sizeof(void *);
41ecc55b 3286#endif
672bba3a 3287
81819f0f
CL
3288 /*
3289 * SLUB stores one object immediately after another beginning from
3290 * offset 0. In order to align the objects we have to simply size
3291 * each object to conform to the alignment.
3292 */
45906855 3293 size = ALIGN(size, s->align);
81819f0f 3294 s->size = size;
06b285dc
CL
3295 if (forced_order >= 0)
3296 order = forced_order;
3297 else
ab9a0f19 3298 order = calculate_order(size, s->reserved);
81819f0f 3299
834f3d11 3300 if (order < 0)
81819f0f
CL
3301 return 0;
3302
b7a49f0d 3303 s->allocflags = 0;
834f3d11 3304 if (order)
b7a49f0d
CL
3305 s->allocflags |= __GFP_COMP;
3306
3307 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3308 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3309
3310 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3311 s->allocflags |= __GFP_RECLAIMABLE;
3312
81819f0f
CL
3313 /*
3314 * Determine the number of objects per slab
3315 */
ab9a0f19
LJ
3316 s->oo = oo_make(order, size, s->reserved);
3317 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3318 if (oo_objects(s->oo) > oo_objects(s->max))
3319 s->max = s->oo;
81819f0f 3320
834f3d11 3321 return !!oo_objects(s->oo);
81819f0f
CL
3322}
3323
8a13a4cc 3324static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3325{
8a13a4cc 3326 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3327 s->reserved = 0;
81819f0f 3328
da9a638c
LJ
3329 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3330 s->reserved = sizeof(struct rcu_head);
81819f0f 3331
06b285dc 3332 if (!calculate_sizes(s, -1))
81819f0f 3333 goto error;
3de47213
DR
3334 if (disable_higher_order_debug) {
3335 /*
3336 * Disable debugging flags that store metadata if the min slab
3337 * order increased.
3338 */
3b0efdfa 3339 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3340 s->flags &= ~DEBUG_METADATA_FLAGS;
3341 s->offset = 0;
3342 if (!calculate_sizes(s, -1))
3343 goto error;
3344 }
3345 }
81819f0f 3346
2565409f
HC
3347#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3348 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3349 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3350 /* Enable fast mode */
3351 s->flags |= __CMPXCHG_DOUBLE;
3352#endif
3353
3b89d7d8
DR
3354 /*
3355 * The larger the object size is, the more pages we want on the partial
3356 * list to avoid pounding the page allocator excessively.
3357 */
49e22585
CL
3358 set_min_partial(s, ilog2(s->size) / 2);
3359
3360 /*
3361 * cpu_partial determined the maximum number of objects kept in the
3362 * per cpu partial lists of a processor.
3363 *
3364 * Per cpu partial lists mainly contain slabs that just have one
3365 * object freed. If they are used for allocation then they can be
3366 * filled up again with minimal effort. The slab will never hit the
3367 * per node partial lists and therefore no locking will be required.
3368 *
3369 * This setting also determines
3370 *
3371 * A) The number of objects from per cpu partial slabs dumped to the
3372 * per node list when we reach the limit.
9f264904 3373 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3374 * per node list when we run out of per cpu objects. We only fetch
3375 * 50% to keep some capacity around for frees.
49e22585 3376 */
345c905d 3377 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3378 s->cpu_partial = 0;
3379 else if (s->size >= PAGE_SIZE)
49e22585
CL
3380 s->cpu_partial = 2;
3381 else if (s->size >= 1024)
3382 s->cpu_partial = 6;
3383 else if (s->size >= 256)
3384 s->cpu_partial = 13;
3385 else
3386 s->cpu_partial = 30;
3387
81819f0f 3388#ifdef CONFIG_NUMA
e2cb96b7 3389 s->remote_node_defrag_ratio = 1000;
81819f0f 3390#endif
55136592 3391 if (!init_kmem_cache_nodes(s))
dfb4f096 3392 goto error;
81819f0f 3393
55136592 3394 if (alloc_kmem_cache_cpus(s))
278b1bb1 3395 return 0;
ff12059e 3396
4c93c355 3397 free_kmem_cache_nodes(s);
81819f0f
CL
3398error:
3399 if (flags & SLAB_PANIC)
3400 panic("Cannot create slab %s size=%lu realsize=%u "
3401 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3402 s->name, (unsigned long)s->size, s->size,
3403 oo_order(s->oo), s->offset, flags);
278b1bb1 3404 return -EINVAL;
81819f0f 3405}
81819f0f 3406
33b12c38
CL
3407static void list_slab_objects(struct kmem_cache *s, struct page *page,
3408 const char *text)
3409{
3410#ifdef CONFIG_SLUB_DEBUG
3411 void *addr = page_address(page);
3412 void *p;
a5dd5c11
NK
3413 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3414 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3415 if (!map)
3416 return;
945cf2b6 3417 slab_err(s, page, text, s->name);
33b12c38 3418 slab_lock(page);
33b12c38 3419
5f80b13a 3420 get_map(s, page, map);
33b12c38
CL
3421 for_each_object(p, s, addr, page->objects) {
3422
3423 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3424 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3425 print_tracking(s, p);
3426 }
3427 }
3428 slab_unlock(page);
bbd7d57b 3429 kfree(map);
33b12c38
CL
3430#endif
3431}
3432
81819f0f 3433/*
599870b1 3434 * Attempt to free all partial slabs on a node.
52b4b950
DS
3435 * This is called from __kmem_cache_shutdown(). We must take list_lock
3436 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3437 */
599870b1 3438static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3439{
81819f0f
CL
3440 struct page *page, *h;
3441
52b4b950
DS
3442 BUG_ON(irqs_disabled());
3443 spin_lock_irq(&n->list_lock);
33b12c38 3444 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3445 if (!page->inuse) {
52b4b950 3446 remove_partial(n, page);
81819f0f 3447 discard_slab(s, page);
33b12c38
CL
3448 } else {
3449 list_slab_objects(s, page,
52b4b950 3450 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3451 }
33b12c38 3452 }
52b4b950 3453 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3454}
3455
3456/*
672bba3a 3457 * Release all resources used by a slab cache.
81819f0f 3458 */
52b4b950 3459int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3460{
3461 int node;
fa45dc25 3462 struct kmem_cache_node *n;
81819f0f
CL
3463
3464 flush_all(s);
81819f0f 3465 /* Attempt to free all objects */
fa45dc25 3466 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3467 free_partial(s, n);
3468 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3469 return 1;
3470 }
81819f0f
CL
3471 return 0;
3472}
3473
81819f0f
CL
3474/********************************************************************
3475 * Kmalloc subsystem
3476 *******************************************************************/
3477
81819f0f
CL
3478static int __init setup_slub_min_order(char *str)
3479{
06428780 3480 get_option(&str, &slub_min_order);
81819f0f
CL
3481
3482 return 1;
3483}
3484
3485__setup("slub_min_order=", setup_slub_min_order);
3486
3487static int __init setup_slub_max_order(char *str)
3488{
06428780 3489 get_option(&str, &slub_max_order);
818cf590 3490 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3491
3492 return 1;
3493}
3494
3495__setup("slub_max_order=", setup_slub_max_order);
3496
3497static int __init setup_slub_min_objects(char *str)
3498{
06428780 3499 get_option(&str, &slub_min_objects);
81819f0f
CL
3500
3501 return 1;
3502}
3503
3504__setup("slub_min_objects=", setup_slub_min_objects);
3505
81819f0f
CL
3506void *__kmalloc(size_t size, gfp_t flags)
3507{
aadb4bc4 3508 struct kmem_cache *s;
5b882be4 3509 void *ret;
81819f0f 3510
95a05b42 3511 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3512 return kmalloc_large(size, flags);
aadb4bc4 3513
2c59dd65 3514 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3515
3516 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3517 return s;
3518
2b847c3c 3519 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3520
ca2b84cb 3521 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3522
0316bec2
AR
3523 kasan_kmalloc(s, ret, size);
3524
5b882be4 3525 return ret;
81819f0f
CL
3526}
3527EXPORT_SYMBOL(__kmalloc);
3528
5d1f57e4 3529#ifdef CONFIG_NUMA
f619cfe1
CL
3530static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3531{
b1eeab67 3532 struct page *page;
e4f7c0b4 3533 void *ptr = NULL;
f619cfe1 3534
52383431
VD
3535 flags |= __GFP_COMP | __GFP_NOTRACK;
3536 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3537 if (page)
e4f7c0b4
CM
3538 ptr = page_address(page);
3539
d56791b3 3540 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3541 return ptr;
f619cfe1
CL
3542}
3543
81819f0f
CL
3544void *__kmalloc_node(size_t size, gfp_t flags, int node)
3545{
aadb4bc4 3546 struct kmem_cache *s;
5b882be4 3547 void *ret;
81819f0f 3548
95a05b42 3549 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3550 ret = kmalloc_large_node(size, flags, node);
3551
ca2b84cb
EGM
3552 trace_kmalloc_node(_RET_IP_, ret,
3553 size, PAGE_SIZE << get_order(size),
3554 flags, node);
5b882be4
EGM
3555
3556 return ret;
3557 }
aadb4bc4 3558
2c59dd65 3559 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3560
3561 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3562 return s;
3563
2b847c3c 3564 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3565
ca2b84cb 3566 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3567
0316bec2
AR
3568 kasan_kmalloc(s, ret, size);
3569
5b882be4 3570 return ret;
81819f0f
CL
3571}
3572EXPORT_SYMBOL(__kmalloc_node);
3573#endif
3574
0316bec2 3575static size_t __ksize(const void *object)
81819f0f 3576{
272c1d21 3577 struct page *page;
81819f0f 3578
ef8b4520 3579 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3580 return 0;
3581
294a80a8 3582 page = virt_to_head_page(object);
294a80a8 3583
76994412
PE
3584 if (unlikely(!PageSlab(page))) {
3585 WARN_ON(!PageCompound(page));
294a80a8 3586 return PAGE_SIZE << compound_order(page);
76994412 3587 }
81819f0f 3588
1b4f59e3 3589 return slab_ksize(page->slab_cache);
81819f0f 3590}
0316bec2
AR
3591
3592size_t ksize(const void *object)
3593{
3594 size_t size = __ksize(object);
3595 /* We assume that ksize callers could use whole allocated area,
3596 so we need unpoison this area. */
3597 kasan_krealloc(object, size);
3598 return size;
3599}
b1aabecd 3600EXPORT_SYMBOL(ksize);
81819f0f
CL
3601
3602void kfree(const void *x)
3603{
81819f0f 3604 struct page *page;
5bb983b0 3605 void *object = (void *)x;
81819f0f 3606
2121db74
PE
3607 trace_kfree(_RET_IP_, x);
3608
2408c550 3609 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3610 return;
3611
b49af68f 3612 page = virt_to_head_page(x);
aadb4bc4 3613 if (unlikely(!PageSlab(page))) {
0937502a 3614 BUG_ON(!PageCompound(page));
d56791b3 3615 kfree_hook(x);
52383431 3616 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3617 return;
3618 }
81084651 3619 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3620}
3621EXPORT_SYMBOL(kfree);
3622
832f37f5
VD
3623#define SHRINK_PROMOTE_MAX 32
3624
2086d26a 3625/*
832f37f5
VD
3626 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3627 * up most to the head of the partial lists. New allocations will then
3628 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3629 *
3630 * The slabs with the least items are placed last. This results in them
3631 * being allocated from last increasing the chance that the last objects
3632 * are freed in them.
2086d26a 3633 */
d6e0b7fa 3634int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3635{
3636 int node;
3637 int i;
3638 struct kmem_cache_node *n;
3639 struct page *page;
3640 struct page *t;
832f37f5
VD
3641 struct list_head discard;
3642 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3643 unsigned long flags;
ce3712d7 3644 int ret = 0;
2086d26a 3645
d6e0b7fa
VD
3646 if (deactivate) {
3647 /*
3648 * Disable empty slabs caching. Used to avoid pinning offline
3649 * memory cgroups by kmem pages that can be freed.
3650 */
3651 s->cpu_partial = 0;
3652 s->min_partial = 0;
3653
3654 /*
3655 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3656 * so we have to make sure the change is visible.
3657 */
3658 kick_all_cpus_sync();
3659 }
3660
2086d26a 3661 flush_all(s);
fa45dc25 3662 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3663 INIT_LIST_HEAD(&discard);
3664 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3665 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3666
3667 spin_lock_irqsave(&n->list_lock, flags);
3668
3669 /*
832f37f5 3670 * Build lists of slabs to discard or promote.
2086d26a 3671 *
672bba3a
CL
3672 * Note that concurrent frees may occur while we hold the
3673 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3674 */
3675 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3676 int free = page->objects - page->inuse;
3677
3678 /* Do not reread page->inuse */
3679 barrier();
3680
3681 /* We do not keep full slabs on the list */
3682 BUG_ON(free <= 0);
3683
3684 if (free == page->objects) {
3685 list_move(&page->lru, &discard);
69cb8e6b 3686 n->nr_partial--;
832f37f5
VD
3687 } else if (free <= SHRINK_PROMOTE_MAX)
3688 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3689 }
3690
2086d26a 3691 /*
832f37f5
VD
3692 * Promote the slabs filled up most to the head of the
3693 * partial list.
2086d26a 3694 */
832f37f5
VD
3695 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3696 list_splice(promote + i, &n->partial);
2086d26a 3697
2086d26a 3698 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3699
3700 /* Release empty slabs */
832f37f5 3701 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3702 discard_slab(s, page);
ce3712d7
VD
3703
3704 if (slabs_node(s, node))
3705 ret = 1;
2086d26a
CL
3706 }
3707
ce3712d7 3708 return ret;
2086d26a 3709}
2086d26a 3710
b9049e23
YG
3711static int slab_mem_going_offline_callback(void *arg)
3712{
3713 struct kmem_cache *s;
3714
18004c5d 3715 mutex_lock(&slab_mutex);
b9049e23 3716 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3717 __kmem_cache_shrink(s, false);
18004c5d 3718 mutex_unlock(&slab_mutex);
b9049e23
YG
3719
3720 return 0;
3721}
3722
3723static void slab_mem_offline_callback(void *arg)
3724{
3725 struct kmem_cache_node *n;
3726 struct kmem_cache *s;
3727 struct memory_notify *marg = arg;
3728 int offline_node;
3729
b9d5ab25 3730 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3731
3732 /*
3733 * If the node still has available memory. we need kmem_cache_node
3734 * for it yet.
3735 */
3736 if (offline_node < 0)
3737 return;
3738
18004c5d 3739 mutex_lock(&slab_mutex);
b9049e23
YG
3740 list_for_each_entry(s, &slab_caches, list) {
3741 n = get_node(s, offline_node);
3742 if (n) {
3743 /*
3744 * if n->nr_slabs > 0, slabs still exist on the node
3745 * that is going down. We were unable to free them,
c9404c9c 3746 * and offline_pages() function shouldn't call this
b9049e23
YG
3747 * callback. So, we must fail.
3748 */
0f389ec6 3749 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3750
3751 s->node[offline_node] = NULL;
8de66a0c 3752 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3753 }
3754 }
18004c5d 3755 mutex_unlock(&slab_mutex);
b9049e23
YG
3756}
3757
3758static int slab_mem_going_online_callback(void *arg)
3759{
3760 struct kmem_cache_node *n;
3761 struct kmem_cache *s;
3762 struct memory_notify *marg = arg;
b9d5ab25 3763 int nid = marg->status_change_nid_normal;
b9049e23
YG
3764 int ret = 0;
3765
3766 /*
3767 * If the node's memory is already available, then kmem_cache_node is
3768 * already created. Nothing to do.
3769 */
3770 if (nid < 0)
3771 return 0;
3772
3773 /*
0121c619 3774 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3775 * allocate a kmem_cache_node structure in order to bring the node
3776 * online.
3777 */
18004c5d 3778 mutex_lock(&slab_mutex);
b9049e23
YG
3779 list_for_each_entry(s, &slab_caches, list) {
3780 /*
3781 * XXX: kmem_cache_alloc_node will fallback to other nodes
3782 * since memory is not yet available from the node that
3783 * is brought up.
3784 */
8de66a0c 3785 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3786 if (!n) {
3787 ret = -ENOMEM;
3788 goto out;
3789 }
4053497d 3790 init_kmem_cache_node(n);
b9049e23
YG
3791 s->node[nid] = n;
3792 }
3793out:
18004c5d 3794 mutex_unlock(&slab_mutex);
b9049e23
YG
3795 return ret;
3796}
3797
3798static int slab_memory_callback(struct notifier_block *self,
3799 unsigned long action, void *arg)
3800{
3801 int ret = 0;
3802
3803 switch (action) {
3804 case MEM_GOING_ONLINE:
3805 ret = slab_mem_going_online_callback(arg);
3806 break;
3807 case MEM_GOING_OFFLINE:
3808 ret = slab_mem_going_offline_callback(arg);
3809 break;
3810 case MEM_OFFLINE:
3811 case MEM_CANCEL_ONLINE:
3812 slab_mem_offline_callback(arg);
3813 break;
3814 case MEM_ONLINE:
3815 case MEM_CANCEL_OFFLINE:
3816 break;
3817 }
dc19f9db
KH
3818 if (ret)
3819 ret = notifier_from_errno(ret);
3820 else
3821 ret = NOTIFY_OK;
b9049e23
YG
3822 return ret;
3823}
3824
3ac38faa
AM
3825static struct notifier_block slab_memory_callback_nb = {
3826 .notifier_call = slab_memory_callback,
3827 .priority = SLAB_CALLBACK_PRI,
3828};
b9049e23 3829
81819f0f
CL
3830/********************************************************************
3831 * Basic setup of slabs
3832 *******************************************************************/
3833
51df1142
CL
3834/*
3835 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3836 * the page allocator. Allocate them properly then fix up the pointers
3837 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3838 */
3839
dffb4d60 3840static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3841{
3842 int node;
dffb4d60 3843 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3844 struct kmem_cache_node *n;
51df1142 3845
dffb4d60 3846 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3847
7d557b3c
GC
3848 /*
3849 * This runs very early, and only the boot processor is supposed to be
3850 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3851 * IPIs around.
3852 */
3853 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3854 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3855 struct page *p;
3856
fa45dc25
CL
3857 list_for_each_entry(p, &n->partial, lru)
3858 p->slab_cache = s;
51df1142 3859
607bf324 3860#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3861 list_for_each_entry(p, &n->full, lru)
3862 p->slab_cache = s;
51df1142 3863#endif
51df1142 3864 }
f7ce3190 3865 slab_init_memcg_params(s);
dffb4d60
CL
3866 list_add(&s->list, &slab_caches);
3867 return s;
51df1142
CL
3868}
3869
81819f0f
CL
3870void __init kmem_cache_init(void)
3871{
dffb4d60
CL
3872 static __initdata struct kmem_cache boot_kmem_cache,
3873 boot_kmem_cache_node;
51df1142 3874
fc8d8620
SG
3875 if (debug_guardpage_minorder())
3876 slub_max_order = 0;
3877
dffb4d60
CL
3878 kmem_cache_node = &boot_kmem_cache_node;
3879 kmem_cache = &boot_kmem_cache;
51df1142 3880
dffb4d60
CL
3881 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3882 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3883
3ac38faa 3884 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3885
3886 /* Able to allocate the per node structures */
3887 slab_state = PARTIAL;
3888
dffb4d60
CL
3889 create_boot_cache(kmem_cache, "kmem_cache",
3890 offsetof(struct kmem_cache, node) +
3891 nr_node_ids * sizeof(struct kmem_cache_node *),
3892 SLAB_HWCACHE_ALIGN);
8a13a4cc 3893
dffb4d60 3894 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3895
51df1142
CL
3896 /*
3897 * Allocate kmem_cache_node properly from the kmem_cache slab.
3898 * kmem_cache_node is separately allocated so no need to
3899 * update any list pointers.
3900 */
dffb4d60 3901 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3902
3903 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3904 setup_kmalloc_cache_index_table();
f97d5f63 3905 create_kmalloc_caches(0);
81819f0f
CL
3906
3907#ifdef CONFIG_SMP
3908 register_cpu_notifier(&slab_notifier);
9dfc6e68 3909#endif
81819f0f 3910
f9f58285 3911 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3912 cache_line_size(),
81819f0f
CL
3913 slub_min_order, slub_max_order, slub_min_objects,
3914 nr_cpu_ids, nr_node_ids);
3915}
3916
7e85ee0c
PE
3917void __init kmem_cache_init_late(void)
3918{
7e85ee0c
PE
3919}
3920
2633d7a0 3921struct kmem_cache *
a44cb944
VD
3922__kmem_cache_alias(const char *name, size_t size, size_t align,
3923 unsigned long flags, void (*ctor)(void *))
81819f0f 3924{
426589f5 3925 struct kmem_cache *s, *c;
81819f0f 3926
a44cb944 3927 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3928 if (s) {
3929 s->refcount++;
84d0ddd6 3930
81819f0f
CL
3931 /*
3932 * Adjust the object sizes so that we clear
3933 * the complete object on kzalloc.
3934 */
3b0efdfa 3935 s->object_size = max(s->object_size, (int)size);
81819f0f 3936 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3937
426589f5 3938 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3939 c->object_size = s->object_size;
3940 c->inuse = max_t(int, c->inuse,
3941 ALIGN(size, sizeof(void *)));
3942 }
3943
7b8f3b66 3944 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3945 s->refcount--;
cbb79694 3946 s = NULL;
7b8f3b66 3947 }
a0e1d1be 3948 }
6446faa2 3949
cbb79694
CL
3950 return s;
3951}
84c1cf62 3952
8a13a4cc 3953int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3954{
aac3a166
PE
3955 int err;
3956
3957 err = kmem_cache_open(s, flags);
3958 if (err)
3959 return err;
20cea968 3960
45530c44
CL
3961 /* Mutex is not taken during early boot */
3962 if (slab_state <= UP)
3963 return 0;
3964
107dab5c 3965 memcg_propagate_slab_attrs(s);
aac3a166 3966 err = sysfs_slab_add(s);
aac3a166 3967 if (err)
52b4b950 3968 __kmem_cache_release(s);
20cea968 3969
aac3a166 3970 return err;
81819f0f 3971}
81819f0f 3972
81819f0f 3973#ifdef CONFIG_SMP
81819f0f 3974/*
672bba3a
CL
3975 * Use the cpu notifier to insure that the cpu slabs are flushed when
3976 * necessary.
81819f0f 3977 */
0db0628d 3978static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3979 unsigned long action, void *hcpu)
3980{
3981 long cpu = (long)hcpu;
5b95a4ac
CL
3982 struct kmem_cache *s;
3983 unsigned long flags;
81819f0f
CL
3984
3985 switch (action) {
3986 case CPU_UP_CANCELED:
8bb78442 3987 case CPU_UP_CANCELED_FROZEN:
81819f0f 3988 case CPU_DEAD:
8bb78442 3989 case CPU_DEAD_FROZEN:
18004c5d 3990 mutex_lock(&slab_mutex);
5b95a4ac
CL
3991 list_for_each_entry(s, &slab_caches, list) {
3992 local_irq_save(flags);
3993 __flush_cpu_slab(s, cpu);
3994 local_irq_restore(flags);
3995 }
18004c5d 3996 mutex_unlock(&slab_mutex);
81819f0f
CL
3997 break;
3998 default:
3999 break;
4000 }
4001 return NOTIFY_OK;
4002}
4003
0db0628d 4004static struct notifier_block slab_notifier = {
3adbefee 4005 .notifier_call = slab_cpuup_callback
06428780 4006};
81819f0f
CL
4007
4008#endif
4009
ce71e27c 4010void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4011{
aadb4bc4 4012 struct kmem_cache *s;
94b528d0 4013 void *ret;
aadb4bc4 4014
95a05b42 4015 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4016 return kmalloc_large(size, gfpflags);
4017
2c59dd65 4018 s = kmalloc_slab(size, gfpflags);
81819f0f 4019
2408c550 4020 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4021 return s;
81819f0f 4022
2b847c3c 4023 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4024
25985edc 4025 /* Honor the call site pointer we received. */
ca2b84cb 4026 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4027
4028 return ret;
81819f0f
CL
4029}
4030
5d1f57e4 4031#ifdef CONFIG_NUMA
81819f0f 4032void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4033 int node, unsigned long caller)
81819f0f 4034{
aadb4bc4 4035 struct kmem_cache *s;
94b528d0 4036 void *ret;
aadb4bc4 4037
95a05b42 4038 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4039 ret = kmalloc_large_node(size, gfpflags, node);
4040
4041 trace_kmalloc_node(caller, ret,
4042 size, PAGE_SIZE << get_order(size),
4043 gfpflags, node);
4044
4045 return ret;
4046 }
eada35ef 4047
2c59dd65 4048 s = kmalloc_slab(size, gfpflags);
81819f0f 4049
2408c550 4050 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4051 return s;
81819f0f 4052
2b847c3c 4053 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4054
25985edc 4055 /* Honor the call site pointer we received. */
ca2b84cb 4056 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4057
4058 return ret;
81819f0f 4059}
5d1f57e4 4060#endif
81819f0f 4061
ab4d5ed5 4062#ifdef CONFIG_SYSFS
205ab99d
CL
4063static int count_inuse(struct page *page)
4064{
4065 return page->inuse;
4066}
4067
4068static int count_total(struct page *page)
4069{
4070 return page->objects;
4071}
ab4d5ed5 4072#endif
205ab99d 4073
ab4d5ed5 4074#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4075static int validate_slab(struct kmem_cache *s, struct page *page,
4076 unsigned long *map)
53e15af0
CL
4077{
4078 void *p;
a973e9dd 4079 void *addr = page_address(page);
53e15af0
CL
4080
4081 if (!check_slab(s, page) ||
4082 !on_freelist(s, page, NULL))
4083 return 0;
4084
4085 /* Now we know that a valid freelist exists */
39b26464 4086 bitmap_zero(map, page->objects);
53e15af0 4087
5f80b13a
CL
4088 get_map(s, page, map);
4089 for_each_object(p, s, addr, page->objects) {
4090 if (test_bit(slab_index(p, s, addr), map))
4091 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4092 return 0;
53e15af0
CL
4093 }
4094
224a88be 4095 for_each_object(p, s, addr, page->objects)
7656c72b 4096 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4097 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4098 return 0;
4099 return 1;
4100}
4101
434e245d
CL
4102static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4103 unsigned long *map)
53e15af0 4104{
881db7fb
CL
4105 slab_lock(page);
4106 validate_slab(s, page, map);
4107 slab_unlock(page);
53e15af0
CL
4108}
4109
434e245d
CL
4110static int validate_slab_node(struct kmem_cache *s,
4111 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4112{
4113 unsigned long count = 0;
4114 struct page *page;
4115 unsigned long flags;
4116
4117 spin_lock_irqsave(&n->list_lock, flags);
4118
4119 list_for_each_entry(page, &n->partial, lru) {
434e245d 4120 validate_slab_slab(s, page, map);
53e15af0
CL
4121 count++;
4122 }
4123 if (count != n->nr_partial)
f9f58285
FF
4124 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4125 s->name, count, n->nr_partial);
53e15af0
CL
4126
4127 if (!(s->flags & SLAB_STORE_USER))
4128 goto out;
4129
4130 list_for_each_entry(page, &n->full, lru) {
434e245d 4131 validate_slab_slab(s, page, map);
53e15af0
CL
4132 count++;
4133 }
4134 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4135 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4136 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4137
4138out:
4139 spin_unlock_irqrestore(&n->list_lock, flags);
4140 return count;
4141}
4142
434e245d 4143static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4144{
4145 int node;
4146 unsigned long count = 0;
205ab99d 4147 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4148 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4149 struct kmem_cache_node *n;
434e245d
CL
4150
4151 if (!map)
4152 return -ENOMEM;
53e15af0
CL
4153
4154 flush_all(s);
fa45dc25 4155 for_each_kmem_cache_node(s, node, n)
434e245d 4156 count += validate_slab_node(s, n, map);
434e245d 4157 kfree(map);
53e15af0
CL
4158 return count;
4159}
88a420e4 4160/*
672bba3a 4161 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4162 * and freed.
4163 */
4164
4165struct location {
4166 unsigned long count;
ce71e27c 4167 unsigned long addr;
45edfa58
CL
4168 long long sum_time;
4169 long min_time;
4170 long max_time;
4171 long min_pid;
4172 long max_pid;
174596a0 4173 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4174 nodemask_t nodes;
88a420e4
CL
4175};
4176
4177struct loc_track {
4178 unsigned long max;
4179 unsigned long count;
4180 struct location *loc;
4181};
4182
4183static void free_loc_track(struct loc_track *t)
4184{
4185 if (t->max)
4186 free_pages((unsigned long)t->loc,
4187 get_order(sizeof(struct location) * t->max));
4188}
4189
68dff6a9 4190static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4191{
4192 struct location *l;
4193 int order;
4194
88a420e4
CL
4195 order = get_order(sizeof(struct location) * max);
4196
68dff6a9 4197 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4198 if (!l)
4199 return 0;
4200
4201 if (t->count) {
4202 memcpy(l, t->loc, sizeof(struct location) * t->count);
4203 free_loc_track(t);
4204 }
4205 t->max = max;
4206 t->loc = l;
4207 return 1;
4208}
4209
4210static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4211 const struct track *track)
88a420e4
CL
4212{
4213 long start, end, pos;
4214 struct location *l;
ce71e27c 4215 unsigned long caddr;
45edfa58 4216 unsigned long age = jiffies - track->when;
88a420e4
CL
4217
4218 start = -1;
4219 end = t->count;
4220
4221 for ( ; ; ) {
4222 pos = start + (end - start + 1) / 2;
4223
4224 /*
4225 * There is nothing at "end". If we end up there
4226 * we need to add something to before end.
4227 */
4228 if (pos == end)
4229 break;
4230
4231 caddr = t->loc[pos].addr;
45edfa58
CL
4232 if (track->addr == caddr) {
4233
4234 l = &t->loc[pos];
4235 l->count++;
4236 if (track->when) {
4237 l->sum_time += age;
4238 if (age < l->min_time)
4239 l->min_time = age;
4240 if (age > l->max_time)
4241 l->max_time = age;
4242
4243 if (track->pid < l->min_pid)
4244 l->min_pid = track->pid;
4245 if (track->pid > l->max_pid)
4246 l->max_pid = track->pid;
4247
174596a0
RR
4248 cpumask_set_cpu(track->cpu,
4249 to_cpumask(l->cpus));
45edfa58
CL
4250 }
4251 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4252 return 1;
4253 }
4254
45edfa58 4255 if (track->addr < caddr)
88a420e4
CL
4256 end = pos;
4257 else
4258 start = pos;
4259 }
4260
4261 /*
672bba3a 4262 * Not found. Insert new tracking element.
88a420e4 4263 */
68dff6a9 4264 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4265 return 0;
4266
4267 l = t->loc + pos;
4268 if (pos < t->count)
4269 memmove(l + 1, l,
4270 (t->count - pos) * sizeof(struct location));
4271 t->count++;
4272 l->count = 1;
45edfa58
CL
4273 l->addr = track->addr;
4274 l->sum_time = age;
4275 l->min_time = age;
4276 l->max_time = age;
4277 l->min_pid = track->pid;
4278 l->max_pid = track->pid;
174596a0
RR
4279 cpumask_clear(to_cpumask(l->cpus));
4280 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4281 nodes_clear(l->nodes);
4282 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4283 return 1;
4284}
4285
4286static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4287 struct page *page, enum track_item alloc,
a5dd5c11 4288 unsigned long *map)
88a420e4 4289{
a973e9dd 4290 void *addr = page_address(page);
88a420e4
CL
4291 void *p;
4292
39b26464 4293 bitmap_zero(map, page->objects);
5f80b13a 4294 get_map(s, page, map);
88a420e4 4295
224a88be 4296 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4297 if (!test_bit(slab_index(p, s, addr), map))
4298 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4299}
4300
4301static int list_locations(struct kmem_cache *s, char *buf,
4302 enum track_item alloc)
4303{
e374d483 4304 int len = 0;
88a420e4 4305 unsigned long i;
68dff6a9 4306 struct loc_track t = { 0, 0, NULL };
88a420e4 4307 int node;
bbd7d57b
ED
4308 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4309 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4310 struct kmem_cache_node *n;
88a420e4 4311
bbd7d57b
ED
4312 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4313 GFP_TEMPORARY)) {
4314 kfree(map);
68dff6a9 4315 return sprintf(buf, "Out of memory\n");
bbd7d57b 4316 }
88a420e4
CL
4317 /* Push back cpu slabs */
4318 flush_all(s);
4319
fa45dc25 4320 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4321 unsigned long flags;
4322 struct page *page;
4323
9e86943b 4324 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4325 continue;
4326
4327 spin_lock_irqsave(&n->list_lock, flags);
4328 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4329 process_slab(&t, s, page, alloc, map);
88a420e4 4330 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4331 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4332 spin_unlock_irqrestore(&n->list_lock, flags);
4333 }
4334
4335 for (i = 0; i < t.count; i++) {
45edfa58 4336 struct location *l = &t.loc[i];
88a420e4 4337
9c246247 4338 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4339 break;
e374d483 4340 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4341
4342 if (l->addr)
62c70bce 4343 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4344 else
e374d483 4345 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4346
4347 if (l->sum_time != l->min_time) {
e374d483 4348 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4349 l->min_time,
4350 (long)div_u64(l->sum_time, l->count),
4351 l->max_time);
45edfa58 4352 } else
e374d483 4353 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4354 l->min_time);
4355
4356 if (l->min_pid != l->max_pid)
e374d483 4357 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4358 l->min_pid, l->max_pid);
4359 else
e374d483 4360 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4361 l->min_pid);
4362
174596a0
RR
4363 if (num_online_cpus() > 1 &&
4364 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4365 len < PAGE_SIZE - 60)
4366 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4367 " cpus=%*pbl",
4368 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4369
62bc62a8 4370 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4371 len < PAGE_SIZE - 60)
4372 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4373 " nodes=%*pbl",
4374 nodemask_pr_args(&l->nodes));
45edfa58 4375
e374d483 4376 len += sprintf(buf + len, "\n");
88a420e4
CL
4377 }
4378
4379 free_loc_track(&t);
bbd7d57b 4380 kfree(map);
88a420e4 4381 if (!t.count)
e374d483
HH
4382 len += sprintf(buf, "No data\n");
4383 return len;
88a420e4 4384}
ab4d5ed5 4385#endif
88a420e4 4386
a5a84755 4387#ifdef SLUB_RESILIENCY_TEST
c07b8183 4388static void __init resiliency_test(void)
a5a84755
CL
4389{
4390 u8 *p;
4391
95a05b42 4392 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4393
f9f58285
FF
4394 pr_err("SLUB resiliency testing\n");
4395 pr_err("-----------------------\n");
4396 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4397
4398 p = kzalloc(16, GFP_KERNEL);
4399 p[16] = 0x12;
f9f58285
FF
4400 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4401 p + 16);
a5a84755
CL
4402
4403 validate_slab_cache(kmalloc_caches[4]);
4404
4405 /* Hmmm... The next two are dangerous */
4406 p = kzalloc(32, GFP_KERNEL);
4407 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4408 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4409 p);
4410 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4411
4412 validate_slab_cache(kmalloc_caches[5]);
4413 p = kzalloc(64, GFP_KERNEL);
4414 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4415 *p = 0x56;
f9f58285
FF
4416 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4417 p);
4418 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4419 validate_slab_cache(kmalloc_caches[6]);
4420
f9f58285 4421 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4422 p = kzalloc(128, GFP_KERNEL);
4423 kfree(p);
4424 *p = 0x78;
f9f58285 4425 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4426 validate_slab_cache(kmalloc_caches[7]);
4427
4428 p = kzalloc(256, GFP_KERNEL);
4429 kfree(p);
4430 p[50] = 0x9a;
f9f58285 4431 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4432 validate_slab_cache(kmalloc_caches[8]);
4433
4434 p = kzalloc(512, GFP_KERNEL);
4435 kfree(p);
4436 p[512] = 0xab;
f9f58285 4437 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4438 validate_slab_cache(kmalloc_caches[9]);
4439}
4440#else
4441#ifdef CONFIG_SYSFS
4442static void resiliency_test(void) {};
4443#endif
4444#endif
4445
ab4d5ed5 4446#ifdef CONFIG_SYSFS
81819f0f 4447enum slab_stat_type {
205ab99d
CL
4448 SL_ALL, /* All slabs */
4449 SL_PARTIAL, /* Only partially allocated slabs */
4450 SL_CPU, /* Only slabs used for cpu caches */
4451 SL_OBJECTS, /* Determine allocated objects not slabs */
4452 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4453};
4454
205ab99d 4455#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4456#define SO_PARTIAL (1 << SL_PARTIAL)
4457#define SO_CPU (1 << SL_CPU)
4458#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4459#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4460
62e5c4b4
CG
4461static ssize_t show_slab_objects(struct kmem_cache *s,
4462 char *buf, unsigned long flags)
81819f0f
CL
4463{
4464 unsigned long total = 0;
81819f0f
CL
4465 int node;
4466 int x;
4467 unsigned long *nodes;
81819f0f 4468
e35e1a97 4469 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4470 if (!nodes)
4471 return -ENOMEM;
81819f0f 4472
205ab99d
CL
4473 if (flags & SO_CPU) {
4474 int cpu;
81819f0f 4475
205ab99d 4476 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4477 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4478 cpu);
ec3ab083 4479 int node;
49e22585 4480 struct page *page;
dfb4f096 4481
4db0c3c2 4482 page = READ_ONCE(c->page);
ec3ab083
CL
4483 if (!page)
4484 continue;
205ab99d 4485
ec3ab083
CL
4486 node = page_to_nid(page);
4487 if (flags & SO_TOTAL)
4488 x = page->objects;
4489 else if (flags & SO_OBJECTS)
4490 x = page->inuse;
4491 else
4492 x = 1;
49e22585 4493
ec3ab083
CL
4494 total += x;
4495 nodes[node] += x;
4496
4db0c3c2 4497 page = READ_ONCE(c->partial);
49e22585 4498 if (page) {
8afb1474
LZ
4499 node = page_to_nid(page);
4500 if (flags & SO_TOTAL)
4501 WARN_ON_ONCE(1);
4502 else if (flags & SO_OBJECTS)
4503 WARN_ON_ONCE(1);
4504 else
4505 x = page->pages;
bc6697d8
ED
4506 total += x;
4507 nodes[node] += x;
49e22585 4508 }
81819f0f
CL
4509 }
4510 }
4511
bfc8c901 4512 get_online_mems();
ab4d5ed5 4513#ifdef CONFIG_SLUB_DEBUG
205ab99d 4514 if (flags & SO_ALL) {
fa45dc25
CL
4515 struct kmem_cache_node *n;
4516
4517 for_each_kmem_cache_node(s, node, n) {
205ab99d 4518
d0e0ac97
CG
4519 if (flags & SO_TOTAL)
4520 x = atomic_long_read(&n->total_objects);
4521 else if (flags & SO_OBJECTS)
4522 x = atomic_long_read(&n->total_objects) -
4523 count_partial(n, count_free);
81819f0f 4524 else
205ab99d 4525 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4526 total += x;
4527 nodes[node] += x;
4528 }
4529
ab4d5ed5
CL
4530 } else
4531#endif
4532 if (flags & SO_PARTIAL) {
fa45dc25 4533 struct kmem_cache_node *n;
81819f0f 4534
fa45dc25 4535 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4536 if (flags & SO_TOTAL)
4537 x = count_partial(n, count_total);
4538 else if (flags & SO_OBJECTS)
4539 x = count_partial(n, count_inuse);
81819f0f 4540 else
205ab99d 4541 x = n->nr_partial;
81819f0f
CL
4542 total += x;
4543 nodes[node] += x;
4544 }
4545 }
81819f0f
CL
4546 x = sprintf(buf, "%lu", total);
4547#ifdef CONFIG_NUMA
fa45dc25 4548 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4549 if (nodes[node])
4550 x += sprintf(buf + x, " N%d=%lu",
4551 node, nodes[node]);
4552#endif
bfc8c901 4553 put_online_mems();
81819f0f
CL
4554 kfree(nodes);
4555 return x + sprintf(buf + x, "\n");
4556}
4557
ab4d5ed5 4558#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4559static int any_slab_objects(struct kmem_cache *s)
4560{
4561 int node;
fa45dc25 4562 struct kmem_cache_node *n;
81819f0f 4563
fa45dc25 4564 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4565 if (atomic_long_read(&n->total_objects))
81819f0f 4566 return 1;
fa45dc25 4567
81819f0f
CL
4568 return 0;
4569}
ab4d5ed5 4570#endif
81819f0f
CL
4571
4572#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4573#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4574
4575struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579};
4580
4581#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4584
4585#define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
ab067e99 4587 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4588
81819f0f
CL
4589static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590{
4591 return sprintf(buf, "%d\n", s->size);
4592}
4593SLAB_ATTR_RO(slab_size);
4594
4595static ssize_t align_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", s->align);
4598}
4599SLAB_ATTR_RO(align);
4600
4601static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602{
3b0efdfa 4603 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4604}
4605SLAB_ATTR_RO(object_size);
4606
4607static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608{
834f3d11 4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4610}
4611SLAB_ATTR_RO(objs_per_slab);
4612
06b285dc
CL
4613static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615{
0121c619
CL
4616 unsigned long order;
4617 int err;
4618
3dbb95f7 4619 err = kstrtoul(buf, 10, &order);
0121c619
CL
4620 if (err)
4621 return err;
06b285dc
CL
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628}
4629
81819f0f
CL
4630static ssize_t order_show(struct kmem_cache *s, char *buf)
4631{
834f3d11 4632 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4633}
06b285dc 4634SLAB_ATTR(order);
81819f0f 4635
73d342b1
DR
4636static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637{
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639}
4640
4641static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643{
4644 unsigned long min;
4645 int err;
4646
3dbb95f7 4647 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4648 if (err)
4649 return err;
4650
c0bdb232 4651 set_min_partial(s, min);
73d342b1
DR
4652 return length;
4653}
4654SLAB_ATTR(min_partial);
4655
49e22585
CL
4656static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657{
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659}
4660
4661static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663{
4664 unsigned long objects;
4665 int err;
4666
3dbb95f7 4667 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4668 if (err)
4669 return err;
345c905d 4670 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4671 return -EINVAL;
49e22585
CL
4672
4673 s->cpu_partial = objects;
4674 flush_all(s);
4675 return length;
4676}
4677SLAB_ATTR(cpu_partial);
4678
81819f0f
CL
4679static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4680{
62c70bce
JP
4681 if (!s->ctor)
4682 return 0;
4683 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4684}
4685SLAB_ATTR_RO(ctor);
4686
81819f0f
CL
4687static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4688{
4307c14f 4689 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4690}
4691SLAB_ATTR_RO(aliases);
4692
81819f0f
CL
4693static ssize_t partial_show(struct kmem_cache *s, char *buf)
4694{
d9acf4b7 4695 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4696}
4697SLAB_ATTR_RO(partial);
4698
4699static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4700{
d9acf4b7 4701 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4702}
4703SLAB_ATTR_RO(cpu_slabs);
4704
4705static ssize_t objects_show(struct kmem_cache *s, char *buf)
4706{
205ab99d 4707 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4708}
4709SLAB_ATTR_RO(objects);
4710
205ab99d
CL
4711static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4712{
4713 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4714}
4715SLAB_ATTR_RO(objects_partial);
4716
49e22585
CL
4717static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4718{
4719 int objects = 0;
4720 int pages = 0;
4721 int cpu;
4722 int len;
4723
4724 for_each_online_cpu(cpu) {
4725 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4726
4727 if (page) {
4728 pages += page->pages;
4729 objects += page->pobjects;
4730 }
4731 }
4732
4733 len = sprintf(buf, "%d(%d)", objects, pages);
4734
4735#ifdef CONFIG_SMP
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4738
4739 if (page && len < PAGE_SIZE - 20)
4740 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4741 page->pobjects, page->pages);
4742 }
4743#endif
4744 return len + sprintf(buf + len, "\n");
4745}
4746SLAB_ATTR_RO(slabs_cpu_partial);
4747
a5a84755
CL
4748static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4749{
4750 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4751}
4752
4753static ssize_t reclaim_account_store(struct kmem_cache *s,
4754 const char *buf, size_t length)
4755{
4756 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4757 if (buf[0] == '1')
4758 s->flags |= SLAB_RECLAIM_ACCOUNT;
4759 return length;
4760}
4761SLAB_ATTR(reclaim_account);
4762
4763static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4764{
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4766}
4767SLAB_ATTR_RO(hwcache_align);
4768
4769#ifdef CONFIG_ZONE_DMA
4770static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4771{
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4773}
4774SLAB_ATTR_RO(cache_dma);
4775#endif
4776
4777static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4778{
4779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4780}
4781SLAB_ATTR_RO(destroy_by_rcu);
4782
ab9a0f19
LJ
4783static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4784{
4785 return sprintf(buf, "%d\n", s->reserved);
4786}
4787SLAB_ATTR_RO(reserved);
4788
ab4d5ed5 4789#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4790static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4791{
4792 return show_slab_objects(s, buf, SO_ALL);
4793}
4794SLAB_ATTR_RO(slabs);
4795
205ab99d
CL
4796static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4797{
4798 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4799}
4800SLAB_ATTR_RO(total_objects);
4801
81819f0f
CL
4802static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4803{
becfda68 4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
4805}
4806
4807static ssize_t sanity_checks_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809{
becfda68 4810 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
4811 if (buf[0] == '1') {
4812 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 4813 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 4814 }
81819f0f
CL
4815 return length;
4816}
4817SLAB_ATTR(sanity_checks);
4818
4819static ssize_t trace_show(struct kmem_cache *s, char *buf)
4820{
4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4822}
4823
4824static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4825 size_t length)
4826{
c9e16131
CL
4827 /*
4828 * Tracing a merged cache is going to give confusing results
4829 * as well as cause other issues like converting a mergeable
4830 * cache into an umergeable one.
4831 */
4832 if (s->refcount > 1)
4833 return -EINVAL;
4834
81819f0f 4835 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4836 if (buf[0] == '1') {
4837 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4838 s->flags |= SLAB_TRACE;
b789ef51 4839 }
81819f0f
CL
4840 return length;
4841}
4842SLAB_ATTR(trace);
4843
81819f0f
CL
4844static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4845{
4846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4847}
4848
4849static ssize_t red_zone_store(struct kmem_cache *s,
4850 const char *buf, size_t length)
4851{
4852 if (any_slab_objects(s))
4853 return -EBUSY;
4854
4855 s->flags &= ~SLAB_RED_ZONE;
b789ef51 4856 if (buf[0] == '1') {
81819f0f 4857 s->flags |= SLAB_RED_ZONE;
b789ef51 4858 }
06b285dc 4859 calculate_sizes(s, -1);
81819f0f
CL
4860 return length;
4861}
4862SLAB_ATTR(red_zone);
4863
4864static ssize_t poison_show(struct kmem_cache *s, char *buf)
4865{
4866 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4867}
4868
4869static ssize_t poison_store(struct kmem_cache *s,
4870 const char *buf, size_t length)
4871{
4872 if (any_slab_objects(s))
4873 return -EBUSY;
4874
4875 s->flags &= ~SLAB_POISON;
b789ef51 4876 if (buf[0] == '1') {
81819f0f 4877 s->flags |= SLAB_POISON;
b789ef51 4878 }
06b285dc 4879 calculate_sizes(s, -1);
81819f0f
CL
4880 return length;
4881}
4882SLAB_ATTR(poison);
4883
4884static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4885{
4886 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4887}
4888
4889static ssize_t store_user_store(struct kmem_cache *s,
4890 const char *buf, size_t length)
4891{
4892 if (any_slab_objects(s))
4893 return -EBUSY;
4894
4895 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4896 if (buf[0] == '1') {
4897 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4898 s->flags |= SLAB_STORE_USER;
b789ef51 4899 }
06b285dc 4900 calculate_sizes(s, -1);
81819f0f
CL
4901 return length;
4902}
4903SLAB_ATTR(store_user);
4904
53e15af0
CL
4905static ssize_t validate_show(struct kmem_cache *s, char *buf)
4906{
4907 return 0;
4908}
4909
4910static ssize_t validate_store(struct kmem_cache *s,
4911 const char *buf, size_t length)
4912{
434e245d
CL
4913 int ret = -EINVAL;
4914
4915 if (buf[0] == '1') {
4916 ret = validate_slab_cache(s);
4917 if (ret >= 0)
4918 ret = length;
4919 }
4920 return ret;
53e15af0
CL
4921}
4922SLAB_ATTR(validate);
a5a84755
CL
4923
4924static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4925{
4926 if (!(s->flags & SLAB_STORE_USER))
4927 return -ENOSYS;
4928 return list_locations(s, buf, TRACK_ALLOC);
4929}
4930SLAB_ATTR_RO(alloc_calls);
4931
4932static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4933{
4934 if (!(s->flags & SLAB_STORE_USER))
4935 return -ENOSYS;
4936 return list_locations(s, buf, TRACK_FREE);
4937}
4938SLAB_ATTR_RO(free_calls);
4939#endif /* CONFIG_SLUB_DEBUG */
4940
4941#ifdef CONFIG_FAILSLAB
4942static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4943{
4944 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4945}
4946
4947static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4948 size_t length)
4949{
c9e16131
CL
4950 if (s->refcount > 1)
4951 return -EINVAL;
4952
a5a84755
CL
4953 s->flags &= ~SLAB_FAILSLAB;
4954 if (buf[0] == '1')
4955 s->flags |= SLAB_FAILSLAB;
4956 return length;
4957}
4958SLAB_ATTR(failslab);
ab4d5ed5 4959#endif
53e15af0 4960
2086d26a
CL
4961static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4962{
4963 return 0;
4964}
4965
4966static ssize_t shrink_store(struct kmem_cache *s,
4967 const char *buf, size_t length)
4968{
832f37f5
VD
4969 if (buf[0] == '1')
4970 kmem_cache_shrink(s);
4971 else
2086d26a
CL
4972 return -EINVAL;
4973 return length;
4974}
4975SLAB_ATTR(shrink);
4976
81819f0f 4977#ifdef CONFIG_NUMA
9824601e 4978static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4979{
9824601e 4980 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4981}
4982
9824601e 4983static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4984 const char *buf, size_t length)
4985{
0121c619
CL
4986 unsigned long ratio;
4987 int err;
4988
3dbb95f7 4989 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4990 if (err)
4991 return err;
4992
e2cb96b7 4993 if (ratio <= 100)
0121c619 4994 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4995
81819f0f
CL
4996 return length;
4997}
9824601e 4998SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4999#endif
5000
8ff12cfc 5001#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5002static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5003{
5004 unsigned long sum = 0;
5005 int cpu;
5006 int len;
5007 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5008
5009 if (!data)
5010 return -ENOMEM;
5011
5012 for_each_online_cpu(cpu) {
9dfc6e68 5013 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5014
5015 data[cpu] = x;
5016 sum += x;
5017 }
5018
5019 len = sprintf(buf, "%lu", sum);
5020
50ef37b9 5021#ifdef CONFIG_SMP
8ff12cfc
CL
5022 for_each_online_cpu(cpu) {
5023 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5024 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5025 }
50ef37b9 5026#endif
8ff12cfc
CL
5027 kfree(data);
5028 return len + sprintf(buf + len, "\n");
5029}
5030
78eb00cc
DR
5031static void clear_stat(struct kmem_cache *s, enum stat_item si)
5032{
5033 int cpu;
5034
5035 for_each_online_cpu(cpu)
9dfc6e68 5036 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5037}
5038
8ff12cfc
CL
5039#define STAT_ATTR(si, text) \
5040static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5041{ \
5042 return show_stat(s, buf, si); \
5043} \
78eb00cc
DR
5044static ssize_t text##_store(struct kmem_cache *s, \
5045 const char *buf, size_t length) \
5046{ \
5047 if (buf[0] != '0') \
5048 return -EINVAL; \
5049 clear_stat(s, si); \
5050 return length; \
5051} \
5052SLAB_ATTR(text); \
8ff12cfc
CL
5053
5054STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5055STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5056STAT_ATTR(FREE_FASTPATH, free_fastpath);
5057STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5058STAT_ATTR(FREE_FROZEN, free_frozen);
5059STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5060STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5061STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5062STAT_ATTR(ALLOC_SLAB, alloc_slab);
5063STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5064STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5065STAT_ATTR(FREE_SLAB, free_slab);
5066STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5067STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5068STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5069STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5070STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5071STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5072STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5073STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5074STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5075STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5076STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5077STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5078STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5079STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5080#endif
5081
06428780 5082static struct attribute *slab_attrs[] = {
81819f0f
CL
5083 &slab_size_attr.attr,
5084 &object_size_attr.attr,
5085 &objs_per_slab_attr.attr,
5086 &order_attr.attr,
73d342b1 5087 &min_partial_attr.attr,
49e22585 5088 &cpu_partial_attr.attr,
81819f0f 5089 &objects_attr.attr,
205ab99d 5090 &objects_partial_attr.attr,
81819f0f
CL
5091 &partial_attr.attr,
5092 &cpu_slabs_attr.attr,
5093 &ctor_attr.attr,
81819f0f
CL
5094 &aliases_attr.attr,
5095 &align_attr.attr,
81819f0f
CL
5096 &hwcache_align_attr.attr,
5097 &reclaim_account_attr.attr,
5098 &destroy_by_rcu_attr.attr,
a5a84755 5099 &shrink_attr.attr,
ab9a0f19 5100 &reserved_attr.attr,
49e22585 5101 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5102#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5103 &total_objects_attr.attr,
5104 &slabs_attr.attr,
5105 &sanity_checks_attr.attr,
5106 &trace_attr.attr,
81819f0f
CL
5107 &red_zone_attr.attr,
5108 &poison_attr.attr,
5109 &store_user_attr.attr,
53e15af0 5110 &validate_attr.attr,
88a420e4
CL
5111 &alloc_calls_attr.attr,
5112 &free_calls_attr.attr,
ab4d5ed5 5113#endif
81819f0f
CL
5114#ifdef CONFIG_ZONE_DMA
5115 &cache_dma_attr.attr,
5116#endif
5117#ifdef CONFIG_NUMA
9824601e 5118 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5119#endif
5120#ifdef CONFIG_SLUB_STATS
5121 &alloc_fastpath_attr.attr,
5122 &alloc_slowpath_attr.attr,
5123 &free_fastpath_attr.attr,
5124 &free_slowpath_attr.attr,
5125 &free_frozen_attr.attr,
5126 &free_add_partial_attr.attr,
5127 &free_remove_partial_attr.attr,
5128 &alloc_from_partial_attr.attr,
5129 &alloc_slab_attr.attr,
5130 &alloc_refill_attr.attr,
e36a2652 5131 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5132 &free_slab_attr.attr,
5133 &cpuslab_flush_attr.attr,
5134 &deactivate_full_attr.attr,
5135 &deactivate_empty_attr.attr,
5136 &deactivate_to_head_attr.attr,
5137 &deactivate_to_tail_attr.attr,
5138 &deactivate_remote_frees_attr.attr,
03e404af 5139 &deactivate_bypass_attr.attr,
65c3376a 5140 &order_fallback_attr.attr,
b789ef51
CL
5141 &cmpxchg_double_fail_attr.attr,
5142 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5143 &cpu_partial_alloc_attr.attr,
5144 &cpu_partial_free_attr.attr,
8028dcea
AS
5145 &cpu_partial_node_attr.attr,
5146 &cpu_partial_drain_attr.attr,
81819f0f 5147#endif
4c13dd3b
DM
5148#ifdef CONFIG_FAILSLAB
5149 &failslab_attr.attr,
5150#endif
5151
81819f0f
CL
5152 NULL
5153};
5154
5155static struct attribute_group slab_attr_group = {
5156 .attrs = slab_attrs,
5157};
5158
5159static ssize_t slab_attr_show(struct kobject *kobj,
5160 struct attribute *attr,
5161 char *buf)
5162{
5163 struct slab_attribute *attribute;
5164 struct kmem_cache *s;
5165 int err;
5166
5167 attribute = to_slab_attr(attr);
5168 s = to_slab(kobj);
5169
5170 if (!attribute->show)
5171 return -EIO;
5172
5173 err = attribute->show(s, buf);
5174
5175 return err;
5176}
5177
5178static ssize_t slab_attr_store(struct kobject *kobj,
5179 struct attribute *attr,
5180 const char *buf, size_t len)
5181{
5182 struct slab_attribute *attribute;
5183 struct kmem_cache *s;
5184 int err;
5185
5186 attribute = to_slab_attr(attr);
5187 s = to_slab(kobj);
5188
5189 if (!attribute->store)
5190 return -EIO;
5191
5192 err = attribute->store(s, buf, len);
127424c8 5193#ifdef CONFIG_MEMCG
107dab5c 5194 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5195 struct kmem_cache *c;
81819f0f 5196
107dab5c
GC
5197 mutex_lock(&slab_mutex);
5198 if (s->max_attr_size < len)
5199 s->max_attr_size = len;
5200
ebe945c2
GC
5201 /*
5202 * This is a best effort propagation, so this function's return
5203 * value will be determined by the parent cache only. This is
5204 * basically because not all attributes will have a well
5205 * defined semantics for rollbacks - most of the actions will
5206 * have permanent effects.
5207 *
5208 * Returning the error value of any of the children that fail
5209 * is not 100 % defined, in the sense that users seeing the
5210 * error code won't be able to know anything about the state of
5211 * the cache.
5212 *
5213 * Only returning the error code for the parent cache at least
5214 * has well defined semantics. The cache being written to
5215 * directly either failed or succeeded, in which case we loop
5216 * through the descendants with best-effort propagation.
5217 */
426589f5
VD
5218 for_each_memcg_cache(c, s)
5219 attribute->store(c, buf, len);
107dab5c
GC
5220 mutex_unlock(&slab_mutex);
5221 }
5222#endif
81819f0f
CL
5223 return err;
5224}
5225
107dab5c
GC
5226static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5227{
127424c8 5228#ifdef CONFIG_MEMCG
107dab5c
GC
5229 int i;
5230 char *buffer = NULL;
93030d83 5231 struct kmem_cache *root_cache;
107dab5c 5232
93030d83 5233 if (is_root_cache(s))
107dab5c
GC
5234 return;
5235
f7ce3190 5236 root_cache = s->memcg_params.root_cache;
93030d83 5237
107dab5c
GC
5238 /*
5239 * This mean this cache had no attribute written. Therefore, no point
5240 * in copying default values around
5241 */
93030d83 5242 if (!root_cache->max_attr_size)
107dab5c
GC
5243 return;
5244
5245 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5246 char mbuf[64];
5247 char *buf;
5248 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5249
5250 if (!attr || !attr->store || !attr->show)
5251 continue;
5252
5253 /*
5254 * It is really bad that we have to allocate here, so we will
5255 * do it only as a fallback. If we actually allocate, though,
5256 * we can just use the allocated buffer until the end.
5257 *
5258 * Most of the slub attributes will tend to be very small in
5259 * size, but sysfs allows buffers up to a page, so they can
5260 * theoretically happen.
5261 */
5262 if (buffer)
5263 buf = buffer;
93030d83 5264 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5265 buf = mbuf;
5266 else {
5267 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5268 if (WARN_ON(!buffer))
5269 continue;
5270 buf = buffer;
5271 }
5272
93030d83 5273 attr->show(root_cache, buf);
107dab5c
GC
5274 attr->store(s, buf, strlen(buf));
5275 }
5276
5277 if (buffer)
5278 free_page((unsigned long)buffer);
5279#endif
5280}
5281
41a21285
CL
5282static void kmem_cache_release(struct kobject *k)
5283{
5284 slab_kmem_cache_release(to_slab(k));
5285}
5286
52cf25d0 5287static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5288 .show = slab_attr_show,
5289 .store = slab_attr_store,
5290};
5291
5292static struct kobj_type slab_ktype = {
5293 .sysfs_ops = &slab_sysfs_ops,
41a21285 5294 .release = kmem_cache_release,
81819f0f
CL
5295};
5296
5297static int uevent_filter(struct kset *kset, struct kobject *kobj)
5298{
5299 struct kobj_type *ktype = get_ktype(kobj);
5300
5301 if (ktype == &slab_ktype)
5302 return 1;
5303 return 0;
5304}
5305
9cd43611 5306static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5307 .filter = uevent_filter,
5308};
5309
27c3a314 5310static struct kset *slab_kset;
81819f0f 5311
9a41707b
VD
5312static inline struct kset *cache_kset(struct kmem_cache *s)
5313{
127424c8 5314#ifdef CONFIG_MEMCG
9a41707b 5315 if (!is_root_cache(s))
f7ce3190 5316 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5317#endif
5318 return slab_kset;
5319}
5320
81819f0f
CL
5321#define ID_STR_LENGTH 64
5322
5323/* Create a unique string id for a slab cache:
6446faa2
CL
5324 *
5325 * Format :[flags-]size
81819f0f
CL
5326 */
5327static char *create_unique_id(struct kmem_cache *s)
5328{
5329 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5330 char *p = name;
5331
5332 BUG_ON(!name);
5333
5334 *p++ = ':';
5335 /*
5336 * First flags affecting slabcache operations. We will only
5337 * get here for aliasable slabs so we do not need to support
5338 * too many flags. The flags here must cover all flags that
5339 * are matched during merging to guarantee that the id is
5340 * unique.
5341 */
5342 if (s->flags & SLAB_CACHE_DMA)
5343 *p++ = 'd';
5344 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5345 *p++ = 'a';
becfda68 5346 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5347 *p++ = 'F';
5a896d9e
VN
5348 if (!(s->flags & SLAB_NOTRACK))
5349 *p++ = 't';
230e9fc2
VD
5350 if (s->flags & SLAB_ACCOUNT)
5351 *p++ = 'A';
81819f0f
CL
5352 if (p != name + 1)
5353 *p++ = '-';
5354 p += sprintf(p, "%07d", s->size);
2633d7a0 5355
81819f0f
CL
5356 BUG_ON(p > name + ID_STR_LENGTH - 1);
5357 return name;
5358}
5359
5360static int sysfs_slab_add(struct kmem_cache *s)
5361{
5362 int err;
5363 const char *name;
45530c44 5364 int unmergeable = slab_unmergeable(s);
81819f0f 5365
81819f0f
CL
5366 if (unmergeable) {
5367 /*
5368 * Slabcache can never be merged so we can use the name proper.
5369 * This is typically the case for debug situations. In that
5370 * case we can catch duplicate names easily.
5371 */
27c3a314 5372 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5373 name = s->name;
5374 } else {
5375 /*
5376 * Create a unique name for the slab as a target
5377 * for the symlinks.
5378 */
5379 name = create_unique_id(s);
5380 }
5381
9a41707b 5382 s->kobj.kset = cache_kset(s);
26e4f205 5383 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5384 if (err)
80da026a 5385 goto out;
81819f0f
CL
5386
5387 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5388 if (err)
5389 goto out_del_kobj;
9a41707b 5390
127424c8 5391#ifdef CONFIG_MEMCG
9a41707b
VD
5392 if (is_root_cache(s)) {
5393 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5394 if (!s->memcg_kset) {
54b6a731
DJ
5395 err = -ENOMEM;
5396 goto out_del_kobj;
9a41707b
VD
5397 }
5398 }
5399#endif
5400
81819f0f
CL
5401 kobject_uevent(&s->kobj, KOBJ_ADD);
5402 if (!unmergeable) {
5403 /* Setup first alias */
5404 sysfs_slab_alias(s, s->name);
81819f0f 5405 }
54b6a731
DJ
5406out:
5407 if (!unmergeable)
5408 kfree(name);
5409 return err;
5410out_del_kobj:
5411 kobject_del(&s->kobj);
54b6a731 5412 goto out;
81819f0f
CL
5413}
5414
41a21285 5415void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5416{
97d06609 5417 if (slab_state < FULL)
2bce6485
CL
5418 /*
5419 * Sysfs has not been setup yet so no need to remove the
5420 * cache from sysfs.
5421 */
5422 return;
5423
127424c8 5424#ifdef CONFIG_MEMCG
9a41707b
VD
5425 kset_unregister(s->memcg_kset);
5426#endif
81819f0f
CL
5427 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5428 kobject_del(&s->kobj);
151c602f 5429 kobject_put(&s->kobj);
81819f0f
CL
5430}
5431
5432/*
5433 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5434 * available lest we lose that information.
81819f0f
CL
5435 */
5436struct saved_alias {
5437 struct kmem_cache *s;
5438 const char *name;
5439 struct saved_alias *next;
5440};
5441
5af328a5 5442static struct saved_alias *alias_list;
81819f0f
CL
5443
5444static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5445{
5446 struct saved_alias *al;
5447
97d06609 5448 if (slab_state == FULL) {
81819f0f
CL
5449 /*
5450 * If we have a leftover link then remove it.
5451 */
27c3a314
GKH
5452 sysfs_remove_link(&slab_kset->kobj, name);
5453 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5454 }
5455
5456 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5457 if (!al)
5458 return -ENOMEM;
5459
5460 al->s = s;
5461 al->name = name;
5462 al->next = alias_list;
5463 alias_list = al;
5464 return 0;
5465}
5466
5467static int __init slab_sysfs_init(void)
5468{
5b95a4ac 5469 struct kmem_cache *s;
81819f0f
CL
5470 int err;
5471
18004c5d 5472 mutex_lock(&slab_mutex);
2bce6485 5473
0ff21e46 5474 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5475 if (!slab_kset) {
18004c5d 5476 mutex_unlock(&slab_mutex);
f9f58285 5477 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5478 return -ENOSYS;
5479 }
5480
97d06609 5481 slab_state = FULL;
26a7bd03 5482
5b95a4ac 5483 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5484 err = sysfs_slab_add(s);
5d540fb7 5485 if (err)
f9f58285
FF
5486 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5487 s->name);
26a7bd03 5488 }
81819f0f
CL
5489
5490 while (alias_list) {
5491 struct saved_alias *al = alias_list;
5492
5493 alias_list = alias_list->next;
5494 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5495 if (err)
f9f58285
FF
5496 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5497 al->name);
81819f0f
CL
5498 kfree(al);
5499 }
5500
18004c5d 5501 mutex_unlock(&slab_mutex);
81819f0f
CL
5502 resiliency_test();
5503 return 0;
5504}
5505
5506__initcall(slab_sysfs_init);
ab4d5ed5 5507#endif /* CONFIG_SYSFS */
57ed3eda
PE
5508
5509/*
5510 * The /proc/slabinfo ABI
5511 */
158a9624 5512#ifdef CONFIG_SLABINFO
0d7561c6 5513void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5514{
57ed3eda 5515 unsigned long nr_slabs = 0;
205ab99d
CL
5516 unsigned long nr_objs = 0;
5517 unsigned long nr_free = 0;
57ed3eda 5518 int node;
fa45dc25 5519 struct kmem_cache_node *n;
57ed3eda 5520
fa45dc25 5521 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5522 nr_slabs += node_nr_slabs(n);
5523 nr_objs += node_nr_objs(n);
205ab99d 5524 nr_free += count_partial(n, count_free);
57ed3eda
PE
5525 }
5526
0d7561c6
GC
5527 sinfo->active_objs = nr_objs - nr_free;
5528 sinfo->num_objs = nr_objs;
5529 sinfo->active_slabs = nr_slabs;
5530 sinfo->num_slabs = nr_slabs;
5531 sinfo->objects_per_slab = oo_objects(s->oo);
5532 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5533}
5534
0d7561c6 5535void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5536{
7b3c3a50
AD
5537}
5538
b7454ad3
GC
5539ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5540 size_t count, loff_t *ppos)
7b3c3a50 5541{
b7454ad3 5542 return -EIO;
7b3c3a50 5543}
158a9624 5544#endif /* CONFIG_SLABINFO */