]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
slub: Update statistics handling for variable order slabs
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
71c7a06f
CL
207#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
81819f0f 209
65c02d4c
CL
210/* Not all arches define cache_line_size */
211#ifndef cache_line_size
212#define cache_line_size() L1_CACHE_BYTES
213#endif
214
81819f0f
CL
215static int kmem_size = sizeof(struct kmem_cache);
216
217#ifdef CONFIG_SMP
218static struct notifier_block slab_notifier;
219#endif
220
221static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 224 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
225 SYSFS /* Sysfs up */
226} slab_state = DOWN;
227
228/* A list of all slab caches on the system */
229static DECLARE_RWSEM(slub_lock);
5af328a5 230static LIST_HEAD(slab_caches);
81819f0f 231
02cbc874
CL
232/*
233 * Tracking user of a slab.
234 */
235struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240};
241
242enum track_item { TRACK_ALLOC, TRACK_FREE };
243
41ecc55b 244#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
245static int sysfs_slab_add(struct kmem_cache *);
246static int sysfs_slab_alias(struct kmem_cache *, const char *);
247static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 248
81819f0f 249#else
0c710013
CL
250static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
151c602f
CL
253static inline void sysfs_slab_remove(struct kmem_cache *s)
254{
255 kfree(s);
256}
8ff12cfc 257
81819f0f
CL
258#endif
259
8ff12cfc
CL
260static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261{
262#ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264#endif
265}
266
81819f0f
CL
267/********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271int slab_is_available(void)
272{
273 return slab_state >= UP;
274}
275
276static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277{
278#ifdef CONFIG_NUMA
279 return s->node[node];
280#else
281 return &s->local_node;
282#endif
283}
284
dfb4f096
CL
285static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286{
4c93c355
CL
287#ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289#else
290 return &s->cpu_slab;
291#endif
dfb4f096
CL
292}
293
6446faa2 294/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
295static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297{
298 void *base;
299
a973e9dd 300 if (!object)
02cbc874
CL
301 return 1;
302
a973e9dd 303 base = page_address(page);
39b26464 304 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310}
311
7656c72b
CL
312/*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319static inline void *get_freepointer(struct kmem_cache *s, void *object)
320{
321 return *(void **)(object + s->offset);
322}
323
324static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325{
326 *(void **)(object + s->offset) = fp;
327}
328
329/* Loop over all objects in a slab */
224a88be
CL
330#define for_each_object(__p, __s, __addr, __objects) \
331 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
332 __p += (__s)->size)
333
334/* Scan freelist */
335#define for_each_free_object(__p, __s, __free) \
a973e9dd 336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
337
338/* Determine object index from a given position */
339static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340{
341 return (p - addr) / s->size;
342}
343
834f3d11
CL
344static inline struct kmem_cache_order_objects oo_make(int order,
345 unsigned long size)
346{
347 struct kmem_cache_order_objects x = {
348 (order << 16) + (PAGE_SIZE << order) / size
349 };
350
351 return x;
352}
353
354static inline int oo_order(struct kmem_cache_order_objects x)
355{
356 return x.x >> 16;
357}
358
359static inline int oo_objects(struct kmem_cache_order_objects x)
360{
361 return x.x & ((1 << 16) - 1);
362}
363
41ecc55b
CL
364#ifdef CONFIG_SLUB_DEBUG
365/*
366 * Debug settings:
367 */
f0630fff
CL
368#ifdef CONFIG_SLUB_DEBUG_ON
369static int slub_debug = DEBUG_DEFAULT_FLAGS;
370#else
41ecc55b 371static int slub_debug;
f0630fff 372#endif
41ecc55b
CL
373
374static char *slub_debug_slabs;
375
81819f0f
CL
376/*
377 * Object debugging
378 */
379static void print_section(char *text, u8 *addr, unsigned int length)
380{
381 int i, offset;
382 int newline = 1;
383 char ascii[17];
384
385 ascii[16] = 0;
386
387 for (i = 0; i < length; i++) {
388 if (newline) {
24922684 389 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
390 newline = 0;
391 }
06428780 392 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
393 offset = i % 16;
394 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
395 if (offset == 15) {
06428780 396 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
397 newline = 1;
398 }
399 }
400 if (!newline) {
401 i %= 16;
402 while (i < 16) {
06428780 403 printk(KERN_CONT " ");
81819f0f
CL
404 ascii[i] = ' ';
405 i++;
406 }
06428780 407 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
408 }
409}
410
81819f0f
CL
411static struct track *get_track(struct kmem_cache *s, void *object,
412 enum track_item alloc)
413{
414 struct track *p;
415
416 if (s->offset)
417 p = object + s->offset + sizeof(void *);
418 else
419 p = object + s->inuse;
420
421 return p + alloc;
422}
423
424static void set_track(struct kmem_cache *s, void *object,
425 enum track_item alloc, void *addr)
426{
427 struct track *p;
428
429 if (s->offset)
430 p = object + s->offset + sizeof(void *);
431 else
432 p = object + s->inuse;
433
434 p += alloc;
435 if (addr) {
436 p->addr = addr;
437 p->cpu = smp_processor_id();
438 p->pid = current ? current->pid : -1;
439 p->when = jiffies;
440 } else
441 memset(p, 0, sizeof(struct track));
442}
443
81819f0f
CL
444static void init_tracking(struct kmem_cache *s, void *object)
445{
24922684
CL
446 if (!(s->flags & SLAB_STORE_USER))
447 return;
448
449 set_track(s, object, TRACK_FREE, NULL);
450 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
451}
452
453static void print_track(const char *s, struct track *t)
454{
455 if (!t->addr)
456 return;
457
24922684 458 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 459 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
460 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
461}
462
463static void print_tracking(struct kmem_cache *s, void *object)
464{
465 if (!(s->flags & SLAB_STORE_USER))
466 return;
467
468 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
469 print_track("Freed", get_track(s, object, TRACK_FREE));
470}
471
472static void print_page_info(struct page *page)
473{
39b26464
CL
474 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
475 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
476
477}
478
479static void slab_bug(struct kmem_cache *s, char *fmt, ...)
480{
481 va_list args;
482 char buf[100];
483
484 va_start(args, fmt);
485 vsnprintf(buf, sizeof(buf), fmt, args);
486 va_end(args);
487 printk(KERN_ERR "========================================"
488 "=====================================\n");
489 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
490 printk(KERN_ERR "----------------------------------------"
491 "-------------------------------------\n\n");
81819f0f
CL
492}
493
24922684
CL
494static void slab_fix(struct kmem_cache *s, char *fmt, ...)
495{
496 va_list args;
497 char buf[100];
498
499 va_start(args, fmt);
500 vsnprintf(buf, sizeof(buf), fmt, args);
501 va_end(args);
502 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
503}
504
505static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
506{
507 unsigned int off; /* Offset of last byte */
a973e9dd 508 u8 *addr = page_address(page);
24922684
CL
509
510 print_tracking(s, p);
511
512 print_page_info(page);
513
514 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
515 p, p - addr, get_freepointer(s, p));
516
517 if (p > addr + 16)
518 print_section("Bytes b4", p - 16, 16);
519
520 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
521
522 if (s->flags & SLAB_RED_ZONE)
523 print_section("Redzone", p + s->objsize,
524 s->inuse - s->objsize);
525
81819f0f
CL
526 if (s->offset)
527 off = s->offset + sizeof(void *);
528 else
529 off = s->inuse;
530
24922684 531 if (s->flags & SLAB_STORE_USER)
81819f0f 532 off += 2 * sizeof(struct track);
81819f0f
CL
533
534 if (off != s->size)
535 /* Beginning of the filler is the free pointer */
24922684
CL
536 print_section("Padding", p + off, s->size - off);
537
538 dump_stack();
81819f0f
CL
539}
540
541static void object_err(struct kmem_cache *s, struct page *page,
542 u8 *object, char *reason)
543{
3dc50637 544 slab_bug(s, "%s", reason);
24922684 545 print_trailer(s, page, object);
81819f0f
CL
546}
547
24922684 548static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
549{
550 va_list args;
551 char buf[100];
552
24922684
CL
553 va_start(args, fmt);
554 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 555 va_end(args);
3dc50637 556 slab_bug(s, "%s", buf);
24922684 557 print_page_info(page);
81819f0f
CL
558 dump_stack();
559}
560
561static void init_object(struct kmem_cache *s, void *object, int active)
562{
563 u8 *p = object;
564
565 if (s->flags & __OBJECT_POISON) {
566 memset(p, POISON_FREE, s->objsize - 1);
06428780 567 p[s->objsize - 1] = POISON_END;
81819f0f
CL
568 }
569
570 if (s->flags & SLAB_RED_ZONE)
571 memset(p + s->objsize,
572 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
573 s->inuse - s->objsize);
574}
575
24922684 576static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
577{
578 while (bytes) {
579 if (*start != (u8)value)
24922684 580 return start;
81819f0f
CL
581 start++;
582 bytes--;
583 }
24922684
CL
584 return NULL;
585}
586
587static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
588 void *from, void *to)
589{
590 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
591 memset(from, data, to - from);
592}
593
594static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
595 u8 *object, char *what,
06428780 596 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
597{
598 u8 *fault;
599 u8 *end;
600
601 fault = check_bytes(start, value, bytes);
602 if (!fault)
603 return 1;
604
605 end = start + bytes;
606 while (end > fault && end[-1] == value)
607 end--;
608
609 slab_bug(s, "%s overwritten", what);
610 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
611 fault, end - 1, fault[0], value);
612 print_trailer(s, page, object);
613
614 restore_bytes(s, what, value, fault, end);
615 return 0;
81819f0f
CL
616}
617
81819f0f
CL
618/*
619 * Object layout:
620 *
621 * object address
622 * Bytes of the object to be managed.
623 * If the freepointer may overlay the object then the free
624 * pointer is the first word of the object.
672bba3a 625 *
81819f0f
CL
626 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
627 * 0xa5 (POISON_END)
628 *
629 * object + s->objsize
630 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
631 * Padding is extended by another word if Redzoning is enabled and
632 * objsize == inuse.
633 *
81819f0f
CL
634 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
635 * 0xcc (RED_ACTIVE) for objects in use.
636 *
637 * object + s->inuse
672bba3a
CL
638 * Meta data starts here.
639 *
81819f0f
CL
640 * A. Free pointer (if we cannot overwrite object on free)
641 * B. Tracking data for SLAB_STORE_USER
672bba3a 642 * C. Padding to reach required alignment boundary or at mininum
6446faa2 643 * one word if debugging is on to be able to detect writes
672bba3a
CL
644 * before the word boundary.
645 *
646 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
647 *
648 * object + s->size
672bba3a 649 * Nothing is used beyond s->size.
81819f0f 650 *
672bba3a
CL
651 * If slabcaches are merged then the objsize and inuse boundaries are mostly
652 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
653 * may be used with merged slabcaches.
654 */
655
81819f0f
CL
656static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
657{
658 unsigned long off = s->inuse; /* The end of info */
659
660 if (s->offset)
661 /* Freepointer is placed after the object. */
662 off += sizeof(void *);
663
664 if (s->flags & SLAB_STORE_USER)
665 /* We also have user information there */
666 off += 2 * sizeof(struct track);
667
668 if (s->size == off)
669 return 1;
670
24922684
CL
671 return check_bytes_and_report(s, page, p, "Object padding",
672 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
673}
674
39b26464 675/* Check the pad bytes at the end of a slab page */
81819f0f
CL
676static int slab_pad_check(struct kmem_cache *s, struct page *page)
677{
24922684
CL
678 u8 *start;
679 u8 *fault;
680 u8 *end;
681 int length;
682 int remainder;
81819f0f
CL
683
684 if (!(s->flags & SLAB_POISON))
685 return 1;
686
a973e9dd 687 start = page_address(page);
834f3d11 688 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
689 end = start + length;
690 remainder = length % s->size;
81819f0f
CL
691 if (!remainder)
692 return 1;
693
39b26464 694 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
695 if (!fault)
696 return 1;
697 while (end > fault && end[-1] == POISON_INUSE)
698 end--;
699
700 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 701 print_section("Padding", end - remainder, remainder);
24922684
CL
702
703 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
704 return 0;
81819f0f
CL
705}
706
707static int check_object(struct kmem_cache *s, struct page *page,
708 void *object, int active)
709{
710 u8 *p = object;
711 u8 *endobject = object + s->objsize;
712
713 if (s->flags & SLAB_RED_ZONE) {
714 unsigned int red =
715 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
716
24922684
CL
717 if (!check_bytes_and_report(s, page, object, "Redzone",
718 endobject, red, s->inuse - s->objsize))
81819f0f 719 return 0;
81819f0f 720 } else {
3adbefee
IM
721 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
722 check_bytes_and_report(s, page, p, "Alignment padding",
723 endobject, POISON_INUSE, s->inuse - s->objsize);
724 }
81819f0f
CL
725 }
726
727 if (s->flags & SLAB_POISON) {
728 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
729 (!check_bytes_and_report(s, page, p, "Poison", p,
730 POISON_FREE, s->objsize - 1) ||
731 !check_bytes_and_report(s, page, p, "Poison",
06428780 732 p + s->objsize - 1, POISON_END, 1)))
81819f0f 733 return 0;
81819f0f
CL
734 /*
735 * check_pad_bytes cleans up on its own.
736 */
737 check_pad_bytes(s, page, p);
738 }
739
740 if (!s->offset && active)
741 /*
742 * Object and freepointer overlap. Cannot check
743 * freepointer while object is allocated.
744 */
745 return 1;
746
747 /* Check free pointer validity */
748 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
749 object_err(s, page, p, "Freepointer corrupt");
750 /*
751 * No choice but to zap it and thus loose the remainder
752 * of the free objects in this slab. May cause
672bba3a 753 * another error because the object count is now wrong.
81819f0f 754 */
a973e9dd 755 set_freepointer(s, p, NULL);
81819f0f
CL
756 return 0;
757 }
758 return 1;
759}
760
761static int check_slab(struct kmem_cache *s, struct page *page)
762{
39b26464
CL
763 int maxobj;
764
81819f0f
CL
765 VM_BUG_ON(!irqs_disabled());
766
767 if (!PageSlab(page)) {
24922684 768 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
769 return 0;
770 }
39b26464
CL
771
772 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
773 if (page->objects > maxobj) {
774 slab_err(s, page, "objects %u > max %u",
775 s->name, page->objects, maxobj);
776 return 0;
777 }
778 if (page->inuse > page->objects) {
24922684 779 slab_err(s, page, "inuse %u > max %u",
39b26464 780 s->name, page->inuse, page->objects);
81819f0f
CL
781 return 0;
782 }
783 /* Slab_pad_check fixes things up after itself */
784 slab_pad_check(s, page);
785 return 1;
786}
787
788/*
672bba3a
CL
789 * Determine if a certain object on a page is on the freelist. Must hold the
790 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
791 */
792static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
793{
794 int nr = 0;
795 void *fp = page->freelist;
796 void *object = NULL;
224a88be 797 unsigned long max_objects;
81819f0f 798
39b26464 799 while (fp && nr <= page->objects) {
81819f0f
CL
800 if (fp == search)
801 return 1;
802 if (!check_valid_pointer(s, page, fp)) {
803 if (object) {
804 object_err(s, page, object,
805 "Freechain corrupt");
a973e9dd 806 set_freepointer(s, object, NULL);
81819f0f
CL
807 break;
808 } else {
24922684 809 slab_err(s, page, "Freepointer corrupt");
a973e9dd 810 page->freelist = NULL;
39b26464 811 page->inuse = page->objects;
24922684 812 slab_fix(s, "Freelist cleared");
81819f0f
CL
813 return 0;
814 }
815 break;
816 }
817 object = fp;
818 fp = get_freepointer(s, object);
819 nr++;
820 }
821
224a88be
CL
822 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
823 if (max_objects > 65535)
824 max_objects = 65535;
825
826 if (page->objects != max_objects) {
827 slab_err(s, page, "Wrong number of objects. Found %d but "
828 "should be %d", page->objects, max_objects);
829 page->objects = max_objects;
830 slab_fix(s, "Number of objects adjusted.");
831 }
39b26464 832 if (page->inuse != page->objects - nr) {
70d71228 833 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
834 "counted were %d", page->inuse, page->objects - nr);
835 page->inuse = page->objects - nr;
24922684 836 slab_fix(s, "Object count adjusted.");
81819f0f
CL
837 }
838 return search == NULL;
839}
840
3ec09742
CL
841static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
842{
843 if (s->flags & SLAB_TRACE) {
844 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
845 s->name,
846 alloc ? "alloc" : "free",
847 object, page->inuse,
848 page->freelist);
849
850 if (!alloc)
851 print_section("Object", (void *)object, s->objsize);
852
853 dump_stack();
854 }
855}
856
643b1138 857/*
672bba3a 858 * Tracking of fully allocated slabs for debugging purposes.
643b1138 859 */
e95eed57 860static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 861{
643b1138
CL
862 spin_lock(&n->list_lock);
863 list_add(&page->lru, &n->full);
864 spin_unlock(&n->list_lock);
865}
866
867static void remove_full(struct kmem_cache *s, struct page *page)
868{
869 struct kmem_cache_node *n;
870
871 if (!(s->flags & SLAB_STORE_USER))
872 return;
873
874 n = get_node(s, page_to_nid(page));
875
876 spin_lock(&n->list_lock);
877 list_del(&page->lru);
878 spin_unlock(&n->list_lock);
879}
880
0f389ec6
CL
881/* Tracking of the number of slabs for debugging purposes */
882static inline unsigned long slabs_node(struct kmem_cache *s, int node)
883{
884 struct kmem_cache_node *n = get_node(s, node);
885
886 return atomic_long_read(&n->nr_slabs);
887}
888
205ab99d 889static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
890{
891 struct kmem_cache_node *n = get_node(s, node);
892
893 /*
894 * May be called early in order to allocate a slab for the
895 * kmem_cache_node structure. Solve the chicken-egg
896 * dilemma by deferring the increment of the count during
897 * bootstrap (see early_kmem_cache_node_alloc).
898 */
205ab99d 899 if (!NUMA_BUILD || n) {
0f389ec6 900 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
901 atomic_long_add(objects, &n->total_objects);
902 }
0f389ec6 903}
205ab99d 904static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
905{
906 struct kmem_cache_node *n = get_node(s, node);
907
908 atomic_long_dec(&n->nr_slabs);
205ab99d 909 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
910}
911
912/* Object debug checks for alloc/free paths */
3ec09742
CL
913static void setup_object_debug(struct kmem_cache *s, struct page *page,
914 void *object)
915{
916 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
917 return;
918
919 init_object(s, object, 0);
920 init_tracking(s, object);
921}
922
923static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
924 void *object, void *addr)
81819f0f
CL
925{
926 if (!check_slab(s, page))
927 goto bad;
928
d692ef6d 929 if (!on_freelist(s, page, object)) {
24922684 930 object_err(s, page, object, "Object already allocated");
70d71228 931 goto bad;
81819f0f
CL
932 }
933
934 if (!check_valid_pointer(s, page, object)) {
935 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 936 goto bad;
81819f0f
CL
937 }
938
d692ef6d 939 if (!check_object(s, page, object, 0))
81819f0f 940 goto bad;
81819f0f 941
3ec09742
CL
942 /* Success perform special debug activities for allocs */
943 if (s->flags & SLAB_STORE_USER)
944 set_track(s, object, TRACK_ALLOC, addr);
945 trace(s, page, object, 1);
946 init_object(s, object, 1);
81819f0f 947 return 1;
3ec09742 948
81819f0f
CL
949bad:
950 if (PageSlab(page)) {
951 /*
952 * If this is a slab page then lets do the best we can
953 * to avoid issues in the future. Marking all objects
672bba3a 954 * as used avoids touching the remaining objects.
81819f0f 955 */
24922684 956 slab_fix(s, "Marking all objects used");
39b26464 957 page->inuse = page->objects;
a973e9dd 958 page->freelist = NULL;
81819f0f
CL
959 }
960 return 0;
961}
962
3ec09742
CL
963static int free_debug_processing(struct kmem_cache *s, struct page *page,
964 void *object, void *addr)
81819f0f
CL
965{
966 if (!check_slab(s, page))
967 goto fail;
968
969 if (!check_valid_pointer(s, page, object)) {
70d71228 970 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
971 goto fail;
972 }
973
974 if (on_freelist(s, page, object)) {
24922684 975 object_err(s, page, object, "Object already free");
81819f0f
CL
976 goto fail;
977 }
978
979 if (!check_object(s, page, object, 1))
980 return 0;
981
982 if (unlikely(s != page->slab)) {
3adbefee 983 if (!PageSlab(page)) {
70d71228
CL
984 slab_err(s, page, "Attempt to free object(0x%p) "
985 "outside of slab", object);
3adbefee 986 } else if (!page->slab) {
81819f0f 987 printk(KERN_ERR
70d71228 988 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 989 object);
70d71228 990 dump_stack();
06428780 991 } else
24922684
CL
992 object_err(s, page, object,
993 "page slab pointer corrupt.");
81819f0f
CL
994 goto fail;
995 }
3ec09742
CL
996
997 /* Special debug activities for freeing objects */
a973e9dd 998 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
999 remove_full(s, page);
1000 if (s->flags & SLAB_STORE_USER)
1001 set_track(s, object, TRACK_FREE, addr);
1002 trace(s, page, object, 0);
1003 init_object(s, object, 0);
81819f0f 1004 return 1;
3ec09742 1005
81819f0f 1006fail:
24922684 1007 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1008 return 0;
1009}
1010
41ecc55b
CL
1011static int __init setup_slub_debug(char *str)
1012{
f0630fff
CL
1013 slub_debug = DEBUG_DEFAULT_FLAGS;
1014 if (*str++ != '=' || !*str)
1015 /*
1016 * No options specified. Switch on full debugging.
1017 */
1018 goto out;
1019
1020 if (*str == ',')
1021 /*
1022 * No options but restriction on slabs. This means full
1023 * debugging for slabs matching a pattern.
1024 */
1025 goto check_slabs;
1026
1027 slub_debug = 0;
1028 if (*str == '-')
1029 /*
1030 * Switch off all debugging measures.
1031 */
1032 goto out;
1033
1034 /*
1035 * Determine which debug features should be switched on
1036 */
06428780 1037 for (; *str && *str != ','; str++) {
f0630fff
CL
1038 switch (tolower(*str)) {
1039 case 'f':
1040 slub_debug |= SLAB_DEBUG_FREE;
1041 break;
1042 case 'z':
1043 slub_debug |= SLAB_RED_ZONE;
1044 break;
1045 case 'p':
1046 slub_debug |= SLAB_POISON;
1047 break;
1048 case 'u':
1049 slub_debug |= SLAB_STORE_USER;
1050 break;
1051 case 't':
1052 slub_debug |= SLAB_TRACE;
1053 break;
1054 default:
1055 printk(KERN_ERR "slub_debug option '%c' "
06428780 1056 "unknown. skipped\n", *str);
f0630fff 1057 }
41ecc55b
CL
1058 }
1059
f0630fff 1060check_slabs:
41ecc55b
CL
1061 if (*str == ',')
1062 slub_debug_slabs = str + 1;
f0630fff 1063out:
41ecc55b
CL
1064 return 1;
1065}
1066
1067__setup("slub_debug", setup_slub_debug);
1068
ba0268a8
CL
1069static unsigned long kmem_cache_flags(unsigned long objsize,
1070 unsigned long flags, const char *name,
4ba9b9d0 1071 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1072{
1073 /*
e153362a 1074 * Enable debugging if selected on the kernel commandline.
41ecc55b 1075 */
e153362a
CL
1076 if (slub_debug && (!slub_debug_slabs ||
1077 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1078 flags |= slub_debug;
ba0268a8
CL
1079
1080 return flags;
41ecc55b
CL
1081}
1082#else
3ec09742
CL
1083static inline void setup_object_debug(struct kmem_cache *s,
1084 struct page *page, void *object) {}
41ecc55b 1085
3ec09742
CL
1086static inline int alloc_debug_processing(struct kmem_cache *s,
1087 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1088
3ec09742
CL
1089static inline int free_debug_processing(struct kmem_cache *s,
1090 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1091
41ecc55b
CL
1092static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1093 { return 1; }
1094static inline int check_object(struct kmem_cache *s, struct page *page,
1095 void *object, int active) { return 1; }
3ec09742 1096static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1097static inline unsigned long kmem_cache_flags(unsigned long objsize,
1098 unsigned long flags, const char *name,
4ba9b9d0 1099 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1100{
1101 return flags;
1102}
41ecc55b 1103#define slub_debug 0
0f389ec6
CL
1104
1105static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1106 { return 0; }
205ab99d
CL
1107static inline void inc_slabs_node(struct kmem_cache *s, int node,
1108 int objects) {}
1109static inline void dec_slabs_node(struct kmem_cache *s, int node,
1110 int objects) {}
41ecc55b 1111#endif
205ab99d 1112
81819f0f
CL
1113/*
1114 * Slab allocation and freeing
1115 */
1116static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1117{
06428780 1118 struct page *page;
834f3d11
CL
1119 struct kmem_cache_order_objects oo = s->oo;
1120 int order = oo_order(oo);
1121 int pages = 1 << order;
81819f0f 1122
b7a49f0d 1123 flags |= s->allocflags;
e12ba74d 1124
81819f0f 1125 if (node == -1)
834f3d11 1126 page = alloc_pages(flags, order);
81819f0f 1127 else
834f3d11 1128 page = alloc_pages_node(node, flags, order);
81819f0f
CL
1129
1130 if (!page)
1131 return NULL;
1132
834f3d11 1133 page->objects = oo_objects(oo);
81819f0f
CL
1134 mod_zone_page_state(page_zone(page),
1135 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1136 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1137 pages);
1138
1139 return page;
1140}
1141
1142static void setup_object(struct kmem_cache *s, struct page *page,
1143 void *object)
1144{
3ec09742 1145 setup_object_debug(s, page, object);
4f104934 1146 if (unlikely(s->ctor))
4ba9b9d0 1147 s->ctor(s, object);
81819f0f
CL
1148}
1149
1150static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1151{
1152 struct page *page;
81819f0f 1153 void *start;
81819f0f
CL
1154 void *last;
1155 void *p;
1156
6cb06229 1157 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1158
6cb06229
CL
1159 page = allocate_slab(s,
1160 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1161 if (!page)
1162 goto out;
1163
205ab99d 1164 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1165 page->slab = s;
1166 page->flags |= 1 << PG_slab;
1167 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1168 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1169 SetSlabDebug(page);
81819f0f
CL
1170
1171 start = page_address(page);
81819f0f
CL
1172
1173 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1174 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1175
1176 last = start;
224a88be 1177 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1178 setup_object(s, page, last);
1179 set_freepointer(s, last, p);
1180 last = p;
1181 }
1182 setup_object(s, page, last);
a973e9dd 1183 set_freepointer(s, last, NULL);
81819f0f
CL
1184
1185 page->freelist = start;
1186 page->inuse = 0;
1187out:
81819f0f
CL
1188 return page;
1189}
1190
1191static void __free_slab(struct kmem_cache *s, struct page *page)
1192{
834f3d11
CL
1193 int order = compound_order(page);
1194 int pages = 1 << order;
81819f0f 1195
c59def9f 1196 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1197 void *p;
1198
1199 slab_pad_check(s, page);
224a88be
CL
1200 for_each_object(p, s, page_address(page),
1201 page->objects)
81819f0f 1202 check_object(s, page, p, 0);
2208b764 1203 ClearSlabDebug(page);
81819f0f
CL
1204 }
1205
1206 mod_zone_page_state(page_zone(page),
1207 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1209 -pages);
81819f0f 1210
49bd5221
CL
1211 __ClearPageSlab(page);
1212 reset_page_mapcount(page);
834f3d11 1213 __free_pages(page, order);
81819f0f
CL
1214}
1215
1216static void rcu_free_slab(struct rcu_head *h)
1217{
1218 struct page *page;
1219
1220 page = container_of((struct list_head *)h, struct page, lru);
1221 __free_slab(page->slab, page);
1222}
1223
1224static void free_slab(struct kmem_cache *s, struct page *page)
1225{
1226 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1227 /*
1228 * RCU free overloads the RCU head over the LRU
1229 */
1230 struct rcu_head *head = (void *)&page->lru;
1231
1232 call_rcu(head, rcu_free_slab);
1233 } else
1234 __free_slab(s, page);
1235}
1236
1237static void discard_slab(struct kmem_cache *s, struct page *page)
1238{
205ab99d 1239 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1240 free_slab(s, page);
1241}
1242
1243/*
1244 * Per slab locking using the pagelock
1245 */
1246static __always_inline void slab_lock(struct page *page)
1247{
1248 bit_spin_lock(PG_locked, &page->flags);
1249}
1250
1251static __always_inline void slab_unlock(struct page *page)
1252{
a76d3546 1253 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1254}
1255
1256static __always_inline int slab_trylock(struct page *page)
1257{
1258 int rc = 1;
1259
1260 rc = bit_spin_trylock(PG_locked, &page->flags);
1261 return rc;
1262}
1263
1264/*
1265 * Management of partially allocated slabs
1266 */
7c2e132c
CL
1267static void add_partial(struct kmem_cache_node *n,
1268 struct page *page, int tail)
81819f0f 1269{
e95eed57
CL
1270 spin_lock(&n->list_lock);
1271 n->nr_partial++;
7c2e132c
CL
1272 if (tail)
1273 list_add_tail(&page->lru, &n->partial);
1274 else
1275 list_add(&page->lru, &n->partial);
81819f0f
CL
1276 spin_unlock(&n->list_lock);
1277}
1278
1279static void remove_partial(struct kmem_cache *s,
1280 struct page *page)
1281{
1282 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1283
1284 spin_lock(&n->list_lock);
1285 list_del(&page->lru);
1286 n->nr_partial--;
1287 spin_unlock(&n->list_lock);
1288}
1289
1290/*
672bba3a 1291 * Lock slab and remove from the partial list.
81819f0f 1292 *
672bba3a 1293 * Must hold list_lock.
81819f0f 1294 */
4b6f0750 1295static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1296{
1297 if (slab_trylock(page)) {
1298 list_del(&page->lru);
1299 n->nr_partial--;
4b6f0750 1300 SetSlabFrozen(page);
81819f0f
CL
1301 return 1;
1302 }
1303 return 0;
1304}
1305
1306/*
672bba3a 1307 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1308 */
1309static struct page *get_partial_node(struct kmem_cache_node *n)
1310{
1311 struct page *page;
1312
1313 /*
1314 * Racy check. If we mistakenly see no partial slabs then we
1315 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1316 * partial slab and there is none available then get_partials()
1317 * will return NULL.
81819f0f
CL
1318 */
1319 if (!n || !n->nr_partial)
1320 return NULL;
1321
1322 spin_lock(&n->list_lock);
1323 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1324 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1325 goto out;
1326 page = NULL;
1327out:
1328 spin_unlock(&n->list_lock);
1329 return page;
1330}
1331
1332/*
672bba3a 1333 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1334 */
1335static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1336{
1337#ifdef CONFIG_NUMA
1338 struct zonelist *zonelist;
1339 struct zone **z;
1340 struct page *page;
1341
1342 /*
672bba3a
CL
1343 * The defrag ratio allows a configuration of the tradeoffs between
1344 * inter node defragmentation and node local allocations. A lower
1345 * defrag_ratio increases the tendency to do local allocations
1346 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1347 *
672bba3a
CL
1348 * If the defrag_ratio is set to 0 then kmalloc() always
1349 * returns node local objects. If the ratio is higher then kmalloc()
1350 * may return off node objects because partial slabs are obtained
1351 * from other nodes and filled up.
81819f0f 1352 *
6446faa2 1353 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1354 * defrag_ratio = 1000) then every (well almost) allocation will
1355 * first attempt to defrag slab caches on other nodes. This means
1356 * scanning over all nodes to look for partial slabs which may be
1357 * expensive if we do it every time we are trying to find a slab
1358 * with available objects.
81819f0f 1359 */
9824601e
CL
1360 if (!s->remote_node_defrag_ratio ||
1361 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1362 return NULL;
1363
3adbefee
IM
1364 zonelist = &NODE_DATA(
1365 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1366 for (z = zonelist->zones; *z; z++) {
1367 struct kmem_cache_node *n;
1368
1369 n = get_node(s, zone_to_nid(*z));
1370
1371 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1372 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1373 page = get_partial_node(n);
1374 if (page)
1375 return page;
1376 }
1377 }
1378#endif
1379 return NULL;
1380}
1381
1382/*
1383 * Get a partial page, lock it and return it.
1384 */
1385static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1386{
1387 struct page *page;
1388 int searchnode = (node == -1) ? numa_node_id() : node;
1389
1390 page = get_partial_node(get_node(s, searchnode));
1391 if (page || (flags & __GFP_THISNODE))
1392 return page;
1393
1394 return get_any_partial(s, flags);
1395}
1396
1397/*
1398 * Move a page back to the lists.
1399 *
1400 * Must be called with the slab lock held.
1401 *
1402 * On exit the slab lock will have been dropped.
1403 */
7c2e132c 1404static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1405{
e95eed57 1406 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1407 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1408
4b6f0750 1409 ClearSlabFrozen(page);
81819f0f 1410 if (page->inuse) {
e95eed57 1411
a973e9dd 1412 if (page->freelist) {
7c2e132c 1413 add_partial(n, page, tail);
8ff12cfc
CL
1414 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1415 } else {
1416 stat(c, DEACTIVATE_FULL);
1417 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1418 add_full(n, page);
1419 }
81819f0f
CL
1420 slab_unlock(page);
1421 } else {
8ff12cfc 1422 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1423 if (n->nr_partial < MIN_PARTIAL) {
1424 /*
672bba3a
CL
1425 * Adding an empty slab to the partial slabs in order
1426 * to avoid page allocator overhead. This slab needs
1427 * to come after the other slabs with objects in
6446faa2
CL
1428 * so that the others get filled first. That way the
1429 * size of the partial list stays small.
1430 *
1431 * kmem_cache_shrink can reclaim any empty slabs from the
1432 * partial list.
e95eed57 1433 */
7c2e132c 1434 add_partial(n, page, 1);
e95eed57
CL
1435 slab_unlock(page);
1436 } else {
1437 slab_unlock(page);
8ff12cfc 1438 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1439 discard_slab(s, page);
1440 }
81819f0f
CL
1441 }
1442}
1443
1444/*
1445 * Remove the cpu slab
1446 */
dfb4f096 1447static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1448{
dfb4f096 1449 struct page *page = c->page;
7c2e132c 1450 int tail = 1;
8ff12cfc 1451
b773ad73 1452 if (page->freelist)
8ff12cfc 1453 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1454 /*
6446faa2 1455 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1456 * because both freelists are empty. So this is unlikely
1457 * to occur.
1458 */
a973e9dd 1459 while (unlikely(c->freelist)) {
894b8788
CL
1460 void **object;
1461
7c2e132c
CL
1462 tail = 0; /* Hot objects. Put the slab first */
1463
894b8788 1464 /* Retrieve object from cpu_freelist */
dfb4f096 1465 object = c->freelist;
b3fba8da 1466 c->freelist = c->freelist[c->offset];
894b8788
CL
1467
1468 /* And put onto the regular freelist */
b3fba8da 1469 object[c->offset] = page->freelist;
894b8788
CL
1470 page->freelist = object;
1471 page->inuse--;
1472 }
dfb4f096 1473 c->page = NULL;
7c2e132c 1474 unfreeze_slab(s, page, tail);
81819f0f
CL
1475}
1476
dfb4f096 1477static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1478{
8ff12cfc 1479 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1480 slab_lock(c->page);
1481 deactivate_slab(s, c);
81819f0f
CL
1482}
1483
1484/*
1485 * Flush cpu slab.
6446faa2 1486 *
81819f0f
CL
1487 * Called from IPI handler with interrupts disabled.
1488 */
0c710013 1489static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1490{
dfb4f096 1491 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1492
dfb4f096
CL
1493 if (likely(c && c->page))
1494 flush_slab(s, c);
81819f0f
CL
1495}
1496
1497static void flush_cpu_slab(void *d)
1498{
1499 struct kmem_cache *s = d;
81819f0f 1500
dfb4f096 1501 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1502}
1503
1504static void flush_all(struct kmem_cache *s)
1505{
1506#ifdef CONFIG_SMP
1507 on_each_cpu(flush_cpu_slab, s, 1, 1);
1508#else
1509 unsigned long flags;
1510
1511 local_irq_save(flags);
1512 flush_cpu_slab(s);
1513 local_irq_restore(flags);
1514#endif
1515}
1516
dfb4f096
CL
1517/*
1518 * Check if the objects in a per cpu structure fit numa
1519 * locality expectations.
1520 */
1521static inline int node_match(struct kmem_cache_cpu *c, int node)
1522{
1523#ifdef CONFIG_NUMA
1524 if (node != -1 && c->node != node)
1525 return 0;
1526#endif
1527 return 1;
1528}
1529
81819f0f 1530/*
894b8788
CL
1531 * Slow path. The lockless freelist is empty or we need to perform
1532 * debugging duties.
1533 *
1534 * Interrupts are disabled.
81819f0f 1535 *
894b8788
CL
1536 * Processing is still very fast if new objects have been freed to the
1537 * regular freelist. In that case we simply take over the regular freelist
1538 * as the lockless freelist and zap the regular freelist.
81819f0f 1539 *
894b8788
CL
1540 * If that is not working then we fall back to the partial lists. We take the
1541 * first element of the freelist as the object to allocate now and move the
1542 * rest of the freelist to the lockless freelist.
81819f0f 1543 *
894b8788 1544 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1545 * we need to allocate a new slab. This is the slowest path since it involves
1546 * a call to the page allocator and the setup of a new slab.
81819f0f 1547 */
894b8788 1548static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1549 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1550{
81819f0f 1551 void **object;
dfb4f096 1552 struct page *new;
81819f0f 1553
e72e9c23
LT
1554 /* We handle __GFP_ZERO in the caller */
1555 gfpflags &= ~__GFP_ZERO;
1556
dfb4f096 1557 if (!c->page)
81819f0f
CL
1558 goto new_slab;
1559
dfb4f096
CL
1560 slab_lock(c->page);
1561 if (unlikely(!node_match(c, node)))
81819f0f 1562 goto another_slab;
6446faa2 1563
8ff12cfc 1564 stat(c, ALLOC_REFILL);
6446faa2 1565
894b8788 1566load_freelist:
dfb4f096 1567 object = c->page->freelist;
a973e9dd 1568 if (unlikely(!object))
81819f0f 1569 goto another_slab;
dfb4f096 1570 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1571 goto debug;
1572
b3fba8da 1573 c->freelist = object[c->offset];
39b26464 1574 c->page->inuse = c->page->objects;
a973e9dd 1575 c->page->freelist = NULL;
dfb4f096 1576 c->node = page_to_nid(c->page);
1f84260c 1577unlock_out:
dfb4f096 1578 slab_unlock(c->page);
8ff12cfc 1579 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1580 return object;
1581
1582another_slab:
dfb4f096 1583 deactivate_slab(s, c);
81819f0f
CL
1584
1585new_slab:
dfb4f096
CL
1586 new = get_partial(s, gfpflags, node);
1587 if (new) {
1588 c->page = new;
8ff12cfc 1589 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1590 goto load_freelist;
81819f0f
CL
1591 }
1592
b811c202
CL
1593 if (gfpflags & __GFP_WAIT)
1594 local_irq_enable();
1595
dfb4f096 1596 new = new_slab(s, gfpflags, node);
b811c202
CL
1597
1598 if (gfpflags & __GFP_WAIT)
1599 local_irq_disable();
1600
dfb4f096
CL
1601 if (new) {
1602 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1603 stat(c, ALLOC_SLAB);
05aa3450 1604 if (c->page)
dfb4f096 1605 flush_slab(s, c);
dfb4f096
CL
1606 slab_lock(new);
1607 SetSlabFrozen(new);
1608 c->page = new;
4b6f0750 1609 goto load_freelist;
81819f0f 1610 }
00e962c5 1611
71c7a06f
CL
1612 /*
1613 * No memory available.
1614 *
1615 * If the slab uses higher order allocs but the object is
1616 * smaller than a page size then we can fallback in emergencies
1617 * to the page allocator via kmalloc_large. The page allocator may
1618 * have failed to obtain a higher order page and we can try to
1619 * allocate a single page if the object fits into a single page.
1620 * That is only possible if certain conditions are met that are being
1621 * checked when a slab is created.
1622 */
caeab084
CL
1623 if (!(gfpflags & __GFP_NORETRY) &&
1624 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1625 if (gfpflags & __GFP_WAIT)
1626 local_irq_enable();
1627 object = kmalloc_large(s->objsize, gfpflags);
1628 if (gfpflags & __GFP_WAIT)
1629 local_irq_disable();
1630 return object;
1631 }
71c7a06f 1632 return NULL;
81819f0f 1633debug:
dfb4f096 1634 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1635 goto another_slab;
894b8788 1636
dfb4f096 1637 c->page->inuse++;
b3fba8da 1638 c->page->freelist = object[c->offset];
ee3c72a1 1639 c->node = -1;
1f84260c 1640 goto unlock_out;
894b8788
CL
1641}
1642
1643/*
1644 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1645 * have the fastpath folded into their functions. So no function call
1646 * overhead for requests that can be satisfied on the fastpath.
1647 *
1648 * The fastpath works by first checking if the lockless freelist can be used.
1649 * If not then __slab_alloc is called for slow processing.
1650 *
1651 * Otherwise we can simply pick the next object from the lockless free list.
1652 */
06428780 1653static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1654 gfp_t gfpflags, int node, void *addr)
894b8788 1655{
894b8788 1656 void **object;
dfb4f096 1657 struct kmem_cache_cpu *c;
1f84260c
CL
1658 unsigned long flags;
1659
894b8788 1660 local_irq_save(flags);
dfb4f096 1661 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1662 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1663
dfb4f096 1664 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1665
1666 else {
dfb4f096 1667 object = c->freelist;
b3fba8da 1668 c->freelist = object[c->offset];
8ff12cfc 1669 stat(c, ALLOC_FASTPATH);
894b8788
CL
1670 }
1671 local_irq_restore(flags);
d07dbea4
CL
1672
1673 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1674 memset(object, 0, c->objsize);
d07dbea4 1675
894b8788 1676 return object;
81819f0f
CL
1677}
1678
1679void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1680{
ce15fea8 1681 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1682}
1683EXPORT_SYMBOL(kmem_cache_alloc);
1684
1685#ifdef CONFIG_NUMA
1686void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1687{
ce15fea8 1688 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1689}
1690EXPORT_SYMBOL(kmem_cache_alloc_node);
1691#endif
1692
1693/*
894b8788
CL
1694 * Slow patch handling. This may still be called frequently since objects
1695 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1696 *
894b8788
CL
1697 * So we still attempt to reduce cache line usage. Just take the slab
1698 * lock and free the item. If there is no additional partial page
1699 * handling required then we can return immediately.
81819f0f 1700 */
894b8788 1701static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1702 void *x, void *addr, unsigned int offset)
81819f0f
CL
1703{
1704 void *prior;
1705 void **object = (void *)x;
8ff12cfc 1706 struct kmem_cache_cpu *c;
81819f0f 1707
8ff12cfc
CL
1708 c = get_cpu_slab(s, raw_smp_processor_id());
1709 stat(c, FREE_SLOWPATH);
81819f0f
CL
1710 slab_lock(page);
1711
35e5d7ee 1712 if (unlikely(SlabDebug(page)))
81819f0f 1713 goto debug;
6446faa2 1714
81819f0f 1715checks_ok:
b3fba8da 1716 prior = object[offset] = page->freelist;
81819f0f
CL
1717 page->freelist = object;
1718 page->inuse--;
1719
8ff12cfc
CL
1720 if (unlikely(SlabFrozen(page))) {
1721 stat(c, FREE_FROZEN);
81819f0f 1722 goto out_unlock;
8ff12cfc 1723 }
81819f0f
CL
1724
1725 if (unlikely(!page->inuse))
1726 goto slab_empty;
1727
1728 /*
6446faa2 1729 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1730 * then add it.
1731 */
a973e9dd 1732 if (unlikely(!prior)) {
7c2e132c 1733 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1734 stat(c, FREE_ADD_PARTIAL);
1735 }
81819f0f
CL
1736
1737out_unlock:
1738 slab_unlock(page);
81819f0f
CL
1739 return;
1740
1741slab_empty:
a973e9dd 1742 if (prior) {
81819f0f 1743 /*
672bba3a 1744 * Slab still on the partial list.
81819f0f
CL
1745 */
1746 remove_partial(s, page);
8ff12cfc
CL
1747 stat(c, FREE_REMOVE_PARTIAL);
1748 }
81819f0f 1749 slab_unlock(page);
8ff12cfc 1750 stat(c, FREE_SLAB);
81819f0f 1751 discard_slab(s, page);
81819f0f
CL
1752 return;
1753
1754debug:
3ec09742 1755 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1756 goto out_unlock;
77c5e2d0 1757 goto checks_ok;
81819f0f
CL
1758}
1759
894b8788
CL
1760/*
1761 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1762 * can perform fastpath freeing without additional function calls.
1763 *
1764 * The fastpath is only possible if we are freeing to the current cpu slab
1765 * of this processor. This typically the case if we have just allocated
1766 * the item before.
1767 *
1768 * If fastpath is not possible then fall back to __slab_free where we deal
1769 * with all sorts of special processing.
1770 */
06428780 1771static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1772 struct page *page, void *x, void *addr)
1773{
1774 void **object = (void *)x;
dfb4f096 1775 struct kmem_cache_cpu *c;
1f84260c
CL
1776 unsigned long flags;
1777
894b8788 1778 local_irq_save(flags);
dfb4f096 1779 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1780 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1781 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1782 object[c->offset] = c->freelist;
dfb4f096 1783 c->freelist = object;
8ff12cfc 1784 stat(c, FREE_FASTPATH);
894b8788 1785 } else
b3fba8da 1786 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1787
1788 local_irq_restore(flags);
1789}
1790
81819f0f
CL
1791void kmem_cache_free(struct kmem_cache *s, void *x)
1792{
77c5e2d0 1793 struct page *page;
81819f0f 1794
b49af68f 1795 page = virt_to_head_page(x);
81819f0f 1796
77c5e2d0 1797 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1798}
1799EXPORT_SYMBOL(kmem_cache_free);
1800
1801/* Figure out on which slab object the object resides */
1802static struct page *get_object_page(const void *x)
1803{
b49af68f 1804 struct page *page = virt_to_head_page(x);
81819f0f
CL
1805
1806 if (!PageSlab(page))
1807 return NULL;
1808
1809 return page;
1810}
1811
1812/*
672bba3a
CL
1813 * Object placement in a slab is made very easy because we always start at
1814 * offset 0. If we tune the size of the object to the alignment then we can
1815 * get the required alignment by putting one properly sized object after
1816 * another.
81819f0f
CL
1817 *
1818 * Notice that the allocation order determines the sizes of the per cpu
1819 * caches. Each processor has always one slab available for allocations.
1820 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1821 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1822 * locking overhead.
81819f0f
CL
1823 */
1824
1825/*
1826 * Mininum / Maximum order of slab pages. This influences locking overhead
1827 * and slab fragmentation. A higher order reduces the number of partial slabs
1828 * and increases the number of allocations possible without having to
1829 * take the list_lock.
1830 */
1831static int slub_min_order;
1832static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1833static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1834
1835/*
1836 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1837 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1838 */
1839static int slub_nomerge;
1840
81819f0f
CL
1841/*
1842 * Calculate the order of allocation given an slab object size.
1843 *
672bba3a
CL
1844 * The order of allocation has significant impact on performance and other
1845 * system components. Generally order 0 allocations should be preferred since
1846 * order 0 does not cause fragmentation in the page allocator. Larger objects
1847 * be problematic to put into order 0 slabs because there may be too much
1848 * unused space left. We go to a higher order if more than 1/8th of the slab
1849 * would be wasted.
1850 *
1851 * In order to reach satisfactory performance we must ensure that a minimum
1852 * number of objects is in one slab. Otherwise we may generate too much
1853 * activity on the partial lists which requires taking the list_lock. This is
1854 * less a concern for large slabs though which are rarely used.
81819f0f 1855 *
672bba3a
CL
1856 * slub_max_order specifies the order where we begin to stop considering the
1857 * number of objects in a slab as critical. If we reach slub_max_order then
1858 * we try to keep the page order as low as possible. So we accept more waste
1859 * of space in favor of a small page order.
81819f0f 1860 *
672bba3a
CL
1861 * Higher order allocations also allow the placement of more objects in a
1862 * slab and thereby reduce object handling overhead. If the user has
1863 * requested a higher mininum order then we start with that one instead of
1864 * the smallest order which will fit the object.
81819f0f 1865 */
5e6d444e
CL
1866static inline int slab_order(int size, int min_objects,
1867 int max_order, int fract_leftover)
81819f0f
CL
1868{
1869 int order;
1870 int rem;
6300ea75 1871 int min_order = slub_min_order;
81819f0f 1872
39b26464
CL
1873 if ((PAGE_SIZE << min_order) / size > 65535)
1874 return get_order(size * 65535) - 1;
1875
6300ea75 1876 for (order = max(min_order,
5e6d444e
CL
1877 fls(min_objects * size - 1) - PAGE_SHIFT);
1878 order <= max_order; order++) {
81819f0f 1879
5e6d444e 1880 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1881
5e6d444e 1882 if (slab_size < min_objects * size)
81819f0f
CL
1883 continue;
1884
1885 rem = slab_size % size;
1886
5e6d444e 1887 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1888 break;
1889
1890 }
672bba3a 1891
81819f0f
CL
1892 return order;
1893}
1894
5e6d444e
CL
1895static inline int calculate_order(int size)
1896{
1897 int order;
1898 int min_objects;
1899 int fraction;
1900
1901 /*
1902 * Attempt to find best configuration for a slab. This
1903 * works by first attempting to generate a layout with
1904 * the best configuration and backing off gradually.
1905 *
1906 * First we reduce the acceptable waste in a slab. Then
1907 * we reduce the minimum objects required in a slab.
1908 */
1909 min_objects = slub_min_objects;
1910 while (min_objects > 1) {
1911 fraction = 8;
1912 while (fraction >= 4) {
1913 order = slab_order(size, min_objects,
1914 slub_max_order, fraction);
1915 if (order <= slub_max_order)
1916 return order;
1917 fraction /= 2;
1918 }
1919 min_objects /= 2;
1920 }
1921
1922 /*
1923 * We were unable to place multiple objects in a slab. Now
1924 * lets see if we can place a single object there.
1925 */
1926 order = slab_order(size, 1, slub_max_order, 1);
1927 if (order <= slub_max_order)
1928 return order;
1929
1930 /*
1931 * Doh this slab cannot be placed using slub_max_order.
1932 */
1933 order = slab_order(size, 1, MAX_ORDER, 1);
1934 if (order <= MAX_ORDER)
1935 return order;
1936 return -ENOSYS;
1937}
1938
81819f0f 1939/*
672bba3a 1940 * Figure out what the alignment of the objects will be.
81819f0f
CL
1941 */
1942static unsigned long calculate_alignment(unsigned long flags,
1943 unsigned long align, unsigned long size)
1944{
1945 /*
6446faa2
CL
1946 * If the user wants hardware cache aligned objects then follow that
1947 * suggestion if the object is sufficiently large.
81819f0f 1948 *
6446faa2
CL
1949 * The hardware cache alignment cannot override the specified
1950 * alignment though. If that is greater then use it.
81819f0f 1951 */
b6210386
NP
1952 if (flags & SLAB_HWCACHE_ALIGN) {
1953 unsigned long ralign = cache_line_size();
1954 while (size <= ralign / 2)
1955 ralign /= 2;
1956 align = max(align, ralign);
1957 }
81819f0f
CL
1958
1959 if (align < ARCH_SLAB_MINALIGN)
b6210386 1960 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1961
1962 return ALIGN(align, sizeof(void *));
1963}
1964
dfb4f096
CL
1965static void init_kmem_cache_cpu(struct kmem_cache *s,
1966 struct kmem_cache_cpu *c)
1967{
1968 c->page = NULL;
a973e9dd 1969 c->freelist = NULL;
dfb4f096 1970 c->node = 0;
42a9fdbb
CL
1971 c->offset = s->offset / sizeof(void *);
1972 c->objsize = s->objsize;
62f75532
PE
1973#ifdef CONFIG_SLUB_STATS
1974 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1975#endif
dfb4f096
CL
1976}
1977
81819f0f
CL
1978static void init_kmem_cache_node(struct kmem_cache_node *n)
1979{
1980 n->nr_partial = 0;
81819f0f
CL
1981 spin_lock_init(&n->list_lock);
1982 INIT_LIST_HEAD(&n->partial);
8ab1372f 1983#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1984 atomic_long_set(&n->nr_slabs, 0);
643b1138 1985 INIT_LIST_HEAD(&n->full);
8ab1372f 1986#endif
81819f0f
CL
1987}
1988
4c93c355
CL
1989#ifdef CONFIG_SMP
1990/*
1991 * Per cpu array for per cpu structures.
1992 *
1993 * The per cpu array places all kmem_cache_cpu structures from one processor
1994 * close together meaning that it becomes possible that multiple per cpu
1995 * structures are contained in one cacheline. This may be particularly
1996 * beneficial for the kmalloc caches.
1997 *
1998 * A desktop system typically has around 60-80 slabs. With 100 here we are
1999 * likely able to get per cpu structures for all caches from the array defined
2000 * here. We must be able to cover all kmalloc caches during bootstrap.
2001 *
2002 * If the per cpu array is exhausted then fall back to kmalloc
2003 * of individual cachelines. No sharing is possible then.
2004 */
2005#define NR_KMEM_CACHE_CPU 100
2006
2007static DEFINE_PER_CPU(struct kmem_cache_cpu,
2008 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2009
2010static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2011static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2012
2013static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2014 int cpu, gfp_t flags)
2015{
2016 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2017
2018 if (c)
2019 per_cpu(kmem_cache_cpu_free, cpu) =
2020 (void *)c->freelist;
2021 else {
2022 /* Table overflow: So allocate ourselves */
2023 c = kmalloc_node(
2024 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2025 flags, cpu_to_node(cpu));
2026 if (!c)
2027 return NULL;
2028 }
2029
2030 init_kmem_cache_cpu(s, c);
2031 return c;
2032}
2033
2034static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2035{
2036 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2037 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2038 kfree(c);
2039 return;
2040 }
2041 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2042 per_cpu(kmem_cache_cpu_free, cpu) = c;
2043}
2044
2045static void free_kmem_cache_cpus(struct kmem_cache *s)
2046{
2047 int cpu;
2048
2049 for_each_online_cpu(cpu) {
2050 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2051
2052 if (c) {
2053 s->cpu_slab[cpu] = NULL;
2054 free_kmem_cache_cpu(c, cpu);
2055 }
2056 }
2057}
2058
2059static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2060{
2061 int cpu;
2062
2063 for_each_online_cpu(cpu) {
2064 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2065
2066 if (c)
2067 continue;
2068
2069 c = alloc_kmem_cache_cpu(s, cpu, flags);
2070 if (!c) {
2071 free_kmem_cache_cpus(s);
2072 return 0;
2073 }
2074 s->cpu_slab[cpu] = c;
2075 }
2076 return 1;
2077}
2078
2079/*
2080 * Initialize the per cpu array.
2081 */
2082static void init_alloc_cpu_cpu(int cpu)
2083{
2084 int i;
2085
2086 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2087 return;
2088
2089 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2090 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2091
2092 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2093}
2094
2095static void __init init_alloc_cpu(void)
2096{
2097 int cpu;
2098
2099 for_each_online_cpu(cpu)
2100 init_alloc_cpu_cpu(cpu);
2101 }
2102
2103#else
2104static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2105static inline void init_alloc_cpu(void) {}
2106
2107static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2108{
2109 init_kmem_cache_cpu(s, &s->cpu_slab);
2110 return 1;
2111}
2112#endif
2113
81819f0f
CL
2114#ifdef CONFIG_NUMA
2115/*
2116 * No kmalloc_node yet so do it by hand. We know that this is the first
2117 * slab on the node for this slabcache. There are no concurrent accesses
2118 * possible.
2119 *
2120 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2121 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2122 * memory on a fresh node that has no slab structures yet.
81819f0f 2123 */
1cd7daa5
AB
2124static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2125 int node)
81819f0f
CL
2126{
2127 struct page *page;
2128 struct kmem_cache_node *n;
ba84c73c 2129 unsigned long flags;
81819f0f
CL
2130
2131 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2132
a2f92ee7 2133 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2134
2135 BUG_ON(!page);
a2f92ee7
CL
2136 if (page_to_nid(page) != node) {
2137 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2138 "node %d\n", node);
2139 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2140 "in order to be able to continue\n");
2141 }
2142
81819f0f
CL
2143 n = page->freelist;
2144 BUG_ON(!n);
2145 page->freelist = get_freepointer(kmalloc_caches, n);
2146 page->inuse++;
2147 kmalloc_caches->node[node] = n;
8ab1372f 2148#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2149 init_object(kmalloc_caches, n, 1);
2150 init_tracking(kmalloc_caches, n);
8ab1372f 2151#endif
81819f0f 2152 init_kmem_cache_node(n);
205ab99d 2153 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2154
ba84c73c 2155 /*
2156 * lockdep requires consistent irq usage for each lock
2157 * so even though there cannot be a race this early in
2158 * the boot sequence, we still disable irqs.
2159 */
2160 local_irq_save(flags);
7c2e132c 2161 add_partial(n, page, 0);
ba84c73c 2162 local_irq_restore(flags);
81819f0f
CL
2163 return n;
2164}
2165
2166static void free_kmem_cache_nodes(struct kmem_cache *s)
2167{
2168 int node;
2169
f64dc58c 2170 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2171 struct kmem_cache_node *n = s->node[node];
2172 if (n && n != &s->local_node)
2173 kmem_cache_free(kmalloc_caches, n);
2174 s->node[node] = NULL;
2175 }
2176}
2177
2178static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2179{
2180 int node;
2181 int local_node;
2182
2183 if (slab_state >= UP)
2184 local_node = page_to_nid(virt_to_page(s));
2185 else
2186 local_node = 0;
2187
f64dc58c 2188 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2189 struct kmem_cache_node *n;
2190
2191 if (local_node == node)
2192 n = &s->local_node;
2193 else {
2194 if (slab_state == DOWN) {
2195 n = early_kmem_cache_node_alloc(gfpflags,
2196 node);
2197 continue;
2198 }
2199 n = kmem_cache_alloc_node(kmalloc_caches,
2200 gfpflags, node);
2201
2202 if (!n) {
2203 free_kmem_cache_nodes(s);
2204 return 0;
2205 }
2206
2207 }
2208 s->node[node] = n;
2209 init_kmem_cache_node(n);
2210 }
2211 return 1;
2212}
2213#else
2214static void free_kmem_cache_nodes(struct kmem_cache *s)
2215{
2216}
2217
2218static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2219{
2220 init_kmem_cache_node(&s->local_node);
2221 return 1;
2222}
2223#endif
2224
2225/*
2226 * calculate_sizes() determines the order and the distribution of data within
2227 * a slab object.
2228 */
2229static int calculate_sizes(struct kmem_cache *s)
2230{
2231 unsigned long flags = s->flags;
2232 unsigned long size = s->objsize;
2233 unsigned long align = s->align;
834f3d11 2234 int order;
81819f0f 2235
d8b42bf5
CL
2236 /*
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2240 */
2241 size = ALIGN(size, sizeof(void *));
2242
2243#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2244 /*
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2248 */
2249 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2250 !s->ctor)
81819f0f
CL
2251 s->flags |= __OBJECT_POISON;
2252 else
2253 s->flags &= ~__OBJECT_POISON;
2254
81819f0f
CL
2255
2256 /*
672bba3a 2257 * If we are Redzoning then check if there is some space between the
81819f0f 2258 * end of the object and the free pointer. If not then add an
672bba3a 2259 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2260 */
2261 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 size += sizeof(void *);
41ecc55b 2263#endif
81819f0f
CL
2264
2265 /*
672bba3a
CL
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2268 */
2269 s->inuse = size;
2270
2271 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2272 s->ctor)) {
81819f0f
CL
2273 /*
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2276 * kmem_cache_free.
2277 *
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2280 */
2281 s->offset = size;
2282 size += sizeof(void *);
2283 }
2284
c12b3c62 2285#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2286 if (flags & SLAB_STORE_USER)
2287 /*
2288 * Need to store information about allocs and frees after
2289 * the object.
2290 */
2291 size += 2 * sizeof(struct track);
2292
be7b3fbc 2293 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2294 /*
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
2298 * corrupted if an user writes before the start
2299 * of the object.
2300 */
2301 size += sizeof(void *);
41ecc55b 2302#endif
672bba3a 2303
81819f0f
CL
2304 /*
2305 * Determine the alignment based on various parameters that the
65c02d4c
CL
2306 * user specified and the dynamic determination of cache line size
2307 * on bootup.
81819f0f
CL
2308 */
2309 align = calculate_alignment(flags, align, s->objsize);
2310
2311 /*
2312 * SLUB stores one object immediately after another beginning from
2313 * offset 0. In order to align the objects we have to simply size
2314 * each object to conform to the alignment.
2315 */
2316 size = ALIGN(size, align);
2317 s->size = size;
2318
71c7a06f
CL
2319 if ((flags & __KMALLOC_CACHE) &&
2320 PAGE_SIZE / size < slub_min_objects) {
2321 /*
2322 * Kmalloc cache that would not have enough objects in
2323 * an order 0 page. Kmalloc slabs can fallback to
2324 * page allocator order 0 allocs so take a reasonably large
2325 * order that will allows us a good number of objects.
2326 */
834f3d11 2327 order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
71c7a06f
CL
2328 s->flags |= __PAGE_ALLOC_FALLBACK;
2329 s->allocflags |= __GFP_NOWARN;
2330 } else
834f3d11 2331 order = calculate_order(size);
71c7a06f 2332
834f3d11 2333 if (order < 0)
81819f0f
CL
2334 return 0;
2335
b7a49f0d 2336 s->allocflags = 0;
834f3d11 2337 if (order)
b7a49f0d
CL
2338 s->allocflags |= __GFP_COMP;
2339
2340 if (s->flags & SLAB_CACHE_DMA)
2341 s->allocflags |= SLUB_DMA;
2342
2343 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2344 s->allocflags |= __GFP_RECLAIMABLE;
2345
81819f0f
CL
2346 /*
2347 * Determine the number of objects per slab
2348 */
834f3d11 2349 s->oo = oo_make(order, size);
205ab99d
CL
2350 if (oo_objects(s->oo) > oo_objects(s->max))
2351 s->max = s->oo;
81819f0f 2352
834f3d11 2353 return !!oo_objects(s->oo);
81819f0f
CL
2354
2355}
2356
81819f0f
CL
2357static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2358 const char *name, size_t size,
2359 size_t align, unsigned long flags,
4ba9b9d0 2360 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2361{
2362 memset(s, 0, kmem_size);
2363 s->name = name;
2364 s->ctor = ctor;
81819f0f 2365 s->objsize = size;
81819f0f 2366 s->align = align;
ba0268a8 2367 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2368
2369 if (!calculate_sizes(s))
2370 goto error;
2371
2372 s->refcount = 1;
2373#ifdef CONFIG_NUMA
9824601e 2374 s->remote_node_defrag_ratio = 100;
81819f0f 2375#endif
dfb4f096
CL
2376 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2377 goto error;
81819f0f 2378
dfb4f096 2379 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2380 return 1;
4c93c355 2381 free_kmem_cache_nodes(s);
81819f0f
CL
2382error:
2383 if (flags & SLAB_PANIC)
2384 panic("Cannot create slab %s size=%lu realsize=%u "
2385 "order=%u offset=%u flags=%lx\n",
834f3d11 2386 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2387 s->offset, flags);
2388 return 0;
2389}
81819f0f
CL
2390
2391/*
2392 * Check if a given pointer is valid
2393 */
2394int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2395{
06428780 2396 struct page *page;
81819f0f
CL
2397
2398 page = get_object_page(object);
2399
2400 if (!page || s != page->slab)
2401 /* No slab or wrong slab */
2402 return 0;
2403
abcd08a6 2404 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2405 return 0;
2406
2407 /*
2408 * We could also check if the object is on the slabs freelist.
2409 * But this would be too expensive and it seems that the main
6446faa2 2410 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2411 * to a certain slab.
2412 */
2413 return 1;
2414}
2415EXPORT_SYMBOL(kmem_ptr_validate);
2416
2417/*
2418 * Determine the size of a slab object
2419 */
2420unsigned int kmem_cache_size(struct kmem_cache *s)
2421{
2422 return s->objsize;
2423}
2424EXPORT_SYMBOL(kmem_cache_size);
2425
2426const char *kmem_cache_name(struct kmem_cache *s)
2427{
2428 return s->name;
2429}
2430EXPORT_SYMBOL(kmem_cache_name);
2431
33b12c38
CL
2432static void list_slab_objects(struct kmem_cache *s, struct page *page,
2433 const char *text)
2434{
2435#ifdef CONFIG_SLUB_DEBUG
2436 void *addr = page_address(page);
2437 void *p;
2438 DECLARE_BITMAP(map, page->objects);
2439
2440 bitmap_zero(map, page->objects);
2441 slab_err(s, page, "%s", text);
2442 slab_lock(page);
2443 for_each_free_object(p, s, page->freelist)
2444 set_bit(slab_index(p, s, addr), map);
2445
2446 for_each_object(p, s, addr, page->objects) {
2447
2448 if (!test_bit(slab_index(p, s, addr), map)) {
2449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2450 p, p - addr);
2451 print_tracking(s, p);
2452 }
2453 }
2454 slab_unlock(page);
2455#endif
2456}
2457
81819f0f 2458/*
599870b1 2459 * Attempt to free all partial slabs on a node.
81819f0f 2460 */
599870b1 2461static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2462{
81819f0f
CL
2463 unsigned long flags;
2464 struct page *page, *h;
2465
2466 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2467 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2468 if (!page->inuse) {
2469 list_del(&page->lru);
2470 discard_slab(s, page);
599870b1 2471 n->nr_partial--;
33b12c38
CL
2472 } else {
2473 list_slab_objects(s, page,
2474 "Objects remaining on kmem_cache_close()");
599870b1 2475 }
33b12c38 2476 }
81819f0f 2477 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2478}
2479
2480/*
672bba3a 2481 * Release all resources used by a slab cache.
81819f0f 2482 */
0c710013 2483static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2484{
2485 int node;
2486
2487 flush_all(s);
2488
2489 /* Attempt to free all objects */
4c93c355 2490 free_kmem_cache_cpus(s);
f64dc58c 2491 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2492 struct kmem_cache_node *n = get_node(s, node);
2493
599870b1
CL
2494 free_partial(s, n);
2495 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2496 return 1;
2497 }
2498 free_kmem_cache_nodes(s);
2499 return 0;
2500}
2501
2502/*
2503 * Close a cache and release the kmem_cache structure
2504 * (must be used for caches created using kmem_cache_create)
2505 */
2506void kmem_cache_destroy(struct kmem_cache *s)
2507{
2508 down_write(&slub_lock);
2509 s->refcount--;
2510 if (!s->refcount) {
2511 list_del(&s->list);
a0e1d1be 2512 up_write(&slub_lock);
d629d819
PE
2513 if (kmem_cache_close(s)) {
2514 printk(KERN_ERR "SLUB %s: %s called for cache that "
2515 "still has objects.\n", s->name, __func__);
2516 dump_stack();
2517 }
81819f0f 2518 sysfs_slab_remove(s);
a0e1d1be
CL
2519 } else
2520 up_write(&slub_lock);
81819f0f
CL
2521}
2522EXPORT_SYMBOL(kmem_cache_destroy);
2523
2524/********************************************************************
2525 * Kmalloc subsystem
2526 *******************************************************************/
2527
331dc558 2528struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2529EXPORT_SYMBOL(kmalloc_caches);
2530
81819f0f
CL
2531static int __init setup_slub_min_order(char *str)
2532{
06428780 2533 get_option(&str, &slub_min_order);
81819f0f
CL
2534
2535 return 1;
2536}
2537
2538__setup("slub_min_order=", setup_slub_min_order);
2539
2540static int __init setup_slub_max_order(char *str)
2541{
06428780 2542 get_option(&str, &slub_max_order);
81819f0f
CL
2543
2544 return 1;
2545}
2546
2547__setup("slub_max_order=", setup_slub_max_order);
2548
2549static int __init setup_slub_min_objects(char *str)
2550{
06428780 2551 get_option(&str, &slub_min_objects);
81819f0f
CL
2552
2553 return 1;
2554}
2555
2556__setup("slub_min_objects=", setup_slub_min_objects);
2557
2558static int __init setup_slub_nomerge(char *str)
2559{
2560 slub_nomerge = 1;
2561 return 1;
2562}
2563
2564__setup("slub_nomerge", setup_slub_nomerge);
2565
81819f0f
CL
2566static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2567 const char *name, int size, gfp_t gfp_flags)
2568{
2569 unsigned int flags = 0;
2570
2571 if (gfp_flags & SLUB_DMA)
2572 flags = SLAB_CACHE_DMA;
2573
2574 down_write(&slub_lock);
2575 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
71c7a06f 2576 flags | __KMALLOC_CACHE, NULL))
81819f0f
CL
2577 goto panic;
2578
2579 list_add(&s->list, &slab_caches);
2580 up_write(&slub_lock);
2581 if (sysfs_slab_add(s))
2582 goto panic;
2583 return s;
2584
2585panic:
2586 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2587}
2588
2e443fd0 2589#ifdef CONFIG_ZONE_DMA
4097d601 2590static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2591
2592static void sysfs_add_func(struct work_struct *w)
2593{
2594 struct kmem_cache *s;
2595
2596 down_write(&slub_lock);
2597 list_for_each_entry(s, &slab_caches, list) {
2598 if (s->flags & __SYSFS_ADD_DEFERRED) {
2599 s->flags &= ~__SYSFS_ADD_DEFERRED;
2600 sysfs_slab_add(s);
2601 }
2602 }
2603 up_write(&slub_lock);
2604}
2605
2606static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2607
2e443fd0
CL
2608static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2609{
2610 struct kmem_cache *s;
2e443fd0
CL
2611 char *text;
2612 size_t realsize;
2613
2614 s = kmalloc_caches_dma[index];
2615 if (s)
2616 return s;
2617
2618 /* Dynamically create dma cache */
1ceef402
CL
2619 if (flags & __GFP_WAIT)
2620 down_write(&slub_lock);
2621 else {
2622 if (!down_write_trylock(&slub_lock))
2623 goto out;
2624 }
2625
2626 if (kmalloc_caches_dma[index])
2627 goto unlock_out;
2e443fd0 2628
7b55f620 2629 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2630 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2631 (unsigned int)realsize);
1ceef402
CL
2632 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2633
2634 if (!s || !text || !kmem_cache_open(s, flags, text,
2635 realsize, ARCH_KMALLOC_MINALIGN,
2636 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2637 kfree(s);
2638 kfree(text);
2639 goto unlock_out;
dfce8648 2640 }
1ceef402
CL
2641
2642 list_add(&s->list, &slab_caches);
2643 kmalloc_caches_dma[index] = s;
2644
2645 schedule_work(&sysfs_add_work);
2646
2647unlock_out:
dfce8648 2648 up_write(&slub_lock);
1ceef402 2649out:
dfce8648 2650 return kmalloc_caches_dma[index];
2e443fd0
CL
2651}
2652#endif
2653
f1b26339
CL
2654/*
2655 * Conversion table for small slabs sizes / 8 to the index in the
2656 * kmalloc array. This is necessary for slabs < 192 since we have non power
2657 * of two cache sizes there. The size of larger slabs can be determined using
2658 * fls.
2659 */
2660static s8 size_index[24] = {
2661 3, /* 8 */
2662 4, /* 16 */
2663 5, /* 24 */
2664 5, /* 32 */
2665 6, /* 40 */
2666 6, /* 48 */
2667 6, /* 56 */
2668 6, /* 64 */
2669 1, /* 72 */
2670 1, /* 80 */
2671 1, /* 88 */
2672 1, /* 96 */
2673 7, /* 104 */
2674 7, /* 112 */
2675 7, /* 120 */
2676 7, /* 128 */
2677 2, /* 136 */
2678 2, /* 144 */
2679 2, /* 152 */
2680 2, /* 160 */
2681 2, /* 168 */
2682 2, /* 176 */
2683 2, /* 184 */
2684 2 /* 192 */
2685};
2686
81819f0f
CL
2687static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2688{
f1b26339 2689 int index;
81819f0f 2690
f1b26339
CL
2691 if (size <= 192) {
2692 if (!size)
2693 return ZERO_SIZE_PTR;
81819f0f 2694
f1b26339 2695 index = size_index[(size - 1) / 8];
aadb4bc4 2696 } else
f1b26339 2697 index = fls(size - 1);
81819f0f
CL
2698
2699#ifdef CONFIG_ZONE_DMA
f1b26339 2700 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2701 return dma_kmalloc_cache(index, flags);
f1b26339 2702
81819f0f
CL
2703#endif
2704 return &kmalloc_caches[index];
2705}
2706
2707void *__kmalloc(size_t size, gfp_t flags)
2708{
aadb4bc4 2709 struct kmem_cache *s;
81819f0f 2710
331dc558 2711 if (unlikely(size > PAGE_SIZE))
eada35ef 2712 return kmalloc_large(size, flags);
aadb4bc4
CL
2713
2714 s = get_slab(size, flags);
2715
2716 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2717 return s;
2718
ce15fea8 2719 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2720}
2721EXPORT_SYMBOL(__kmalloc);
2722
f619cfe1
CL
2723static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2724{
2725 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2726 get_order(size));
2727
2728 if (page)
2729 return page_address(page);
2730 else
2731 return NULL;
2732}
2733
81819f0f
CL
2734#ifdef CONFIG_NUMA
2735void *__kmalloc_node(size_t size, gfp_t flags, int node)
2736{
aadb4bc4 2737 struct kmem_cache *s;
81819f0f 2738
331dc558 2739 if (unlikely(size > PAGE_SIZE))
f619cfe1 2740 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2741
2742 s = get_slab(size, flags);
2743
2744 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2745 return s;
2746
ce15fea8 2747 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2748}
2749EXPORT_SYMBOL(__kmalloc_node);
2750#endif
2751
2752size_t ksize(const void *object)
2753{
272c1d21 2754 struct page *page;
81819f0f
CL
2755 struct kmem_cache *s;
2756
ef8b4520 2757 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2758 return 0;
2759
294a80a8 2760 page = virt_to_head_page(object);
294a80a8
VN
2761
2762 if (unlikely(!PageSlab(page)))
2763 return PAGE_SIZE << compound_order(page);
2764
81819f0f 2765 s = page->slab;
81819f0f 2766
ae20bfda 2767#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2768 /*
2769 * Debugging requires use of the padding between object
2770 * and whatever may come after it.
2771 */
2772 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2773 return s->objsize;
2774
ae20bfda 2775#endif
81819f0f
CL
2776 /*
2777 * If we have the need to store the freelist pointer
2778 * back there or track user information then we can
2779 * only use the space before that information.
2780 */
2781 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2782 return s->inuse;
81819f0f
CL
2783 /*
2784 * Else we can use all the padding etc for the allocation
2785 */
2786 return s->size;
2787}
2788EXPORT_SYMBOL(ksize);
2789
2790void kfree(const void *x)
2791{
81819f0f 2792 struct page *page;
5bb983b0 2793 void *object = (void *)x;
81819f0f 2794
2408c550 2795 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2796 return;
2797
b49af68f 2798 page = virt_to_head_page(x);
aadb4bc4
CL
2799 if (unlikely(!PageSlab(page))) {
2800 put_page(page);
2801 return;
2802 }
5bb983b0 2803 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2804}
2805EXPORT_SYMBOL(kfree);
2806
2086d26a 2807/*
672bba3a
CL
2808 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2809 * the remaining slabs by the number of items in use. The slabs with the
2810 * most items in use come first. New allocations will then fill those up
2811 * and thus they can be removed from the partial lists.
2812 *
2813 * The slabs with the least items are placed last. This results in them
2814 * being allocated from last increasing the chance that the last objects
2815 * are freed in them.
2086d26a
CL
2816 */
2817int kmem_cache_shrink(struct kmem_cache *s)
2818{
2819 int node;
2820 int i;
2821 struct kmem_cache_node *n;
2822 struct page *page;
2823 struct page *t;
205ab99d 2824 int objects = oo_objects(s->max);
2086d26a 2825 struct list_head *slabs_by_inuse =
834f3d11 2826 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2827 unsigned long flags;
2828
2829 if (!slabs_by_inuse)
2830 return -ENOMEM;
2831
2832 flush_all(s);
f64dc58c 2833 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2834 n = get_node(s, node);
2835
2836 if (!n->nr_partial)
2837 continue;
2838
834f3d11 2839 for (i = 0; i < objects; i++)
2086d26a
CL
2840 INIT_LIST_HEAD(slabs_by_inuse + i);
2841
2842 spin_lock_irqsave(&n->list_lock, flags);
2843
2844 /*
672bba3a 2845 * Build lists indexed by the items in use in each slab.
2086d26a 2846 *
672bba3a
CL
2847 * Note that concurrent frees may occur while we hold the
2848 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2849 */
2850 list_for_each_entry_safe(page, t, &n->partial, lru) {
2851 if (!page->inuse && slab_trylock(page)) {
2852 /*
2853 * Must hold slab lock here because slab_free
2854 * may have freed the last object and be
2855 * waiting to release the slab.
2856 */
2857 list_del(&page->lru);
2858 n->nr_partial--;
2859 slab_unlock(page);
2860 discard_slab(s, page);
2861 } else {
fcda3d89
CL
2862 list_move(&page->lru,
2863 slabs_by_inuse + page->inuse);
2086d26a
CL
2864 }
2865 }
2866
2086d26a 2867 /*
672bba3a
CL
2868 * Rebuild the partial list with the slabs filled up most
2869 * first and the least used slabs at the end.
2086d26a 2870 */
834f3d11 2871 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2872 list_splice(slabs_by_inuse + i, n->partial.prev);
2873
2086d26a
CL
2874 spin_unlock_irqrestore(&n->list_lock, flags);
2875 }
2876
2877 kfree(slabs_by_inuse);
2878 return 0;
2879}
2880EXPORT_SYMBOL(kmem_cache_shrink);
2881
b9049e23
YG
2882#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2883static int slab_mem_going_offline_callback(void *arg)
2884{
2885 struct kmem_cache *s;
2886
2887 down_read(&slub_lock);
2888 list_for_each_entry(s, &slab_caches, list)
2889 kmem_cache_shrink(s);
2890 up_read(&slub_lock);
2891
2892 return 0;
2893}
2894
2895static void slab_mem_offline_callback(void *arg)
2896{
2897 struct kmem_cache_node *n;
2898 struct kmem_cache *s;
2899 struct memory_notify *marg = arg;
2900 int offline_node;
2901
2902 offline_node = marg->status_change_nid;
2903
2904 /*
2905 * If the node still has available memory. we need kmem_cache_node
2906 * for it yet.
2907 */
2908 if (offline_node < 0)
2909 return;
2910
2911 down_read(&slub_lock);
2912 list_for_each_entry(s, &slab_caches, list) {
2913 n = get_node(s, offline_node);
2914 if (n) {
2915 /*
2916 * if n->nr_slabs > 0, slabs still exist on the node
2917 * that is going down. We were unable to free them,
2918 * and offline_pages() function shoudn't call this
2919 * callback. So, we must fail.
2920 */
0f389ec6 2921 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2922
2923 s->node[offline_node] = NULL;
2924 kmem_cache_free(kmalloc_caches, n);
2925 }
2926 }
2927 up_read(&slub_lock);
2928}
2929
2930static int slab_mem_going_online_callback(void *arg)
2931{
2932 struct kmem_cache_node *n;
2933 struct kmem_cache *s;
2934 struct memory_notify *marg = arg;
2935 int nid = marg->status_change_nid;
2936 int ret = 0;
2937
2938 /*
2939 * If the node's memory is already available, then kmem_cache_node is
2940 * already created. Nothing to do.
2941 */
2942 if (nid < 0)
2943 return 0;
2944
2945 /*
2946 * We are bringing a node online. No memory is availabe yet. We must
2947 * allocate a kmem_cache_node structure in order to bring the node
2948 * online.
2949 */
2950 down_read(&slub_lock);
2951 list_for_each_entry(s, &slab_caches, list) {
2952 /*
2953 * XXX: kmem_cache_alloc_node will fallback to other nodes
2954 * since memory is not yet available from the node that
2955 * is brought up.
2956 */
2957 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2958 if (!n) {
2959 ret = -ENOMEM;
2960 goto out;
2961 }
2962 init_kmem_cache_node(n);
2963 s->node[nid] = n;
2964 }
2965out:
2966 up_read(&slub_lock);
2967 return ret;
2968}
2969
2970static int slab_memory_callback(struct notifier_block *self,
2971 unsigned long action, void *arg)
2972{
2973 int ret = 0;
2974
2975 switch (action) {
2976 case MEM_GOING_ONLINE:
2977 ret = slab_mem_going_online_callback(arg);
2978 break;
2979 case MEM_GOING_OFFLINE:
2980 ret = slab_mem_going_offline_callback(arg);
2981 break;
2982 case MEM_OFFLINE:
2983 case MEM_CANCEL_ONLINE:
2984 slab_mem_offline_callback(arg);
2985 break;
2986 case MEM_ONLINE:
2987 case MEM_CANCEL_OFFLINE:
2988 break;
2989 }
2990
2991 ret = notifier_from_errno(ret);
2992 return ret;
2993}
2994
2995#endif /* CONFIG_MEMORY_HOTPLUG */
2996
81819f0f
CL
2997/********************************************************************
2998 * Basic setup of slabs
2999 *******************************************************************/
3000
3001void __init kmem_cache_init(void)
3002{
3003 int i;
4b356be0 3004 int caches = 0;
81819f0f 3005
4c93c355
CL
3006 init_alloc_cpu();
3007
81819f0f
CL
3008#ifdef CONFIG_NUMA
3009 /*
3010 * Must first have the slab cache available for the allocations of the
672bba3a 3011 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3012 * kmem_cache_open for slab_state == DOWN.
3013 */
3014 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3015 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 3016 kmalloc_caches[0].refcount = -1;
4b356be0 3017 caches++;
b9049e23
YG
3018
3019 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
3020#endif
3021
3022 /* Able to allocate the per node structures */
3023 slab_state = PARTIAL;
3024
3025 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3026 if (KMALLOC_MIN_SIZE <= 64) {
3027 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 3028 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
3029 caches++;
3030 }
3031 if (KMALLOC_MIN_SIZE <= 128) {
3032 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 3033 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3034 caches++;
3035 }
81819f0f 3036
331dc558 3037 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3038 create_kmalloc_cache(&kmalloc_caches[i],
3039 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3040 caches++;
3041 }
81819f0f 3042
f1b26339
CL
3043
3044 /*
3045 * Patch up the size_index table if we have strange large alignment
3046 * requirements for the kmalloc array. This is only the case for
6446faa2 3047 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3048 *
3049 * Largest permitted alignment is 256 bytes due to the way we
3050 * handle the index determination for the smaller caches.
3051 *
3052 * Make sure that nothing crazy happens if someone starts tinkering
3053 * around with ARCH_KMALLOC_MINALIGN
3054 */
3055 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3056 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3057
12ad6843 3058 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3059 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3060
81819f0f
CL
3061 slab_state = UP;
3062
3063 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3064 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3065 kmalloc_caches[i]. name =
3066 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3067
3068#ifdef CONFIG_SMP
3069 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3070 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3071 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3072#else
3073 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3074#endif
3075
3adbefee
IM
3076 printk(KERN_INFO
3077 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3078 " CPUs=%d, Nodes=%d\n",
3079 caches, cache_line_size(),
81819f0f
CL
3080 slub_min_order, slub_max_order, slub_min_objects,
3081 nr_cpu_ids, nr_node_ids);
3082}
3083
3084/*
3085 * Find a mergeable slab cache
3086 */
3087static int slab_unmergeable(struct kmem_cache *s)
3088{
3089 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3090 return 1;
3091
331dc558 3092 if ((s->flags & __PAGE_ALLOC_FALLBACK))
71c7a06f
CL
3093 return 1;
3094
c59def9f 3095 if (s->ctor)
81819f0f
CL
3096 return 1;
3097
8ffa6875
CL
3098 /*
3099 * We may have set a slab to be unmergeable during bootstrap.
3100 */
3101 if (s->refcount < 0)
3102 return 1;
3103
81819f0f
CL
3104 return 0;
3105}
3106
3107static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3108 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3109 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3110{
5b95a4ac 3111 struct kmem_cache *s;
81819f0f
CL
3112
3113 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3114 return NULL;
3115
c59def9f 3116 if (ctor)
81819f0f
CL
3117 return NULL;
3118
3119 size = ALIGN(size, sizeof(void *));
3120 align = calculate_alignment(flags, align, size);
3121 size = ALIGN(size, align);
ba0268a8 3122 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3123
5b95a4ac 3124 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3125 if (slab_unmergeable(s))
3126 continue;
3127
3128 if (size > s->size)
3129 continue;
3130
ba0268a8 3131 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3132 continue;
3133 /*
3134 * Check if alignment is compatible.
3135 * Courtesy of Adrian Drzewiecki
3136 */
06428780 3137 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3138 continue;
3139
3140 if (s->size - size >= sizeof(void *))
3141 continue;
3142
3143 return s;
3144 }
3145 return NULL;
3146}
3147
3148struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3149 size_t align, unsigned long flags,
4ba9b9d0 3150 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3151{
3152 struct kmem_cache *s;
3153
3154 down_write(&slub_lock);
ba0268a8 3155 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3156 if (s) {
42a9fdbb
CL
3157 int cpu;
3158
81819f0f
CL
3159 s->refcount++;
3160 /*
3161 * Adjust the object sizes so that we clear
3162 * the complete object on kzalloc.
3163 */
3164 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3165
3166 /*
3167 * And then we need to update the object size in the
3168 * per cpu structures
3169 */
3170 for_each_online_cpu(cpu)
3171 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3172
81819f0f 3173 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3174 up_write(&slub_lock);
6446faa2 3175
81819f0f
CL
3176 if (sysfs_slab_alias(s, name))
3177 goto err;
a0e1d1be
CL
3178 return s;
3179 }
6446faa2 3180
a0e1d1be
CL
3181 s = kmalloc(kmem_size, GFP_KERNEL);
3182 if (s) {
3183 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3184 size, align, flags, ctor)) {
81819f0f 3185 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3186 up_write(&slub_lock);
3187 if (sysfs_slab_add(s))
3188 goto err;
3189 return s;
3190 }
3191 kfree(s);
81819f0f
CL
3192 }
3193 up_write(&slub_lock);
81819f0f
CL
3194
3195err:
81819f0f
CL
3196 if (flags & SLAB_PANIC)
3197 panic("Cannot create slabcache %s\n", name);
3198 else
3199 s = NULL;
3200 return s;
3201}
3202EXPORT_SYMBOL(kmem_cache_create);
3203
81819f0f 3204#ifdef CONFIG_SMP
81819f0f 3205/*
672bba3a
CL
3206 * Use the cpu notifier to insure that the cpu slabs are flushed when
3207 * necessary.
81819f0f
CL
3208 */
3209static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3210 unsigned long action, void *hcpu)
3211{
3212 long cpu = (long)hcpu;
5b95a4ac
CL
3213 struct kmem_cache *s;
3214 unsigned long flags;
81819f0f
CL
3215
3216 switch (action) {
4c93c355
CL
3217 case CPU_UP_PREPARE:
3218 case CPU_UP_PREPARE_FROZEN:
3219 init_alloc_cpu_cpu(cpu);
3220 down_read(&slub_lock);
3221 list_for_each_entry(s, &slab_caches, list)
3222 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3223 GFP_KERNEL);
3224 up_read(&slub_lock);
3225 break;
3226
81819f0f 3227 case CPU_UP_CANCELED:
8bb78442 3228 case CPU_UP_CANCELED_FROZEN:
81819f0f 3229 case CPU_DEAD:
8bb78442 3230 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3231 down_read(&slub_lock);
3232 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3233 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3234
5b95a4ac
CL
3235 local_irq_save(flags);
3236 __flush_cpu_slab(s, cpu);
3237 local_irq_restore(flags);
4c93c355
CL
3238 free_kmem_cache_cpu(c, cpu);
3239 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3240 }
3241 up_read(&slub_lock);
81819f0f
CL
3242 break;
3243 default:
3244 break;
3245 }
3246 return NOTIFY_OK;
3247}
3248
06428780 3249static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3250 .notifier_call = slab_cpuup_callback
06428780 3251};
81819f0f
CL
3252
3253#endif
3254
81819f0f
CL
3255void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3256{
aadb4bc4
CL
3257 struct kmem_cache *s;
3258
331dc558 3259 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3260 return kmalloc_large(size, gfpflags);
3261
aadb4bc4 3262 s = get_slab(size, gfpflags);
81819f0f 3263
2408c550 3264 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3265 return s;
81819f0f 3266
ce15fea8 3267 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3268}
3269
3270void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3271 int node, void *caller)
3272{
aadb4bc4
CL
3273 struct kmem_cache *s;
3274
331dc558 3275 if (unlikely(size > PAGE_SIZE))
f619cfe1 3276 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3277
aadb4bc4 3278 s = get_slab(size, gfpflags);
81819f0f 3279
2408c550 3280 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3281 return s;
81819f0f 3282
ce15fea8 3283 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3284}
3285
5b06c853 3286#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
205ab99d
CL
3287static unsigned long count_partial(struct kmem_cache_node *n,
3288 int (*get_count)(struct page *))
5b06c853
CL
3289{
3290 unsigned long flags;
3291 unsigned long x = 0;
3292 struct page *page;
3293
3294 spin_lock_irqsave(&n->list_lock, flags);
3295 list_for_each_entry(page, &n->partial, lru)
205ab99d 3296 x += get_count(page);
5b06c853
CL
3297 spin_unlock_irqrestore(&n->list_lock, flags);
3298 return x;
3299}
205ab99d
CL
3300
3301static int count_inuse(struct page *page)
3302{
3303 return page->inuse;
3304}
3305
3306static int count_total(struct page *page)
3307{
3308 return page->objects;
3309}
3310
3311static int count_free(struct page *page)
3312{
3313 return page->objects - page->inuse;
3314}
5b06c853
CL
3315#endif
3316
41ecc55b 3317#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3318static int validate_slab(struct kmem_cache *s, struct page *page,
3319 unsigned long *map)
53e15af0
CL
3320{
3321 void *p;
a973e9dd 3322 void *addr = page_address(page);
53e15af0
CL
3323
3324 if (!check_slab(s, page) ||
3325 !on_freelist(s, page, NULL))
3326 return 0;
3327
3328 /* Now we know that a valid freelist exists */
39b26464 3329 bitmap_zero(map, page->objects);
53e15af0 3330
7656c72b
CL
3331 for_each_free_object(p, s, page->freelist) {
3332 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3333 if (!check_object(s, page, p, 0))
3334 return 0;
3335 }
3336
224a88be 3337 for_each_object(p, s, addr, page->objects)
7656c72b 3338 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3339 if (!check_object(s, page, p, 1))
3340 return 0;
3341 return 1;
3342}
3343
434e245d
CL
3344static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3345 unsigned long *map)
53e15af0
CL
3346{
3347 if (slab_trylock(page)) {
434e245d 3348 validate_slab(s, page, map);
53e15af0
CL
3349 slab_unlock(page);
3350 } else
3351 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3352 s->name, page);
3353
3354 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3355 if (!SlabDebug(page))
3356 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3357 "on slab 0x%p\n", s->name, page);
3358 } else {
35e5d7ee
CL
3359 if (SlabDebug(page))
3360 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3361 "slab 0x%p\n", s->name, page);
3362 }
3363}
3364
434e245d
CL
3365static int validate_slab_node(struct kmem_cache *s,
3366 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3367{
3368 unsigned long count = 0;
3369 struct page *page;
3370 unsigned long flags;
3371
3372 spin_lock_irqsave(&n->list_lock, flags);
3373
3374 list_for_each_entry(page, &n->partial, lru) {
434e245d 3375 validate_slab_slab(s, page, map);
53e15af0
CL
3376 count++;
3377 }
3378 if (count != n->nr_partial)
3379 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3380 "counter=%ld\n", s->name, count, n->nr_partial);
3381
3382 if (!(s->flags & SLAB_STORE_USER))
3383 goto out;
3384
3385 list_for_each_entry(page, &n->full, lru) {
434e245d 3386 validate_slab_slab(s, page, map);
53e15af0
CL
3387 count++;
3388 }
3389 if (count != atomic_long_read(&n->nr_slabs))
3390 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3391 "counter=%ld\n", s->name, count,
3392 atomic_long_read(&n->nr_slabs));
3393
3394out:
3395 spin_unlock_irqrestore(&n->list_lock, flags);
3396 return count;
3397}
3398
434e245d 3399static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3400{
3401 int node;
3402 unsigned long count = 0;
205ab99d 3403 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3404 sizeof(unsigned long), GFP_KERNEL);
3405
3406 if (!map)
3407 return -ENOMEM;
53e15af0
CL
3408
3409 flush_all(s);
f64dc58c 3410 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3411 struct kmem_cache_node *n = get_node(s, node);
3412
434e245d 3413 count += validate_slab_node(s, n, map);
53e15af0 3414 }
434e245d 3415 kfree(map);
53e15af0
CL
3416 return count;
3417}
3418
b3459709
CL
3419#ifdef SLUB_RESILIENCY_TEST
3420static void resiliency_test(void)
3421{
3422 u8 *p;
3423
3424 printk(KERN_ERR "SLUB resiliency testing\n");
3425 printk(KERN_ERR "-----------------------\n");
3426 printk(KERN_ERR "A. Corruption after allocation\n");
3427
3428 p = kzalloc(16, GFP_KERNEL);
3429 p[16] = 0x12;
3430 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3431 " 0x12->0x%p\n\n", p + 16);
3432
3433 validate_slab_cache(kmalloc_caches + 4);
3434
3435 /* Hmmm... The next two are dangerous */
3436 p = kzalloc(32, GFP_KERNEL);
3437 p[32 + sizeof(void *)] = 0x34;
3438 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3439 " 0x34 -> -0x%p\n", p);
3440 printk(KERN_ERR
3441 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3442
3443 validate_slab_cache(kmalloc_caches + 5);
3444 p = kzalloc(64, GFP_KERNEL);
3445 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3446 *p = 0x56;
3447 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3448 p);
3adbefee
IM
3449 printk(KERN_ERR
3450 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3451 validate_slab_cache(kmalloc_caches + 6);
3452
3453 printk(KERN_ERR "\nB. Corruption after free\n");
3454 p = kzalloc(128, GFP_KERNEL);
3455 kfree(p);
3456 *p = 0x78;
3457 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3458 validate_slab_cache(kmalloc_caches + 7);
3459
3460 p = kzalloc(256, GFP_KERNEL);
3461 kfree(p);
3462 p[50] = 0x9a;
3adbefee
IM
3463 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3464 p);
b3459709
CL
3465 validate_slab_cache(kmalloc_caches + 8);
3466
3467 p = kzalloc(512, GFP_KERNEL);
3468 kfree(p);
3469 p[512] = 0xab;
3470 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3471 validate_slab_cache(kmalloc_caches + 9);
3472}
3473#else
3474static void resiliency_test(void) {};
3475#endif
3476
88a420e4 3477/*
672bba3a 3478 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3479 * and freed.
3480 */
3481
3482struct location {
3483 unsigned long count;
3484 void *addr;
45edfa58
CL
3485 long long sum_time;
3486 long min_time;
3487 long max_time;
3488 long min_pid;
3489 long max_pid;
3490 cpumask_t cpus;
3491 nodemask_t nodes;
88a420e4
CL
3492};
3493
3494struct loc_track {
3495 unsigned long max;
3496 unsigned long count;
3497 struct location *loc;
3498};
3499
3500static void free_loc_track(struct loc_track *t)
3501{
3502 if (t->max)
3503 free_pages((unsigned long)t->loc,
3504 get_order(sizeof(struct location) * t->max));
3505}
3506
68dff6a9 3507static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3508{
3509 struct location *l;
3510 int order;
3511
88a420e4
CL
3512 order = get_order(sizeof(struct location) * max);
3513
68dff6a9 3514 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3515 if (!l)
3516 return 0;
3517
3518 if (t->count) {
3519 memcpy(l, t->loc, sizeof(struct location) * t->count);
3520 free_loc_track(t);
3521 }
3522 t->max = max;
3523 t->loc = l;
3524 return 1;
3525}
3526
3527static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3528 const struct track *track)
88a420e4
CL
3529{
3530 long start, end, pos;
3531 struct location *l;
3532 void *caddr;
45edfa58 3533 unsigned long age = jiffies - track->when;
88a420e4
CL
3534
3535 start = -1;
3536 end = t->count;
3537
3538 for ( ; ; ) {
3539 pos = start + (end - start + 1) / 2;
3540
3541 /*
3542 * There is nothing at "end". If we end up there
3543 * we need to add something to before end.
3544 */
3545 if (pos == end)
3546 break;
3547
3548 caddr = t->loc[pos].addr;
45edfa58
CL
3549 if (track->addr == caddr) {
3550
3551 l = &t->loc[pos];
3552 l->count++;
3553 if (track->when) {
3554 l->sum_time += age;
3555 if (age < l->min_time)
3556 l->min_time = age;
3557 if (age > l->max_time)
3558 l->max_time = age;
3559
3560 if (track->pid < l->min_pid)
3561 l->min_pid = track->pid;
3562 if (track->pid > l->max_pid)
3563 l->max_pid = track->pid;
3564
3565 cpu_set(track->cpu, l->cpus);
3566 }
3567 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3568 return 1;
3569 }
3570
45edfa58 3571 if (track->addr < caddr)
88a420e4
CL
3572 end = pos;
3573 else
3574 start = pos;
3575 }
3576
3577 /*
672bba3a 3578 * Not found. Insert new tracking element.
88a420e4 3579 */
68dff6a9 3580 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3581 return 0;
3582
3583 l = t->loc + pos;
3584 if (pos < t->count)
3585 memmove(l + 1, l,
3586 (t->count - pos) * sizeof(struct location));
3587 t->count++;
3588 l->count = 1;
45edfa58
CL
3589 l->addr = track->addr;
3590 l->sum_time = age;
3591 l->min_time = age;
3592 l->max_time = age;
3593 l->min_pid = track->pid;
3594 l->max_pid = track->pid;
3595 cpus_clear(l->cpus);
3596 cpu_set(track->cpu, l->cpus);
3597 nodes_clear(l->nodes);
3598 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3599 return 1;
3600}
3601
3602static void process_slab(struct loc_track *t, struct kmem_cache *s,
3603 struct page *page, enum track_item alloc)
3604{
a973e9dd 3605 void *addr = page_address(page);
39b26464 3606 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3607 void *p;
3608
39b26464 3609 bitmap_zero(map, page->objects);
7656c72b
CL
3610 for_each_free_object(p, s, page->freelist)
3611 set_bit(slab_index(p, s, addr), map);
88a420e4 3612
224a88be 3613 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3614 if (!test_bit(slab_index(p, s, addr), map))
3615 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3616}
3617
3618static int list_locations(struct kmem_cache *s, char *buf,
3619 enum track_item alloc)
3620{
e374d483 3621 int len = 0;
88a420e4 3622 unsigned long i;
68dff6a9 3623 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3624 int node;
3625
68dff6a9 3626 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3627 GFP_TEMPORARY))
68dff6a9 3628 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3629
3630 /* Push back cpu slabs */
3631 flush_all(s);
3632
f64dc58c 3633 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3634 struct kmem_cache_node *n = get_node(s, node);
3635 unsigned long flags;
3636 struct page *page;
3637
9e86943b 3638 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3639 continue;
3640
3641 spin_lock_irqsave(&n->list_lock, flags);
3642 list_for_each_entry(page, &n->partial, lru)
3643 process_slab(&t, s, page, alloc);
3644 list_for_each_entry(page, &n->full, lru)
3645 process_slab(&t, s, page, alloc);
3646 spin_unlock_irqrestore(&n->list_lock, flags);
3647 }
3648
3649 for (i = 0; i < t.count; i++) {
45edfa58 3650 struct location *l = &t.loc[i];
88a420e4 3651
e374d483 3652 if (len > PAGE_SIZE - 100)
88a420e4 3653 break;
e374d483 3654 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3655
3656 if (l->addr)
e374d483 3657 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3658 else
e374d483 3659 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3660
3661 if (l->sum_time != l->min_time) {
3662 unsigned long remainder;
3663
e374d483 3664 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3665 l->min_time,
3666 div_long_long_rem(l->sum_time, l->count, &remainder),
3667 l->max_time);
3668 } else
e374d483 3669 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3670 l->min_time);
3671
3672 if (l->min_pid != l->max_pid)
e374d483 3673 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3674 l->min_pid, l->max_pid);
3675 else
e374d483 3676 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3677 l->min_pid);
3678
84966343 3679 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3680 len < PAGE_SIZE - 60) {
3681 len += sprintf(buf + len, " cpus=");
3682 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3683 l->cpus);
3684 }
3685
84966343 3686 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3687 len < PAGE_SIZE - 60) {
3688 len += sprintf(buf + len, " nodes=");
3689 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3690 l->nodes);
3691 }
3692
e374d483 3693 len += sprintf(buf + len, "\n");
88a420e4
CL
3694 }
3695
3696 free_loc_track(&t);
3697 if (!t.count)
e374d483
HH
3698 len += sprintf(buf, "No data\n");
3699 return len;
88a420e4
CL
3700}
3701
81819f0f 3702enum slab_stat_type {
205ab99d
CL
3703 SL_ALL, /* All slabs */
3704 SL_PARTIAL, /* Only partially allocated slabs */
3705 SL_CPU, /* Only slabs used for cpu caches */
3706 SL_OBJECTS, /* Determine allocated objects not slabs */
3707 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3708};
3709
205ab99d 3710#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3711#define SO_PARTIAL (1 << SL_PARTIAL)
3712#define SO_CPU (1 << SL_CPU)
3713#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3714#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3715
62e5c4b4
CG
3716static ssize_t show_slab_objects(struct kmem_cache *s,
3717 char *buf, unsigned long flags)
81819f0f
CL
3718{
3719 unsigned long total = 0;
81819f0f
CL
3720 int node;
3721 int x;
3722 unsigned long *nodes;
3723 unsigned long *per_cpu;
3724
3725 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3726 if (!nodes)
3727 return -ENOMEM;
81819f0f
CL
3728 per_cpu = nodes + nr_node_ids;
3729
205ab99d
CL
3730 if (flags & SO_CPU) {
3731 int cpu;
81819f0f 3732
205ab99d
CL
3733 for_each_possible_cpu(cpu) {
3734 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3735
205ab99d
CL
3736 if (!c || c->node < 0)
3737 continue;
3738
3739 if (c->page) {
3740 if (flags & SO_TOTAL)
3741 x = c->page->objects;
3742 else if (flags & SO_OBJECTS)
3743 x = c->page->inuse;
81819f0f
CL
3744 else
3745 x = 1;
205ab99d 3746
81819f0f 3747 total += x;
205ab99d 3748 nodes[c->node] += x;
81819f0f 3749 }
205ab99d 3750 per_cpu[c->node]++;
81819f0f
CL
3751 }
3752 }
3753
205ab99d
CL
3754 if (flags & SO_ALL) {
3755 for_each_node_state(node, N_NORMAL_MEMORY) {
3756 struct kmem_cache_node *n = get_node(s, node);
3757
3758 if (flags & SO_TOTAL)
3759 x = atomic_long_read(&n->total_objects);
3760 else if (flags & SO_OBJECTS)
3761 x = atomic_long_read(&n->total_objects) -
3762 count_partial(n, count_free);
81819f0f 3763
81819f0f 3764 else
205ab99d 3765 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3766 total += x;
3767 nodes[node] += x;
3768 }
3769
205ab99d
CL
3770 } else if (flags & SO_PARTIAL) {
3771 for_each_node_state(node, N_NORMAL_MEMORY) {
3772 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3773
205ab99d
CL
3774 if (flags & SO_TOTAL)
3775 x = count_partial(n, count_total);
3776 else if (flags & SO_OBJECTS)
3777 x = count_partial(n, count_inuse);
81819f0f 3778 else
205ab99d 3779 x = n->nr_partial;
81819f0f
CL
3780 total += x;
3781 nodes[node] += x;
3782 }
3783 }
81819f0f
CL
3784 x = sprintf(buf, "%lu", total);
3785#ifdef CONFIG_NUMA
f64dc58c 3786 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3787 if (nodes[node])
3788 x += sprintf(buf + x, " N%d=%lu",
3789 node, nodes[node]);
3790#endif
3791 kfree(nodes);
3792 return x + sprintf(buf + x, "\n");
3793}
3794
3795static int any_slab_objects(struct kmem_cache *s)
3796{
3797 int node;
3798 int cpu;
3799
dfb4f096
CL
3800 for_each_possible_cpu(cpu) {
3801 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3802
3803 if (c && c->page)
81819f0f 3804 return 1;
dfb4f096 3805 }
81819f0f 3806
dfb4f096 3807 for_each_online_node(node) {
81819f0f
CL
3808 struct kmem_cache_node *n = get_node(s, node);
3809
dfb4f096
CL
3810 if (!n)
3811 continue;
3812
9e86943b 3813 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3814 return 1;
3815 }
3816 return 0;
3817}
3818
3819#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3820#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3821
3822struct slab_attribute {
3823 struct attribute attr;
3824 ssize_t (*show)(struct kmem_cache *s, char *buf);
3825 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3826};
3827
3828#define SLAB_ATTR_RO(_name) \
3829 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3830
3831#define SLAB_ATTR(_name) \
3832 static struct slab_attribute _name##_attr = \
3833 __ATTR(_name, 0644, _name##_show, _name##_store)
3834
81819f0f
CL
3835static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3836{
3837 return sprintf(buf, "%d\n", s->size);
3838}
3839SLAB_ATTR_RO(slab_size);
3840
3841static ssize_t align_show(struct kmem_cache *s, char *buf)
3842{
3843 return sprintf(buf, "%d\n", s->align);
3844}
3845SLAB_ATTR_RO(align);
3846
3847static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3848{
3849 return sprintf(buf, "%d\n", s->objsize);
3850}
3851SLAB_ATTR_RO(object_size);
3852
3853static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3854{
834f3d11 3855 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3856}
3857SLAB_ATTR_RO(objs_per_slab);
3858
3859static ssize_t order_show(struct kmem_cache *s, char *buf)
3860{
834f3d11 3861 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f
CL
3862}
3863SLAB_ATTR_RO(order);
3864
3865static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3866{
3867 if (s->ctor) {
3868 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3869
3870 return n + sprintf(buf + n, "\n");
3871 }
3872 return 0;
3873}
3874SLAB_ATTR_RO(ctor);
3875
81819f0f
CL
3876static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3877{
3878 return sprintf(buf, "%d\n", s->refcount - 1);
3879}
3880SLAB_ATTR_RO(aliases);
3881
3882static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3883{
205ab99d 3884 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3885}
3886SLAB_ATTR_RO(slabs);
3887
3888static ssize_t partial_show(struct kmem_cache *s, char *buf)
3889{
d9acf4b7 3890 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3891}
3892SLAB_ATTR_RO(partial);
3893
3894static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3895{
d9acf4b7 3896 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3897}
3898SLAB_ATTR_RO(cpu_slabs);
3899
3900static ssize_t objects_show(struct kmem_cache *s, char *buf)
3901{
205ab99d 3902 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3903}
3904SLAB_ATTR_RO(objects);
3905
205ab99d
CL
3906static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3907{
3908 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3909}
3910SLAB_ATTR_RO(objects_partial);
3911
3912static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3913{
3914 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3915}
3916SLAB_ATTR_RO(total_objects);
3917
81819f0f
CL
3918static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3919{
3920 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3921}
3922
3923static ssize_t sanity_checks_store(struct kmem_cache *s,
3924 const char *buf, size_t length)
3925{
3926 s->flags &= ~SLAB_DEBUG_FREE;
3927 if (buf[0] == '1')
3928 s->flags |= SLAB_DEBUG_FREE;
3929 return length;
3930}
3931SLAB_ATTR(sanity_checks);
3932
3933static ssize_t trace_show(struct kmem_cache *s, char *buf)
3934{
3935 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3936}
3937
3938static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3939 size_t length)
3940{
3941 s->flags &= ~SLAB_TRACE;
3942 if (buf[0] == '1')
3943 s->flags |= SLAB_TRACE;
3944 return length;
3945}
3946SLAB_ATTR(trace);
3947
3948static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3949{
3950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3951}
3952
3953static ssize_t reclaim_account_store(struct kmem_cache *s,
3954 const char *buf, size_t length)
3955{
3956 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3957 if (buf[0] == '1')
3958 s->flags |= SLAB_RECLAIM_ACCOUNT;
3959 return length;
3960}
3961SLAB_ATTR(reclaim_account);
3962
3963static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3964{
5af60839 3965 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3966}
3967SLAB_ATTR_RO(hwcache_align);
3968
3969#ifdef CONFIG_ZONE_DMA
3970static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3971{
3972 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3973}
3974SLAB_ATTR_RO(cache_dma);
3975#endif
3976
3977static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3978{
3979 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3980}
3981SLAB_ATTR_RO(destroy_by_rcu);
3982
3983static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3984{
3985 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3986}
3987
3988static ssize_t red_zone_store(struct kmem_cache *s,
3989 const char *buf, size_t length)
3990{
3991 if (any_slab_objects(s))
3992 return -EBUSY;
3993
3994 s->flags &= ~SLAB_RED_ZONE;
3995 if (buf[0] == '1')
3996 s->flags |= SLAB_RED_ZONE;
3997 calculate_sizes(s);
3998 return length;
3999}
4000SLAB_ATTR(red_zone);
4001
4002static ssize_t poison_show(struct kmem_cache *s, char *buf)
4003{
4004 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4005}
4006
4007static ssize_t poison_store(struct kmem_cache *s,
4008 const char *buf, size_t length)
4009{
4010 if (any_slab_objects(s))
4011 return -EBUSY;
4012
4013 s->flags &= ~SLAB_POISON;
4014 if (buf[0] == '1')
4015 s->flags |= SLAB_POISON;
4016 calculate_sizes(s);
4017 return length;
4018}
4019SLAB_ATTR(poison);
4020
4021static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4022{
4023 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4024}
4025
4026static ssize_t store_user_store(struct kmem_cache *s,
4027 const char *buf, size_t length)
4028{
4029 if (any_slab_objects(s))
4030 return -EBUSY;
4031
4032 s->flags &= ~SLAB_STORE_USER;
4033 if (buf[0] == '1')
4034 s->flags |= SLAB_STORE_USER;
4035 calculate_sizes(s);
4036 return length;
4037}
4038SLAB_ATTR(store_user);
4039
53e15af0
CL
4040static ssize_t validate_show(struct kmem_cache *s, char *buf)
4041{
4042 return 0;
4043}
4044
4045static ssize_t validate_store(struct kmem_cache *s,
4046 const char *buf, size_t length)
4047{
434e245d
CL
4048 int ret = -EINVAL;
4049
4050 if (buf[0] == '1') {
4051 ret = validate_slab_cache(s);
4052 if (ret >= 0)
4053 ret = length;
4054 }
4055 return ret;
53e15af0
CL
4056}
4057SLAB_ATTR(validate);
4058
2086d26a
CL
4059static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4060{
4061 return 0;
4062}
4063
4064static ssize_t shrink_store(struct kmem_cache *s,
4065 const char *buf, size_t length)
4066{
4067 if (buf[0] == '1') {
4068 int rc = kmem_cache_shrink(s);
4069
4070 if (rc)
4071 return rc;
4072 } else
4073 return -EINVAL;
4074 return length;
4075}
4076SLAB_ATTR(shrink);
4077
88a420e4
CL
4078static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4079{
4080 if (!(s->flags & SLAB_STORE_USER))
4081 return -ENOSYS;
4082 return list_locations(s, buf, TRACK_ALLOC);
4083}
4084SLAB_ATTR_RO(alloc_calls);
4085
4086static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4087{
4088 if (!(s->flags & SLAB_STORE_USER))
4089 return -ENOSYS;
4090 return list_locations(s, buf, TRACK_FREE);
4091}
4092SLAB_ATTR_RO(free_calls);
4093
81819f0f 4094#ifdef CONFIG_NUMA
9824601e 4095static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4096{
9824601e 4097 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4098}
4099
9824601e 4100static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4101 const char *buf, size_t length)
4102{
4103 int n = simple_strtoul(buf, NULL, 10);
4104
4105 if (n < 100)
9824601e 4106 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
4107 return length;
4108}
9824601e 4109SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4110#endif
4111
8ff12cfc 4112#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4113static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4114{
4115 unsigned long sum = 0;
4116 int cpu;
4117 int len;
4118 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4119
4120 if (!data)
4121 return -ENOMEM;
4122
4123 for_each_online_cpu(cpu) {
4124 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4125
4126 data[cpu] = x;
4127 sum += x;
4128 }
4129
4130 len = sprintf(buf, "%lu", sum);
4131
50ef37b9 4132#ifdef CONFIG_SMP
8ff12cfc
CL
4133 for_each_online_cpu(cpu) {
4134 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4135 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4136 }
50ef37b9 4137#endif
8ff12cfc
CL
4138 kfree(data);
4139 return len + sprintf(buf + len, "\n");
4140}
4141
4142#define STAT_ATTR(si, text) \
4143static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4144{ \
4145 return show_stat(s, buf, si); \
4146} \
4147SLAB_ATTR_RO(text); \
4148
4149STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4150STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4151STAT_ATTR(FREE_FASTPATH, free_fastpath);
4152STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4153STAT_ATTR(FREE_FROZEN, free_frozen);
4154STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4155STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4156STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4157STAT_ATTR(ALLOC_SLAB, alloc_slab);
4158STAT_ATTR(ALLOC_REFILL, alloc_refill);
4159STAT_ATTR(FREE_SLAB, free_slab);
4160STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4161STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4162STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4163STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4164STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4165STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4166
4167#endif
4168
06428780 4169static struct attribute *slab_attrs[] = {
81819f0f
CL
4170 &slab_size_attr.attr,
4171 &object_size_attr.attr,
4172 &objs_per_slab_attr.attr,
4173 &order_attr.attr,
4174 &objects_attr.attr,
205ab99d
CL
4175 &objects_partial_attr.attr,
4176 &total_objects_attr.attr,
81819f0f
CL
4177 &slabs_attr.attr,
4178 &partial_attr.attr,
4179 &cpu_slabs_attr.attr,
4180 &ctor_attr.attr,
81819f0f
CL
4181 &aliases_attr.attr,
4182 &align_attr.attr,
4183 &sanity_checks_attr.attr,
4184 &trace_attr.attr,
4185 &hwcache_align_attr.attr,
4186 &reclaim_account_attr.attr,
4187 &destroy_by_rcu_attr.attr,
4188 &red_zone_attr.attr,
4189 &poison_attr.attr,
4190 &store_user_attr.attr,
53e15af0 4191 &validate_attr.attr,
2086d26a 4192 &shrink_attr.attr,
88a420e4
CL
4193 &alloc_calls_attr.attr,
4194 &free_calls_attr.attr,
81819f0f
CL
4195#ifdef CONFIG_ZONE_DMA
4196 &cache_dma_attr.attr,
4197#endif
4198#ifdef CONFIG_NUMA
9824601e 4199 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4200#endif
4201#ifdef CONFIG_SLUB_STATS
4202 &alloc_fastpath_attr.attr,
4203 &alloc_slowpath_attr.attr,
4204 &free_fastpath_attr.attr,
4205 &free_slowpath_attr.attr,
4206 &free_frozen_attr.attr,
4207 &free_add_partial_attr.attr,
4208 &free_remove_partial_attr.attr,
4209 &alloc_from_partial_attr.attr,
4210 &alloc_slab_attr.attr,
4211 &alloc_refill_attr.attr,
4212 &free_slab_attr.attr,
4213 &cpuslab_flush_attr.attr,
4214 &deactivate_full_attr.attr,
4215 &deactivate_empty_attr.attr,
4216 &deactivate_to_head_attr.attr,
4217 &deactivate_to_tail_attr.attr,
4218 &deactivate_remote_frees_attr.attr,
81819f0f
CL
4219#endif
4220 NULL
4221};
4222
4223static struct attribute_group slab_attr_group = {
4224 .attrs = slab_attrs,
4225};
4226
4227static ssize_t slab_attr_show(struct kobject *kobj,
4228 struct attribute *attr,
4229 char *buf)
4230{
4231 struct slab_attribute *attribute;
4232 struct kmem_cache *s;
4233 int err;
4234
4235 attribute = to_slab_attr(attr);
4236 s = to_slab(kobj);
4237
4238 if (!attribute->show)
4239 return -EIO;
4240
4241 err = attribute->show(s, buf);
4242
4243 return err;
4244}
4245
4246static ssize_t slab_attr_store(struct kobject *kobj,
4247 struct attribute *attr,
4248 const char *buf, size_t len)
4249{
4250 struct slab_attribute *attribute;
4251 struct kmem_cache *s;
4252 int err;
4253
4254 attribute = to_slab_attr(attr);
4255 s = to_slab(kobj);
4256
4257 if (!attribute->store)
4258 return -EIO;
4259
4260 err = attribute->store(s, buf, len);
4261
4262 return err;
4263}
4264
151c602f
CL
4265static void kmem_cache_release(struct kobject *kobj)
4266{
4267 struct kmem_cache *s = to_slab(kobj);
4268
4269 kfree(s);
4270}
4271
81819f0f
CL
4272static struct sysfs_ops slab_sysfs_ops = {
4273 .show = slab_attr_show,
4274 .store = slab_attr_store,
4275};
4276
4277static struct kobj_type slab_ktype = {
4278 .sysfs_ops = &slab_sysfs_ops,
151c602f 4279 .release = kmem_cache_release
81819f0f
CL
4280};
4281
4282static int uevent_filter(struct kset *kset, struct kobject *kobj)
4283{
4284 struct kobj_type *ktype = get_ktype(kobj);
4285
4286 if (ktype == &slab_ktype)
4287 return 1;
4288 return 0;
4289}
4290
4291static struct kset_uevent_ops slab_uevent_ops = {
4292 .filter = uevent_filter,
4293};
4294
27c3a314 4295static struct kset *slab_kset;
81819f0f
CL
4296
4297#define ID_STR_LENGTH 64
4298
4299/* Create a unique string id for a slab cache:
6446faa2
CL
4300 *
4301 * Format :[flags-]size
81819f0f
CL
4302 */
4303static char *create_unique_id(struct kmem_cache *s)
4304{
4305 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4306 char *p = name;
4307
4308 BUG_ON(!name);
4309
4310 *p++ = ':';
4311 /*
4312 * First flags affecting slabcache operations. We will only
4313 * get here for aliasable slabs so we do not need to support
4314 * too many flags. The flags here must cover all flags that
4315 * are matched during merging to guarantee that the id is
4316 * unique.
4317 */
4318 if (s->flags & SLAB_CACHE_DMA)
4319 *p++ = 'd';
4320 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4321 *p++ = 'a';
4322 if (s->flags & SLAB_DEBUG_FREE)
4323 *p++ = 'F';
4324 if (p != name + 1)
4325 *p++ = '-';
4326 p += sprintf(p, "%07d", s->size);
4327 BUG_ON(p > name + ID_STR_LENGTH - 1);
4328 return name;
4329}
4330
4331static int sysfs_slab_add(struct kmem_cache *s)
4332{
4333 int err;
4334 const char *name;
4335 int unmergeable;
4336
4337 if (slab_state < SYSFS)
4338 /* Defer until later */
4339 return 0;
4340
4341 unmergeable = slab_unmergeable(s);
4342 if (unmergeable) {
4343 /*
4344 * Slabcache can never be merged so we can use the name proper.
4345 * This is typically the case for debug situations. In that
4346 * case we can catch duplicate names easily.
4347 */
27c3a314 4348 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4349 name = s->name;
4350 } else {
4351 /*
4352 * Create a unique name for the slab as a target
4353 * for the symlinks.
4354 */
4355 name = create_unique_id(s);
4356 }
4357
27c3a314 4358 s->kobj.kset = slab_kset;
1eada11c
GKH
4359 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4360 if (err) {
4361 kobject_put(&s->kobj);
81819f0f 4362 return err;
1eada11c 4363 }
81819f0f
CL
4364
4365 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4366 if (err)
4367 return err;
4368 kobject_uevent(&s->kobj, KOBJ_ADD);
4369 if (!unmergeable) {
4370 /* Setup first alias */
4371 sysfs_slab_alias(s, s->name);
4372 kfree(name);
4373 }
4374 return 0;
4375}
4376
4377static void sysfs_slab_remove(struct kmem_cache *s)
4378{
4379 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4380 kobject_del(&s->kobj);
151c602f 4381 kobject_put(&s->kobj);
81819f0f
CL
4382}
4383
4384/*
4385 * Need to buffer aliases during bootup until sysfs becomes
4386 * available lest we loose that information.
4387 */
4388struct saved_alias {
4389 struct kmem_cache *s;
4390 const char *name;
4391 struct saved_alias *next;
4392};
4393
5af328a5 4394static struct saved_alias *alias_list;
81819f0f
CL
4395
4396static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4397{
4398 struct saved_alias *al;
4399
4400 if (slab_state == SYSFS) {
4401 /*
4402 * If we have a leftover link then remove it.
4403 */
27c3a314
GKH
4404 sysfs_remove_link(&slab_kset->kobj, name);
4405 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4406 }
4407
4408 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4409 if (!al)
4410 return -ENOMEM;
4411
4412 al->s = s;
4413 al->name = name;
4414 al->next = alias_list;
4415 alias_list = al;
4416 return 0;
4417}
4418
4419static int __init slab_sysfs_init(void)
4420{
5b95a4ac 4421 struct kmem_cache *s;
81819f0f
CL
4422 int err;
4423
0ff21e46 4424 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4425 if (!slab_kset) {
81819f0f
CL
4426 printk(KERN_ERR "Cannot register slab subsystem.\n");
4427 return -ENOSYS;
4428 }
4429
26a7bd03
CL
4430 slab_state = SYSFS;
4431
5b95a4ac 4432 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4433 err = sysfs_slab_add(s);
5d540fb7
CL
4434 if (err)
4435 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4436 " to sysfs\n", s->name);
26a7bd03 4437 }
81819f0f
CL
4438
4439 while (alias_list) {
4440 struct saved_alias *al = alias_list;
4441
4442 alias_list = alias_list->next;
4443 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4444 if (err)
4445 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4446 " %s to sysfs\n", s->name);
81819f0f
CL
4447 kfree(al);
4448 }
4449
4450 resiliency_test();
4451 return 0;
4452}
4453
4454__initcall(slab_sysfs_init);
81819f0f 4455#endif
57ed3eda
PE
4456
4457/*
4458 * The /proc/slabinfo ABI
4459 */
158a9624
LT
4460#ifdef CONFIG_SLABINFO
4461
4462ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4463 size_t count, loff_t *ppos)
4464{
4465 return -EINVAL;
4466}
4467
57ed3eda
PE
4468
4469static void print_slabinfo_header(struct seq_file *m)
4470{
4471 seq_puts(m, "slabinfo - version: 2.1\n");
4472 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4473 "<objperslab> <pagesperslab>");
4474 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4475 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4476 seq_putc(m, '\n');
4477}
4478
4479static void *s_start(struct seq_file *m, loff_t *pos)
4480{
4481 loff_t n = *pos;
4482
4483 down_read(&slub_lock);
4484 if (!n)
4485 print_slabinfo_header(m);
4486
4487 return seq_list_start(&slab_caches, *pos);
4488}
4489
4490static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4491{
4492 return seq_list_next(p, &slab_caches, pos);
4493}
4494
4495static void s_stop(struct seq_file *m, void *p)
4496{
4497 up_read(&slub_lock);
4498}
4499
4500static int s_show(struct seq_file *m, void *p)
4501{
4502 unsigned long nr_partials = 0;
4503 unsigned long nr_slabs = 0;
4504 unsigned long nr_inuse = 0;
205ab99d
CL
4505 unsigned long nr_objs = 0;
4506 unsigned long nr_free = 0;
57ed3eda
PE
4507 struct kmem_cache *s;
4508 int node;
4509
4510 s = list_entry(p, struct kmem_cache, list);
4511
4512 for_each_online_node(node) {
4513 struct kmem_cache_node *n = get_node(s, node);
4514
4515 if (!n)
4516 continue;
4517
4518 nr_partials += n->nr_partial;
4519 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4520 nr_objs += atomic_long_read(&n->total_objects);
4521 nr_free += count_partial(n, count_free);
57ed3eda
PE
4522 }
4523
205ab99d 4524 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4525
4526 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4527 nr_objs, s->size, oo_objects(s->oo),
4528 (1 << oo_order(s->oo)));
57ed3eda
PE
4529 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4530 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4531 0UL);
4532 seq_putc(m, '\n');
4533 return 0;
4534}
4535
4536const struct seq_operations slabinfo_op = {
4537 .start = s_start,
4538 .next = s_next,
4539 .stop = s_stop,
4540 .show = s_show,
4541};
4542
158a9624 4543#endif /* CONFIG_SLABINFO */