]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
mm, sl[aou]b: Move kmem_cache_create mutex handling to common code
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
81819f0f
CL
37/*
38 * Lock order:
18004c5d 39 * 1. slab_mutex (Global Mutex)
881db7fb
CL
40 * 2. node->list_lock
41 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 42 *
18004c5d 43 * slab_mutex
881db7fb 44 *
18004c5d 45 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
46 * and to synchronize major metadata changes to slab cache structures.
47 *
48 * The slab_lock is only used for debugging and on arches that do not
49 * have the ability to do a cmpxchg_double. It only protects the second
50 * double word in the page struct. Meaning
51 * A. page->freelist -> List of object free in a page
52 * B. page->counters -> Counters of objects
53 * C. page->frozen -> frozen state
54 *
55 * If a slab is frozen then it is exempt from list management. It is not
56 * on any list. The processor that froze the slab is the one who can
57 * perform list operations on the page. Other processors may put objects
58 * onto the freelist but the processor that froze the slab is the only
59 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
60 *
61 * The list_lock protects the partial and full list on each node and
62 * the partial slab counter. If taken then no new slabs may be added or
63 * removed from the lists nor make the number of partial slabs be modified.
64 * (Note that the total number of slabs is an atomic value that may be
65 * modified without taking the list lock).
66 *
67 * The list_lock is a centralized lock and thus we avoid taking it as
68 * much as possible. As long as SLUB does not have to handle partial
69 * slabs, operations can continue without any centralized lock. F.e.
70 * allocating a long series of objects that fill up slabs does not require
71 * the list lock.
81819f0f
CL
72 * Interrupts are disabled during allocation and deallocation in order to
73 * make the slab allocator safe to use in the context of an irq. In addition
74 * interrupts are disabled to ensure that the processor does not change
75 * while handling per_cpu slabs, due to kernel preemption.
76 *
77 * SLUB assigns one slab for allocation to each processor.
78 * Allocations only occur from these slabs called cpu slabs.
79 *
672bba3a
CL
80 * Slabs with free elements are kept on a partial list and during regular
81 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 82 * freed then the slab will show up again on the partial lists.
672bba3a
CL
83 * We track full slabs for debugging purposes though because otherwise we
84 * cannot scan all objects.
81819f0f
CL
85 *
86 * Slabs are freed when they become empty. Teardown and setup is
87 * minimal so we rely on the page allocators per cpu caches for
88 * fast frees and allocs.
89 *
90 * Overloading of page flags that are otherwise used for LRU management.
91 *
4b6f0750
CL
92 * PageActive The slab is frozen and exempt from list processing.
93 * This means that the slab is dedicated to a purpose
94 * such as satisfying allocations for a specific
95 * processor. Objects may be freed in the slab while
96 * it is frozen but slab_free will then skip the usual
97 * list operations. It is up to the processor holding
98 * the slab to integrate the slab into the slab lists
99 * when the slab is no longer needed.
100 *
101 * One use of this flag is to mark slabs that are
102 * used for allocations. Then such a slab becomes a cpu
103 * slab. The cpu slab may be equipped with an additional
dfb4f096 104 * freelist that allows lockless access to
894b8788
CL
105 * free objects in addition to the regular freelist
106 * that requires the slab lock.
81819f0f
CL
107 *
108 * PageError Slab requires special handling due to debug
109 * options set. This moves slab handling out of
894b8788 110 * the fast path and disables lockless freelists.
81819f0f
CL
111 */
112
af537b0a
CL
113#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
114 SLAB_TRACE | SLAB_DEBUG_FREE)
115
116static inline int kmem_cache_debug(struct kmem_cache *s)
117{
5577bd8a 118#ifdef CONFIG_SLUB_DEBUG
af537b0a 119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 120#else
af537b0a 121 return 0;
5577bd8a 122#endif
af537b0a 123}
5577bd8a 124
81819f0f
CL
125/*
126 * Issues still to be resolved:
127 *
81819f0f
CL
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
81819f0f
CL
130 * - Variable sizing of the per node arrays
131 */
132
133/* Enable to test recovery from slab corruption on boot */
134#undef SLUB_RESILIENCY_TEST
135
b789ef51
CL
136/* Enable to log cmpxchg failures */
137#undef SLUB_DEBUG_CMPXCHG
138
2086d26a
CL
139/*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
76be8950 143#define MIN_PARTIAL 5
e95eed57 144
2086d26a
CL
145/*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150#define MAX_PARTIAL 10
151
81819f0f
CL
152#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
672bba3a 154
fa5ec8a1 155/*
3de47213
DR
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
fa5ec8a1 159 */
3de47213 160#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 161
81819f0f
CL
162/*
163 * Set of flags that will prevent slab merging
164 */
165#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
81819f0f
CL
168
169#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 170 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
179
180static int kmem_size = sizeof(struct kmem_cache);
181
182#ifdef CONFIG_SMP
183static struct notifier_block slab_notifier;
184#endif
185
02cbc874
CL
186/*
187 * Tracking user of a slab.
188 */
d6543e39 189#define TRACK_ADDRS_COUNT 16
02cbc874 190struct track {
ce71e27c 191 unsigned long addr; /* Called from address */
d6543e39
BG
192#ifdef CONFIG_STACKTRACE
193 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
194#endif
02cbc874
CL
195 int cpu; /* Was running on cpu */
196 int pid; /* Pid context */
197 unsigned long when; /* When did the operation occur */
198};
199
200enum track_item { TRACK_ALLOC, TRACK_FREE };
201
ab4d5ed5 202#ifdef CONFIG_SYSFS
81819f0f
CL
203static int sysfs_slab_add(struct kmem_cache *);
204static int sysfs_slab_alias(struct kmem_cache *, const char *);
205static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 206
81819f0f 207#else
0c710013
CL
208static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
209static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 { return 0; }
151c602f
CL
211static inline void sysfs_slab_remove(struct kmem_cache *s)
212{
84c1cf62 213 kfree(s->name);
151c602f
CL
214 kfree(s);
215}
8ff12cfc 216
81819f0f
CL
217#endif
218
4fdccdfb 219static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
220{
221#ifdef CONFIG_SLUB_STATS
84e554e6 222 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
223#endif
224}
225
81819f0f
CL
226/********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
229
81819f0f
CL
230static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
231{
81819f0f 232 return s->node[node];
81819f0f
CL
233}
234
6446faa2 235/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
236static inline int check_valid_pointer(struct kmem_cache *s,
237 struct page *page, const void *object)
238{
239 void *base;
240
a973e9dd 241 if (!object)
02cbc874
CL
242 return 1;
243
a973e9dd 244 base = page_address(page);
39b26464 245 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
246 (object - base) % s->size) {
247 return 0;
248 }
249
250 return 1;
251}
252
7656c72b
CL
253static inline void *get_freepointer(struct kmem_cache *s, void *object)
254{
255 return *(void **)(object + s->offset);
256}
257
0ad9500e
ED
258static void prefetch_freepointer(const struct kmem_cache *s, void *object)
259{
260 prefetch(object + s->offset);
261}
262
1393d9a1
CL
263static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
264{
265 void *p;
266
267#ifdef CONFIG_DEBUG_PAGEALLOC
268 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
269#else
270 p = get_freepointer(s, object);
271#endif
272 return p;
273}
274
7656c72b
CL
275static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276{
277 *(void **)(object + s->offset) = fp;
278}
279
280/* Loop over all objects in a slab */
224a88be
CL
281#define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
283 __p += (__s)->size)
284
7656c72b
CL
285/* Determine object index from a given position */
286static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
287{
288 return (p - addr) / s->size;
289}
290
d71f606f
MK
291static inline size_t slab_ksize(const struct kmem_cache *s)
292{
293#ifdef CONFIG_SLUB_DEBUG
294 /*
295 * Debugging requires use of the padding between object
296 * and whatever may come after it.
297 */
298 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 299 return s->object_size;
d71f606f
MK
300
301#endif
302 /*
303 * If we have the need to store the freelist pointer
304 * back there or track user information then we can
305 * only use the space before that information.
306 */
307 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
308 return s->inuse;
309 /*
310 * Else we can use all the padding etc for the allocation
311 */
312 return s->size;
313}
314
ab9a0f19
LJ
315static inline int order_objects(int order, unsigned long size, int reserved)
316{
317 return ((PAGE_SIZE << order) - reserved) / size;
318}
319
834f3d11 320static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 321 unsigned long size, int reserved)
834f3d11
CL
322{
323 struct kmem_cache_order_objects x = {
ab9a0f19 324 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
325 };
326
327 return x;
328}
329
330static inline int oo_order(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x >> OO_SHIFT;
834f3d11
CL
333}
334
335static inline int oo_objects(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x & OO_MASK;
834f3d11
CL
338}
339
881db7fb
CL
340/*
341 * Per slab locking using the pagelock
342 */
343static __always_inline void slab_lock(struct page *page)
344{
345 bit_spin_lock(PG_locked, &page->flags);
346}
347
348static __always_inline void slab_unlock(struct page *page)
349{
350 __bit_spin_unlock(PG_locked, &page->flags);
351}
352
1d07171c
CL
353/* Interrupts must be disabled (for the fallback code to work right) */
354static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
355 void *freelist_old, unsigned long counters_old,
356 void *freelist_new, unsigned long counters_new,
357 const char *n)
358{
359 VM_BUG_ON(!irqs_disabled());
2565409f
HC
360#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
361 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 362 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 363 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
364 freelist_old, counters_old,
365 freelist_new, counters_new))
366 return 1;
367 } else
368#endif
369 {
370 slab_lock(page);
371 if (page->freelist == freelist_old && page->counters == counters_old) {
372 page->freelist = freelist_new;
373 page->counters = counters_new;
374 slab_unlock(page);
375 return 1;
376 }
377 slab_unlock(page);
378 }
379
380 cpu_relax();
381 stat(s, CMPXCHG_DOUBLE_FAIL);
382
383#ifdef SLUB_DEBUG_CMPXCHG
384 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
385#endif
386
387 return 0;
388}
389
b789ef51
CL
390static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
391 void *freelist_old, unsigned long counters_old,
392 void *freelist_new, unsigned long counters_new,
393 const char *n)
394{
2565409f
HC
395#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
396 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 397 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 398 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
399 freelist_old, counters_old,
400 freelist_new, counters_new))
401 return 1;
402 } else
403#endif
404 {
1d07171c
CL
405 unsigned long flags;
406
407 local_irq_save(flags);
881db7fb 408 slab_lock(page);
b789ef51
CL
409 if (page->freelist == freelist_old && page->counters == counters_old) {
410 page->freelist = freelist_new;
411 page->counters = counters_new;
881db7fb 412 slab_unlock(page);
1d07171c 413 local_irq_restore(flags);
b789ef51
CL
414 return 1;
415 }
881db7fb 416 slab_unlock(page);
1d07171c 417 local_irq_restore(flags);
b789ef51
CL
418 }
419
420 cpu_relax();
421 stat(s, CMPXCHG_DOUBLE_FAIL);
422
423#ifdef SLUB_DEBUG_CMPXCHG
424 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
425#endif
426
427 return 0;
428}
429
41ecc55b 430#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
431/*
432 * Determine a map of object in use on a page.
433 *
881db7fb 434 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
435 * not vanish from under us.
436 */
437static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
438{
439 void *p;
440 void *addr = page_address(page);
441
442 for (p = page->freelist; p; p = get_freepointer(s, p))
443 set_bit(slab_index(p, s, addr), map);
444}
445
41ecc55b
CL
446/*
447 * Debug settings:
448 */
f0630fff
CL
449#ifdef CONFIG_SLUB_DEBUG_ON
450static int slub_debug = DEBUG_DEFAULT_FLAGS;
451#else
41ecc55b 452static int slub_debug;
f0630fff 453#endif
41ecc55b
CL
454
455static char *slub_debug_slabs;
fa5ec8a1 456static int disable_higher_order_debug;
41ecc55b 457
81819f0f
CL
458/*
459 * Object debugging
460 */
461static void print_section(char *text, u8 *addr, unsigned int length)
462{
ffc79d28
SAS
463 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
464 length, 1);
81819f0f
CL
465}
466
81819f0f
CL
467static struct track *get_track(struct kmem_cache *s, void *object,
468 enum track_item alloc)
469{
470 struct track *p;
471
472 if (s->offset)
473 p = object + s->offset + sizeof(void *);
474 else
475 p = object + s->inuse;
476
477 return p + alloc;
478}
479
480static void set_track(struct kmem_cache *s, void *object,
ce71e27c 481 enum track_item alloc, unsigned long addr)
81819f0f 482{
1a00df4a 483 struct track *p = get_track(s, object, alloc);
81819f0f 484
81819f0f 485 if (addr) {
d6543e39
BG
486#ifdef CONFIG_STACKTRACE
487 struct stack_trace trace;
488 int i;
489
490 trace.nr_entries = 0;
491 trace.max_entries = TRACK_ADDRS_COUNT;
492 trace.entries = p->addrs;
493 trace.skip = 3;
494 save_stack_trace(&trace);
495
496 /* See rant in lockdep.c */
497 if (trace.nr_entries != 0 &&
498 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
499 trace.nr_entries--;
500
501 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
502 p->addrs[i] = 0;
503#endif
81819f0f
CL
504 p->addr = addr;
505 p->cpu = smp_processor_id();
88e4ccf2 506 p->pid = current->pid;
81819f0f
CL
507 p->when = jiffies;
508 } else
509 memset(p, 0, sizeof(struct track));
510}
511
81819f0f
CL
512static void init_tracking(struct kmem_cache *s, void *object)
513{
24922684
CL
514 if (!(s->flags & SLAB_STORE_USER))
515 return;
516
ce71e27c
EGM
517 set_track(s, object, TRACK_FREE, 0UL);
518 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
519}
520
521static void print_track(const char *s, struct track *t)
522{
523 if (!t->addr)
524 return;
525
7daf705f 526 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 527 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
528#ifdef CONFIG_STACKTRACE
529 {
530 int i;
531 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
532 if (t->addrs[i])
533 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
534 else
535 break;
536 }
537#endif
24922684
CL
538}
539
540static void print_tracking(struct kmem_cache *s, void *object)
541{
542 if (!(s->flags & SLAB_STORE_USER))
543 return;
544
545 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
546 print_track("Freed", get_track(s, object, TRACK_FREE));
547}
548
549static void print_page_info(struct page *page)
550{
39b26464
CL
551 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
552 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
553
554}
555
556static void slab_bug(struct kmem_cache *s, char *fmt, ...)
557{
558 va_list args;
559 char buf[100];
560
561 va_start(args, fmt);
562 vsnprintf(buf, sizeof(buf), fmt, args);
563 va_end(args);
564 printk(KERN_ERR "========================================"
565 "=====================================\n");
265d47e7 566 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
567 printk(KERN_ERR "----------------------------------------"
568 "-------------------------------------\n\n");
81819f0f
CL
569}
570
24922684
CL
571static void slab_fix(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
580}
581
582static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
583{
584 unsigned int off; /* Offset of last byte */
a973e9dd 585 u8 *addr = page_address(page);
24922684
CL
586
587 print_tracking(s, p);
588
589 print_page_info(page);
590
591 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
592 p, p - addr, get_freepointer(s, p));
593
594 if (p > addr + 16)
ffc79d28 595 print_section("Bytes b4 ", p - 16, 16);
81819f0f 596
3b0efdfa 597 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 598 PAGE_SIZE));
81819f0f 599 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
600 print_section("Redzone ", p + s->object_size,
601 s->inuse - s->object_size);
81819f0f 602
81819f0f
CL
603 if (s->offset)
604 off = s->offset + sizeof(void *);
605 else
606 off = s->inuse;
607
24922684 608 if (s->flags & SLAB_STORE_USER)
81819f0f 609 off += 2 * sizeof(struct track);
81819f0f
CL
610
611 if (off != s->size)
612 /* Beginning of the filler is the free pointer */
ffc79d28 613 print_section("Padding ", p + off, s->size - off);
24922684
CL
614
615 dump_stack();
81819f0f
CL
616}
617
618static void object_err(struct kmem_cache *s, struct page *page,
619 u8 *object, char *reason)
620{
3dc50637 621 slab_bug(s, "%s", reason);
24922684 622 print_trailer(s, page, object);
81819f0f
CL
623}
624
24922684 625static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
626{
627 va_list args;
628 char buf[100];
629
24922684
CL
630 va_start(args, fmt);
631 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 632 va_end(args);
3dc50637 633 slab_bug(s, "%s", buf);
24922684 634 print_page_info(page);
81819f0f
CL
635 dump_stack();
636}
637
f7cb1933 638static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
639{
640 u8 *p = object;
641
642 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
643 memset(p, POISON_FREE, s->object_size - 1);
644 p[s->object_size - 1] = POISON_END;
81819f0f
CL
645 }
646
647 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 648 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
649}
650
24922684
CL
651static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
652 void *from, void *to)
653{
654 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
655 memset(from, data, to - from);
656}
657
658static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
659 u8 *object, char *what,
06428780 660 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
661{
662 u8 *fault;
663 u8 *end;
664
79824820 665 fault = memchr_inv(start, value, bytes);
24922684
CL
666 if (!fault)
667 return 1;
668
669 end = start + bytes;
670 while (end > fault && end[-1] == value)
671 end--;
672
673 slab_bug(s, "%s overwritten", what);
674 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
675 fault, end - 1, fault[0], value);
676 print_trailer(s, page, object);
677
678 restore_bytes(s, what, value, fault, end);
679 return 0;
81819f0f
CL
680}
681
81819f0f
CL
682/*
683 * Object layout:
684 *
685 * object address
686 * Bytes of the object to be managed.
687 * If the freepointer may overlay the object then the free
688 * pointer is the first word of the object.
672bba3a 689 *
81819f0f
CL
690 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
691 * 0xa5 (POISON_END)
692 *
3b0efdfa 693 * object + s->object_size
81819f0f 694 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 695 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 696 * object_size == inuse.
672bba3a 697 *
81819f0f
CL
698 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
699 * 0xcc (RED_ACTIVE) for objects in use.
700 *
701 * object + s->inuse
672bba3a
CL
702 * Meta data starts here.
703 *
81819f0f
CL
704 * A. Free pointer (if we cannot overwrite object on free)
705 * B. Tracking data for SLAB_STORE_USER
672bba3a 706 * C. Padding to reach required alignment boundary or at mininum
6446faa2 707 * one word if debugging is on to be able to detect writes
672bba3a
CL
708 * before the word boundary.
709 *
710 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
711 *
712 * object + s->size
672bba3a 713 * Nothing is used beyond s->size.
81819f0f 714 *
3b0efdfa 715 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 716 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
717 * may be used with merged slabcaches.
718 */
719
81819f0f
CL
720static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
721{
722 unsigned long off = s->inuse; /* The end of info */
723
724 if (s->offset)
725 /* Freepointer is placed after the object. */
726 off += sizeof(void *);
727
728 if (s->flags & SLAB_STORE_USER)
729 /* We also have user information there */
730 off += 2 * sizeof(struct track);
731
732 if (s->size == off)
733 return 1;
734
24922684
CL
735 return check_bytes_and_report(s, page, p, "Object padding",
736 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
737}
738
39b26464 739/* Check the pad bytes at the end of a slab page */
81819f0f
CL
740static int slab_pad_check(struct kmem_cache *s, struct page *page)
741{
24922684
CL
742 u8 *start;
743 u8 *fault;
744 u8 *end;
745 int length;
746 int remainder;
81819f0f
CL
747
748 if (!(s->flags & SLAB_POISON))
749 return 1;
750
a973e9dd 751 start = page_address(page);
ab9a0f19 752 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
753 end = start + length;
754 remainder = length % s->size;
81819f0f
CL
755 if (!remainder)
756 return 1;
757
79824820 758 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
759 if (!fault)
760 return 1;
761 while (end > fault && end[-1] == POISON_INUSE)
762 end--;
763
764 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 765 print_section("Padding ", end - remainder, remainder);
24922684 766
8a3d271d 767 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 768 return 0;
81819f0f
CL
769}
770
771static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 772 void *object, u8 val)
81819f0f
CL
773{
774 u8 *p = object;
3b0efdfa 775 u8 *endobject = object + s->object_size;
81819f0f
CL
776
777 if (s->flags & SLAB_RED_ZONE) {
24922684 778 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 779 endobject, val, s->inuse - s->object_size))
81819f0f 780 return 0;
81819f0f 781 } else {
3b0efdfa 782 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 783 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 784 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 785 }
81819f0f
CL
786 }
787
788 if (s->flags & SLAB_POISON) {
f7cb1933 789 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 790 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 791 POISON_FREE, s->object_size - 1) ||
24922684 792 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 793 p + s->object_size - 1, POISON_END, 1)))
81819f0f 794 return 0;
81819f0f
CL
795 /*
796 * check_pad_bytes cleans up on its own.
797 */
798 check_pad_bytes(s, page, p);
799 }
800
f7cb1933 801 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
802 /*
803 * Object and freepointer overlap. Cannot check
804 * freepointer while object is allocated.
805 */
806 return 1;
807
808 /* Check free pointer validity */
809 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
810 object_err(s, page, p, "Freepointer corrupt");
811 /*
9f6c708e 812 * No choice but to zap it and thus lose the remainder
81819f0f 813 * of the free objects in this slab. May cause
672bba3a 814 * another error because the object count is now wrong.
81819f0f 815 */
a973e9dd 816 set_freepointer(s, p, NULL);
81819f0f
CL
817 return 0;
818 }
819 return 1;
820}
821
822static int check_slab(struct kmem_cache *s, struct page *page)
823{
39b26464
CL
824 int maxobj;
825
81819f0f
CL
826 VM_BUG_ON(!irqs_disabled());
827
828 if (!PageSlab(page)) {
24922684 829 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
830 return 0;
831 }
39b26464 832
ab9a0f19 833 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
834 if (page->objects > maxobj) {
835 slab_err(s, page, "objects %u > max %u",
836 s->name, page->objects, maxobj);
837 return 0;
838 }
839 if (page->inuse > page->objects) {
24922684 840 slab_err(s, page, "inuse %u > max %u",
39b26464 841 s->name, page->inuse, page->objects);
81819f0f
CL
842 return 0;
843 }
844 /* Slab_pad_check fixes things up after itself */
845 slab_pad_check(s, page);
846 return 1;
847}
848
849/*
672bba3a
CL
850 * Determine if a certain object on a page is on the freelist. Must hold the
851 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
852 */
853static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
854{
855 int nr = 0;
881db7fb 856 void *fp;
81819f0f 857 void *object = NULL;
224a88be 858 unsigned long max_objects;
81819f0f 859
881db7fb 860 fp = page->freelist;
39b26464 861 while (fp && nr <= page->objects) {
81819f0f
CL
862 if (fp == search)
863 return 1;
864 if (!check_valid_pointer(s, page, fp)) {
865 if (object) {
866 object_err(s, page, object,
867 "Freechain corrupt");
a973e9dd 868 set_freepointer(s, object, NULL);
81819f0f
CL
869 break;
870 } else {
24922684 871 slab_err(s, page, "Freepointer corrupt");
a973e9dd 872 page->freelist = NULL;
39b26464 873 page->inuse = page->objects;
24922684 874 slab_fix(s, "Freelist cleared");
81819f0f
CL
875 return 0;
876 }
877 break;
878 }
879 object = fp;
880 fp = get_freepointer(s, object);
881 nr++;
882 }
883
ab9a0f19 884 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
885 if (max_objects > MAX_OBJS_PER_PAGE)
886 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
887
888 if (page->objects != max_objects) {
889 slab_err(s, page, "Wrong number of objects. Found %d but "
890 "should be %d", page->objects, max_objects);
891 page->objects = max_objects;
892 slab_fix(s, "Number of objects adjusted.");
893 }
39b26464 894 if (page->inuse != page->objects - nr) {
70d71228 895 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
896 "counted were %d", page->inuse, page->objects - nr);
897 page->inuse = page->objects - nr;
24922684 898 slab_fix(s, "Object count adjusted.");
81819f0f
CL
899 }
900 return search == NULL;
901}
902
0121c619
CL
903static void trace(struct kmem_cache *s, struct page *page, void *object,
904 int alloc)
3ec09742
CL
905{
906 if (s->flags & SLAB_TRACE) {
907 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
908 s->name,
909 alloc ? "alloc" : "free",
910 object, page->inuse,
911 page->freelist);
912
913 if (!alloc)
3b0efdfa 914 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
915
916 dump_stack();
917 }
918}
919
c016b0bd
CL
920/*
921 * Hooks for other subsystems that check memory allocations. In a typical
922 * production configuration these hooks all should produce no code at all.
923 */
924static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
925{
c1d50836 926 flags &= gfp_allowed_mask;
c016b0bd
CL
927 lockdep_trace_alloc(flags);
928 might_sleep_if(flags & __GFP_WAIT);
929
3b0efdfa 930 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
931}
932
933static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
934{
c1d50836 935 flags &= gfp_allowed_mask;
b3d41885 936 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 937 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
938}
939
940static inline void slab_free_hook(struct kmem_cache *s, void *x)
941{
942 kmemleak_free_recursive(x, s->flags);
c016b0bd 943
d3f661d6
CL
944 /*
945 * Trouble is that we may no longer disable interupts in the fast path
946 * So in order to make the debug calls that expect irqs to be
947 * disabled we need to disable interrupts temporarily.
948 */
949#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
950 {
951 unsigned long flags;
952
953 local_irq_save(flags);
3b0efdfa
CL
954 kmemcheck_slab_free(s, x, s->object_size);
955 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
956 local_irq_restore(flags);
957 }
958#endif
f9b615de 959 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 960 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
961}
962
643b1138 963/*
672bba3a 964 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
965 *
966 * list_lock must be held.
643b1138 967 */
5cc6eee8
CL
968static void add_full(struct kmem_cache *s,
969 struct kmem_cache_node *n, struct page *page)
643b1138 970{
5cc6eee8
CL
971 if (!(s->flags & SLAB_STORE_USER))
972 return;
973
643b1138 974 list_add(&page->lru, &n->full);
643b1138
CL
975}
976
5cc6eee8
CL
977/*
978 * list_lock must be held.
979 */
643b1138
CL
980static void remove_full(struct kmem_cache *s, struct page *page)
981{
643b1138
CL
982 if (!(s->flags & SLAB_STORE_USER))
983 return;
984
643b1138 985 list_del(&page->lru);
643b1138
CL
986}
987
0f389ec6
CL
988/* Tracking of the number of slabs for debugging purposes */
989static inline unsigned long slabs_node(struct kmem_cache *s, int node)
990{
991 struct kmem_cache_node *n = get_node(s, node);
992
993 return atomic_long_read(&n->nr_slabs);
994}
995
26c02cf0
AB
996static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
997{
998 return atomic_long_read(&n->nr_slabs);
999}
1000
205ab99d 1001static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1002{
1003 struct kmem_cache_node *n = get_node(s, node);
1004
1005 /*
1006 * May be called early in order to allocate a slab for the
1007 * kmem_cache_node structure. Solve the chicken-egg
1008 * dilemma by deferring the increment of the count during
1009 * bootstrap (see early_kmem_cache_node_alloc).
1010 */
7340cc84 1011 if (n) {
0f389ec6 1012 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1013 atomic_long_add(objects, &n->total_objects);
1014 }
0f389ec6 1015}
205ab99d 1016static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 atomic_long_dec(&n->nr_slabs);
205ab99d 1021 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1022}
1023
1024/* Object debug checks for alloc/free paths */
3ec09742
CL
1025static void setup_object_debug(struct kmem_cache *s, struct page *page,
1026 void *object)
1027{
1028 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1029 return;
1030
f7cb1933 1031 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1032 init_tracking(s, object);
1033}
1034
1537066c 1035static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1036 void *object, unsigned long addr)
81819f0f
CL
1037{
1038 if (!check_slab(s, page))
1039 goto bad;
1040
81819f0f
CL
1041 if (!check_valid_pointer(s, page, object)) {
1042 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1043 goto bad;
81819f0f
CL
1044 }
1045
f7cb1933 1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1047 goto bad;
81819f0f 1048
3ec09742
CL
1049 /* Success perform special debug activities for allocs */
1050 if (s->flags & SLAB_STORE_USER)
1051 set_track(s, object, TRACK_ALLOC, addr);
1052 trace(s, page, object, 1);
f7cb1933 1053 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1054 return 1;
3ec09742 1055
81819f0f
CL
1056bad:
1057 if (PageSlab(page)) {
1058 /*
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
672bba3a 1061 * as used avoids touching the remaining objects.
81819f0f 1062 */
24922684 1063 slab_fix(s, "Marking all objects used");
39b26464 1064 page->inuse = page->objects;
a973e9dd 1065 page->freelist = NULL;
81819f0f
CL
1066 }
1067 return 0;
1068}
1069
1537066c
CL
1070static noinline int free_debug_processing(struct kmem_cache *s,
1071 struct page *page, void *object, unsigned long addr)
81819f0f 1072{
5c2e4bbb
CL
1073 unsigned long flags;
1074 int rc = 0;
1075
1076 local_irq_save(flags);
881db7fb
CL
1077 slab_lock(page);
1078
81819f0f
CL
1079 if (!check_slab(s, page))
1080 goto fail;
1081
1082 if (!check_valid_pointer(s, page, object)) {
70d71228 1083 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1084 goto fail;
1085 }
1086
1087 if (on_freelist(s, page, object)) {
24922684 1088 object_err(s, page, object, "Object already free");
81819f0f
CL
1089 goto fail;
1090 }
1091
f7cb1933 1092 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1093 goto out;
81819f0f
CL
1094
1095 if (unlikely(s != page->slab)) {
3adbefee 1096 if (!PageSlab(page)) {
70d71228
CL
1097 slab_err(s, page, "Attempt to free object(0x%p) "
1098 "outside of slab", object);
3adbefee 1099 } else if (!page->slab) {
81819f0f 1100 printk(KERN_ERR
70d71228 1101 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1102 object);
70d71228 1103 dump_stack();
06428780 1104 } else
24922684
CL
1105 object_err(s, page, object,
1106 "page slab pointer corrupt.");
81819f0f
CL
1107 goto fail;
1108 }
3ec09742 1109
3ec09742
CL
1110 if (s->flags & SLAB_STORE_USER)
1111 set_track(s, object, TRACK_FREE, addr);
1112 trace(s, page, object, 0);
f7cb1933 1113 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1114 rc = 1;
1115out:
881db7fb 1116 slab_unlock(page);
5c2e4bbb
CL
1117 local_irq_restore(flags);
1118 return rc;
3ec09742 1119
81819f0f 1120fail:
24922684 1121 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1122 goto out;
81819f0f
CL
1123}
1124
41ecc55b
CL
1125static int __init setup_slub_debug(char *str)
1126{
f0630fff
CL
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
fa5ec8a1
DR
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
f0630fff
CL
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
06428780 1160 for (; *str && *str != ','; str++) {
f0630fff
CL
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
4c13dd3b
DM
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
f0630fff
CL
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
06428780 1182 "unknown. skipped\n", *str);
f0630fff 1183 }
41ecc55b
CL
1184 }
1185
f0630fff 1186check_slabs:
41ecc55b
CL
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
f0630fff 1189out:
41ecc55b
CL
1190 return 1;
1191}
1192
1193__setup("slub_debug", setup_slub_debug);
1194
3b0efdfa 1195static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1196 unsigned long flags, const char *name,
51cc5068 1197 void (*ctor)(void *))
41ecc55b
CL
1198{
1199 /*
e153362a 1200 * Enable debugging if selected on the kernel commandline.
41ecc55b 1201 */
e153362a 1202 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
ba0268a8
CL
1205
1206 return flags;
41ecc55b
CL
1207}
1208#else
3ec09742
CL
1209static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
41ecc55b 1211
3ec09742 1212static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1213 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1214
3ec09742 1215static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1216 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1217
41ecc55b
CL
1218static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1221 void *object, u8 val) { return 1; }
5cc6eee8
CL
1222static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
2cfb7455 1224static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1225static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1226 unsigned long flags, const char *name,
51cc5068 1227 void (*ctor)(void *))
ba0268a8
CL
1228{
1229 return flags;
1230}
41ecc55b 1231#define slub_debug 0
0f389ec6 1232
fdaa45e9
IM
1233#define disable_higher_order_debug 0
1234
0f389ec6
CL
1235static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1236 { return 0; }
26c02cf0
AB
1237static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238 { return 0; }
205ab99d
CL
1239static inline void inc_slabs_node(struct kmem_cache *s, int node,
1240 int objects) {}
1241static inline void dec_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
7d550c56
CL
1243
1244static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1245 { return 0; }
1246
1247static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1248 void *object) {}
1249
1250static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1251
ab4d5ed5 1252#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1253
81819f0f
CL
1254/*
1255 * Slab allocation and freeing
1256 */
65c3376a
CL
1257static inline struct page *alloc_slab_page(gfp_t flags, int node,
1258 struct kmem_cache_order_objects oo)
1259{
1260 int order = oo_order(oo);
1261
b1eeab67
VN
1262 flags |= __GFP_NOTRACK;
1263
2154a336 1264 if (node == NUMA_NO_NODE)
65c3376a
CL
1265 return alloc_pages(flags, order);
1266 else
6b65aaf3 1267 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1268}
1269
81819f0f
CL
1270static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1271{
06428780 1272 struct page *page;
834f3d11 1273 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1274 gfp_t alloc_gfp;
81819f0f 1275
7e0528da
CL
1276 flags &= gfp_allowed_mask;
1277
1278 if (flags & __GFP_WAIT)
1279 local_irq_enable();
1280
b7a49f0d 1281 flags |= s->allocflags;
e12ba74d 1282
ba52270d
PE
1283 /*
1284 * Let the initial higher-order allocation fail under memory pressure
1285 * so we fall-back to the minimum order allocation.
1286 */
1287 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1288
1289 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1290 if (unlikely(!page)) {
1291 oo = s->min;
1292 /*
1293 * Allocation may have failed due to fragmentation.
1294 * Try a lower order alloc if possible
1295 */
1296 page = alloc_slab_page(flags, node, oo);
81819f0f 1297
7e0528da
CL
1298 if (page)
1299 stat(s, ORDER_FALLBACK);
65c3376a 1300 }
5a896d9e 1301
7e0528da
CL
1302 if (flags & __GFP_WAIT)
1303 local_irq_disable();
1304
1305 if (!page)
1306 return NULL;
1307
5a896d9e 1308 if (kmemcheck_enabled
5086c389 1309 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1310 int pages = 1 << oo_order(oo);
1311
1312 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1313
1314 /*
1315 * Objects from caches that have a constructor don't get
1316 * cleared when they're allocated, so we need to do it here.
1317 */
1318 if (s->ctor)
1319 kmemcheck_mark_uninitialized_pages(page, pages);
1320 else
1321 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1322 }
1323
834f3d11 1324 page->objects = oo_objects(oo);
81819f0f
CL
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1328 1 << oo_order(oo));
81819f0f
CL
1329
1330 return page;
1331}
1332
1333static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335{
3ec09742 1336 setup_object_debug(s, page, object);
4f104934 1337 if (unlikely(s->ctor))
51cc5068 1338 s->ctor(object);
81819f0f
CL
1339}
1340
1341static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342{
1343 struct page *page;
81819f0f 1344 void *start;
81819f0f
CL
1345 void *last;
1346 void *p;
1347
6cb06229 1348 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1349
6cb06229
CL
1350 page = allocate_slab(s,
1351 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1352 if (!page)
1353 goto out;
1354
205ab99d 1355 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1356 page->slab = s;
c03f94cc 1357 __SetPageSlab(page);
81819f0f
CL
1358
1359 start = page_address(page);
81819f0f
CL
1360
1361 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1362 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1363
1364 last = start;
224a88be 1365 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1366 setup_object(s, page, last);
1367 set_freepointer(s, last, p);
1368 last = p;
1369 }
1370 setup_object(s, page, last);
a973e9dd 1371 set_freepointer(s, last, NULL);
81819f0f
CL
1372
1373 page->freelist = start;
e6e82ea1 1374 page->inuse = page->objects;
8cb0a506 1375 page->frozen = 1;
81819f0f 1376out:
81819f0f
CL
1377 return page;
1378}
1379
1380static void __free_slab(struct kmem_cache *s, struct page *page)
1381{
834f3d11
CL
1382 int order = compound_order(page);
1383 int pages = 1 << order;
81819f0f 1384
af537b0a 1385 if (kmem_cache_debug(s)) {
81819f0f
CL
1386 void *p;
1387
1388 slab_pad_check(s, page);
224a88be
CL
1389 for_each_object(p, s, page_address(page),
1390 page->objects)
f7cb1933 1391 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1392 }
1393
b1eeab67 1394 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1395
81819f0f
CL
1396 mod_zone_page_state(page_zone(page),
1397 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1398 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1399 -pages);
81819f0f 1400
49bd5221
CL
1401 __ClearPageSlab(page);
1402 reset_page_mapcount(page);
1eb5ac64
NP
1403 if (current->reclaim_state)
1404 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1405 __free_pages(page, order);
81819f0f
CL
1406}
1407
da9a638c
LJ
1408#define need_reserve_slab_rcu \
1409 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1410
81819f0f
CL
1411static void rcu_free_slab(struct rcu_head *h)
1412{
1413 struct page *page;
1414
da9a638c
LJ
1415 if (need_reserve_slab_rcu)
1416 page = virt_to_head_page(h);
1417 else
1418 page = container_of((struct list_head *)h, struct page, lru);
1419
81819f0f
CL
1420 __free_slab(page->slab, page);
1421}
1422
1423static void free_slab(struct kmem_cache *s, struct page *page)
1424{
1425 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1426 struct rcu_head *head;
1427
1428 if (need_reserve_slab_rcu) {
1429 int order = compound_order(page);
1430 int offset = (PAGE_SIZE << order) - s->reserved;
1431
1432 VM_BUG_ON(s->reserved != sizeof(*head));
1433 head = page_address(page) + offset;
1434 } else {
1435 /*
1436 * RCU free overloads the RCU head over the LRU
1437 */
1438 head = (void *)&page->lru;
1439 }
81819f0f
CL
1440
1441 call_rcu(head, rcu_free_slab);
1442 } else
1443 __free_slab(s, page);
1444}
1445
1446static void discard_slab(struct kmem_cache *s, struct page *page)
1447{
205ab99d 1448 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1449 free_slab(s, page);
1450}
1451
1452/*
5cc6eee8
CL
1453 * Management of partially allocated slabs.
1454 *
1455 * list_lock must be held.
81819f0f 1456 */
5cc6eee8 1457static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1458 struct page *page, int tail)
81819f0f 1459{
e95eed57 1460 n->nr_partial++;
136333d1 1461 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1462 list_add_tail(&page->lru, &n->partial);
1463 else
1464 list_add(&page->lru, &n->partial);
81819f0f
CL
1465}
1466
5cc6eee8
CL
1467/*
1468 * list_lock must be held.
1469 */
1470static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1471 struct page *page)
1472{
1473 list_del(&page->lru);
1474 n->nr_partial--;
1475}
1476
81819f0f 1477/*
7ced3719
CL
1478 * Remove slab from the partial list, freeze it and
1479 * return the pointer to the freelist.
81819f0f 1480 *
497b66f2
CL
1481 * Returns a list of objects or NULL if it fails.
1482 *
7ced3719 1483 * Must hold list_lock since we modify the partial list.
81819f0f 1484 */
497b66f2 1485static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1486 struct kmem_cache_node *n, struct page *page,
49e22585 1487 int mode)
81819f0f 1488{
2cfb7455
CL
1489 void *freelist;
1490 unsigned long counters;
1491 struct page new;
1492
2cfb7455
CL
1493 /*
1494 * Zap the freelist and set the frozen bit.
1495 * The old freelist is the list of objects for the
1496 * per cpu allocation list.
1497 */
7ced3719
CL
1498 freelist = page->freelist;
1499 counters = page->counters;
1500 new.counters = counters;
23910c50 1501 if (mode) {
7ced3719 1502 new.inuse = page->objects;
23910c50
PE
1503 new.freelist = NULL;
1504 } else {
1505 new.freelist = freelist;
1506 }
2cfb7455 1507
7ced3719
CL
1508 VM_BUG_ON(new.frozen);
1509 new.frozen = 1;
2cfb7455 1510
7ced3719 1511 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1512 freelist, counters,
02d7633f 1513 new.freelist, new.counters,
7ced3719 1514 "acquire_slab"))
7ced3719 1515 return NULL;
2cfb7455
CL
1516
1517 remove_partial(n, page);
7ced3719 1518 WARN_ON(!freelist);
49e22585 1519 return freelist;
81819f0f
CL
1520}
1521
49e22585
CL
1522static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1523
81819f0f 1524/*
672bba3a 1525 * Try to allocate a partial slab from a specific node.
81819f0f 1526 */
497b66f2 1527static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1528 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1529{
49e22585
CL
1530 struct page *page, *page2;
1531 void *object = NULL;
81819f0f
CL
1532
1533 /*
1534 * Racy check. If we mistakenly see no partial slabs then we
1535 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1536 * partial slab and there is none available then get_partials()
1537 * will return NULL.
81819f0f
CL
1538 */
1539 if (!n || !n->nr_partial)
1540 return NULL;
1541
1542 spin_lock(&n->list_lock);
49e22585 1543 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1544 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1545 int available;
1546
1547 if (!t)
1548 break;
1549
12d79634 1550 if (!object) {
49e22585 1551 c->page = page;
49e22585 1552 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1553 object = t;
1554 available = page->objects - page->inuse;
1555 } else {
49e22585 1556 available = put_cpu_partial(s, page, 0);
8028dcea 1557 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1558 }
1559 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1560 break;
1561
497b66f2 1562 }
81819f0f 1563 spin_unlock(&n->list_lock);
497b66f2 1564 return object;
81819f0f
CL
1565}
1566
1567/*
672bba3a 1568 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1569 */
de3ec035 1570static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1571 struct kmem_cache_cpu *c)
81819f0f
CL
1572{
1573#ifdef CONFIG_NUMA
1574 struct zonelist *zonelist;
dd1a239f 1575 struct zoneref *z;
54a6eb5c
MG
1576 struct zone *zone;
1577 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1578 void *object;
cc9a6c87 1579 unsigned int cpuset_mems_cookie;
81819f0f
CL
1580
1581 /*
672bba3a
CL
1582 * The defrag ratio allows a configuration of the tradeoffs between
1583 * inter node defragmentation and node local allocations. A lower
1584 * defrag_ratio increases the tendency to do local allocations
1585 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1586 *
672bba3a
CL
1587 * If the defrag_ratio is set to 0 then kmalloc() always
1588 * returns node local objects. If the ratio is higher then kmalloc()
1589 * may return off node objects because partial slabs are obtained
1590 * from other nodes and filled up.
81819f0f 1591 *
6446faa2 1592 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1593 * defrag_ratio = 1000) then every (well almost) allocation will
1594 * first attempt to defrag slab caches on other nodes. This means
1595 * scanning over all nodes to look for partial slabs which may be
1596 * expensive if we do it every time we are trying to find a slab
1597 * with available objects.
81819f0f 1598 */
9824601e
CL
1599 if (!s->remote_node_defrag_ratio ||
1600 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1601 return NULL;
1602
cc9a6c87
MG
1603 do {
1604 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1605 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1606 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1607 struct kmem_cache_node *n;
1608
1609 n = get_node(s, zone_to_nid(zone));
1610
1611 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1612 n->nr_partial > s->min_partial) {
1613 object = get_partial_node(s, n, c);
1614 if (object) {
1615 /*
1616 * Return the object even if
1617 * put_mems_allowed indicated that
1618 * the cpuset mems_allowed was
1619 * updated in parallel. It's a
1620 * harmless race between the alloc
1621 * and the cpuset update.
1622 */
1623 put_mems_allowed(cpuset_mems_cookie);
1624 return object;
1625 }
c0ff7453 1626 }
81819f0f 1627 }
cc9a6c87 1628 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1629#endif
1630 return NULL;
1631}
1632
1633/*
1634 * Get a partial page, lock it and return it.
1635 */
497b66f2 1636static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1637 struct kmem_cache_cpu *c)
81819f0f 1638{
497b66f2 1639 void *object;
2154a336 1640 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1641
497b66f2
CL
1642 object = get_partial_node(s, get_node(s, searchnode), c);
1643 if (object || node != NUMA_NO_NODE)
1644 return object;
81819f0f 1645
acd19fd1 1646 return get_any_partial(s, flags, c);
81819f0f
CL
1647}
1648
8a5ec0ba
CL
1649#ifdef CONFIG_PREEMPT
1650/*
1651 * Calculate the next globally unique transaction for disambiguiation
1652 * during cmpxchg. The transactions start with the cpu number and are then
1653 * incremented by CONFIG_NR_CPUS.
1654 */
1655#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1656#else
1657/*
1658 * No preemption supported therefore also no need to check for
1659 * different cpus.
1660 */
1661#define TID_STEP 1
1662#endif
1663
1664static inline unsigned long next_tid(unsigned long tid)
1665{
1666 return tid + TID_STEP;
1667}
1668
1669static inline unsigned int tid_to_cpu(unsigned long tid)
1670{
1671 return tid % TID_STEP;
1672}
1673
1674static inline unsigned long tid_to_event(unsigned long tid)
1675{
1676 return tid / TID_STEP;
1677}
1678
1679static inline unsigned int init_tid(int cpu)
1680{
1681 return cpu;
1682}
1683
1684static inline void note_cmpxchg_failure(const char *n,
1685 const struct kmem_cache *s, unsigned long tid)
1686{
1687#ifdef SLUB_DEBUG_CMPXCHG
1688 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1689
1690 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1691
1692#ifdef CONFIG_PREEMPT
1693 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1694 printk("due to cpu change %d -> %d\n",
1695 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1696 else
1697#endif
1698 if (tid_to_event(tid) != tid_to_event(actual_tid))
1699 printk("due to cpu running other code. Event %ld->%ld\n",
1700 tid_to_event(tid), tid_to_event(actual_tid));
1701 else
1702 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1703 actual_tid, tid, next_tid(tid));
1704#endif
4fdccdfb 1705 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1706}
1707
8a5ec0ba
CL
1708void init_kmem_cache_cpus(struct kmem_cache *s)
1709{
8a5ec0ba
CL
1710 int cpu;
1711
1712 for_each_possible_cpu(cpu)
1713 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1714}
2cfb7455 1715
81819f0f
CL
1716/*
1717 * Remove the cpu slab
1718 */
c17dda40 1719static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1720{
2cfb7455 1721 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1722 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1723 int lock = 0;
1724 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1725 void *nextfree;
136333d1 1726 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1727 struct page new;
1728 struct page old;
1729
1730 if (page->freelist) {
84e554e6 1731 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1732 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1733 }
1734
894b8788 1735 /*
2cfb7455
CL
1736 * Stage one: Free all available per cpu objects back
1737 * to the page freelist while it is still frozen. Leave the
1738 * last one.
1739 *
1740 * There is no need to take the list->lock because the page
1741 * is still frozen.
1742 */
1743 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1744 void *prior;
1745 unsigned long counters;
1746
1747 do {
1748 prior = page->freelist;
1749 counters = page->counters;
1750 set_freepointer(s, freelist, prior);
1751 new.counters = counters;
1752 new.inuse--;
1753 VM_BUG_ON(!new.frozen);
1754
1d07171c 1755 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1756 prior, counters,
1757 freelist, new.counters,
1758 "drain percpu freelist"));
1759
1760 freelist = nextfree;
1761 }
1762
894b8788 1763 /*
2cfb7455
CL
1764 * Stage two: Ensure that the page is unfrozen while the
1765 * list presence reflects the actual number of objects
1766 * during unfreeze.
1767 *
1768 * We setup the list membership and then perform a cmpxchg
1769 * with the count. If there is a mismatch then the page
1770 * is not unfrozen but the page is on the wrong list.
1771 *
1772 * Then we restart the process which may have to remove
1773 * the page from the list that we just put it on again
1774 * because the number of objects in the slab may have
1775 * changed.
894b8788 1776 */
2cfb7455 1777redo:
894b8788 1778
2cfb7455
CL
1779 old.freelist = page->freelist;
1780 old.counters = page->counters;
1781 VM_BUG_ON(!old.frozen);
7c2e132c 1782
2cfb7455
CL
1783 /* Determine target state of the slab */
1784 new.counters = old.counters;
1785 if (freelist) {
1786 new.inuse--;
1787 set_freepointer(s, freelist, old.freelist);
1788 new.freelist = freelist;
1789 } else
1790 new.freelist = old.freelist;
1791
1792 new.frozen = 0;
1793
81107188 1794 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1795 m = M_FREE;
1796 else if (new.freelist) {
1797 m = M_PARTIAL;
1798 if (!lock) {
1799 lock = 1;
1800 /*
1801 * Taking the spinlock removes the possiblity
1802 * that acquire_slab() will see a slab page that
1803 * is frozen
1804 */
1805 spin_lock(&n->list_lock);
1806 }
1807 } else {
1808 m = M_FULL;
1809 if (kmem_cache_debug(s) && !lock) {
1810 lock = 1;
1811 /*
1812 * This also ensures that the scanning of full
1813 * slabs from diagnostic functions will not see
1814 * any frozen slabs.
1815 */
1816 spin_lock(&n->list_lock);
1817 }
1818 }
1819
1820 if (l != m) {
1821
1822 if (l == M_PARTIAL)
1823
1824 remove_partial(n, page);
1825
1826 else if (l == M_FULL)
894b8788 1827
2cfb7455
CL
1828 remove_full(s, page);
1829
1830 if (m == M_PARTIAL) {
1831
1832 add_partial(n, page, tail);
136333d1 1833 stat(s, tail);
2cfb7455
CL
1834
1835 } else if (m == M_FULL) {
894b8788 1836
2cfb7455
CL
1837 stat(s, DEACTIVATE_FULL);
1838 add_full(s, n, page);
1839
1840 }
1841 }
1842
1843 l = m;
1d07171c 1844 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1845 old.freelist, old.counters,
1846 new.freelist, new.counters,
1847 "unfreezing slab"))
1848 goto redo;
1849
2cfb7455
CL
1850 if (lock)
1851 spin_unlock(&n->list_lock);
1852
1853 if (m == M_FREE) {
1854 stat(s, DEACTIVATE_EMPTY);
1855 discard_slab(s, page);
1856 stat(s, FREE_SLAB);
894b8788 1857 }
81819f0f
CL
1858}
1859
d24ac77f
JK
1860/*
1861 * Unfreeze all the cpu partial slabs.
1862 *
1863 * This function must be called with interrupt disabled.
1864 */
49e22585
CL
1865static void unfreeze_partials(struct kmem_cache *s)
1866{
43d77867 1867 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1868 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1869 struct page *page, *discard_page = NULL;
49e22585
CL
1870
1871 while ((page = c->partial)) {
49e22585
CL
1872 struct page new;
1873 struct page old;
1874
1875 c->partial = page->next;
43d77867
JK
1876
1877 n2 = get_node(s, page_to_nid(page));
1878 if (n != n2) {
1879 if (n)
1880 spin_unlock(&n->list_lock);
1881
1882 n = n2;
1883 spin_lock(&n->list_lock);
1884 }
49e22585
CL
1885
1886 do {
1887
1888 old.freelist = page->freelist;
1889 old.counters = page->counters;
1890 VM_BUG_ON(!old.frozen);
1891
1892 new.counters = old.counters;
1893 new.freelist = old.freelist;
1894
1895 new.frozen = 0;
1896
d24ac77f 1897 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1898 old.freelist, old.counters,
1899 new.freelist, new.counters,
1900 "unfreezing slab"));
1901
43d77867 1902 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1903 page->next = discard_page;
1904 discard_page = page;
43d77867
JK
1905 } else {
1906 add_partial(n, page, DEACTIVATE_TO_TAIL);
1907 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1908 }
1909 }
1910
1911 if (n)
1912 spin_unlock(&n->list_lock);
9ada1934
SL
1913
1914 while (discard_page) {
1915 page = discard_page;
1916 discard_page = discard_page->next;
1917
1918 stat(s, DEACTIVATE_EMPTY);
1919 discard_slab(s, page);
1920 stat(s, FREE_SLAB);
1921 }
49e22585
CL
1922}
1923
1924/*
1925 * Put a page that was just frozen (in __slab_free) into a partial page
1926 * slot if available. This is done without interrupts disabled and without
1927 * preemption disabled. The cmpxchg is racy and may put the partial page
1928 * onto a random cpus partial slot.
1929 *
1930 * If we did not find a slot then simply move all the partials to the
1931 * per node partial list.
1932 */
1933int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1934{
1935 struct page *oldpage;
1936 int pages;
1937 int pobjects;
1938
1939 do {
1940 pages = 0;
1941 pobjects = 0;
1942 oldpage = this_cpu_read(s->cpu_slab->partial);
1943
1944 if (oldpage) {
1945 pobjects = oldpage->pobjects;
1946 pages = oldpage->pages;
1947 if (drain && pobjects > s->cpu_partial) {
1948 unsigned long flags;
1949 /*
1950 * partial array is full. Move the existing
1951 * set to the per node partial list.
1952 */
1953 local_irq_save(flags);
1954 unfreeze_partials(s);
1955 local_irq_restore(flags);
1956 pobjects = 0;
1957 pages = 0;
8028dcea 1958 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1959 }
1960 }
1961
1962 pages++;
1963 pobjects += page->objects - page->inuse;
1964
1965 page->pages = pages;
1966 page->pobjects = pobjects;
1967 page->next = oldpage;
1968
933393f5 1969 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1970 return pobjects;
1971}
1972
dfb4f096 1973static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1974{
84e554e6 1975 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1976 deactivate_slab(s, c->page, c->freelist);
1977
1978 c->tid = next_tid(c->tid);
1979 c->page = NULL;
1980 c->freelist = NULL;
81819f0f
CL
1981}
1982
1983/*
1984 * Flush cpu slab.
6446faa2 1985 *
81819f0f
CL
1986 * Called from IPI handler with interrupts disabled.
1987 */
0c710013 1988static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1989{
9dfc6e68 1990 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1991
49e22585
CL
1992 if (likely(c)) {
1993 if (c->page)
1994 flush_slab(s, c);
1995
1996 unfreeze_partials(s);
1997 }
81819f0f
CL
1998}
1999
2000static void flush_cpu_slab(void *d)
2001{
2002 struct kmem_cache *s = d;
81819f0f 2003
dfb4f096 2004 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2005}
2006
a8364d55
GBY
2007static bool has_cpu_slab(int cpu, void *info)
2008{
2009 struct kmem_cache *s = info;
2010 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2011
02e1a9cd 2012 return c->page || c->partial;
a8364d55
GBY
2013}
2014
81819f0f
CL
2015static void flush_all(struct kmem_cache *s)
2016{
a8364d55 2017 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2018}
2019
dfb4f096
CL
2020/*
2021 * Check if the objects in a per cpu structure fit numa
2022 * locality expectations.
2023 */
57d437d2 2024static inline int node_match(struct page *page, int node)
dfb4f096
CL
2025{
2026#ifdef CONFIG_NUMA
57d437d2 2027 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2028 return 0;
2029#endif
2030 return 1;
2031}
2032
781b2ba6
PE
2033static int count_free(struct page *page)
2034{
2035 return page->objects - page->inuse;
2036}
2037
2038static unsigned long count_partial(struct kmem_cache_node *n,
2039 int (*get_count)(struct page *))
2040{
2041 unsigned long flags;
2042 unsigned long x = 0;
2043 struct page *page;
2044
2045 spin_lock_irqsave(&n->list_lock, flags);
2046 list_for_each_entry(page, &n->partial, lru)
2047 x += get_count(page);
2048 spin_unlock_irqrestore(&n->list_lock, flags);
2049 return x;
2050}
2051
26c02cf0
AB
2052static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2053{
2054#ifdef CONFIG_SLUB_DEBUG
2055 return atomic_long_read(&n->total_objects);
2056#else
2057 return 0;
2058#endif
2059}
2060
781b2ba6
PE
2061static noinline void
2062slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2063{
2064 int node;
2065
2066 printk(KERN_WARNING
2067 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2068 nid, gfpflags);
2069 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2070 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2071 s->size, oo_order(s->oo), oo_order(s->min));
2072
3b0efdfa 2073 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2074 printk(KERN_WARNING " %s debugging increased min order, use "
2075 "slub_debug=O to disable.\n", s->name);
2076
781b2ba6
PE
2077 for_each_online_node(node) {
2078 struct kmem_cache_node *n = get_node(s, node);
2079 unsigned long nr_slabs;
2080 unsigned long nr_objs;
2081 unsigned long nr_free;
2082
2083 if (!n)
2084 continue;
2085
26c02cf0
AB
2086 nr_free = count_partial(n, count_free);
2087 nr_slabs = node_nr_slabs(n);
2088 nr_objs = node_nr_objs(n);
781b2ba6
PE
2089
2090 printk(KERN_WARNING
2091 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2092 node, nr_slabs, nr_objs, nr_free);
2093 }
2094}
2095
497b66f2
CL
2096static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2097 int node, struct kmem_cache_cpu **pc)
2098{
6faa6833 2099 void *freelist;
188fd063
CL
2100 struct kmem_cache_cpu *c = *pc;
2101 struct page *page;
497b66f2 2102
188fd063 2103 freelist = get_partial(s, flags, node, c);
497b66f2 2104
188fd063
CL
2105 if (freelist)
2106 return freelist;
2107
2108 page = new_slab(s, flags, node);
497b66f2
CL
2109 if (page) {
2110 c = __this_cpu_ptr(s->cpu_slab);
2111 if (c->page)
2112 flush_slab(s, c);
2113
2114 /*
2115 * No other reference to the page yet so we can
2116 * muck around with it freely without cmpxchg
2117 */
6faa6833 2118 freelist = page->freelist;
497b66f2
CL
2119 page->freelist = NULL;
2120
2121 stat(s, ALLOC_SLAB);
497b66f2
CL
2122 c->page = page;
2123 *pc = c;
2124 } else
6faa6833 2125 freelist = NULL;
497b66f2 2126
6faa6833 2127 return freelist;
497b66f2
CL
2128}
2129
213eeb9f
CL
2130/*
2131 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2132 * or deactivate the page.
2133 *
2134 * The page is still frozen if the return value is not NULL.
2135 *
2136 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2137 *
2138 * This function must be called with interrupt disabled.
213eeb9f
CL
2139 */
2140static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2141{
2142 struct page new;
2143 unsigned long counters;
2144 void *freelist;
2145
2146 do {
2147 freelist = page->freelist;
2148 counters = page->counters;
6faa6833 2149
213eeb9f
CL
2150 new.counters = counters;
2151 VM_BUG_ON(!new.frozen);
2152
2153 new.inuse = page->objects;
2154 new.frozen = freelist != NULL;
2155
d24ac77f 2156 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2157 freelist, counters,
2158 NULL, new.counters,
2159 "get_freelist"));
2160
2161 return freelist;
2162}
2163
81819f0f 2164/*
894b8788
CL
2165 * Slow path. The lockless freelist is empty or we need to perform
2166 * debugging duties.
2167 *
894b8788
CL
2168 * Processing is still very fast if new objects have been freed to the
2169 * regular freelist. In that case we simply take over the regular freelist
2170 * as the lockless freelist and zap the regular freelist.
81819f0f 2171 *
894b8788
CL
2172 * If that is not working then we fall back to the partial lists. We take the
2173 * first element of the freelist as the object to allocate now and move the
2174 * rest of the freelist to the lockless freelist.
81819f0f 2175 *
894b8788 2176 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2177 * we need to allocate a new slab. This is the slowest path since it involves
2178 * a call to the page allocator and the setup of a new slab.
81819f0f 2179 */
ce71e27c
EGM
2180static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2181 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2182{
6faa6833 2183 void *freelist;
f6e7def7 2184 struct page *page;
8a5ec0ba
CL
2185 unsigned long flags;
2186
2187 local_irq_save(flags);
2188#ifdef CONFIG_PREEMPT
2189 /*
2190 * We may have been preempted and rescheduled on a different
2191 * cpu before disabling interrupts. Need to reload cpu area
2192 * pointer.
2193 */
2194 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2195#endif
81819f0f 2196
f6e7def7
CL
2197 page = c->page;
2198 if (!page)
81819f0f 2199 goto new_slab;
49e22585 2200redo:
6faa6833 2201
57d437d2 2202 if (unlikely(!node_match(page, node))) {
e36a2652 2203 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2204 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2205 c->page = NULL;
2206 c->freelist = NULL;
fc59c053
CL
2207 goto new_slab;
2208 }
6446faa2 2209
73736e03 2210 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2211 freelist = c->freelist;
2212 if (freelist)
73736e03 2213 goto load_freelist;
03e404af 2214
2cfb7455 2215 stat(s, ALLOC_SLOWPATH);
03e404af 2216
f6e7def7 2217 freelist = get_freelist(s, page);
6446faa2 2218
6faa6833 2219 if (!freelist) {
03e404af
CL
2220 c->page = NULL;
2221 stat(s, DEACTIVATE_BYPASS);
fc59c053 2222 goto new_slab;
03e404af 2223 }
6446faa2 2224
84e554e6 2225 stat(s, ALLOC_REFILL);
6446faa2 2226
894b8788 2227load_freelist:
507effea
CL
2228 /*
2229 * freelist is pointing to the list of objects to be used.
2230 * page is pointing to the page from which the objects are obtained.
2231 * That page must be frozen for per cpu allocations to work.
2232 */
2233 VM_BUG_ON(!c->page->frozen);
6faa6833 2234 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2235 c->tid = next_tid(c->tid);
2236 local_irq_restore(flags);
6faa6833 2237 return freelist;
81819f0f 2238
81819f0f 2239new_slab:
2cfb7455 2240
49e22585 2241 if (c->partial) {
f6e7def7
CL
2242 page = c->page = c->partial;
2243 c->partial = page->next;
49e22585
CL
2244 stat(s, CPU_PARTIAL_ALLOC);
2245 c->freelist = NULL;
2246 goto redo;
81819f0f
CL
2247 }
2248
188fd063 2249 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2250
f4697436
CL
2251 if (unlikely(!freelist)) {
2252 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2253 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2254
f4697436
CL
2255 local_irq_restore(flags);
2256 return NULL;
81819f0f 2257 }
2cfb7455 2258
f6e7def7 2259 page = c->page;
497b66f2 2260 if (likely(!kmem_cache_debug(s)))
4b6f0750 2261 goto load_freelist;
2cfb7455 2262
497b66f2 2263 /* Only entered in the debug case */
f6e7def7 2264 if (!alloc_debug_processing(s, page, freelist, addr))
497b66f2 2265 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2266
f6e7def7 2267 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2268 c->page = NULL;
2269 c->freelist = NULL;
a71ae47a 2270 local_irq_restore(flags);
6faa6833 2271 return freelist;
894b8788
CL
2272}
2273
2274/*
2275 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2276 * have the fastpath folded into their functions. So no function call
2277 * overhead for requests that can be satisfied on the fastpath.
2278 *
2279 * The fastpath works by first checking if the lockless freelist can be used.
2280 * If not then __slab_alloc is called for slow processing.
2281 *
2282 * Otherwise we can simply pick the next object from the lockless free list.
2283 */
06428780 2284static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2285 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2286{
894b8788 2287 void **object;
dfb4f096 2288 struct kmem_cache_cpu *c;
57d437d2 2289 struct page *page;
8a5ec0ba 2290 unsigned long tid;
1f84260c 2291
c016b0bd 2292 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2293 return NULL;
1f84260c 2294
8a5ec0ba 2295redo:
8a5ec0ba
CL
2296
2297 /*
2298 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2299 * enabled. We may switch back and forth between cpus while
2300 * reading from one cpu area. That does not matter as long
2301 * as we end up on the original cpu again when doing the cmpxchg.
2302 */
9dfc6e68 2303 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2304
8a5ec0ba
CL
2305 /*
2306 * The transaction ids are globally unique per cpu and per operation on
2307 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2308 * occurs on the right processor and that there was no operation on the
2309 * linked list in between.
2310 */
2311 tid = c->tid;
2312 barrier();
8a5ec0ba 2313
9dfc6e68 2314 object = c->freelist;
57d437d2
CL
2315 page = c->page;
2316 if (unlikely(!object || !node_match(page, node)))
894b8788 2317
dfb4f096 2318 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2319
2320 else {
0ad9500e
ED
2321 void *next_object = get_freepointer_safe(s, object);
2322
8a5ec0ba 2323 /*
25985edc 2324 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2325 * operation and if we are on the right processor.
2326 *
2327 * The cmpxchg does the following atomically (without lock semantics!)
2328 * 1. Relocate first pointer to the current per cpu area.
2329 * 2. Verify that tid and freelist have not been changed
2330 * 3. If they were not changed replace tid and freelist
2331 *
2332 * Since this is without lock semantics the protection is only against
2333 * code executing on this cpu *not* from access by other cpus.
2334 */
933393f5 2335 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2336 s->cpu_slab->freelist, s->cpu_slab->tid,
2337 object, tid,
0ad9500e 2338 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2339
2340 note_cmpxchg_failure("slab_alloc", s, tid);
2341 goto redo;
2342 }
0ad9500e 2343 prefetch_freepointer(s, next_object);
84e554e6 2344 stat(s, ALLOC_FASTPATH);
894b8788 2345 }
8a5ec0ba 2346
74e2134f 2347 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2348 memset(object, 0, s->object_size);
d07dbea4 2349
c016b0bd 2350 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2351
894b8788 2352 return object;
81819f0f
CL
2353}
2354
2355void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2356{
2154a336 2357 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2358
3b0efdfa 2359 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2360
2361 return ret;
81819f0f
CL
2362}
2363EXPORT_SYMBOL(kmem_cache_alloc);
2364
0f24f128 2365#ifdef CONFIG_TRACING
4a92379b
RK
2366void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2367{
2368 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2369 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2370 return ret;
2371}
2372EXPORT_SYMBOL(kmem_cache_alloc_trace);
2373
2374void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2375{
4a92379b
RK
2376 void *ret = kmalloc_order(size, flags, order);
2377 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2378 return ret;
5b882be4 2379}
4a92379b 2380EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2381#endif
2382
81819f0f
CL
2383#ifdef CONFIG_NUMA
2384void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2385{
5b882be4
EGM
2386 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2387
ca2b84cb 2388 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2389 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2390
2391 return ret;
81819f0f
CL
2392}
2393EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2394
0f24f128 2395#ifdef CONFIG_TRACING
4a92379b 2396void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2397 gfp_t gfpflags,
4a92379b 2398 int node, size_t size)
5b882be4 2399{
4a92379b
RK
2400 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2401
2402 trace_kmalloc_node(_RET_IP_, ret,
2403 size, s->size, gfpflags, node);
2404 return ret;
5b882be4 2405}
4a92379b 2406EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2407#endif
5d1f57e4 2408#endif
5b882be4 2409
81819f0f 2410/*
894b8788
CL
2411 * Slow patch handling. This may still be called frequently since objects
2412 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2413 *
894b8788
CL
2414 * So we still attempt to reduce cache line usage. Just take the slab
2415 * lock and free the item. If there is no additional partial page
2416 * handling required then we can return immediately.
81819f0f 2417 */
894b8788 2418static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2419 void *x, unsigned long addr)
81819f0f
CL
2420{
2421 void *prior;
2422 void **object = (void *)x;
2cfb7455
CL
2423 int was_frozen;
2424 int inuse;
2425 struct page new;
2426 unsigned long counters;
2427 struct kmem_cache_node *n = NULL;
61728d1e 2428 unsigned long uninitialized_var(flags);
81819f0f 2429
8a5ec0ba 2430 stat(s, FREE_SLOWPATH);
81819f0f 2431
8dc16c6c 2432 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2433 return;
6446faa2 2434
2cfb7455
CL
2435 do {
2436 prior = page->freelist;
2437 counters = page->counters;
2438 set_freepointer(s, object, prior);
2439 new.counters = counters;
2440 was_frozen = new.frozen;
2441 new.inuse--;
2442 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2443
2444 if (!kmem_cache_debug(s) && !prior)
2445
2446 /*
2447 * Slab was on no list before and will be partially empty
2448 * We can defer the list move and instead freeze it.
2449 */
2450 new.frozen = 1;
2451
2452 else { /* Needs to be taken off a list */
2453
2454 n = get_node(s, page_to_nid(page));
2455 /*
2456 * Speculatively acquire the list_lock.
2457 * If the cmpxchg does not succeed then we may
2458 * drop the list_lock without any processing.
2459 *
2460 * Otherwise the list_lock will synchronize with
2461 * other processors updating the list of slabs.
2462 */
2463 spin_lock_irqsave(&n->list_lock, flags);
2464
2465 }
2cfb7455
CL
2466 }
2467 inuse = new.inuse;
81819f0f 2468
2cfb7455
CL
2469 } while (!cmpxchg_double_slab(s, page,
2470 prior, counters,
2471 object, new.counters,
2472 "__slab_free"));
81819f0f 2473
2cfb7455 2474 if (likely(!n)) {
49e22585
CL
2475
2476 /*
2477 * If we just froze the page then put it onto the
2478 * per cpu partial list.
2479 */
8028dcea 2480 if (new.frozen && !was_frozen) {
49e22585 2481 put_cpu_partial(s, page, 1);
8028dcea
AS
2482 stat(s, CPU_PARTIAL_FREE);
2483 }
49e22585 2484 /*
2cfb7455
CL
2485 * The list lock was not taken therefore no list
2486 * activity can be necessary.
2487 */
2488 if (was_frozen)
2489 stat(s, FREE_FROZEN);
80f08c19 2490 return;
2cfb7455 2491 }
81819f0f
CL
2492
2493 /*
2cfb7455
CL
2494 * was_frozen may have been set after we acquired the list_lock in
2495 * an earlier loop. So we need to check it here again.
81819f0f 2496 */
2cfb7455
CL
2497 if (was_frozen)
2498 stat(s, FREE_FROZEN);
2499 else {
2500 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2501 goto slab_empty;
81819f0f 2502
2cfb7455
CL
2503 /*
2504 * Objects left in the slab. If it was not on the partial list before
2505 * then add it.
2506 */
2507 if (unlikely(!prior)) {
2508 remove_full(s, page);
136333d1 2509 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2510 stat(s, FREE_ADD_PARTIAL);
2511 }
8ff12cfc 2512 }
80f08c19 2513 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2514 return;
2515
2516slab_empty:
a973e9dd 2517 if (prior) {
81819f0f 2518 /*
6fbabb20 2519 * Slab on the partial list.
81819f0f 2520 */
5cc6eee8 2521 remove_partial(n, page);
84e554e6 2522 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2523 } else
2524 /* Slab must be on the full list */
2525 remove_full(s, page);
2cfb7455 2526
80f08c19 2527 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2528 stat(s, FREE_SLAB);
81819f0f 2529 discard_slab(s, page);
81819f0f
CL
2530}
2531
894b8788
CL
2532/*
2533 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2534 * can perform fastpath freeing without additional function calls.
2535 *
2536 * The fastpath is only possible if we are freeing to the current cpu slab
2537 * of this processor. This typically the case if we have just allocated
2538 * the item before.
2539 *
2540 * If fastpath is not possible then fall back to __slab_free where we deal
2541 * with all sorts of special processing.
2542 */
06428780 2543static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2544 struct page *page, void *x, unsigned long addr)
894b8788
CL
2545{
2546 void **object = (void *)x;
dfb4f096 2547 struct kmem_cache_cpu *c;
8a5ec0ba 2548 unsigned long tid;
1f84260c 2549
c016b0bd
CL
2550 slab_free_hook(s, x);
2551
8a5ec0ba
CL
2552redo:
2553 /*
2554 * Determine the currently cpus per cpu slab.
2555 * The cpu may change afterward. However that does not matter since
2556 * data is retrieved via this pointer. If we are on the same cpu
2557 * during the cmpxchg then the free will succedd.
2558 */
9dfc6e68 2559 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2560
8a5ec0ba
CL
2561 tid = c->tid;
2562 barrier();
c016b0bd 2563
442b06bc 2564 if (likely(page == c->page)) {
ff12059e 2565 set_freepointer(s, object, c->freelist);
8a5ec0ba 2566
933393f5 2567 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2568 s->cpu_slab->freelist, s->cpu_slab->tid,
2569 c->freelist, tid,
2570 object, next_tid(tid)))) {
2571
2572 note_cmpxchg_failure("slab_free", s, tid);
2573 goto redo;
2574 }
84e554e6 2575 stat(s, FREE_FASTPATH);
894b8788 2576 } else
ff12059e 2577 __slab_free(s, page, x, addr);
894b8788 2578
894b8788
CL
2579}
2580
81819f0f
CL
2581void kmem_cache_free(struct kmem_cache *s, void *x)
2582{
77c5e2d0 2583 struct page *page;
81819f0f 2584
b49af68f 2585 page = virt_to_head_page(x);
81819f0f 2586
ce71e27c 2587 slab_free(s, page, x, _RET_IP_);
5b882be4 2588
ca2b84cb 2589 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2590}
2591EXPORT_SYMBOL(kmem_cache_free);
2592
81819f0f 2593/*
672bba3a
CL
2594 * Object placement in a slab is made very easy because we always start at
2595 * offset 0. If we tune the size of the object to the alignment then we can
2596 * get the required alignment by putting one properly sized object after
2597 * another.
81819f0f
CL
2598 *
2599 * Notice that the allocation order determines the sizes of the per cpu
2600 * caches. Each processor has always one slab available for allocations.
2601 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2602 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2603 * locking overhead.
81819f0f
CL
2604 */
2605
2606/*
2607 * Mininum / Maximum order of slab pages. This influences locking overhead
2608 * and slab fragmentation. A higher order reduces the number of partial slabs
2609 * and increases the number of allocations possible without having to
2610 * take the list_lock.
2611 */
2612static int slub_min_order;
114e9e89 2613static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2614static int slub_min_objects;
81819f0f
CL
2615
2616/*
2617 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2618 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2619 */
2620static int slub_nomerge;
2621
81819f0f
CL
2622/*
2623 * Calculate the order of allocation given an slab object size.
2624 *
672bba3a
CL
2625 * The order of allocation has significant impact on performance and other
2626 * system components. Generally order 0 allocations should be preferred since
2627 * order 0 does not cause fragmentation in the page allocator. Larger objects
2628 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2629 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2630 * would be wasted.
2631 *
2632 * In order to reach satisfactory performance we must ensure that a minimum
2633 * number of objects is in one slab. Otherwise we may generate too much
2634 * activity on the partial lists which requires taking the list_lock. This is
2635 * less a concern for large slabs though which are rarely used.
81819f0f 2636 *
672bba3a
CL
2637 * slub_max_order specifies the order where we begin to stop considering the
2638 * number of objects in a slab as critical. If we reach slub_max_order then
2639 * we try to keep the page order as low as possible. So we accept more waste
2640 * of space in favor of a small page order.
81819f0f 2641 *
672bba3a
CL
2642 * Higher order allocations also allow the placement of more objects in a
2643 * slab and thereby reduce object handling overhead. If the user has
2644 * requested a higher mininum order then we start with that one instead of
2645 * the smallest order which will fit the object.
81819f0f 2646 */
5e6d444e 2647static inline int slab_order(int size, int min_objects,
ab9a0f19 2648 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2649{
2650 int order;
2651 int rem;
6300ea75 2652 int min_order = slub_min_order;
81819f0f 2653
ab9a0f19 2654 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2655 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2656
6300ea75 2657 for (order = max(min_order,
5e6d444e
CL
2658 fls(min_objects * size - 1) - PAGE_SHIFT);
2659 order <= max_order; order++) {
81819f0f 2660
5e6d444e 2661 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2662
ab9a0f19 2663 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2664 continue;
2665
ab9a0f19 2666 rem = (slab_size - reserved) % size;
81819f0f 2667
5e6d444e 2668 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2669 break;
2670
2671 }
672bba3a 2672
81819f0f
CL
2673 return order;
2674}
2675
ab9a0f19 2676static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2677{
2678 int order;
2679 int min_objects;
2680 int fraction;
e8120ff1 2681 int max_objects;
5e6d444e
CL
2682
2683 /*
2684 * Attempt to find best configuration for a slab. This
2685 * works by first attempting to generate a layout with
2686 * the best configuration and backing off gradually.
2687 *
2688 * First we reduce the acceptable waste in a slab. Then
2689 * we reduce the minimum objects required in a slab.
2690 */
2691 min_objects = slub_min_objects;
9b2cd506
CL
2692 if (!min_objects)
2693 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2694 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2695 min_objects = min(min_objects, max_objects);
2696
5e6d444e 2697 while (min_objects > 1) {
c124f5b5 2698 fraction = 16;
5e6d444e
CL
2699 while (fraction >= 4) {
2700 order = slab_order(size, min_objects,
ab9a0f19 2701 slub_max_order, fraction, reserved);
5e6d444e
CL
2702 if (order <= slub_max_order)
2703 return order;
2704 fraction /= 2;
2705 }
5086c389 2706 min_objects--;
5e6d444e
CL
2707 }
2708
2709 /*
2710 * We were unable to place multiple objects in a slab. Now
2711 * lets see if we can place a single object there.
2712 */
ab9a0f19 2713 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2714 if (order <= slub_max_order)
2715 return order;
2716
2717 /*
2718 * Doh this slab cannot be placed using slub_max_order.
2719 */
ab9a0f19 2720 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2721 if (order < MAX_ORDER)
5e6d444e
CL
2722 return order;
2723 return -ENOSYS;
2724}
2725
81819f0f 2726/*
672bba3a 2727 * Figure out what the alignment of the objects will be.
81819f0f
CL
2728 */
2729static unsigned long calculate_alignment(unsigned long flags,
2730 unsigned long align, unsigned long size)
2731{
2732 /*
6446faa2
CL
2733 * If the user wants hardware cache aligned objects then follow that
2734 * suggestion if the object is sufficiently large.
81819f0f 2735 *
6446faa2
CL
2736 * The hardware cache alignment cannot override the specified
2737 * alignment though. If that is greater then use it.
81819f0f 2738 */
b6210386
NP
2739 if (flags & SLAB_HWCACHE_ALIGN) {
2740 unsigned long ralign = cache_line_size();
2741 while (size <= ralign / 2)
2742 ralign /= 2;
2743 align = max(align, ralign);
2744 }
81819f0f
CL
2745
2746 if (align < ARCH_SLAB_MINALIGN)
b6210386 2747 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2748
2749 return ALIGN(align, sizeof(void *));
2750}
2751
5595cffc 2752static void
4053497d 2753init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2754{
2755 n->nr_partial = 0;
81819f0f
CL
2756 spin_lock_init(&n->list_lock);
2757 INIT_LIST_HEAD(&n->partial);
8ab1372f 2758#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2759 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2760 atomic_long_set(&n->total_objects, 0);
643b1138 2761 INIT_LIST_HEAD(&n->full);
8ab1372f 2762#endif
81819f0f
CL
2763}
2764
55136592 2765static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2766{
6c182dc0
CL
2767 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2768 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2769
8a5ec0ba 2770 /*
d4d84fef
CM
2771 * Must align to double word boundary for the double cmpxchg
2772 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2773 */
d4d84fef
CM
2774 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2775 2 * sizeof(void *));
8a5ec0ba
CL
2776
2777 if (!s->cpu_slab)
2778 return 0;
2779
2780 init_kmem_cache_cpus(s);
4c93c355 2781
8a5ec0ba 2782 return 1;
4c93c355 2783}
4c93c355 2784
51df1142
CL
2785static struct kmem_cache *kmem_cache_node;
2786
81819f0f
CL
2787/*
2788 * No kmalloc_node yet so do it by hand. We know that this is the first
2789 * slab on the node for this slabcache. There are no concurrent accesses
2790 * possible.
2791 *
2792 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2793 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2794 * memory on a fresh node that has no slab structures yet.
81819f0f 2795 */
55136592 2796static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2797{
2798 struct page *page;
2799 struct kmem_cache_node *n;
2800
51df1142 2801 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2802
51df1142 2803 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2804
2805 BUG_ON(!page);
a2f92ee7
CL
2806 if (page_to_nid(page) != node) {
2807 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2808 "node %d\n", node);
2809 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2810 "in order to be able to continue\n");
2811 }
2812
81819f0f
CL
2813 n = page->freelist;
2814 BUG_ON(!n);
51df1142 2815 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2816 page->inuse = 1;
8cb0a506 2817 page->frozen = 0;
51df1142 2818 kmem_cache_node->node[node] = n;
8ab1372f 2819#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2820 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2821 init_tracking(kmem_cache_node, n);
8ab1372f 2822#endif
4053497d 2823 init_kmem_cache_node(n);
51df1142 2824 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2825
136333d1 2826 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2827}
2828
2829static void free_kmem_cache_nodes(struct kmem_cache *s)
2830{
2831 int node;
2832
f64dc58c 2833 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2834 struct kmem_cache_node *n = s->node[node];
51df1142 2835
73367bd8 2836 if (n)
51df1142
CL
2837 kmem_cache_free(kmem_cache_node, n);
2838
81819f0f
CL
2839 s->node[node] = NULL;
2840 }
2841}
2842
55136592 2843static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2844{
2845 int node;
81819f0f 2846
f64dc58c 2847 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2848 struct kmem_cache_node *n;
2849
73367bd8 2850 if (slab_state == DOWN) {
55136592 2851 early_kmem_cache_node_alloc(node);
73367bd8
AD
2852 continue;
2853 }
51df1142 2854 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2855 GFP_KERNEL, node);
81819f0f 2856
73367bd8
AD
2857 if (!n) {
2858 free_kmem_cache_nodes(s);
2859 return 0;
81819f0f 2860 }
73367bd8 2861
81819f0f 2862 s->node[node] = n;
4053497d 2863 init_kmem_cache_node(n);
81819f0f
CL
2864 }
2865 return 1;
2866}
81819f0f 2867
c0bdb232 2868static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2869{
2870 if (min < MIN_PARTIAL)
2871 min = MIN_PARTIAL;
2872 else if (min > MAX_PARTIAL)
2873 min = MAX_PARTIAL;
2874 s->min_partial = min;
2875}
2876
81819f0f
CL
2877/*
2878 * calculate_sizes() determines the order and the distribution of data within
2879 * a slab object.
2880 */
06b285dc 2881static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2882{
2883 unsigned long flags = s->flags;
3b0efdfa 2884 unsigned long size = s->object_size;
81819f0f 2885 unsigned long align = s->align;
834f3d11 2886 int order;
81819f0f 2887
d8b42bf5
CL
2888 /*
2889 * Round up object size to the next word boundary. We can only
2890 * place the free pointer at word boundaries and this determines
2891 * the possible location of the free pointer.
2892 */
2893 size = ALIGN(size, sizeof(void *));
2894
2895#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2896 /*
2897 * Determine if we can poison the object itself. If the user of
2898 * the slab may touch the object after free or before allocation
2899 * then we should never poison the object itself.
2900 */
2901 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2902 !s->ctor)
81819f0f
CL
2903 s->flags |= __OBJECT_POISON;
2904 else
2905 s->flags &= ~__OBJECT_POISON;
2906
81819f0f
CL
2907
2908 /*
672bba3a 2909 * If we are Redzoning then check if there is some space between the
81819f0f 2910 * end of the object and the free pointer. If not then add an
672bba3a 2911 * additional word to have some bytes to store Redzone information.
81819f0f 2912 */
3b0efdfa 2913 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2914 size += sizeof(void *);
41ecc55b 2915#endif
81819f0f
CL
2916
2917 /*
672bba3a
CL
2918 * With that we have determined the number of bytes in actual use
2919 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2920 */
2921 s->inuse = size;
2922
2923 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2924 s->ctor)) {
81819f0f
CL
2925 /*
2926 * Relocate free pointer after the object if it is not
2927 * permitted to overwrite the first word of the object on
2928 * kmem_cache_free.
2929 *
2930 * This is the case if we do RCU, have a constructor or
2931 * destructor or are poisoning the objects.
2932 */
2933 s->offset = size;
2934 size += sizeof(void *);
2935 }
2936
c12b3c62 2937#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2938 if (flags & SLAB_STORE_USER)
2939 /*
2940 * Need to store information about allocs and frees after
2941 * the object.
2942 */
2943 size += 2 * sizeof(struct track);
2944
be7b3fbc 2945 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2946 /*
2947 * Add some empty padding so that we can catch
2948 * overwrites from earlier objects rather than let
2949 * tracking information or the free pointer be
0211a9c8 2950 * corrupted if a user writes before the start
81819f0f
CL
2951 * of the object.
2952 */
2953 size += sizeof(void *);
41ecc55b 2954#endif
672bba3a 2955
81819f0f
CL
2956 /*
2957 * Determine the alignment based on various parameters that the
65c02d4c
CL
2958 * user specified and the dynamic determination of cache line size
2959 * on bootup.
81819f0f 2960 */
3b0efdfa 2961 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2962 s->align = align;
81819f0f
CL
2963
2964 /*
2965 * SLUB stores one object immediately after another beginning from
2966 * offset 0. In order to align the objects we have to simply size
2967 * each object to conform to the alignment.
2968 */
2969 size = ALIGN(size, align);
2970 s->size = size;
06b285dc
CL
2971 if (forced_order >= 0)
2972 order = forced_order;
2973 else
ab9a0f19 2974 order = calculate_order(size, s->reserved);
81819f0f 2975
834f3d11 2976 if (order < 0)
81819f0f
CL
2977 return 0;
2978
b7a49f0d 2979 s->allocflags = 0;
834f3d11 2980 if (order)
b7a49f0d
CL
2981 s->allocflags |= __GFP_COMP;
2982
2983 if (s->flags & SLAB_CACHE_DMA)
2984 s->allocflags |= SLUB_DMA;
2985
2986 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2987 s->allocflags |= __GFP_RECLAIMABLE;
2988
81819f0f
CL
2989 /*
2990 * Determine the number of objects per slab
2991 */
ab9a0f19
LJ
2992 s->oo = oo_make(order, size, s->reserved);
2993 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2994 if (oo_objects(s->oo) > oo_objects(s->max))
2995 s->max = s->oo;
81819f0f 2996
834f3d11 2997 return !!oo_objects(s->oo);
81819f0f
CL
2998
2999}
3000
55136592 3001static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3002 const char *name, size_t size,
3003 size_t align, unsigned long flags,
51cc5068 3004 void (*ctor)(void *))
81819f0f
CL
3005{
3006 memset(s, 0, kmem_size);
3007 s->name = name;
3008 s->ctor = ctor;
3b0efdfa 3009 s->object_size = size;
81819f0f 3010 s->align = align;
ba0268a8 3011 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3012 s->reserved = 0;
81819f0f 3013
da9a638c
LJ
3014 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3015 s->reserved = sizeof(struct rcu_head);
81819f0f 3016
06b285dc 3017 if (!calculate_sizes(s, -1))
81819f0f 3018 goto error;
3de47213
DR
3019 if (disable_higher_order_debug) {
3020 /*
3021 * Disable debugging flags that store metadata if the min slab
3022 * order increased.
3023 */
3b0efdfa 3024 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3025 s->flags &= ~DEBUG_METADATA_FLAGS;
3026 s->offset = 0;
3027 if (!calculate_sizes(s, -1))
3028 goto error;
3029 }
3030 }
81819f0f 3031
2565409f
HC
3032#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3033 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3034 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3035 /* Enable fast mode */
3036 s->flags |= __CMPXCHG_DOUBLE;
3037#endif
3038
3b89d7d8
DR
3039 /*
3040 * The larger the object size is, the more pages we want on the partial
3041 * list to avoid pounding the page allocator excessively.
3042 */
49e22585
CL
3043 set_min_partial(s, ilog2(s->size) / 2);
3044
3045 /*
3046 * cpu_partial determined the maximum number of objects kept in the
3047 * per cpu partial lists of a processor.
3048 *
3049 * Per cpu partial lists mainly contain slabs that just have one
3050 * object freed. If they are used for allocation then they can be
3051 * filled up again with minimal effort. The slab will never hit the
3052 * per node partial lists and therefore no locking will be required.
3053 *
3054 * This setting also determines
3055 *
3056 * A) The number of objects from per cpu partial slabs dumped to the
3057 * per node list when we reach the limit.
9f264904 3058 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3059 * per node list when we run out of per cpu objects. We only fetch 50%
3060 * to keep some capacity around for frees.
3061 */
8f1e33da
CL
3062 if (kmem_cache_debug(s))
3063 s->cpu_partial = 0;
3064 else if (s->size >= PAGE_SIZE)
49e22585
CL
3065 s->cpu_partial = 2;
3066 else if (s->size >= 1024)
3067 s->cpu_partial = 6;
3068 else if (s->size >= 256)
3069 s->cpu_partial = 13;
3070 else
3071 s->cpu_partial = 30;
3072
81819f0f
CL
3073 s->refcount = 1;
3074#ifdef CONFIG_NUMA
e2cb96b7 3075 s->remote_node_defrag_ratio = 1000;
81819f0f 3076#endif
55136592 3077 if (!init_kmem_cache_nodes(s))
dfb4f096 3078 goto error;
81819f0f 3079
55136592 3080 if (alloc_kmem_cache_cpus(s))
81819f0f 3081 return 1;
ff12059e 3082
4c93c355 3083 free_kmem_cache_nodes(s);
81819f0f
CL
3084error:
3085 if (flags & SLAB_PANIC)
3086 panic("Cannot create slab %s size=%lu realsize=%u "
3087 "order=%u offset=%u flags=%lx\n",
834f3d11 3088 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3089 s->offset, flags);
3090 return 0;
3091}
81819f0f 3092
81819f0f
CL
3093/*
3094 * Determine the size of a slab object
3095 */
3096unsigned int kmem_cache_size(struct kmem_cache *s)
3097{
3b0efdfa 3098 return s->object_size;
81819f0f
CL
3099}
3100EXPORT_SYMBOL(kmem_cache_size);
3101
33b12c38
CL
3102static void list_slab_objects(struct kmem_cache *s, struct page *page,
3103 const char *text)
3104{
3105#ifdef CONFIG_SLUB_DEBUG
3106 void *addr = page_address(page);
3107 void *p;
a5dd5c11
NK
3108 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3109 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3110 if (!map)
3111 return;
33b12c38
CL
3112 slab_err(s, page, "%s", text);
3113 slab_lock(page);
33b12c38 3114
5f80b13a 3115 get_map(s, page, map);
33b12c38
CL
3116 for_each_object(p, s, addr, page->objects) {
3117
3118 if (!test_bit(slab_index(p, s, addr), map)) {
3119 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3120 p, p - addr);
3121 print_tracking(s, p);
3122 }
3123 }
3124 slab_unlock(page);
bbd7d57b 3125 kfree(map);
33b12c38
CL
3126#endif
3127}
3128
81819f0f 3129/*
599870b1 3130 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3131 * This is called from kmem_cache_close(). We must be the last thread
3132 * using the cache and therefore we do not need to lock anymore.
81819f0f 3133 */
599870b1 3134static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3135{
81819f0f
CL
3136 struct page *page, *h;
3137
33b12c38 3138 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3139 if (!page->inuse) {
5cc6eee8 3140 remove_partial(n, page);
81819f0f 3141 discard_slab(s, page);
33b12c38
CL
3142 } else {
3143 list_slab_objects(s, page,
3144 "Objects remaining on kmem_cache_close()");
599870b1 3145 }
33b12c38 3146 }
81819f0f
CL
3147}
3148
3149/*
672bba3a 3150 * Release all resources used by a slab cache.
81819f0f 3151 */
0c710013 3152static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3153{
3154 int node;
3155
3156 flush_all(s);
9dfc6e68 3157 free_percpu(s->cpu_slab);
81819f0f 3158 /* Attempt to free all objects */
f64dc58c 3159 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3160 struct kmem_cache_node *n = get_node(s, node);
3161
599870b1
CL
3162 free_partial(s, n);
3163 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3164 return 1;
3165 }
3166 free_kmem_cache_nodes(s);
3167 return 0;
3168}
3169
3170/*
3171 * Close a cache and release the kmem_cache structure
3172 * (must be used for caches created using kmem_cache_create)
3173 */
3174void kmem_cache_destroy(struct kmem_cache *s)
3175{
18004c5d 3176 mutex_lock(&slab_mutex);
81819f0f
CL
3177 s->refcount--;
3178 if (!s->refcount) {
3179 list_del(&s->list);
18004c5d 3180 mutex_unlock(&slab_mutex);
d629d819
PE
3181 if (kmem_cache_close(s)) {
3182 printk(KERN_ERR "SLUB %s: %s called for cache that "
3183 "still has objects.\n", s->name, __func__);
3184 dump_stack();
3185 }
d76b1590
ED
3186 if (s->flags & SLAB_DESTROY_BY_RCU)
3187 rcu_barrier();
81819f0f 3188 sysfs_slab_remove(s);
69cb8e6b 3189 } else
18004c5d 3190 mutex_unlock(&slab_mutex);
81819f0f
CL
3191}
3192EXPORT_SYMBOL(kmem_cache_destroy);
3193
3194/********************************************************************
3195 * Kmalloc subsystem
3196 *******************************************************************/
3197
51df1142 3198struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3199EXPORT_SYMBOL(kmalloc_caches);
3200
51df1142
CL
3201static struct kmem_cache *kmem_cache;
3202
55136592 3203#ifdef CONFIG_ZONE_DMA
51df1142 3204static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3205#endif
3206
81819f0f
CL
3207static int __init setup_slub_min_order(char *str)
3208{
06428780 3209 get_option(&str, &slub_min_order);
81819f0f
CL
3210
3211 return 1;
3212}
3213
3214__setup("slub_min_order=", setup_slub_min_order);
3215
3216static int __init setup_slub_max_order(char *str)
3217{
06428780 3218 get_option(&str, &slub_max_order);
818cf590 3219 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3220
3221 return 1;
3222}
3223
3224__setup("slub_max_order=", setup_slub_max_order);
3225
3226static int __init setup_slub_min_objects(char *str)
3227{
06428780 3228 get_option(&str, &slub_min_objects);
81819f0f
CL
3229
3230 return 1;
3231}
3232
3233__setup("slub_min_objects=", setup_slub_min_objects);
3234
3235static int __init setup_slub_nomerge(char *str)
3236{
3237 slub_nomerge = 1;
3238 return 1;
3239}
3240
3241__setup("slub_nomerge", setup_slub_nomerge);
3242
51df1142
CL
3243static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3244 int size, unsigned int flags)
81819f0f 3245{
51df1142
CL
3246 struct kmem_cache *s;
3247
3248 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3249
83b519e8
PE
3250 /*
3251 * This function is called with IRQs disabled during early-boot on
18004c5d 3252 * single CPU so there's no need to take slab_mutex here.
83b519e8 3253 */
55136592 3254 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3255 flags, NULL))
81819f0f
CL
3256 goto panic;
3257
3258 list_add(&s->list, &slab_caches);
51df1142 3259 return s;
81819f0f
CL
3260
3261panic:
3262 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3263 return NULL;
81819f0f
CL
3264}
3265
f1b26339
CL
3266/*
3267 * Conversion table for small slabs sizes / 8 to the index in the
3268 * kmalloc array. This is necessary for slabs < 192 since we have non power
3269 * of two cache sizes there. The size of larger slabs can be determined using
3270 * fls.
3271 */
3272static s8 size_index[24] = {
3273 3, /* 8 */
3274 4, /* 16 */
3275 5, /* 24 */
3276 5, /* 32 */
3277 6, /* 40 */
3278 6, /* 48 */
3279 6, /* 56 */
3280 6, /* 64 */
3281 1, /* 72 */
3282 1, /* 80 */
3283 1, /* 88 */
3284 1, /* 96 */
3285 7, /* 104 */
3286 7, /* 112 */
3287 7, /* 120 */
3288 7, /* 128 */
3289 2, /* 136 */
3290 2, /* 144 */
3291 2, /* 152 */
3292 2, /* 160 */
3293 2, /* 168 */
3294 2, /* 176 */
3295 2, /* 184 */
3296 2 /* 192 */
3297};
3298
acdfcd04
AK
3299static inline int size_index_elem(size_t bytes)
3300{
3301 return (bytes - 1) / 8;
3302}
3303
81819f0f
CL
3304static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3305{
f1b26339 3306 int index;
81819f0f 3307
f1b26339
CL
3308 if (size <= 192) {
3309 if (!size)
3310 return ZERO_SIZE_PTR;
81819f0f 3311
acdfcd04 3312 index = size_index[size_index_elem(size)];
aadb4bc4 3313 } else
f1b26339 3314 index = fls(size - 1);
81819f0f
CL
3315
3316#ifdef CONFIG_ZONE_DMA
f1b26339 3317 if (unlikely((flags & SLUB_DMA)))
51df1142 3318 return kmalloc_dma_caches[index];
f1b26339 3319
81819f0f 3320#endif
51df1142 3321 return kmalloc_caches[index];
81819f0f
CL
3322}
3323
3324void *__kmalloc(size_t size, gfp_t flags)
3325{
aadb4bc4 3326 struct kmem_cache *s;
5b882be4 3327 void *ret;
81819f0f 3328
ffadd4d0 3329 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3330 return kmalloc_large(size, flags);
aadb4bc4
CL
3331
3332 s = get_slab(size, flags);
3333
3334 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3335 return s;
3336
2154a336 3337 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3338
ca2b84cb 3339 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3340
3341 return ret;
81819f0f
CL
3342}
3343EXPORT_SYMBOL(__kmalloc);
3344
5d1f57e4 3345#ifdef CONFIG_NUMA
f619cfe1
CL
3346static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3347{
b1eeab67 3348 struct page *page;
e4f7c0b4 3349 void *ptr = NULL;
f619cfe1 3350
b1eeab67
VN
3351 flags |= __GFP_COMP | __GFP_NOTRACK;
3352 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3353 if (page)
e4f7c0b4
CM
3354 ptr = page_address(page);
3355
3356 kmemleak_alloc(ptr, size, 1, flags);
3357 return ptr;
f619cfe1
CL
3358}
3359
81819f0f
CL
3360void *__kmalloc_node(size_t size, gfp_t flags, int node)
3361{
aadb4bc4 3362 struct kmem_cache *s;
5b882be4 3363 void *ret;
81819f0f 3364
057685cf 3365 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3366 ret = kmalloc_large_node(size, flags, node);
3367
ca2b84cb
EGM
3368 trace_kmalloc_node(_RET_IP_, ret,
3369 size, PAGE_SIZE << get_order(size),
3370 flags, node);
5b882be4
EGM
3371
3372 return ret;
3373 }
aadb4bc4
CL
3374
3375 s = get_slab(size, flags);
3376
3377 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3378 return s;
3379
5b882be4
EGM
3380 ret = slab_alloc(s, flags, node, _RET_IP_);
3381
ca2b84cb 3382 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3383
3384 return ret;
81819f0f
CL
3385}
3386EXPORT_SYMBOL(__kmalloc_node);
3387#endif
3388
3389size_t ksize(const void *object)
3390{
272c1d21 3391 struct page *page;
81819f0f 3392
ef8b4520 3393 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3394 return 0;
3395
294a80a8 3396 page = virt_to_head_page(object);
294a80a8 3397
76994412
PE
3398 if (unlikely(!PageSlab(page))) {
3399 WARN_ON(!PageCompound(page));
294a80a8 3400 return PAGE_SIZE << compound_order(page);
76994412 3401 }
81819f0f 3402
b3d41885 3403 return slab_ksize(page->slab);
81819f0f 3404}
b1aabecd 3405EXPORT_SYMBOL(ksize);
81819f0f 3406
d18a90dd
BG
3407#ifdef CONFIG_SLUB_DEBUG
3408bool verify_mem_not_deleted(const void *x)
3409{
3410 struct page *page;
3411 void *object = (void *)x;
3412 unsigned long flags;
3413 bool rv;
3414
3415 if (unlikely(ZERO_OR_NULL_PTR(x)))
3416 return false;
3417
3418 local_irq_save(flags);
3419
3420 page = virt_to_head_page(x);
3421 if (unlikely(!PageSlab(page))) {
3422 /* maybe it was from stack? */
3423 rv = true;
3424 goto out_unlock;
3425 }
3426
3427 slab_lock(page);
3428 if (on_freelist(page->slab, page, object)) {
3429 object_err(page->slab, page, object, "Object is on free-list");
3430 rv = false;
3431 } else {
3432 rv = true;
3433 }
3434 slab_unlock(page);
3435
3436out_unlock:
3437 local_irq_restore(flags);
3438 return rv;
3439}
3440EXPORT_SYMBOL(verify_mem_not_deleted);
3441#endif
3442
81819f0f
CL
3443void kfree(const void *x)
3444{
81819f0f 3445 struct page *page;
5bb983b0 3446 void *object = (void *)x;
81819f0f 3447
2121db74
PE
3448 trace_kfree(_RET_IP_, x);
3449
2408c550 3450 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3451 return;
3452
b49af68f 3453 page = virt_to_head_page(x);
aadb4bc4 3454 if (unlikely(!PageSlab(page))) {
0937502a 3455 BUG_ON(!PageCompound(page));
e4f7c0b4 3456 kmemleak_free(x);
aadb4bc4
CL
3457 put_page(page);
3458 return;
3459 }
ce71e27c 3460 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3461}
3462EXPORT_SYMBOL(kfree);
3463
2086d26a 3464/*
672bba3a
CL
3465 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3466 * the remaining slabs by the number of items in use. The slabs with the
3467 * most items in use come first. New allocations will then fill those up
3468 * and thus they can be removed from the partial lists.
3469 *
3470 * The slabs with the least items are placed last. This results in them
3471 * being allocated from last increasing the chance that the last objects
3472 * are freed in them.
2086d26a
CL
3473 */
3474int kmem_cache_shrink(struct kmem_cache *s)
3475{
3476 int node;
3477 int i;
3478 struct kmem_cache_node *n;
3479 struct page *page;
3480 struct page *t;
205ab99d 3481 int objects = oo_objects(s->max);
2086d26a 3482 struct list_head *slabs_by_inuse =
834f3d11 3483 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3484 unsigned long flags;
3485
3486 if (!slabs_by_inuse)
3487 return -ENOMEM;
3488
3489 flush_all(s);
f64dc58c 3490 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3491 n = get_node(s, node);
3492
3493 if (!n->nr_partial)
3494 continue;
3495
834f3d11 3496 for (i = 0; i < objects; i++)
2086d26a
CL
3497 INIT_LIST_HEAD(slabs_by_inuse + i);
3498
3499 spin_lock_irqsave(&n->list_lock, flags);
3500
3501 /*
672bba3a 3502 * Build lists indexed by the items in use in each slab.
2086d26a 3503 *
672bba3a
CL
3504 * Note that concurrent frees may occur while we hold the
3505 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3506 */
3507 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3508 list_move(&page->lru, slabs_by_inuse + page->inuse);
3509 if (!page->inuse)
3510 n->nr_partial--;
2086d26a
CL
3511 }
3512
2086d26a 3513 /*
672bba3a
CL
3514 * Rebuild the partial list with the slabs filled up most
3515 * first and the least used slabs at the end.
2086d26a 3516 */
69cb8e6b 3517 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3518 list_splice(slabs_by_inuse + i, n->partial.prev);
3519
2086d26a 3520 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3521
3522 /* Release empty slabs */
3523 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3524 discard_slab(s, page);
2086d26a
CL
3525 }
3526
3527 kfree(slabs_by_inuse);
3528 return 0;
3529}
3530EXPORT_SYMBOL(kmem_cache_shrink);
3531
92a5bbc1 3532#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3533static int slab_mem_going_offline_callback(void *arg)
3534{
3535 struct kmem_cache *s;
3536
18004c5d 3537 mutex_lock(&slab_mutex);
b9049e23
YG
3538 list_for_each_entry(s, &slab_caches, list)
3539 kmem_cache_shrink(s);
18004c5d 3540 mutex_unlock(&slab_mutex);
b9049e23
YG
3541
3542 return 0;
3543}
3544
3545static void slab_mem_offline_callback(void *arg)
3546{
3547 struct kmem_cache_node *n;
3548 struct kmem_cache *s;
3549 struct memory_notify *marg = arg;
3550 int offline_node;
3551
3552 offline_node = marg->status_change_nid;
3553
3554 /*
3555 * If the node still has available memory. we need kmem_cache_node
3556 * for it yet.
3557 */
3558 if (offline_node < 0)
3559 return;
3560
18004c5d 3561 mutex_lock(&slab_mutex);
b9049e23
YG
3562 list_for_each_entry(s, &slab_caches, list) {
3563 n = get_node(s, offline_node);
3564 if (n) {
3565 /*
3566 * if n->nr_slabs > 0, slabs still exist on the node
3567 * that is going down. We were unable to free them,
c9404c9c 3568 * and offline_pages() function shouldn't call this
b9049e23
YG
3569 * callback. So, we must fail.
3570 */
0f389ec6 3571 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3572
3573 s->node[offline_node] = NULL;
8de66a0c 3574 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3575 }
3576 }
18004c5d 3577 mutex_unlock(&slab_mutex);
b9049e23
YG
3578}
3579
3580static int slab_mem_going_online_callback(void *arg)
3581{
3582 struct kmem_cache_node *n;
3583 struct kmem_cache *s;
3584 struct memory_notify *marg = arg;
3585 int nid = marg->status_change_nid;
3586 int ret = 0;
3587
3588 /*
3589 * If the node's memory is already available, then kmem_cache_node is
3590 * already created. Nothing to do.
3591 */
3592 if (nid < 0)
3593 return 0;
3594
3595 /*
0121c619 3596 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3597 * allocate a kmem_cache_node structure in order to bring the node
3598 * online.
3599 */
18004c5d 3600 mutex_lock(&slab_mutex);
b9049e23
YG
3601 list_for_each_entry(s, &slab_caches, list) {
3602 /*
3603 * XXX: kmem_cache_alloc_node will fallback to other nodes
3604 * since memory is not yet available from the node that
3605 * is brought up.
3606 */
8de66a0c 3607 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3608 if (!n) {
3609 ret = -ENOMEM;
3610 goto out;
3611 }
4053497d 3612 init_kmem_cache_node(n);
b9049e23
YG
3613 s->node[nid] = n;
3614 }
3615out:
18004c5d 3616 mutex_unlock(&slab_mutex);
b9049e23
YG
3617 return ret;
3618}
3619
3620static int slab_memory_callback(struct notifier_block *self,
3621 unsigned long action, void *arg)
3622{
3623 int ret = 0;
3624
3625 switch (action) {
3626 case MEM_GOING_ONLINE:
3627 ret = slab_mem_going_online_callback(arg);
3628 break;
3629 case MEM_GOING_OFFLINE:
3630 ret = slab_mem_going_offline_callback(arg);
3631 break;
3632 case MEM_OFFLINE:
3633 case MEM_CANCEL_ONLINE:
3634 slab_mem_offline_callback(arg);
3635 break;
3636 case MEM_ONLINE:
3637 case MEM_CANCEL_OFFLINE:
3638 break;
3639 }
dc19f9db
KH
3640 if (ret)
3641 ret = notifier_from_errno(ret);
3642 else
3643 ret = NOTIFY_OK;
b9049e23
YG
3644 return ret;
3645}
3646
3647#endif /* CONFIG_MEMORY_HOTPLUG */
3648
81819f0f
CL
3649/********************************************************************
3650 * Basic setup of slabs
3651 *******************************************************************/
3652
51df1142
CL
3653/*
3654 * Used for early kmem_cache structures that were allocated using
3655 * the page allocator
3656 */
3657
3658static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3659{
3660 int node;
3661
3662 list_add(&s->list, &slab_caches);
3663 s->refcount = -1;
3664
3665 for_each_node_state(node, N_NORMAL_MEMORY) {
3666 struct kmem_cache_node *n = get_node(s, node);
3667 struct page *p;
3668
3669 if (n) {
3670 list_for_each_entry(p, &n->partial, lru)
3671 p->slab = s;
3672
607bf324 3673#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3674 list_for_each_entry(p, &n->full, lru)
3675 p->slab = s;
3676#endif
3677 }
3678 }
3679}
3680
81819f0f
CL
3681void __init kmem_cache_init(void)
3682{
3683 int i;
4b356be0 3684 int caches = 0;
51df1142
CL
3685 struct kmem_cache *temp_kmem_cache;
3686 int order;
51df1142
CL
3687 struct kmem_cache *temp_kmem_cache_node;
3688 unsigned long kmalloc_size;
3689
fc8d8620
SG
3690 if (debug_guardpage_minorder())
3691 slub_max_order = 0;
3692
51df1142
CL
3693 kmem_size = offsetof(struct kmem_cache, node) +
3694 nr_node_ids * sizeof(struct kmem_cache_node *);
3695
3696 /* Allocate two kmem_caches from the page allocator */
3697 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3698 order = get_order(2 * kmalloc_size);
3699 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3700
81819f0f
CL
3701 /*
3702 * Must first have the slab cache available for the allocations of the
672bba3a 3703 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3704 * kmem_cache_open for slab_state == DOWN.
3705 */
51df1142
CL
3706 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3707
3708 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3709 sizeof(struct kmem_cache_node),
3710 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3711
0c40ba4f 3712 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3713
3714 /* Able to allocate the per node structures */
3715 slab_state = PARTIAL;
3716
51df1142
CL
3717 temp_kmem_cache = kmem_cache;
3718 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3719 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3720 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3721 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3722
51df1142
CL
3723 /*
3724 * Allocate kmem_cache_node properly from the kmem_cache slab.
3725 * kmem_cache_node is separately allocated so no need to
3726 * update any list pointers.
3727 */
3728 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3729
51df1142
CL
3730 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3731 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3732
3733 kmem_cache_bootstrap_fixup(kmem_cache_node);
3734
3735 caches++;
51df1142
CL
3736 kmem_cache_bootstrap_fixup(kmem_cache);
3737 caches++;
3738 /* Free temporary boot structure */
3739 free_pages((unsigned long)temp_kmem_cache, order);
3740
3741 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3742
3743 /*
3744 * Patch up the size_index table if we have strange large alignment
3745 * requirements for the kmalloc array. This is only the case for
6446faa2 3746 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3747 *
3748 * Largest permitted alignment is 256 bytes due to the way we
3749 * handle the index determination for the smaller caches.
3750 *
3751 * Make sure that nothing crazy happens if someone starts tinkering
3752 * around with ARCH_KMALLOC_MINALIGN
3753 */
3754 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3755 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3756
acdfcd04
AK
3757 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3758 int elem = size_index_elem(i);
3759 if (elem >= ARRAY_SIZE(size_index))
3760 break;
3761 size_index[elem] = KMALLOC_SHIFT_LOW;
3762 }
f1b26339 3763
acdfcd04
AK
3764 if (KMALLOC_MIN_SIZE == 64) {
3765 /*
3766 * The 96 byte size cache is not used if the alignment
3767 * is 64 byte.
3768 */
3769 for (i = 64 + 8; i <= 96; i += 8)
3770 size_index[size_index_elem(i)] = 7;
3771 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3772 /*
3773 * The 192 byte sized cache is not used if the alignment
3774 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3775 * instead.
3776 */
3777 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3778 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3779 }
3780
51df1142
CL
3781 /* Caches that are not of the two-to-the-power-of size */
3782 if (KMALLOC_MIN_SIZE <= 32) {
3783 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3784 caches++;
3785 }
3786
3787 if (KMALLOC_MIN_SIZE <= 64) {
3788 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3789 caches++;
3790 }
3791
3792 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3793 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3794 caches++;
3795 }
3796
81819f0f
CL
3797 slab_state = UP;
3798
3799 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3800 if (KMALLOC_MIN_SIZE <= 32) {
3801 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3802 BUG_ON(!kmalloc_caches[1]->name);
3803 }
3804
3805 if (KMALLOC_MIN_SIZE <= 64) {
3806 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3807 BUG_ON(!kmalloc_caches[2]->name);
3808 }
3809
d7278bd7
CL
3810 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3811 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3812
3813 BUG_ON(!s);
51df1142 3814 kmalloc_caches[i]->name = s;
d7278bd7 3815 }
81819f0f
CL
3816
3817#ifdef CONFIG_SMP
3818 register_cpu_notifier(&slab_notifier);
9dfc6e68 3819#endif
81819f0f 3820
55136592 3821#ifdef CONFIG_ZONE_DMA
51df1142
CL
3822 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3823 struct kmem_cache *s = kmalloc_caches[i];
55136592 3824
51df1142 3825 if (s && s->size) {
55136592 3826 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3827 "dma-kmalloc-%d", s->object_size);
55136592
CL
3828
3829 BUG_ON(!name);
51df1142 3830 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3831 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3832 }
3833 }
3834#endif
3adbefee
IM
3835 printk(KERN_INFO
3836 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3837 " CPUs=%d, Nodes=%d\n",
3838 caches, cache_line_size(),
81819f0f
CL
3839 slub_min_order, slub_max_order, slub_min_objects,
3840 nr_cpu_ids, nr_node_ids);
3841}
3842
7e85ee0c
PE
3843void __init kmem_cache_init_late(void)
3844{
7e85ee0c
PE
3845}
3846
81819f0f
CL
3847/*
3848 * Find a mergeable slab cache
3849 */
3850static int slab_unmergeable(struct kmem_cache *s)
3851{
3852 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3853 return 1;
3854
c59def9f 3855 if (s->ctor)
81819f0f
CL
3856 return 1;
3857
8ffa6875
CL
3858 /*
3859 * We may have set a slab to be unmergeable during bootstrap.
3860 */
3861 if (s->refcount < 0)
3862 return 1;
3863
81819f0f
CL
3864 return 0;
3865}
3866
3867static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3868 size_t align, unsigned long flags, const char *name,
51cc5068 3869 void (*ctor)(void *))
81819f0f 3870{
5b95a4ac 3871 struct kmem_cache *s;
81819f0f
CL
3872
3873 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3874 return NULL;
3875
c59def9f 3876 if (ctor)
81819f0f
CL
3877 return NULL;
3878
3879 size = ALIGN(size, sizeof(void *));
3880 align = calculate_alignment(flags, align, size);
3881 size = ALIGN(size, align);
ba0268a8 3882 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3883
5b95a4ac 3884 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3885 if (slab_unmergeable(s))
3886 continue;
3887
3888 if (size > s->size)
3889 continue;
3890
ba0268a8 3891 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3892 continue;
3893 /*
3894 * Check if alignment is compatible.
3895 * Courtesy of Adrian Drzewiecki
3896 */
06428780 3897 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3898 continue;
3899
3900 if (s->size - size >= sizeof(void *))
3901 continue;
3902
3903 return s;
3904 }
3905 return NULL;
3906}
3907
039363f3 3908struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3909 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3910{
3911 struct kmem_cache *s;
84c1cf62 3912 char *n;
81819f0f 3913
ba0268a8 3914 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3915 if (s) {
3916 s->refcount++;
3917 /*
3918 * Adjust the object sizes so that we clear
3919 * the complete object on kzalloc.
3920 */
3b0efdfa 3921 s->object_size = max(s->object_size, (int)size);
81819f0f 3922 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3923
7b8f3b66 3924 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3925 s->refcount--;
20cea968 3926 return NULL;
7b8f3b66 3927 }
a0e1d1be
CL
3928 return s;
3929 }
6446faa2 3930
84c1cf62
PE
3931 n = kstrdup(name, GFP_KERNEL);
3932 if (!n)
20cea968 3933 return NULL;
84c1cf62 3934
a0e1d1be
CL
3935 s = kmalloc(kmem_size, GFP_KERNEL);
3936 if (s) {
84c1cf62 3937 if (kmem_cache_open(s, n,
c59def9f 3938 size, align, flags, ctor)) {
20cea968
CL
3939 int r;
3940
81819f0f 3941 list_add(&s->list, &slab_caches);
18004c5d 3942 mutex_unlock(&slab_mutex);
20cea968
CL
3943 r = sysfs_slab_add(s);
3944 mutex_lock(&slab_mutex);
3945
3946 if (!r)
3947 return s;
3948
3949 list_del(&s->list);
3950 kmem_cache_close(s);
a0e1d1be
CL
3951 }
3952 kfree(s);
81819f0f 3953 }
601d39d0 3954 kfree(n);
20cea968 3955 return NULL;
81819f0f 3956}
81819f0f 3957
81819f0f 3958#ifdef CONFIG_SMP
81819f0f 3959/*
672bba3a
CL
3960 * Use the cpu notifier to insure that the cpu slabs are flushed when
3961 * necessary.
81819f0f
CL
3962 */
3963static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3964 unsigned long action, void *hcpu)
3965{
3966 long cpu = (long)hcpu;
5b95a4ac
CL
3967 struct kmem_cache *s;
3968 unsigned long flags;
81819f0f
CL
3969
3970 switch (action) {
3971 case CPU_UP_CANCELED:
8bb78442 3972 case CPU_UP_CANCELED_FROZEN:
81819f0f 3973 case CPU_DEAD:
8bb78442 3974 case CPU_DEAD_FROZEN:
18004c5d 3975 mutex_lock(&slab_mutex);
5b95a4ac
CL
3976 list_for_each_entry(s, &slab_caches, list) {
3977 local_irq_save(flags);
3978 __flush_cpu_slab(s, cpu);
3979 local_irq_restore(flags);
3980 }
18004c5d 3981 mutex_unlock(&slab_mutex);
81819f0f
CL
3982 break;
3983 default:
3984 break;
3985 }
3986 return NOTIFY_OK;
3987}
3988
06428780 3989static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3990 .notifier_call = slab_cpuup_callback
06428780 3991};
81819f0f
CL
3992
3993#endif
3994
ce71e27c 3995void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3996{
aadb4bc4 3997 struct kmem_cache *s;
94b528d0 3998 void *ret;
aadb4bc4 3999
ffadd4d0 4000 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4001 return kmalloc_large(size, gfpflags);
4002
aadb4bc4 4003 s = get_slab(size, gfpflags);
81819f0f 4004
2408c550 4005 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4006 return s;
81819f0f 4007
2154a336 4008 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4009
25985edc 4010 /* Honor the call site pointer we received. */
ca2b84cb 4011 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4012
4013 return ret;
81819f0f
CL
4014}
4015
5d1f57e4 4016#ifdef CONFIG_NUMA
81819f0f 4017void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4018 int node, unsigned long caller)
81819f0f 4019{
aadb4bc4 4020 struct kmem_cache *s;
94b528d0 4021 void *ret;
aadb4bc4 4022
d3e14aa3
XF
4023 if (unlikely(size > SLUB_MAX_SIZE)) {
4024 ret = kmalloc_large_node(size, gfpflags, node);
4025
4026 trace_kmalloc_node(caller, ret,
4027 size, PAGE_SIZE << get_order(size),
4028 gfpflags, node);
4029
4030 return ret;
4031 }
eada35ef 4032
aadb4bc4 4033 s = get_slab(size, gfpflags);
81819f0f 4034
2408c550 4035 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4036 return s;
81819f0f 4037
94b528d0
EGM
4038 ret = slab_alloc(s, gfpflags, node, caller);
4039
25985edc 4040 /* Honor the call site pointer we received. */
ca2b84cb 4041 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4042
4043 return ret;
81819f0f 4044}
5d1f57e4 4045#endif
81819f0f 4046
ab4d5ed5 4047#ifdef CONFIG_SYSFS
205ab99d
CL
4048static int count_inuse(struct page *page)
4049{
4050 return page->inuse;
4051}
4052
4053static int count_total(struct page *page)
4054{
4055 return page->objects;
4056}
ab4d5ed5 4057#endif
205ab99d 4058
ab4d5ed5 4059#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4060static int validate_slab(struct kmem_cache *s, struct page *page,
4061 unsigned long *map)
53e15af0
CL
4062{
4063 void *p;
a973e9dd 4064 void *addr = page_address(page);
53e15af0
CL
4065
4066 if (!check_slab(s, page) ||
4067 !on_freelist(s, page, NULL))
4068 return 0;
4069
4070 /* Now we know that a valid freelist exists */
39b26464 4071 bitmap_zero(map, page->objects);
53e15af0 4072
5f80b13a
CL
4073 get_map(s, page, map);
4074 for_each_object(p, s, addr, page->objects) {
4075 if (test_bit(slab_index(p, s, addr), map))
4076 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4077 return 0;
53e15af0
CL
4078 }
4079
224a88be 4080 for_each_object(p, s, addr, page->objects)
7656c72b 4081 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4082 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4083 return 0;
4084 return 1;
4085}
4086
434e245d
CL
4087static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4088 unsigned long *map)
53e15af0 4089{
881db7fb
CL
4090 slab_lock(page);
4091 validate_slab(s, page, map);
4092 slab_unlock(page);
53e15af0
CL
4093}
4094
434e245d
CL
4095static int validate_slab_node(struct kmem_cache *s,
4096 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4097{
4098 unsigned long count = 0;
4099 struct page *page;
4100 unsigned long flags;
4101
4102 spin_lock_irqsave(&n->list_lock, flags);
4103
4104 list_for_each_entry(page, &n->partial, lru) {
434e245d 4105 validate_slab_slab(s, page, map);
53e15af0
CL
4106 count++;
4107 }
4108 if (count != n->nr_partial)
4109 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4110 "counter=%ld\n", s->name, count, n->nr_partial);
4111
4112 if (!(s->flags & SLAB_STORE_USER))
4113 goto out;
4114
4115 list_for_each_entry(page, &n->full, lru) {
434e245d 4116 validate_slab_slab(s, page, map);
53e15af0
CL
4117 count++;
4118 }
4119 if (count != atomic_long_read(&n->nr_slabs))
4120 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4121 "counter=%ld\n", s->name, count,
4122 atomic_long_read(&n->nr_slabs));
4123
4124out:
4125 spin_unlock_irqrestore(&n->list_lock, flags);
4126 return count;
4127}
4128
434e245d 4129static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4130{
4131 int node;
4132 unsigned long count = 0;
205ab99d 4133 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4134 sizeof(unsigned long), GFP_KERNEL);
4135
4136 if (!map)
4137 return -ENOMEM;
53e15af0
CL
4138
4139 flush_all(s);
f64dc58c 4140 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4141 struct kmem_cache_node *n = get_node(s, node);
4142
434e245d 4143 count += validate_slab_node(s, n, map);
53e15af0 4144 }
434e245d 4145 kfree(map);
53e15af0
CL
4146 return count;
4147}
88a420e4 4148/*
672bba3a 4149 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4150 * and freed.
4151 */
4152
4153struct location {
4154 unsigned long count;
ce71e27c 4155 unsigned long addr;
45edfa58
CL
4156 long long sum_time;
4157 long min_time;
4158 long max_time;
4159 long min_pid;
4160 long max_pid;
174596a0 4161 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4162 nodemask_t nodes;
88a420e4
CL
4163};
4164
4165struct loc_track {
4166 unsigned long max;
4167 unsigned long count;
4168 struct location *loc;
4169};
4170
4171static void free_loc_track(struct loc_track *t)
4172{
4173 if (t->max)
4174 free_pages((unsigned long)t->loc,
4175 get_order(sizeof(struct location) * t->max));
4176}
4177
68dff6a9 4178static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4179{
4180 struct location *l;
4181 int order;
4182
88a420e4
CL
4183 order = get_order(sizeof(struct location) * max);
4184
68dff6a9 4185 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4186 if (!l)
4187 return 0;
4188
4189 if (t->count) {
4190 memcpy(l, t->loc, sizeof(struct location) * t->count);
4191 free_loc_track(t);
4192 }
4193 t->max = max;
4194 t->loc = l;
4195 return 1;
4196}
4197
4198static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4199 const struct track *track)
88a420e4
CL
4200{
4201 long start, end, pos;
4202 struct location *l;
ce71e27c 4203 unsigned long caddr;
45edfa58 4204 unsigned long age = jiffies - track->when;
88a420e4
CL
4205
4206 start = -1;
4207 end = t->count;
4208
4209 for ( ; ; ) {
4210 pos = start + (end - start + 1) / 2;
4211
4212 /*
4213 * There is nothing at "end". If we end up there
4214 * we need to add something to before end.
4215 */
4216 if (pos == end)
4217 break;
4218
4219 caddr = t->loc[pos].addr;
45edfa58
CL
4220 if (track->addr == caddr) {
4221
4222 l = &t->loc[pos];
4223 l->count++;
4224 if (track->when) {
4225 l->sum_time += age;
4226 if (age < l->min_time)
4227 l->min_time = age;
4228 if (age > l->max_time)
4229 l->max_time = age;
4230
4231 if (track->pid < l->min_pid)
4232 l->min_pid = track->pid;
4233 if (track->pid > l->max_pid)
4234 l->max_pid = track->pid;
4235
174596a0
RR
4236 cpumask_set_cpu(track->cpu,
4237 to_cpumask(l->cpus));
45edfa58
CL
4238 }
4239 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4240 return 1;
4241 }
4242
45edfa58 4243 if (track->addr < caddr)
88a420e4
CL
4244 end = pos;
4245 else
4246 start = pos;
4247 }
4248
4249 /*
672bba3a 4250 * Not found. Insert new tracking element.
88a420e4 4251 */
68dff6a9 4252 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4253 return 0;
4254
4255 l = t->loc + pos;
4256 if (pos < t->count)
4257 memmove(l + 1, l,
4258 (t->count - pos) * sizeof(struct location));
4259 t->count++;
4260 l->count = 1;
45edfa58
CL
4261 l->addr = track->addr;
4262 l->sum_time = age;
4263 l->min_time = age;
4264 l->max_time = age;
4265 l->min_pid = track->pid;
4266 l->max_pid = track->pid;
174596a0
RR
4267 cpumask_clear(to_cpumask(l->cpus));
4268 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4269 nodes_clear(l->nodes);
4270 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4271 return 1;
4272}
4273
4274static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4275 struct page *page, enum track_item alloc,
a5dd5c11 4276 unsigned long *map)
88a420e4 4277{
a973e9dd 4278 void *addr = page_address(page);
88a420e4
CL
4279 void *p;
4280
39b26464 4281 bitmap_zero(map, page->objects);
5f80b13a 4282 get_map(s, page, map);
88a420e4 4283
224a88be 4284 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4285 if (!test_bit(slab_index(p, s, addr), map))
4286 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4287}
4288
4289static int list_locations(struct kmem_cache *s, char *buf,
4290 enum track_item alloc)
4291{
e374d483 4292 int len = 0;
88a420e4 4293 unsigned long i;
68dff6a9 4294 struct loc_track t = { 0, 0, NULL };
88a420e4 4295 int node;
bbd7d57b
ED
4296 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4297 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4298
bbd7d57b
ED
4299 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4300 GFP_TEMPORARY)) {
4301 kfree(map);
68dff6a9 4302 return sprintf(buf, "Out of memory\n");
bbd7d57b 4303 }
88a420e4
CL
4304 /* Push back cpu slabs */
4305 flush_all(s);
4306
f64dc58c 4307 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4308 struct kmem_cache_node *n = get_node(s, node);
4309 unsigned long flags;
4310 struct page *page;
4311
9e86943b 4312 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4313 continue;
4314
4315 spin_lock_irqsave(&n->list_lock, flags);
4316 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4317 process_slab(&t, s, page, alloc, map);
88a420e4 4318 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4319 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4320 spin_unlock_irqrestore(&n->list_lock, flags);
4321 }
4322
4323 for (i = 0; i < t.count; i++) {
45edfa58 4324 struct location *l = &t.loc[i];
88a420e4 4325
9c246247 4326 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4327 break;
e374d483 4328 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4329
4330 if (l->addr)
62c70bce 4331 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4332 else
e374d483 4333 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4334
4335 if (l->sum_time != l->min_time) {
e374d483 4336 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4337 l->min_time,
4338 (long)div_u64(l->sum_time, l->count),
4339 l->max_time);
45edfa58 4340 } else
e374d483 4341 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4342 l->min_time);
4343
4344 if (l->min_pid != l->max_pid)
e374d483 4345 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4346 l->min_pid, l->max_pid);
4347 else
e374d483 4348 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4349 l->min_pid);
4350
174596a0
RR
4351 if (num_online_cpus() > 1 &&
4352 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4353 len < PAGE_SIZE - 60) {
4354 len += sprintf(buf + len, " cpus=");
4355 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4356 to_cpumask(l->cpus));
45edfa58
CL
4357 }
4358
62bc62a8 4359 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4360 len < PAGE_SIZE - 60) {
4361 len += sprintf(buf + len, " nodes=");
4362 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4363 l->nodes);
4364 }
4365
e374d483 4366 len += sprintf(buf + len, "\n");
88a420e4
CL
4367 }
4368
4369 free_loc_track(&t);
bbd7d57b 4370 kfree(map);
88a420e4 4371 if (!t.count)
e374d483
HH
4372 len += sprintf(buf, "No data\n");
4373 return len;
88a420e4 4374}
ab4d5ed5 4375#endif
88a420e4 4376
a5a84755
CL
4377#ifdef SLUB_RESILIENCY_TEST
4378static void resiliency_test(void)
4379{
4380 u8 *p;
4381
4382 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4383
4384 printk(KERN_ERR "SLUB resiliency testing\n");
4385 printk(KERN_ERR "-----------------------\n");
4386 printk(KERN_ERR "A. Corruption after allocation\n");
4387
4388 p = kzalloc(16, GFP_KERNEL);
4389 p[16] = 0x12;
4390 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4391 " 0x12->0x%p\n\n", p + 16);
4392
4393 validate_slab_cache(kmalloc_caches[4]);
4394
4395 /* Hmmm... The next two are dangerous */
4396 p = kzalloc(32, GFP_KERNEL);
4397 p[32 + sizeof(void *)] = 0x34;
4398 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4399 " 0x34 -> -0x%p\n", p);
4400 printk(KERN_ERR
4401 "If allocated object is overwritten then not detectable\n\n");
4402
4403 validate_slab_cache(kmalloc_caches[5]);
4404 p = kzalloc(64, GFP_KERNEL);
4405 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4406 *p = 0x56;
4407 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4408 p);
4409 printk(KERN_ERR
4410 "If allocated object is overwritten then not detectable\n\n");
4411 validate_slab_cache(kmalloc_caches[6]);
4412
4413 printk(KERN_ERR "\nB. Corruption after free\n");
4414 p = kzalloc(128, GFP_KERNEL);
4415 kfree(p);
4416 *p = 0x78;
4417 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4418 validate_slab_cache(kmalloc_caches[7]);
4419
4420 p = kzalloc(256, GFP_KERNEL);
4421 kfree(p);
4422 p[50] = 0x9a;
4423 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4424 p);
4425 validate_slab_cache(kmalloc_caches[8]);
4426
4427 p = kzalloc(512, GFP_KERNEL);
4428 kfree(p);
4429 p[512] = 0xab;
4430 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4431 validate_slab_cache(kmalloc_caches[9]);
4432}
4433#else
4434#ifdef CONFIG_SYSFS
4435static void resiliency_test(void) {};
4436#endif
4437#endif
4438
ab4d5ed5 4439#ifdef CONFIG_SYSFS
81819f0f 4440enum slab_stat_type {
205ab99d
CL
4441 SL_ALL, /* All slabs */
4442 SL_PARTIAL, /* Only partially allocated slabs */
4443 SL_CPU, /* Only slabs used for cpu caches */
4444 SL_OBJECTS, /* Determine allocated objects not slabs */
4445 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4446};
4447
205ab99d 4448#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4449#define SO_PARTIAL (1 << SL_PARTIAL)
4450#define SO_CPU (1 << SL_CPU)
4451#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4452#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4453
62e5c4b4
CG
4454static ssize_t show_slab_objects(struct kmem_cache *s,
4455 char *buf, unsigned long flags)
81819f0f
CL
4456{
4457 unsigned long total = 0;
81819f0f
CL
4458 int node;
4459 int x;
4460 unsigned long *nodes;
4461 unsigned long *per_cpu;
4462
4463 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4464 if (!nodes)
4465 return -ENOMEM;
81819f0f
CL
4466 per_cpu = nodes + nr_node_ids;
4467
205ab99d
CL
4468 if (flags & SO_CPU) {
4469 int cpu;
81819f0f 4470
205ab99d 4471 for_each_possible_cpu(cpu) {
9dfc6e68 4472 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4473 int node;
49e22585 4474 struct page *page;
dfb4f096 4475
bc6697d8 4476 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4477 if (!page)
4478 continue;
205ab99d 4479
ec3ab083
CL
4480 node = page_to_nid(page);
4481 if (flags & SO_TOTAL)
4482 x = page->objects;
4483 else if (flags & SO_OBJECTS)
4484 x = page->inuse;
4485 else
4486 x = 1;
49e22585 4487
ec3ab083
CL
4488 total += x;
4489 nodes[node] += x;
4490
4491 page = ACCESS_ONCE(c->partial);
49e22585
CL
4492 if (page) {
4493 x = page->pobjects;
bc6697d8
ED
4494 total += x;
4495 nodes[node] += x;
49e22585 4496 }
ec3ab083 4497
bc6697d8 4498 per_cpu[node]++;
81819f0f
CL
4499 }
4500 }
4501
04d94879 4502 lock_memory_hotplug();
ab4d5ed5 4503#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4504 if (flags & SO_ALL) {
4505 for_each_node_state(node, N_NORMAL_MEMORY) {
4506 struct kmem_cache_node *n = get_node(s, node);
4507
4508 if (flags & SO_TOTAL)
4509 x = atomic_long_read(&n->total_objects);
4510 else if (flags & SO_OBJECTS)
4511 x = atomic_long_read(&n->total_objects) -
4512 count_partial(n, count_free);
81819f0f 4513
81819f0f 4514 else
205ab99d 4515 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4516 total += x;
4517 nodes[node] += x;
4518 }
4519
ab4d5ed5
CL
4520 } else
4521#endif
4522 if (flags & SO_PARTIAL) {
205ab99d
CL
4523 for_each_node_state(node, N_NORMAL_MEMORY) {
4524 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4525
205ab99d
CL
4526 if (flags & SO_TOTAL)
4527 x = count_partial(n, count_total);
4528 else if (flags & SO_OBJECTS)
4529 x = count_partial(n, count_inuse);
81819f0f 4530 else
205ab99d 4531 x = n->nr_partial;
81819f0f
CL
4532 total += x;
4533 nodes[node] += x;
4534 }
4535 }
81819f0f
CL
4536 x = sprintf(buf, "%lu", total);
4537#ifdef CONFIG_NUMA
f64dc58c 4538 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4539 if (nodes[node])
4540 x += sprintf(buf + x, " N%d=%lu",
4541 node, nodes[node]);
4542#endif
04d94879 4543 unlock_memory_hotplug();
81819f0f
CL
4544 kfree(nodes);
4545 return x + sprintf(buf + x, "\n");
4546}
4547
ab4d5ed5 4548#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4549static int any_slab_objects(struct kmem_cache *s)
4550{
4551 int node;
81819f0f 4552
dfb4f096 4553 for_each_online_node(node) {
81819f0f
CL
4554 struct kmem_cache_node *n = get_node(s, node);
4555
dfb4f096
CL
4556 if (!n)
4557 continue;
4558
4ea33e2d 4559 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4560 return 1;
4561 }
4562 return 0;
4563}
ab4d5ed5 4564#endif
81819f0f
CL
4565
4566#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4567#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4568
4569struct slab_attribute {
4570 struct attribute attr;
4571 ssize_t (*show)(struct kmem_cache *s, char *buf);
4572 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4573};
4574
4575#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4576 static struct slab_attribute _name##_attr = \
4577 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4578
4579#define SLAB_ATTR(_name) \
4580 static struct slab_attribute _name##_attr = \
ab067e99 4581 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4582
81819f0f
CL
4583static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4584{
4585 return sprintf(buf, "%d\n", s->size);
4586}
4587SLAB_ATTR_RO(slab_size);
4588
4589static ssize_t align_show(struct kmem_cache *s, char *buf)
4590{
4591 return sprintf(buf, "%d\n", s->align);
4592}
4593SLAB_ATTR_RO(align);
4594
4595static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4596{
3b0efdfa 4597 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4598}
4599SLAB_ATTR_RO(object_size);
4600
4601static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4602{
834f3d11 4603 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4604}
4605SLAB_ATTR_RO(objs_per_slab);
4606
06b285dc
CL
4607static ssize_t order_store(struct kmem_cache *s,
4608 const char *buf, size_t length)
4609{
0121c619
CL
4610 unsigned long order;
4611 int err;
4612
4613 err = strict_strtoul(buf, 10, &order);
4614 if (err)
4615 return err;
06b285dc
CL
4616
4617 if (order > slub_max_order || order < slub_min_order)
4618 return -EINVAL;
4619
4620 calculate_sizes(s, order);
4621 return length;
4622}
4623
81819f0f
CL
4624static ssize_t order_show(struct kmem_cache *s, char *buf)
4625{
834f3d11 4626 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4627}
06b285dc 4628SLAB_ATTR(order);
81819f0f 4629
73d342b1
DR
4630static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%lu\n", s->min_partial);
4633}
4634
4635static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4636 size_t length)
4637{
4638 unsigned long min;
4639 int err;
4640
4641 err = strict_strtoul(buf, 10, &min);
4642 if (err)
4643 return err;
4644
c0bdb232 4645 set_min_partial(s, min);
73d342b1
DR
4646 return length;
4647}
4648SLAB_ATTR(min_partial);
4649
49e22585
CL
4650static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4651{
4652 return sprintf(buf, "%u\n", s->cpu_partial);
4653}
4654
4655static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4656 size_t length)
4657{
4658 unsigned long objects;
4659 int err;
4660
4661 err = strict_strtoul(buf, 10, &objects);
4662 if (err)
4663 return err;
74ee4ef1
DR
4664 if (objects && kmem_cache_debug(s))
4665 return -EINVAL;
49e22585
CL
4666
4667 s->cpu_partial = objects;
4668 flush_all(s);
4669 return length;
4670}
4671SLAB_ATTR(cpu_partial);
4672
81819f0f
CL
4673static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4674{
62c70bce
JP
4675 if (!s->ctor)
4676 return 0;
4677 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4678}
4679SLAB_ATTR_RO(ctor);
4680
81819f0f
CL
4681static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4682{
4683 return sprintf(buf, "%d\n", s->refcount - 1);
4684}
4685SLAB_ATTR_RO(aliases);
4686
81819f0f
CL
4687static ssize_t partial_show(struct kmem_cache *s, char *buf)
4688{
d9acf4b7 4689 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4690}
4691SLAB_ATTR_RO(partial);
4692
4693static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4694{
d9acf4b7 4695 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4696}
4697SLAB_ATTR_RO(cpu_slabs);
4698
4699static ssize_t objects_show(struct kmem_cache *s, char *buf)
4700{
205ab99d 4701 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4702}
4703SLAB_ATTR_RO(objects);
4704
205ab99d
CL
4705static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4706{
4707 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4708}
4709SLAB_ATTR_RO(objects_partial);
4710
49e22585
CL
4711static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4712{
4713 int objects = 0;
4714 int pages = 0;
4715 int cpu;
4716 int len;
4717
4718 for_each_online_cpu(cpu) {
4719 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4720
4721 if (page) {
4722 pages += page->pages;
4723 objects += page->pobjects;
4724 }
4725 }
4726
4727 len = sprintf(buf, "%d(%d)", objects, pages);
4728
4729#ifdef CONFIG_SMP
4730 for_each_online_cpu(cpu) {
4731 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4732
4733 if (page && len < PAGE_SIZE - 20)
4734 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4735 page->pobjects, page->pages);
4736 }
4737#endif
4738 return len + sprintf(buf + len, "\n");
4739}
4740SLAB_ATTR_RO(slabs_cpu_partial);
4741
a5a84755
CL
4742static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4743{
4744 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4745}
4746
4747static ssize_t reclaim_account_store(struct kmem_cache *s,
4748 const char *buf, size_t length)
4749{
4750 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4751 if (buf[0] == '1')
4752 s->flags |= SLAB_RECLAIM_ACCOUNT;
4753 return length;
4754}
4755SLAB_ATTR(reclaim_account);
4756
4757static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4758{
4759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4760}
4761SLAB_ATTR_RO(hwcache_align);
4762
4763#ifdef CONFIG_ZONE_DMA
4764static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4765{
4766 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4767}
4768SLAB_ATTR_RO(cache_dma);
4769#endif
4770
4771static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4772{
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4774}
4775SLAB_ATTR_RO(destroy_by_rcu);
4776
ab9a0f19
LJ
4777static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4778{
4779 return sprintf(buf, "%d\n", s->reserved);
4780}
4781SLAB_ATTR_RO(reserved);
4782
ab4d5ed5 4783#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4784static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4785{
4786 return show_slab_objects(s, buf, SO_ALL);
4787}
4788SLAB_ATTR_RO(slabs);
4789
205ab99d
CL
4790static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4791{
4792 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4793}
4794SLAB_ATTR_RO(total_objects);
4795
81819f0f
CL
4796static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4797{
4798 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4799}
4800
4801static ssize_t sanity_checks_store(struct kmem_cache *s,
4802 const char *buf, size_t length)
4803{
4804 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4805 if (buf[0] == '1') {
4806 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4807 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4808 }
81819f0f
CL
4809 return length;
4810}
4811SLAB_ATTR(sanity_checks);
4812
4813static ssize_t trace_show(struct kmem_cache *s, char *buf)
4814{
4815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4816}
4817
4818static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4819 size_t length)
4820{
4821 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4822 if (buf[0] == '1') {
4823 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4824 s->flags |= SLAB_TRACE;
b789ef51 4825 }
81819f0f
CL
4826 return length;
4827}
4828SLAB_ATTR(trace);
4829
81819f0f
CL
4830static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4831{
4832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4833}
4834
4835static ssize_t red_zone_store(struct kmem_cache *s,
4836 const char *buf, size_t length)
4837{
4838 if (any_slab_objects(s))
4839 return -EBUSY;
4840
4841 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4842 if (buf[0] == '1') {
4843 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4844 s->flags |= SLAB_RED_ZONE;
b789ef51 4845 }
06b285dc 4846 calculate_sizes(s, -1);
81819f0f
CL
4847 return length;
4848}
4849SLAB_ATTR(red_zone);
4850
4851static ssize_t poison_show(struct kmem_cache *s, char *buf)
4852{
4853 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4854}
4855
4856static ssize_t poison_store(struct kmem_cache *s,
4857 const char *buf, size_t length)
4858{
4859 if (any_slab_objects(s))
4860 return -EBUSY;
4861
4862 s->flags &= ~SLAB_POISON;
b789ef51
CL
4863 if (buf[0] == '1') {
4864 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4865 s->flags |= SLAB_POISON;
b789ef51 4866 }
06b285dc 4867 calculate_sizes(s, -1);
81819f0f
CL
4868 return length;
4869}
4870SLAB_ATTR(poison);
4871
4872static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4873{
4874 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4875}
4876
4877static ssize_t store_user_store(struct kmem_cache *s,
4878 const char *buf, size_t length)
4879{
4880 if (any_slab_objects(s))
4881 return -EBUSY;
4882
4883 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4884 if (buf[0] == '1') {
4885 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4886 s->flags |= SLAB_STORE_USER;
b789ef51 4887 }
06b285dc 4888 calculate_sizes(s, -1);
81819f0f
CL
4889 return length;
4890}
4891SLAB_ATTR(store_user);
4892
53e15af0
CL
4893static ssize_t validate_show(struct kmem_cache *s, char *buf)
4894{
4895 return 0;
4896}
4897
4898static ssize_t validate_store(struct kmem_cache *s,
4899 const char *buf, size_t length)
4900{
434e245d
CL
4901 int ret = -EINVAL;
4902
4903 if (buf[0] == '1') {
4904 ret = validate_slab_cache(s);
4905 if (ret >= 0)
4906 ret = length;
4907 }
4908 return ret;
53e15af0
CL
4909}
4910SLAB_ATTR(validate);
a5a84755
CL
4911
4912static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4913{
4914 if (!(s->flags & SLAB_STORE_USER))
4915 return -ENOSYS;
4916 return list_locations(s, buf, TRACK_ALLOC);
4917}
4918SLAB_ATTR_RO(alloc_calls);
4919
4920static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4921{
4922 if (!(s->flags & SLAB_STORE_USER))
4923 return -ENOSYS;
4924 return list_locations(s, buf, TRACK_FREE);
4925}
4926SLAB_ATTR_RO(free_calls);
4927#endif /* CONFIG_SLUB_DEBUG */
4928
4929#ifdef CONFIG_FAILSLAB
4930static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4931{
4932 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4933}
4934
4935static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4936 size_t length)
4937{
4938 s->flags &= ~SLAB_FAILSLAB;
4939 if (buf[0] == '1')
4940 s->flags |= SLAB_FAILSLAB;
4941 return length;
4942}
4943SLAB_ATTR(failslab);
ab4d5ed5 4944#endif
53e15af0 4945
2086d26a
CL
4946static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4947{
4948 return 0;
4949}
4950
4951static ssize_t shrink_store(struct kmem_cache *s,
4952 const char *buf, size_t length)
4953{
4954 if (buf[0] == '1') {
4955 int rc = kmem_cache_shrink(s);
4956
4957 if (rc)
4958 return rc;
4959 } else
4960 return -EINVAL;
4961 return length;
4962}
4963SLAB_ATTR(shrink);
4964
81819f0f 4965#ifdef CONFIG_NUMA
9824601e 4966static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4967{
9824601e 4968 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4969}
4970
9824601e 4971static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4972 const char *buf, size_t length)
4973{
0121c619
CL
4974 unsigned long ratio;
4975 int err;
4976
4977 err = strict_strtoul(buf, 10, &ratio);
4978 if (err)
4979 return err;
4980
e2cb96b7 4981 if (ratio <= 100)
0121c619 4982 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4983
81819f0f
CL
4984 return length;
4985}
9824601e 4986SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4987#endif
4988
8ff12cfc 4989#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4990static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4991{
4992 unsigned long sum = 0;
4993 int cpu;
4994 int len;
4995 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4996
4997 if (!data)
4998 return -ENOMEM;
4999
5000 for_each_online_cpu(cpu) {
9dfc6e68 5001 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5002
5003 data[cpu] = x;
5004 sum += x;
5005 }
5006
5007 len = sprintf(buf, "%lu", sum);
5008
50ef37b9 5009#ifdef CONFIG_SMP
8ff12cfc
CL
5010 for_each_online_cpu(cpu) {
5011 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5012 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5013 }
50ef37b9 5014#endif
8ff12cfc
CL
5015 kfree(data);
5016 return len + sprintf(buf + len, "\n");
5017}
5018
78eb00cc
DR
5019static void clear_stat(struct kmem_cache *s, enum stat_item si)
5020{
5021 int cpu;
5022
5023 for_each_online_cpu(cpu)
9dfc6e68 5024 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5025}
5026
8ff12cfc
CL
5027#define STAT_ATTR(si, text) \
5028static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5029{ \
5030 return show_stat(s, buf, si); \
5031} \
78eb00cc
DR
5032static ssize_t text##_store(struct kmem_cache *s, \
5033 const char *buf, size_t length) \
5034{ \
5035 if (buf[0] != '0') \
5036 return -EINVAL; \
5037 clear_stat(s, si); \
5038 return length; \
5039} \
5040SLAB_ATTR(text); \
8ff12cfc
CL
5041
5042STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5043STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5044STAT_ATTR(FREE_FASTPATH, free_fastpath);
5045STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5046STAT_ATTR(FREE_FROZEN, free_frozen);
5047STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5048STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5049STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5050STAT_ATTR(ALLOC_SLAB, alloc_slab);
5051STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5052STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5053STAT_ATTR(FREE_SLAB, free_slab);
5054STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5055STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5056STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5057STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5058STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5059STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5060STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5061STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5062STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5063STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5064STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5065STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5066STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5067STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5068#endif
5069
06428780 5070static struct attribute *slab_attrs[] = {
81819f0f
CL
5071 &slab_size_attr.attr,
5072 &object_size_attr.attr,
5073 &objs_per_slab_attr.attr,
5074 &order_attr.attr,
73d342b1 5075 &min_partial_attr.attr,
49e22585 5076 &cpu_partial_attr.attr,
81819f0f 5077 &objects_attr.attr,
205ab99d 5078 &objects_partial_attr.attr,
81819f0f
CL
5079 &partial_attr.attr,
5080 &cpu_slabs_attr.attr,
5081 &ctor_attr.attr,
81819f0f
CL
5082 &aliases_attr.attr,
5083 &align_attr.attr,
81819f0f
CL
5084 &hwcache_align_attr.attr,
5085 &reclaim_account_attr.attr,
5086 &destroy_by_rcu_attr.attr,
a5a84755 5087 &shrink_attr.attr,
ab9a0f19 5088 &reserved_attr.attr,
49e22585 5089 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5090#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5091 &total_objects_attr.attr,
5092 &slabs_attr.attr,
5093 &sanity_checks_attr.attr,
5094 &trace_attr.attr,
81819f0f
CL
5095 &red_zone_attr.attr,
5096 &poison_attr.attr,
5097 &store_user_attr.attr,
53e15af0 5098 &validate_attr.attr,
88a420e4
CL
5099 &alloc_calls_attr.attr,
5100 &free_calls_attr.attr,
ab4d5ed5 5101#endif
81819f0f
CL
5102#ifdef CONFIG_ZONE_DMA
5103 &cache_dma_attr.attr,
5104#endif
5105#ifdef CONFIG_NUMA
9824601e 5106 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5107#endif
5108#ifdef CONFIG_SLUB_STATS
5109 &alloc_fastpath_attr.attr,
5110 &alloc_slowpath_attr.attr,
5111 &free_fastpath_attr.attr,
5112 &free_slowpath_attr.attr,
5113 &free_frozen_attr.attr,
5114 &free_add_partial_attr.attr,
5115 &free_remove_partial_attr.attr,
5116 &alloc_from_partial_attr.attr,
5117 &alloc_slab_attr.attr,
5118 &alloc_refill_attr.attr,
e36a2652 5119 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5120 &free_slab_attr.attr,
5121 &cpuslab_flush_attr.attr,
5122 &deactivate_full_attr.attr,
5123 &deactivate_empty_attr.attr,
5124 &deactivate_to_head_attr.attr,
5125 &deactivate_to_tail_attr.attr,
5126 &deactivate_remote_frees_attr.attr,
03e404af 5127 &deactivate_bypass_attr.attr,
65c3376a 5128 &order_fallback_attr.attr,
b789ef51
CL
5129 &cmpxchg_double_fail_attr.attr,
5130 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5131 &cpu_partial_alloc_attr.attr,
5132 &cpu_partial_free_attr.attr,
8028dcea
AS
5133 &cpu_partial_node_attr.attr,
5134 &cpu_partial_drain_attr.attr,
81819f0f 5135#endif
4c13dd3b
DM
5136#ifdef CONFIG_FAILSLAB
5137 &failslab_attr.attr,
5138#endif
5139
81819f0f
CL
5140 NULL
5141};
5142
5143static struct attribute_group slab_attr_group = {
5144 .attrs = slab_attrs,
5145};
5146
5147static ssize_t slab_attr_show(struct kobject *kobj,
5148 struct attribute *attr,
5149 char *buf)
5150{
5151 struct slab_attribute *attribute;
5152 struct kmem_cache *s;
5153 int err;
5154
5155 attribute = to_slab_attr(attr);
5156 s = to_slab(kobj);
5157
5158 if (!attribute->show)
5159 return -EIO;
5160
5161 err = attribute->show(s, buf);
5162
5163 return err;
5164}
5165
5166static ssize_t slab_attr_store(struct kobject *kobj,
5167 struct attribute *attr,
5168 const char *buf, size_t len)
5169{
5170 struct slab_attribute *attribute;
5171 struct kmem_cache *s;
5172 int err;
5173
5174 attribute = to_slab_attr(attr);
5175 s = to_slab(kobj);
5176
5177 if (!attribute->store)
5178 return -EIO;
5179
5180 err = attribute->store(s, buf, len);
5181
5182 return err;
5183}
5184
151c602f
CL
5185static void kmem_cache_release(struct kobject *kobj)
5186{
5187 struct kmem_cache *s = to_slab(kobj);
5188
84c1cf62 5189 kfree(s->name);
151c602f
CL
5190 kfree(s);
5191}
5192
52cf25d0 5193static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5194 .show = slab_attr_show,
5195 .store = slab_attr_store,
5196};
5197
5198static struct kobj_type slab_ktype = {
5199 .sysfs_ops = &slab_sysfs_ops,
151c602f 5200 .release = kmem_cache_release
81819f0f
CL
5201};
5202
5203static int uevent_filter(struct kset *kset, struct kobject *kobj)
5204{
5205 struct kobj_type *ktype = get_ktype(kobj);
5206
5207 if (ktype == &slab_ktype)
5208 return 1;
5209 return 0;
5210}
5211
9cd43611 5212static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5213 .filter = uevent_filter,
5214};
5215
27c3a314 5216static struct kset *slab_kset;
81819f0f
CL
5217
5218#define ID_STR_LENGTH 64
5219
5220/* Create a unique string id for a slab cache:
6446faa2
CL
5221 *
5222 * Format :[flags-]size
81819f0f
CL
5223 */
5224static char *create_unique_id(struct kmem_cache *s)
5225{
5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 char *p = name;
5228
5229 BUG_ON(!name);
5230
5231 *p++ = ':';
5232 /*
5233 * First flags affecting slabcache operations. We will only
5234 * get here for aliasable slabs so we do not need to support
5235 * too many flags. The flags here must cover all flags that
5236 * are matched during merging to guarantee that the id is
5237 * unique.
5238 */
5239 if (s->flags & SLAB_CACHE_DMA)
5240 *p++ = 'd';
5241 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 *p++ = 'a';
5243 if (s->flags & SLAB_DEBUG_FREE)
5244 *p++ = 'F';
5a896d9e
VN
5245 if (!(s->flags & SLAB_NOTRACK))
5246 *p++ = 't';
81819f0f
CL
5247 if (p != name + 1)
5248 *p++ = '-';
5249 p += sprintf(p, "%07d", s->size);
5250 BUG_ON(p > name + ID_STR_LENGTH - 1);
5251 return name;
5252}
5253
5254static int sysfs_slab_add(struct kmem_cache *s)
5255{
5256 int err;
5257 const char *name;
5258 int unmergeable;
5259
97d06609 5260 if (slab_state < FULL)
81819f0f
CL
5261 /* Defer until later */
5262 return 0;
5263
5264 unmergeable = slab_unmergeable(s);
5265 if (unmergeable) {
5266 /*
5267 * Slabcache can never be merged so we can use the name proper.
5268 * This is typically the case for debug situations. In that
5269 * case we can catch duplicate names easily.
5270 */
27c3a314 5271 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5272 name = s->name;
5273 } else {
5274 /*
5275 * Create a unique name for the slab as a target
5276 * for the symlinks.
5277 */
5278 name = create_unique_id(s);
5279 }
5280
27c3a314 5281 s->kobj.kset = slab_kset;
1eada11c
GKH
5282 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5283 if (err) {
5284 kobject_put(&s->kobj);
81819f0f 5285 return err;
1eada11c 5286 }
81819f0f
CL
5287
5288 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5289 if (err) {
5290 kobject_del(&s->kobj);
5291 kobject_put(&s->kobj);
81819f0f 5292 return err;
5788d8ad 5293 }
81819f0f
CL
5294 kobject_uevent(&s->kobj, KOBJ_ADD);
5295 if (!unmergeable) {
5296 /* Setup first alias */
5297 sysfs_slab_alias(s, s->name);
5298 kfree(name);
5299 }
5300 return 0;
5301}
5302
5303static void sysfs_slab_remove(struct kmem_cache *s)
5304{
97d06609 5305 if (slab_state < FULL)
2bce6485
CL
5306 /*
5307 * Sysfs has not been setup yet so no need to remove the
5308 * cache from sysfs.
5309 */
5310 return;
5311
81819f0f
CL
5312 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5313 kobject_del(&s->kobj);
151c602f 5314 kobject_put(&s->kobj);
81819f0f
CL
5315}
5316
5317/*
5318 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5319 * available lest we lose that information.
81819f0f
CL
5320 */
5321struct saved_alias {
5322 struct kmem_cache *s;
5323 const char *name;
5324 struct saved_alias *next;
5325};
5326
5af328a5 5327static struct saved_alias *alias_list;
81819f0f
CL
5328
5329static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5330{
5331 struct saved_alias *al;
5332
97d06609 5333 if (slab_state == FULL) {
81819f0f
CL
5334 /*
5335 * If we have a leftover link then remove it.
5336 */
27c3a314
GKH
5337 sysfs_remove_link(&slab_kset->kobj, name);
5338 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5339 }
5340
5341 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5342 if (!al)
5343 return -ENOMEM;
5344
5345 al->s = s;
5346 al->name = name;
5347 al->next = alias_list;
5348 alias_list = al;
5349 return 0;
5350}
5351
5352static int __init slab_sysfs_init(void)
5353{
5b95a4ac 5354 struct kmem_cache *s;
81819f0f
CL
5355 int err;
5356
18004c5d 5357 mutex_lock(&slab_mutex);
2bce6485 5358
0ff21e46 5359 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5360 if (!slab_kset) {
18004c5d 5361 mutex_unlock(&slab_mutex);
81819f0f
CL
5362 printk(KERN_ERR "Cannot register slab subsystem.\n");
5363 return -ENOSYS;
5364 }
5365
97d06609 5366 slab_state = FULL;
26a7bd03 5367
5b95a4ac 5368 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5369 err = sysfs_slab_add(s);
5d540fb7
CL
5370 if (err)
5371 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5372 " to sysfs\n", s->name);
26a7bd03 5373 }
81819f0f
CL
5374
5375 while (alias_list) {
5376 struct saved_alias *al = alias_list;
5377
5378 alias_list = alias_list->next;
5379 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5382 " %s to sysfs\n", al->name);
81819f0f
CL
5383 kfree(al);
5384 }
5385
18004c5d 5386 mutex_unlock(&slab_mutex);
81819f0f
CL
5387 resiliency_test();
5388 return 0;
5389}
5390
5391__initcall(slab_sysfs_init);
ab4d5ed5 5392#endif /* CONFIG_SYSFS */
57ed3eda
PE
5393
5394/*
5395 * The /proc/slabinfo ABI
5396 */
158a9624 5397#ifdef CONFIG_SLABINFO
57ed3eda
PE
5398static void print_slabinfo_header(struct seq_file *m)
5399{
5400 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5401 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5402 "<objperslab> <pagesperslab>");
5403 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5404 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5405 seq_putc(m, '\n');
5406}
5407
5408static void *s_start(struct seq_file *m, loff_t *pos)
5409{
5410 loff_t n = *pos;
5411
18004c5d 5412 mutex_lock(&slab_mutex);
57ed3eda
PE
5413 if (!n)
5414 print_slabinfo_header(m);
5415
5416 return seq_list_start(&slab_caches, *pos);
5417}
5418
5419static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5420{
5421 return seq_list_next(p, &slab_caches, pos);
5422}
5423
5424static void s_stop(struct seq_file *m, void *p)
5425{
18004c5d 5426 mutex_unlock(&slab_mutex);
57ed3eda
PE
5427}
5428
5429static int s_show(struct seq_file *m, void *p)
5430{
5431 unsigned long nr_partials = 0;
5432 unsigned long nr_slabs = 0;
5433 unsigned long nr_inuse = 0;
205ab99d
CL
5434 unsigned long nr_objs = 0;
5435 unsigned long nr_free = 0;
57ed3eda
PE
5436 struct kmem_cache *s;
5437 int node;
5438
5439 s = list_entry(p, struct kmem_cache, list);
5440
5441 for_each_online_node(node) {
5442 struct kmem_cache_node *n = get_node(s, node);
5443
5444 if (!n)
5445 continue;
5446
5447 nr_partials += n->nr_partial;
5448 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5449 nr_objs += atomic_long_read(&n->total_objects);
5450 nr_free += count_partial(n, count_free);
57ed3eda
PE
5451 }
5452
205ab99d 5453 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5454
5455 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5456 nr_objs, s->size, oo_objects(s->oo),
5457 (1 << oo_order(s->oo)));
57ed3eda
PE
5458 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5459 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5460 0UL);
5461 seq_putc(m, '\n');
5462 return 0;
5463}
5464
7b3c3a50 5465static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5466 .start = s_start,
5467 .next = s_next,
5468 .stop = s_stop,
5469 .show = s_show,
5470};
5471
7b3c3a50
AD
5472static int slabinfo_open(struct inode *inode, struct file *file)
5473{
5474 return seq_open(file, &slabinfo_op);
5475}
5476
5477static const struct file_operations proc_slabinfo_operations = {
5478 .open = slabinfo_open,
5479 .read = seq_read,
5480 .llseek = seq_lseek,
5481 .release = seq_release,
5482};
5483
5484static int __init slab_proc_init(void)
5485{
ab067e99 5486 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5487 return 0;
5488}
5489module_init(slab_proc_init);
158a9624 5490#endif /* CONFIG_SLABINFO */