]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
kasan, mm: integrate page_alloc init with HW_TAGS
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b89fb5ef 30#include <linux/kfence.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 55 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 56 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
881db7fb
CL
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
aed68148 97 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f 112 *
aed68148 113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
ca0cab65
VB
118#ifdef CONFIG_SLUB_DEBUG
119#ifdef CONFIG_SLUB_DEBUG_ON
120DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121#else
122DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123#endif
124#endif
125
59052e89
VB
126static inline bool kmem_cache_debug(struct kmem_cache *s)
127{
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 129}
5577bd8a 130
117d54df 131void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 132{
59052e89 133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
134 p += s->red_left_pad;
135
136 return p;
137}
138
345c905d
JK
139static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140{
141#ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143#else
144 return false;
145#endif
146}
147
81819f0f
CL
148/*
149 * Issues still to be resolved:
150 *
81819f0f
CL
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
81819f0f
CL
153 * - Variable sizing of the per node arrays
154 */
155
156/* Enable to test recovery from slab corruption on boot */
157#undef SLUB_RESILIENCY_TEST
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
d6543e39
BG
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
7e1fa93d
VB
239/*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245static nodemask_t slab_nodes;
246
81819f0f
CL
247/********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
2482ddec
KC
251/*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258{
259#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 260 /*
aa1ef4d7 261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
272#else
273 return ptr;
274#endif
275}
276
277/* Returns the freelist pointer recorded at location ptr_addr. */
278static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280{
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283}
284
7656c72b
CL
285static inline void *get_freepointer(struct kmem_cache *s, void *object)
286{
aa1ef4d7 287 object = kasan_reset_tag(object);
2482ddec 288 return freelist_dereference(s, object + s->offset);
7656c72b
CL
289}
290
0ad9500e
ED
291static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292{
0882ff91 293 prefetch(object + s->offset);
0ad9500e
ED
294}
295
1393d9a1
CL
296static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297{
2482ddec 298 unsigned long freepointer_addr;
1393d9a1
CL
299 void *p;
300
8e57f8ac 301 if (!debug_pagealloc_enabled_static())
922d566c
JK
302 return get_freepointer(s, object);
303
2482ddec 304 freepointer_addr = (unsigned long)object + s->offset;
fe557319 305 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 306 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
307}
308
7656c72b
CL
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
2482ddec
KC
311 unsigned long freeptr_addr = (unsigned long)object + s->offset;
312
ce6fa91b
AP
313#ifdef CONFIG_SLAB_FREELIST_HARDENED
314 BUG_ON(object == fp); /* naive detection of double free or corruption */
315#endif
316
aa1ef4d7 317 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 318 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
319}
320
321/* Loop over all objects in a slab */
224a88be 322#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
323 for (__p = fixup_red_left(__s, __addr); \
324 __p < (__addr) + (__objects) * (__s)->size; \
325 __p += (__s)->size)
7656c72b 326
9736d2a9 327static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 328{
9736d2a9 329 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
330}
331
19af27af 332static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 333 unsigned int size)
834f3d11
CL
334{
335 struct kmem_cache_order_objects x = {
9736d2a9 336 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
337 };
338
339 return x;
340}
341
19af27af 342static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x >> OO_SHIFT;
834f3d11
CL
345}
346
19af27af 347static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 348{
210b5c06 349 return x.x & OO_MASK;
834f3d11
CL
350}
351
881db7fb
CL
352/*
353 * Per slab locking using the pagelock
354 */
355static __always_inline void slab_lock(struct page *page)
356{
48c935ad 357 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
358 bit_spin_lock(PG_locked, &page->flags);
359}
360
361static __always_inline void slab_unlock(struct page *page)
362{
48c935ad 363 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
364 __bit_spin_unlock(PG_locked, &page->flags);
365}
366
1d07171c
CL
367/* Interrupts must be disabled (for the fallback code to work right) */
368static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 void *freelist_old, unsigned long counters_old,
370 void *freelist_new, unsigned long counters_new,
371 const char *n)
372{
373 VM_BUG_ON(!irqs_disabled());
2565409f
HC
374#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 376 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 377 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
378 freelist_old, counters_old,
379 freelist_new, counters_new))
6f6528a1 380 return true;
1d07171c
CL
381 } else
382#endif
383 {
384 slab_lock(page);
d0e0ac97
CG
385 if (page->freelist == freelist_old &&
386 page->counters == counters_old) {
1d07171c 387 page->freelist = freelist_new;
7d27a04b 388 page->counters = counters_new;
1d07171c 389 slab_unlock(page);
6f6528a1 390 return true;
1d07171c
CL
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 399 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
400#endif
401
6f6528a1 402 return false;
1d07171c
CL
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
414 freelist_old, counters_old,
415 freelist_new, counters_new))
6f6528a1 416 return true;
b789ef51
CL
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
d0e0ac97
CG
424 if (page->freelist == freelist_old &&
425 page->counters == counters_old) {
b789ef51 426 page->freelist = freelist_new;
7d27a04b 427 page->counters = counters_new;
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
6f6528a1 430 return true;
b789ef51 431 }
881db7fb 432 slab_unlock(page);
1d07171c 433 local_irq_restore(flags);
b789ef51
CL
434 }
435
436 cpu_relax();
437 stat(s, CMPXCHG_DOUBLE_FAIL);
438
439#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 440 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
441#endif
442
6f6528a1 443 return false;
b789ef51
CL
444}
445
41ecc55b 446#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
447static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
448static DEFINE_SPINLOCK(object_map_lock);
449
5f80b13a
CL
450/*
451 * Determine a map of object in use on a page.
452 *
881db7fb 453 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
454 * not vanish from under us.
455 */
90e9f6a6 456static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 457 __acquires(&object_map_lock)
5f80b13a
CL
458{
459 void *p;
460 void *addr = page_address(page);
461
90e9f6a6
YZ
462 VM_BUG_ON(!irqs_disabled());
463
464 spin_lock(&object_map_lock);
465
466 bitmap_zero(object_map, page->objects);
467
5f80b13a 468 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 469 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
470
471 return object_map;
472}
473
81aba9e0 474static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
475{
476 VM_BUG_ON(map != object_map);
90e9f6a6 477 spin_unlock(&object_map_lock);
5f80b13a
CL
478}
479
870b1fbb 480static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
481{
482 if (s->flags & SLAB_RED_ZONE)
483 return s->size - s->red_left_pad;
484
485 return s->size;
486}
487
488static inline void *restore_red_left(struct kmem_cache *s, void *p)
489{
490 if (s->flags & SLAB_RED_ZONE)
491 p -= s->red_left_pad;
492
493 return p;
494}
495
41ecc55b
CL
496/*
497 * Debug settings:
498 */
89d3c87e 499#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 500static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 501#else
d50112ed 502static slab_flags_t slub_debug;
f0630fff 503#endif
41ecc55b 504
e17f1dfb 505static char *slub_debug_string;
fa5ec8a1 506static int disable_higher_order_debug;
41ecc55b 507
a79316c6
AR
508/*
509 * slub is about to manipulate internal object metadata. This memory lies
510 * outside the range of the allocated object, so accessing it would normally
511 * be reported by kasan as a bounds error. metadata_access_enable() is used
512 * to tell kasan that these accesses are OK.
513 */
514static inline void metadata_access_enable(void)
515{
516 kasan_disable_current();
517}
518
519static inline void metadata_access_disable(void)
520{
521 kasan_enable_current();
522}
523
81819f0f
CL
524/*
525 * Object debugging
526 */
d86bd1be
JK
527
528/* Verify that a pointer has an address that is valid within a slab page */
529static inline int check_valid_pointer(struct kmem_cache *s,
530 struct page *page, void *object)
531{
532 void *base;
533
534 if (!object)
535 return 1;
536
537 base = page_address(page);
338cfaad 538 object = kasan_reset_tag(object);
d86bd1be
JK
539 object = restore_red_left(s, object);
540 if (object < base || object >= base + page->objects * s->size ||
541 (object - base) % s->size) {
542 return 0;
543 }
544
545 return 1;
546}
547
aa2efd5e
DT
548static void print_section(char *level, char *text, u8 *addr,
549 unsigned int length)
81819f0f 550{
a79316c6 551 metadata_access_enable();
aa1ef4d7
AK
552 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
553 16, 1, addr, length, 1);
a79316c6 554 metadata_access_disable();
81819f0f
CL
555}
556
cbfc35a4
WL
557/*
558 * See comment in calculate_sizes().
559 */
560static inline bool freeptr_outside_object(struct kmem_cache *s)
561{
562 return s->offset >= s->inuse;
563}
564
565/*
566 * Return offset of the end of info block which is inuse + free pointer if
567 * not overlapping with object.
568 */
569static inline unsigned int get_info_end(struct kmem_cache *s)
570{
571 if (freeptr_outside_object(s))
572 return s->inuse + sizeof(void *);
573 else
574 return s->inuse;
575}
576
81819f0f
CL
577static struct track *get_track(struct kmem_cache *s, void *object,
578 enum track_item alloc)
579{
580 struct track *p;
581
cbfc35a4 582 p = object + get_info_end(s);
81819f0f 583
aa1ef4d7 584 return kasan_reset_tag(p + alloc);
81819f0f
CL
585}
586
587static void set_track(struct kmem_cache *s, void *object,
ce71e27c 588 enum track_item alloc, unsigned long addr)
81819f0f 589{
1a00df4a 590 struct track *p = get_track(s, object, alloc);
81819f0f 591
81819f0f 592 if (addr) {
d6543e39 593#ifdef CONFIG_STACKTRACE
79716799 594 unsigned int nr_entries;
d6543e39 595
a79316c6 596 metadata_access_enable();
aa1ef4d7
AK
597 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
598 TRACK_ADDRS_COUNT, 3);
a79316c6 599 metadata_access_disable();
d6543e39 600
79716799
TG
601 if (nr_entries < TRACK_ADDRS_COUNT)
602 p->addrs[nr_entries] = 0;
d6543e39 603#endif
81819f0f
CL
604 p->addr = addr;
605 p->cpu = smp_processor_id();
88e4ccf2 606 p->pid = current->pid;
81819f0f 607 p->when = jiffies;
b8ca7ff7 608 } else {
81819f0f 609 memset(p, 0, sizeof(struct track));
b8ca7ff7 610 }
81819f0f
CL
611}
612
81819f0f
CL
613static void init_tracking(struct kmem_cache *s, void *object)
614{
24922684
CL
615 if (!(s->flags & SLAB_STORE_USER))
616 return;
617
ce71e27c
EGM
618 set_track(s, object, TRACK_FREE, 0UL);
619 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
620}
621
86609d33 622static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
623{
624 if (!t->addr)
625 return;
626
96b94abc 627 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 628 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
629#ifdef CONFIG_STACKTRACE
630 {
631 int i;
632 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 if (t->addrs[i])
f9f58285 634 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
635 else
636 break;
637 }
638#endif
24922684
CL
639}
640
e42f174e 641void print_tracking(struct kmem_cache *s, void *object)
24922684 642{
86609d33 643 unsigned long pr_time = jiffies;
24922684
CL
644 if (!(s->flags & SLAB_STORE_USER))
645 return;
646
86609d33
CP
647 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
648 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
649}
650
651static void print_page_info(struct page *page)
652{
96b94abc 653 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
654 page, page->objects, page->inuse, page->freelist,
655 page->flags, &page->flags);
24922684
CL
656
657}
658
659static void slab_bug(struct kmem_cache *s, char *fmt, ...)
660{
ecc42fbe 661 struct va_format vaf;
24922684 662 va_list args;
24922684
CL
663
664 va_start(args, fmt);
ecc42fbe
FF
665 vaf.fmt = fmt;
666 vaf.va = &args;
f9f58285 667 pr_err("=============================================================================\n");
ecc42fbe 668 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 669 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 670
373d4d09 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 672 va_end(args);
81819f0f
CL
673}
674
24922684
CL
675static void slab_fix(struct kmem_cache *s, char *fmt, ...)
676{
ecc42fbe 677 struct va_format vaf;
24922684 678 va_list args;
24922684
CL
679
680 va_start(args, fmt);
ecc42fbe
FF
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 684 va_end(args);
24922684
CL
685}
686
52f23478 687static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 688 void **freelist, void *nextfree)
52f23478
DZ
689{
690 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
691 !check_valid_pointer(s, page, nextfree) && freelist) {
692 object_err(s, page, *freelist, "Freechain corrupt");
693 *freelist = NULL;
52f23478
DZ
694 slab_fix(s, "Isolate corrupted freechain");
695 return true;
696 }
697
698 return false;
699}
700
24922684 701static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
702{
703 unsigned int off; /* Offset of last byte */
a973e9dd 704 u8 *addr = page_address(page);
24922684
CL
705
706 print_tracking(s, p);
707
708 print_page_info(page);
709
96b94abc 710 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 711 p, p - addr, get_freepointer(s, p));
24922684 712
d86bd1be 713 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
714 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
715 s->red_left_pad);
d86bd1be 716 else if (p > addr + 16)
aa2efd5e 717 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 718
aa2efd5e 719 print_section(KERN_ERR, "Object ", p,
1b473f29 720 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 721 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 722 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 723 s->inuse - s->object_size);
81819f0f 724
cbfc35a4 725 off = get_info_end(s);
81819f0f 726
24922684 727 if (s->flags & SLAB_STORE_USER)
81819f0f 728 off += 2 * sizeof(struct track);
81819f0f 729
80a9201a
AP
730 off += kasan_metadata_size(s);
731
d86bd1be 732 if (off != size_from_object(s))
81819f0f 733 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
734 print_section(KERN_ERR, "Padding ", p + off,
735 size_from_object(s) - off);
24922684
CL
736
737 dump_stack();
81819f0f
CL
738}
739
75c66def 740void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
741 u8 *object, char *reason)
742{
3dc50637 743 slab_bug(s, "%s", reason);
24922684 744 print_trailer(s, page, object);
81819f0f
CL
745}
746
a38965bf 747static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 748 const char *fmt, ...)
81819f0f
CL
749{
750 va_list args;
751 char buf[100];
752
24922684
CL
753 va_start(args, fmt);
754 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 755 va_end(args);
3dc50637 756 slab_bug(s, "%s", buf);
24922684 757 print_page_info(page);
81819f0f
CL
758 dump_stack();
759}
760
f7cb1933 761static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 762{
aa1ef4d7 763 u8 *p = kasan_reset_tag(object);
81819f0f 764
d86bd1be
JK
765 if (s->flags & SLAB_RED_ZONE)
766 memset(p - s->red_left_pad, val, s->red_left_pad);
767
81819f0f 768 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
769 memset(p, POISON_FREE, s->object_size - 1);
770 p[s->object_size - 1] = POISON_END;
81819f0f
CL
771 }
772
773 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 774 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
775}
776
24922684
CL
777static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
778 void *from, void *to)
779{
780 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
781 memset(from, data, to - from);
782}
783
784static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
785 u8 *object, char *what,
06428780 786 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
787{
788 u8 *fault;
789 u8 *end;
e1b70dd1 790 u8 *addr = page_address(page);
24922684 791
a79316c6 792 metadata_access_enable();
aa1ef4d7 793 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 794 metadata_access_disable();
24922684
CL
795 if (!fault)
796 return 1;
797
798 end = start + bytes;
799 while (end > fault && end[-1] == value)
800 end--;
801
802 slab_bug(s, "%s overwritten", what);
96b94abc 803 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
804 fault, end - 1, fault - addr,
805 fault[0], value);
24922684
CL
806 print_trailer(s, page, object);
807
808 restore_bytes(s, what, value, fault, end);
809 return 0;
81819f0f
CL
810}
811
81819f0f
CL
812/*
813 * Object layout:
814 *
815 * object address
816 * Bytes of the object to be managed.
817 * If the freepointer may overlay the object then the free
cbfc35a4 818 * pointer is at the middle of the object.
672bba3a 819 *
81819f0f
CL
820 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
821 * 0xa5 (POISON_END)
822 *
3b0efdfa 823 * object + s->object_size
81819f0f 824 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 825 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 826 * object_size == inuse.
672bba3a 827 *
81819f0f
CL
828 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
829 * 0xcc (RED_ACTIVE) for objects in use.
830 *
831 * object + s->inuse
672bba3a
CL
832 * Meta data starts here.
833 *
81819f0f
CL
834 * A. Free pointer (if we cannot overwrite object on free)
835 * B. Tracking data for SLAB_STORE_USER
dc84207d 836 * C. Padding to reach required alignment boundary or at minimum
6446faa2 837 * one word if debugging is on to be able to detect writes
672bba3a
CL
838 * before the word boundary.
839 *
840 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
841 *
842 * object + s->size
672bba3a 843 * Nothing is used beyond s->size.
81819f0f 844 *
3b0efdfa 845 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 846 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
847 * may be used with merged slabcaches.
848 */
849
81819f0f
CL
850static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
851{
cbfc35a4 852 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
853
854 if (s->flags & SLAB_STORE_USER)
855 /* We also have user information there */
856 off += 2 * sizeof(struct track);
857
80a9201a
AP
858 off += kasan_metadata_size(s);
859
d86bd1be 860 if (size_from_object(s) == off)
81819f0f
CL
861 return 1;
862
24922684 863 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 864 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
865}
866
39b26464 867/* Check the pad bytes at the end of a slab page */
81819f0f
CL
868static int slab_pad_check(struct kmem_cache *s, struct page *page)
869{
24922684
CL
870 u8 *start;
871 u8 *fault;
872 u8 *end;
5d682681 873 u8 *pad;
24922684
CL
874 int length;
875 int remainder;
81819f0f
CL
876
877 if (!(s->flags & SLAB_POISON))
878 return 1;
879
a973e9dd 880 start = page_address(page);
a50b854e 881 length = page_size(page);
39b26464
CL
882 end = start + length;
883 remainder = length % s->size;
81819f0f
CL
884 if (!remainder)
885 return 1;
886
5d682681 887 pad = end - remainder;
a79316c6 888 metadata_access_enable();
aa1ef4d7 889 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 890 metadata_access_disable();
24922684
CL
891 if (!fault)
892 return 1;
893 while (end > fault && end[-1] == POISON_INUSE)
894 end--;
895
e1b70dd1
MC
896 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
897 fault, end - 1, fault - start);
5d682681 898 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 899
5d682681 900 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 901 return 0;
81819f0f
CL
902}
903
904static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 905 void *object, u8 val)
81819f0f
CL
906{
907 u8 *p = object;
3b0efdfa 908 u8 *endobject = object + s->object_size;
81819f0f
CL
909
910 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
911 if (!check_bytes_and_report(s, page, object, "Redzone",
912 object - s->red_left_pad, val, s->red_left_pad))
913 return 0;
914
24922684 915 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 916 endobject, val, s->inuse - s->object_size))
81819f0f 917 return 0;
81819f0f 918 } else {
3b0efdfa 919 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 920 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
921 endobject, POISON_INUSE,
922 s->inuse - s->object_size);
3adbefee 923 }
81819f0f
CL
924 }
925
926 if (s->flags & SLAB_POISON) {
f7cb1933 927 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 928 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 929 POISON_FREE, s->object_size - 1) ||
24922684 930 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 931 p + s->object_size - 1, POISON_END, 1)))
81819f0f 932 return 0;
81819f0f
CL
933 /*
934 * check_pad_bytes cleans up on its own.
935 */
936 check_pad_bytes(s, page, p);
937 }
938
cbfc35a4 939 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
940 /*
941 * Object and freepointer overlap. Cannot check
942 * freepointer while object is allocated.
943 */
944 return 1;
945
946 /* Check free pointer validity */
947 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
948 object_err(s, page, p, "Freepointer corrupt");
949 /*
9f6c708e 950 * No choice but to zap it and thus lose the remainder
81819f0f 951 * of the free objects in this slab. May cause
672bba3a 952 * another error because the object count is now wrong.
81819f0f 953 */
a973e9dd 954 set_freepointer(s, p, NULL);
81819f0f
CL
955 return 0;
956 }
957 return 1;
958}
959
960static int check_slab(struct kmem_cache *s, struct page *page)
961{
39b26464
CL
962 int maxobj;
963
81819f0f
CL
964 VM_BUG_ON(!irqs_disabled());
965
966 if (!PageSlab(page)) {
24922684 967 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
968 return 0;
969 }
39b26464 970
9736d2a9 971 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
972 if (page->objects > maxobj) {
973 slab_err(s, page, "objects %u > max %u",
f6edde9c 974 page->objects, maxobj);
39b26464
CL
975 return 0;
976 }
977 if (page->inuse > page->objects) {
24922684 978 slab_err(s, page, "inuse %u > max %u",
f6edde9c 979 page->inuse, page->objects);
81819f0f
CL
980 return 0;
981 }
982 /* Slab_pad_check fixes things up after itself */
983 slab_pad_check(s, page);
984 return 1;
985}
986
987/*
672bba3a
CL
988 * Determine if a certain object on a page is on the freelist. Must hold the
989 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
990 */
991static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
992{
993 int nr = 0;
881db7fb 994 void *fp;
81819f0f 995 void *object = NULL;
f6edde9c 996 int max_objects;
81819f0f 997
881db7fb 998 fp = page->freelist;
39b26464 999 while (fp && nr <= page->objects) {
81819f0f
CL
1000 if (fp == search)
1001 return 1;
1002 if (!check_valid_pointer(s, page, fp)) {
1003 if (object) {
1004 object_err(s, page, object,
1005 "Freechain corrupt");
a973e9dd 1006 set_freepointer(s, object, NULL);
81819f0f 1007 } else {
24922684 1008 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1009 page->freelist = NULL;
39b26464 1010 page->inuse = page->objects;
24922684 1011 slab_fix(s, "Freelist cleared");
81819f0f
CL
1012 return 0;
1013 }
1014 break;
1015 }
1016 object = fp;
1017 fp = get_freepointer(s, object);
1018 nr++;
1019 }
1020
9736d2a9 1021 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1022 if (max_objects > MAX_OBJS_PER_PAGE)
1023 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1024
1025 if (page->objects != max_objects) {
756a025f
JP
1026 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1027 page->objects, max_objects);
224a88be
CL
1028 page->objects = max_objects;
1029 slab_fix(s, "Number of objects adjusted.");
1030 }
39b26464 1031 if (page->inuse != page->objects - nr) {
756a025f
JP
1032 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1033 page->inuse, page->objects - nr);
39b26464 1034 page->inuse = page->objects - nr;
24922684 1035 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1036 }
1037 return search == NULL;
1038}
1039
0121c619
CL
1040static void trace(struct kmem_cache *s, struct page *page, void *object,
1041 int alloc)
3ec09742
CL
1042{
1043 if (s->flags & SLAB_TRACE) {
f9f58285 1044 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1045 s->name,
1046 alloc ? "alloc" : "free",
1047 object, page->inuse,
1048 page->freelist);
1049
1050 if (!alloc)
aa2efd5e 1051 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1052 s->object_size);
3ec09742
CL
1053
1054 dump_stack();
1055 }
1056}
1057
643b1138 1058/*
672bba3a 1059 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1060 */
5cc6eee8
CL
1061static void add_full(struct kmem_cache *s,
1062 struct kmem_cache_node *n, struct page *page)
643b1138 1063{
5cc6eee8
CL
1064 if (!(s->flags & SLAB_STORE_USER))
1065 return;
1066
255d0884 1067 lockdep_assert_held(&n->list_lock);
916ac052 1068 list_add(&page->slab_list, &n->full);
643b1138
CL
1069}
1070
c65c1877 1071static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1072{
643b1138
CL
1073 if (!(s->flags & SLAB_STORE_USER))
1074 return;
1075
255d0884 1076 lockdep_assert_held(&n->list_lock);
916ac052 1077 list_del(&page->slab_list);
643b1138
CL
1078}
1079
0f389ec6
CL
1080/* Tracking of the number of slabs for debugging purposes */
1081static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082{
1083 struct kmem_cache_node *n = get_node(s, node);
1084
1085 return atomic_long_read(&n->nr_slabs);
1086}
1087
26c02cf0
AB
1088static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1089{
1090 return atomic_long_read(&n->nr_slabs);
1091}
1092
205ab99d 1093static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1094{
1095 struct kmem_cache_node *n = get_node(s, node);
1096
1097 /*
1098 * May be called early in order to allocate a slab for the
1099 * kmem_cache_node structure. Solve the chicken-egg
1100 * dilemma by deferring the increment of the count during
1101 * bootstrap (see early_kmem_cache_node_alloc).
1102 */
338b2642 1103 if (likely(n)) {
0f389ec6 1104 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1105 atomic_long_add(objects, &n->total_objects);
1106 }
0f389ec6 1107}
205ab99d 1108static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1109{
1110 struct kmem_cache_node *n = get_node(s, node);
1111
1112 atomic_long_dec(&n->nr_slabs);
205ab99d 1113 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1114}
1115
1116/* Object debug checks for alloc/free paths */
3ec09742
CL
1117static void setup_object_debug(struct kmem_cache *s, struct page *page,
1118 void *object)
1119{
8fc8d666 1120 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1121 return;
1122
f7cb1933 1123 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1124 init_tracking(s, object);
1125}
1126
a50b854e
MWO
1127static
1128void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1129{
8fc8d666 1130 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1131 return;
1132
1133 metadata_access_enable();
aa1ef4d7 1134 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1135 metadata_access_disable();
1136}
1137
becfda68 1138static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1139 struct page *page, void *object)
81819f0f
CL
1140{
1141 if (!check_slab(s, page))
becfda68 1142 return 0;
81819f0f 1143
81819f0f
CL
1144 if (!check_valid_pointer(s, page, object)) {
1145 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1146 return 0;
81819f0f
CL
1147 }
1148
f7cb1933 1149 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1150 return 0;
1151
1152 return 1;
1153}
1154
1155static noinline int alloc_debug_processing(struct kmem_cache *s,
1156 struct page *page,
1157 void *object, unsigned long addr)
1158{
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1160 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1161 goto bad;
1162 }
81819f0f 1163
3ec09742
CL
1164 /* Success perform special debug activities for allocs */
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_ALLOC, addr);
1167 trace(s, page, object, 1);
f7cb1933 1168 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1169 return 1;
3ec09742 1170
81819f0f
CL
1171bad:
1172 if (PageSlab(page)) {
1173 /*
1174 * If this is a slab page then lets do the best we can
1175 * to avoid issues in the future. Marking all objects
672bba3a 1176 * as used avoids touching the remaining objects.
81819f0f 1177 */
24922684 1178 slab_fix(s, "Marking all objects used");
39b26464 1179 page->inuse = page->objects;
a973e9dd 1180 page->freelist = NULL;
81819f0f
CL
1181 }
1182 return 0;
1183}
1184
becfda68
LA
1185static inline int free_consistency_checks(struct kmem_cache *s,
1186 struct page *page, void *object, unsigned long addr)
81819f0f 1187{
81819f0f 1188 if (!check_valid_pointer(s, page, object)) {
70d71228 1189 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1190 return 0;
81819f0f
CL
1191 }
1192
1193 if (on_freelist(s, page, object)) {
24922684 1194 object_err(s, page, object, "Object already free");
becfda68 1195 return 0;
81819f0f
CL
1196 }
1197
f7cb1933 1198 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1199 return 0;
81819f0f 1200
1b4f59e3 1201 if (unlikely(s != page->slab_cache)) {
3adbefee 1202 if (!PageSlab(page)) {
756a025f
JP
1203 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1204 object);
1b4f59e3 1205 } else if (!page->slab_cache) {
f9f58285
FF
1206 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1207 object);
70d71228 1208 dump_stack();
06428780 1209 } else
24922684
CL
1210 object_err(s, page, object,
1211 "page slab pointer corrupt.");
becfda68
LA
1212 return 0;
1213 }
1214 return 1;
1215}
1216
1217/* Supports checking bulk free of a constructed freelist */
1218static noinline int free_debug_processing(
1219 struct kmem_cache *s, struct page *page,
1220 void *head, void *tail, int bulk_cnt,
1221 unsigned long addr)
1222{
1223 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224 void *object = head;
1225 int cnt = 0;
3f649ab7 1226 unsigned long flags;
becfda68
LA
1227 int ret = 0;
1228
1229 spin_lock_irqsave(&n->list_lock, flags);
1230 slab_lock(page);
1231
1232 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1233 if (!check_slab(s, page))
1234 goto out;
1235 }
1236
1237next_object:
1238 cnt++;
1239
1240 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1241 if (!free_consistency_checks(s, page, object, addr))
1242 goto out;
81819f0f 1243 }
3ec09742 1244
3ec09742
CL
1245 if (s->flags & SLAB_STORE_USER)
1246 set_track(s, object, TRACK_FREE, addr);
1247 trace(s, page, object, 0);
81084651 1248 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1249 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1250
1251 /* Reached end of constructed freelist yet? */
1252 if (object != tail) {
1253 object = get_freepointer(s, object);
1254 goto next_object;
1255 }
804aa132
LA
1256 ret = 1;
1257
5c2e4bbb 1258out:
81084651
JDB
1259 if (cnt != bulk_cnt)
1260 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1261 bulk_cnt, cnt);
1262
881db7fb 1263 slab_unlock(page);
282acb43 1264 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1265 if (!ret)
1266 slab_fix(s, "Object at 0x%p not freed", object);
1267 return ret;
81819f0f
CL
1268}
1269
e17f1dfb
VB
1270/*
1271 * Parse a block of slub_debug options. Blocks are delimited by ';'
1272 *
1273 * @str: start of block
1274 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1275 * @slabs: return start of list of slabs, or NULL when there's no list
1276 * @init: assume this is initial parsing and not per-kmem-create parsing
1277 *
1278 * returns the start of next block if there's any, or NULL
1279 */
1280static char *
1281parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1282{
e17f1dfb 1283 bool higher_order_disable = false;
f0630fff 1284
e17f1dfb
VB
1285 /* Skip any completely empty blocks */
1286 while (*str && *str == ';')
1287 str++;
1288
1289 if (*str == ',') {
f0630fff
CL
1290 /*
1291 * No options but restriction on slabs. This means full
1292 * debugging for slabs matching a pattern.
1293 */
e17f1dfb 1294 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1295 goto check_slabs;
e17f1dfb
VB
1296 }
1297 *flags = 0;
f0630fff 1298
e17f1dfb
VB
1299 /* Determine which debug features should be switched on */
1300 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1301 switch (tolower(*str)) {
e17f1dfb
VB
1302 case '-':
1303 *flags = 0;
1304 break;
f0630fff 1305 case 'f':
e17f1dfb 1306 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1307 break;
1308 case 'z':
e17f1dfb 1309 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1310 break;
1311 case 'p':
e17f1dfb 1312 *flags |= SLAB_POISON;
f0630fff
CL
1313 break;
1314 case 'u':
e17f1dfb 1315 *flags |= SLAB_STORE_USER;
f0630fff
CL
1316 break;
1317 case 't':
e17f1dfb 1318 *flags |= SLAB_TRACE;
f0630fff 1319 break;
4c13dd3b 1320 case 'a':
e17f1dfb 1321 *flags |= SLAB_FAILSLAB;
4c13dd3b 1322 break;
08303a73
CA
1323 case 'o':
1324 /*
1325 * Avoid enabling debugging on caches if its minimum
1326 * order would increase as a result.
1327 */
e17f1dfb 1328 higher_order_disable = true;
08303a73 1329 break;
f0630fff 1330 default:
e17f1dfb
VB
1331 if (init)
1332 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1333 }
41ecc55b 1334 }
f0630fff 1335check_slabs:
41ecc55b 1336 if (*str == ',')
e17f1dfb
VB
1337 *slabs = ++str;
1338 else
1339 *slabs = NULL;
1340
1341 /* Skip over the slab list */
1342 while (*str && *str != ';')
1343 str++;
1344
1345 /* Skip any completely empty blocks */
1346 while (*str && *str == ';')
1347 str++;
1348
1349 if (init && higher_order_disable)
1350 disable_higher_order_debug = 1;
1351
1352 if (*str)
1353 return str;
1354 else
1355 return NULL;
1356}
1357
1358static int __init setup_slub_debug(char *str)
1359{
1360 slab_flags_t flags;
1361 char *saved_str;
1362 char *slab_list;
1363 bool global_slub_debug_changed = false;
1364 bool slab_list_specified = false;
1365
1366 slub_debug = DEBUG_DEFAULT_FLAGS;
1367 if (*str++ != '=' || !*str)
1368 /*
1369 * No options specified. Switch on full debugging.
1370 */
1371 goto out;
1372
1373 saved_str = str;
1374 while (str) {
1375 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1376
1377 if (!slab_list) {
1378 slub_debug = flags;
1379 global_slub_debug_changed = true;
1380 } else {
1381 slab_list_specified = true;
1382 }
1383 }
1384
1385 /*
1386 * For backwards compatibility, a single list of flags with list of
1387 * slabs means debugging is only enabled for those slabs, so the global
1388 * slub_debug should be 0. We can extended that to multiple lists as
1389 * long as there is no option specifying flags without a slab list.
1390 */
1391 if (slab_list_specified) {
1392 if (!global_slub_debug_changed)
1393 slub_debug = 0;
1394 slub_debug_string = saved_str;
1395 }
f0630fff 1396out:
ca0cab65
VB
1397 if (slub_debug != 0 || slub_debug_string)
1398 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1399 if ((static_branch_unlikely(&init_on_alloc) ||
1400 static_branch_unlikely(&init_on_free)) &&
1401 (slub_debug & SLAB_POISON))
1402 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1403 return 1;
1404}
1405
1406__setup("slub_debug", setup_slub_debug);
1407
c5fd3ca0
AT
1408/*
1409 * kmem_cache_flags - apply debugging options to the cache
1410 * @object_size: the size of an object without meta data
1411 * @flags: flags to set
1412 * @name: name of the cache
c5fd3ca0
AT
1413 *
1414 * Debug option(s) are applied to @flags. In addition to the debug
1415 * option(s), if a slab name (or multiple) is specified i.e.
1416 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1417 * then only the select slabs will receive the debug option(s).
1418 */
0293d1fd 1419slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1420 slab_flags_t flags, const char *name)
41ecc55b 1421{
c5fd3ca0
AT
1422 char *iter;
1423 size_t len;
e17f1dfb
VB
1424 char *next_block;
1425 slab_flags_t block_flags;
ca220593
JB
1426 slab_flags_t slub_debug_local = slub_debug;
1427
1428 /*
1429 * If the slab cache is for debugging (e.g. kmemleak) then
1430 * don't store user (stack trace) information by default,
1431 * but let the user enable it via the command line below.
1432 */
1433 if (flags & SLAB_NOLEAKTRACE)
1434 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1435
c5fd3ca0 1436 len = strlen(name);
e17f1dfb
VB
1437 next_block = slub_debug_string;
1438 /* Go through all blocks of debug options, see if any matches our slab's name */
1439 while (next_block) {
1440 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1441 if (!iter)
1442 continue;
1443 /* Found a block that has a slab list, search it */
1444 while (*iter) {
1445 char *end, *glob;
1446 size_t cmplen;
1447
1448 end = strchrnul(iter, ',');
1449 if (next_block && next_block < end)
1450 end = next_block - 1;
1451
1452 glob = strnchr(iter, end - iter, '*');
1453 if (glob)
1454 cmplen = glob - iter;
1455 else
1456 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1457
e17f1dfb
VB
1458 if (!strncmp(name, iter, cmplen)) {
1459 flags |= block_flags;
1460 return flags;
1461 }
c5fd3ca0 1462
e17f1dfb
VB
1463 if (!*end || *end == ';')
1464 break;
1465 iter = end + 1;
c5fd3ca0 1466 }
c5fd3ca0 1467 }
ba0268a8 1468
ca220593 1469 return flags | slub_debug_local;
41ecc55b 1470}
b4a64718 1471#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1472static inline void setup_object_debug(struct kmem_cache *s,
1473 struct page *page, void *object) {}
a50b854e
MWO
1474static inline
1475void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1476
3ec09742 1477static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1478 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1479
282acb43 1480static inline int free_debug_processing(
81084651
JDB
1481 struct kmem_cache *s, struct page *page,
1482 void *head, void *tail, int bulk_cnt,
282acb43 1483 unsigned long addr) { return 0; }
41ecc55b 1484
41ecc55b
CL
1485static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1486 { return 1; }
1487static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1488 void *object, u8 val) { return 1; }
5cc6eee8
CL
1489static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
c65c1877
PZ
1491static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1492 struct page *page) {}
0293d1fd 1493slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1494 slab_flags_t flags, const char *name)
ba0268a8
CL
1495{
1496 return flags;
1497}
41ecc55b 1498#define slub_debug 0
0f389ec6 1499
fdaa45e9
IM
1500#define disable_higher_order_debug 0
1501
0f389ec6
CL
1502static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1503 { return 0; }
26c02cf0
AB
1504static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1505 { return 0; }
205ab99d
CL
1506static inline void inc_slabs_node(struct kmem_cache *s, int node,
1507 int objects) {}
1508static inline void dec_slabs_node(struct kmem_cache *s, int node,
1509 int objects) {}
7d550c56 1510
52f23478 1511static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1512 void **freelist, void *nextfree)
52f23478
DZ
1513{
1514 return false;
1515}
02e72cc6
AR
1516#endif /* CONFIG_SLUB_DEBUG */
1517
1518/*
1519 * Hooks for other subsystems that check memory allocations. In a typical
1520 * production configuration these hooks all should produce no code at all.
1521 */
0116523c 1522static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1523{
53128245 1524 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1525 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1526 kmemleak_alloc(ptr, size, 1, flags);
53128245 1527 return ptr;
d56791b3
RB
1528}
1529
ee3ce779 1530static __always_inline void kfree_hook(void *x)
d56791b3
RB
1531{
1532 kmemleak_free(x);
027b37b5 1533 kasan_kfree_large(x);
d56791b3
RB
1534}
1535
c3895391 1536static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1537{
1538 kmemleak_free_recursive(x, s->flags);
7d550c56 1539
02e72cc6
AR
1540 /*
1541 * Trouble is that we may no longer disable interrupts in the fast path
1542 * So in order to make the debug calls that expect irqs to be
1543 * disabled we need to disable interrupts temporarily.
1544 */
4675ff05 1545#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1546 {
1547 unsigned long flags;
1548
1549 local_irq_save(flags);
02e72cc6
AR
1550 debug_check_no_locks_freed(x, s->object_size);
1551 local_irq_restore(flags);
1552 }
1553#endif
1554 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1555 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1556
cfbe1636
ME
1557 /* Use KCSAN to help debug racy use-after-free. */
1558 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1559 __kcsan_check_access(x, s->object_size,
1560 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1561
c3895391 1562 /* KASAN might put x into memory quarantine, delaying its reuse */
027b37b5 1563 return kasan_slab_free(s, x);
02e72cc6 1564}
205ab99d 1565
c3895391
AK
1566static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1567 void **head, void **tail)
81084651 1568{
6471384a
AP
1569
1570 void *object;
1571 void *next = *head;
1572 void *old_tail = *tail ? *tail : *head;
1573 int rsize;
1574
b89fb5ef
AP
1575 if (is_kfence_address(next)) {
1576 slab_free_hook(s, next);
1577 return true;
1578 }
1579
aea4df4c
LA
1580 /* Head and tail of the reconstructed freelist */
1581 *head = NULL;
1582 *tail = NULL;
1b7e816f 1583
aea4df4c
LA
1584 do {
1585 object = next;
1586 next = get_freepointer(s, object);
1587
1588 if (slab_want_init_on_free(s)) {
6471384a
AP
1589 /*
1590 * Clear the object and the metadata, but don't touch
1591 * the redzone.
1592 */
aa1ef4d7 1593 memset(kasan_reset_tag(object), 0, s->object_size);
6471384a
AP
1594 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1595 : 0;
aa1ef4d7 1596 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
6471384a 1597 s->size - s->inuse - rsize);
81084651 1598
aea4df4c 1599 }
c3895391
AK
1600 /* If object's reuse doesn't have to be delayed */
1601 if (!slab_free_hook(s, object)) {
1602 /* Move object to the new freelist */
1603 set_freepointer(s, object, *head);
1604 *head = object;
1605 if (!*tail)
1606 *tail = object;
1607 }
1608 } while (object != old_tail);
1609
1610 if (*head == *tail)
1611 *tail = NULL;
1612
1613 return *head != NULL;
81084651
JDB
1614}
1615
4d176711 1616static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1617 void *object)
1618{
1619 setup_object_debug(s, page, object);
4d176711 1620 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1621 if (unlikely(s->ctor)) {
1622 kasan_unpoison_object_data(s, object);
1623 s->ctor(object);
1624 kasan_poison_object_data(s, object);
1625 }
4d176711 1626 return object;
588f8ba9
TG
1627}
1628
81819f0f
CL
1629/*
1630 * Slab allocation and freeing
1631 */
5dfb4175
VD
1632static inline struct page *alloc_slab_page(struct kmem_cache *s,
1633 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1634{
5dfb4175 1635 struct page *page;
19af27af 1636 unsigned int order = oo_order(oo);
65c3376a 1637
2154a336 1638 if (node == NUMA_NO_NODE)
5dfb4175 1639 page = alloc_pages(flags, order);
65c3376a 1640 else
96db800f 1641 page = __alloc_pages_node(node, flags, order);
5dfb4175 1642
5dfb4175 1643 return page;
65c3376a
CL
1644}
1645
210e7a43
TG
1646#ifdef CONFIG_SLAB_FREELIST_RANDOM
1647/* Pre-initialize the random sequence cache */
1648static int init_cache_random_seq(struct kmem_cache *s)
1649{
19af27af 1650 unsigned int count = oo_objects(s->oo);
210e7a43 1651 int err;
210e7a43 1652
a810007a
SR
1653 /* Bailout if already initialised */
1654 if (s->random_seq)
1655 return 0;
1656
210e7a43
TG
1657 err = cache_random_seq_create(s, count, GFP_KERNEL);
1658 if (err) {
1659 pr_err("SLUB: Unable to initialize free list for %s\n",
1660 s->name);
1661 return err;
1662 }
1663
1664 /* Transform to an offset on the set of pages */
1665 if (s->random_seq) {
19af27af
AD
1666 unsigned int i;
1667
210e7a43
TG
1668 for (i = 0; i < count; i++)
1669 s->random_seq[i] *= s->size;
1670 }
1671 return 0;
1672}
1673
1674/* Initialize each random sequence freelist per cache */
1675static void __init init_freelist_randomization(void)
1676{
1677 struct kmem_cache *s;
1678
1679 mutex_lock(&slab_mutex);
1680
1681 list_for_each_entry(s, &slab_caches, list)
1682 init_cache_random_seq(s);
1683
1684 mutex_unlock(&slab_mutex);
1685}
1686
1687/* Get the next entry on the pre-computed freelist randomized */
1688static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1689 unsigned long *pos, void *start,
1690 unsigned long page_limit,
1691 unsigned long freelist_count)
1692{
1693 unsigned int idx;
1694
1695 /*
1696 * If the target page allocation failed, the number of objects on the
1697 * page might be smaller than the usual size defined by the cache.
1698 */
1699 do {
1700 idx = s->random_seq[*pos];
1701 *pos += 1;
1702 if (*pos >= freelist_count)
1703 *pos = 0;
1704 } while (unlikely(idx >= page_limit));
1705
1706 return (char *)start + idx;
1707}
1708
1709/* Shuffle the single linked freelist based on a random pre-computed sequence */
1710static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1711{
1712 void *start;
1713 void *cur;
1714 void *next;
1715 unsigned long idx, pos, page_limit, freelist_count;
1716
1717 if (page->objects < 2 || !s->random_seq)
1718 return false;
1719
1720 freelist_count = oo_objects(s->oo);
1721 pos = get_random_int() % freelist_count;
1722
1723 page_limit = page->objects * s->size;
1724 start = fixup_red_left(s, page_address(page));
1725
1726 /* First entry is used as the base of the freelist */
1727 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1728 freelist_count);
4d176711 1729 cur = setup_object(s, page, cur);
210e7a43
TG
1730 page->freelist = cur;
1731
1732 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1733 next = next_freelist_entry(s, page, &pos, start, page_limit,
1734 freelist_count);
4d176711 1735 next = setup_object(s, page, next);
210e7a43
TG
1736 set_freepointer(s, cur, next);
1737 cur = next;
1738 }
210e7a43
TG
1739 set_freepointer(s, cur, NULL);
1740
1741 return true;
1742}
1743#else
1744static inline int init_cache_random_seq(struct kmem_cache *s)
1745{
1746 return 0;
1747}
1748static inline void init_freelist_randomization(void) { }
1749static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1750{
1751 return false;
1752}
1753#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1754
81819f0f
CL
1755static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1756{
06428780 1757 struct page *page;
834f3d11 1758 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1759 gfp_t alloc_gfp;
4d176711 1760 void *start, *p, *next;
a50b854e 1761 int idx;
210e7a43 1762 bool shuffle;
81819f0f 1763
7e0528da
CL
1764 flags &= gfp_allowed_mask;
1765
d0164adc 1766 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1767 local_irq_enable();
1768
b7a49f0d 1769 flags |= s->allocflags;
e12ba74d 1770
ba52270d
PE
1771 /*
1772 * Let the initial higher-order allocation fail under memory pressure
1773 * so we fall-back to the minimum order allocation.
1774 */
1775 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1776 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1777 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1778
5dfb4175 1779 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1780 if (unlikely(!page)) {
1781 oo = s->min;
80c3a998 1782 alloc_gfp = flags;
65c3376a
CL
1783 /*
1784 * Allocation may have failed due to fragmentation.
1785 * Try a lower order alloc if possible
1786 */
5dfb4175 1787 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1788 if (unlikely(!page))
1789 goto out;
1790 stat(s, ORDER_FALLBACK);
65c3376a 1791 }
5a896d9e 1792
834f3d11 1793 page->objects = oo_objects(oo);
81819f0f 1794
2e9bd483 1795 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1796
1b4f59e3 1797 page->slab_cache = s;
c03f94cc 1798 __SetPageSlab(page);
2f064f34 1799 if (page_is_pfmemalloc(page))
072bb0aa 1800 SetPageSlabPfmemalloc(page);
81819f0f 1801
a7101224 1802 kasan_poison_slab(page);
81819f0f 1803
a7101224 1804 start = page_address(page);
81819f0f 1805
a50b854e 1806 setup_page_debug(s, page, start);
0316bec2 1807
210e7a43
TG
1808 shuffle = shuffle_freelist(s, page);
1809
1810 if (!shuffle) {
4d176711
AK
1811 start = fixup_red_left(s, start);
1812 start = setup_object(s, page, start);
1813 page->freelist = start;
18e50661
AK
1814 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1815 next = p + s->size;
1816 next = setup_object(s, page, next);
1817 set_freepointer(s, p, next);
1818 p = next;
1819 }
1820 set_freepointer(s, p, NULL);
81819f0f 1821 }
81819f0f 1822
e6e82ea1 1823 page->inuse = page->objects;
8cb0a506 1824 page->frozen = 1;
588f8ba9 1825
81819f0f 1826out:
d0164adc 1827 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1828 local_irq_disable();
1829 if (!page)
1830 return NULL;
1831
588f8ba9
TG
1832 inc_slabs_node(s, page_to_nid(page), page->objects);
1833
81819f0f
CL
1834 return page;
1835}
1836
588f8ba9
TG
1837static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1838{
44405099
LL
1839 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1840 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1841
1842 return allocate_slab(s,
1843 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1844}
1845
81819f0f
CL
1846static void __free_slab(struct kmem_cache *s, struct page *page)
1847{
834f3d11
CL
1848 int order = compound_order(page);
1849 int pages = 1 << order;
81819f0f 1850
8fc8d666 1851 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1852 void *p;
1853
1854 slab_pad_check(s, page);
224a88be
CL
1855 for_each_object(p, s, page_address(page),
1856 page->objects)
f7cb1933 1857 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1858 }
1859
072bb0aa 1860 __ClearPageSlabPfmemalloc(page);
49bd5221 1861 __ClearPageSlab(page);
0c06dd75
VB
1862 /* In union with page->mapping where page allocator expects NULL */
1863 page->slab_cache = NULL;
1eb5ac64
NP
1864 if (current->reclaim_state)
1865 current->reclaim_state->reclaimed_slab += pages;
74d555be 1866 unaccount_slab_page(page, order, s);
27ee57c9 1867 __free_pages(page, order);
81819f0f
CL
1868}
1869
1870static void rcu_free_slab(struct rcu_head *h)
1871{
bf68c214 1872 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1873
1b4f59e3 1874 __free_slab(page->slab_cache, page);
81819f0f
CL
1875}
1876
1877static void free_slab(struct kmem_cache *s, struct page *page)
1878{
5f0d5a3a 1879 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1880 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1881 } else
1882 __free_slab(s, page);
1883}
1884
1885static void discard_slab(struct kmem_cache *s, struct page *page)
1886{
205ab99d 1887 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1888 free_slab(s, page);
1889}
1890
1891/*
5cc6eee8 1892 * Management of partially allocated slabs.
81819f0f 1893 */
1e4dd946
SR
1894static inline void
1895__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1896{
e95eed57 1897 n->nr_partial++;
136333d1 1898 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1899 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1900 else
916ac052 1901 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1902}
1903
1e4dd946
SR
1904static inline void add_partial(struct kmem_cache_node *n,
1905 struct page *page, int tail)
62e346a8 1906{
c65c1877 1907 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1908 __add_partial(n, page, tail);
1909}
c65c1877 1910
1e4dd946
SR
1911static inline void remove_partial(struct kmem_cache_node *n,
1912 struct page *page)
1913{
1914 lockdep_assert_held(&n->list_lock);
916ac052 1915 list_del(&page->slab_list);
52b4b950 1916 n->nr_partial--;
1e4dd946
SR
1917}
1918
81819f0f 1919/*
7ced3719
CL
1920 * Remove slab from the partial list, freeze it and
1921 * return the pointer to the freelist.
81819f0f 1922 *
497b66f2 1923 * Returns a list of objects or NULL if it fails.
81819f0f 1924 */
497b66f2 1925static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1926 struct kmem_cache_node *n, struct page *page,
633b0764 1927 int mode, int *objects)
81819f0f 1928{
2cfb7455
CL
1929 void *freelist;
1930 unsigned long counters;
1931 struct page new;
1932
c65c1877
PZ
1933 lockdep_assert_held(&n->list_lock);
1934
2cfb7455
CL
1935 /*
1936 * Zap the freelist and set the frozen bit.
1937 * The old freelist is the list of objects for the
1938 * per cpu allocation list.
1939 */
7ced3719
CL
1940 freelist = page->freelist;
1941 counters = page->counters;
1942 new.counters = counters;
633b0764 1943 *objects = new.objects - new.inuse;
23910c50 1944 if (mode) {
7ced3719 1945 new.inuse = page->objects;
23910c50
PE
1946 new.freelist = NULL;
1947 } else {
1948 new.freelist = freelist;
1949 }
2cfb7455 1950
a0132ac0 1951 VM_BUG_ON(new.frozen);
7ced3719 1952 new.frozen = 1;
2cfb7455 1953
7ced3719 1954 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1955 freelist, counters,
02d7633f 1956 new.freelist, new.counters,
7ced3719 1957 "acquire_slab"))
7ced3719 1958 return NULL;
2cfb7455
CL
1959
1960 remove_partial(n, page);
7ced3719 1961 WARN_ON(!freelist);
49e22585 1962 return freelist;
81819f0f
CL
1963}
1964
633b0764 1965static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1966static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1967
81819f0f 1968/*
672bba3a 1969 * Try to allocate a partial slab from a specific node.
81819f0f 1970 */
8ba00bb6
JK
1971static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1972 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1973{
49e22585
CL
1974 struct page *page, *page2;
1975 void *object = NULL;
e5d9998f 1976 unsigned int available = 0;
633b0764 1977 int objects;
81819f0f
CL
1978
1979 /*
1980 * Racy check. If we mistakenly see no partial slabs then we
1981 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1982 * partial slab and there is none available then get_partial()
672bba3a 1983 * will return NULL.
81819f0f
CL
1984 */
1985 if (!n || !n->nr_partial)
1986 return NULL;
1987
1988 spin_lock(&n->list_lock);
916ac052 1989 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1990 void *t;
49e22585 1991
8ba00bb6
JK
1992 if (!pfmemalloc_match(page, flags))
1993 continue;
1994
633b0764 1995 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1996 if (!t)
9b1ea29b 1997 break;
49e22585 1998
633b0764 1999 available += objects;
12d79634 2000 if (!object) {
49e22585 2001 c->page = page;
49e22585 2002 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2003 object = t;
49e22585 2004 } else {
633b0764 2005 put_cpu_partial(s, page, 0);
8028dcea 2006 stat(s, CPU_PARTIAL_NODE);
49e22585 2007 }
345c905d 2008 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2009 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2010 break;
2011
497b66f2 2012 }
81819f0f 2013 spin_unlock(&n->list_lock);
497b66f2 2014 return object;
81819f0f
CL
2015}
2016
2017/*
672bba3a 2018 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2019 */
de3ec035 2020static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2021 struct kmem_cache_cpu *c)
81819f0f
CL
2022{
2023#ifdef CONFIG_NUMA
2024 struct zonelist *zonelist;
dd1a239f 2025 struct zoneref *z;
54a6eb5c 2026 struct zone *zone;
97a225e6 2027 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2028 void *object;
cc9a6c87 2029 unsigned int cpuset_mems_cookie;
81819f0f
CL
2030
2031 /*
672bba3a
CL
2032 * The defrag ratio allows a configuration of the tradeoffs between
2033 * inter node defragmentation and node local allocations. A lower
2034 * defrag_ratio increases the tendency to do local allocations
2035 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2036 *
672bba3a
CL
2037 * If the defrag_ratio is set to 0 then kmalloc() always
2038 * returns node local objects. If the ratio is higher then kmalloc()
2039 * may return off node objects because partial slabs are obtained
2040 * from other nodes and filled up.
81819f0f 2041 *
43efd3ea
LP
2042 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2043 * (which makes defrag_ratio = 1000) then every (well almost)
2044 * allocation will first attempt to defrag slab caches on other nodes.
2045 * This means scanning over all nodes to look for partial slabs which
2046 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2047 * with available objects.
81819f0f 2048 */
9824601e
CL
2049 if (!s->remote_node_defrag_ratio ||
2050 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2051 return NULL;
2052
cc9a6c87 2053 do {
d26914d1 2054 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2055 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2056 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2057 struct kmem_cache_node *n;
2058
2059 n = get_node(s, zone_to_nid(zone));
2060
dee2f8aa 2061 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2062 n->nr_partial > s->min_partial) {
8ba00bb6 2063 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2064 if (object) {
2065 /*
d26914d1
MG
2066 * Don't check read_mems_allowed_retry()
2067 * here - if mems_allowed was updated in
2068 * parallel, that was a harmless race
2069 * between allocation and the cpuset
2070 * update
cc9a6c87 2071 */
cc9a6c87
MG
2072 return object;
2073 }
c0ff7453 2074 }
81819f0f 2075 }
d26914d1 2076 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2077#endif /* CONFIG_NUMA */
81819f0f
CL
2078 return NULL;
2079}
2080
2081/*
2082 * Get a partial page, lock it and return it.
2083 */
497b66f2 2084static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2085 struct kmem_cache_cpu *c)
81819f0f 2086{
497b66f2 2087 void *object;
a561ce00
JK
2088 int searchnode = node;
2089
2090 if (node == NUMA_NO_NODE)
2091 searchnode = numa_mem_id();
81819f0f 2092
8ba00bb6 2093 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2094 if (object || node != NUMA_NO_NODE)
2095 return object;
81819f0f 2096
acd19fd1 2097 return get_any_partial(s, flags, c);
81819f0f
CL
2098}
2099
923717cb 2100#ifdef CONFIG_PREEMPTION
8a5ec0ba 2101/*
0d645ed1 2102 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2103 * during cmpxchg. The transactions start with the cpu number and are then
2104 * incremented by CONFIG_NR_CPUS.
2105 */
2106#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2107#else
2108/*
2109 * No preemption supported therefore also no need to check for
2110 * different cpus.
2111 */
2112#define TID_STEP 1
2113#endif
2114
2115static inline unsigned long next_tid(unsigned long tid)
2116{
2117 return tid + TID_STEP;
2118}
2119
9d5f0be0 2120#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2121static inline unsigned int tid_to_cpu(unsigned long tid)
2122{
2123 return tid % TID_STEP;
2124}
2125
2126static inline unsigned long tid_to_event(unsigned long tid)
2127{
2128 return tid / TID_STEP;
2129}
9d5f0be0 2130#endif
8a5ec0ba
CL
2131
2132static inline unsigned int init_tid(int cpu)
2133{
2134 return cpu;
2135}
2136
2137static inline void note_cmpxchg_failure(const char *n,
2138 const struct kmem_cache *s, unsigned long tid)
2139{
2140#ifdef SLUB_DEBUG_CMPXCHG
2141 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2142
f9f58285 2143 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2144
923717cb 2145#ifdef CONFIG_PREEMPTION
8a5ec0ba 2146 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2147 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2148 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2149 else
2150#endif
2151 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2152 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2153 tid_to_event(tid), tid_to_event(actual_tid));
2154 else
f9f58285 2155 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2156 actual_tid, tid, next_tid(tid));
2157#endif
4fdccdfb 2158 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2159}
2160
788e1aad 2161static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2162{
8a5ec0ba
CL
2163 int cpu;
2164
2165 for_each_possible_cpu(cpu)
2166 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2167}
2cfb7455 2168
81819f0f
CL
2169/*
2170 * Remove the cpu slab
2171 */
d0e0ac97 2172static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2173 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2174{
2cfb7455 2175 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2176 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2177 int lock = 0, free_delta = 0;
2cfb7455 2178 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2179 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2180 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2181 struct page new;
2182 struct page old;
2183
2184 if (page->freelist) {
84e554e6 2185 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2186 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2187 }
2188
894b8788 2189 /*
d930ff03
VB
2190 * Stage one: Count the objects on cpu's freelist as free_delta and
2191 * remember the last object in freelist_tail for later splicing.
2cfb7455 2192 */
d930ff03
VB
2193 freelist_tail = NULL;
2194 freelist_iter = freelist;
2195 while (freelist_iter) {
2196 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2197
52f23478
DZ
2198 /*
2199 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2200 * 'freelist_iter' is already corrupted. So isolate all objects
2201 * starting at 'freelist_iter' by skipping them.
52f23478 2202 */
d930ff03 2203 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2204 break;
2205
d930ff03
VB
2206 freelist_tail = freelist_iter;
2207 free_delta++;
2cfb7455 2208
d930ff03 2209 freelist_iter = nextfree;
2cfb7455
CL
2210 }
2211
894b8788 2212 /*
d930ff03
VB
2213 * Stage two: Unfreeze the page while splicing the per-cpu
2214 * freelist to the head of page's freelist.
2215 *
2216 * Ensure that the page is unfrozen while the list presence
2217 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2218 *
2219 * We setup the list membership and then perform a cmpxchg
2220 * with the count. If there is a mismatch then the page
2221 * is not unfrozen but the page is on the wrong list.
2222 *
2223 * Then we restart the process which may have to remove
2224 * the page from the list that we just put it on again
2225 * because the number of objects in the slab may have
2226 * changed.
894b8788 2227 */
2cfb7455 2228redo:
894b8788 2229
d930ff03
VB
2230 old.freelist = READ_ONCE(page->freelist);
2231 old.counters = READ_ONCE(page->counters);
a0132ac0 2232 VM_BUG_ON(!old.frozen);
7c2e132c 2233
2cfb7455
CL
2234 /* Determine target state of the slab */
2235 new.counters = old.counters;
d930ff03
VB
2236 if (freelist_tail) {
2237 new.inuse -= free_delta;
2238 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2239 new.freelist = freelist;
2240 } else
2241 new.freelist = old.freelist;
2242
2243 new.frozen = 0;
2244
8a5b20ae 2245 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2246 m = M_FREE;
2247 else if (new.freelist) {
2248 m = M_PARTIAL;
2249 if (!lock) {
2250 lock = 1;
2251 /*
8bb4e7a2 2252 * Taking the spinlock removes the possibility
2cfb7455
CL
2253 * that acquire_slab() will see a slab page that
2254 * is frozen
2255 */
2256 spin_lock(&n->list_lock);
2257 }
2258 } else {
2259 m = M_FULL;
965c4848 2260 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2261 lock = 1;
2262 /*
2263 * This also ensures that the scanning of full
2264 * slabs from diagnostic functions will not see
2265 * any frozen slabs.
2266 */
2267 spin_lock(&n->list_lock);
2268 }
2269 }
2270
2271 if (l != m) {
2cfb7455 2272 if (l == M_PARTIAL)
2cfb7455 2273 remove_partial(n, page);
2cfb7455 2274 else if (l == M_FULL)
c65c1877 2275 remove_full(s, n, page);
2cfb7455 2276
88349a28 2277 if (m == M_PARTIAL)
2cfb7455 2278 add_partial(n, page, tail);
88349a28 2279 else if (m == M_FULL)
2cfb7455 2280 add_full(s, n, page);
2cfb7455
CL
2281 }
2282
2283 l = m;
1d07171c 2284 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2285 old.freelist, old.counters,
2286 new.freelist, new.counters,
2287 "unfreezing slab"))
2288 goto redo;
2289
2cfb7455
CL
2290 if (lock)
2291 spin_unlock(&n->list_lock);
2292
88349a28
WY
2293 if (m == M_PARTIAL)
2294 stat(s, tail);
2295 else if (m == M_FULL)
2296 stat(s, DEACTIVATE_FULL);
2297 else if (m == M_FREE) {
2cfb7455
CL
2298 stat(s, DEACTIVATE_EMPTY);
2299 discard_slab(s, page);
2300 stat(s, FREE_SLAB);
894b8788 2301 }
d4ff6d35
WY
2302
2303 c->page = NULL;
2304 c->freelist = NULL;
81819f0f
CL
2305}
2306
d24ac77f
JK
2307/*
2308 * Unfreeze all the cpu partial slabs.
2309 *
59a09917
CL
2310 * This function must be called with interrupts disabled
2311 * for the cpu using c (or some other guarantee must be there
2312 * to guarantee no concurrent accesses).
d24ac77f 2313 */
59a09917
CL
2314static void unfreeze_partials(struct kmem_cache *s,
2315 struct kmem_cache_cpu *c)
49e22585 2316{
345c905d 2317#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2318 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2319 struct page *page, *discard_page = NULL;
49e22585 2320
4c7ba22e 2321 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2322 struct page new;
2323 struct page old;
2324
4c7ba22e 2325 slub_set_percpu_partial(c, page);
43d77867
JK
2326
2327 n2 = get_node(s, page_to_nid(page));
2328 if (n != n2) {
2329 if (n)
2330 spin_unlock(&n->list_lock);
2331
2332 n = n2;
2333 spin_lock(&n->list_lock);
2334 }
49e22585
CL
2335
2336 do {
2337
2338 old.freelist = page->freelist;
2339 old.counters = page->counters;
a0132ac0 2340 VM_BUG_ON(!old.frozen);
49e22585
CL
2341
2342 new.counters = old.counters;
2343 new.freelist = old.freelist;
2344
2345 new.frozen = 0;
2346
d24ac77f 2347 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2348 old.freelist, old.counters,
2349 new.freelist, new.counters,
2350 "unfreezing slab"));
2351
8a5b20ae 2352 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2353 page->next = discard_page;
2354 discard_page = page;
43d77867
JK
2355 } else {
2356 add_partial(n, page, DEACTIVATE_TO_TAIL);
2357 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2358 }
2359 }
2360
2361 if (n)
2362 spin_unlock(&n->list_lock);
9ada1934
SL
2363
2364 while (discard_page) {
2365 page = discard_page;
2366 discard_page = discard_page->next;
2367
2368 stat(s, DEACTIVATE_EMPTY);
2369 discard_slab(s, page);
2370 stat(s, FREE_SLAB);
2371 }
6dfd1b65 2372#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2373}
2374
2375/*
9234bae9
WY
2376 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2377 * partial page slot if available.
49e22585
CL
2378 *
2379 * If we did not find a slot then simply move all the partials to the
2380 * per node partial list.
2381 */
633b0764 2382static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2383{
345c905d 2384#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2385 struct page *oldpage;
2386 int pages;
2387 int pobjects;
2388
d6e0b7fa 2389 preempt_disable();
49e22585
CL
2390 do {
2391 pages = 0;
2392 pobjects = 0;
2393 oldpage = this_cpu_read(s->cpu_slab->partial);
2394
2395 if (oldpage) {
2396 pobjects = oldpage->pobjects;
2397 pages = oldpage->pages;
bbd4e305 2398 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2399 unsigned long flags;
2400 /*
2401 * partial array is full. Move the existing
2402 * set to the per node partial list.
2403 */
2404 local_irq_save(flags);
59a09917 2405 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2406 local_irq_restore(flags);
e24fc410 2407 oldpage = NULL;
49e22585
CL
2408 pobjects = 0;
2409 pages = 0;
8028dcea 2410 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2411 }
2412 }
2413
2414 pages++;
2415 pobjects += page->objects - page->inuse;
2416
2417 page->pages = pages;
2418 page->pobjects = pobjects;
2419 page->next = oldpage;
2420
d0e0ac97
CG
2421 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2422 != oldpage);
bbd4e305 2423 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2424 unsigned long flags;
2425
2426 local_irq_save(flags);
2427 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2428 local_irq_restore(flags);
2429 }
2430 preempt_enable();
6dfd1b65 2431#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2432}
2433
dfb4f096 2434static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2435{
84e554e6 2436 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2437 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2438
2439 c->tid = next_tid(c->tid);
81819f0f
CL
2440}
2441
2442/*
2443 * Flush cpu slab.
6446faa2 2444 *
81819f0f
CL
2445 * Called from IPI handler with interrupts disabled.
2446 */
0c710013 2447static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2448{
9dfc6e68 2449 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2450
1265ef2d
WY
2451 if (c->page)
2452 flush_slab(s, c);
49e22585 2453
1265ef2d 2454 unfreeze_partials(s, c);
81819f0f
CL
2455}
2456
2457static void flush_cpu_slab(void *d)
2458{
2459 struct kmem_cache *s = d;
81819f0f 2460
dfb4f096 2461 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2462}
2463
a8364d55
GBY
2464static bool has_cpu_slab(int cpu, void *info)
2465{
2466 struct kmem_cache *s = info;
2467 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2468
a93cf07b 2469 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2470}
2471
81819f0f
CL
2472static void flush_all(struct kmem_cache *s)
2473{
cb923159 2474 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2475}
2476
a96a87bf
SAS
2477/*
2478 * Use the cpu notifier to insure that the cpu slabs are flushed when
2479 * necessary.
2480 */
2481static int slub_cpu_dead(unsigned int cpu)
2482{
2483 struct kmem_cache *s;
2484 unsigned long flags;
2485
2486 mutex_lock(&slab_mutex);
2487 list_for_each_entry(s, &slab_caches, list) {
2488 local_irq_save(flags);
2489 __flush_cpu_slab(s, cpu);
2490 local_irq_restore(flags);
2491 }
2492 mutex_unlock(&slab_mutex);
2493 return 0;
2494}
2495
dfb4f096
CL
2496/*
2497 * Check if the objects in a per cpu structure fit numa
2498 * locality expectations.
2499 */
57d437d2 2500static inline int node_match(struct page *page, int node)
dfb4f096
CL
2501{
2502#ifdef CONFIG_NUMA
6159d0f5 2503 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2504 return 0;
2505#endif
2506 return 1;
2507}
2508
9a02d699 2509#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2510static int count_free(struct page *page)
2511{
2512 return page->objects - page->inuse;
2513}
2514
9a02d699
DR
2515static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2516{
2517 return atomic_long_read(&n->total_objects);
2518}
2519#endif /* CONFIG_SLUB_DEBUG */
2520
2521#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2522static unsigned long count_partial(struct kmem_cache_node *n,
2523 int (*get_count)(struct page *))
2524{
2525 unsigned long flags;
2526 unsigned long x = 0;
2527 struct page *page;
2528
2529 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2530 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2531 x += get_count(page);
2532 spin_unlock_irqrestore(&n->list_lock, flags);
2533 return x;
2534}
9a02d699 2535#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2536
781b2ba6
PE
2537static noinline void
2538slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2539{
9a02d699
DR
2540#ifdef CONFIG_SLUB_DEBUG
2541 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2542 DEFAULT_RATELIMIT_BURST);
781b2ba6 2543 int node;
fa45dc25 2544 struct kmem_cache_node *n;
781b2ba6 2545
9a02d699
DR
2546 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2547 return;
2548
5b3810e5
VB
2549 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2550 nid, gfpflags, &gfpflags);
19af27af 2551 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2552 s->name, s->object_size, s->size, oo_order(s->oo),
2553 oo_order(s->min));
781b2ba6 2554
3b0efdfa 2555 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2556 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2557 s->name);
fa5ec8a1 2558
fa45dc25 2559 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2560 unsigned long nr_slabs;
2561 unsigned long nr_objs;
2562 unsigned long nr_free;
2563
26c02cf0
AB
2564 nr_free = count_partial(n, count_free);
2565 nr_slabs = node_nr_slabs(n);
2566 nr_objs = node_nr_objs(n);
781b2ba6 2567
f9f58285 2568 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2569 node, nr_slabs, nr_objs, nr_free);
2570 }
9a02d699 2571#endif
781b2ba6
PE
2572}
2573
497b66f2
CL
2574static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2575 int node, struct kmem_cache_cpu **pc)
2576{
6faa6833 2577 void *freelist;
188fd063
CL
2578 struct kmem_cache_cpu *c = *pc;
2579 struct page *page;
497b66f2 2580
128227e7
MW
2581 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2582
188fd063 2583 freelist = get_partial(s, flags, node, c);
497b66f2 2584
188fd063
CL
2585 if (freelist)
2586 return freelist;
2587
2588 page = new_slab(s, flags, node);
497b66f2 2589 if (page) {
7c8e0181 2590 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2591 if (c->page)
2592 flush_slab(s, c);
2593
2594 /*
2595 * No other reference to the page yet so we can
2596 * muck around with it freely without cmpxchg
2597 */
6faa6833 2598 freelist = page->freelist;
497b66f2
CL
2599 page->freelist = NULL;
2600
2601 stat(s, ALLOC_SLAB);
497b66f2
CL
2602 c->page = page;
2603 *pc = c;
edde82b6 2604 }
497b66f2 2605
6faa6833 2606 return freelist;
497b66f2
CL
2607}
2608
072bb0aa
MG
2609static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2610{
2611 if (unlikely(PageSlabPfmemalloc(page)))
2612 return gfp_pfmemalloc_allowed(gfpflags);
2613
2614 return true;
2615}
2616
213eeb9f 2617/*
d0e0ac97
CG
2618 * Check the page->freelist of a page and either transfer the freelist to the
2619 * per cpu freelist or deactivate the page.
213eeb9f
CL
2620 *
2621 * The page is still frozen if the return value is not NULL.
2622 *
2623 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2624 *
2625 * This function must be called with interrupt disabled.
213eeb9f
CL
2626 */
2627static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2628{
2629 struct page new;
2630 unsigned long counters;
2631 void *freelist;
2632
2633 do {
2634 freelist = page->freelist;
2635 counters = page->counters;
6faa6833 2636
213eeb9f 2637 new.counters = counters;
a0132ac0 2638 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2639
2640 new.inuse = page->objects;
2641 new.frozen = freelist != NULL;
2642
d24ac77f 2643 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2644 freelist, counters,
2645 NULL, new.counters,
2646 "get_freelist"));
2647
2648 return freelist;
2649}
2650
81819f0f 2651/*
894b8788
CL
2652 * Slow path. The lockless freelist is empty or we need to perform
2653 * debugging duties.
2654 *
894b8788
CL
2655 * Processing is still very fast if new objects have been freed to the
2656 * regular freelist. In that case we simply take over the regular freelist
2657 * as the lockless freelist and zap the regular freelist.
81819f0f 2658 *
894b8788
CL
2659 * If that is not working then we fall back to the partial lists. We take the
2660 * first element of the freelist as the object to allocate now and move the
2661 * rest of the freelist to the lockless freelist.
81819f0f 2662 *
894b8788 2663 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2664 * we need to allocate a new slab. This is the slowest path since it involves
2665 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2666 *
2667 * Version of __slab_alloc to use when we know that interrupts are
2668 * already disabled (which is the case for bulk allocation).
81819f0f 2669 */
a380a3c7 2670static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2671 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2672{
6faa6833 2673 void *freelist;
f6e7def7 2674 struct page *page;
81819f0f 2675
9f986d99
AW
2676 stat(s, ALLOC_SLOWPATH);
2677
f6e7def7 2678 page = c->page;
0715e6c5
VB
2679 if (!page) {
2680 /*
2681 * if the node is not online or has no normal memory, just
2682 * ignore the node constraint
2683 */
2684 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2685 !node_isset(node, slab_nodes)))
0715e6c5 2686 node = NUMA_NO_NODE;
81819f0f 2687 goto new_slab;
0715e6c5 2688 }
49e22585 2689redo:
6faa6833 2690
57d437d2 2691 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2692 /*
2693 * same as above but node_match() being false already
2694 * implies node != NUMA_NO_NODE
2695 */
7e1fa93d 2696 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2697 node = NUMA_NO_NODE;
2698 goto redo;
2699 } else {
a561ce00 2700 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2701 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2702 goto new_slab;
2703 }
fc59c053 2704 }
6446faa2 2705
072bb0aa
MG
2706 /*
2707 * By rights, we should be searching for a slab page that was
2708 * PFMEMALLOC but right now, we are losing the pfmemalloc
2709 * information when the page leaves the per-cpu allocator
2710 */
2711 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2712 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2713 goto new_slab;
2714 }
2715
73736e03 2716 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2717 freelist = c->freelist;
2718 if (freelist)
73736e03 2719 goto load_freelist;
03e404af 2720
f6e7def7 2721 freelist = get_freelist(s, page);
6446faa2 2722
6faa6833 2723 if (!freelist) {
03e404af
CL
2724 c->page = NULL;
2725 stat(s, DEACTIVATE_BYPASS);
fc59c053 2726 goto new_slab;
03e404af 2727 }
6446faa2 2728
84e554e6 2729 stat(s, ALLOC_REFILL);
6446faa2 2730
894b8788 2731load_freelist:
507effea
CL
2732 /*
2733 * freelist is pointing to the list of objects to be used.
2734 * page is pointing to the page from which the objects are obtained.
2735 * That page must be frozen for per cpu allocations to work.
2736 */
a0132ac0 2737 VM_BUG_ON(!c->page->frozen);
6faa6833 2738 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2739 c->tid = next_tid(c->tid);
6faa6833 2740 return freelist;
81819f0f 2741
81819f0f 2742new_slab:
2cfb7455 2743
a93cf07b
WY
2744 if (slub_percpu_partial(c)) {
2745 page = c->page = slub_percpu_partial(c);
2746 slub_set_percpu_partial(c, page);
49e22585 2747 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2748 goto redo;
81819f0f
CL
2749 }
2750
188fd063 2751 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2752
f4697436 2753 if (unlikely(!freelist)) {
9a02d699 2754 slab_out_of_memory(s, gfpflags, node);
f4697436 2755 return NULL;
81819f0f 2756 }
2cfb7455 2757
f6e7def7 2758 page = c->page;
5091b74a 2759 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2760 goto load_freelist;
2cfb7455 2761
497b66f2 2762 /* Only entered in the debug case */
d0e0ac97
CG
2763 if (kmem_cache_debug(s) &&
2764 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2765 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2766
d4ff6d35 2767 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2768 return freelist;
894b8788
CL
2769}
2770
a380a3c7
CL
2771/*
2772 * Another one that disabled interrupt and compensates for possible
2773 * cpu changes by refetching the per cpu area pointer.
2774 */
2775static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2776 unsigned long addr, struct kmem_cache_cpu *c)
2777{
2778 void *p;
2779 unsigned long flags;
2780
2781 local_irq_save(flags);
923717cb 2782#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2783 /*
2784 * We may have been preempted and rescheduled on a different
2785 * cpu before disabling interrupts. Need to reload cpu area
2786 * pointer.
2787 */
2788 c = this_cpu_ptr(s->cpu_slab);
2789#endif
2790
2791 p = ___slab_alloc(s, gfpflags, node, addr, c);
2792 local_irq_restore(flags);
2793 return p;
2794}
2795
0f181f9f
AP
2796/*
2797 * If the object has been wiped upon free, make sure it's fully initialized by
2798 * zeroing out freelist pointer.
2799 */
2800static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2801 void *obj)
2802{
2803 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2804 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2805 0, sizeof(void *));
0f181f9f
AP
2806}
2807
894b8788
CL
2808/*
2809 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2810 * have the fastpath folded into their functions. So no function call
2811 * overhead for requests that can be satisfied on the fastpath.
2812 *
2813 * The fastpath works by first checking if the lockless freelist can be used.
2814 * If not then __slab_alloc is called for slow processing.
2815 *
2816 * Otherwise we can simply pick the next object from the lockless free list.
2817 */
2b847c3c 2818static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2819 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2820{
03ec0ed5 2821 void *object;
dfb4f096 2822 struct kmem_cache_cpu *c;
57d437d2 2823 struct page *page;
8a5ec0ba 2824 unsigned long tid;
964d4bd3 2825 struct obj_cgroup *objcg = NULL;
1f84260c 2826
964d4bd3 2827 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2828 if (!s)
773ff60e 2829 return NULL;
b89fb5ef
AP
2830
2831 object = kfence_alloc(s, orig_size, gfpflags);
2832 if (unlikely(object))
2833 goto out;
2834
8a5ec0ba 2835redo:
8a5ec0ba
CL
2836 /*
2837 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2838 * enabled. We may switch back and forth between cpus while
2839 * reading from one cpu area. That does not matter as long
2840 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2841 *
9aabf810 2842 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2843 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2844 * to check if it is matched or not.
8a5ec0ba 2845 */
9aabf810
JK
2846 do {
2847 tid = this_cpu_read(s->cpu_slab->tid);
2848 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2849 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2850 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2851
2852 /*
2853 * Irqless object alloc/free algorithm used here depends on sequence
2854 * of fetching cpu_slab's data. tid should be fetched before anything
2855 * on c to guarantee that object and page associated with previous tid
2856 * won't be used with current tid. If we fetch tid first, object and
2857 * page could be one associated with next tid and our alloc/free
2858 * request will be failed. In this case, we will retry. So, no problem.
2859 */
2860 barrier();
8a5ec0ba 2861
8a5ec0ba
CL
2862 /*
2863 * The transaction ids are globally unique per cpu and per operation on
2864 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2865 * occurs on the right processor and that there was no operation on the
2866 * linked list in between.
2867 */
8a5ec0ba 2868
9dfc6e68 2869 object = c->freelist;
57d437d2 2870 page = c->page;
22e4663e 2871 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2872 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2873 } else {
0ad9500e
ED
2874 void *next_object = get_freepointer_safe(s, object);
2875
8a5ec0ba 2876 /*
25985edc 2877 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2878 * operation and if we are on the right processor.
2879 *
d0e0ac97
CG
2880 * The cmpxchg does the following atomically (without lock
2881 * semantics!)
8a5ec0ba
CL
2882 * 1. Relocate first pointer to the current per cpu area.
2883 * 2. Verify that tid and freelist have not been changed
2884 * 3. If they were not changed replace tid and freelist
2885 *
d0e0ac97
CG
2886 * Since this is without lock semantics the protection is only
2887 * against code executing on this cpu *not* from access by
2888 * other cpus.
8a5ec0ba 2889 */
933393f5 2890 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2891 s->cpu_slab->freelist, s->cpu_slab->tid,
2892 object, tid,
0ad9500e 2893 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2894
2895 note_cmpxchg_failure("slab_alloc", s, tid);
2896 goto redo;
2897 }
0ad9500e 2898 prefetch_freepointer(s, next_object);
84e554e6 2899 stat(s, ALLOC_FASTPATH);
894b8788 2900 }
0f181f9f 2901
ce5716c6 2902 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2903
6471384a 2904 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
aa1ef4d7 2905 memset(kasan_reset_tag(object), 0, s->object_size);
d07dbea4 2906
b89fb5ef 2907out:
964d4bd3 2908 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2909
894b8788 2910 return object;
81819f0f
CL
2911}
2912
2b847c3c 2913static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2914 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2915{
b89fb5ef 2916 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2917}
2918
81819f0f
CL
2919void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2920{
b89fb5ef 2921 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2922
d0e0ac97
CG
2923 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2924 s->size, gfpflags);
5b882be4
EGM
2925
2926 return ret;
81819f0f
CL
2927}
2928EXPORT_SYMBOL(kmem_cache_alloc);
2929
0f24f128 2930#ifdef CONFIG_TRACING
4a92379b
RK
2931void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2932{
b89fb5ef 2933 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2934 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2935 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2936 return ret;
2937}
2938EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2939#endif
2940
81819f0f
CL
2941#ifdef CONFIG_NUMA
2942void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2943{
b89fb5ef 2944 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2945
ca2b84cb 2946 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2947 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2948
2949 return ret;
81819f0f
CL
2950}
2951EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2952
0f24f128 2953#ifdef CONFIG_TRACING
4a92379b 2954void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2955 gfp_t gfpflags,
4a92379b 2956 int node, size_t size)
5b882be4 2957{
b89fb5ef 2958 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
2959
2960 trace_kmalloc_node(_RET_IP_, ret,
2961 size, s->size, gfpflags, node);
0316bec2 2962
0116523c 2963 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2964 return ret;
5b882be4 2965}
4a92379b 2966EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2967#endif
6dfd1b65 2968#endif /* CONFIG_NUMA */
5b882be4 2969
81819f0f 2970/*
94e4d712 2971 * Slow path handling. This may still be called frequently since objects
894b8788 2972 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2973 *
894b8788
CL
2974 * So we still attempt to reduce cache line usage. Just take the slab
2975 * lock and free the item. If there is no additional partial page
2976 * handling required then we can return immediately.
81819f0f 2977 */
894b8788 2978static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2979 void *head, void *tail, int cnt,
2980 unsigned long addr)
2981
81819f0f
CL
2982{
2983 void *prior;
2cfb7455 2984 int was_frozen;
2cfb7455
CL
2985 struct page new;
2986 unsigned long counters;
2987 struct kmem_cache_node *n = NULL;
3f649ab7 2988 unsigned long flags;
81819f0f 2989
8a5ec0ba 2990 stat(s, FREE_SLOWPATH);
81819f0f 2991
b89fb5ef
AP
2992 if (kfence_free(head))
2993 return;
2994
19c7ff9e 2995 if (kmem_cache_debug(s) &&
282acb43 2996 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2997 return;
6446faa2 2998
2cfb7455 2999 do {
837d678d
JK
3000 if (unlikely(n)) {
3001 spin_unlock_irqrestore(&n->list_lock, flags);
3002 n = NULL;
3003 }
2cfb7455
CL
3004 prior = page->freelist;
3005 counters = page->counters;
81084651 3006 set_freepointer(s, tail, prior);
2cfb7455
CL
3007 new.counters = counters;
3008 was_frozen = new.frozen;
81084651 3009 new.inuse -= cnt;
837d678d 3010 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3011
c65c1877 3012 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3013
3014 /*
d0e0ac97
CG
3015 * Slab was on no list before and will be
3016 * partially empty
3017 * We can defer the list move and instead
3018 * freeze it.
49e22585
CL
3019 */
3020 new.frozen = 1;
3021
c65c1877 3022 } else { /* Needs to be taken off a list */
49e22585 3023
b455def2 3024 n = get_node(s, page_to_nid(page));
49e22585
CL
3025 /*
3026 * Speculatively acquire the list_lock.
3027 * If the cmpxchg does not succeed then we may
3028 * drop the list_lock without any processing.
3029 *
3030 * Otherwise the list_lock will synchronize with
3031 * other processors updating the list of slabs.
3032 */
3033 spin_lock_irqsave(&n->list_lock, flags);
3034
3035 }
2cfb7455 3036 }
81819f0f 3037
2cfb7455
CL
3038 } while (!cmpxchg_double_slab(s, page,
3039 prior, counters,
81084651 3040 head, new.counters,
2cfb7455 3041 "__slab_free"));
81819f0f 3042
2cfb7455 3043 if (likely(!n)) {
49e22585 3044
c270cf30
AW
3045 if (likely(was_frozen)) {
3046 /*
3047 * The list lock was not taken therefore no list
3048 * activity can be necessary.
3049 */
3050 stat(s, FREE_FROZEN);
3051 } else if (new.frozen) {
3052 /*
3053 * If we just froze the page then put it onto the
3054 * per cpu partial list.
3055 */
49e22585 3056 put_cpu_partial(s, page, 1);
8028dcea
AS
3057 stat(s, CPU_PARTIAL_FREE);
3058 }
c270cf30 3059
b455def2
L
3060 return;
3061 }
81819f0f 3062
8a5b20ae 3063 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3064 goto slab_empty;
3065
81819f0f 3066 /*
837d678d
JK
3067 * Objects left in the slab. If it was not on the partial list before
3068 * then add it.
81819f0f 3069 */
345c905d 3070 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3071 remove_full(s, n, page);
837d678d
JK
3072 add_partial(n, page, DEACTIVATE_TO_TAIL);
3073 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3074 }
80f08c19 3075 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3076 return;
3077
3078slab_empty:
a973e9dd 3079 if (prior) {
81819f0f 3080 /*
6fbabb20 3081 * Slab on the partial list.
81819f0f 3082 */
5cc6eee8 3083 remove_partial(n, page);
84e554e6 3084 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3085 } else {
6fbabb20 3086 /* Slab must be on the full list */
c65c1877
PZ
3087 remove_full(s, n, page);
3088 }
2cfb7455 3089
80f08c19 3090 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3091 stat(s, FREE_SLAB);
81819f0f 3092 discard_slab(s, page);
81819f0f
CL
3093}
3094
894b8788
CL
3095/*
3096 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3097 * can perform fastpath freeing without additional function calls.
3098 *
3099 * The fastpath is only possible if we are freeing to the current cpu slab
3100 * of this processor. This typically the case if we have just allocated
3101 * the item before.
3102 *
3103 * If fastpath is not possible then fall back to __slab_free where we deal
3104 * with all sorts of special processing.
81084651
JDB
3105 *
3106 * Bulk free of a freelist with several objects (all pointing to the
3107 * same page) possible by specifying head and tail ptr, plus objects
3108 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3109 */
80a9201a
AP
3110static __always_inline void do_slab_free(struct kmem_cache *s,
3111 struct page *page, void *head, void *tail,
3112 int cnt, unsigned long addr)
894b8788 3113{
81084651 3114 void *tail_obj = tail ? : head;
dfb4f096 3115 struct kmem_cache_cpu *c;
8a5ec0ba 3116 unsigned long tid;
964d4bd3 3117
d1b2cf6c 3118 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3119redo:
3120 /*
3121 * Determine the currently cpus per cpu slab.
3122 * The cpu may change afterward. However that does not matter since
3123 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3124 * during the cmpxchg then the free will succeed.
8a5ec0ba 3125 */
9aabf810
JK
3126 do {
3127 tid = this_cpu_read(s->cpu_slab->tid);
3128 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3129 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3130 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3131
9aabf810
JK
3132 /* Same with comment on barrier() in slab_alloc_node() */
3133 barrier();
c016b0bd 3134
442b06bc 3135 if (likely(page == c->page)) {
5076190d
LT
3136 void **freelist = READ_ONCE(c->freelist);
3137
3138 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3139
933393f5 3140 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3141 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3142 freelist, tid,
81084651 3143 head, next_tid(tid)))) {
8a5ec0ba
CL
3144
3145 note_cmpxchg_failure("slab_free", s, tid);
3146 goto redo;
3147 }
84e554e6 3148 stat(s, FREE_FASTPATH);
894b8788 3149 } else
81084651 3150 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3151
894b8788
CL
3152}
3153
80a9201a
AP
3154static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3155 void *head, void *tail, int cnt,
3156 unsigned long addr)
3157{
80a9201a 3158 /*
c3895391
AK
3159 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3160 * to remove objects, whose reuse must be delayed.
80a9201a 3161 */
c3895391
AK
3162 if (slab_free_freelist_hook(s, &head, &tail))
3163 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3164}
3165
2bd926b4 3166#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3167void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3168{
3169 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3170}
3171#endif
3172
81819f0f
CL
3173void kmem_cache_free(struct kmem_cache *s, void *x)
3174{
b9ce5ef4
GC
3175 s = cache_from_obj(s, x);
3176 if (!s)
79576102 3177 return;
81084651 3178 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3179 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3180}
3181EXPORT_SYMBOL(kmem_cache_free);
3182
d0ecd894 3183struct detached_freelist {
fbd02630 3184 struct page *page;
d0ecd894
JDB
3185 void *tail;
3186 void *freelist;
3187 int cnt;
376bf125 3188 struct kmem_cache *s;
d0ecd894 3189};
fbd02630 3190
d0ecd894
JDB
3191/*
3192 * This function progressively scans the array with free objects (with
3193 * a limited look ahead) and extract objects belonging to the same
3194 * page. It builds a detached freelist directly within the given
3195 * page/objects. This can happen without any need for
3196 * synchronization, because the objects are owned by running process.
3197 * The freelist is build up as a single linked list in the objects.
3198 * The idea is, that this detached freelist can then be bulk
3199 * transferred to the real freelist(s), but only requiring a single
3200 * synchronization primitive. Look ahead in the array is limited due
3201 * to performance reasons.
3202 */
376bf125
JDB
3203static inline
3204int build_detached_freelist(struct kmem_cache *s, size_t size,
3205 void **p, struct detached_freelist *df)
d0ecd894
JDB
3206{
3207 size_t first_skipped_index = 0;
3208 int lookahead = 3;
3209 void *object;
ca257195 3210 struct page *page;
fbd02630 3211
d0ecd894
JDB
3212 /* Always re-init detached_freelist */
3213 df->page = NULL;
fbd02630 3214
d0ecd894
JDB
3215 do {
3216 object = p[--size];
ca257195 3217 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3218 } while (!object && size);
3eed034d 3219
d0ecd894
JDB
3220 if (!object)
3221 return 0;
fbd02630 3222
ca257195
JDB
3223 page = virt_to_head_page(object);
3224 if (!s) {
3225 /* Handle kalloc'ed objects */
3226 if (unlikely(!PageSlab(page))) {
3227 BUG_ON(!PageCompound(page));
3228 kfree_hook(object);
4949148a 3229 __free_pages(page, compound_order(page));
ca257195
JDB
3230 p[size] = NULL; /* mark object processed */
3231 return size;
3232 }
3233 /* Derive kmem_cache from object */
3234 df->s = page->slab_cache;
3235 } else {
3236 df->s = cache_from_obj(s, object); /* Support for memcg */
3237 }
376bf125 3238
b89fb5ef
AP
3239 if (is_kfence_address(object)) {
3240 slab_free_hook(df->s, object);
3241 __kfence_free(object);
3242 p[size] = NULL; /* mark object processed */
3243 return size;
3244 }
3245
d0ecd894 3246 /* Start new detached freelist */
ca257195 3247 df->page = page;
376bf125 3248 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3249 df->tail = object;
3250 df->freelist = object;
3251 p[size] = NULL; /* mark object processed */
3252 df->cnt = 1;
3253
3254 while (size) {
3255 object = p[--size];
3256 if (!object)
3257 continue; /* Skip processed objects */
3258
3259 /* df->page is always set at this point */
3260 if (df->page == virt_to_head_page(object)) {
3261 /* Opportunity build freelist */
376bf125 3262 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3263 df->freelist = object;
3264 df->cnt++;
3265 p[size] = NULL; /* mark object processed */
3266
3267 continue;
fbd02630 3268 }
d0ecd894
JDB
3269
3270 /* Limit look ahead search */
3271 if (!--lookahead)
3272 break;
3273
3274 if (!first_skipped_index)
3275 first_skipped_index = size + 1;
fbd02630 3276 }
d0ecd894
JDB
3277
3278 return first_skipped_index;
3279}
3280
d0ecd894 3281/* Note that interrupts must be enabled when calling this function. */
376bf125 3282void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3283{
3284 if (WARN_ON(!size))
3285 return;
3286
d1b2cf6c 3287 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3288 do {
3289 struct detached_freelist df;
3290
3291 size = build_detached_freelist(s, size, p, &df);
84582c8a 3292 if (!df.page)
d0ecd894
JDB
3293 continue;
3294
457c82c3 3295 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3296 } while (likely(size));
484748f0
CL
3297}
3298EXPORT_SYMBOL(kmem_cache_free_bulk);
3299
994eb764 3300/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3301int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3302 void **p)
484748f0 3303{
994eb764
JDB
3304 struct kmem_cache_cpu *c;
3305 int i;
964d4bd3 3306 struct obj_cgroup *objcg = NULL;
994eb764 3307
03ec0ed5 3308 /* memcg and kmem_cache debug support */
964d4bd3 3309 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3310 if (unlikely(!s))
3311 return false;
994eb764
JDB
3312 /*
3313 * Drain objects in the per cpu slab, while disabling local
3314 * IRQs, which protects against PREEMPT and interrupts
3315 * handlers invoking normal fastpath.
3316 */
3317 local_irq_disable();
3318 c = this_cpu_ptr(s->cpu_slab);
3319
3320 for (i = 0; i < size; i++) {
b89fb5ef 3321 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3322
b89fb5ef
AP
3323 if (unlikely(object)) {
3324 p[i] = object;
3325 continue;
3326 }
3327
3328 object = c->freelist;
ebe909e0 3329 if (unlikely(!object)) {
fd4d9c7d
JH
3330 /*
3331 * We may have removed an object from c->freelist using
3332 * the fastpath in the previous iteration; in that case,
3333 * c->tid has not been bumped yet.
3334 * Since ___slab_alloc() may reenable interrupts while
3335 * allocating memory, we should bump c->tid now.
3336 */
3337 c->tid = next_tid(c->tid);
3338
ebe909e0
JDB
3339 /*
3340 * Invoking slow path likely have side-effect
3341 * of re-populating per CPU c->freelist
3342 */
87098373 3343 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3344 _RET_IP_, c);
87098373
CL
3345 if (unlikely(!p[i]))
3346 goto error;
3347
ebe909e0 3348 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3349 maybe_wipe_obj_freeptr(s, p[i]);
3350
ebe909e0
JDB
3351 continue; /* goto for-loop */
3352 }
994eb764
JDB
3353 c->freelist = get_freepointer(s, object);
3354 p[i] = object;
0f181f9f 3355 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3356 }
3357 c->tid = next_tid(c->tid);
3358 local_irq_enable();
3359
3360 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3361 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3362 int j;
3363
3364 for (j = 0; j < i; j++)
ce5716c6 3365 memset(kasan_reset_tag(p[j]), 0, s->object_size);
994eb764
JDB
3366 }
3367
03ec0ed5 3368 /* memcg and kmem_cache debug support */
964d4bd3 3369 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3370 return i;
87098373 3371error:
87098373 3372 local_irq_enable();
964d4bd3 3373 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3374 __kmem_cache_free_bulk(s, i, p);
865762a8 3375 return 0;
484748f0
CL
3376}
3377EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3378
3379
81819f0f 3380/*
672bba3a
CL
3381 * Object placement in a slab is made very easy because we always start at
3382 * offset 0. If we tune the size of the object to the alignment then we can
3383 * get the required alignment by putting one properly sized object after
3384 * another.
81819f0f
CL
3385 *
3386 * Notice that the allocation order determines the sizes of the per cpu
3387 * caches. Each processor has always one slab available for allocations.
3388 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3389 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3390 * locking overhead.
81819f0f
CL
3391 */
3392
3393/*
3394 * Mininum / Maximum order of slab pages. This influences locking overhead
3395 * and slab fragmentation. A higher order reduces the number of partial slabs
3396 * and increases the number of allocations possible without having to
3397 * take the list_lock.
3398 */
19af27af
AD
3399static unsigned int slub_min_order;
3400static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3401static unsigned int slub_min_objects;
81819f0f 3402
81819f0f
CL
3403/*
3404 * Calculate the order of allocation given an slab object size.
3405 *
672bba3a
CL
3406 * The order of allocation has significant impact on performance and other
3407 * system components. Generally order 0 allocations should be preferred since
3408 * order 0 does not cause fragmentation in the page allocator. Larger objects
3409 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3410 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3411 * would be wasted.
3412 *
3413 * In order to reach satisfactory performance we must ensure that a minimum
3414 * number of objects is in one slab. Otherwise we may generate too much
3415 * activity on the partial lists which requires taking the list_lock. This is
3416 * less a concern for large slabs though which are rarely used.
81819f0f 3417 *
672bba3a
CL
3418 * slub_max_order specifies the order where we begin to stop considering the
3419 * number of objects in a slab as critical. If we reach slub_max_order then
3420 * we try to keep the page order as low as possible. So we accept more waste
3421 * of space in favor of a small page order.
81819f0f 3422 *
672bba3a
CL
3423 * Higher order allocations also allow the placement of more objects in a
3424 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3425 * requested a higher minimum order then we start with that one instead of
672bba3a 3426 * the smallest order which will fit the object.
81819f0f 3427 */
19af27af
AD
3428static inline unsigned int slab_order(unsigned int size,
3429 unsigned int min_objects, unsigned int max_order,
9736d2a9 3430 unsigned int fract_leftover)
81819f0f 3431{
19af27af
AD
3432 unsigned int min_order = slub_min_order;
3433 unsigned int order;
81819f0f 3434
9736d2a9 3435 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3436 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3437
9736d2a9 3438 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3439 order <= max_order; order++) {
81819f0f 3440
19af27af
AD
3441 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3442 unsigned int rem;
81819f0f 3443
9736d2a9 3444 rem = slab_size % size;
81819f0f 3445
5e6d444e 3446 if (rem <= slab_size / fract_leftover)
81819f0f 3447 break;
81819f0f 3448 }
672bba3a 3449
81819f0f
CL
3450 return order;
3451}
3452
9736d2a9 3453static inline int calculate_order(unsigned int size)
5e6d444e 3454{
19af27af
AD
3455 unsigned int order;
3456 unsigned int min_objects;
3457 unsigned int max_objects;
3286222f 3458 unsigned int nr_cpus;
5e6d444e
CL
3459
3460 /*
3461 * Attempt to find best configuration for a slab. This
3462 * works by first attempting to generate a layout with
3463 * the best configuration and backing off gradually.
3464 *
422ff4d7 3465 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3466 * we reduce the minimum objects required in a slab.
3467 */
3468 min_objects = slub_min_objects;
3286222f
VB
3469 if (!min_objects) {
3470 /*
3471 * Some architectures will only update present cpus when
3472 * onlining them, so don't trust the number if it's just 1. But
3473 * we also don't want to use nr_cpu_ids always, as on some other
3474 * architectures, there can be many possible cpus, but never
3475 * onlined. Here we compromise between trying to avoid too high
3476 * order on systems that appear larger than they are, and too
3477 * low order on systems that appear smaller than they are.
3478 */
3479 nr_cpus = num_present_cpus();
3480 if (nr_cpus <= 1)
3481 nr_cpus = nr_cpu_ids;
3482 min_objects = 4 * (fls(nr_cpus) + 1);
3483 }
9736d2a9 3484 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3485 min_objects = min(min_objects, max_objects);
3486
5e6d444e 3487 while (min_objects > 1) {
19af27af
AD
3488 unsigned int fraction;
3489
c124f5b5 3490 fraction = 16;
5e6d444e
CL
3491 while (fraction >= 4) {
3492 order = slab_order(size, min_objects,
9736d2a9 3493 slub_max_order, fraction);
5e6d444e
CL
3494 if (order <= slub_max_order)
3495 return order;
3496 fraction /= 2;
3497 }
5086c389 3498 min_objects--;
5e6d444e
CL
3499 }
3500
3501 /*
3502 * We were unable to place multiple objects in a slab. Now
3503 * lets see if we can place a single object there.
3504 */
9736d2a9 3505 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3506 if (order <= slub_max_order)
3507 return order;
3508
3509 /*
3510 * Doh this slab cannot be placed using slub_max_order.
3511 */
9736d2a9 3512 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3513 if (order < MAX_ORDER)
5e6d444e
CL
3514 return order;
3515 return -ENOSYS;
3516}
3517
5595cffc 3518static void
4053497d 3519init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3520{
3521 n->nr_partial = 0;
81819f0f
CL
3522 spin_lock_init(&n->list_lock);
3523 INIT_LIST_HEAD(&n->partial);
8ab1372f 3524#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3525 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3526 atomic_long_set(&n->total_objects, 0);
643b1138 3527 INIT_LIST_HEAD(&n->full);
8ab1372f 3528#endif
81819f0f
CL
3529}
3530
55136592 3531static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3532{
6c182dc0 3533 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3534 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3535
8a5ec0ba 3536 /*
d4d84fef
CM
3537 * Must align to double word boundary for the double cmpxchg
3538 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3539 */
d4d84fef
CM
3540 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3541 2 * sizeof(void *));
8a5ec0ba
CL
3542
3543 if (!s->cpu_slab)
3544 return 0;
3545
3546 init_kmem_cache_cpus(s);
4c93c355 3547
8a5ec0ba 3548 return 1;
4c93c355 3549}
4c93c355 3550
51df1142
CL
3551static struct kmem_cache *kmem_cache_node;
3552
81819f0f
CL
3553/*
3554 * No kmalloc_node yet so do it by hand. We know that this is the first
3555 * slab on the node for this slabcache. There are no concurrent accesses
3556 * possible.
3557 *
721ae22a
ZYW
3558 * Note that this function only works on the kmem_cache_node
3559 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3560 * memory on a fresh node that has no slab structures yet.
81819f0f 3561 */
55136592 3562static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3563{
3564 struct page *page;
3565 struct kmem_cache_node *n;
3566
51df1142 3567 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3568
51df1142 3569 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3570
3571 BUG_ON(!page);
a2f92ee7 3572 if (page_to_nid(page) != node) {
f9f58285
FF
3573 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3574 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3575 }
3576
81819f0f
CL
3577 n = page->freelist;
3578 BUG_ON(!n);
8ab1372f 3579#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3580 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3581 init_tracking(kmem_cache_node, n);
8ab1372f 3582#endif
e2db1a9a 3583 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL);
12b22386
AK
3584 page->freelist = get_freepointer(kmem_cache_node, n);
3585 page->inuse = 1;
3586 page->frozen = 0;
3587 kmem_cache_node->node[node] = n;
4053497d 3588 init_kmem_cache_node(n);
51df1142 3589 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3590
67b6c900 3591 /*
1e4dd946
SR
3592 * No locks need to be taken here as it has just been
3593 * initialized and there is no concurrent access.
67b6c900 3594 */
1e4dd946 3595 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3596}
3597
3598static void free_kmem_cache_nodes(struct kmem_cache *s)
3599{
3600 int node;
fa45dc25 3601 struct kmem_cache_node *n;
81819f0f 3602
fa45dc25 3603 for_each_kmem_cache_node(s, node, n) {
81819f0f 3604 s->node[node] = NULL;
ea37df54 3605 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3606 }
3607}
3608
52b4b950
DS
3609void __kmem_cache_release(struct kmem_cache *s)
3610{
210e7a43 3611 cache_random_seq_destroy(s);
52b4b950
DS
3612 free_percpu(s->cpu_slab);
3613 free_kmem_cache_nodes(s);
3614}
3615
55136592 3616static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3617{
3618 int node;
81819f0f 3619
7e1fa93d 3620 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3621 struct kmem_cache_node *n;
3622
73367bd8 3623 if (slab_state == DOWN) {
55136592 3624 early_kmem_cache_node_alloc(node);
73367bd8
AD
3625 continue;
3626 }
51df1142 3627 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3628 GFP_KERNEL, node);
81819f0f 3629
73367bd8
AD
3630 if (!n) {
3631 free_kmem_cache_nodes(s);
3632 return 0;
81819f0f 3633 }
73367bd8 3634
4053497d 3635 init_kmem_cache_node(n);
ea37df54 3636 s->node[node] = n;
81819f0f
CL
3637 }
3638 return 1;
3639}
81819f0f 3640
c0bdb232 3641static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3642{
3643 if (min < MIN_PARTIAL)
3644 min = MIN_PARTIAL;
3645 else if (min > MAX_PARTIAL)
3646 min = MAX_PARTIAL;
3647 s->min_partial = min;
3648}
3649
e6d0e1dc
WY
3650static void set_cpu_partial(struct kmem_cache *s)
3651{
3652#ifdef CONFIG_SLUB_CPU_PARTIAL
3653 /*
3654 * cpu_partial determined the maximum number of objects kept in the
3655 * per cpu partial lists of a processor.
3656 *
3657 * Per cpu partial lists mainly contain slabs that just have one
3658 * object freed. If they are used for allocation then they can be
3659 * filled up again with minimal effort. The slab will never hit the
3660 * per node partial lists and therefore no locking will be required.
3661 *
3662 * This setting also determines
3663 *
3664 * A) The number of objects from per cpu partial slabs dumped to the
3665 * per node list when we reach the limit.
3666 * B) The number of objects in cpu partial slabs to extract from the
3667 * per node list when we run out of per cpu objects. We only fetch
3668 * 50% to keep some capacity around for frees.
3669 */
3670 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3671 slub_set_cpu_partial(s, 0);
e6d0e1dc 3672 else if (s->size >= PAGE_SIZE)
bbd4e305 3673 slub_set_cpu_partial(s, 2);
e6d0e1dc 3674 else if (s->size >= 1024)
bbd4e305 3675 slub_set_cpu_partial(s, 6);
e6d0e1dc 3676 else if (s->size >= 256)
bbd4e305 3677 slub_set_cpu_partial(s, 13);
e6d0e1dc 3678 else
bbd4e305 3679 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3680#endif
3681}
3682
81819f0f
CL
3683/*
3684 * calculate_sizes() determines the order and the distribution of data within
3685 * a slab object.
3686 */
06b285dc 3687static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3688{
d50112ed 3689 slab_flags_t flags = s->flags;
be4a7988 3690 unsigned int size = s->object_size;
89b83f28 3691 unsigned int freepointer_area;
19af27af 3692 unsigned int order;
81819f0f 3693
d8b42bf5
CL
3694 /*
3695 * Round up object size to the next word boundary. We can only
3696 * place the free pointer at word boundaries and this determines
3697 * the possible location of the free pointer.
3698 */
3699 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3700 /*
3701 * This is the area of the object where a freepointer can be
3702 * safely written. If redzoning adds more to the inuse size, we
3703 * can't use that portion for writing the freepointer, so
3704 * s->offset must be limited within this for the general case.
3705 */
3706 freepointer_area = size;
d8b42bf5
CL
3707
3708#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3709 /*
3710 * Determine if we can poison the object itself. If the user of
3711 * the slab may touch the object after free or before allocation
3712 * then we should never poison the object itself.
3713 */
5f0d5a3a 3714 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3715 !s->ctor)
81819f0f
CL
3716 s->flags |= __OBJECT_POISON;
3717 else
3718 s->flags &= ~__OBJECT_POISON;
3719
81819f0f
CL
3720
3721 /*
672bba3a 3722 * If we are Redzoning then check if there is some space between the
81819f0f 3723 * end of the object and the free pointer. If not then add an
672bba3a 3724 * additional word to have some bytes to store Redzone information.
81819f0f 3725 */
3b0efdfa 3726 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3727 size += sizeof(void *);
41ecc55b 3728#endif
81819f0f
CL
3729
3730 /*
672bba3a
CL
3731 * With that we have determined the number of bytes in actual use
3732 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3733 */
3734 s->inuse = size;
3735
5f0d5a3a 3736 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3737 s->ctor)) {
81819f0f
CL
3738 /*
3739 * Relocate free pointer after the object if it is not
3740 * permitted to overwrite the first word of the object on
3741 * kmem_cache_free.
3742 *
3743 * This is the case if we do RCU, have a constructor or
3744 * destructor or are poisoning the objects.
cbfc35a4
WL
3745 *
3746 * The assumption that s->offset >= s->inuse means free
3747 * pointer is outside of the object is used in the
3748 * freeptr_outside_object() function. If that is no
3749 * longer true, the function needs to be modified.
81819f0f
CL
3750 */
3751 s->offset = size;
3752 size += sizeof(void *);
89b83f28 3753 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3754 /*
3755 * Store freelist pointer near middle of object to keep
3756 * it away from the edges of the object to avoid small
3757 * sized over/underflows from neighboring allocations.
3758 */
89b83f28 3759 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3760 }
3761
c12b3c62 3762#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3763 if (flags & SLAB_STORE_USER)
3764 /*
3765 * Need to store information about allocs and frees after
3766 * the object.
3767 */
3768 size += 2 * sizeof(struct track);
80a9201a 3769#endif
81819f0f 3770
80a9201a
AP
3771 kasan_cache_create(s, &size, &s->flags);
3772#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3773 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3774 /*
3775 * Add some empty padding so that we can catch
3776 * overwrites from earlier objects rather than let
3777 * tracking information or the free pointer be
0211a9c8 3778 * corrupted if a user writes before the start
81819f0f
CL
3779 * of the object.
3780 */
3781 size += sizeof(void *);
d86bd1be
JK
3782
3783 s->red_left_pad = sizeof(void *);
3784 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3785 size += s->red_left_pad;
3786 }
41ecc55b 3787#endif
672bba3a 3788
81819f0f
CL
3789 /*
3790 * SLUB stores one object immediately after another beginning from
3791 * offset 0. In order to align the objects we have to simply size
3792 * each object to conform to the alignment.
3793 */
45906855 3794 size = ALIGN(size, s->align);
81819f0f 3795 s->size = size;
4138fdfc 3796 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3797 if (forced_order >= 0)
3798 order = forced_order;
3799 else
9736d2a9 3800 order = calculate_order(size);
81819f0f 3801
19af27af 3802 if ((int)order < 0)
81819f0f
CL
3803 return 0;
3804
b7a49f0d 3805 s->allocflags = 0;
834f3d11 3806 if (order)
b7a49f0d
CL
3807 s->allocflags |= __GFP_COMP;
3808
3809 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3810 s->allocflags |= GFP_DMA;
b7a49f0d 3811
6d6ea1e9
NB
3812 if (s->flags & SLAB_CACHE_DMA32)
3813 s->allocflags |= GFP_DMA32;
3814
b7a49f0d
CL
3815 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3816 s->allocflags |= __GFP_RECLAIMABLE;
3817
81819f0f
CL
3818 /*
3819 * Determine the number of objects per slab
3820 */
9736d2a9
MW
3821 s->oo = oo_make(order, size);
3822 s->min = oo_make(get_order(size), size);
205ab99d
CL
3823 if (oo_objects(s->oo) > oo_objects(s->max))
3824 s->max = s->oo;
81819f0f 3825
834f3d11 3826 return !!oo_objects(s->oo);
81819f0f
CL
3827}
3828
d50112ed 3829static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3830{
1f0723a4
VB
3831#ifdef CONFIG_SLUB_DEBUG
3832 /*
3833 * If no slub_debug was enabled globally, the static key is not yet
3834 * enabled by setup_slub_debug(). Enable it if the cache is being
3835 * created with any of the debugging flags passed explicitly.
3836 */
3837 if (flags & SLAB_DEBUG_FLAGS)
3838 static_branch_enable(&slub_debug_enabled);
3839#endif
37540008 3840 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3841#ifdef CONFIG_SLAB_FREELIST_HARDENED
3842 s->random = get_random_long();
3843#endif
81819f0f 3844
06b285dc 3845 if (!calculate_sizes(s, -1))
81819f0f 3846 goto error;
3de47213
DR
3847 if (disable_higher_order_debug) {
3848 /*
3849 * Disable debugging flags that store metadata if the min slab
3850 * order increased.
3851 */
3b0efdfa 3852 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3853 s->flags &= ~DEBUG_METADATA_FLAGS;
3854 s->offset = 0;
3855 if (!calculate_sizes(s, -1))
3856 goto error;
3857 }
3858 }
81819f0f 3859
2565409f
HC
3860#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3861 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3862 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3863 /* Enable fast mode */
3864 s->flags |= __CMPXCHG_DOUBLE;
3865#endif
3866
3b89d7d8
DR
3867 /*
3868 * The larger the object size is, the more pages we want on the partial
3869 * list to avoid pounding the page allocator excessively.
3870 */
49e22585
CL
3871 set_min_partial(s, ilog2(s->size) / 2);
3872
e6d0e1dc 3873 set_cpu_partial(s);
49e22585 3874
81819f0f 3875#ifdef CONFIG_NUMA
e2cb96b7 3876 s->remote_node_defrag_ratio = 1000;
81819f0f 3877#endif
210e7a43
TG
3878
3879 /* Initialize the pre-computed randomized freelist if slab is up */
3880 if (slab_state >= UP) {
3881 if (init_cache_random_seq(s))
3882 goto error;
3883 }
3884
55136592 3885 if (!init_kmem_cache_nodes(s))
dfb4f096 3886 goto error;
81819f0f 3887
55136592 3888 if (alloc_kmem_cache_cpus(s))
278b1bb1 3889 return 0;
ff12059e 3890
4c93c355 3891 free_kmem_cache_nodes(s);
81819f0f 3892error:
278b1bb1 3893 return -EINVAL;
81819f0f 3894}
81819f0f 3895
33b12c38 3896static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3897 const char *text)
33b12c38
CL
3898{
3899#ifdef CONFIG_SLUB_DEBUG
3900 void *addr = page_address(page);
55860d96 3901 unsigned long *map;
33b12c38 3902 void *p;
aa456c7a 3903
945cf2b6 3904 slab_err(s, page, text, s->name);
33b12c38 3905 slab_lock(page);
33b12c38 3906
90e9f6a6 3907 map = get_map(s, page);
33b12c38
CL
3908 for_each_object(p, s, addr, page->objects) {
3909
4138fdfc 3910 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3911 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3912 print_tracking(s, p);
3913 }
3914 }
55860d96 3915 put_map(map);
33b12c38
CL
3916 slab_unlock(page);
3917#endif
3918}
3919
81819f0f 3920/*
599870b1 3921 * Attempt to free all partial slabs on a node.
52b4b950
DS
3922 * This is called from __kmem_cache_shutdown(). We must take list_lock
3923 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3924 */
599870b1 3925static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3926{
60398923 3927 LIST_HEAD(discard);
81819f0f
CL
3928 struct page *page, *h;
3929
52b4b950
DS
3930 BUG_ON(irqs_disabled());
3931 spin_lock_irq(&n->list_lock);
916ac052 3932 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3933 if (!page->inuse) {
52b4b950 3934 remove_partial(n, page);
916ac052 3935 list_add(&page->slab_list, &discard);
33b12c38
CL
3936 } else {
3937 list_slab_objects(s, page,
55860d96 3938 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3939 }
33b12c38 3940 }
52b4b950 3941 spin_unlock_irq(&n->list_lock);
60398923 3942
916ac052 3943 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3944 discard_slab(s, page);
81819f0f
CL
3945}
3946
f9e13c0a
SB
3947bool __kmem_cache_empty(struct kmem_cache *s)
3948{
3949 int node;
3950 struct kmem_cache_node *n;
3951
3952 for_each_kmem_cache_node(s, node, n)
3953 if (n->nr_partial || slabs_node(s, node))
3954 return false;
3955 return true;
3956}
3957
81819f0f 3958/*
672bba3a 3959 * Release all resources used by a slab cache.
81819f0f 3960 */
52b4b950 3961int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3962{
3963 int node;
fa45dc25 3964 struct kmem_cache_node *n;
81819f0f
CL
3965
3966 flush_all(s);
81819f0f 3967 /* Attempt to free all objects */
fa45dc25 3968 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3969 free_partial(s, n);
3970 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3971 return 1;
3972 }
81819f0f
CL
3973 return 0;
3974}
3975
5bb1bb35 3976#ifdef CONFIG_PRINTK
8e7f37f2
PM
3977void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3978{
3979 void *base;
3980 int __maybe_unused i;
3981 unsigned int objnr;
3982 void *objp;
3983 void *objp0;
3984 struct kmem_cache *s = page->slab_cache;
3985 struct track __maybe_unused *trackp;
3986
3987 kpp->kp_ptr = object;
3988 kpp->kp_page = page;
3989 kpp->kp_slab_cache = s;
3990 base = page_address(page);
3991 objp0 = kasan_reset_tag(object);
3992#ifdef CONFIG_SLUB_DEBUG
3993 objp = restore_red_left(s, objp0);
3994#else
3995 objp = objp0;
3996#endif
3997 objnr = obj_to_index(s, page, objp);
3998 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3999 objp = base + s->size * objnr;
4000 kpp->kp_objp = objp;
4001 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4002 !(s->flags & SLAB_STORE_USER))
4003 return;
4004#ifdef CONFIG_SLUB_DEBUG
4005 trackp = get_track(s, objp, TRACK_ALLOC);
4006 kpp->kp_ret = (void *)trackp->addr;
4007#ifdef CONFIG_STACKTRACE
4008 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4009 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4010 if (!kpp->kp_stack[i])
4011 break;
4012 }
4013#endif
4014#endif
4015}
5bb1bb35 4016#endif
8e7f37f2 4017
81819f0f
CL
4018/********************************************************************
4019 * Kmalloc subsystem
4020 *******************************************************************/
4021
81819f0f
CL
4022static int __init setup_slub_min_order(char *str)
4023{
19af27af 4024 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4025
4026 return 1;
4027}
4028
4029__setup("slub_min_order=", setup_slub_min_order);
4030
4031static int __init setup_slub_max_order(char *str)
4032{
19af27af
AD
4033 get_option(&str, (int *)&slub_max_order);
4034 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4035
4036 return 1;
4037}
4038
4039__setup("slub_max_order=", setup_slub_max_order);
4040
4041static int __init setup_slub_min_objects(char *str)
4042{
19af27af 4043 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4044
4045 return 1;
4046}
4047
4048__setup("slub_min_objects=", setup_slub_min_objects);
4049
81819f0f
CL
4050void *__kmalloc(size_t size, gfp_t flags)
4051{
aadb4bc4 4052 struct kmem_cache *s;
5b882be4 4053 void *ret;
81819f0f 4054
95a05b42 4055 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4056 return kmalloc_large(size, flags);
aadb4bc4 4057
2c59dd65 4058 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4059
4060 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4061 return s;
4062
b89fb5ef 4063 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4064
ca2b84cb 4065 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4066
0116523c 4067 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4068
5b882be4 4069 return ret;
81819f0f
CL
4070}
4071EXPORT_SYMBOL(__kmalloc);
4072
5d1f57e4 4073#ifdef CONFIG_NUMA
f619cfe1
CL
4074static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4075{
b1eeab67 4076 struct page *page;
e4f7c0b4 4077 void *ptr = NULL;
6a486c0a 4078 unsigned int order = get_order(size);
f619cfe1 4079
75f296d9 4080 flags |= __GFP_COMP;
6a486c0a
VB
4081 page = alloc_pages_node(node, flags, order);
4082 if (page) {
e4f7c0b4 4083 ptr = page_address(page);
96403bfe
MS
4084 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4085 PAGE_SIZE << order);
6a486c0a 4086 }
e4f7c0b4 4087
0116523c 4088 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4089}
4090
81819f0f
CL
4091void *__kmalloc_node(size_t size, gfp_t flags, int node)
4092{
aadb4bc4 4093 struct kmem_cache *s;
5b882be4 4094 void *ret;
81819f0f 4095
95a05b42 4096 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4097 ret = kmalloc_large_node(size, flags, node);
4098
ca2b84cb
EGM
4099 trace_kmalloc_node(_RET_IP_, ret,
4100 size, PAGE_SIZE << get_order(size),
4101 flags, node);
5b882be4
EGM
4102
4103 return ret;
4104 }
aadb4bc4 4105
2c59dd65 4106 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4107
4108 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4109 return s;
4110
b89fb5ef 4111 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4112
ca2b84cb 4113 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4114
0116523c 4115 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4116
5b882be4 4117 return ret;
81819f0f
CL
4118}
4119EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4120#endif /* CONFIG_NUMA */
81819f0f 4121
ed18adc1
KC
4122#ifdef CONFIG_HARDENED_USERCOPY
4123/*
afcc90f8
KC
4124 * Rejects incorrectly sized objects and objects that are to be copied
4125 * to/from userspace but do not fall entirely within the containing slab
4126 * cache's usercopy region.
ed18adc1
KC
4127 *
4128 * Returns NULL if check passes, otherwise const char * to name of cache
4129 * to indicate an error.
4130 */
f4e6e289
KC
4131void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4132 bool to_user)
ed18adc1
KC
4133{
4134 struct kmem_cache *s;
44065b2e 4135 unsigned int offset;
ed18adc1 4136 size_t object_size;
b89fb5ef 4137 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4138
96fedce2
AK
4139 ptr = kasan_reset_tag(ptr);
4140
ed18adc1
KC
4141 /* Find object and usable object size. */
4142 s = page->slab_cache;
ed18adc1
KC
4143
4144 /* Reject impossible pointers. */
4145 if (ptr < page_address(page))
f4e6e289
KC
4146 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4147 to_user, 0, n);
ed18adc1
KC
4148
4149 /* Find offset within object. */
b89fb5ef
AP
4150 if (is_kfence)
4151 offset = ptr - kfence_object_start(ptr);
4152 else
4153 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4154
4155 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4156 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4157 if (offset < s->red_left_pad)
f4e6e289
KC
4158 usercopy_abort("SLUB object in left red zone",
4159 s->name, to_user, offset, n);
ed18adc1
KC
4160 offset -= s->red_left_pad;
4161 }
4162
afcc90f8
KC
4163 /* Allow address range falling entirely within usercopy region. */
4164 if (offset >= s->useroffset &&
4165 offset - s->useroffset <= s->usersize &&
4166 n <= s->useroffset - offset + s->usersize)
f4e6e289 4167 return;
ed18adc1 4168
afcc90f8
KC
4169 /*
4170 * If the copy is still within the allocated object, produce
4171 * a warning instead of rejecting the copy. This is intended
4172 * to be a temporary method to find any missing usercopy
4173 * whitelists.
4174 */
4175 object_size = slab_ksize(s);
2d891fbc
KC
4176 if (usercopy_fallback &&
4177 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4178 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4179 return;
4180 }
ed18adc1 4181
f4e6e289 4182 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4183}
4184#endif /* CONFIG_HARDENED_USERCOPY */
4185
10d1f8cb 4186size_t __ksize(const void *object)
81819f0f 4187{
272c1d21 4188 struct page *page;
81819f0f 4189
ef8b4520 4190 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4191 return 0;
4192
294a80a8 4193 page = virt_to_head_page(object);
294a80a8 4194
76994412
PE
4195 if (unlikely(!PageSlab(page))) {
4196 WARN_ON(!PageCompound(page));
a50b854e 4197 return page_size(page);
76994412 4198 }
81819f0f 4199
1b4f59e3 4200 return slab_ksize(page->slab_cache);
81819f0f 4201}
10d1f8cb 4202EXPORT_SYMBOL(__ksize);
81819f0f
CL
4203
4204void kfree(const void *x)
4205{
81819f0f 4206 struct page *page;
5bb983b0 4207 void *object = (void *)x;
81819f0f 4208
2121db74
PE
4209 trace_kfree(_RET_IP_, x);
4210
2408c550 4211 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4212 return;
4213
b49af68f 4214 page = virt_to_head_page(x);
aadb4bc4 4215 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4216 unsigned int order = compound_order(page);
4217
0937502a 4218 BUG_ON(!PageCompound(page));
47adccce 4219 kfree_hook(object);
96403bfe
MS
4220 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4221 -(PAGE_SIZE << order));
6a486c0a 4222 __free_pages(page, order);
aadb4bc4
CL
4223 return;
4224 }
81084651 4225 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4226}
4227EXPORT_SYMBOL(kfree);
4228
832f37f5
VD
4229#define SHRINK_PROMOTE_MAX 32
4230
2086d26a 4231/*
832f37f5
VD
4232 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4233 * up most to the head of the partial lists. New allocations will then
4234 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4235 *
4236 * The slabs with the least items are placed last. This results in them
4237 * being allocated from last increasing the chance that the last objects
4238 * are freed in them.
2086d26a 4239 */
c9fc5864 4240int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4241{
4242 int node;
4243 int i;
4244 struct kmem_cache_node *n;
4245 struct page *page;
4246 struct page *t;
832f37f5
VD
4247 struct list_head discard;
4248 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4249 unsigned long flags;
ce3712d7 4250 int ret = 0;
2086d26a 4251
2086d26a 4252 flush_all(s);
fa45dc25 4253 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4254 INIT_LIST_HEAD(&discard);
4255 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4256 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4257
4258 spin_lock_irqsave(&n->list_lock, flags);
4259
4260 /*
832f37f5 4261 * Build lists of slabs to discard or promote.
2086d26a 4262 *
672bba3a
CL
4263 * Note that concurrent frees may occur while we hold the
4264 * list_lock. page->inuse here is the upper limit.
2086d26a 4265 */
916ac052 4266 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4267 int free = page->objects - page->inuse;
4268
4269 /* Do not reread page->inuse */
4270 barrier();
4271
4272 /* We do not keep full slabs on the list */
4273 BUG_ON(free <= 0);
4274
4275 if (free == page->objects) {
916ac052 4276 list_move(&page->slab_list, &discard);
69cb8e6b 4277 n->nr_partial--;
832f37f5 4278 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4279 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4280 }
4281
2086d26a 4282 /*
832f37f5
VD
4283 * Promote the slabs filled up most to the head of the
4284 * partial list.
2086d26a 4285 */
832f37f5
VD
4286 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4287 list_splice(promote + i, &n->partial);
2086d26a 4288
2086d26a 4289 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4290
4291 /* Release empty slabs */
916ac052 4292 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4293 discard_slab(s, page);
ce3712d7
VD
4294
4295 if (slabs_node(s, node))
4296 ret = 1;
2086d26a
CL
4297 }
4298
ce3712d7 4299 return ret;
2086d26a 4300}
2086d26a 4301
b9049e23
YG
4302static int slab_mem_going_offline_callback(void *arg)
4303{
4304 struct kmem_cache *s;
4305
18004c5d 4306 mutex_lock(&slab_mutex);
b9049e23 4307 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4308 __kmem_cache_shrink(s);
18004c5d 4309 mutex_unlock(&slab_mutex);
b9049e23
YG
4310
4311 return 0;
4312}
4313
4314static void slab_mem_offline_callback(void *arg)
4315{
b9049e23
YG
4316 struct memory_notify *marg = arg;
4317 int offline_node;
4318
b9d5ab25 4319 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4320
4321 /*
4322 * If the node still has available memory. we need kmem_cache_node
4323 * for it yet.
4324 */
4325 if (offline_node < 0)
4326 return;
4327
18004c5d 4328 mutex_lock(&slab_mutex);
7e1fa93d 4329 node_clear(offline_node, slab_nodes);
666716fd
VB
4330 /*
4331 * We no longer free kmem_cache_node structures here, as it would be
4332 * racy with all get_node() users, and infeasible to protect them with
4333 * slab_mutex.
4334 */
18004c5d 4335 mutex_unlock(&slab_mutex);
b9049e23
YG
4336}
4337
4338static int slab_mem_going_online_callback(void *arg)
4339{
4340 struct kmem_cache_node *n;
4341 struct kmem_cache *s;
4342 struct memory_notify *marg = arg;
b9d5ab25 4343 int nid = marg->status_change_nid_normal;
b9049e23
YG
4344 int ret = 0;
4345
4346 /*
4347 * If the node's memory is already available, then kmem_cache_node is
4348 * already created. Nothing to do.
4349 */
4350 if (nid < 0)
4351 return 0;
4352
4353 /*
0121c619 4354 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4355 * allocate a kmem_cache_node structure in order to bring the node
4356 * online.
4357 */
18004c5d 4358 mutex_lock(&slab_mutex);
b9049e23 4359 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4360 /*
4361 * The structure may already exist if the node was previously
4362 * onlined and offlined.
4363 */
4364 if (get_node(s, nid))
4365 continue;
b9049e23
YG
4366 /*
4367 * XXX: kmem_cache_alloc_node will fallback to other nodes
4368 * since memory is not yet available from the node that
4369 * is brought up.
4370 */
8de66a0c 4371 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4372 if (!n) {
4373 ret = -ENOMEM;
4374 goto out;
4375 }
4053497d 4376 init_kmem_cache_node(n);
b9049e23
YG
4377 s->node[nid] = n;
4378 }
7e1fa93d
VB
4379 /*
4380 * Any cache created after this point will also have kmem_cache_node
4381 * initialized for the new node.
4382 */
4383 node_set(nid, slab_nodes);
b9049e23 4384out:
18004c5d 4385 mutex_unlock(&slab_mutex);
b9049e23
YG
4386 return ret;
4387}
4388
4389static int slab_memory_callback(struct notifier_block *self,
4390 unsigned long action, void *arg)
4391{
4392 int ret = 0;
4393
4394 switch (action) {
4395 case MEM_GOING_ONLINE:
4396 ret = slab_mem_going_online_callback(arg);
4397 break;
4398 case MEM_GOING_OFFLINE:
4399 ret = slab_mem_going_offline_callback(arg);
4400 break;
4401 case MEM_OFFLINE:
4402 case MEM_CANCEL_ONLINE:
4403 slab_mem_offline_callback(arg);
4404 break;
4405 case MEM_ONLINE:
4406 case MEM_CANCEL_OFFLINE:
4407 break;
4408 }
dc19f9db
KH
4409 if (ret)
4410 ret = notifier_from_errno(ret);
4411 else
4412 ret = NOTIFY_OK;
b9049e23
YG
4413 return ret;
4414}
4415
3ac38faa
AM
4416static struct notifier_block slab_memory_callback_nb = {
4417 .notifier_call = slab_memory_callback,
4418 .priority = SLAB_CALLBACK_PRI,
4419};
b9049e23 4420
81819f0f
CL
4421/********************************************************************
4422 * Basic setup of slabs
4423 *******************************************************************/
4424
51df1142
CL
4425/*
4426 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4427 * the page allocator. Allocate them properly then fix up the pointers
4428 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4429 */
4430
dffb4d60 4431static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4432{
4433 int node;
dffb4d60 4434 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4435 struct kmem_cache_node *n;
51df1142 4436
dffb4d60 4437 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4438
7d557b3c
GC
4439 /*
4440 * This runs very early, and only the boot processor is supposed to be
4441 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4442 * IPIs around.
4443 */
4444 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4445 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4446 struct page *p;
4447
916ac052 4448 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4449 p->slab_cache = s;
51df1142 4450
607bf324 4451#ifdef CONFIG_SLUB_DEBUG
916ac052 4452 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4453 p->slab_cache = s;
51df1142 4454#endif
51df1142 4455 }
dffb4d60
CL
4456 list_add(&s->list, &slab_caches);
4457 return s;
51df1142
CL
4458}
4459
81819f0f
CL
4460void __init kmem_cache_init(void)
4461{
dffb4d60
CL
4462 static __initdata struct kmem_cache boot_kmem_cache,
4463 boot_kmem_cache_node;
7e1fa93d 4464 int node;
51df1142 4465
fc8d8620
SG
4466 if (debug_guardpage_minorder())
4467 slub_max_order = 0;
4468
dffb4d60
CL
4469 kmem_cache_node = &boot_kmem_cache_node;
4470 kmem_cache = &boot_kmem_cache;
51df1142 4471
7e1fa93d
VB
4472 /*
4473 * Initialize the nodemask for which we will allocate per node
4474 * structures. Here we don't need taking slab_mutex yet.
4475 */
4476 for_each_node_state(node, N_NORMAL_MEMORY)
4477 node_set(node, slab_nodes);
4478
dffb4d60 4479 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4480 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4481
3ac38faa 4482 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4483
4484 /* Able to allocate the per node structures */
4485 slab_state = PARTIAL;
4486
dffb4d60
CL
4487 create_boot_cache(kmem_cache, "kmem_cache",
4488 offsetof(struct kmem_cache, node) +
4489 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4490 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4491
dffb4d60 4492 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4493 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4494
4495 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4496 setup_kmalloc_cache_index_table();
f97d5f63 4497 create_kmalloc_caches(0);
81819f0f 4498
210e7a43
TG
4499 /* Setup random freelists for each cache */
4500 init_freelist_randomization();
4501
a96a87bf
SAS
4502 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4503 slub_cpu_dead);
81819f0f 4504
b9726c26 4505 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4506 cache_line_size(),
81819f0f
CL
4507 slub_min_order, slub_max_order, slub_min_objects,
4508 nr_cpu_ids, nr_node_ids);
4509}
4510
7e85ee0c
PE
4511void __init kmem_cache_init_late(void)
4512{
7e85ee0c
PE
4513}
4514
2633d7a0 4515struct kmem_cache *
f4957d5b 4516__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4517 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4518{
10befea9 4519 struct kmem_cache *s;
81819f0f 4520
a44cb944 4521 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4522 if (s) {
4523 s->refcount++;
84d0ddd6 4524
81819f0f
CL
4525 /*
4526 * Adjust the object sizes so that we clear
4527 * the complete object on kzalloc.
4528 */
1b473f29 4529 s->object_size = max(s->object_size, size);
52ee6d74 4530 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4531
7b8f3b66 4532 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4533 s->refcount--;
cbb79694 4534 s = NULL;
7b8f3b66 4535 }
a0e1d1be 4536 }
6446faa2 4537
cbb79694
CL
4538 return s;
4539}
84c1cf62 4540
d50112ed 4541int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4542{
aac3a166
PE
4543 int err;
4544
4545 err = kmem_cache_open(s, flags);
4546 if (err)
4547 return err;
20cea968 4548
45530c44
CL
4549 /* Mutex is not taken during early boot */
4550 if (slab_state <= UP)
4551 return 0;
4552
aac3a166 4553 err = sysfs_slab_add(s);
aac3a166 4554 if (err)
52b4b950 4555 __kmem_cache_release(s);
20cea968 4556
aac3a166 4557 return err;
81819f0f 4558}
81819f0f 4559
ce71e27c 4560void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4561{
aadb4bc4 4562 struct kmem_cache *s;
94b528d0 4563 void *ret;
aadb4bc4 4564
95a05b42 4565 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4566 return kmalloc_large(size, gfpflags);
4567
2c59dd65 4568 s = kmalloc_slab(size, gfpflags);
81819f0f 4569
2408c550 4570 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4571 return s;
81819f0f 4572
b89fb5ef 4573 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4574
25985edc 4575 /* Honor the call site pointer we received. */
ca2b84cb 4576 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4577
4578 return ret;
81819f0f 4579}
fd7cb575 4580EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4581
5d1f57e4 4582#ifdef CONFIG_NUMA
81819f0f 4583void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4584 int node, unsigned long caller)
81819f0f 4585{
aadb4bc4 4586 struct kmem_cache *s;
94b528d0 4587 void *ret;
aadb4bc4 4588
95a05b42 4589 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4590 ret = kmalloc_large_node(size, gfpflags, node);
4591
4592 trace_kmalloc_node(caller, ret,
4593 size, PAGE_SIZE << get_order(size),
4594 gfpflags, node);
4595
4596 return ret;
4597 }
eada35ef 4598
2c59dd65 4599 s = kmalloc_slab(size, gfpflags);
81819f0f 4600
2408c550 4601 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4602 return s;
81819f0f 4603
b89fb5ef 4604 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4605
25985edc 4606 /* Honor the call site pointer we received. */
ca2b84cb 4607 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4608
4609 return ret;
81819f0f 4610}
fd7cb575 4611EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4612#endif
81819f0f 4613
ab4d5ed5 4614#ifdef CONFIG_SYSFS
205ab99d
CL
4615static int count_inuse(struct page *page)
4616{
4617 return page->inuse;
4618}
4619
4620static int count_total(struct page *page)
4621{
4622 return page->objects;
4623}
ab4d5ed5 4624#endif
205ab99d 4625
ab4d5ed5 4626#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4627static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4628{
4629 void *p;
a973e9dd 4630 void *addr = page_address(page);
90e9f6a6
YZ
4631 unsigned long *map;
4632
4633 slab_lock(page);
53e15af0 4634
dd98afd4 4635 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4636 goto unlock;
53e15af0
CL
4637
4638 /* Now we know that a valid freelist exists */
90e9f6a6 4639 map = get_map(s, page);
5f80b13a 4640 for_each_object(p, s, addr, page->objects) {
4138fdfc 4641 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4642 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4643
dd98afd4
YZ
4644 if (!check_object(s, page, p, val))
4645 break;
4646 }
90e9f6a6
YZ
4647 put_map(map);
4648unlock:
881db7fb 4649 slab_unlock(page);
53e15af0
CL
4650}
4651
434e245d 4652static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4653 struct kmem_cache_node *n)
53e15af0
CL
4654{
4655 unsigned long count = 0;
4656 struct page *page;
4657 unsigned long flags;
4658
4659 spin_lock_irqsave(&n->list_lock, flags);
4660
916ac052 4661 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4662 validate_slab(s, page);
53e15af0
CL
4663 count++;
4664 }
4665 if (count != n->nr_partial)
f9f58285
FF
4666 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4667 s->name, count, n->nr_partial);
53e15af0
CL
4668
4669 if (!(s->flags & SLAB_STORE_USER))
4670 goto out;
4671
916ac052 4672 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4673 validate_slab(s, page);
53e15af0
CL
4674 count++;
4675 }
4676 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4677 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4678 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4679
4680out:
4681 spin_unlock_irqrestore(&n->list_lock, flags);
4682 return count;
4683}
4684
434e245d 4685static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4686{
4687 int node;
4688 unsigned long count = 0;
fa45dc25 4689 struct kmem_cache_node *n;
53e15af0
CL
4690
4691 flush_all(s);
fa45dc25 4692 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4693 count += validate_slab_node(s, n);
4694
53e15af0
CL
4695 return count;
4696}
88a420e4 4697/*
672bba3a 4698 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4699 * and freed.
4700 */
4701
4702struct location {
4703 unsigned long count;
ce71e27c 4704 unsigned long addr;
45edfa58
CL
4705 long long sum_time;
4706 long min_time;
4707 long max_time;
4708 long min_pid;
4709 long max_pid;
174596a0 4710 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4711 nodemask_t nodes;
88a420e4
CL
4712};
4713
4714struct loc_track {
4715 unsigned long max;
4716 unsigned long count;
4717 struct location *loc;
4718};
4719
4720static void free_loc_track(struct loc_track *t)
4721{
4722 if (t->max)
4723 free_pages((unsigned long)t->loc,
4724 get_order(sizeof(struct location) * t->max));
4725}
4726
68dff6a9 4727static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4728{
4729 struct location *l;
4730 int order;
4731
88a420e4
CL
4732 order = get_order(sizeof(struct location) * max);
4733
68dff6a9 4734 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4735 if (!l)
4736 return 0;
4737
4738 if (t->count) {
4739 memcpy(l, t->loc, sizeof(struct location) * t->count);
4740 free_loc_track(t);
4741 }
4742 t->max = max;
4743 t->loc = l;
4744 return 1;
4745}
4746
4747static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4748 const struct track *track)
88a420e4
CL
4749{
4750 long start, end, pos;
4751 struct location *l;
ce71e27c 4752 unsigned long caddr;
45edfa58 4753 unsigned long age = jiffies - track->when;
88a420e4
CL
4754
4755 start = -1;
4756 end = t->count;
4757
4758 for ( ; ; ) {
4759 pos = start + (end - start + 1) / 2;
4760
4761 /*
4762 * There is nothing at "end". If we end up there
4763 * we need to add something to before end.
4764 */
4765 if (pos == end)
4766 break;
4767
4768 caddr = t->loc[pos].addr;
45edfa58
CL
4769 if (track->addr == caddr) {
4770
4771 l = &t->loc[pos];
4772 l->count++;
4773 if (track->when) {
4774 l->sum_time += age;
4775 if (age < l->min_time)
4776 l->min_time = age;
4777 if (age > l->max_time)
4778 l->max_time = age;
4779
4780 if (track->pid < l->min_pid)
4781 l->min_pid = track->pid;
4782 if (track->pid > l->max_pid)
4783 l->max_pid = track->pid;
4784
174596a0
RR
4785 cpumask_set_cpu(track->cpu,
4786 to_cpumask(l->cpus));
45edfa58
CL
4787 }
4788 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4789 return 1;
4790 }
4791
45edfa58 4792 if (track->addr < caddr)
88a420e4
CL
4793 end = pos;
4794 else
4795 start = pos;
4796 }
4797
4798 /*
672bba3a 4799 * Not found. Insert new tracking element.
88a420e4 4800 */
68dff6a9 4801 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4802 return 0;
4803
4804 l = t->loc + pos;
4805 if (pos < t->count)
4806 memmove(l + 1, l,
4807 (t->count - pos) * sizeof(struct location));
4808 t->count++;
4809 l->count = 1;
45edfa58
CL
4810 l->addr = track->addr;
4811 l->sum_time = age;
4812 l->min_time = age;
4813 l->max_time = age;
4814 l->min_pid = track->pid;
4815 l->max_pid = track->pid;
174596a0
RR
4816 cpumask_clear(to_cpumask(l->cpus));
4817 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4818 nodes_clear(l->nodes);
4819 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4820 return 1;
4821}
4822
4823static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4824 struct page *page, enum track_item alloc)
88a420e4 4825{
a973e9dd 4826 void *addr = page_address(page);
88a420e4 4827 void *p;
90e9f6a6 4828 unsigned long *map;
88a420e4 4829
90e9f6a6 4830 map = get_map(s, page);
224a88be 4831 for_each_object(p, s, addr, page->objects)
4138fdfc 4832 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4833 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4834 put_map(map);
88a420e4
CL
4835}
4836
4837static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4838 enum track_item alloc)
88a420e4 4839{
e374d483 4840 int len = 0;
88a420e4 4841 unsigned long i;
68dff6a9 4842 struct loc_track t = { 0, 0, NULL };
88a420e4 4843 int node;
fa45dc25 4844 struct kmem_cache_node *n;
88a420e4 4845
90e9f6a6
YZ
4846 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4847 GFP_KERNEL)) {
bf16d19a 4848 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4849 }
88a420e4
CL
4850 /* Push back cpu slabs */
4851 flush_all(s);
4852
fa45dc25 4853 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4854 unsigned long flags;
4855 struct page *page;
4856
9e86943b 4857 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4858 continue;
4859
4860 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4861 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4862 process_slab(&t, s, page, alloc);
916ac052 4863 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4864 process_slab(&t, s, page, alloc);
88a420e4
CL
4865 spin_unlock_irqrestore(&n->list_lock, flags);
4866 }
4867
4868 for (i = 0; i < t.count; i++) {
45edfa58 4869 struct location *l = &t.loc[i];
88a420e4 4870
bf16d19a 4871 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4872
4873 if (l->addr)
bf16d19a 4874 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4875 else
bf16d19a
JP
4876 len += sysfs_emit_at(buf, len, "<not-available>");
4877
4878 if (l->sum_time != l->min_time)
4879 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4880 l->min_time,
4881 (long)div_u64(l->sum_time,
4882 l->count),
4883 l->max_time);
4884 else
4885 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4886
4887 if (l->min_pid != l->max_pid)
bf16d19a
JP
4888 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4889 l->min_pid, l->max_pid);
45edfa58 4890 else
bf16d19a
JP
4891 len += sysfs_emit_at(buf, len, " pid=%ld",
4892 l->min_pid);
45edfa58 4893
174596a0 4894 if (num_online_cpus() > 1 &&
bf16d19a
JP
4895 !cpumask_empty(to_cpumask(l->cpus)))
4896 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4897 cpumask_pr_args(to_cpumask(l->cpus)));
4898
4899 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4900 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4901 nodemask_pr_args(&l->nodes));
4902
4903 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4904 }
4905
4906 free_loc_track(&t);
4907 if (!t.count)
bf16d19a
JP
4908 len += sysfs_emit_at(buf, len, "No data\n");
4909
e374d483 4910 return len;
88a420e4 4911}
6dfd1b65 4912#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4913
a5a84755 4914#ifdef SLUB_RESILIENCY_TEST
c07b8183 4915static void __init resiliency_test(void)
a5a84755
CL
4916{
4917 u8 *p;
cc252eae 4918 int type = KMALLOC_NORMAL;
a5a84755 4919
95a05b42 4920 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4921
f9f58285
FF
4922 pr_err("SLUB resiliency testing\n");
4923 pr_err("-----------------------\n");
4924 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4925
4926 p = kzalloc(16, GFP_KERNEL);
4927 p[16] = 0x12;
f9f58285
FF
4928 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4929 p + 16);
a5a84755 4930
cc252eae 4931 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4932
4933 /* Hmmm... The next two are dangerous */
4934 p = kzalloc(32, GFP_KERNEL);
4935 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4936 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4937 p);
4938 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4939
cc252eae 4940 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4941 p = kzalloc(64, GFP_KERNEL);
4942 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4943 *p = 0x56;
f9f58285
FF
4944 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4945 p);
4946 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4947 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4948
f9f58285 4949 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4950 p = kzalloc(128, GFP_KERNEL);
4951 kfree(p);
4952 *p = 0x78;
f9f58285 4953 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4954 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4955
4956 p = kzalloc(256, GFP_KERNEL);
4957 kfree(p);
4958 p[50] = 0x9a;
f9f58285 4959 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4960 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4961
4962 p = kzalloc(512, GFP_KERNEL);
4963 kfree(p);
4964 p[512] = 0xab;
f9f58285 4965 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4966 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4967}
4968#else
4969#ifdef CONFIG_SYSFS
4970static void resiliency_test(void) {};
4971#endif
6dfd1b65 4972#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4973
ab4d5ed5 4974#ifdef CONFIG_SYSFS
81819f0f 4975enum slab_stat_type {
205ab99d
CL
4976 SL_ALL, /* All slabs */
4977 SL_PARTIAL, /* Only partially allocated slabs */
4978 SL_CPU, /* Only slabs used for cpu caches */
4979 SL_OBJECTS, /* Determine allocated objects not slabs */
4980 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4981};
4982
205ab99d 4983#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4984#define SO_PARTIAL (1 << SL_PARTIAL)
4985#define SO_CPU (1 << SL_CPU)
4986#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4987#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4988
62e5c4b4 4989static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4990 char *buf, unsigned long flags)
81819f0f
CL
4991{
4992 unsigned long total = 0;
81819f0f
CL
4993 int node;
4994 int x;
4995 unsigned long *nodes;
bf16d19a 4996 int len = 0;
81819f0f 4997
6396bb22 4998 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4999 if (!nodes)
5000 return -ENOMEM;
81819f0f 5001
205ab99d
CL
5002 if (flags & SO_CPU) {
5003 int cpu;
81819f0f 5004
205ab99d 5005 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5006 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5007 cpu);
ec3ab083 5008 int node;
49e22585 5009 struct page *page;
dfb4f096 5010
4db0c3c2 5011 page = READ_ONCE(c->page);
ec3ab083
CL
5012 if (!page)
5013 continue;
205ab99d 5014
ec3ab083
CL
5015 node = page_to_nid(page);
5016 if (flags & SO_TOTAL)
5017 x = page->objects;
5018 else if (flags & SO_OBJECTS)
5019 x = page->inuse;
5020 else
5021 x = 1;
49e22585 5022
ec3ab083
CL
5023 total += x;
5024 nodes[node] += x;
5025
a93cf07b 5026 page = slub_percpu_partial_read_once(c);
49e22585 5027 if (page) {
8afb1474
LZ
5028 node = page_to_nid(page);
5029 if (flags & SO_TOTAL)
5030 WARN_ON_ONCE(1);
5031 else if (flags & SO_OBJECTS)
5032 WARN_ON_ONCE(1);
5033 else
5034 x = page->pages;
bc6697d8
ED
5035 total += x;
5036 nodes[node] += x;
49e22585 5037 }
81819f0f
CL
5038 }
5039 }
5040
e4f8e513
QC
5041 /*
5042 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5043 * already held which will conflict with an existing lock order:
5044 *
5045 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5046 *
5047 * We don't really need mem_hotplug_lock (to hold off
5048 * slab_mem_going_offline_callback) here because slab's memory hot
5049 * unplug code doesn't destroy the kmem_cache->node[] data.
5050 */
5051
ab4d5ed5 5052#ifdef CONFIG_SLUB_DEBUG
205ab99d 5053 if (flags & SO_ALL) {
fa45dc25
CL
5054 struct kmem_cache_node *n;
5055
5056 for_each_kmem_cache_node(s, node, n) {
205ab99d 5057
d0e0ac97
CG
5058 if (flags & SO_TOTAL)
5059 x = atomic_long_read(&n->total_objects);
5060 else if (flags & SO_OBJECTS)
5061 x = atomic_long_read(&n->total_objects) -
5062 count_partial(n, count_free);
81819f0f 5063 else
205ab99d 5064 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5065 total += x;
5066 nodes[node] += x;
5067 }
5068
ab4d5ed5
CL
5069 } else
5070#endif
5071 if (flags & SO_PARTIAL) {
fa45dc25 5072 struct kmem_cache_node *n;
81819f0f 5073
fa45dc25 5074 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5075 if (flags & SO_TOTAL)
5076 x = count_partial(n, count_total);
5077 else if (flags & SO_OBJECTS)
5078 x = count_partial(n, count_inuse);
81819f0f 5079 else
205ab99d 5080 x = n->nr_partial;
81819f0f
CL
5081 total += x;
5082 nodes[node] += x;
5083 }
5084 }
bf16d19a
JP
5085
5086 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5087#ifdef CONFIG_NUMA
bf16d19a 5088 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5089 if (nodes[node])
bf16d19a
JP
5090 len += sysfs_emit_at(buf, len, " N%d=%lu",
5091 node, nodes[node]);
5092 }
81819f0f 5093#endif
bf16d19a 5094 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5095 kfree(nodes);
bf16d19a
JP
5096
5097 return len;
81819f0f
CL
5098}
5099
81819f0f 5100#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5101#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5102
5103struct slab_attribute {
5104 struct attribute attr;
5105 ssize_t (*show)(struct kmem_cache *s, char *buf);
5106 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5107};
5108
5109#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5110 static struct slab_attribute _name##_attr = \
5111 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5112
5113#define SLAB_ATTR(_name) \
5114 static struct slab_attribute _name##_attr = \
ab067e99 5115 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5116
81819f0f
CL
5117static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5118{
bf16d19a 5119 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5120}
5121SLAB_ATTR_RO(slab_size);
5122
5123static ssize_t align_show(struct kmem_cache *s, char *buf)
5124{
bf16d19a 5125 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5126}
5127SLAB_ATTR_RO(align);
5128
5129static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5130{
bf16d19a 5131 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5132}
5133SLAB_ATTR_RO(object_size);
5134
5135static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5136{
bf16d19a 5137 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5138}
5139SLAB_ATTR_RO(objs_per_slab);
5140
5141static ssize_t order_show(struct kmem_cache *s, char *buf)
5142{
bf16d19a 5143 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5144}
32a6f409 5145SLAB_ATTR_RO(order);
81819f0f 5146
73d342b1
DR
5147static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5148{
bf16d19a 5149 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5150}
5151
5152static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5153 size_t length)
5154{
5155 unsigned long min;
5156 int err;
5157
3dbb95f7 5158 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5159 if (err)
5160 return err;
5161
c0bdb232 5162 set_min_partial(s, min);
73d342b1
DR
5163 return length;
5164}
5165SLAB_ATTR(min_partial);
5166
49e22585
CL
5167static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5168{
bf16d19a 5169 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5170}
5171
5172static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5173 size_t length)
5174{
e5d9998f 5175 unsigned int objects;
49e22585
CL
5176 int err;
5177
e5d9998f 5178 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5179 if (err)
5180 return err;
345c905d 5181 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5182 return -EINVAL;
49e22585 5183
e6d0e1dc 5184 slub_set_cpu_partial(s, objects);
49e22585
CL
5185 flush_all(s);
5186 return length;
5187}
5188SLAB_ATTR(cpu_partial);
5189
81819f0f
CL
5190static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5191{
62c70bce
JP
5192 if (!s->ctor)
5193 return 0;
bf16d19a 5194 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5195}
5196SLAB_ATTR_RO(ctor);
5197
81819f0f
CL
5198static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5199{
bf16d19a 5200 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5201}
5202SLAB_ATTR_RO(aliases);
5203
81819f0f
CL
5204static ssize_t partial_show(struct kmem_cache *s, char *buf)
5205{
d9acf4b7 5206 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5207}
5208SLAB_ATTR_RO(partial);
5209
5210static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5211{
d9acf4b7 5212 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5213}
5214SLAB_ATTR_RO(cpu_slabs);
5215
5216static ssize_t objects_show(struct kmem_cache *s, char *buf)
5217{
205ab99d 5218 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5219}
5220SLAB_ATTR_RO(objects);
5221
205ab99d
CL
5222static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5223{
5224 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5225}
5226SLAB_ATTR_RO(objects_partial);
5227
49e22585
CL
5228static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5229{
5230 int objects = 0;
5231 int pages = 0;
5232 int cpu;
bf16d19a 5233 int len = 0;
49e22585
CL
5234
5235 for_each_online_cpu(cpu) {
a93cf07b
WY
5236 struct page *page;
5237
5238 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5239
5240 if (page) {
5241 pages += page->pages;
5242 objects += page->pobjects;
5243 }
5244 }
5245
bf16d19a 5246 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5247
5248#ifdef CONFIG_SMP
5249 for_each_online_cpu(cpu) {
a93cf07b
WY
5250 struct page *page;
5251
5252 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5253 if (page)
5254 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5255 cpu, page->pobjects, page->pages);
49e22585
CL
5256 }
5257#endif
bf16d19a
JP
5258 len += sysfs_emit_at(buf, len, "\n");
5259
5260 return len;
49e22585
CL
5261}
5262SLAB_ATTR_RO(slabs_cpu_partial);
5263
a5a84755
CL
5264static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5265{
bf16d19a 5266 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5267}
8f58119a 5268SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5269
5270static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5271{
bf16d19a 5272 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5273}
5274SLAB_ATTR_RO(hwcache_align);
5275
5276#ifdef CONFIG_ZONE_DMA
5277static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5278{
bf16d19a 5279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5280}
5281SLAB_ATTR_RO(cache_dma);
5282#endif
5283
8eb8284b
DW
5284static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5285{
bf16d19a 5286 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5287}
5288SLAB_ATTR_RO(usersize);
5289
a5a84755
CL
5290static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5291{
bf16d19a 5292 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5293}
5294SLAB_ATTR_RO(destroy_by_rcu);
5295
ab4d5ed5 5296#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5297static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5298{
5299 return show_slab_objects(s, buf, SO_ALL);
5300}
5301SLAB_ATTR_RO(slabs);
5302
205ab99d
CL
5303static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5304{
5305 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5306}
5307SLAB_ATTR_RO(total_objects);
5308
81819f0f
CL
5309static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5310{
bf16d19a 5311 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5312}
060807f8 5313SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5314
5315static ssize_t trace_show(struct kmem_cache *s, char *buf)
5316{
bf16d19a 5317 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5318}
060807f8 5319SLAB_ATTR_RO(trace);
81819f0f 5320
81819f0f
CL
5321static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5322{
bf16d19a 5323 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5324}
5325
ad38b5b1 5326SLAB_ATTR_RO(red_zone);
81819f0f
CL
5327
5328static ssize_t poison_show(struct kmem_cache *s, char *buf)
5329{
bf16d19a 5330 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5331}
5332
ad38b5b1 5333SLAB_ATTR_RO(poison);
81819f0f
CL
5334
5335static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5336{
bf16d19a 5337 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5338}
5339
ad38b5b1 5340SLAB_ATTR_RO(store_user);
81819f0f 5341
53e15af0
CL
5342static ssize_t validate_show(struct kmem_cache *s, char *buf)
5343{
5344 return 0;
5345}
5346
5347static ssize_t validate_store(struct kmem_cache *s,
5348 const char *buf, size_t length)
5349{
434e245d
CL
5350 int ret = -EINVAL;
5351
5352 if (buf[0] == '1') {
5353 ret = validate_slab_cache(s);
5354 if (ret >= 0)
5355 ret = length;
5356 }
5357 return ret;
53e15af0
CL
5358}
5359SLAB_ATTR(validate);
a5a84755
CL
5360
5361static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5362{
5363 if (!(s->flags & SLAB_STORE_USER))
5364 return -ENOSYS;
5365 return list_locations(s, buf, TRACK_ALLOC);
5366}
5367SLAB_ATTR_RO(alloc_calls);
5368
5369static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5370{
5371 if (!(s->flags & SLAB_STORE_USER))
5372 return -ENOSYS;
5373 return list_locations(s, buf, TRACK_FREE);
5374}
5375SLAB_ATTR_RO(free_calls);
5376#endif /* CONFIG_SLUB_DEBUG */
5377
5378#ifdef CONFIG_FAILSLAB
5379static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5380{
bf16d19a 5381 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5382}
060807f8 5383SLAB_ATTR_RO(failslab);
ab4d5ed5 5384#endif
53e15af0 5385
2086d26a
CL
5386static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5387{
5388 return 0;
5389}
5390
5391static ssize_t shrink_store(struct kmem_cache *s,
5392 const char *buf, size_t length)
5393{
832f37f5 5394 if (buf[0] == '1')
10befea9 5395 kmem_cache_shrink(s);
832f37f5 5396 else
2086d26a
CL
5397 return -EINVAL;
5398 return length;
5399}
5400SLAB_ATTR(shrink);
5401
81819f0f 5402#ifdef CONFIG_NUMA
9824601e 5403static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5404{
bf16d19a 5405 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5406}
5407
9824601e 5408static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5409 const char *buf, size_t length)
5410{
eb7235eb 5411 unsigned int ratio;
0121c619
CL
5412 int err;
5413
eb7235eb 5414 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5415 if (err)
5416 return err;
eb7235eb
AD
5417 if (ratio > 100)
5418 return -ERANGE;
0121c619 5419
eb7235eb 5420 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5421
81819f0f
CL
5422 return length;
5423}
9824601e 5424SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5425#endif
5426
8ff12cfc 5427#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5428static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5429{
5430 unsigned long sum = 0;
5431 int cpu;
bf16d19a 5432 int len = 0;
6da2ec56 5433 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5434
5435 if (!data)
5436 return -ENOMEM;
5437
5438 for_each_online_cpu(cpu) {
9dfc6e68 5439 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5440
5441 data[cpu] = x;
5442 sum += x;
5443 }
5444
bf16d19a 5445 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5446
50ef37b9 5447#ifdef CONFIG_SMP
8ff12cfc 5448 for_each_online_cpu(cpu) {
bf16d19a
JP
5449 if (data[cpu])
5450 len += sysfs_emit_at(buf, len, " C%d=%u",
5451 cpu, data[cpu]);
8ff12cfc 5452 }
50ef37b9 5453#endif
8ff12cfc 5454 kfree(data);
bf16d19a
JP
5455 len += sysfs_emit_at(buf, len, "\n");
5456
5457 return len;
8ff12cfc
CL
5458}
5459
78eb00cc
DR
5460static void clear_stat(struct kmem_cache *s, enum stat_item si)
5461{
5462 int cpu;
5463
5464 for_each_online_cpu(cpu)
9dfc6e68 5465 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5466}
5467
8ff12cfc
CL
5468#define STAT_ATTR(si, text) \
5469static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5470{ \
5471 return show_stat(s, buf, si); \
5472} \
78eb00cc
DR
5473static ssize_t text##_store(struct kmem_cache *s, \
5474 const char *buf, size_t length) \
5475{ \
5476 if (buf[0] != '0') \
5477 return -EINVAL; \
5478 clear_stat(s, si); \
5479 return length; \
5480} \
5481SLAB_ATTR(text); \
8ff12cfc
CL
5482
5483STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5484STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5485STAT_ATTR(FREE_FASTPATH, free_fastpath);
5486STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5487STAT_ATTR(FREE_FROZEN, free_frozen);
5488STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5489STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5490STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5491STAT_ATTR(ALLOC_SLAB, alloc_slab);
5492STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5493STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5494STAT_ATTR(FREE_SLAB, free_slab);
5495STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5496STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5497STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5498STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5499STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5500STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5501STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5502STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5503STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5504STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5505STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5506STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5507STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5508STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5509#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5510
06428780 5511static struct attribute *slab_attrs[] = {
81819f0f
CL
5512 &slab_size_attr.attr,
5513 &object_size_attr.attr,
5514 &objs_per_slab_attr.attr,
5515 &order_attr.attr,
73d342b1 5516 &min_partial_attr.attr,
49e22585 5517 &cpu_partial_attr.attr,
81819f0f 5518 &objects_attr.attr,
205ab99d 5519 &objects_partial_attr.attr,
81819f0f
CL
5520 &partial_attr.attr,
5521 &cpu_slabs_attr.attr,
5522 &ctor_attr.attr,
81819f0f
CL
5523 &aliases_attr.attr,
5524 &align_attr.attr,
81819f0f
CL
5525 &hwcache_align_attr.attr,
5526 &reclaim_account_attr.attr,
5527 &destroy_by_rcu_attr.attr,
a5a84755 5528 &shrink_attr.attr,
49e22585 5529 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5530#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5531 &total_objects_attr.attr,
5532 &slabs_attr.attr,
5533 &sanity_checks_attr.attr,
5534 &trace_attr.attr,
81819f0f
CL
5535 &red_zone_attr.attr,
5536 &poison_attr.attr,
5537 &store_user_attr.attr,
53e15af0 5538 &validate_attr.attr,
88a420e4
CL
5539 &alloc_calls_attr.attr,
5540 &free_calls_attr.attr,
ab4d5ed5 5541#endif
81819f0f
CL
5542#ifdef CONFIG_ZONE_DMA
5543 &cache_dma_attr.attr,
5544#endif
5545#ifdef CONFIG_NUMA
9824601e 5546 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5547#endif
5548#ifdef CONFIG_SLUB_STATS
5549 &alloc_fastpath_attr.attr,
5550 &alloc_slowpath_attr.attr,
5551 &free_fastpath_attr.attr,
5552 &free_slowpath_attr.attr,
5553 &free_frozen_attr.attr,
5554 &free_add_partial_attr.attr,
5555 &free_remove_partial_attr.attr,
5556 &alloc_from_partial_attr.attr,
5557 &alloc_slab_attr.attr,
5558 &alloc_refill_attr.attr,
e36a2652 5559 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5560 &free_slab_attr.attr,
5561 &cpuslab_flush_attr.attr,
5562 &deactivate_full_attr.attr,
5563 &deactivate_empty_attr.attr,
5564 &deactivate_to_head_attr.attr,
5565 &deactivate_to_tail_attr.attr,
5566 &deactivate_remote_frees_attr.attr,
03e404af 5567 &deactivate_bypass_attr.attr,
65c3376a 5568 &order_fallback_attr.attr,
b789ef51
CL
5569 &cmpxchg_double_fail_attr.attr,
5570 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5571 &cpu_partial_alloc_attr.attr,
5572 &cpu_partial_free_attr.attr,
8028dcea
AS
5573 &cpu_partial_node_attr.attr,
5574 &cpu_partial_drain_attr.attr,
81819f0f 5575#endif
4c13dd3b
DM
5576#ifdef CONFIG_FAILSLAB
5577 &failslab_attr.attr,
5578#endif
8eb8284b 5579 &usersize_attr.attr,
4c13dd3b 5580
81819f0f
CL
5581 NULL
5582};
5583
1fdaaa23 5584static const struct attribute_group slab_attr_group = {
81819f0f
CL
5585 .attrs = slab_attrs,
5586};
5587
5588static ssize_t slab_attr_show(struct kobject *kobj,
5589 struct attribute *attr,
5590 char *buf)
5591{
5592 struct slab_attribute *attribute;
5593 struct kmem_cache *s;
5594 int err;
5595
5596 attribute = to_slab_attr(attr);
5597 s = to_slab(kobj);
5598
5599 if (!attribute->show)
5600 return -EIO;
5601
5602 err = attribute->show(s, buf);
5603
5604 return err;
5605}
5606
5607static ssize_t slab_attr_store(struct kobject *kobj,
5608 struct attribute *attr,
5609 const char *buf, size_t len)
5610{
5611 struct slab_attribute *attribute;
5612 struct kmem_cache *s;
5613 int err;
5614
5615 attribute = to_slab_attr(attr);
5616 s = to_slab(kobj);
5617
5618 if (!attribute->store)
5619 return -EIO;
5620
5621 err = attribute->store(s, buf, len);
81819f0f
CL
5622 return err;
5623}
5624
41a21285
CL
5625static void kmem_cache_release(struct kobject *k)
5626{
5627 slab_kmem_cache_release(to_slab(k));
5628}
5629
52cf25d0 5630static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5631 .show = slab_attr_show,
5632 .store = slab_attr_store,
5633};
5634
5635static struct kobj_type slab_ktype = {
5636 .sysfs_ops = &slab_sysfs_ops,
41a21285 5637 .release = kmem_cache_release,
81819f0f
CL
5638};
5639
27c3a314 5640static struct kset *slab_kset;
81819f0f 5641
9a41707b
VD
5642static inline struct kset *cache_kset(struct kmem_cache *s)
5643{
9a41707b
VD
5644 return slab_kset;
5645}
5646
81819f0f
CL
5647#define ID_STR_LENGTH 64
5648
5649/* Create a unique string id for a slab cache:
6446faa2
CL
5650 *
5651 * Format :[flags-]size
81819f0f
CL
5652 */
5653static char *create_unique_id(struct kmem_cache *s)
5654{
5655 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5656 char *p = name;
5657
5658 BUG_ON(!name);
5659
5660 *p++ = ':';
5661 /*
5662 * First flags affecting slabcache operations. We will only
5663 * get here for aliasable slabs so we do not need to support
5664 * too many flags. The flags here must cover all flags that
5665 * are matched during merging to guarantee that the id is
5666 * unique.
5667 */
5668 if (s->flags & SLAB_CACHE_DMA)
5669 *p++ = 'd';
6d6ea1e9
NB
5670 if (s->flags & SLAB_CACHE_DMA32)
5671 *p++ = 'D';
81819f0f
CL
5672 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5673 *p++ = 'a';
becfda68 5674 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5675 *p++ = 'F';
230e9fc2
VD
5676 if (s->flags & SLAB_ACCOUNT)
5677 *p++ = 'A';
81819f0f
CL
5678 if (p != name + 1)
5679 *p++ = '-';
44065b2e 5680 p += sprintf(p, "%07u", s->size);
2633d7a0 5681
81819f0f
CL
5682 BUG_ON(p > name + ID_STR_LENGTH - 1);
5683 return name;
5684}
5685
5686static int sysfs_slab_add(struct kmem_cache *s)
5687{
5688 int err;
5689 const char *name;
1663f26d 5690 struct kset *kset = cache_kset(s);
45530c44 5691 int unmergeable = slab_unmergeable(s);
81819f0f 5692
1663f26d
TH
5693 if (!kset) {
5694 kobject_init(&s->kobj, &slab_ktype);
5695 return 0;
5696 }
5697
11066386
MC
5698 if (!unmergeable && disable_higher_order_debug &&
5699 (slub_debug & DEBUG_METADATA_FLAGS))
5700 unmergeable = 1;
5701
81819f0f
CL
5702 if (unmergeable) {
5703 /*
5704 * Slabcache can never be merged so we can use the name proper.
5705 * This is typically the case for debug situations. In that
5706 * case we can catch duplicate names easily.
5707 */
27c3a314 5708 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5709 name = s->name;
5710 } else {
5711 /*
5712 * Create a unique name for the slab as a target
5713 * for the symlinks.
5714 */
5715 name = create_unique_id(s);
5716 }
5717
1663f26d 5718 s->kobj.kset = kset;
26e4f205 5719 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5720 if (err)
80da026a 5721 goto out;
81819f0f
CL
5722
5723 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5724 if (err)
5725 goto out_del_kobj;
9a41707b 5726
81819f0f
CL
5727 if (!unmergeable) {
5728 /* Setup first alias */
5729 sysfs_slab_alias(s, s->name);
81819f0f 5730 }
54b6a731
DJ
5731out:
5732 if (!unmergeable)
5733 kfree(name);
5734 return err;
5735out_del_kobj:
5736 kobject_del(&s->kobj);
54b6a731 5737 goto out;
81819f0f
CL
5738}
5739
d50d82fa
MP
5740void sysfs_slab_unlink(struct kmem_cache *s)
5741{
5742 if (slab_state >= FULL)
5743 kobject_del(&s->kobj);
5744}
5745
bf5eb3de
TH
5746void sysfs_slab_release(struct kmem_cache *s)
5747{
5748 if (slab_state >= FULL)
5749 kobject_put(&s->kobj);
81819f0f
CL
5750}
5751
5752/*
5753 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5754 * available lest we lose that information.
81819f0f
CL
5755 */
5756struct saved_alias {
5757 struct kmem_cache *s;
5758 const char *name;
5759 struct saved_alias *next;
5760};
5761
5af328a5 5762static struct saved_alias *alias_list;
81819f0f
CL
5763
5764static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5765{
5766 struct saved_alias *al;
5767
97d06609 5768 if (slab_state == FULL) {
81819f0f
CL
5769 /*
5770 * If we have a leftover link then remove it.
5771 */
27c3a314
GKH
5772 sysfs_remove_link(&slab_kset->kobj, name);
5773 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5774 }
5775
5776 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5777 if (!al)
5778 return -ENOMEM;
5779
5780 al->s = s;
5781 al->name = name;
5782 al->next = alias_list;
5783 alias_list = al;
5784 return 0;
5785}
5786
5787static int __init slab_sysfs_init(void)
5788{
5b95a4ac 5789 struct kmem_cache *s;
81819f0f
CL
5790 int err;
5791
18004c5d 5792 mutex_lock(&slab_mutex);
2bce6485 5793
d7660ce5 5794 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5795 if (!slab_kset) {
18004c5d 5796 mutex_unlock(&slab_mutex);
f9f58285 5797 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5798 return -ENOSYS;
5799 }
5800
97d06609 5801 slab_state = FULL;
26a7bd03 5802
5b95a4ac 5803 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5804 err = sysfs_slab_add(s);
5d540fb7 5805 if (err)
f9f58285
FF
5806 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5807 s->name);
26a7bd03 5808 }
81819f0f
CL
5809
5810 while (alias_list) {
5811 struct saved_alias *al = alias_list;
5812
5813 alias_list = alias_list->next;
5814 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5815 if (err)
f9f58285
FF
5816 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5817 al->name);
81819f0f
CL
5818 kfree(al);
5819 }
5820
18004c5d 5821 mutex_unlock(&slab_mutex);
81819f0f
CL
5822 resiliency_test();
5823 return 0;
5824}
5825
5826__initcall(slab_sysfs_init);
ab4d5ed5 5827#endif /* CONFIG_SYSFS */
57ed3eda
PE
5828
5829/*
5830 * The /proc/slabinfo ABI
5831 */
5b365771 5832#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5833void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5834{
57ed3eda 5835 unsigned long nr_slabs = 0;
205ab99d
CL
5836 unsigned long nr_objs = 0;
5837 unsigned long nr_free = 0;
57ed3eda 5838 int node;
fa45dc25 5839 struct kmem_cache_node *n;
57ed3eda 5840
fa45dc25 5841 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5842 nr_slabs += node_nr_slabs(n);
5843 nr_objs += node_nr_objs(n);
205ab99d 5844 nr_free += count_partial(n, count_free);
57ed3eda
PE
5845 }
5846
0d7561c6
GC
5847 sinfo->active_objs = nr_objs - nr_free;
5848 sinfo->num_objs = nr_objs;
5849 sinfo->active_slabs = nr_slabs;
5850 sinfo->num_slabs = nr_slabs;
5851 sinfo->objects_per_slab = oo_objects(s->oo);
5852 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5853}
5854
0d7561c6 5855void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5856{
7b3c3a50
AD
5857}
5858
b7454ad3
GC
5859ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5860 size_t count, loff_t *ppos)
7b3c3a50 5861{
b7454ad3 5862 return -EIO;
7b3c3a50 5863}
5b365771 5864#endif /* CONFIG_SLUB_DEBUG */