]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
slub: disable interrupts in cmpxchg_double_slab when falling back to pagelock
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f 31
4a92379b
RK
32#include <trace/events/kmem.h>
33
81819f0f
CL
34/*
35 * Lock order:
881db7fb
CL
36 * 1. slub_lock (Global Semaphore)
37 * 2. node->list_lock
38 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 39 *
881db7fb
CL
40 * slub_lock
41 *
42 * The role of the slub_lock is to protect the list of all the slabs
43 * and to synchronize major metadata changes to slab cache structures.
44 *
45 * The slab_lock is only used for debugging and on arches that do not
46 * have the ability to do a cmpxchg_double. It only protects the second
47 * double word in the page struct. Meaning
48 * A. page->freelist -> List of object free in a page
49 * B. page->counters -> Counters of objects
50 * C. page->frozen -> frozen state
51 *
52 * If a slab is frozen then it is exempt from list management. It is not
53 * on any list. The processor that froze the slab is the one who can
54 * perform list operations on the page. Other processors may put objects
55 * onto the freelist but the processor that froze the slab is the only
56 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
57 *
58 * The list_lock protects the partial and full list on each node and
59 * the partial slab counter. If taken then no new slabs may be added or
60 * removed from the lists nor make the number of partial slabs be modified.
61 * (Note that the total number of slabs is an atomic value that may be
62 * modified without taking the list lock).
63 *
64 * The list_lock is a centralized lock and thus we avoid taking it as
65 * much as possible. As long as SLUB does not have to handle partial
66 * slabs, operations can continue without any centralized lock. F.e.
67 * allocating a long series of objects that fill up slabs does not require
68 * the list lock.
81819f0f
CL
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
af537b0a
CL
110#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
111 SLAB_TRACE | SLAB_DEBUG_FREE)
112
113static inline int kmem_cache_debug(struct kmem_cache *s)
114{
5577bd8a 115#ifdef CONFIG_SLUB_DEBUG
af537b0a 116 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 117#else
af537b0a 118 return 0;
5577bd8a 119#endif
af537b0a 120}
5577bd8a 121
81819f0f
CL
122/*
123 * Issues still to be resolved:
124 *
81819f0f
CL
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 *
81819f0f
CL
127 * - Variable sizing of the per node arrays
128 */
129
130/* Enable to test recovery from slab corruption on boot */
131#undef SLUB_RESILIENCY_TEST
132
b789ef51
CL
133/* Enable to log cmpxchg failures */
134#undef SLUB_DEBUG_CMPXCHG
135
2086d26a
CL
136/*
137 * Mininum number of partial slabs. These will be left on the partial
138 * lists even if they are empty. kmem_cache_shrink may reclaim them.
139 */
76be8950 140#define MIN_PARTIAL 5
e95eed57 141
2086d26a
CL
142/*
143 * Maximum number of desirable partial slabs.
144 * The existence of more partial slabs makes kmem_cache_shrink
145 * sort the partial list by the number of objects in the.
146 */
147#define MAX_PARTIAL 10
148
81819f0f
CL
149#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
150 SLAB_POISON | SLAB_STORE_USER)
672bba3a 151
fa5ec8a1 152/*
3de47213
DR
153 * Debugging flags that require metadata to be stored in the slab. These get
154 * disabled when slub_debug=O is used and a cache's min order increases with
155 * metadata.
fa5ec8a1 156 */
3de47213 157#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 158
81819f0f
CL
159/*
160 * Set of flags that will prevent slab merging
161 */
162#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
163 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 SLAB_FAILSLAB)
81819f0f
CL
165
166#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 167 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 168
210b5c06
CG
169#define OO_SHIFT 16
170#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 171#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 172
81819f0f 173/* Internal SLUB flags */
f90ec390 174#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 175#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
176
177static int kmem_size = sizeof(struct kmem_cache);
178
179#ifdef CONFIG_SMP
180static struct notifier_block slab_notifier;
181#endif
182
183static enum {
184 DOWN, /* No slab functionality available */
51df1142 185 PARTIAL, /* Kmem_cache_node works */
672bba3a 186 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
187 SYSFS /* Sysfs up */
188} slab_state = DOWN;
189
190/* A list of all slab caches on the system */
191static DECLARE_RWSEM(slub_lock);
5af328a5 192static LIST_HEAD(slab_caches);
81819f0f 193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
197struct track {
ce71e27c 198 unsigned long addr; /* Called from address */
02cbc874
CL
199 int cpu; /* Was running on cpu */
200 int pid; /* Pid context */
201 unsigned long when; /* When did the operation occur */
202};
203
204enum track_item { TRACK_ALLOC, TRACK_FREE };
205
ab4d5ed5 206#ifdef CONFIG_SYSFS
81819f0f
CL
207static int sysfs_slab_add(struct kmem_cache *);
208static int sysfs_slab_alias(struct kmem_cache *, const char *);
209static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 210
81819f0f 211#else
0c710013
CL
212static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
213static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
214 { return 0; }
151c602f
CL
215static inline void sysfs_slab_remove(struct kmem_cache *s)
216{
84c1cf62 217 kfree(s->name);
151c602f
CL
218 kfree(s);
219}
8ff12cfc 220
81819f0f
CL
221#endif
222
4fdccdfb 223static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
224{
225#ifdef CONFIG_SLUB_STATS
84e554e6 226 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
227#endif
228}
229
81819f0f
CL
230/********************************************************************
231 * Core slab cache functions
232 *******************************************************************/
233
234int slab_is_available(void)
235{
236 return slab_state >= UP;
237}
238
239static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
240{
81819f0f 241 return s->node[node];
81819f0f
CL
242}
243
6446faa2 244/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
245static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
247{
248 void *base;
249
a973e9dd 250 if (!object)
02cbc874
CL
251 return 1;
252
a973e9dd 253 base = page_address(page);
39b26464 254 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
255 (object - base) % s->size) {
256 return 0;
257 }
258
259 return 1;
260}
261
7656c72b
CL
262static inline void *get_freepointer(struct kmem_cache *s, void *object)
263{
264 return *(void **)(object + s->offset);
265}
266
1393d9a1
CL
267static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
268{
269 void *p;
270
271#ifdef CONFIG_DEBUG_PAGEALLOC
272 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
273#else
274 p = get_freepointer(s, object);
275#endif
276 return p;
277}
278
7656c72b
CL
279static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
280{
281 *(void **)(object + s->offset) = fp;
282}
283
284/* Loop over all objects in a slab */
224a88be
CL
285#define for_each_object(__p, __s, __addr, __objects) \
286 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
287 __p += (__s)->size)
288
7656c72b
CL
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292 return (p - addr) / s->size;
293}
294
d71f606f
MK
295static inline size_t slab_ksize(const struct kmem_cache *s)
296{
297#ifdef CONFIG_SLUB_DEBUG
298 /*
299 * Debugging requires use of the padding between object
300 * and whatever may come after it.
301 */
302 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
303 return s->objsize;
304
305#endif
306 /*
307 * If we have the need to store the freelist pointer
308 * back there or track user information then we can
309 * only use the space before that information.
310 */
311 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
312 return s->inuse;
313 /*
314 * Else we can use all the padding etc for the allocation
315 */
316 return s->size;
317}
318
ab9a0f19
LJ
319static inline int order_objects(int order, unsigned long size, int reserved)
320{
321 return ((PAGE_SIZE << order) - reserved) / size;
322}
323
834f3d11 324static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 325 unsigned long size, int reserved)
834f3d11
CL
326{
327 struct kmem_cache_order_objects x = {
ab9a0f19 328 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
329 };
330
331 return x;
332}
333
334static inline int oo_order(struct kmem_cache_order_objects x)
335{
210b5c06 336 return x.x >> OO_SHIFT;
834f3d11
CL
337}
338
339static inline int oo_objects(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x & OO_MASK;
834f3d11
CL
342}
343
881db7fb
CL
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
349 bit_spin_lock(PG_locked, &page->flags);
350}
351
352static __always_inline void slab_unlock(struct page *page)
353{
354 __bit_spin_unlock(PG_locked, &page->flags);
355}
356
1d07171c
CL
357/* Interrupts must be disabled (for the fallback code to work right) */
358static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 void *freelist_old, unsigned long counters_old,
360 void *freelist_new, unsigned long counters_new,
361 const char *n)
362{
363 VM_BUG_ON(!irqs_disabled());
364#ifdef CONFIG_CMPXCHG_DOUBLE
365 if (s->flags & __CMPXCHG_DOUBLE) {
366 if (cmpxchg_double(&page->freelist,
367 freelist_old, counters_old,
368 freelist_new, counters_new))
369 return 1;
370 } else
371#endif
372 {
373 slab_lock(page);
374 if (page->freelist == freelist_old && page->counters == counters_old) {
375 page->freelist = freelist_new;
376 page->counters = counters_new;
377 slab_unlock(page);
378 return 1;
379 }
380 slab_unlock(page);
381 }
382
383 cpu_relax();
384 stat(s, CMPXCHG_DOUBLE_FAIL);
385
386#ifdef SLUB_DEBUG_CMPXCHG
387 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
388#endif
389
390 return 0;
391}
392
b789ef51
CL
393static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
394 void *freelist_old, unsigned long counters_old,
395 void *freelist_new, unsigned long counters_new,
396 const char *n)
397{
398#ifdef CONFIG_CMPXCHG_DOUBLE
399 if (s->flags & __CMPXCHG_DOUBLE) {
400 if (cmpxchg_double(&page->freelist,
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405#endif
406 {
1d07171c
CL
407 unsigned long flags;
408
409 local_irq_save(flags);
881db7fb 410 slab_lock(page);
b789ef51
CL
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
881db7fb 414 slab_unlock(page);
1d07171c 415 local_irq_restore(flags);
b789ef51
CL
416 return 1;
417 }
881db7fb 418 slab_unlock(page);
1d07171c 419 local_irq_restore(flags);
b789ef51
CL
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425#ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427#endif
428
429 return 0;
430}
431
41ecc55b 432#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
433/*
434 * Determine a map of object in use on a page.
435 *
881db7fb 436 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
437 * not vanish from under us.
438 */
439static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440{
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446}
447
41ecc55b
CL
448/*
449 * Debug settings:
450 */
f0630fff
CL
451#ifdef CONFIG_SLUB_DEBUG_ON
452static int slub_debug = DEBUG_DEFAULT_FLAGS;
453#else
41ecc55b 454static int slub_debug;
f0630fff 455#endif
41ecc55b
CL
456
457static char *slub_debug_slabs;
fa5ec8a1 458static int disable_higher_order_debug;
41ecc55b 459
81819f0f
CL
460/*
461 * Object debugging
462 */
463static void print_section(char *text, u8 *addr, unsigned int length)
464{
465 int i, offset;
466 int newline = 1;
467 char ascii[17];
468
469 ascii[16] = 0;
470
471 for (i = 0; i < length; i++) {
472 if (newline) {
24922684 473 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
474 newline = 0;
475 }
06428780 476 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
477 offset = i % 16;
478 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
479 if (offset == 15) {
06428780 480 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
481 newline = 1;
482 }
483 }
484 if (!newline) {
485 i %= 16;
486 while (i < 16) {
06428780 487 printk(KERN_CONT " ");
81819f0f
CL
488 ascii[i] = ' ';
489 i++;
490 }
06428780 491 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
492 }
493}
494
81819f0f
CL
495static struct track *get_track(struct kmem_cache *s, void *object,
496 enum track_item alloc)
497{
498 struct track *p;
499
500 if (s->offset)
501 p = object + s->offset + sizeof(void *);
502 else
503 p = object + s->inuse;
504
505 return p + alloc;
506}
507
508static void set_track(struct kmem_cache *s, void *object,
ce71e27c 509 enum track_item alloc, unsigned long addr)
81819f0f 510{
1a00df4a 511 struct track *p = get_track(s, object, alloc);
81819f0f 512
81819f0f
CL
513 if (addr) {
514 p->addr = addr;
515 p->cpu = smp_processor_id();
88e4ccf2 516 p->pid = current->pid;
81819f0f
CL
517 p->when = jiffies;
518 } else
519 memset(p, 0, sizeof(struct track));
520}
521
81819f0f
CL
522static void init_tracking(struct kmem_cache *s, void *object)
523{
24922684
CL
524 if (!(s->flags & SLAB_STORE_USER))
525 return;
526
ce71e27c
EGM
527 set_track(s, object, TRACK_FREE, 0UL);
528 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
529}
530
531static void print_track(const char *s, struct track *t)
532{
533 if (!t->addr)
534 return;
535
7daf705f 536 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 537 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
538}
539
540static void print_tracking(struct kmem_cache *s, void *object)
541{
542 if (!(s->flags & SLAB_STORE_USER))
543 return;
544
545 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
546 print_track("Freed", get_track(s, object, TRACK_FREE));
547}
548
549static void print_page_info(struct page *page)
550{
39b26464
CL
551 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
552 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
553
554}
555
556static void slab_bug(struct kmem_cache *s, char *fmt, ...)
557{
558 va_list args;
559 char buf[100];
560
561 va_start(args, fmt);
562 vsnprintf(buf, sizeof(buf), fmt, args);
563 va_end(args);
564 printk(KERN_ERR "========================================"
565 "=====================================\n");
566 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
567 printk(KERN_ERR "----------------------------------------"
568 "-------------------------------------\n\n");
81819f0f
CL
569}
570
24922684
CL
571static void slab_fix(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
580}
581
582static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
583{
584 unsigned int off; /* Offset of last byte */
a973e9dd 585 u8 *addr = page_address(page);
24922684
CL
586
587 print_tracking(s, p);
588
589 print_page_info(page);
590
591 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
592 p, p - addr, get_freepointer(s, p));
593
594 if (p > addr + 16)
595 print_section("Bytes b4", p - 16, 16);
596
0ebd652b 597 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
598
599 if (s->flags & SLAB_RED_ZONE)
600 print_section("Redzone", p + s->objsize,
601 s->inuse - s->objsize);
602
81819f0f
CL
603 if (s->offset)
604 off = s->offset + sizeof(void *);
605 else
606 off = s->inuse;
607
24922684 608 if (s->flags & SLAB_STORE_USER)
81819f0f 609 off += 2 * sizeof(struct track);
81819f0f
CL
610
611 if (off != s->size)
612 /* Beginning of the filler is the free pointer */
24922684
CL
613 print_section("Padding", p + off, s->size - off);
614
615 dump_stack();
81819f0f
CL
616}
617
618static void object_err(struct kmem_cache *s, struct page *page,
619 u8 *object, char *reason)
620{
3dc50637 621 slab_bug(s, "%s", reason);
24922684 622 print_trailer(s, page, object);
81819f0f
CL
623}
624
24922684 625static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
626{
627 va_list args;
628 char buf[100];
629
24922684
CL
630 va_start(args, fmt);
631 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 632 va_end(args);
3dc50637 633 slab_bug(s, "%s", buf);
24922684 634 print_page_info(page);
81819f0f
CL
635 dump_stack();
636}
637
f7cb1933 638static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
639{
640 u8 *p = object;
641
642 if (s->flags & __OBJECT_POISON) {
643 memset(p, POISON_FREE, s->objsize - 1);
06428780 644 p[s->objsize - 1] = POISON_END;
81819f0f
CL
645 }
646
647 if (s->flags & SLAB_RED_ZONE)
f7cb1933 648 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
649}
650
24922684 651static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
652{
653 while (bytes) {
654 if (*start != (u8)value)
24922684 655 return start;
81819f0f
CL
656 start++;
657 bytes--;
658 }
24922684
CL
659 return NULL;
660}
661
662static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
663 void *from, void *to)
664{
665 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
666 memset(from, data, to - from);
667}
668
669static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
670 u8 *object, char *what,
06428780 671 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
672{
673 u8 *fault;
674 u8 *end;
675
676 fault = check_bytes(start, value, bytes);
677 if (!fault)
678 return 1;
679
680 end = start + bytes;
681 while (end > fault && end[-1] == value)
682 end--;
683
684 slab_bug(s, "%s overwritten", what);
685 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
686 fault, end - 1, fault[0], value);
687 print_trailer(s, page, object);
688
689 restore_bytes(s, what, value, fault, end);
690 return 0;
81819f0f
CL
691}
692
81819f0f
CL
693/*
694 * Object layout:
695 *
696 * object address
697 * Bytes of the object to be managed.
698 * If the freepointer may overlay the object then the free
699 * pointer is the first word of the object.
672bba3a 700 *
81819f0f
CL
701 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
702 * 0xa5 (POISON_END)
703 *
704 * object + s->objsize
705 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
706 * Padding is extended by another word if Redzoning is enabled and
707 * objsize == inuse.
708 *
81819f0f
CL
709 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
710 * 0xcc (RED_ACTIVE) for objects in use.
711 *
712 * object + s->inuse
672bba3a
CL
713 * Meta data starts here.
714 *
81819f0f
CL
715 * A. Free pointer (if we cannot overwrite object on free)
716 * B. Tracking data for SLAB_STORE_USER
672bba3a 717 * C. Padding to reach required alignment boundary or at mininum
6446faa2 718 * one word if debugging is on to be able to detect writes
672bba3a
CL
719 * before the word boundary.
720 *
721 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
722 *
723 * object + s->size
672bba3a 724 * Nothing is used beyond s->size.
81819f0f 725 *
672bba3a
CL
726 * If slabcaches are merged then the objsize and inuse boundaries are mostly
727 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
728 * may be used with merged slabcaches.
729 */
730
81819f0f
CL
731static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
732{
733 unsigned long off = s->inuse; /* The end of info */
734
735 if (s->offset)
736 /* Freepointer is placed after the object. */
737 off += sizeof(void *);
738
739 if (s->flags & SLAB_STORE_USER)
740 /* We also have user information there */
741 off += 2 * sizeof(struct track);
742
743 if (s->size == off)
744 return 1;
745
24922684
CL
746 return check_bytes_and_report(s, page, p, "Object padding",
747 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
748}
749
39b26464 750/* Check the pad bytes at the end of a slab page */
81819f0f
CL
751static int slab_pad_check(struct kmem_cache *s, struct page *page)
752{
24922684
CL
753 u8 *start;
754 u8 *fault;
755 u8 *end;
756 int length;
757 int remainder;
81819f0f
CL
758
759 if (!(s->flags & SLAB_POISON))
760 return 1;
761
a973e9dd 762 start = page_address(page);
ab9a0f19 763 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
764 end = start + length;
765 remainder = length % s->size;
81819f0f
CL
766 if (!remainder)
767 return 1;
768
39b26464 769 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
770 if (!fault)
771 return 1;
772 while (end > fault && end[-1] == POISON_INUSE)
773 end--;
774
775 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 776 print_section("Padding", end - remainder, remainder);
24922684 777
8a3d271d 778 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 779 return 0;
81819f0f
CL
780}
781
782static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 783 void *object, u8 val)
81819f0f
CL
784{
785 u8 *p = object;
786 u8 *endobject = object + s->objsize;
787
788 if (s->flags & SLAB_RED_ZONE) {
24922684 789 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 790 endobject, val, s->inuse - s->objsize))
81819f0f 791 return 0;
81819f0f 792 } else {
3adbefee
IM
793 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
794 check_bytes_and_report(s, page, p, "Alignment padding",
795 endobject, POISON_INUSE, s->inuse - s->objsize);
796 }
81819f0f
CL
797 }
798
799 if (s->flags & SLAB_POISON) {
f7cb1933 800 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
801 (!check_bytes_and_report(s, page, p, "Poison", p,
802 POISON_FREE, s->objsize - 1) ||
803 !check_bytes_and_report(s, page, p, "Poison",
06428780 804 p + s->objsize - 1, POISON_END, 1)))
81819f0f 805 return 0;
81819f0f
CL
806 /*
807 * check_pad_bytes cleans up on its own.
808 */
809 check_pad_bytes(s, page, p);
810 }
811
f7cb1933 812 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
813 /*
814 * Object and freepointer overlap. Cannot check
815 * freepointer while object is allocated.
816 */
817 return 1;
818
819 /* Check free pointer validity */
820 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
821 object_err(s, page, p, "Freepointer corrupt");
822 /*
9f6c708e 823 * No choice but to zap it and thus lose the remainder
81819f0f 824 * of the free objects in this slab. May cause
672bba3a 825 * another error because the object count is now wrong.
81819f0f 826 */
a973e9dd 827 set_freepointer(s, p, NULL);
81819f0f
CL
828 return 0;
829 }
830 return 1;
831}
832
833static int check_slab(struct kmem_cache *s, struct page *page)
834{
39b26464
CL
835 int maxobj;
836
81819f0f
CL
837 VM_BUG_ON(!irqs_disabled());
838
839 if (!PageSlab(page)) {
24922684 840 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
841 return 0;
842 }
39b26464 843
ab9a0f19 844 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
845 if (page->objects > maxobj) {
846 slab_err(s, page, "objects %u > max %u",
847 s->name, page->objects, maxobj);
848 return 0;
849 }
850 if (page->inuse > page->objects) {
24922684 851 slab_err(s, page, "inuse %u > max %u",
39b26464 852 s->name, page->inuse, page->objects);
81819f0f
CL
853 return 0;
854 }
855 /* Slab_pad_check fixes things up after itself */
856 slab_pad_check(s, page);
857 return 1;
858}
859
860/*
672bba3a
CL
861 * Determine if a certain object on a page is on the freelist. Must hold the
862 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
863 */
864static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
865{
866 int nr = 0;
881db7fb 867 void *fp;
81819f0f 868 void *object = NULL;
224a88be 869 unsigned long max_objects;
81819f0f 870
881db7fb 871 fp = page->freelist;
39b26464 872 while (fp && nr <= page->objects) {
81819f0f
CL
873 if (fp == search)
874 return 1;
875 if (!check_valid_pointer(s, page, fp)) {
876 if (object) {
877 object_err(s, page, object,
878 "Freechain corrupt");
a973e9dd 879 set_freepointer(s, object, NULL);
81819f0f
CL
880 break;
881 } else {
24922684 882 slab_err(s, page, "Freepointer corrupt");
a973e9dd 883 page->freelist = NULL;
39b26464 884 page->inuse = page->objects;
24922684 885 slab_fix(s, "Freelist cleared");
81819f0f
CL
886 return 0;
887 }
888 break;
889 }
890 object = fp;
891 fp = get_freepointer(s, object);
892 nr++;
893 }
894
ab9a0f19 895 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
896 if (max_objects > MAX_OBJS_PER_PAGE)
897 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
898
899 if (page->objects != max_objects) {
900 slab_err(s, page, "Wrong number of objects. Found %d but "
901 "should be %d", page->objects, max_objects);
902 page->objects = max_objects;
903 slab_fix(s, "Number of objects adjusted.");
904 }
39b26464 905 if (page->inuse != page->objects - nr) {
70d71228 906 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
907 "counted were %d", page->inuse, page->objects - nr);
908 page->inuse = page->objects - nr;
24922684 909 slab_fix(s, "Object count adjusted.");
81819f0f
CL
910 }
911 return search == NULL;
912}
913
0121c619
CL
914static void trace(struct kmem_cache *s, struct page *page, void *object,
915 int alloc)
3ec09742
CL
916{
917 if (s->flags & SLAB_TRACE) {
918 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
919 s->name,
920 alloc ? "alloc" : "free",
921 object, page->inuse,
922 page->freelist);
923
924 if (!alloc)
925 print_section("Object", (void *)object, s->objsize);
926
927 dump_stack();
928 }
929}
930
c016b0bd
CL
931/*
932 * Hooks for other subsystems that check memory allocations. In a typical
933 * production configuration these hooks all should produce no code at all.
934 */
935static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
936{
c1d50836 937 flags &= gfp_allowed_mask;
c016b0bd
CL
938 lockdep_trace_alloc(flags);
939 might_sleep_if(flags & __GFP_WAIT);
940
941 return should_failslab(s->objsize, flags, s->flags);
942}
943
944static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
945{
c1d50836 946 flags &= gfp_allowed_mask;
b3d41885 947 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
948 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
949}
950
951static inline void slab_free_hook(struct kmem_cache *s, void *x)
952{
953 kmemleak_free_recursive(x, s->flags);
c016b0bd 954
d3f661d6
CL
955 /*
956 * Trouble is that we may no longer disable interupts in the fast path
957 * So in order to make the debug calls that expect irqs to be
958 * disabled we need to disable interrupts temporarily.
959 */
960#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
961 {
962 unsigned long flags;
963
964 local_irq_save(flags);
965 kmemcheck_slab_free(s, x, s->objsize);
966 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
967 local_irq_restore(flags);
968 }
969#endif
f9b615de
TG
970 if (!(s->flags & SLAB_DEBUG_OBJECTS))
971 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
972}
973
643b1138 974/*
672bba3a 975 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
976 *
977 * list_lock must be held.
643b1138 978 */
5cc6eee8
CL
979static void add_full(struct kmem_cache *s,
980 struct kmem_cache_node *n, struct page *page)
643b1138 981{
5cc6eee8
CL
982 if (!(s->flags & SLAB_STORE_USER))
983 return;
984
643b1138 985 list_add(&page->lru, &n->full);
643b1138
CL
986}
987
5cc6eee8
CL
988/*
989 * list_lock must be held.
990 */
643b1138
CL
991static void remove_full(struct kmem_cache *s, struct page *page)
992{
643b1138
CL
993 if (!(s->flags & SLAB_STORE_USER))
994 return;
995
643b1138 996 list_del(&page->lru);
643b1138
CL
997}
998
0f389ec6
CL
999/* Tracking of the number of slabs for debugging purposes */
1000static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1001{
1002 struct kmem_cache_node *n = get_node(s, node);
1003
1004 return atomic_long_read(&n->nr_slabs);
1005}
1006
26c02cf0
AB
1007static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1008{
1009 return atomic_long_read(&n->nr_slabs);
1010}
1011
205ab99d 1012static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1013{
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 /*
1017 * May be called early in order to allocate a slab for the
1018 * kmem_cache_node structure. Solve the chicken-egg
1019 * dilemma by deferring the increment of the count during
1020 * bootstrap (see early_kmem_cache_node_alloc).
1021 */
7340cc84 1022 if (n) {
0f389ec6 1023 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1024 atomic_long_add(objects, &n->total_objects);
1025 }
0f389ec6 1026}
205ab99d 1027static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1028{
1029 struct kmem_cache_node *n = get_node(s, node);
1030
1031 atomic_long_dec(&n->nr_slabs);
205ab99d 1032 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1033}
1034
1035/* Object debug checks for alloc/free paths */
3ec09742
CL
1036static void setup_object_debug(struct kmem_cache *s, struct page *page,
1037 void *object)
1038{
1039 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1040 return;
1041
f7cb1933 1042 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1043 init_tracking(s, object);
1044}
1045
1537066c 1046static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1047 void *object, unsigned long addr)
81819f0f
CL
1048{
1049 if (!check_slab(s, page))
1050 goto bad;
1051
81819f0f
CL
1052 if (!check_valid_pointer(s, page, object)) {
1053 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1054 goto bad;
81819f0f
CL
1055 }
1056
f7cb1933 1057 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1058 goto bad;
81819f0f 1059
3ec09742
CL
1060 /* Success perform special debug activities for allocs */
1061 if (s->flags & SLAB_STORE_USER)
1062 set_track(s, object, TRACK_ALLOC, addr);
1063 trace(s, page, object, 1);
f7cb1933 1064 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1065 return 1;
3ec09742 1066
81819f0f
CL
1067bad:
1068 if (PageSlab(page)) {
1069 /*
1070 * If this is a slab page then lets do the best we can
1071 * to avoid issues in the future. Marking all objects
672bba3a 1072 * as used avoids touching the remaining objects.
81819f0f 1073 */
24922684 1074 slab_fix(s, "Marking all objects used");
39b26464 1075 page->inuse = page->objects;
a973e9dd 1076 page->freelist = NULL;
81819f0f
CL
1077 }
1078 return 0;
1079}
1080
1537066c
CL
1081static noinline int free_debug_processing(struct kmem_cache *s,
1082 struct page *page, void *object, unsigned long addr)
81819f0f 1083{
5c2e4bbb
CL
1084 unsigned long flags;
1085 int rc = 0;
1086
1087 local_irq_save(flags);
881db7fb
CL
1088 slab_lock(page);
1089
81819f0f
CL
1090 if (!check_slab(s, page))
1091 goto fail;
1092
1093 if (!check_valid_pointer(s, page, object)) {
70d71228 1094 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1095 goto fail;
1096 }
1097
1098 if (on_freelist(s, page, object)) {
24922684 1099 object_err(s, page, object, "Object already free");
81819f0f
CL
1100 goto fail;
1101 }
1102
f7cb1933 1103 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1104 goto out;
81819f0f
CL
1105
1106 if (unlikely(s != page->slab)) {
3adbefee 1107 if (!PageSlab(page)) {
70d71228
CL
1108 slab_err(s, page, "Attempt to free object(0x%p) "
1109 "outside of slab", object);
3adbefee 1110 } else if (!page->slab) {
81819f0f 1111 printk(KERN_ERR
70d71228 1112 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1113 object);
70d71228 1114 dump_stack();
06428780 1115 } else
24922684
CL
1116 object_err(s, page, object,
1117 "page slab pointer corrupt.");
81819f0f
CL
1118 goto fail;
1119 }
3ec09742 1120
3ec09742
CL
1121 if (s->flags & SLAB_STORE_USER)
1122 set_track(s, object, TRACK_FREE, addr);
1123 trace(s, page, object, 0);
f7cb1933 1124 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1125 rc = 1;
1126out:
881db7fb 1127 slab_unlock(page);
5c2e4bbb
CL
1128 local_irq_restore(flags);
1129 return rc;
3ec09742 1130
81819f0f 1131fail:
24922684 1132 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1133 goto out;
81819f0f
CL
1134}
1135
41ecc55b
CL
1136static int __init setup_slub_debug(char *str)
1137{
f0630fff
CL
1138 slub_debug = DEBUG_DEFAULT_FLAGS;
1139 if (*str++ != '=' || !*str)
1140 /*
1141 * No options specified. Switch on full debugging.
1142 */
1143 goto out;
1144
1145 if (*str == ',')
1146 /*
1147 * No options but restriction on slabs. This means full
1148 * debugging for slabs matching a pattern.
1149 */
1150 goto check_slabs;
1151
fa5ec8a1
DR
1152 if (tolower(*str) == 'o') {
1153 /*
1154 * Avoid enabling debugging on caches if its minimum order
1155 * would increase as a result.
1156 */
1157 disable_higher_order_debug = 1;
1158 goto out;
1159 }
1160
f0630fff
CL
1161 slub_debug = 0;
1162 if (*str == '-')
1163 /*
1164 * Switch off all debugging measures.
1165 */
1166 goto out;
1167
1168 /*
1169 * Determine which debug features should be switched on
1170 */
06428780 1171 for (; *str && *str != ','; str++) {
f0630fff
CL
1172 switch (tolower(*str)) {
1173 case 'f':
1174 slub_debug |= SLAB_DEBUG_FREE;
1175 break;
1176 case 'z':
1177 slub_debug |= SLAB_RED_ZONE;
1178 break;
1179 case 'p':
1180 slub_debug |= SLAB_POISON;
1181 break;
1182 case 'u':
1183 slub_debug |= SLAB_STORE_USER;
1184 break;
1185 case 't':
1186 slub_debug |= SLAB_TRACE;
1187 break;
4c13dd3b
DM
1188 case 'a':
1189 slub_debug |= SLAB_FAILSLAB;
1190 break;
f0630fff
CL
1191 default:
1192 printk(KERN_ERR "slub_debug option '%c' "
06428780 1193 "unknown. skipped\n", *str);
f0630fff 1194 }
41ecc55b
CL
1195 }
1196
f0630fff 1197check_slabs:
41ecc55b
CL
1198 if (*str == ',')
1199 slub_debug_slabs = str + 1;
f0630fff 1200out:
41ecc55b
CL
1201 return 1;
1202}
1203
1204__setup("slub_debug", setup_slub_debug);
1205
ba0268a8
CL
1206static unsigned long kmem_cache_flags(unsigned long objsize,
1207 unsigned long flags, const char *name,
51cc5068 1208 void (*ctor)(void *))
41ecc55b
CL
1209{
1210 /*
e153362a 1211 * Enable debugging if selected on the kernel commandline.
41ecc55b 1212 */
e153362a 1213 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1214 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1215 flags |= slub_debug;
ba0268a8
CL
1216
1217 return flags;
41ecc55b
CL
1218}
1219#else
3ec09742
CL
1220static inline void setup_object_debug(struct kmem_cache *s,
1221 struct page *page, void *object) {}
41ecc55b 1222
3ec09742 1223static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1224 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1225
3ec09742 1226static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1227 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1228
41ecc55b
CL
1229static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1230 { return 1; }
1231static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1232 void *object, u8 val) { return 1; }
5cc6eee8
CL
1233static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1234 struct page *page) {}
2cfb7455 1235static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1236static inline unsigned long kmem_cache_flags(unsigned long objsize,
1237 unsigned long flags, const char *name,
51cc5068 1238 void (*ctor)(void *))
ba0268a8
CL
1239{
1240 return flags;
1241}
41ecc55b 1242#define slub_debug 0
0f389ec6 1243
fdaa45e9
IM
1244#define disable_higher_order_debug 0
1245
0f389ec6
CL
1246static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1247 { return 0; }
26c02cf0
AB
1248static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1249 { return 0; }
205ab99d
CL
1250static inline void inc_slabs_node(struct kmem_cache *s, int node,
1251 int objects) {}
1252static inline void dec_slabs_node(struct kmem_cache *s, int node,
1253 int objects) {}
7d550c56
CL
1254
1255static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1256 { return 0; }
1257
1258static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1259 void *object) {}
1260
1261static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1262
ab4d5ed5 1263#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1264
81819f0f
CL
1265/*
1266 * Slab allocation and freeing
1267 */
65c3376a
CL
1268static inline struct page *alloc_slab_page(gfp_t flags, int node,
1269 struct kmem_cache_order_objects oo)
1270{
1271 int order = oo_order(oo);
1272
b1eeab67
VN
1273 flags |= __GFP_NOTRACK;
1274
2154a336 1275 if (node == NUMA_NO_NODE)
65c3376a
CL
1276 return alloc_pages(flags, order);
1277 else
6b65aaf3 1278 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1279}
1280
81819f0f
CL
1281static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1282{
06428780 1283 struct page *page;
834f3d11 1284 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1285 gfp_t alloc_gfp;
81819f0f 1286
7e0528da
CL
1287 flags &= gfp_allowed_mask;
1288
1289 if (flags & __GFP_WAIT)
1290 local_irq_enable();
1291
b7a49f0d 1292 flags |= s->allocflags;
e12ba74d 1293
ba52270d
PE
1294 /*
1295 * Let the initial higher-order allocation fail under memory pressure
1296 * so we fall-back to the minimum order allocation.
1297 */
1298 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1299
1300 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1301 if (unlikely(!page)) {
1302 oo = s->min;
1303 /*
1304 * Allocation may have failed due to fragmentation.
1305 * Try a lower order alloc if possible
1306 */
1307 page = alloc_slab_page(flags, node, oo);
81819f0f 1308
7e0528da
CL
1309 if (page)
1310 stat(s, ORDER_FALLBACK);
65c3376a 1311 }
5a896d9e 1312
7e0528da
CL
1313 if (flags & __GFP_WAIT)
1314 local_irq_disable();
1315
1316 if (!page)
1317 return NULL;
1318
5a896d9e 1319 if (kmemcheck_enabled
5086c389 1320 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1321 int pages = 1 << oo_order(oo);
1322
1323 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1324
1325 /*
1326 * Objects from caches that have a constructor don't get
1327 * cleared when they're allocated, so we need to do it here.
1328 */
1329 if (s->ctor)
1330 kmemcheck_mark_uninitialized_pages(page, pages);
1331 else
1332 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1333 }
1334
834f3d11 1335 page->objects = oo_objects(oo);
81819f0f
CL
1336 mod_zone_page_state(page_zone(page),
1337 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1338 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1339 1 << oo_order(oo));
81819f0f
CL
1340
1341 return page;
1342}
1343
1344static void setup_object(struct kmem_cache *s, struct page *page,
1345 void *object)
1346{
3ec09742 1347 setup_object_debug(s, page, object);
4f104934 1348 if (unlikely(s->ctor))
51cc5068 1349 s->ctor(object);
81819f0f
CL
1350}
1351
1352static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1353{
1354 struct page *page;
81819f0f 1355 void *start;
81819f0f
CL
1356 void *last;
1357 void *p;
1358
6cb06229 1359 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1360
6cb06229
CL
1361 page = allocate_slab(s,
1362 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1363 if (!page)
1364 goto out;
1365
205ab99d 1366 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1367 page->slab = s;
1368 page->flags |= 1 << PG_slab;
81819f0f
CL
1369
1370 start = page_address(page);
81819f0f
CL
1371
1372 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1373 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1374
1375 last = start;
224a88be 1376 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1377 setup_object(s, page, last);
1378 set_freepointer(s, last, p);
1379 last = p;
1380 }
1381 setup_object(s, page, last);
a973e9dd 1382 set_freepointer(s, last, NULL);
81819f0f
CL
1383
1384 page->freelist = start;
1385 page->inuse = 0;
8cb0a506 1386 page->frozen = 1;
81819f0f 1387out:
81819f0f
CL
1388 return page;
1389}
1390
1391static void __free_slab(struct kmem_cache *s, struct page *page)
1392{
834f3d11
CL
1393 int order = compound_order(page);
1394 int pages = 1 << order;
81819f0f 1395
af537b0a 1396 if (kmem_cache_debug(s)) {
81819f0f
CL
1397 void *p;
1398
1399 slab_pad_check(s, page);
224a88be
CL
1400 for_each_object(p, s, page_address(page),
1401 page->objects)
f7cb1933 1402 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1403 }
1404
b1eeab67 1405 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1406
81819f0f
CL
1407 mod_zone_page_state(page_zone(page),
1408 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1409 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1410 -pages);
81819f0f 1411
49bd5221
CL
1412 __ClearPageSlab(page);
1413 reset_page_mapcount(page);
1eb5ac64
NP
1414 if (current->reclaim_state)
1415 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1416 __free_pages(page, order);
81819f0f
CL
1417}
1418
da9a638c
LJ
1419#define need_reserve_slab_rcu \
1420 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1421
81819f0f
CL
1422static void rcu_free_slab(struct rcu_head *h)
1423{
1424 struct page *page;
1425
da9a638c
LJ
1426 if (need_reserve_slab_rcu)
1427 page = virt_to_head_page(h);
1428 else
1429 page = container_of((struct list_head *)h, struct page, lru);
1430
81819f0f
CL
1431 __free_slab(page->slab, page);
1432}
1433
1434static void free_slab(struct kmem_cache *s, struct page *page)
1435{
1436 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1437 struct rcu_head *head;
1438
1439 if (need_reserve_slab_rcu) {
1440 int order = compound_order(page);
1441 int offset = (PAGE_SIZE << order) - s->reserved;
1442
1443 VM_BUG_ON(s->reserved != sizeof(*head));
1444 head = page_address(page) + offset;
1445 } else {
1446 /*
1447 * RCU free overloads the RCU head over the LRU
1448 */
1449 head = (void *)&page->lru;
1450 }
81819f0f
CL
1451
1452 call_rcu(head, rcu_free_slab);
1453 } else
1454 __free_slab(s, page);
1455}
1456
1457static void discard_slab(struct kmem_cache *s, struct page *page)
1458{
205ab99d 1459 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1460 free_slab(s, page);
1461}
1462
81819f0f 1463/*
5cc6eee8
CL
1464 * Management of partially allocated slabs.
1465 *
1466 * list_lock must be held.
81819f0f 1467 */
5cc6eee8 1468static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1469 struct page *page, int tail)
81819f0f 1470{
e95eed57 1471 n->nr_partial++;
7c2e132c
CL
1472 if (tail)
1473 list_add_tail(&page->lru, &n->partial);
1474 else
1475 list_add(&page->lru, &n->partial);
81819f0f
CL
1476}
1477
5cc6eee8
CL
1478/*
1479 * list_lock must be held.
1480 */
1481static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1482 struct page *page)
1483{
1484 list_del(&page->lru);
1485 n->nr_partial--;
1486}
1487
81819f0f 1488/*
5cc6eee8
CL
1489 * Lock slab, remove from the partial list and put the object into the
1490 * per cpu freelist.
81819f0f 1491 *
672bba3a 1492 * Must hold list_lock.
81819f0f 1493 */
881db7fb 1494static inline int acquire_slab(struct kmem_cache *s,
61728d1e 1495 struct kmem_cache_node *n, struct page *page)
81819f0f 1496{
2cfb7455
CL
1497 void *freelist;
1498 unsigned long counters;
1499 struct page new;
1500
2cfb7455
CL
1501 /*
1502 * Zap the freelist and set the frozen bit.
1503 * The old freelist is the list of objects for the
1504 * per cpu allocation list.
1505 */
1506 do {
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
1510 new.inuse = page->objects;
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1d07171c 1515 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1516 freelist, counters,
1517 NULL, new.counters,
1518 "lock and freeze"));
1519
1520 remove_partial(n, page);
1521
1522 if (freelist) {
1523 /* Populate the per cpu freelist */
1524 this_cpu_write(s->cpu_slab->freelist, freelist);
1525 this_cpu_write(s->cpu_slab->page, page);
1526 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
81819f0f 1527 return 1;
2cfb7455
CL
1528 } else {
1529 /*
1530 * Slab page came from the wrong list. No object to allocate
1531 * from. Put it onto the correct list and continue partial
1532 * scan.
1533 */
1534 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1535 " partial list\n", s->name);
2cfb7455 1536 return 0;
81819f0f 1537 }
81819f0f
CL
1538}
1539
1540/*
672bba3a 1541 * Try to allocate a partial slab from a specific node.
81819f0f 1542 */
61728d1e
CL
1543static struct page *get_partial_node(struct kmem_cache *s,
1544 struct kmem_cache_node *n)
81819f0f
CL
1545{
1546 struct page *page;
1547
1548 /*
1549 * Racy check. If we mistakenly see no partial slabs then we
1550 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1551 * partial slab and there is none available then get_partials()
1552 * will return NULL.
81819f0f
CL
1553 */
1554 if (!n || !n->nr_partial)
1555 return NULL;
1556
1557 spin_lock(&n->list_lock);
1558 list_for_each_entry(page, &n->partial, lru)
881db7fb 1559 if (acquire_slab(s, n, page))
81819f0f
CL
1560 goto out;
1561 page = NULL;
1562out:
1563 spin_unlock(&n->list_lock);
1564 return page;
1565}
1566
1567/*
672bba3a 1568 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1569 */
1570static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1571{
1572#ifdef CONFIG_NUMA
1573 struct zonelist *zonelist;
dd1a239f 1574 struct zoneref *z;
54a6eb5c
MG
1575 struct zone *zone;
1576 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1577 struct page *page;
1578
1579 /*
672bba3a
CL
1580 * The defrag ratio allows a configuration of the tradeoffs between
1581 * inter node defragmentation and node local allocations. A lower
1582 * defrag_ratio increases the tendency to do local allocations
1583 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1584 *
672bba3a
CL
1585 * If the defrag_ratio is set to 0 then kmalloc() always
1586 * returns node local objects. If the ratio is higher then kmalloc()
1587 * may return off node objects because partial slabs are obtained
1588 * from other nodes and filled up.
81819f0f 1589 *
6446faa2 1590 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1591 * defrag_ratio = 1000) then every (well almost) allocation will
1592 * first attempt to defrag slab caches on other nodes. This means
1593 * scanning over all nodes to look for partial slabs which may be
1594 * expensive if we do it every time we are trying to find a slab
1595 * with available objects.
81819f0f 1596 */
9824601e
CL
1597 if (!s->remote_node_defrag_ratio ||
1598 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1599 return NULL;
1600
c0ff7453 1601 get_mems_allowed();
0e88460d 1602 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1603 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1604 struct kmem_cache_node *n;
1605
54a6eb5c 1606 n = get_node(s, zone_to_nid(zone));
81819f0f 1607
54a6eb5c 1608 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1609 n->nr_partial > s->min_partial) {
61728d1e 1610 page = get_partial_node(s, n);
c0ff7453
MX
1611 if (page) {
1612 put_mems_allowed();
81819f0f 1613 return page;
c0ff7453 1614 }
81819f0f
CL
1615 }
1616 }
c0ff7453 1617 put_mems_allowed();
81819f0f
CL
1618#endif
1619 return NULL;
1620}
1621
1622/*
1623 * Get a partial page, lock it and return it.
1624 */
1625static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1626{
1627 struct page *page;
2154a336 1628 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1629
61728d1e 1630 page = get_partial_node(s, get_node(s, searchnode));
33de04ec 1631 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1632 return page;
1633
1634 return get_any_partial(s, flags);
1635}
1636
8a5ec0ba
CL
1637#ifdef CONFIG_PREEMPT
1638/*
1639 * Calculate the next globally unique transaction for disambiguiation
1640 * during cmpxchg. The transactions start with the cpu number and are then
1641 * incremented by CONFIG_NR_CPUS.
1642 */
1643#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1644#else
1645/*
1646 * No preemption supported therefore also no need to check for
1647 * different cpus.
1648 */
1649#define TID_STEP 1
1650#endif
1651
1652static inline unsigned long next_tid(unsigned long tid)
1653{
1654 return tid + TID_STEP;
1655}
1656
1657static inline unsigned int tid_to_cpu(unsigned long tid)
1658{
1659 return tid % TID_STEP;
1660}
1661
1662static inline unsigned long tid_to_event(unsigned long tid)
1663{
1664 return tid / TID_STEP;
1665}
1666
1667static inline unsigned int init_tid(int cpu)
1668{
1669 return cpu;
1670}
1671
1672static inline void note_cmpxchg_failure(const char *n,
1673 const struct kmem_cache *s, unsigned long tid)
1674{
1675#ifdef SLUB_DEBUG_CMPXCHG
1676 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1677
1678 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1679
1680#ifdef CONFIG_PREEMPT
1681 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1682 printk("due to cpu change %d -> %d\n",
1683 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1684 else
1685#endif
1686 if (tid_to_event(tid) != tid_to_event(actual_tid))
1687 printk("due to cpu running other code. Event %ld->%ld\n",
1688 tid_to_event(tid), tid_to_event(actual_tid));
1689 else
1690 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1691 actual_tid, tid, next_tid(tid));
1692#endif
4fdccdfb 1693 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1694}
1695
8a5ec0ba
CL
1696void init_kmem_cache_cpus(struct kmem_cache *s)
1697{
8a5ec0ba
CL
1698 int cpu;
1699
1700 for_each_possible_cpu(cpu)
1701 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1702}
2cfb7455
CL
1703/*
1704 * Remove the cpu slab
1705 */
1706
81819f0f
CL
1707/*
1708 * Remove the cpu slab
1709 */
dfb4f096 1710static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1711{
2cfb7455 1712 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1713 struct page *page = c->page;
2cfb7455
CL
1714 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1715 int lock = 0;
1716 enum slab_modes l = M_NONE, m = M_NONE;
1717 void *freelist;
1718 void *nextfree;
1719 int tail = 0;
1720 struct page new;
1721 struct page old;
1722
1723 if (page->freelist) {
84e554e6 1724 stat(s, DEACTIVATE_REMOTE_FREES);
2cfb7455
CL
1725 tail = 1;
1726 }
1727
1728 c->tid = next_tid(c->tid);
1729 c->page = NULL;
1730 freelist = c->freelist;
1731 c->freelist = NULL;
1732
894b8788 1733 /*
2cfb7455
CL
1734 * Stage one: Free all available per cpu objects back
1735 * to the page freelist while it is still frozen. Leave the
1736 * last one.
1737 *
1738 * There is no need to take the list->lock because the page
1739 * is still frozen.
1740 */
1741 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1742 void *prior;
1743 unsigned long counters;
1744
1745 do {
1746 prior = page->freelist;
1747 counters = page->counters;
1748 set_freepointer(s, freelist, prior);
1749 new.counters = counters;
1750 new.inuse--;
1751 VM_BUG_ON(!new.frozen);
1752
1d07171c 1753 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1754 prior, counters,
1755 freelist, new.counters,
1756 "drain percpu freelist"));
1757
1758 freelist = nextfree;
1759 }
1760
1761 /*
1762 * Stage two: Ensure that the page is unfrozen while the
1763 * list presence reflects the actual number of objects
1764 * during unfreeze.
1765 *
1766 * We setup the list membership and then perform a cmpxchg
1767 * with the count. If there is a mismatch then the page
1768 * is not unfrozen but the page is on the wrong list.
1769 *
1770 * Then we restart the process which may have to remove
1771 * the page from the list that we just put it on again
1772 * because the number of objects in the slab may have
1773 * changed.
894b8788 1774 */
2cfb7455 1775redo:
894b8788 1776
2cfb7455
CL
1777 old.freelist = page->freelist;
1778 old.counters = page->counters;
1779 VM_BUG_ON(!old.frozen);
7c2e132c 1780
2cfb7455
CL
1781 /* Determine target state of the slab */
1782 new.counters = old.counters;
1783 if (freelist) {
1784 new.inuse--;
1785 set_freepointer(s, freelist, old.freelist);
1786 new.freelist = freelist;
1787 } else
1788 new.freelist = old.freelist;
1789
1790 new.frozen = 0;
1791
1792 if (!new.inuse && n->nr_partial < s->min_partial)
1793 m = M_FREE;
1794 else if (new.freelist) {
1795 m = M_PARTIAL;
1796 if (!lock) {
1797 lock = 1;
1798 /*
1799 * Taking the spinlock removes the possiblity
1800 * that acquire_slab() will see a slab page that
1801 * is frozen
1802 */
1803 spin_lock(&n->list_lock);
1804 }
1805 } else {
1806 m = M_FULL;
1807 if (kmem_cache_debug(s) && !lock) {
1808 lock = 1;
1809 /*
1810 * This also ensures that the scanning of full
1811 * slabs from diagnostic functions will not see
1812 * any frozen slabs.
1813 */
1814 spin_lock(&n->list_lock);
1815 }
1816 }
1817
1818 if (l != m) {
1819
1820 if (l == M_PARTIAL)
1821
1822 remove_partial(n, page);
1823
1824 else if (l == M_FULL)
894b8788 1825
2cfb7455
CL
1826 remove_full(s, page);
1827
1828 if (m == M_PARTIAL) {
1829
1830 add_partial(n, page, tail);
1831 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1832
1833 } else if (m == M_FULL) {
1834
1835 stat(s, DEACTIVATE_FULL);
1836 add_full(s, n, page);
1837
1838 }
1839 }
1840
1841 l = m;
1d07171c 1842 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1843 old.freelist, old.counters,
1844 new.freelist, new.counters,
1845 "unfreezing slab"))
1846 goto redo;
1847
2cfb7455
CL
1848 if (lock)
1849 spin_unlock(&n->list_lock);
1850
1851 if (m == M_FREE) {
1852 stat(s, DEACTIVATE_EMPTY);
1853 discard_slab(s, page);
1854 stat(s, FREE_SLAB);
894b8788 1855 }
81819f0f
CL
1856}
1857
dfb4f096 1858static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1859{
84e554e6 1860 stat(s, CPUSLAB_FLUSH);
dfb4f096 1861 deactivate_slab(s, c);
81819f0f
CL
1862}
1863
1864/*
1865 * Flush cpu slab.
6446faa2 1866 *
81819f0f
CL
1867 * Called from IPI handler with interrupts disabled.
1868 */
0c710013 1869static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1870{
9dfc6e68 1871 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1872
dfb4f096
CL
1873 if (likely(c && c->page))
1874 flush_slab(s, c);
81819f0f
CL
1875}
1876
1877static void flush_cpu_slab(void *d)
1878{
1879 struct kmem_cache *s = d;
81819f0f 1880
dfb4f096 1881 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1882}
1883
1884static void flush_all(struct kmem_cache *s)
1885{
15c8b6c1 1886 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1887}
1888
dfb4f096
CL
1889/*
1890 * Check if the objects in a per cpu structure fit numa
1891 * locality expectations.
1892 */
1893static inline int node_match(struct kmem_cache_cpu *c, int node)
1894{
1895#ifdef CONFIG_NUMA
2154a336 1896 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1897 return 0;
1898#endif
1899 return 1;
1900}
1901
781b2ba6
PE
1902static int count_free(struct page *page)
1903{
1904 return page->objects - page->inuse;
1905}
1906
1907static unsigned long count_partial(struct kmem_cache_node *n,
1908 int (*get_count)(struct page *))
1909{
1910 unsigned long flags;
1911 unsigned long x = 0;
1912 struct page *page;
1913
1914 spin_lock_irqsave(&n->list_lock, flags);
1915 list_for_each_entry(page, &n->partial, lru)
1916 x += get_count(page);
1917 spin_unlock_irqrestore(&n->list_lock, flags);
1918 return x;
1919}
1920
26c02cf0
AB
1921static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1922{
1923#ifdef CONFIG_SLUB_DEBUG
1924 return atomic_long_read(&n->total_objects);
1925#else
1926 return 0;
1927#endif
1928}
1929
781b2ba6
PE
1930static noinline void
1931slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1932{
1933 int node;
1934
1935 printk(KERN_WARNING
1936 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1937 nid, gfpflags);
1938 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1939 "default order: %d, min order: %d\n", s->name, s->objsize,
1940 s->size, oo_order(s->oo), oo_order(s->min));
1941
fa5ec8a1
DR
1942 if (oo_order(s->min) > get_order(s->objsize))
1943 printk(KERN_WARNING " %s debugging increased min order, use "
1944 "slub_debug=O to disable.\n", s->name);
1945
781b2ba6
PE
1946 for_each_online_node(node) {
1947 struct kmem_cache_node *n = get_node(s, node);
1948 unsigned long nr_slabs;
1949 unsigned long nr_objs;
1950 unsigned long nr_free;
1951
1952 if (!n)
1953 continue;
1954
26c02cf0
AB
1955 nr_free = count_partial(n, count_free);
1956 nr_slabs = node_nr_slabs(n);
1957 nr_objs = node_nr_objs(n);
781b2ba6
PE
1958
1959 printk(KERN_WARNING
1960 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1961 node, nr_slabs, nr_objs, nr_free);
1962 }
1963}
1964
81819f0f 1965/*
894b8788
CL
1966 * Slow path. The lockless freelist is empty or we need to perform
1967 * debugging duties.
1968 *
1969 * Interrupts are disabled.
81819f0f 1970 *
894b8788
CL
1971 * Processing is still very fast if new objects have been freed to the
1972 * regular freelist. In that case we simply take over the regular freelist
1973 * as the lockless freelist and zap the regular freelist.
81819f0f 1974 *
894b8788
CL
1975 * If that is not working then we fall back to the partial lists. We take the
1976 * first element of the freelist as the object to allocate now and move the
1977 * rest of the freelist to the lockless freelist.
81819f0f 1978 *
894b8788 1979 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1980 * we need to allocate a new slab. This is the slowest path since it involves
1981 * a call to the page allocator and the setup of a new slab.
81819f0f 1982 */
ce71e27c
EGM
1983static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1984 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1985{
81819f0f 1986 void **object;
01ad8a7b 1987 struct page *page;
8a5ec0ba 1988 unsigned long flags;
2cfb7455
CL
1989 struct page new;
1990 unsigned long counters;
8a5ec0ba
CL
1991
1992 local_irq_save(flags);
1993#ifdef CONFIG_PREEMPT
1994 /*
1995 * We may have been preempted and rescheduled on a different
1996 * cpu before disabling interrupts. Need to reload cpu area
1997 * pointer.
1998 */
1999 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2000#endif
81819f0f 2001
e72e9c23
LT
2002 /* We handle __GFP_ZERO in the caller */
2003 gfpflags &= ~__GFP_ZERO;
2004
01ad8a7b
CL
2005 page = c->page;
2006 if (!page)
81819f0f
CL
2007 goto new_slab;
2008
fc59c053 2009 if (unlikely(!node_match(c, node))) {
e36a2652 2010 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2011 deactivate_slab(s, c);
2012 goto new_slab;
2013 }
6446faa2 2014
2cfb7455
CL
2015 stat(s, ALLOC_SLOWPATH);
2016
2017 do {
2018 object = page->freelist;
2019 counters = page->counters;
2020 new.counters = counters;
2cfb7455
CL
2021 VM_BUG_ON(!new.frozen);
2022
03e404af
CL
2023 /*
2024 * If there is no object left then we use this loop to
2025 * deactivate the slab which is simple since no objects
2026 * are left in the slab and therefore we do not need to
2027 * put the page back onto the partial list.
2028 *
2029 * If there are objects left then we retrieve them
2030 * and use them to refill the per cpu queue.
2031 */
2032
2033 new.inuse = page->objects;
2034 new.frozen = object != NULL;
2035
1d07171c 2036 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2037 object, counters,
2038 NULL, new.counters,
2039 "__slab_alloc"));
6446faa2 2040
03e404af
CL
2041 if (unlikely(!object)) {
2042 c->page = NULL;
2043 stat(s, DEACTIVATE_BYPASS);
fc59c053 2044 goto new_slab;
03e404af 2045 }
81819f0f 2046
2cfb7455 2047 stat(s, ALLOC_REFILL);
01ad8a7b 2048
4eade540
CL
2049load_freelist:
2050 VM_BUG_ON(!page->frozen);
2cfb7455 2051 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2052 c->tid = next_tid(c->tid);
2053 local_irq_restore(flags);
81819f0f
CL
2054 return object;
2055
81819f0f 2056new_slab:
01ad8a7b
CL
2057 page = get_partial(s, gfpflags, node);
2058 if (page) {
84e554e6 2059 stat(s, ALLOC_FROM_PARTIAL);
2cfb7455
CL
2060 object = c->freelist;
2061
2062 if (kmem_cache_debug(s))
2063 goto debug;
894b8788 2064 goto load_freelist;
81819f0f
CL
2065 }
2066
01ad8a7b 2067 page = new_slab(s, gfpflags, node);
b811c202 2068
01ad8a7b 2069 if (page) {
9dfc6e68 2070 c = __this_cpu_ptr(s->cpu_slab);
05aa3450 2071 if (c->page)
dfb4f096 2072 flush_slab(s, c);
01ad8a7b 2073
2cfb7455
CL
2074 /*
2075 * No other reference to the page yet so we can
2076 * muck around with it freely without cmpxchg
2077 */
2078 object = page->freelist;
2079 page->freelist = NULL;
2080 page->inuse = page->objects;
2081
2082 stat(s, ALLOC_SLAB);
bd07d87f
DR
2083 c->node = page_to_nid(page);
2084 c->page = page;
4b6f0750 2085 goto load_freelist;
81819f0f 2086 }
95f85989
PE
2087 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2088 slab_out_of_memory(s, gfpflags, node);
2fd66c51 2089 local_irq_restore(flags);
71c7a06f 2090 return NULL;
2cfb7455 2091
81819f0f 2092debug:
2cfb7455
CL
2093 if (!object || !alloc_debug_processing(s, page, object, addr))
2094 goto new_slab;
894b8788 2095
2cfb7455 2096 c->freelist = get_freepointer(s, object);
442b06bc
CL
2097 deactivate_slab(s, c);
2098 c->page = NULL;
15b7c514 2099 c->node = NUMA_NO_NODE;
a71ae47a
CL
2100 local_irq_restore(flags);
2101 return object;
894b8788
CL
2102}
2103
2104/*
2105 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2106 * have the fastpath folded into their functions. So no function call
2107 * overhead for requests that can be satisfied on the fastpath.
2108 *
2109 * The fastpath works by first checking if the lockless freelist can be used.
2110 * If not then __slab_alloc is called for slow processing.
2111 *
2112 * Otherwise we can simply pick the next object from the lockless free list.
2113 */
06428780 2114static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2115 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2116{
894b8788 2117 void **object;
dfb4f096 2118 struct kmem_cache_cpu *c;
8a5ec0ba 2119 unsigned long tid;
1f84260c 2120
c016b0bd 2121 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2122 return NULL;
1f84260c 2123
8a5ec0ba 2124redo:
8a5ec0ba
CL
2125
2126 /*
2127 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2128 * enabled. We may switch back and forth between cpus while
2129 * reading from one cpu area. That does not matter as long
2130 * as we end up on the original cpu again when doing the cmpxchg.
2131 */
9dfc6e68 2132 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2133
8a5ec0ba
CL
2134 /*
2135 * The transaction ids are globally unique per cpu and per operation on
2136 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2137 * occurs on the right processor and that there was no operation on the
2138 * linked list in between.
2139 */
2140 tid = c->tid;
2141 barrier();
8a5ec0ba 2142
9dfc6e68 2143 object = c->freelist;
9dfc6e68 2144 if (unlikely(!object || !node_match(c, node)))
894b8788 2145
dfb4f096 2146 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2147
2148 else {
8a5ec0ba 2149 /*
25985edc 2150 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2151 * operation and if we are on the right processor.
2152 *
2153 * The cmpxchg does the following atomically (without lock semantics!)
2154 * 1. Relocate first pointer to the current per cpu area.
2155 * 2. Verify that tid and freelist have not been changed
2156 * 3. If they were not changed replace tid and freelist
2157 *
2158 * Since this is without lock semantics the protection is only against
2159 * code executing on this cpu *not* from access by other cpus.
2160 */
30106b8c 2161 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2162 s->cpu_slab->freelist, s->cpu_slab->tid,
2163 object, tid,
1393d9a1 2164 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2165
2166 note_cmpxchg_failure("slab_alloc", s, tid);
2167 goto redo;
2168 }
84e554e6 2169 stat(s, ALLOC_FASTPATH);
894b8788 2170 }
8a5ec0ba 2171
74e2134f 2172 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2173 memset(object, 0, s->objsize);
d07dbea4 2174
c016b0bd 2175 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2176
894b8788 2177 return object;
81819f0f
CL
2178}
2179
2180void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2181{
2154a336 2182 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2183
ca2b84cb 2184 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2185
2186 return ret;
81819f0f
CL
2187}
2188EXPORT_SYMBOL(kmem_cache_alloc);
2189
0f24f128 2190#ifdef CONFIG_TRACING
4a92379b
RK
2191void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2192{
2193 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2194 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2195 return ret;
2196}
2197EXPORT_SYMBOL(kmem_cache_alloc_trace);
2198
2199void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2200{
4a92379b
RK
2201 void *ret = kmalloc_order(size, flags, order);
2202 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2203 return ret;
5b882be4 2204}
4a92379b 2205EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2206#endif
2207
81819f0f
CL
2208#ifdef CONFIG_NUMA
2209void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2210{
5b882be4
EGM
2211 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2212
ca2b84cb
EGM
2213 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2214 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2215
2216 return ret;
81819f0f
CL
2217}
2218EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2219
0f24f128 2220#ifdef CONFIG_TRACING
4a92379b 2221void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2222 gfp_t gfpflags,
4a92379b 2223 int node, size_t size)
5b882be4 2224{
4a92379b
RK
2225 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2226
2227 trace_kmalloc_node(_RET_IP_, ret,
2228 size, s->size, gfpflags, node);
2229 return ret;
5b882be4 2230}
4a92379b 2231EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2232#endif
5d1f57e4 2233#endif
5b882be4 2234
81819f0f 2235/*
894b8788
CL
2236 * Slow patch handling. This may still be called frequently since objects
2237 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2238 *
894b8788
CL
2239 * So we still attempt to reduce cache line usage. Just take the slab
2240 * lock and free the item. If there is no additional partial page
2241 * handling required then we can return immediately.
81819f0f 2242 */
894b8788 2243static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2244 void *x, unsigned long addr)
81819f0f
CL
2245{
2246 void *prior;
2247 void **object = (void *)x;
2cfb7455
CL
2248 int was_frozen;
2249 int inuse;
2250 struct page new;
2251 unsigned long counters;
2252 struct kmem_cache_node *n = NULL;
61728d1e 2253 unsigned long uninitialized_var(flags);
81819f0f 2254
8a5ec0ba 2255 stat(s, FREE_SLOWPATH);
81819f0f 2256
8dc16c6c 2257 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2258 return;
6446faa2 2259
2cfb7455
CL
2260 do {
2261 prior = page->freelist;
2262 counters = page->counters;
2263 set_freepointer(s, object, prior);
2264 new.counters = counters;
2265 was_frozen = new.frozen;
2266 new.inuse--;
2267 if ((!new.inuse || !prior) && !was_frozen && !n) {
2268 n = get_node(s, page_to_nid(page));
2269 /*
2270 * Speculatively acquire the list_lock.
2271 * If the cmpxchg does not succeed then we may
2272 * drop the list_lock without any processing.
2273 *
2274 * Otherwise the list_lock will synchronize with
2275 * other processors updating the list of slabs.
2276 */
80f08c19 2277 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2278 }
2279 inuse = new.inuse;
81819f0f 2280
2cfb7455
CL
2281 } while (!cmpxchg_double_slab(s, page,
2282 prior, counters,
2283 object, new.counters,
2284 "__slab_free"));
81819f0f 2285
2cfb7455
CL
2286 if (likely(!n)) {
2287 /*
2288 * The list lock was not taken therefore no list
2289 * activity can be necessary.
2290 */
2291 if (was_frozen)
2292 stat(s, FREE_FROZEN);
80f08c19 2293 return;
2cfb7455 2294 }
81819f0f
CL
2295
2296 /*
2cfb7455
CL
2297 * was_frozen may have been set after we acquired the list_lock in
2298 * an earlier loop. So we need to check it here again.
81819f0f 2299 */
2cfb7455
CL
2300 if (was_frozen)
2301 stat(s, FREE_FROZEN);
2302 else {
2303 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2304 goto slab_empty;
5cc6eee8 2305
2cfb7455
CL
2306 /*
2307 * Objects left in the slab. If it was not on the partial list before
2308 * then add it.
2309 */
2310 if (unlikely(!prior)) {
2311 remove_full(s, page);
2312 add_partial(n, page, 0);
2313 stat(s, FREE_ADD_PARTIAL);
2314 }
8ff12cfc 2315 }
80f08c19 2316 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2317 return;
2318
2319slab_empty:
a973e9dd 2320 if (prior) {
81819f0f 2321 /*
672bba3a 2322 * Slab still on the partial list.
81819f0f 2323 */
5cc6eee8 2324 remove_partial(n, page);
84e554e6 2325 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2326 }
2cfb7455 2327
80f08c19 2328 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2329 stat(s, FREE_SLAB);
81819f0f 2330 discard_slab(s, page);
81819f0f
CL
2331}
2332
894b8788
CL
2333/*
2334 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2335 * can perform fastpath freeing without additional function calls.
2336 *
2337 * The fastpath is only possible if we are freeing to the current cpu slab
2338 * of this processor. This typically the case if we have just allocated
2339 * the item before.
2340 *
2341 * If fastpath is not possible then fall back to __slab_free where we deal
2342 * with all sorts of special processing.
2343 */
06428780 2344static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2345 struct page *page, void *x, unsigned long addr)
894b8788
CL
2346{
2347 void **object = (void *)x;
dfb4f096 2348 struct kmem_cache_cpu *c;
8a5ec0ba 2349 unsigned long tid;
1f84260c 2350
c016b0bd
CL
2351 slab_free_hook(s, x);
2352
8a5ec0ba 2353redo:
a24c5a0e 2354
8a5ec0ba
CL
2355 /*
2356 * Determine the currently cpus per cpu slab.
2357 * The cpu may change afterward. However that does not matter since
2358 * data is retrieved via this pointer. If we are on the same cpu
2359 * during the cmpxchg then the free will succedd.
2360 */
9dfc6e68 2361 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2362
8a5ec0ba
CL
2363 tid = c->tid;
2364 barrier();
c016b0bd 2365
442b06bc 2366 if (likely(page == c->page)) {
ff12059e 2367 set_freepointer(s, object, c->freelist);
8a5ec0ba 2368
30106b8c 2369 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2370 s->cpu_slab->freelist, s->cpu_slab->tid,
2371 c->freelist, tid,
2372 object, next_tid(tid)))) {
2373
2374 note_cmpxchg_failure("slab_free", s, tid);
2375 goto redo;
2376 }
84e554e6 2377 stat(s, FREE_FASTPATH);
894b8788 2378 } else
ff12059e 2379 __slab_free(s, page, x, addr);
894b8788 2380
894b8788
CL
2381}
2382
81819f0f
CL
2383void kmem_cache_free(struct kmem_cache *s, void *x)
2384{
77c5e2d0 2385 struct page *page;
81819f0f 2386
b49af68f 2387 page = virt_to_head_page(x);
81819f0f 2388
ce71e27c 2389 slab_free(s, page, x, _RET_IP_);
5b882be4 2390
ca2b84cb 2391 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2392}
2393EXPORT_SYMBOL(kmem_cache_free);
2394
81819f0f 2395/*
672bba3a
CL
2396 * Object placement in a slab is made very easy because we always start at
2397 * offset 0. If we tune the size of the object to the alignment then we can
2398 * get the required alignment by putting one properly sized object after
2399 * another.
81819f0f
CL
2400 *
2401 * Notice that the allocation order determines the sizes of the per cpu
2402 * caches. Each processor has always one slab available for allocations.
2403 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2404 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2405 * locking overhead.
81819f0f
CL
2406 */
2407
2408/*
2409 * Mininum / Maximum order of slab pages. This influences locking overhead
2410 * and slab fragmentation. A higher order reduces the number of partial slabs
2411 * and increases the number of allocations possible without having to
2412 * take the list_lock.
2413 */
2414static int slub_min_order;
114e9e89 2415static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2416static int slub_min_objects;
81819f0f
CL
2417
2418/*
2419 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2420 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2421 */
2422static int slub_nomerge;
2423
81819f0f
CL
2424/*
2425 * Calculate the order of allocation given an slab object size.
2426 *
672bba3a
CL
2427 * The order of allocation has significant impact on performance and other
2428 * system components. Generally order 0 allocations should be preferred since
2429 * order 0 does not cause fragmentation in the page allocator. Larger objects
2430 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2431 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2432 * would be wasted.
2433 *
2434 * In order to reach satisfactory performance we must ensure that a minimum
2435 * number of objects is in one slab. Otherwise we may generate too much
2436 * activity on the partial lists which requires taking the list_lock. This is
2437 * less a concern for large slabs though which are rarely used.
81819f0f 2438 *
672bba3a
CL
2439 * slub_max_order specifies the order where we begin to stop considering the
2440 * number of objects in a slab as critical. If we reach slub_max_order then
2441 * we try to keep the page order as low as possible. So we accept more waste
2442 * of space in favor of a small page order.
81819f0f 2443 *
672bba3a
CL
2444 * Higher order allocations also allow the placement of more objects in a
2445 * slab and thereby reduce object handling overhead. If the user has
2446 * requested a higher mininum order then we start with that one instead of
2447 * the smallest order which will fit the object.
81819f0f 2448 */
5e6d444e 2449static inline int slab_order(int size, int min_objects,
ab9a0f19 2450 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2451{
2452 int order;
2453 int rem;
6300ea75 2454 int min_order = slub_min_order;
81819f0f 2455
ab9a0f19 2456 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2457 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2458
6300ea75 2459 for (order = max(min_order,
5e6d444e
CL
2460 fls(min_objects * size - 1) - PAGE_SHIFT);
2461 order <= max_order; order++) {
81819f0f 2462
5e6d444e 2463 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2464
ab9a0f19 2465 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2466 continue;
2467
ab9a0f19 2468 rem = (slab_size - reserved) % size;
81819f0f 2469
5e6d444e 2470 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2471 break;
2472
2473 }
672bba3a 2474
81819f0f
CL
2475 return order;
2476}
2477
ab9a0f19 2478static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2479{
2480 int order;
2481 int min_objects;
2482 int fraction;
e8120ff1 2483 int max_objects;
5e6d444e
CL
2484
2485 /*
2486 * Attempt to find best configuration for a slab. This
2487 * works by first attempting to generate a layout with
2488 * the best configuration and backing off gradually.
2489 *
2490 * First we reduce the acceptable waste in a slab. Then
2491 * we reduce the minimum objects required in a slab.
2492 */
2493 min_objects = slub_min_objects;
9b2cd506
CL
2494 if (!min_objects)
2495 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2496 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2497 min_objects = min(min_objects, max_objects);
2498
5e6d444e 2499 while (min_objects > 1) {
c124f5b5 2500 fraction = 16;
5e6d444e
CL
2501 while (fraction >= 4) {
2502 order = slab_order(size, min_objects,
ab9a0f19 2503 slub_max_order, fraction, reserved);
5e6d444e
CL
2504 if (order <= slub_max_order)
2505 return order;
2506 fraction /= 2;
2507 }
5086c389 2508 min_objects--;
5e6d444e
CL
2509 }
2510
2511 /*
2512 * We were unable to place multiple objects in a slab. Now
2513 * lets see if we can place a single object there.
2514 */
ab9a0f19 2515 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2516 if (order <= slub_max_order)
2517 return order;
2518
2519 /*
2520 * Doh this slab cannot be placed using slub_max_order.
2521 */
ab9a0f19 2522 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2523 if (order < MAX_ORDER)
5e6d444e
CL
2524 return order;
2525 return -ENOSYS;
2526}
2527
81819f0f 2528/*
672bba3a 2529 * Figure out what the alignment of the objects will be.
81819f0f
CL
2530 */
2531static unsigned long calculate_alignment(unsigned long flags,
2532 unsigned long align, unsigned long size)
2533{
2534 /*
6446faa2
CL
2535 * If the user wants hardware cache aligned objects then follow that
2536 * suggestion if the object is sufficiently large.
81819f0f 2537 *
6446faa2
CL
2538 * The hardware cache alignment cannot override the specified
2539 * alignment though. If that is greater then use it.
81819f0f 2540 */
b6210386
NP
2541 if (flags & SLAB_HWCACHE_ALIGN) {
2542 unsigned long ralign = cache_line_size();
2543 while (size <= ralign / 2)
2544 ralign /= 2;
2545 align = max(align, ralign);
2546 }
81819f0f
CL
2547
2548 if (align < ARCH_SLAB_MINALIGN)
b6210386 2549 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2550
2551 return ALIGN(align, sizeof(void *));
2552}
2553
5595cffc
PE
2554static void
2555init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2556{
2557 n->nr_partial = 0;
81819f0f
CL
2558 spin_lock_init(&n->list_lock);
2559 INIT_LIST_HEAD(&n->partial);
8ab1372f 2560#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2561 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2562 atomic_long_set(&n->total_objects, 0);
643b1138 2563 INIT_LIST_HEAD(&n->full);
8ab1372f 2564#endif
81819f0f
CL
2565}
2566
55136592 2567static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2568{
6c182dc0
CL
2569 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2570 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2571
8a5ec0ba 2572 /*
d4d84fef
CM
2573 * Must align to double word boundary for the double cmpxchg
2574 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2575 */
d4d84fef
CM
2576 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2577 2 * sizeof(void *));
8a5ec0ba
CL
2578
2579 if (!s->cpu_slab)
2580 return 0;
2581
2582 init_kmem_cache_cpus(s);
4c93c355 2583
8a5ec0ba 2584 return 1;
4c93c355 2585}
4c93c355 2586
51df1142
CL
2587static struct kmem_cache *kmem_cache_node;
2588
81819f0f
CL
2589/*
2590 * No kmalloc_node yet so do it by hand. We know that this is the first
2591 * slab on the node for this slabcache. There are no concurrent accesses
2592 * possible.
2593 *
2594 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2595 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2596 * memory on a fresh node that has no slab structures yet.
81819f0f 2597 */
55136592 2598static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2599{
2600 struct page *page;
2601 struct kmem_cache_node *n;
2602
51df1142 2603 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2604
51df1142 2605 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2606
2607 BUG_ON(!page);
a2f92ee7
CL
2608 if (page_to_nid(page) != node) {
2609 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2610 "node %d\n", node);
2611 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2612 "in order to be able to continue\n");
2613 }
2614
81819f0f
CL
2615 n = page->freelist;
2616 BUG_ON(!n);
51df1142 2617 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2618 page->inuse++;
8cb0a506 2619 page->frozen = 0;
51df1142 2620 kmem_cache_node->node[node] = n;
8ab1372f 2621#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2622 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2623 init_tracking(kmem_cache_node, n);
8ab1372f 2624#endif
51df1142
CL
2625 init_kmem_cache_node(n, kmem_cache_node);
2626 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2627
7c2e132c 2628 add_partial(n, page, 0);
81819f0f
CL
2629}
2630
2631static void free_kmem_cache_nodes(struct kmem_cache *s)
2632{
2633 int node;
2634
f64dc58c 2635 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2636 struct kmem_cache_node *n = s->node[node];
51df1142 2637
73367bd8 2638 if (n)
51df1142
CL
2639 kmem_cache_free(kmem_cache_node, n);
2640
81819f0f
CL
2641 s->node[node] = NULL;
2642 }
2643}
2644
55136592 2645static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2646{
2647 int node;
81819f0f 2648
f64dc58c 2649 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2650 struct kmem_cache_node *n;
2651
73367bd8 2652 if (slab_state == DOWN) {
55136592 2653 early_kmem_cache_node_alloc(node);
73367bd8
AD
2654 continue;
2655 }
51df1142 2656 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2657 GFP_KERNEL, node);
81819f0f 2658
73367bd8
AD
2659 if (!n) {
2660 free_kmem_cache_nodes(s);
2661 return 0;
81819f0f 2662 }
73367bd8 2663
81819f0f 2664 s->node[node] = n;
5595cffc 2665 init_kmem_cache_node(n, s);
81819f0f
CL
2666 }
2667 return 1;
2668}
81819f0f 2669
c0bdb232 2670static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2671{
2672 if (min < MIN_PARTIAL)
2673 min = MIN_PARTIAL;
2674 else if (min > MAX_PARTIAL)
2675 min = MAX_PARTIAL;
2676 s->min_partial = min;
2677}
2678
81819f0f
CL
2679/*
2680 * calculate_sizes() determines the order and the distribution of data within
2681 * a slab object.
2682 */
06b285dc 2683static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2684{
2685 unsigned long flags = s->flags;
2686 unsigned long size = s->objsize;
2687 unsigned long align = s->align;
834f3d11 2688 int order;
81819f0f 2689
d8b42bf5
CL
2690 /*
2691 * Round up object size to the next word boundary. We can only
2692 * place the free pointer at word boundaries and this determines
2693 * the possible location of the free pointer.
2694 */
2695 size = ALIGN(size, sizeof(void *));
2696
2697#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2698 /*
2699 * Determine if we can poison the object itself. If the user of
2700 * the slab may touch the object after free or before allocation
2701 * then we should never poison the object itself.
2702 */
2703 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2704 !s->ctor)
81819f0f
CL
2705 s->flags |= __OBJECT_POISON;
2706 else
2707 s->flags &= ~__OBJECT_POISON;
2708
81819f0f
CL
2709
2710 /*
672bba3a 2711 * If we are Redzoning then check if there is some space between the
81819f0f 2712 * end of the object and the free pointer. If not then add an
672bba3a 2713 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2714 */
2715 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2716 size += sizeof(void *);
41ecc55b 2717#endif
81819f0f
CL
2718
2719 /*
672bba3a
CL
2720 * With that we have determined the number of bytes in actual use
2721 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2722 */
2723 s->inuse = size;
2724
2725 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2726 s->ctor)) {
81819f0f
CL
2727 /*
2728 * Relocate free pointer after the object if it is not
2729 * permitted to overwrite the first word of the object on
2730 * kmem_cache_free.
2731 *
2732 * This is the case if we do RCU, have a constructor or
2733 * destructor or are poisoning the objects.
2734 */
2735 s->offset = size;
2736 size += sizeof(void *);
2737 }
2738
c12b3c62 2739#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2740 if (flags & SLAB_STORE_USER)
2741 /*
2742 * Need to store information about allocs and frees after
2743 * the object.
2744 */
2745 size += 2 * sizeof(struct track);
2746
be7b3fbc 2747 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2748 /*
2749 * Add some empty padding so that we can catch
2750 * overwrites from earlier objects rather than let
2751 * tracking information or the free pointer be
0211a9c8 2752 * corrupted if a user writes before the start
81819f0f
CL
2753 * of the object.
2754 */
2755 size += sizeof(void *);
41ecc55b 2756#endif
672bba3a 2757
81819f0f
CL
2758 /*
2759 * Determine the alignment based on various parameters that the
65c02d4c
CL
2760 * user specified and the dynamic determination of cache line size
2761 * on bootup.
81819f0f
CL
2762 */
2763 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2764 s->align = align;
81819f0f
CL
2765
2766 /*
2767 * SLUB stores one object immediately after another beginning from
2768 * offset 0. In order to align the objects we have to simply size
2769 * each object to conform to the alignment.
2770 */
2771 size = ALIGN(size, align);
2772 s->size = size;
06b285dc
CL
2773 if (forced_order >= 0)
2774 order = forced_order;
2775 else
ab9a0f19 2776 order = calculate_order(size, s->reserved);
81819f0f 2777
834f3d11 2778 if (order < 0)
81819f0f
CL
2779 return 0;
2780
b7a49f0d 2781 s->allocflags = 0;
834f3d11 2782 if (order)
b7a49f0d
CL
2783 s->allocflags |= __GFP_COMP;
2784
2785 if (s->flags & SLAB_CACHE_DMA)
2786 s->allocflags |= SLUB_DMA;
2787
2788 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2789 s->allocflags |= __GFP_RECLAIMABLE;
2790
81819f0f
CL
2791 /*
2792 * Determine the number of objects per slab
2793 */
ab9a0f19
LJ
2794 s->oo = oo_make(order, size, s->reserved);
2795 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2796 if (oo_objects(s->oo) > oo_objects(s->max))
2797 s->max = s->oo;
81819f0f 2798
834f3d11 2799 return !!oo_objects(s->oo);
81819f0f
CL
2800
2801}
2802
55136592 2803static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2804 const char *name, size_t size,
2805 size_t align, unsigned long flags,
51cc5068 2806 void (*ctor)(void *))
81819f0f
CL
2807{
2808 memset(s, 0, kmem_size);
2809 s->name = name;
2810 s->ctor = ctor;
81819f0f 2811 s->objsize = size;
81819f0f 2812 s->align = align;
ba0268a8 2813 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2814 s->reserved = 0;
81819f0f 2815
da9a638c
LJ
2816 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2817 s->reserved = sizeof(struct rcu_head);
81819f0f 2818
06b285dc 2819 if (!calculate_sizes(s, -1))
81819f0f 2820 goto error;
3de47213
DR
2821 if (disable_higher_order_debug) {
2822 /*
2823 * Disable debugging flags that store metadata if the min slab
2824 * order increased.
2825 */
2826 if (get_order(s->size) > get_order(s->objsize)) {
2827 s->flags &= ~DEBUG_METADATA_FLAGS;
2828 s->offset = 0;
2829 if (!calculate_sizes(s, -1))
2830 goto error;
2831 }
2832 }
81819f0f 2833
b789ef51
CL
2834#ifdef CONFIG_CMPXCHG_DOUBLE
2835 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2836 /* Enable fast mode */
2837 s->flags |= __CMPXCHG_DOUBLE;
2838#endif
2839
3b89d7d8
DR
2840 /*
2841 * The larger the object size is, the more pages we want on the partial
2842 * list to avoid pounding the page allocator excessively.
2843 */
c0bdb232 2844 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2845 s->refcount = 1;
2846#ifdef CONFIG_NUMA
e2cb96b7 2847 s->remote_node_defrag_ratio = 1000;
81819f0f 2848#endif
55136592 2849 if (!init_kmem_cache_nodes(s))
dfb4f096 2850 goto error;
81819f0f 2851
55136592 2852 if (alloc_kmem_cache_cpus(s))
81819f0f 2853 return 1;
ff12059e 2854
4c93c355 2855 free_kmem_cache_nodes(s);
81819f0f
CL
2856error:
2857 if (flags & SLAB_PANIC)
2858 panic("Cannot create slab %s size=%lu realsize=%u "
2859 "order=%u offset=%u flags=%lx\n",
834f3d11 2860 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2861 s->offset, flags);
2862 return 0;
2863}
81819f0f 2864
81819f0f
CL
2865/*
2866 * Determine the size of a slab object
2867 */
2868unsigned int kmem_cache_size(struct kmem_cache *s)
2869{
2870 return s->objsize;
2871}
2872EXPORT_SYMBOL(kmem_cache_size);
2873
33b12c38
CL
2874static void list_slab_objects(struct kmem_cache *s, struct page *page,
2875 const char *text)
2876{
2877#ifdef CONFIG_SLUB_DEBUG
2878 void *addr = page_address(page);
2879 void *p;
a5dd5c11
NK
2880 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2881 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2882 if (!map)
2883 return;
33b12c38
CL
2884 slab_err(s, page, "%s", text);
2885 slab_lock(page);
33b12c38 2886
5f80b13a 2887 get_map(s, page, map);
33b12c38
CL
2888 for_each_object(p, s, addr, page->objects) {
2889
2890 if (!test_bit(slab_index(p, s, addr), map)) {
2891 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2892 p, p - addr);
2893 print_tracking(s, p);
2894 }
2895 }
2896 slab_unlock(page);
bbd7d57b 2897 kfree(map);
33b12c38
CL
2898#endif
2899}
2900
81819f0f 2901/*
599870b1 2902 * Attempt to free all partial slabs on a node.
81819f0f 2903 */
599870b1 2904static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2905{
81819f0f
CL
2906 unsigned long flags;
2907 struct page *page, *h;
2908
2909 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2910 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2911 if (!page->inuse) {
5cc6eee8 2912 remove_partial(n, page);
81819f0f 2913 discard_slab(s, page);
33b12c38
CL
2914 } else {
2915 list_slab_objects(s, page,
2916 "Objects remaining on kmem_cache_close()");
599870b1 2917 }
33b12c38 2918 }
81819f0f 2919 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2920}
2921
2922/*
672bba3a 2923 * Release all resources used by a slab cache.
81819f0f 2924 */
0c710013 2925static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2926{
2927 int node;
2928
2929 flush_all(s);
9dfc6e68 2930 free_percpu(s->cpu_slab);
81819f0f 2931 /* Attempt to free all objects */
f64dc58c 2932 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2933 struct kmem_cache_node *n = get_node(s, node);
2934
599870b1
CL
2935 free_partial(s, n);
2936 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2937 return 1;
2938 }
2939 free_kmem_cache_nodes(s);
2940 return 0;
2941}
2942
2943/*
2944 * Close a cache and release the kmem_cache structure
2945 * (must be used for caches created using kmem_cache_create)
2946 */
2947void kmem_cache_destroy(struct kmem_cache *s)
2948{
2949 down_write(&slub_lock);
2950 s->refcount--;
2951 if (!s->refcount) {
2952 list_del(&s->list);
d629d819
PE
2953 if (kmem_cache_close(s)) {
2954 printk(KERN_ERR "SLUB %s: %s called for cache that "
2955 "still has objects.\n", s->name, __func__);
2956 dump_stack();
2957 }
d76b1590
ED
2958 if (s->flags & SLAB_DESTROY_BY_RCU)
2959 rcu_barrier();
81819f0f 2960 sysfs_slab_remove(s);
2bce6485
CL
2961 }
2962 up_write(&slub_lock);
81819f0f
CL
2963}
2964EXPORT_SYMBOL(kmem_cache_destroy);
2965
2966/********************************************************************
2967 * Kmalloc subsystem
2968 *******************************************************************/
2969
51df1142 2970struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2971EXPORT_SYMBOL(kmalloc_caches);
2972
51df1142
CL
2973static struct kmem_cache *kmem_cache;
2974
55136592 2975#ifdef CONFIG_ZONE_DMA
51df1142 2976static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2977#endif
2978
81819f0f
CL
2979static int __init setup_slub_min_order(char *str)
2980{
06428780 2981 get_option(&str, &slub_min_order);
81819f0f
CL
2982
2983 return 1;
2984}
2985
2986__setup("slub_min_order=", setup_slub_min_order);
2987
2988static int __init setup_slub_max_order(char *str)
2989{
06428780 2990 get_option(&str, &slub_max_order);
818cf590 2991 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2992
2993 return 1;
2994}
2995
2996__setup("slub_max_order=", setup_slub_max_order);
2997
2998static int __init setup_slub_min_objects(char *str)
2999{
06428780 3000 get_option(&str, &slub_min_objects);
81819f0f
CL
3001
3002 return 1;
3003}
3004
3005__setup("slub_min_objects=", setup_slub_min_objects);
3006
3007static int __init setup_slub_nomerge(char *str)
3008{
3009 slub_nomerge = 1;
3010 return 1;
3011}
3012
3013__setup("slub_nomerge", setup_slub_nomerge);
3014
51df1142
CL
3015static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3016 int size, unsigned int flags)
81819f0f 3017{
51df1142
CL
3018 struct kmem_cache *s;
3019
3020 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3021
83b519e8
PE
3022 /*
3023 * This function is called with IRQs disabled during early-boot on
3024 * single CPU so there's no need to take slub_lock here.
3025 */
55136592 3026 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3027 flags, NULL))
81819f0f
CL
3028 goto panic;
3029
3030 list_add(&s->list, &slab_caches);
51df1142 3031 return s;
81819f0f
CL
3032
3033panic:
3034 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3035 return NULL;
81819f0f
CL
3036}
3037
f1b26339
CL
3038/*
3039 * Conversion table for small slabs sizes / 8 to the index in the
3040 * kmalloc array. This is necessary for slabs < 192 since we have non power
3041 * of two cache sizes there. The size of larger slabs can be determined using
3042 * fls.
3043 */
3044static s8 size_index[24] = {
3045 3, /* 8 */
3046 4, /* 16 */
3047 5, /* 24 */
3048 5, /* 32 */
3049 6, /* 40 */
3050 6, /* 48 */
3051 6, /* 56 */
3052 6, /* 64 */
3053 1, /* 72 */
3054 1, /* 80 */
3055 1, /* 88 */
3056 1, /* 96 */
3057 7, /* 104 */
3058 7, /* 112 */
3059 7, /* 120 */
3060 7, /* 128 */
3061 2, /* 136 */
3062 2, /* 144 */
3063 2, /* 152 */
3064 2, /* 160 */
3065 2, /* 168 */
3066 2, /* 176 */
3067 2, /* 184 */
3068 2 /* 192 */
3069};
3070
acdfcd04
AK
3071static inline int size_index_elem(size_t bytes)
3072{
3073 return (bytes - 1) / 8;
3074}
3075
81819f0f
CL
3076static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3077{
f1b26339 3078 int index;
81819f0f 3079
f1b26339
CL
3080 if (size <= 192) {
3081 if (!size)
3082 return ZERO_SIZE_PTR;
81819f0f 3083
acdfcd04 3084 index = size_index[size_index_elem(size)];
aadb4bc4 3085 } else
f1b26339 3086 index = fls(size - 1);
81819f0f
CL
3087
3088#ifdef CONFIG_ZONE_DMA
f1b26339 3089 if (unlikely((flags & SLUB_DMA)))
51df1142 3090 return kmalloc_dma_caches[index];
f1b26339 3091
81819f0f 3092#endif
51df1142 3093 return kmalloc_caches[index];
81819f0f
CL
3094}
3095
3096void *__kmalloc(size_t size, gfp_t flags)
3097{
aadb4bc4 3098 struct kmem_cache *s;
5b882be4 3099 void *ret;
81819f0f 3100
ffadd4d0 3101 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3102 return kmalloc_large(size, flags);
aadb4bc4
CL
3103
3104 s = get_slab(size, flags);
3105
3106 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3107 return s;
3108
2154a336 3109 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3110
ca2b84cb 3111 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3112
3113 return ret;
81819f0f
CL
3114}
3115EXPORT_SYMBOL(__kmalloc);
3116
5d1f57e4 3117#ifdef CONFIG_NUMA
f619cfe1
CL
3118static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3119{
b1eeab67 3120 struct page *page;
e4f7c0b4 3121 void *ptr = NULL;
f619cfe1 3122
b1eeab67
VN
3123 flags |= __GFP_COMP | __GFP_NOTRACK;
3124 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3125 if (page)
e4f7c0b4
CM
3126 ptr = page_address(page);
3127
3128 kmemleak_alloc(ptr, size, 1, flags);
3129 return ptr;
f619cfe1
CL
3130}
3131
81819f0f
CL
3132void *__kmalloc_node(size_t size, gfp_t flags, int node)
3133{
aadb4bc4 3134 struct kmem_cache *s;
5b882be4 3135 void *ret;
81819f0f 3136
057685cf 3137 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3138 ret = kmalloc_large_node(size, flags, node);
3139
ca2b84cb
EGM
3140 trace_kmalloc_node(_RET_IP_, ret,
3141 size, PAGE_SIZE << get_order(size),
3142 flags, node);
5b882be4
EGM
3143
3144 return ret;
3145 }
aadb4bc4
CL
3146
3147 s = get_slab(size, flags);
3148
3149 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3150 return s;
3151
5b882be4
EGM
3152 ret = slab_alloc(s, flags, node, _RET_IP_);
3153
ca2b84cb 3154 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3155
3156 return ret;
81819f0f
CL
3157}
3158EXPORT_SYMBOL(__kmalloc_node);
3159#endif
3160
3161size_t ksize(const void *object)
3162{
272c1d21 3163 struct page *page;
81819f0f 3164
ef8b4520 3165 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3166 return 0;
3167
294a80a8 3168 page = virt_to_head_page(object);
294a80a8 3169
76994412
PE
3170 if (unlikely(!PageSlab(page))) {
3171 WARN_ON(!PageCompound(page));
294a80a8 3172 return PAGE_SIZE << compound_order(page);
76994412 3173 }
81819f0f 3174
b3d41885 3175 return slab_ksize(page->slab);
81819f0f 3176}
b1aabecd 3177EXPORT_SYMBOL(ksize);
81819f0f
CL
3178
3179void kfree(const void *x)
3180{
81819f0f 3181 struct page *page;
5bb983b0 3182 void *object = (void *)x;
81819f0f 3183
2121db74
PE
3184 trace_kfree(_RET_IP_, x);
3185
2408c550 3186 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3187 return;
3188
b49af68f 3189 page = virt_to_head_page(x);
aadb4bc4 3190 if (unlikely(!PageSlab(page))) {
0937502a 3191 BUG_ON(!PageCompound(page));
e4f7c0b4 3192 kmemleak_free(x);
aadb4bc4
CL
3193 put_page(page);
3194 return;
3195 }
ce71e27c 3196 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3197}
3198EXPORT_SYMBOL(kfree);
3199
2086d26a 3200/*
672bba3a
CL
3201 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3202 * the remaining slabs by the number of items in use. The slabs with the
3203 * most items in use come first. New allocations will then fill those up
3204 * and thus they can be removed from the partial lists.
3205 *
3206 * The slabs with the least items are placed last. This results in them
3207 * being allocated from last increasing the chance that the last objects
3208 * are freed in them.
2086d26a
CL
3209 */
3210int kmem_cache_shrink(struct kmem_cache *s)
3211{
3212 int node;
3213 int i;
3214 struct kmem_cache_node *n;
3215 struct page *page;
3216 struct page *t;
205ab99d 3217 int objects = oo_objects(s->max);
2086d26a 3218 struct list_head *slabs_by_inuse =
834f3d11 3219 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3220 unsigned long flags;
3221
3222 if (!slabs_by_inuse)
3223 return -ENOMEM;
3224
3225 flush_all(s);
f64dc58c 3226 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3227 n = get_node(s, node);
3228
3229 if (!n->nr_partial)
3230 continue;
3231
834f3d11 3232 for (i = 0; i < objects; i++)
2086d26a
CL
3233 INIT_LIST_HEAD(slabs_by_inuse + i);
3234
3235 spin_lock_irqsave(&n->list_lock, flags);
3236
3237 /*
672bba3a 3238 * Build lists indexed by the items in use in each slab.
2086d26a 3239 *
672bba3a
CL
3240 * Note that concurrent frees may occur while we hold the
3241 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3242 */
3243 list_for_each_entry_safe(page, t, &n->partial, lru) {
881db7fb 3244 if (!page->inuse) {
5cc6eee8 3245 remove_partial(n, page);
2086d26a
CL
3246 discard_slab(s, page);
3247 } else {
fcda3d89
CL
3248 list_move(&page->lru,
3249 slabs_by_inuse + page->inuse);
2086d26a
CL
3250 }
3251 }
3252
2086d26a 3253 /*
672bba3a
CL
3254 * Rebuild the partial list with the slabs filled up most
3255 * first and the least used slabs at the end.
2086d26a 3256 */
834f3d11 3257 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3258 list_splice(slabs_by_inuse + i, n->partial.prev);
3259
2086d26a
CL
3260 spin_unlock_irqrestore(&n->list_lock, flags);
3261 }
3262
3263 kfree(slabs_by_inuse);
3264 return 0;
3265}
3266EXPORT_SYMBOL(kmem_cache_shrink);
3267
92a5bbc1 3268#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3269static int slab_mem_going_offline_callback(void *arg)
3270{
3271 struct kmem_cache *s;
3272
3273 down_read(&slub_lock);
3274 list_for_each_entry(s, &slab_caches, list)
3275 kmem_cache_shrink(s);
3276 up_read(&slub_lock);
3277
3278 return 0;
3279}
3280
3281static void slab_mem_offline_callback(void *arg)
3282{
3283 struct kmem_cache_node *n;
3284 struct kmem_cache *s;
3285 struct memory_notify *marg = arg;
3286 int offline_node;
3287
3288 offline_node = marg->status_change_nid;
3289
3290 /*
3291 * If the node still has available memory. we need kmem_cache_node
3292 * for it yet.
3293 */
3294 if (offline_node < 0)
3295 return;
3296
3297 down_read(&slub_lock);
3298 list_for_each_entry(s, &slab_caches, list) {
3299 n = get_node(s, offline_node);
3300 if (n) {
3301 /*
3302 * if n->nr_slabs > 0, slabs still exist on the node
3303 * that is going down. We were unable to free them,
c9404c9c 3304 * and offline_pages() function shouldn't call this
b9049e23
YG
3305 * callback. So, we must fail.
3306 */
0f389ec6 3307 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3308
3309 s->node[offline_node] = NULL;
8de66a0c 3310 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3311 }
3312 }
3313 up_read(&slub_lock);
3314}
3315
3316static int slab_mem_going_online_callback(void *arg)
3317{
3318 struct kmem_cache_node *n;
3319 struct kmem_cache *s;
3320 struct memory_notify *marg = arg;
3321 int nid = marg->status_change_nid;
3322 int ret = 0;
3323
3324 /*
3325 * If the node's memory is already available, then kmem_cache_node is
3326 * already created. Nothing to do.
3327 */
3328 if (nid < 0)
3329 return 0;
3330
3331 /*
0121c619 3332 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3333 * allocate a kmem_cache_node structure in order to bring the node
3334 * online.
3335 */
3336 down_read(&slub_lock);
3337 list_for_each_entry(s, &slab_caches, list) {
3338 /*
3339 * XXX: kmem_cache_alloc_node will fallback to other nodes
3340 * since memory is not yet available from the node that
3341 * is brought up.
3342 */
8de66a0c 3343 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3344 if (!n) {
3345 ret = -ENOMEM;
3346 goto out;
3347 }
5595cffc 3348 init_kmem_cache_node(n, s);
b9049e23
YG
3349 s->node[nid] = n;
3350 }
3351out:
3352 up_read(&slub_lock);
3353 return ret;
3354}
3355
3356static int slab_memory_callback(struct notifier_block *self,
3357 unsigned long action, void *arg)
3358{
3359 int ret = 0;
3360
3361 switch (action) {
3362 case MEM_GOING_ONLINE:
3363 ret = slab_mem_going_online_callback(arg);
3364 break;
3365 case MEM_GOING_OFFLINE:
3366 ret = slab_mem_going_offline_callback(arg);
3367 break;
3368 case MEM_OFFLINE:
3369 case MEM_CANCEL_ONLINE:
3370 slab_mem_offline_callback(arg);
3371 break;
3372 case MEM_ONLINE:
3373 case MEM_CANCEL_OFFLINE:
3374 break;
3375 }
dc19f9db
KH
3376 if (ret)
3377 ret = notifier_from_errno(ret);
3378 else
3379 ret = NOTIFY_OK;
b9049e23
YG
3380 return ret;
3381}
3382
3383#endif /* CONFIG_MEMORY_HOTPLUG */
3384
81819f0f
CL
3385/********************************************************************
3386 * Basic setup of slabs
3387 *******************************************************************/
3388
51df1142
CL
3389/*
3390 * Used for early kmem_cache structures that were allocated using
3391 * the page allocator
3392 */
3393
3394static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3395{
3396 int node;
3397
3398 list_add(&s->list, &slab_caches);
3399 s->refcount = -1;
3400
3401 for_each_node_state(node, N_NORMAL_MEMORY) {
3402 struct kmem_cache_node *n = get_node(s, node);
3403 struct page *p;
3404
3405 if (n) {
3406 list_for_each_entry(p, &n->partial, lru)
3407 p->slab = s;
3408
607bf324 3409#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3410 list_for_each_entry(p, &n->full, lru)
3411 p->slab = s;
3412#endif
3413 }
3414 }
3415}
3416
81819f0f
CL
3417void __init kmem_cache_init(void)
3418{
3419 int i;
4b356be0 3420 int caches = 0;
51df1142
CL
3421 struct kmem_cache *temp_kmem_cache;
3422 int order;
51df1142
CL
3423 struct kmem_cache *temp_kmem_cache_node;
3424 unsigned long kmalloc_size;
3425
3426 kmem_size = offsetof(struct kmem_cache, node) +
3427 nr_node_ids * sizeof(struct kmem_cache_node *);
3428
3429 /* Allocate two kmem_caches from the page allocator */
3430 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3431 order = get_order(2 * kmalloc_size);
3432 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3433
81819f0f
CL
3434 /*
3435 * Must first have the slab cache available for the allocations of the
672bba3a 3436 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3437 * kmem_cache_open for slab_state == DOWN.
3438 */
51df1142
CL
3439 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3440
3441 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3442 sizeof(struct kmem_cache_node),
3443 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3444
0c40ba4f 3445 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3446
3447 /* Able to allocate the per node structures */
3448 slab_state = PARTIAL;
3449
51df1142
CL
3450 temp_kmem_cache = kmem_cache;
3451 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3452 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3453 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3454 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3455
51df1142
CL
3456 /*
3457 * Allocate kmem_cache_node properly from the kmem_cache slab.
3458 * kmem_cache_node is separately allocated so no need to
3459 * update any list pointers.
3460 */
3461 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3462
51df1142
CL
3463 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3464 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3465
3466 kmem_cache_bootstrap_fixup(kmem_cache_node);
3467
3468 caches++;
51df1142
CL
3469 kmem_cache_bootstrap_fixup(kmem_cache);
3470 caches++;
3471 /* Free temporary boot structure */
3472 free_pages((unsigned long)temp_kmem_cache, order);
3473
3474 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3475
3476 /*
3477 * Patch up the size_index table if we have strange large alignment
3478 * requirements for the kmalloc array. This is only the case for
6446faa2 3479 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3480 *
3481 * Largest permitted alignment is 256 bytes due to the way we
3482 * handle the index determination for the smaller caches.
3483 *
3484 * Make sure that nothing crazy happens if someone starts tinkering
3485 * around with ARCH_KMALLOC_MINALIGN
3486 */
3487 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3488 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3489
acdfcd04
AK
3490 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3491 int elem = size_index_elem(i);
3492 if (elem >= ARRAY_SIZE(size_index))
3493 break;
3494 size_index[elem] = KMALLOC_SHIFT_LOW;
3495 }
f1b26339 3496
acdfcd04
AK
3497 if (KMALLOC_MIN_SIZE == 64) {
3498 /*
3499 * The 96 byte size cache is not used if the alignment
3500 * is 64 byte.
3501 */
3502 for (i = 64 + 8; i <= 96; i += 8)
3503 size_index[size_index_elem(i)] = 7;
3504 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3505 /*
3506 * The 192 byte sized cache is not used if the alignment
3507 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3508 * instead.
3509 */
3510 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3511 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3512 }
3513
51df1142
CL
3514 /* Caches that are not of the two-to-the-power-of size */
3515 if (KMALLOC_MIN_SIZE <= 32) {
3516 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3517 caches++;
3518 }
3519
3520 if (KMALLOC_MIN_SIZE <= 64) {
3521 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3522 caches++;
3523 }
3524
3525 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3526 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3527 caches++;
3528 }
3529
81819f0f
CL
3530 slab_state = UP;
3531
3532 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3533 if (KMALLOC_MIN_SIZE <= 32) {
3534 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3535 BUG_ON(!kmalloc_caches[1]->name);
3536 }
3537
3538 if (KMALLOC_MIN_SIZE <= 64) {
3539 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3540 BUG_ON(!kmalloc_caches[2]->name);
3541 }
3542
d7278bd7
CL
3543 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3544 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3545
3546 BUG_ON(!s);
51df1142 3547 kmalloc_caches[i]->name = s;
d7278bd7 3548 }
81819f0f
CL
3549
3550#ifdef CONFIG_SMP
3551 register_cpu_notifier(&slab_notifier);
9dfc6e68 3552#endif
81819f0f 3553
55136592 3554#ifdef CONFIG_ZONE_DMA
51df1142
CL
3555 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3556 struct kmem_cache *s = kmalloc_caches[i];
55136592 3557
51df1142 3558 if (s && s->size) {
55136592
CL
3559 char *name = kasprintf(GFP_NOWAIT,
3560 "dma-kmalloc-%d", s->objsize);
3561
3562 BUG_ON(!name);
51df1142
CL
3563 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3564 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3565 }
3566 }
3567#endif
3adbefee
IM
3568 printk(KERN_INFO
3569 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3570 " CPUs=%d, Nodes=%d\n",
3571 caches, cache_line_size(),
81819f0f
CL
3572 slub_min_order, slub_max_order, slub_min_objects,
3573 nr_cpu_ids, nr_node_ids);
3574}
3575
7e85ee0c
PE
3576void __init kmem_cache_init_late(void)
3577{
7e85ee0c
PE
3578}
3579
81819f0f
CL
3580/*
3581 * Find a mergeable slab cache
3582 */
3583static int slab_unmergeable(struct kmem_cache *s)
3584{
3585 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3586 return 1;
3587
c59def9f 3588 if (s->ctor)
81819f0f
CL
3589 return 1;
3590
8ffa6875
CL
3591 /*
3592 * We may have set a slab to be unmergeable during bootstrap.
3593 */
3594 if (s->refcount < 0)
3595 return 1;
3596
81819f0f
CL
3597 return 0;
3598}
3599
3600static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3601 size_t align, unsigned long flags, const char *name,
51cc5068 3602 void (*ctor)(void *))
81819f0f 3603{
5b95a4ac 3604 struct kmem_cache *s;
81819f0f
CL
3605
3606 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3607 return NULL;
3608
c59def9f 3609 if (ctor)
81819f0f
CL
3610 return NULL;
3611
3612 size = ALIGN(size, sizeof(void *));
3613 align = calculate_alignment(flags, align, size);
3614 size = ALIGN(size, align);
ba0268a8 3615 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3616
5b95a4ac 3617 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3618 if (slab_unmergeable(s))
3619 continue;
3620
3621 if (size > s->size)
3622 continue;
3623
ba0268a8 3624 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3625 continue;
3626 /*
3627 * Check if alignment is compatible.
3628 * Courtesy of Adrian Drzewiecki
3629 */
06428780 3630 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3631 continue;
3632
3633 if (s->size - size >= sizeof(void *))
3634 continue;
3635
3636 return s;
3637 }
3638 return NULL;
3639}
3640
3641struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3642 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3643{
3644 struct kmem_cache *s;
84c1cf62 3645 char *n;
81819f0f 3646
fe1ff49d
BH
3647 if (WARN_ON(!name))
3648 return NULL;
3649
81819f0f 3650 down_write(&slub_lock);
ba0268a8 3651 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3652 if (s) {
3653 s->refcount++;
3654 /*
3655 * Adjust the object sizes so that we clear
3656 * the complete object on kzalloc.
3657 */
3658 s->objsize = max(s->objsize, (int)size);
3659 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3660
7b8f3b66 3661 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3662 s->refcount--;
81819f0f 3663 goto err;
7b8f3b66 3664 }
2bce6485 3665 up_write(&slub_lock);
a0e1d1be
CL
3666 return s;
3667 }
6446faa2 3668
84c1cf62
PE
3669 n = kstrdup(name, GFP_KERNEL);
3670 if (!n)
3671 goto err;
3672
a0e1d1be
CL
3673 s = kmalloc(kmem_size, GFP_KERNEL);
3674 if (s) {
84c1cf62 3675 if (kmem_cache_open(s, n,
c59def9f 3676 size, align, flags, ctor)) {
81819f0f 3677 list_add(&s->list, &slab_caches);
7b8f3b66 3678 if (sysfs_slab_add(s)) {
7b8f3b66 3679 list_del(&s->list);
84c1cf62 3680 kfree(n);
7b8f3b66 3681 kfree(s);
a0e1d1be 3682 goto err;
7b8f3b66 3683 }
2bce6485 3684 up_write(&slub_lock);
a0e1d1be
CL
3685 return s;
3686 }
84c1cf62 3687 kfree(n);
a0e1d1be 3688 kfree(s);
81819f0f 3689 }
68cee4f1 3690err:
81819f0f 3691 up_write(&slub_lock);
81819f0f 3692
81819f0f
CL
3693 if (flags & SLAB_PANIC)
3694 panic("Cannot create slabcache %s\n", name);
3695 else
3696 s = NULL;
3697 return s;
3698}
3699EXPORT_SYMBOL(kmem_cache_create);
3700
81819f0f 3701#ifdef CONFIG_SMP
81819f0f 3702/*
672bba3a
CL
3703 * Use the cpu notifier to insure that the cpu slabs are flushed when
3704 * necessary.
81819f0f
CL
3705 */
3706static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3707 unsigned long action, void *hcpu)
3708{
3709 long cpu = (long)hcpu;
5b95a4ac
CL
3710 struct kmem_cache *s;
3711 unsigned long flags;
81819f0f
CL
3712
3713 switch (action) {
3714 case CPU_UP_CANCELED:
8bb78442 3715 case CPU_UP_CANCELED_FROZEN:
81819f0f 3716 case CPU_DEAD:
8bb78442 3717 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3718 down_read(&slub_lock);
3719 list_for_each_entry(s, &slab_caches, list) {
3720 local_irq_save(flags);
3721 __flush_cpu_slab(s, cpu);
3722 local_irq_restore(flags);
3723 }
3724 up_read(&slub_lock);
81819f0f
CL
3725 break;
3726 default:
3727 break;
3728 }
3729 return NOTIFY_OK;
3730}
3731
06428780 3732static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3733 .notifier_call = slab_cpuup_callback
06428780 3734};
81819f0f
CL
3735
3736#endif
3737
ce71e27c 3738void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3739{
aadb4bc4 3740 struct kmem_cache *s;
94b528d0 3741 void *ret;
aadb4bc4 3742
ffadd4d0 3743 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3744 return kmalloc_large(size, gfpflags);
3745
aadb4bc4 3746 s = get_slab(size, gfpflags);
81819f0f 3747
2408c550 3748 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3749 return s;
81819f0f 3750
2154a336 3751 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3752
25985edc 3753 /* Honor the call site pointer we received. */
ca2b84cb 3754 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3755
3756 return ret;
81819f0f
CL
3757}
3758
5d1f57e4 3759#ifdef CONFIG_NUMA
81819f0f 3760void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3761 int node, unsigned long caller)
81819f0f 3762{
aadb4bc4 3763 struct kmem_cache *s;
94b528d0 3764 void *ret;
aadb4bc4 3765
d3e14aa3
XF
3766 if (unlikely(size > SLUB_MAX_SIZE)) {
3767 ret = kmalloc_large_node(size, gfpflags, node);
3768
3769 trace_kmalloc_node(caller, ret,
3770 size, PAGE_SIZE << get_order(size),
3771 gfpflags, node);
3772
3773 return ret;
3774 }
eada35ef 3775
aadb4bc4 3776 s = get_slab(size, gfpflags);
81819f0f 3777
2408c550 3778 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3779 return s;
81819f0f 3780
94b528d0
EGM
3781 ret = slab_alloc(s, gfpflags, node, caller);
3782
25985edc 3783 /* Honor the call site pointer we received. */
ca2b84cb 3784 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3785
3786 return ret;
81819f0f 3787}
5d1f57e4 3788#endif
81819f0f 3789
ab4d5ed5 3790#ifdef CONFIG_SYSFS
205ab99d
CL
3791static int count_inuse(struct page *page)
3792{
3793 return page->inuse;
3794}
3795
3796static int count_total(struct page *page)
3797{
3798 return page->objects;
3799}
ab4d5ed5 3800#endif
205ab99d 3801
ab4d5ed5 3802#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3803static int validate_slab(struct kmem_cache *s, struct page *page,
3804 unsigned long *map)
53e15af0
CL
3805{
3806 void *p;
a973e9dd 3807 void *addr = page_address(page);
53e15af0
CL
3808
3809 if (!check_slab(s, page) ||
3810 !on_freelist(s, page, NULL))
3811 return 0;
3812
3813 /* Now we know that a valid freelist exists */
39b26464 3814 bitmap_zero(map, page->objects);
53e15af0 3815
5f80b13a
CL
3816 get_map(s, page, map);
3817 for_each_object(p, s, addr, page->objects) {
3818 if (test_bit(slab_index(p, s, addr), map))
3819 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3820 return 0;
53e15af0
CL
3821 }
3822
224a88be 3823 for_each_object(p, s, addr, page->objects)
7656c72b 3824 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3825 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3826 return 0;
3827 return 1;
3828}
3829
434e245d
CL
3830static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3831 unsigned long *map)
53e15af0 3832{
881db7fb
CL
3833 slab_lock(page);
3834 validate_slab(s, page, map);
3835 slab_unlock(page);
53e15af0
CL
3836}
3837
434e245d
CL
3838static int validate_slab_node(struct kmem_cache *s,
3839 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3840{
3841 unsigned long count = 0;
3842 struct page *page;
3843 unsigned long flags;
3844
3845 spin_lock_irqsave(&n->list_lock, flags);
3846
3847 list_for_each_entry(page, &n->partial, lru) {
434e245d 3848 validate_slab_slab(s, page, map);
53e15af0
CL
3849 count++;
3850 }
3851 if (count != n->nr_partial)
3852 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3853 "counter=%ld\n", s->name, count, n->nr_partial);
3854
3855 if (!(s->flags & SLAB_STORE_USER))
3856 goto out;
3857
3858 list_for_each_entry(page, &n->full, lru) {
434e245d 3859 validate_slab_slab(s, page, map);
53e15af0
CL
3860 count++;
3861 }
3862 if (count != atomic_long_read(&n->nr_slabs))
3863 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3864 "counter=%ld\n", s->name, count,
3865 atomic_long_read(&n->nr_slabs));
3866
3867out:
3868 spin_unlock_irqrestore(&n->list_lock, flags);
3869 return count;
3870}
3871
434e245d 3872static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3873{
3874 int node;
3875 unsigned long count = 0;
205ab99d 3876 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3877 sizeof(unsigned long), GFP_KERNEL);
3878
3879 if (!map)
3880 return -ENOMEM;
53e15af0
CL
3881
3882 flush_all(s);
f64dc58c 3883 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3884 struct kmem_cache_node *n = get_node(s, node);
3885
434e245d 3886 count += validate_slab_node(s, n, map);
53e15af0 3887 }
434e245d 3888 kfree(map);
53e15af0
CL
3889 return count;
3890}
88a420e4 3891/*
672bba3a 3892 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3893 * and freed.
3894 */
3895
3896struct location {
3897 unsigned long count;
ce71e27c 3898 unsigned long addr;
45edfa58
CL
3899 long long sum_time;
3900 long min_time;
3901 long max_time;
3902 long min_pid;
3903 long max_pid;
174596a0 3904 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3905 nodemask_t nodes;
88a420e4
CL
3906};
3907
3908struct loc_track {
3909 unsigned long max;
3910 unsigned long count;
3911 struct location *loc;
3912};
3913
3914static void free_loc_track(struct loc_track *t)
3915{
3916 if (t->max)
3917 free_pages((unsigned long)t->loc,
3918 get_order(sizeof(struct location) * t->max));
3919}
3920
68dff6a9 3921static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3922{
3923 struct location *l;
3924 int order;
3925
88a420e4
CL
3926 order = get_order(sizeof(struct location) * max);
3927
68dff6a9 3928 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3929 if (!l)
3930 return 0;
3931
3932 if (t->count) {
3933 memcpy(l, t->loc, sizeof(struct location) * t->count);
3934 free_loc_track(t);
3935 }
3936 t->max = max;
3937 t->loc = l;
3938 return 1;
3939}
3940
3941static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3942 const struct track *track)
88a420e4
CL
3943{
3944 long start, end, pos;
3945 struct location *l;
ce71e27c 3946 unsigned long caddr;
45edfa58 3947 unsigned long age = jiffies - track->when;
88a420e4
CL
3948
3949 start = -1;
3950 end = t->count;
3951
3952 for ( ; ; ) {
3953 pos = start + (end - start + 1) / 2;
3954
3955 /*
3956 * There is nothing at "end". If we end up there
3957 * we need to add something to before end.
3958 */
3959 if (pos == end)
3960 break;
3961
3962 caddr = t->loc[pos].addr;
45edfa58
CL
3963 if (track->addr == caddr) {
3964
3965 l = &t->loc[pos];
3966 l->count++;
3967 if (track->when) {
3968 l->sum_time += age;
3969 if (age < l->min_time)
3970 l->min_time = age;
3971 if (age > l->max_time)
3972 l->max_time = age;
3973
3974 if (track->pid < l->min_pid)
3975 l->min_pid = track->pid;
3976 if (track->pid > l->max_pid)
3977 l->max_pid = track->pid;
3978
174596a0
RR
3979 cpumask_set_cpu(track->cpu,
3980 to_cpumask(l->cpus));
45edfa58
CL
3981 }
3982 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3983 return 1;
3984 }
3985
45edfa58 3986 if (track->addr < caddr)
88a420e4
CL
3987 end = pos;
3988 else
3989 start = pos;
3990 }
3991
3992 /*
672bba3a 3993 * Not found. Insert new tracking element.
88a420e4 3994 */
68dff6a9 3995 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3996 return 0;
3997
3998 l = t->loc + pos;
3999 if (pos < t->count)
4000 memmove(l + 1, l,
4001 (t->count - pos) * sizeof(struct location));
4002 t->count++;
4003 l->count = 1;
45edfa58
CL
4004 l->addr = track->addr;
4005 l->sum_time = age;
4006 l->min_time = age;
4007 l->max_time = age;
4008 l->min_pid = track->pid;
4009 l->max_pid = track->pid;
174596a0
RR
4010 cpumask_clear(to_cpumask(l->cpus));
4011 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4012 nodes_clear(l->nodes);
4013 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4014 return 1;
4015}
4016
4017static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4018 struct page *page, enum track_item alloc,
a5dd5c11 4019 unsigned long *map)
88a420e4 4020{
a973e9dd 4021 void *addr = page_address(page);
88a420e4
CL
4022 void *p;
4023
39b26464 4024 bitmap_zero(map, page->objects);
5f80b13a 4025 get_map(s, page, map);
88a420e4 4026
224a88be 4027 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4028 if (!test_bit(slab_index(p, s, addr), map))
4029 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4030}
4031
4032static int list_locations(struct kmem_cache *s, char *buf,
4033 enum track_item alloc)
4034{
e374d483 4035 int len = 0;
88a420e4 4036 unsigned long i;
68dff6a9 4037 struct loc_track t = { 0, 0, NULL };
88a420e4 4038 int node;
bbd7d57b
ED
4039 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4040 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4041
bbd7d57b
ED
4042 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4043 GFP_TEMPORARY)) {
4044 kfree(map);
68dff6a9 4045 return sprintf(buf, "Out of memory\n");
bbd7d57b 4046 }
88a420e4
CL
4047 /* Push back cpu slabs */
4048 flush_all(s);
4049
f64dc58c 4050 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4051 struct kmem_cache_node *n = get_node(s, node);
4052 unsigned long flags;
4053 struct page *page;
4054
9e86943b 4055 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4056 continue;
4057
4058 spin_lock_irqsave(&n->list_lock, flags);
4059 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4060 process_slab(&t, s, page, alloc, map);
88a420e4 4061 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4062 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4063 spin_unlock_irqrestore(&n->list_lock, flags);
4064 }
4065
4066 for (i = 0; i < t.count; i++) {
45edfa58 4067 struct location *l = &t.loc[i];
88a420e4 4068
9c246247 4069 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4070 break;
e374d483 4071 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4072
4073 if (l->addr)
62c70bce 4074 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4075 else
e374d483 4076 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4077
4078 if (l->sum_time != l->min_time) {
e374d483 4079 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4080 l->min_time,
4081 (long)div_u64(l->sum_time, l->count),
4082 l->max_time);
45edfa58 4083 } else
e374d483 4084 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4085 l->min_time);
4086
4087 if (l->min_pid != l->max_pid)
e374d483 4088 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4089 l->min_pid, l->max_pid);
4090 else
e374d483 4091 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4092 l->min_pid);
4093
174596a0
RR
4094 if (num_online_cpus() > 1 &&
4095 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4096 len < PAGE_SIZE - 60) {
4097 len += sprintf(buf + len, " cpus=");
4098 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4099 to_cpumask(l->cpus));
45edfa58
CL
4100 }
4101
62bc62a8 4102 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4103 len < PAGE_SIZE - 60) {
4104 len += sprintf(buf + len, " nodes=");
4105 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4106 l->nodes);
4107 }
4108
e374d483 4109 len += sprintf(buf + len, "\n");
88a420e4
CL
4110 }
4111
4112 free_loc_track(&t);
bbd7d57b 4113 kfree(map);
88a420e4 4114 if (!t.count)
e374d483
HH
4115 len += sprintf(buf, "No data\n");
4116 return len;
88a420e4 4117}
ab4d5ed5 4118#endif
88a420e4 4119
a5a84755
CL
4120#ifdef SLUB_RESILIENCY_TEST
4121static void resiliency_test(void)
4122{
4123 u8 *p;
4124
4125 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4126
4127 printk(KERN_ERR "SLUB resiliency testing\n");
4128 printk(KERN_ERR "-----------------------\n");
4129 printk(KERN_ERR "A. Corruption after allocation\n");
4130
4131 p = kzalloc(16, GFP_KERNEL);
4132 p[16] = 0x12;
4133 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4134 " 0x12->0x%p\n\n", p + 16);
4135
4136 validate_slab_cache(kmalloc_caches[4]);
4137
4138 /* Hmmm... The next two are dangerous */
4139 p = kzalloc(32, GFP_KERNEL);
4140 p[32 + sizeof(void *)] = 0x34;
4141 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4142 " 0x34 -> -0x%p\n", p);
4143 printk(KERN_ERR
4144 "If allocated object is overwritten then not detectable\n\n");
4145
4146 validate_slab_cache(kmalloc_caches[5]);
4147 p = kzalloc(64, GFP_KERNEL);
4148 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4149 *p = 0x56;
4150 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4151 p);
4152 printk(KERN_ERR
4153 "If allocated object is overwritten then not detectable\n\n");
4154 validate_slab_cache(kmalloc_caches[6]);
4155
4156 printk(KERN_ERR "\nB. Corruption after free\n");
4157 p = kzalloc(128, GFP_KERNEL);
4158 kfree(p);
4159 *p = 0x78;
4160 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4161 validate_slab_cache(kmalloc_caches[7]);
4162
4163 p = kzalloc(256, GFP_KERNEL);
4164 kfree(p);
4165 p[50] = 0x9a;
4166 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4167 p);
4168 validate_slab_cache(kmalloc_caches[8]);
4169
4170 p = kzalloc(512, GFP_KERNEL);
4171 kfree(p);
4172 p[512] = 0xab;
4173 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4174 validate_slab_cache(kmalloc_caches[9]);
4175}
4176#else
4177#ifdef CONFIG_SYSFS
4178static void resiliency_test(void) {};
4179#endif
4180#endif
4181
ab4d5ed5 4182#ifdef CONFIG_SYSFS
81819f0f 4183enum slab_stat_type {
205ab99d
CL
4184 SL_ALL, /* All slabs */
4185 SL_PARTIAL, /* Only partially allocated slabs */
4186 SL_CPU, /* Only slabs used for cpu caches */
4187 SL_OBJECTS, /* Determine allocated objects not slabs */
4188 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4189};
4190
205ab99d 4191#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4192#define SO_PARTIAL (1 << SL_PARTIAL)
4193#define SO_CPU (1 << SL_CPU)
4194#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4195#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4196
62e5c4b4
CG
4197static ssize_t show_slab_objects(struct kmem_cache *s,
4198 char *buf, unsigned long flags)
81819f0f
CL
4199{
4200 unsigned long total = 0;
81819f0f
CL
4201 int node;
4202 int x;
4203 unsigned long *nodes;
4204 unsigned long *per_cpu;
4205
4206 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4207 if (!nodes)
4208 return -ENOMEM;
81819f0f
CL
4209 per_cpu = nodes + nr_node_ids;
4210
205ab99d
CL
4211 if (flags & SO_CPU) {
4212 int cpu;
81819f0f 4213
205ab99d 4214 for_each_possible_cpu(cpu) {
9dfc6e68 4215 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4216
205ab99d
CL
4217 if (!c || c->node < 0)
4218 continue;
4219
4220 if (c->page) {
4221 if (flags & SO_TOTAL)
4222 x = c->page->objects;
4223 else if (flags & SO_OBJECTS)
4224 x = c->page->inuse;
81819f0f
CL
4225 else
4226 x = 1;
205ab99d 4227
81819f0f 4228 total += x;
205ab99d 4229 nodes[c->node] += x;
81819f0f 4230 }
205ab99d 4231 per_cpu[c->node]++;
81819f0f
CL
4232 }
4233 }
4234
04d94879 4235 lock_memory_hotplug();
ab4d5ed5 4236#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4237 if (flags & SO_ALL) {
4238 for_each_node_state(node, N_NORMAL_MEMORY) {
4239 struct kmem_cache_node *n = get_node(s, node);
4240
4241 if (flags & SO_TOTAL)
4242 x = atomic_long_read(&n->total_objects);
4243 else if (flags & SO_OBJECTS)
4244 x = atomic_long_read(&n->total_objects) -
4245 count_partial(n, count_free);
81819f0f 4246
81819f0f 4247 else
205ab99d 4248 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4249 total += x;
4250 nodes[node] += x;
4251 }
4252
ab4d5ed5
CL
4253 } else
4254#endif
4255 if (flags & SO_PARTIAL) {
205ab99d
CL
4256 for_each_node_state(node, N_NORMAL_MEMORY) {
4257 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4258
205ab99d
CL
4259 if (flags & SO_TOTAL)
4260 x = count_partial(n, count_total);
4261 else if (flags & SO_OBJECTS)
4262 x = count_partial(n, count_inuse);
81819f0f 4263 else
205ab99d 4264 x = n->nr_partial;
81819f0f
CL
4265 total += x;
4266 nodes[node] += x;
4267 }
4268 }
81819f0f
CL
4269 x = sprintf(buf, "%lu", total);
4270#ifdef CONFIG_NUMA
f64dc58c 4271 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4272 if (nodes[node])
4273 x += sprintf(buf + x, " N%d=%lu",
4274 node, nodes[node]);
4275#endif
04d94879 4276 unlock_memory_hotplug();
81819f0f
CL
4277 kfree(nodes);
4278 return x + sprintf(buf + x, "\n");
4279}
4280
ab4d5ed5 4281#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4282static int any_slab_objects(struct kmem_cache *s)
4283{
4284 int node;
81819f0f 4285
dfb4f096 4286 for_each_online_node(node) {
81819f0f
CL
4287 struct kmem_cache_node *n = get_node(s, node);
4288
dfb4f096
CL
4289 if (!n)
4290 continue;
4291
4ea33e2d 4292 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4293 return 1;
4294 }
4295 return 0;
4296}
ab4d5ed5 4297#endif
81819f0f
CL
4298
4299#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4300#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4301
4302struct slab_attribute {
4303 struct attribute attr;
4304 ssize_t (*show)(struct kmem_cache *s, char *buf);
4305 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4306};
4307
4308#define SLAB_ATTR_RO(_name) \
4309 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4310
4311#define SLAB_ATTR(_name) \
4312 static struct slab_attribute _name##_attr = \
4313 __ATTR(_name, 0644, _name##_show, _name##_store)
4314
81819f0f
CL
4315static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4316{
4317 return sprintf(buf, "%d\n", s->size);
4318}
4319SLAB_ATTR_RO(slab_size);
4320
4321static ssize_t align_show(struct kmem_cache *s, char *buf)
4322{
4323 return sprintf(buf, "%d\n", s->align);
4324}
4325SLAB_ATTR_RO(align);
4326
4327static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4328{
4329 return sprintf(buf, "%d\n", s->objsize);
4330}
4331SLAB_ATTR_RO(object_size);
4332
4333static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4334{
834f3d11 4335 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4336}
4337SLAB_ATTR_RO(objs_per_slab);
4338
06b285dc
CL
4339static ssize_t order_store(struct kmem_cache *s,
4340 const char *buf, size_t length)
4341{
0121c619
CL
4342 unsigned long order;
4343 int err;
4344
4345 err = strict_strtoul(buf, 10, &order);
4346 if (err)
4347 return err;
06b285dc
CL
4348
4349 if (order > slub_max_order || order < slub_min_order)
4350 return -EINVAL;
4351
4352 calculate_sizes(s, order);
4353 return length;
4354}
4355
81819f0f
CL
4356static ssize_t order_show(struct kmem_cache *s, char *buf)
4357{
834f3d11 4358 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4359}
06b285dc 4360SLAB_ATTR(order);
81819f0f 4361
73d342b1
DR
4362static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4363{
4364 return sprintf(buf, "%lu\n", s->min_partial);
4365}
4366
4367static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4368 size_t length)
4369{
4370 unsigned long min;
4371 int err;
4372
4373 err = strict_strtoul(buf, 10, &min);
4374 if (err)
4375 return err;
4376
c0bdb232 4377 set_min_partial(s, min);
73d342b1
DR
4378 return length;
4379}
4380SLAB_ATTR(min_partial);
4381
81819f0f
CL
4382static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4383{
62c70bce
JP
4384 if (!s->ctor)
4385 return 0;
4386 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4387}
4388SLAB_ATTR_RO(ctor);
4389
81819f0f
CL
4390static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4391{
4392 return sprintf(buf, "%d\n", s->refcount - 1);
4393}
4394SLAB_ATTR_RO(aliases);
4395
81819f0f
CL
4396static ssize_t partial_show(struct kmem_cache *s, char *buf)
4397{
d9acf4b7 4398 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4399}
4400SLAB_ATTR_RO(partial);
4401
4402static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4403{
d9acf4b7 4404 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4405}
4406SLAB_ATTR_RO(cpu_slabs);
4407
4408static ssize_t objects_show(struct kmem_cache *s, char *buf)
4409{
205ab99d 4410 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4411}
4412SLAB_ATTR_RO(objects);
4413
205ab99d
CL
4414static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4415{
4416 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4417}
4418SLAB_ATTR_RO(objects_partial);
4419
a5a84755
CL
4420static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4421{
4422 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4423}
4424
4425static ssize_t reclaim_account_store(struct kmem_cache *s,
4426 const char *buf, size_t length)
4427{
4428 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4429 if (buf[0] == '1')
4430 s->flags |= SLAB_RECLAIM_ACCOUNT;
4431 return length;
4432}
4433SLAB_ATTR(reclaim_account);
4434
4435static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4436{
4437 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4438}
4439SLAB_ATTR_RO(hwcache_align);
4440
4441#ifdef CONFIG_ZONE_DMA
4442static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4443{
4444 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4445}
4446SLAB_ATTR_RO(cache_dma);
4447#endif
4448
4449static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4450{
4451 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4452}
4453SLAB_ATTR_RO(destroy_by_rcu);
4454
ab9a0f19
LJ
4455static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4456{
4457 return sprintf(buf, "%d\n", s->reserved);
4458}
4459SLAB_ATTR_RO(reserved);
4460
ab4d5ed5 4461#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4462static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4463{
4464 return show_slab_objects(s, buf, SO_ALL);
4465}
4466SLAB_ATTR_RO(slabs);
4467
205ab99d
CL
4468static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4469{
4470 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4471}
4472SLAB_ATTR_RO(total_objects);
4473
81819f0f
CL
4474static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4475{
4476 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4477}
4478
4479static ssize_t sanity_checks_store(struct kmem_cache *s,
4480 const char *buf, size_t length)
4481{
4482 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4483 if (buf[0] == '1') {
4484 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4485 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4486 }
81819f0f
CL
4487 return length;
4488}
4489SLAB_ATTR(sanity_checks);
4490
4491static ssize_t trace_show(struct kmem_cache *s, char *buf)
4492{
4493 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4494}
4495
4496static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4497 size_t length)
4498{
4499 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4500 if (buf[0] == '1') {
4501 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4502 s->flags |= SLAB_TRACE;
b789ef51 4503 }
81819f0f
CL
4504 return length;
4505}
4506SLAB_ATTR(trace);
4507
81819f0f
CL
4508static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4509{
4510 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4511}
4512
4513static ssize_t red_zone_store(struct kmem_cache *s,
4514 const char *buf, size_t length)
4515{
4516 if (any_slab_objects(s))
4517 return -EBUSY;
4518
4519 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4520 if (buf[0] == '1') {
4521 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4522 s->flags |= SLAB_RED_ZONE;
b789ef51 4523 }
06b285dc 4524 calculate_sizes(s, -1);
81819f0f
CL
4525 return length;
4526}
4527SLAB_ATTR(red_zone);
4528
4529static ssize_t poison_show(struct kmem_cache *s, char *buf)
4530{
4531 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4532}
4533
4534static ssize_t poison_store(struct kmem_cache *s,
4535 const char *buf, size_t length)
4536{
4537 if (any_slab_objects(s))
4538 return -EBUSY;
4539
4540 s->flags &= ~SLAB_POISON;
b789ef51
CL
4541 if (buf[0] == '1') {
4542 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4543 s->flags |= SLAB_POISON;
b789ef51 4544 }
06b285dc 4545 calculate_sizes(s, -1);
81819f0f
CL
4546 return length;
4547}
4548SLAB_ATTR(poison);
4549
4550static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4553}
4554
4555static ssize_t store_user_store(struct kmem_cache *s,
4556 const char *buf, size_t length)
4557{
4558 if (any_slab_objects(s))
4559 return -EBUSY;
4560
4561 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4562 if (buf[0] == '1') {
4563 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4564 s->flags |= SLAB_STORE_USER;
b789ef51 4565 }
06b285dc 4566 calculate_sizes(s, -1);
81819f0f
CL
4567 return length;
4568}
4569SLAB_ATTR(store_user);
4570
53e15af0
CL
4571static ssize_t validate_show(struct kmem_cache *s, char *buf)
4572{
4573 return 0;
4574}
4575
4576static ssize_t validate_store(struct kmem_cache *s,
4577 const char *buf, size_t length)
4578{
434e245d
CL
4579 int ret = -EINVAL;
4580
4581 if (buf[0] == '1') {
4582 ret = validate_slab_cache(s);
4583 if (ret >= 0)
4584 ret = length;
4585 }
4586 return ret;
53e15af0
CL
4587}
4588SLAB_ATTR(validate);
a5a84755
CL
4589
4590static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4591{
4592 if (!(s->flags & SLAB_STORE_USER))
4593 return -ENOSYS;
4594 return list_locations(s, buf, TRACK_ALLOC);
4595}
4596SLAB_ATTR_RO(alloc_calls);
4597
4598static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4599{
4600 if (!(s->flags & SLAB_STORE_USER))
4601 return -ENOSYS;
4602 return list_locations(s, buf, TRACK_FREE);
4603}
4604SLAB_ATTR_RO(free_calls);
4605#endif /* CONFIG_SLUB_DEBUG */
4606
4607#ifdef CONFIG_FAILSLAB
4608static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4609{
4610 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4611}
4612
4613static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4614 size_t length)
4615{
4616 s->flags &= ~SLAB_FAILSLAB;
4617 if (buf[0] == '1')
4618 s->flags |= SLAB_FAILSLAB;
4619 return length;
4620}
4621SLAB_ATTR(failslab);
ab4d5ed5 4622#endif
53e15af0 4623
2086d26a
CL
4624static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4625{
4626 return 0;
4627}
4628
4629static ssize_t shrink_store(struct kmem_cache *s,
4630 const char *buf, size_t length)
4631{
4632 if (buf[0] == '1') {
4633 int rc = kmem_cache_shrink(s);
4634
4635 if (rc)
4636 return rc;
4637 } else
4638 return -EINVAL;
4639 return length;
4640}
4641SLAB_ATTR(shrink);
4642
81819f0f 4643#ifdef CONFIG_NUMA
9824601e 4644static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4645{
9824601e 4646 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4647}
4648
9824601e 4649static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4650 const char *buf, size_t length)
4651{
0121c619
CL
4652 unsigned long ratio;
4653 int err;
4654
4655 err = strict_strtoul(buf, 10, &ratio);
4656 if (err)
4657 return err;
4658
e2cb96b7 4659 if (ratio <= 100)
0121c619 4660 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4661
81819f0f
CL
4662 return length;
4663}
9824601e 4664SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4665#endif
4666
8ff12cfc 4667#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4668static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4669{
4670 unsigned long sum = 0;
4671 int cpu;
4672 int len;
4673 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4674
4675 if (!data)
4676 return -ENOMEM;
4677
4678 for_each_online_cpu(cpu) {
9dfc6e68 4679 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4680
4681 data[cpu] = x;
4682 sum += x;
4683 }
4684
4685 len = sprintf(buf, "%lu", sum);
4686
50ef37b9 4687#ifdef CONFIG_SMP
8ff12cfc
CL
4688 for_each_online_cpu(cpu) {
4689 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4690 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4691 }
50ef37b9 4692#endif
8ff12cfc
CL
4693 kfree(data);
4694 return len + sprintf(buf + len, "\n");
4695}
4696
78eb00cc
DR
4697static void clear_stat(struct kmem_cache *s, enum stat_item si)
4698{
4699 int cpu;
4700
4701 for_each_online_cpu(cpu)
9dfc6e68 4702 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4703}
4704
8ff12cfc
CL
4705#define STAT_ATTR(si, text) \
4706static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4707{ \
4708 return show_stat(s, buf, si); \
4709} \
78eb00cc
DR
4710static ssize_t text##_store(struct kmem_cache *s, \
4711 const char *buf, size_t length) \
4712{ \
4713 if (buf[0] != '0') \
4714 return -EINVAL; \
4715 clear_stat(s, si); \
4716 return length; \
4717} \
4718SLAB_ATTR(text); \
8ff12cfc
CL
4719
4720STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4721STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4722STAT_ATTR(FREE_FASTPATH, free_fastpath);
4723STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4724STAT_ATTR(FREE_FROZEN, free_frozen);
4725STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4726STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4727STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4728STAT_ATTR(ALLOC_SLAB, alloc_slab);
4729STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4730STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4731STAT_ATTR(FREE_SLAB, free_slab);
4732STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4733STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4734STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4735STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4736STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4737STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4738STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4739STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4740STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4741STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4742#endif
4743
06428780 4744static struct attribute *slab_attrs[] = {
81819f0f
CL
4745 &slab_size_attr.attr,
4746 &object_size_attr.attr,
4747 &objs_per_slab_attr.attr,
4748 &order_attr.attr,
73d342b1 4749 &min_partial_attr.attr,
81819f0f 4750 &objects_attr.attr,
205ab99d 4751 &objects_partial_attr.attr,
81819f0f
CL
4752 &partial_attr.attr,
4753 &cpu_slabs_attr.attr,
4754 &ctor_attr.attr,
81819f0f
CL
4755 &aliases_attr.attr,
4756 &align_attr.attr,
81819f0f
CL
4757 &hwcache_align_attr.attr,
4758 &reclaim_account_attr.attr,
4759 &destroy_by_rcu_attr.attr,
a5a84755 4760 &shrink_attr.attr,
ab9a0f19 4761 &reserved_attr.attr,
ab4d5ed5 4762#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4763 &total_objects_attr.attr,
4764 &slabs_attr.attr,
4765 &sanity_checks_attr.attr,
4766 &trace_attr.attr,
81819f0f
CL
4767 &red_zone_attr.attr,
4768 &poison_attr.attr,
4769 &store_user_attr.attr,
53e15af0 4770 &validate_attr.attr,
88a420e4
CL
4771 &alloc_calls_attr.attr,
4772 &free_calls_attr.attr,
ab4d5ed5 4773#endif
81819f0f
CL
4774#ifdef CONFIG_ZONE_DMA
4775 &cache_dma_attr.attr,
4776#endif
4777#ifdef CONFIG_NUMA
9824601e 4778 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4779#endif
4780#ifdef CONFIG_SLUB_STATS
4781 &alloc_fastpath_attr.attr,
4782 &alloc_slowpath_attr.attr,
4783 &free_fastpath_attr.attr,
4784 &free_slowpath_attr.attr,
4785 &free_frozen_attr.attr,
4786 &free_add_partial_attr.attr,
4787 &free_remove_partial_attr.attr,
4788 &alloc_from_partial_attr.attr,
4789 &alloc_slab_attr.attr,
4790 &alloc_refill_attr.attr,
e36a2652 4791 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4792 &free_slab_attr.attr,
4793 &cpuslab_flush_attr.attr,
4794 &deactivate_full_attr.attr,
4795 &deactivate_empty_attr.attr,
4796 &deactivate_to_head_attr.attr,
4797 &deactivate_to_tail_attr.attr,
4798 &deactivate_remote_frees_attr.attr,
03e404af 4799 &deactivate_bypass_attr.attr,
65c3376a 4800 &order_fallback_attr.attr,
b789ef51
CL
4801 &cmpxchg_double_fail_attr.attr,
4802 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4803#endif
4c13dd3b
DM
4804#ifdef CONFIG_FAILSLAB
4805 &failslab_attr.attr,
4806#endif
4807
81819f0f
CL
4808 NULL
4809};
4810
4811static struct attribute_group slab_attr_group = {
4812 .attrs = slab_attrs,
4813};
4814
4815static ssize_t slab_attr_show(struct kobject *kobj,
4816 struct attribute *attr,
4817 char *buf)
4818{
4819 struct slab_attribute *attribute;
4820 struct kmem_cache *s;
4821 int err;
4822
4823 attribute = to_slab_attr(attr);
4824 s = to_slab(kobj);
4825
4826 if (!attribute->show)
4827 return -EIO;
4828
4829 err = attribute->show(s, buf);
4830
4831 return err;
4832}
4833
4834static ssize_t slab_attr_store(struct kobject *kobj,
4835 struct attribute *attr,
4836 const char *buf, size_t len)
4837{
4838 struct slab_attribute *attribute;
4839 struct kmem_cache *s;
4840 int err;
4841
4842 attribute = to_slab_attr(attr);
4843 s = to_slab(kobj);
4844
4845 if (!attribute->store)
4846 return -EIO;
4847
4848 err = attribute->store(s, buf, len);
4849
4850 return err;
4851}
4852
151c602f
CL
4853static void kmem_cache_release(struct kobject *kobj)
4854{
4855 struct kmem_cache *s = to_slab(kobj);
4856
84c1cf62 4857 kfree(s->name);
151c602f
CL
4858 kfree(s);
4859}
4860
52cf25d0 4861static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4862 .show = slab_attr_show,
4863 .store = slab_attr_store,
4864};
4865
4866static struct kobj_type slab_ktype = {
4867 .sysfs_ops = &slab_sysfs_ops,
151c602f 4868 .release = kmem_cache_release
81819f0f
CL
4869};
4870
4871static int uevent_filter(struct kset *kset, struct kobject *kobj)
4872{
4873 struct kobj_type *ktype = get_ktype(kobj);
4874
4875 if (ktype == &slab_ktype)
4876 return 1;
4877 return 0;
4878}
4879
9cd43611 4880static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4881 .filter = uevent_filter,
4882};
4883
27c3a314 4884static struct kset *slab_kset;
81819f0f
CL
4885
4886#define ID_STR_LENGTH 64
4887
4888/* Create a unique string id for a slab cache:
6446faa2
CL
4889 *
4890 * Format :[flags-]size
81819f0f
CL
4891 */
4892static char *create_unique_id(struct kmem_cache *s)
4893{
4894 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4895 char *p = name;
4896
4897 BUG_ON(!name);
4898
4899 *p++ = ':';
4900 /*
4901 * First flags affecting slabcache operations. We will only
4902 * get here for aliasable slabs so we do not need to support
4903 * too many flags. The flags here must cover all flags that
4904 * are matched during merging to guarantee that the id is
4905 * unique.
4906 */
4907 if (s->flags & SLAB_CACHE_DMA)
4908 *p++ = 'd';
4909 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4910 *p++ = 'a';
4911 if (s->flags & SLAB_DEBUG_FREE)
4912 *p++ = 'F';
5a896d9e
VN
4913 if (!(s->flags & SLAB_NOTRACK))
4914 *p++ = 't';
81819f0f
CL
4915 if (p != name + 1)
4916 *p++ = '-';
4917 p += sprintf(p, "%07d", s->size);
4918 BUG_ON(p > name + ID_STR_LENGTH - 1);
4919 return name;
4920}
4921
4922static int sysfs_slab_add(struct kmem_cache *s)
4923{
4924 int err;
4925 const char *name;
4926 int unmergeable;
4927
4928 if (slab_state < SYSFS)
4929 /* Defer until later */
4930 return 0;
4931
4932 unmergeable = slab_unmergeable(s);
4933 if (unmergeable) {
4934 /*
4935 * Slabcache can never be merged so we can use the name proper.
4936 * This is typically the case for debug situations. In that
4937 * case we can catch duplicate names easily.
4938 */
27c3a314 4939 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4940 name = s->name;
4941 } else {
4942 /*
4943 * Create a unique name for the slab as a target
4944 * for the symlinks.
4945 */
4946 name = create_unique_id(s);
4947 }
4948
27c3a314 4949 s->kobj.kset = slab_kset;
1eada11c
GKH
4950 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4951 if (err) {
4952 kobject_put(&s->kobj);
81819f0f 4953 return err;
1eada11c 4954 }
81819f0f
CL
4955
4956 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4957 if (err) {
4958 kobject_del(&s->kobj);
4959 kobject_put(&s->kobj);
81819f0f 4960 return err;
5788d8ad 4961 }
81819f0f
CL
4962 kobject_uevent(&s->kobj, KOBJ_ADD);
4963 if (!unmergeable) {
4964 /* Setup first alias */
4965 sysfs_slab_alias(s, s->name);
4966 kfree(name);
4967 }
4968 return 0;
4969}
4970
4971static void sysfs_slab_remove(struct kmem_cache *s)
4972{
2bce6485
CL
4973 if (slab_state < SYSFS)
4974 /*
4975 * Sysfs has not been setup yet so no need to remove the
4976 * cache from sysfs.
4977 */
4978 return;
4979
81819f0f
CL
4980 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4981 kobject_del(&s->kobj);
151c602f 4982 kobject_put(&s->kobj);
81819f0f
CL
4983}
4984
4985/*
4986 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4987 * available lest we lose that information.
81819f0f
CL
4988 */
4989struct saved_alias {
4990 struct kmem_cache *s;
4991 const char *name;
4992 struct saved_alias *next;
4993};
4994
5af328a5 4995static struct saved_alias *alias_list;
81819f0f
CL
4996
4997static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4998{
4999 struct saved_alias *al;
5000
5001 if (slab_state == SYSFS) {
5002 /*
5003 * If we have a leftover link then remove it.
5004 */
27c3a314
GKH
5005 sysfs_remove_link(&slab_kset->kobj, name);
5006 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5007 }
5008
5009 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5010 if (!al)
5011 return -ENOMEM;
5012
5013 al->s = s;
5014 al->name = name;
5015 al->next = alias_list;
5016 alias_list = al;
5017 return 0;
5018}
5019
5020static int __init slab_sysfs_init(void)
5021{
5b95a4ac 5022 struct kmem_cache *s;
81819f0f
CL
5023 int err;
5024
2bce6485
CL
5025 down_write(&slub_lock);
5026
0ff21e46 5027 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5028 if (!slab_kset) {
2bce6485 5029 up_write(&slub_lock);
81819f0f
CL
5030 printk(KERN_ERR "Cannot register slab subsystem.\n");
5031 return -ENOSYS;
5032 }
5033
26a7bd03
CL
5034 slab_state = SYSFS;
5035
5b95a4ac 5036 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5037 err = sysfs_slab_add(s);
5d540fb7
CL
5038 if (err)
5039 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5040 " to sysfs\n", s->name);
26a7bd03 5041 }
81819f0f
CL
5042
5043 while (alias_list) {
5044 struct saved_alias *al = alias_list;
5045
5046 alias_list = alias_list->next;
5047 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5048 if (err)
5049 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5050 " %s to sysfs\n", s->name);
81819f0f
CL
5051 kfree(al);
5052 }
5053
2bce6485 5054 up_write(&slub_lock);
81819f0f
CL
5055 resiliency_test();
5056 return 0;
5057}
5058
5059__initcall(slab_sysfs_init);
ab4d5ed5 5060#endif /* CONFIG_SYSFS */
57ed3eda
PE
5061
5062/*
5063 * The /proc/slabinfo ABI
5064 */
158a9624 5065#ifdef CONFIG_SLABINFO
57ed3eda
PE
5066static void print_slabinfo_header(struct seq_file *m)
5067{
5068 seq_puts(m, "slabinfo - version: 2.1\n");
5069 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5070 "<objperslab> <pagesperslab>");
5071 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5072 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5073 seq_putc(m, '\n');
5074}
5075
5076static void *s_start(struct seq_file *m, loff_t *pos)
5077{
5078 loff_t n = *pos;
5079
5080 down_read(&slub_lock);
5081 if (!n)
5082 print_slabinfo_header(m);
5083
5084 return seq_list_start(&slab_caches, *pos);
5085}
5086
5087static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5088{
5089 return seq_list_next(p, &slab_caches, pos);
5090}
5091
5092static void s_stop(struct seq_file *m, void *p)
5093{
5094 up_read(&slub_lock);
5095}
5096
5097static int s_show(struct seq_file *m, void *p)
5098{
5099 unsigned long nr_partials = 0;
5100 unsigned long nr_slabs = 0;
5101 unsigned long nr_inuse = 0;
205ab99d
CL
5102 unsigned long nr_objs = 0;
5103 unsigned long nr_free = 0;
57ed3eda
PE
5104 struct kmem_cache *s;
5105 int node;
5106
5107 s = list_entry(p, struct kmem_cache, list);
5108
5109 for_each_online_node(node) {
5110 struct kmem_cache_node *n = get_node(s, node);
5111
5112 if (!n)
5113 continue;
5114
5115 nr_partials += n->nr_partial;
5116 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5117 nr_objs += atomic_long_read(&n->total_objects);
5118 nr_free += count_partial(n, count_free);
57ed3eda
PE
5119 }
5120
205ab99d 5121 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5122
5123 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5124 nr_objs, s->size, oo_objects(s->oo),
5125 (1 << oo_order(s->oo)));
57ed3eda
PE
5126 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5127 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5128 0UL);
5129 seq_putc(m, '\n');
5130 return 0;
5131}
5132
7b3c3a50 5133static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5134 .start = s_start,
5135 .next = s_next,
5136 .stop = s_stop,
5137 .show = s_show,
5138};
5139
7b3c3a50
AD
5140static int slabinfo_open(struct inode *inode, struct file *file)
5141{
5142 return seq_open(file, &slabinfo_op);
5143}
5144
5145static const struct file_operations proc_slabinfo_operations = {
5146 .open = slabinfo_open,
5147 .read = seq_read,
5148 .llseek = seq_lseek,
5149 .release = seq_release,
5150};
5151
5152static int __init slab_proc_init(void)
5153{
cf5d1131 5154 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5155 return 0;
5156}
5157module_init(slab_proc_init);
158a9624 5158#endif /* CONFIG_SLABINFO */