]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/slub.c
slub: fix slub_max_order Documentation
[mirror_ubuntu-focal-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
ffc79d28
SAS
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
81819f0f
CL
472}
473
81819f0f
CL
474static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476{
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485}
486
487static void set_track(struct kmem_cache *s, void *object,
ce71e27c 488 enum track_item alloc, unsigned long addr)
81819f0f 489{
1a00df4a 490 struct track *p = get_track(s, object, alloc);
81819f0f 491
81819f0f 492 if (addr) {
d6543e39
BG
493#ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510#endif
81819f0f
CL
511 p->addr = addr;
512 p->cpu = smp_processor_id();
88e4ccf2 513 p->pid = current->pid;
81819f0f
CL
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517}
518
81819f0f
CL
519static void init_tracking(struct kmem_cache *s, void *object)
520{
24922684
CL
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
ce71e27c
EGM
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
526}
527
528static void print_track(const char *s, struct track *t)
529{
530 if (!t->addr)
531 return;
532
7daf705f 533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
535#ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544#endif
24922684
CL
545}
546
547static void print_tracking(struct kmem_cache *s, void *object)
548{
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554}
555
556static void print_page_info(struct page *page)
557{
39b26464
CL
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
560
561}
562
563static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564{
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
265d47e7 573 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
81819f0f
CL
576}
577
24922684
CL
578static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579{
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587}
588
589static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
590{
591 unsigned int off; /* Offset of last byte */
a973e9dd 592 u8 *addr = page_address(page);
24922684
CL
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
ffc79d28 602 print_section("Bytes b4 ", p - 16, 16);
81819f0f 603
ffc79d28
SAS
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
81819f0f 606 if (s->flags & SLAB_RED_ZONE)
ffc79d28 607 print_section("Redzone ", p + s->objsize,
81819f0f
CL
608 s->inuse - s->objsize);
609
81819f0f
CL
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
24922684 615 if (s->flags & SLAB_STORE_USER)
81819f0f 616 off += 2 * sizeof(struct track);
81819f0f
CL
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
ffc79d28 620 print_section("Padding ", p + off, s->size - off);
24922684
CL
621
622 dump_stack();
81819f0f
CL
623}
624
625static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627{
3dc50637 628 slab_bug(s, "%s", reason);
24922684 629 print_trailer(s, page, object);
81819f0f
CL
630}
631
24922684 632static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
633{
634 va_list args;
635 char buf[100];
636
24922684
CL
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 639 va_end(args);
3dc50637 640 slab_bug(s, "%s", buf);
24922684 641 print_page_info(page);
81819f0f
CL
642 dump_stack();
643}
644
f7cb1933 645static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
646{
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
06428780 651 p[s->objsize - 1] = POISON_END;
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
f7cb1933 655 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
656}
657
24922684
CL
658static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 void *from, void *to)
660{
661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 memset(from, data, to - from);
663}
664
665static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 u8 *object, char *what,
06428780 667 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
668{
669 u8 *fault;
670 u8 *end;
671
79824820 672 fault = memchr_inv(start, value, bytes);
24922684
CL
673 if (!fault)
674 return 1;
675
676 end = start + bytes;
677 while (end > fault && end[-1] == value)
678 end--;
679
680 slab_bug(s, "%s overwritten", what);
681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault, end - 1, fault[0], value);
683 print_trailer(s, page, object);
684
685 restore_bytes(s, what, value, fault, end);
686 return 0;
81819f0f
CL
687}
688
81819f0f
CL
689/*
690 * Object layout:
691 *
692 * object address
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
672bba3a 696 *
81819f0f
CL
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
698 * 0xa5 (POISON_END)
699 *
700 * object + s->objsize
701 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
702 * Padding is extended by another word if Redzoning is enabled and
703 * objsize == inuse.
704 *
81819f0f
CL
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
707 *
708 * object + s->inuse
672bba3a
CL
709 * Meta data starts here.
710 *
81819f0f
CL
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
672bba3a 713 * C. Padding to reach required alignment boundary or at mininum
6446faa2 714 * one word if debugging is on to be able to detect writes
672bba3a
CL
715 * before the word boundary.
716 *
717 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
718 *
719 * object + s->size
672bba3a 720 * Nothing is used beyond s->size.
81819f0f 721 *
672bba3a
CL
722 * If slabcaches are merged then the objsize and inuse boundaries are mostly
723 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
724 * may be used with merged slabcaches.
725 */
726
81819f0f
CL
727static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728{
729 unsigned long off = s->inuse; /* The end of info */
730
731 if (s->offset)
732 /* Freepointer is placed after the object. */
733 off += sizeof(void *);
734
735 if (s->flags & SLAB_STORE_USER)
736 /* We also have user information there */
737 off += 2 * sizeof(struct track);
738
739 if (s->size == off)
740 return 1;
741
24922684
CL
742 return check_bytes_and_report(s, page, p, "Object padding",
743 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
744}
745
39b26464 746/* Check the pad bytes at the end of a slab page */
81819f0f
CL
747static int slab_pad_check(struct kmem_cache *s, struct page *page)
748{
24922684
CL
749 u8 *start;
750 u8 *fault;
751 u8 *end;
752 int length;
753 int remainder;
81819f0f
CL
754
755 if (!(s->flags & SLAB_POISON))
756 return 1;
757
a973e9dd 758 start = page_address(page);
ab9a0f19 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
760 end = start + length;
761 remainder = length % s->size;
81819f0f
CL
762 if (!remainder)
763 return 1;
764
79824820 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
766 if (!fault)
767 return 1;
768 while (end > fault && end[-1] == POISON_INUSE)
769 end--;
770
771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 772 print_section("Padding ", end - remainder, remainder);
24922684 773
8a3d271d 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 775 return 0;
81819f0f
CL
776}
777
778static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 779 void *object, u8 val)
81819f0f
CL
780{
781 u8 *p = object;
782 u8 *endobject = object + s->objsize;
783
784 if (s->flags & SLAB_RED_ZONE) {
24922684 785 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 786 endobject, val, s->inuse - s->objsize))
81819f0f 787 return 0;
81819f0f 788 } else {
3adbefee
IM
789 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
790 check_bytes_and_report(s, page, p, "Alignment padding",
791 endobject, POISON_INUSE, s->inuse - s->objsize);
792 }
81819f0f
CL
793 }
794
795 if (s->flags & SLAB_POISON) {
f7cb1933 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
797 (!check_bytes_and_report(s, page, p, "Poison", p,
798 POISON_FREE, s->objsize - 1) ||
799 !check_bytes_and_report(s, page, p, "Poison",
06428780 800 p + s->objsize - 1, POISON_END, 1)))
81819f0f 801 return 0;
81819f0f
CL
802 /*
803 * check_pad_bytes cleans up on its own.
804 */
805 check_pad_bytes(s, page, p);
806 }
807
f7cb1933 808 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
809 /*
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
812 */
813 return 1;
814
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 object_err(s, page, p, "Freepointer corrupt");
818 /*
9f6c708e 819 * No choice but to zap it and thus lose the remainder
81819f0f 820 * of the free objects in this slab. May cause
672bba3a 821 * another error because the object count is now wrong.
81819f0f 822 */
a973e9dd 823 set_freepointer(s, p, NULL);
81819f0f
CL
824 return 0;
825 }
826 return 1;
827}
828
829static int check_slab(struct kmem_cache *s, struct page *page)
830{
39b26464
CL
831 int maxobj;
832
81819f0f
CL
833 VM_BUG_ON(!irqs_disabled());
834
835 if (!PageSlab(page)) {
24922684 836 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
837 return 0;
838 }
39b26464 839
ab9a0f19 840 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
841 if (page->objects > maxobj) {
842 slab_err(s, page, "objects %u > max %u",
843 s->name, page->objects, maxobj);
844 return 0;
845 }
846 if (page->inuse > page->objects) {
24922684 847 slab_err(s, page, "inuse %u > max %u",
39b26464 848 s->name, page->inuse, page->objects);
81819f0f
CL
849 return 0;
850 }
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s, page);
853 return 1;
854}
855
856/*
672bba3a
CL
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
859 */
860static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861{
862 int nr = 0;
881db7fb 863 void *fp;
81819f0f 864 void *object = NULL;
224a88be 865 unsigned long max_objects;
81819f0f 866
881db7fb 867 fp = page->freelist;
39b26464 868 while (fp && nr <= page->objects) {
81819f0f
CL
869 if (fp == search)
870 return 1;
871 if (!check_valid_pointer(s, page, fp)) {
872 if (object) {
873 object_err(s, page, object,
874 "Freechain corrupt");
a973e9dd 875 set_freepointer(s, object, NULL);
81819f0f
CL
876 break;
877 } else {
24922684 878 slab_err(s, page, "Freepointer corrupt");
a973e9dd 879 page->freelist = NULL;
39b26464 880 page->inuse = page->objects;
24922684 881 slab_fix(s, "Freelist cleared");
81819f0f
CL
882 return 0;
883 }
884 break;
885 }
886 object = fp;
887 fp = get_freepointer(s, object);
888 nr++;
889 }
890
ab9a0f19 891 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
892 if (max_objects > MAX_OBJS_PER_PAGE)
893 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
894
895 if (page->objects != max_objects) {
896 slab_err(s, page, "Wrong number of objects. Found %d but "
897 "should be %d", page->objects, max_objects);
898 page->objects = max_objects;
899 slab_fix(s, "Number of objects adjusted.");
900 }
39b26464 901 if (page->inuse != page->objects - nr) {
70d71228 902 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
903 "counted were %d", page->inuse, page->objects - nr);
904 page->inuse = page->objects - nr;
24922684 905 slab_fix(s, "Object count adjusted.");
81819f0f
CL
906 }
907 return search == NULL;
908}
909
0121c619
CL
910static void trace(struct kmem_cache *s, struct page *page, void *object,
911 int alloc)
3ec09742
CL
912{
913 if (s->flags & SLAB_TRACE) {
914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 s->name,
916 alloc ? "alloc" : "free",
917 object, page->inuse,
918 page->freelist);
919
920 if (!alloc)
ffc79d28 921 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
922
923 dump_stack();
924 }
925}
926
c016b0bd
CL
927/*
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
930 */
931static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932{
c1d50836 933 flags &= gfp_allowed_mask;
c016b0bd
CL
934 lockdep_trace_alloc(flags);
935 might_sleep_if(flags & __GFP_WAIT);
936
937 return should_failslab(s->objsize, flags, s->flags);
938}
939
940static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941{
c1d50836 942 flags &= gfp_allowed_mask;
b3d41885 943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
944 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
945}
946
947static inline void slab_free_hook(struct kmem_cache *s, void *x)
948{
949 kmemleak_free_recursive(x, s->flags);
c016b0bd 950
d3f661d6
CL
951 /*
952 * Trouble is that we may no longer disable interupts in the fast path
953 * So in order to make the debug calls that expect irqs to be
954 * disabled we need to disable interrupts temporarily.
955 */
956#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 {
958 unsigned long flags;
959
960 local_irq_save(flags);
961 kmemcheck_slab_free(s, x, s->objsize);
962 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
963 local_irq_restore(flags);
964 }
965#endif
f9b615de
TG
966 if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
968}
969
643b1138 970/*
672bba3a 971 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
972 *
973 * list_lock must be held.
643b1138 974 */
5cc6eee8
CL
975static void add_full(struct kmem_cache *s,
976 struct kmem_cache_node *n, struct page *page)
643b1138 977{
5cc6eee8
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
643b1138 981 list_add(&page->lru, &n->full);
643b1138
CL
982}
983
5cc6eee8
CL
984/*
985 * list_lock must be held.
986 */
643b1138
CL
987static void remove_full(struct kmem_cache *s, struct page *page)
988{
643b1138
CL
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
991
643b1138 992 list_del(&page->lru);
643b1138
CL
993}
994
0f389ec6
CL
995/* Tracking of the number of slabs for debugging purposes */
996static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 return atomic_long_read(&n->nr_slabs);
1001}
1002
26c02cf0
AB
1003static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004{
1005 return atomic_long_read(&n->nr_slabs);
1006}
1007
205ab99d 1008static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1009{
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 /*
1013 * May be called early in order to allocate a slab for the
1014 * kmem_cache_node structure. Solve the chicken-egg
1015 * dilemma by deferring the increment of the count during
1016 * bootstrap (see early_kmem_cache_node_alloc).
1017 */
7340cc84 1018 if (n) {
0f389ec6 1019 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1020 atomic_long_add(objects, &n->total_objects);
1021 }
0f389ec6 1022}
205ab99d 1023static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1024{
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 atomic_long_dec(&n->nr_slabs);
205ab99d 1028 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1029}
1030
1031/* Object debug checks for alloc/free paths */
3ec09742
CL
1032static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 void *object)
1034{
1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 return;
1037
f7cb1933 1038 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1039 init_tracking(s, object);
1040}
1041
1537066c 1042static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1043 void *object, unsigned long addr)
81819f0f
CL
1044{
1045 if (!check_slab(s, page))
1046 goto bad;
1047
81819f0f
CL
1048 if (!check_valid_pointer(s, page, object)) {
1049 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1050 goto bad;
81819f0f
CL
1051 }
1052
f7cb1933 1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1054 goto bad;
81819f0f 1055
3ec09742
CL
1056 /* Success perform special debug activities for allocs */
1057 if (s->flags & SLAB_STORE_USER)
1058 set_track(s, object, TRACK_ALLOC, addr);
1059 trace(s, page, object, 1);
f7cb1933 1060 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1061 return 1;
3ec09742 1062
81819f0f
CL
1063bad:
1064 if (PageSlab(page)) {
1065 /*
1066 * If this is a slab page then lets do the best we can
1067 * to avoid issues in the future. Marking all objects
672bba3a 1068 * as used avoids touching the remaining objects.
81819f0f 1069 */
24922684 1070 slab_fix(s, "Marking all objects used");
39b26464 1071 page->inuse = page->objects;
a973e9dd 1072 page->freelist = NULL;
81819f0f
CL
1073 }
1074 return 0;
1075}
1076
1537066c
CL
1077static noinline int free_debug_processing(struct kmem_cache *s,
1078 struct page *page, void *object, unsigned long addr)
81819f0f 1079{
5c2e4bbb
CL
1080 unsigned long flags;
1081 int rc = 0;
1082
1083 local_irq_save(flags);
881db7fb
CL
1084 slab_lock(page);
1085
81819f0f
CL
1086 if (!check_slab(s, page))
1087 goto fail;
1088
1089 if (!check_valid_pointer(s, page, object)) {
70d71228 1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
24922684 1095 object_err(s, page, object, "Object already free");
81819f0f
CL
1096 goto fail;
1097 }
1098
f7cb1933 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1100 goto out;
81819f0f
CL
1101
1102 if (unlikely(s != page->slab)) {
3adbefee 1103 if (!PageSlab(page)) {
70d71228
CL
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
3adbefee 1106 } else if (!page->slab) {
81819f0f 1107 printk(KERN_ERR
70d71228 1108 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1109 object);
70d71228 1110 dump_stack();
06428780 1111 } else
24922684
CL
1112 object_err(s, page, object,
1113 "page slab pointer corrupt.");
81819f0f
CL
1114 goto fail;
1115 }
3ec09742 1116
3ec09742
CL
1117 if (s->flags & SLAB_STORE_USER)
1118 set_track(s, object, TRACK_FREE, addr);
1119 trace(s, page, object, 0);
f7cb1933 1120 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1121 rc = 1;
1122out:
881db7fb 1123 slab_unlock(page);
5c2e4bbb
CL
1124 local_irq_restore(flags);
1125 return rc;
3ec09742 1126
81819f0f 1127fail:
24922684 1128 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1129 goto out;
81819f0f
CL
1130}
1131
41ecc55b
CL
1132static int __init setup_slub_debug(char *str)
1133{
f0630fff
CL
1134 slub_debug = DEBUG_DEFAULT_FLAGS;
1135 if (*str++ != '=' || !*str)
1136 /*
1137 * No options specified. Switch on full debugging.
1138 */
1139 goto out;
1140
1141 if (*str == ',')
1142 /*
1143 * No options but restriction on slabs. This means full
1144 * debugging for slabs matching a pattern.
1145 */
1146 goto check_slabs;
1147
fa5ec8a1
DR
1148 if (tolower(*str) == 'o') {
1149 /*
1150 * Avoid enabling debugging on caches if its minimum order
1151 * would increase as a result.
1152 */
1153 disable_higher_order_debug = 1;
1154 goto out;
1155 }
1156
f0630fff
CL
1157 slub_debug = 0;
1158 if (*str == '-')
1159 /*
1160 * Switch off all debugging measures.
1161 */
1162 goto out;
1163
1164 /*
1165 * Determine which debug features should be switched on
1166 */
06428780 1167 for (; *str && *str != ','; str++) {
f0630fff
CL
1168 switch (tolower(*str)) {
1169 case 'f':
1170 slub_debug |= SLAB_DEBUG_FREE;
1171 break;
1172 case 'z':
1173 slub_debug |= SLAB_RED_ZONE;
1174 break;
1175 case 'p':
1176 slub_debug |= SLAB_POISON;
1177 break;
1178 case 'u':
1179 slub_debug |= SLAB_STORE_USER;
1180 break;
1181 case 't':
1182 slub_debug |= SLAB_TRACE;
1183 break;
4c13dd3b
DM
1184 case 'a':
1185 slub_debug |= SLAB_FAILSLAB;
1186 break;
f0630fff
CL
1187 default:
1188 printk(KERN_ERR "slub_debug option '%c' "
06428780 1189 "unknown. skipped\n", *str);
f0630fff 1190 }
41ecc55b
CL
1191 }
1192
f0630fff 1193check_slabs:
41ecc55b
CL
1194 if (*str == ',')
1195 slub_debug_slabs = str + 1;
f0630fff 1196out:
41ecc55b
CL
1197 return 1;
1198}
1199
1200__setup("slub_debug", setup_slub_debug);
1201
ba0268a8
CL
1202static unsigned long kmem_cache_flags(unsigned long objsize,
1203 unsigned long flags, const char *name,
51cc5068 1204 void (*ctor)(void *))
41ecc55b
CL
1205{
1206 /*
e153362a 1207 * Enable debugging if selected on the kernel commandline.
41ecc55b 1208 */
e153362a 1209 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1210 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1211 flags |= slub_debug;
ba0268a8
CL
1212
1213 return flags;
41ecc55b
CL
1214}
1215#else
3ec09742
CL
1216static inline void setup_object_debug(struct kmem_cache *s,
1217 struct page *page, void *object) {}
41ecc55b 1218
3ec09742 1219static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1220 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1221
3ec09742 1222static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1223 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1224
41ecc55b
CL
1225static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 { return 1; }
1227static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1228 void *object, u8 val) { return 1; }
5cc6eee8
CL
1229static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 struct page *page) {}
2cfb7455 1231static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1232static inline unsigned long kmem_cache_flags(unsigned long objsize,
1233 unsigned long flags, const char *name,
51cc5068 1234 void (*ctor)(void *))
ba0268a8
CL
1235{
1236 return flags;
1237}
41ecc55b 1238#define slub_debug 0
0f389ec6 1239
fdaa45e9
IM
1240#define disable_higher_order_debug 0
1241
0f389ec6
CL
1242static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 { return 0; }
26c02cf0
AB
1244static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 { return 0; }
205ab99d
CL
1246static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1248static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
7d550c56
CL
1250
1251static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 { return 0; }
1253
1254static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 void *object) {}
1256
1257static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258
ab4d5ed5 1259#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1260
81819f0f
CL
1261/*
1262 * Slab allocation and freeing
1263 */
65c3376a
CL
1264static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 struct kmem_cache_order_objects oo)
1266{
1267 int order = oo_order(oo);
1268
b1eeab67
VN
1269 flags |= __GFP_NOTRACK;
1270
2154a336 1271 if (node == NUMA_NO_NODE)
65c3376a
CL
1272 return alloc_pages(flags, order);
1273 else
6b65aaf3 1274 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1275}
1276
81819f0f
CL
1277static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278{
06428780 1279 struct page *page;
834f3d11 1280 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1281 gfp_t alloc_gfp;
81819f0f 1282
7e0528da
CL
1283 flags &= gfp_allowed_mask;
1284
1285 if (flags & __GFP_WAIT)
1286 local_irq_enable();
1287
b7a49f0d 1288 flags |= s->allocflags;
e12ba74d 1289
ba52270d
PE
1290 /*
1291 * Let the initial higher-order allocation fail under memory pressure
1292 * so we fall-back to the minimum order allocation.
1293 */
1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295
1296 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1297 if (unlikely(!page)) {
1298 oo = s->min;
1299 /*
1300 * Allocation may have failed due to fragmentation.
1301 * Try a lower order alloc if possible
1302 */
1303 page = alloc_slab_page(flags, node, oo);
81819f0f 1304
7e0528da
CL
1305 if (page)
1306 stat(s, ORDER_FALLBACK);
65c3376a 1307 }
5a896d9e 1308
7e0528da
CL
1309 if (flags & __GFP_WAIT)
1310 local_irq_disable();
1311
1312 if (!page)
1313 return NULL;
1314
5a896d9e 1315 if (kmemcheck_enabled
5086c389 1316 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1317 int pages = 1 << oo_order(oo);
1318
1319 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1320
1321 /*
1322 * Objects from caches that have a constructor don't get
1323 * cleared when they're allocated, so we need to do it here.
1324 */
1325 if (s->ctor)
1326 kmemcheck_mark_uninitialized_pages(page, pages);
1327 else
1328 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1329 }
1330
834f3d11 1331 page->objects = oo_objects(oo);
81819f0f
CL
1332 mod_zone_page_state(page_zone(page),
1333 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1334 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1335 1 << oo_order(oo));
81819f0f
CL
1336
1337 return page;
1338}
1339
1340static void setup_object(struct kmem_cache *s, struct page *page,
1341 void *object)
1342{
3ec09742 1343 setup_object_debug(s, page, object);
4f104934 1344 if (unlikely(s->ctor))
51cc5068 1345 s->ctor(object);
81819f0f
CL
1346}
1347
1348static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1349{
1350 struct page *page;
81819f0f 1351 void *start;
81819f0f
CL
1352 void *last;
1353 void *p;
1354
6cb06229 1355 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1356
6cb06229
CL
1357 page = allocate_slab(s,
1358 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1359 if (!page)
1360 goto out;
1361
205ab99d 1362 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1363 page->slab = s;
1364 page->flags |= 1 << PG_slab;
81819f0f
CL
1365
1366 start = page_address(page);
81819f0f
CL
1367
1368 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1370
1371 last = start;
224a88be 1372 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1376 }
1377 setup_object(s, page, last);
a973e9dd 1378 set_freepointer(s, last, NULL);
81819f0f
CL
1379
1380 page->freelist = start;
e6e82ea1 1381 page->inuse = page->objects;
8cb0a506 1382 page->frozen = 1;
81819f0f 1383out:
81819f0f
CL
1384 return page;
1385}
1386
1387static void __free_slab(struct kmem_cache *s, struct page *page)
1388{
834f3d11
CL
1389 int order = compound_order(page);
1390 int pages = 1 << order;
81819f0f 1391
af537b0a 1392 if (kmem_cache_debug(s)) {
81819f0f
CL
1393 void *p;
1394
1395 slab_pad_check(s, page);
224a88be
CL
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
f7cb1933 1398 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1399 }
1400
b1eeab67 1401 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1402
81819f0f
CL
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1406 -pages);
81819f0f 1407
49bd5221
CL
1408 __ClearPageSlab(page);
1409 reset_page_mapcount(page);
1eb5ac64
NP
1410 if (current->reclaim_state)
1411 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1412 __free_pages(page, order);
81819f0f
CL
1413}
1414
da9a638c
LJ
1415#define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1417
81819f0f
CL
1418static void rcu_free_slab(struct rcu_head *h)
1419{
1420 struct page *page;
1421
da9a638c
LJ
1422 if (need_reserve_slab_rcu)
1423 page = virt_to_head_page(h);
1424 else
1425 page = container_of((struct list_head *)h, struct page, lru);
1426
81819f0f
CL
1427 __free_slab(page->slab, page);
1428}
1429
1430static void free_slab(struct kmem_cache *s, struct page *page)
1431{
1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1433 struct rcu_head *head;
1434
1435 if (need_reserve_slab_rcu) {
1436 int order = compound_order(page);
1437 int offset = (PAGE_SIZE << order) - s->reserved;
1438
1439 VM_BUG_ON(s->reserved != sizeof(*head));
1440 head = page_address(page) + offset;
1441 } else {
1442 /*
1443 * RCU free overloads the RCU head over the LRU
1444 */
1445 head = (void *)&page->lru;
1446 }
81819f0f
CL
1447
1448 call_rcu(head, rcu_free_slab);
1449 } else
1450 __free_slab(s, page);
1451}
1452
1453static void discard_slab(struct kmem_cache *s, struct page *page)
1454{
205ab99d 1455 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1456 free_slab(s, page);
1457}
1458
1459/*
5cc6eee8
CL
1460 * Management of partially allocated slabs.
1461 *
1462 * list_lock must be held.
81819f0f 1463 */
5cc6eee8 1464static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1465 struct page *page, int tail)
81819f0f 1466{
e95eed57 1467 n->nr_partial++;
136333d1 1468 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1469 list_add_tail(&page->lru, &n->partial);
1470 else
1471 list_add(&page->lru, &n->partial);
81819f0f
CL
1472}
1473
5cc6eee8
CL
1474/*
1475 * list_lock must be held.
1476 */
1477static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1478 struct page *page)
1479{
1480 list_del(&page->lru);
1481 n->nr_partial--;
1482}
1483
81819f0f 1484/*
5cc6eee8
CL
1485 * Lock slab, remove from the partial list and put the object into the
1486 * per cpu freelist.
81819f0f 1487 *
497b66f2
CL
1488 * Returns a list of objects or NULL if it fails.
1489 *
672bba3a 1490 * Must hold list_lock.
81819f0f 1491 */
497b66f2 1492static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1493 struct kmem_cache_node *n, struct page *page,
49e22585 1494 int mode)
81819f0f 1495{
2cfb7455
CL
1496 void *freelist;
1497 unsigned long counters;
1498 struct page new;
1499
2cfb7455
CL
1500 /*
1501 * Zap the freelist and set the frozen bit.
1502 * The old freelist is the list of objects for the
1503 * per cpu allocation list.
1504 */
1505 do {
1506 freelist = page->freelist;
1507 counters = page->counters;
1508 new.counters = counters;
49e22585
CL
1509 if (mode)
1510 new.inuse = page->objects;
2cfb7455
CL
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1d07171c 1515 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1516 freelist, counters,
1517 NULL, new.counters,
1518 "lock and freeze"));
1519
1520 remove_partial(n, page);
49e22585 1521 return freelist;
81819f0f
CL
1522}
1523
49e22585
CL
1524static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1525
81819f0f 1526/*
672bba3a 1527 * Try to allocate a partial slab from a specific node.
81819f0f 1528 */
497b66f2 1529static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1530 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1531{
49e22585
CL
1532 struct page *page, *page2;
1533 void *object = NULL;
81819f0f
CL
1534
1535 /*
1536 * Racy check. If we mistakenly see no partial slabs then we
1537 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1538 * partial slab and there is none available then get_partials()
1539 * will return NULL.
81819f0f
CL
1540 */
1541 if (!n || !n->nr_partial)
1542 return NULL;
1543
1544 spin_lock(&n->list_lock);
49e22585 1545 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1546 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1547 int available;
1548
1549 if (!t)
1550 break;
1551
12d79634 1552 if (!object) {
49e22585
CL
1553 c->page = page;
1554 c->node = page_to_nid(page);
1555 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1556 object = t;
1557 available = page->objects - page->inuse;
1558 } else {
1559 page->freelist = t;
1560 available = put_cpu_partial(s, page, 0);
1561 }
1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 break;
1564
497b66f2 1565 }
81819f0f 1566 spin_unlock(&n->list_lock);
497b66f2 1567 return object;
81819f0f
CL
1568}
1569
1570/*
672bba3a 1571 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1572 */
acd19fd1
CL
1573static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1574 struct kmem_cache_cpu *c)
81819f0f
CL
1575{
1576#ifdef CONFIG_NUMA
1577 struct zonelist *zonelist;
dd1a239f 1578 struct zoneref *z;
54a6eb5c
MG
1579 struct zone *zone;
1580 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1581 void *object;
81819f0f
CL
1582
1583 /*
672bba3a
CL
1584 * The defrag ratio allows a configuration of the tradeoffs between
1585 * inter node defragmentation and node local allocations. A lower
1586 * defrag_ratio increases the tendency to do local allocations
1587 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1588 *
672bba3a
CL
1589 * If the defrag_ratio is set to 0 then kmalloc() always
1590 * returns node local objects. If the ratio is higher then kmalloc()
1591 * may return off node objects because partial slabs are obtained
1592 * from other nodes and filled up.
81819f0f 1593 *
6446faa2 1594 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1595 * defrag_ratio = 1000) then every (well almost) allocation will
1596 * first attempt to defrag slab caches on other nodes. This means
1597 * scanning over all nodes to look for partial slabs which may be
1598 * expensive if we do it every time we are trying to find a slab
1599 * with available objects.
81819f0f 1600 */
9824601e
CL
1601 if (!s->remote_node_defrag_ratio ||
1602 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1603 return NULL;
1604
c0ff7453 1605 get_mems_allowed();
0e88460d 1606 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1608 struct kmem_cache_node *n;
1609
54a6eb5c 1610 n = get_node(s, zone_to_nid(zone));
81819f0f 1611
54a6eb5c 1612 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1613 n->nr_partial > s->min_partial) {
497b66f2
CL
1614 object = get_partial_node(s, n, c);
1615 if (object) {
c0ff7453 1616 put_mems_allowed();
497b66f2 1617 return object;
c0ff7453 1618 }
81819f0f
CL
1619 }
1620 }
c0ff7453 1621 put_mems_allowed();
81819f0f
CL
1622#endif
1623 return NULL;
1624}
1625
1626/*
1627 * Get a partial page, lock it and return it.
1628 */
497b66f2 1629static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1630 struct kmem_cache_cpu *c)
81819f0f 1631{
497b66f2 1632 void *object;
2154a336 1633 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1634
497b66f2
CL
1635 object = get_partial_node(s, get_node(s, searchnode), c);
1636 if (object || node != NUMA_NO_NODE)
1637 return object;
81819f0f 1638
acd19fd1 1639 return get_any_partial(s, flags, c);
81819f0f
CL
1640}
1641
8a5ec0ba
CL
1642#ifdef CONFIG_PREEMPT
1643/*
1644 * Calculate the next globally unique transaction for disambiguiation
1645 * during cmpxchg. The transactions start with the cpu number and are then
1646 * incremented by CONFIG_NR_CPUS.
1647 */
1648#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1649#else
1650/*
1651 * No preemption supported therefore also no need to check for
1652 * different cpus.
1653 */
1654#define TID_STEP 1
1655#endif
1656
1657static inline unsigned long next_tid(unsigned long tid)
1658{
1659 return tid + TID_STEP;
1660}
1661
1662static inline unsigned int tid_to_cpu(unsigned long tid)
1663{
1664 return tid % TID_STEP;
1665}
1666
1667static inline unsigned long tid_to_event(unsigned long tid)
1668{
1669 return tid / TID_STEP;
1670}
1671
1672static inline unsigned int init_tid(int cpu)
1673{
1674 return cpu;
1675}
1676
1677static inline void note_cmpxchg_failure(const char *n,
1678 const struct kmem_cache *s, unsigned long tid)
1679{
1680#ifdef SLUB_DEBUG_CMPXCHG
1681 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1682
1683 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1684
1685#ifdef CONFIG_PREEMPT
1686 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1687 printk("due to cpu change %d -> %d\n",
1688 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1689 else
1690#endif
1691 if (tid_to_event(tid) != tid_to_event(actual_tid))
1692 printk("due to cpu running other code. Event %ld->%ld\n",
1693 tid_to_event(tid), tid_to_event(actual_tid));
1694 else
1695 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1696 actual_tid, tid, next_tid(tid));
1697#endif
4fdccdfb 1698 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1699}
1700
8a5ec0ba
CL
1701void init_kmem_cache_cpus(struct kmem_cache *s)
1702{
8a5ec0ba
CL
1703 int cpu;
1704
1705 for_each_possible_cpu(cpu)
1706 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1707}
2cfb7455 1708
81819f0f
CL
1709/*
1710 * Remove the cpu slab
1711 */
dfb4f096 1712static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1713{
2cfb7455 1714 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1715 struct page *page = c->page;
2cfb7455
CL
1716 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1717 int lock = 0;
1718 enum slab_modes l = M_NONE, m = M_NONE;
1719 void *freelist;
1720 void *nextfree;
136333d1 1721 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1722 struct page new;
1723 struct page old;
1724
1725 if (page->freelist) {
84e554e6 1726 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1727 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1728 }
1729
1730 c->tid = next_tid(c->tid);
1731 c->page = NULL;
1732 freelist = c->freelist;
1733 c->freelist = NULL;
1734
894b8788 1735 /*
2cfb7455
CL
1736 * Stage one: Free all available per cpu objects back
1737 * to the page freelist while it is still frozen. Leave the
1738 * last one.
1739 *
1740 * There is no need to take the list->lock because the page
1741 * is still frozen.
1742 */
1743 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1744 void *prior;
1745 unsigned long counters;
1746
1747 do {
1748 prior = page->freelist;
1749 counters = page->counters;
1750 set_freepointer(s, freelist, prior);
1751 new.counters = counters;
1752 new.inuse--;
1753 VM_BUG_ON(!new.frozen);
1754
1d07171c 1755 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1756 prior, counters,
1757 freelist, new.counters,
1758 "drain percpu freelist"));
1759
1760 freelist = nextfree;
1761 }
1762
894b8788 1763 /*
2cfb7455
CL
1764 * Stage two: Ensure that the page is unfrozen while the
1765 * list presence reflects the actual number of objects
1766 * during unfreeze.
1767 *
1768 * We setup the list membership and then perform a cmpxchg
1769 * with the count. If there is a mismatch then the page
1770 * is not unfrozen but the page is on the wrong list.
1771 *
1772 * Then we restart the process which may have to remove
1773 * the page from the list that we just put it on again
1774 * because the number of objects in the slab may have
1775 * changed.
894b8788 1776 */
2cfb7455 1777redo:
894b8788 1778
2cfb7455
CL
1779 old.freelist = page->freelist;
1780 old.counters = page->counters;
1781 VM_BUG_ON(!old.frozen);
7c2e132c 1782
2cfb7455
CL
1783 /* Determine target state of the slab */
1784 new.counters = old.counters;
1785 if (freelist) {
1786 new.inuse--;
1787 set_freepointer(s, freelist, old.freelist);
1788 new.freelist = freelist;
1789 } else
1790 new.freelist = old.freelist;
1791
1792 new.frozen = 0;
1793
81107188 1794 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1795 m = M_FREE;
1796 else if (new.freelist) {
1797 m = M_PARTIAL;
1798 if (!lock) {
1799 lock = 1;
1800 /*
1801 * Taking the spinlock removes the possiblity
1802 * that acquire_slab() will see a slab page that
1803 * is frozen
1804 */
1805 spin_lock(&n->list_lock);
1806 }
1807 } else {
1808 m = M_FULL;
1809 if (kmem_cache_debug(s) && !lock) {
1810 lock = 1;
1811 /*
1812 * This also ensures that the scanning of full
1813 * slabs from diagnostic functions will not see
1814 * any frozen slabs.
1815 */
1816 spin_lock(&n->list_lock);
1817 }
1818 }
1819
1820 if (l != m) {
1821
1822 if (l == M_PARTIAL)
1823
1824 remove_partial(n, page);
1825
1826 else if (l == M_FULL)
894b8788 1827
2cfb7455
CL
1828 remove_full(s, page);
1829
1830 if (m == M_PARTIAL) {
1831
1832 add_partial(n, page, tail);
136333d1 1833 stat(s, tail);
2cfb7455
CL
1834
1835 } else if (m == M_FULL) {
894b8788 1836
2cfb7455
CL
1837 stat(s, DEACTIVATE_FULL);
1838 add_full(s, n, page);
1839
1840 }
1841 }
1842
1843 l = m;
1d07171c 1844 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1845 old.freelist, old.counters,
1846 new.freelist, new.counters,
1847 "unfreezing slab"))
1848 goto redo;
1849
2cfb7455
CL
1850 if (lock)
1851 spin_unlock(&n->list_lock);
1852
1853 if (m == M_FREE) {
1854 stat(s, DEACTIVATE_EMPTY);
1855 discard_slab(s, page);
1856 stat(s, FREE_SLAB);
894b8788 1857 }
81819f0f
CL
1858}
1859
49e22585
CL
1860/* Unfreeze all the cpu partial slabs */
1861static void unfreeze_partials(struct kmem_cache *s)
1862{
1863 struct kmem_cache_node *n = NULL;
1864 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1865 struct page *page, *discard_page = NULL;
49e22585
CL
1866
1867 while ((page = c->partial)) {
1868 enum slab_modes { M_PARTIAL, M_FREE };
1869 enum slab_modes l, m;
1870 struct page new;
1871 struct page old;
1872
1873 c->partial = page->next;
1874 l = M_FREE;
1875
1876 do {
1877
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
1880 VM_BUG_ON(!old.frozen);
1881
1882 new.counters = old.counters;
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
dcc3be6a 1887 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1888 m = M_FREE;
1889 else {
1890 struct kmem_cache_node *n2 = get_node(s,
1891 page_to_nid(page));
1892
1893 m = M_PARTIAL;
1894 if (n != n2) {
1895 if (n)
1896 spin_unlock(&n->list_lock);
1897
1898 n = n2;
1899 spin_lock(&n->list_lock);
1900 }
1901 }
1902
1903 if (l != m) {
4c493a5a 1904 if (l == M_PARTIAL) {
49e22585 1905 remove_partial(n, page);
4c493a5a
SL
1906 stat(s, FREE_REMOVE_PARTIAL);
1907 } else {
f64ae042
SL
1908 add_partial(n, page,
1909 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1910 stat(s, FREE_ADD_PARTIAL);
1911 }
49e22585
CL
1912
1913 l = m;
1914 }
1915
1916 } while (!cmpxchg_double_slab(s, page,
1917 old.freelist, old.counters,
1918 new.freelist, new.counters,
1919 "unfreezing slab"));
1920
1921 if (m == M_FREE) {
9ada1934
SL
1922 page->next = discard_page;
1923 discard_page = page;
49e22585
CL
1924 }
1925 }
1926
1927 if (n)
1928 spin_unlock(&n->list_lock);
9ada1934
SL
1929
1930 while (discard_page) {
1931 page = discard_page;
1932 discard_page = discard_page->next;
1933
1934 stat(s, DEACTIVATE_EMPTY);
1935 discard_slab(s, page);
1936 stat(s, FREE_SLAB);
1937 }
49e22585
CL
1938}
1939
1940/*
1941 * Put a page that was just frozen (in __slab_free) into a partial page
1942 * slot if available. This is done without interrupts disabled and without
1943 * preemption disabled. The cmpxchg is racy and may put the partial page
1944 * onto a random cpus partial slot.
1945 *
1946 * If we did not find a slot then simply move all the partials to the
1947 * per node partial list.
1948 */
1949int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1950{
1951 struct page *oldpage;
1952 int pages;
1953 int pobjects;
1954
1955 do {
1956 pages = 0;
1957 pobjects = 0;
1958 oldpage = this_cpu_read(s->cpu_slab->partial);
1959
1960 if (oldpage) {
1961 pobjects = oldpage->pobjects;
1962 pages = oldpage->pages;
1963 if (drain && pobjects > s->cpu_partial) {
1964 unsigned long flags;
1965 /*
1966 * partial array is full. Move the existing
1967 * set to the per node partial list.
1968 */
1969 local_irq_save(flags);
1970 unfreeze_partials(s);
1971 local_irq_restore(flags);
1972 pobjects = 0;
1973 pages = 0;
1974 }
1975 }
1976
1977 pages++;
1978 pobjects += page->objects - page->inuse;
1979
1980 page->pages = pages;
1981 page->pobjects = pobjects;
1982 page->next = oldpage;
1983
42d623a8 1984 } while (irqsafe_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1985 stat(s, CPU_PARTIAL_FREE);
1986 return pobjects;
1987}
1988
dfb4f096 1989static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1990{
84e554e6 1991 stat(s, CPUSLAB_FLUSH);
dfb4f096 1992 deactivate_slab(s, c);
81819f0f
CL
1993}
1994
1995/*
1996 * Flush cpu slab.
6446faa2 1997 *
81819f0f
CL
1998 * Called from IPI handler with interrupts disabled.
1999 */
0c710013 2000static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2001{
9dfc6e68 2002 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2003
49e22585
CL
2004 if (likely(c)) {
2005 if (c->page)
2006 flush_slab(s, c);
2007
2008 unfreeze_partials(s);
2009 }
81819f0f
CL
2010}
2011
2012static void flush_cpu_slab(void *d)
2013{
2014 struct kmem_cache *s = d;
81819f0f 2015
dfb4f096 2016 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2017}
2018
2019static void flush_all(struct kmem_cache *s)
2020{
15c8b6c1 2021 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2022}
2023
dfb4f096
CL
2024/*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
2028static inline int node_match(struct kmem_cache_cpu *c, int node)
2029{
2030#ifdef CONFIG_NUMA
2154a336 2031 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2032 return 0;
2033#endif
2034 return 1;
2035}
2036
781b2ba6
PE
2037static int count_free(struct page *page)
2038{
2039 return page->objects - page->inuse;
2040}
2041
2042static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044{
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054}
2055
26c02cf0
AB
2056static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057{
2058#ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060#else
2061 return 0;
2062#endif
2063}
2064
781b2ba6
PE
2065static noinline void
2066slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067{
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2074 "default order: %d, min order: %d\n", s->name, s->objsize,
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
fa5ec8a1
DR
2077 if (oo_order(s->min) > get_order(s->objsize))
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
781b2ba6
PE
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
26c02cf0
AB
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
781b2ba6
PE
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098}
2099
497b66f2
CL
2100static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102{
2103 void *object;
2104 struct kmem_cache_cpu *c;
2105 struct page *page = new_slab(s, flags, node);
2106
2107 if (page) {
2108 c = __this_cpu_ptr(s->cpu_slab);
2109 if (c->page)
2110 flush_slab(s, c);
2111
2112 /*
2113 * No other reference to the page yet so we can
2114 * muck around with it freely without cmpxchg
2115 */
2116 object = page->freelist;
2117 page->freelist = NULL;
2118
2119 stat(s, ALLOC_SLAB);
2120 c->node = page_to_nid(page);
2121 c->page = page;
2122 *pc = c;
2123 } else
2124 object = NULL;
2125
2126 return object;
2127}
2128
81819f0f 2129/*
894b8788
CL
2130 * Slow path. The lockless freelist is empty or we need to perform
2131 * debugging duties.
2132 *
894b8788
CL
2133 * Processing is still very fast if new objects have been freed to the
2134 * regular freelist. In that case we simply take over the regular freelist
2135 * as the lockless freelist and zap the regular freelist.
81819f0f 2136 *
894b8788
CL
2137 * If that is not working then we fall back to the partial lists. We take the
2138 * first element of the freelist as the object to allocate now and move the
2139 * rest of the freelist to the lockless freelist.
81819f0f 2140 *
894b8788 2141 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2142 * we need to allocate a new slab. This is the slowest path since it involves
2143 * a call to the page allocator and the setup of a new slab.
81819f0f 2144 */
ce71e27c
EGM
2145static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2146 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2147{
81819f0f 2148 void **object;
8a5ec0ba 2149 unsigned long flags;
2cfb7455
CL
2150 struct page new;
2151 unsigned long counters;
8a5ec0ba
CL
2152
2153 local_irq_save(flags);
2154#ifdef CONFIG_PREEMPT
2155 /*
2156 * We may have been preempted and rescheduled on a different
2157 * cpu before disabling interrupts. Need to reload cpu area
2158 * pointer.
2159 */
2160 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2161#endif
81819f0f 2162
497b66f2 2163 if (!c->page)
81819f0f 2164 goto new_slab;
49e22585 2165redo:
fc59c053 2166 if (unlikely(!node_match(c, node))) {
e36a2652 2167 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2168 deactivate_slab(s, c);
2169 goto new_slab;
2170 }
6446faa2 2171
2cfb7455
CL
2172 stat(s, ALLOC_SLOWPATH);
2173
2174 do {
497b66f2
CL
2175 object = c->page->freelist;
2176 counters = c->page->counters;
2cfb7455 2177 new.counters = counters;
2cfb7455
CL
2178 VM_BUG_ON(!new.frozen);
2179
03e404af
CL
2180 /*
2181 * If there is no object left then we use this loop to
2182 * deactivate the slab which is simple since no objects
2183 * are left in the slab and therefore we do not need to
2184 * put the page back onto the partial list.
2185 *
2186 * If there are objects left then we retrieve them
2187 * and use them to refill the per cpu queue.
497b66f2 2188 */
03e404af 2189
497b66f2 2190 new.inuse = c->page->objects;
03e404af
CL
2191 new.frozen = object != NULL;
2192
497b66f2 2193 } while (!__cmpxchg_double_slab(s, c->page,
2cfb7455
CL
2194 object, counters,
2195 NULL, new.counters,
2196 "__slab_alloc"));
6446faa2 2197
49e22585 2198 if (!object) {
03e404af
CL
2199 c->page = NULL;
2200 stat(s, DEACTIVATE_BYPASS);
fc59c053 2201 goto new_slab;
03e404af 2202 }
6446faa2 2203
84e554e6 2204 stat(s, ALLOC_REFILL);
6446faa2 2205
894b8788 2206load_freelist:
ff12059e 2207 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2208 c->tid = next_tid(c->tid);
2209 local_irq_restore(flags);
81819f0f
CL
2210 return object;
2211
81819f0f 2212new_slab:
2cfb7455 2213
49e22585
CL
2214 if (c->partial) {
2215 c->page = c->partial;
2216 c->partial = c->page->next;
2217 c->node = page_to_nid(c->page);
2218 stat(s, CPU_PARTIAL_ALLOC);
2219 c->freelist = NULL;
2220 goto redo;
81819f0f
CL
2221 }
2222
49e22585 2223 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2224 object = get_partial(s, gfpflags, node, c);
b811c202 2225
497b66f2 2226 if (unlikely(!object)) {
01ad8a7b 2227
497b66f2 2228 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2229
497b66f2
CL
2230 if (unlikely(!object)) {
2231 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2232 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2233
497b66f2
CL
2234 local_irq_restore(flags);
2235 return NULL;
2236 }
81819f0f 2237 }
2cfb7455 2238
497b66f2 2239 if (likely(!kmem_cache_debug(s)))
4b6f0750 2240 goto load_freelist;
2cfb7455 2241
497b66f2
CL
2242 /* Only entered in the debug case */
2243 if (!alloc_debug_processing(s, c->page, object, addr))
2244 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2245
2cfb7455 2246 c->freelist = get_freepointer(s, object);
442b06bc 2247 deactivate_slab(s, c);
15b7c514 2248 c->node = NUMA_NO_NODE;
a71ae47a
CL
2249 local_irq_restore(flags);
2250 return object;
894b8788
CL
2251}
2252
2253/*
2254 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2255 * have the fastpath folded into their functions. So no function call
2256 * overhead for requests that can be satisfied on the fastpath.
2257 *
2258 * The fastpath works by first checking if the lockless freelist can be used.
2259 * If not then __slab_alloc is called for slow processing.
2260 *
2261 * Otherwise we can simply pick the next object from the lockless free list.
2262 */
06428780 2263static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2264 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2265{
894b8788 2266 void **object;
dfb4f096 2267 struct kmem_cache_cpu *c;
8a5ec0ba 2268 unsigned long tid;
1f84260c 2269
c016b0bd 2270 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2271 return NULL;
1f84260c 2272
8a5ec0ba 2273redo:
8a5ec0ba
CL
2274
2275 /*
2276 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2277 * enabled. We may switch back and forth between cpus while
2278 * reading from one cpu area. That does not matter as long
2279 * as we end up on the original cpu again when doing the cmpxchg.
2280 */
9dfc6e68 2281 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2282
8a5ec0ba
CL
2283 /*
2284 * The transaction ids are globally unique per cpu and per operation on
2285 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2286 * occurs on the right processor and that there was no operation on the
2287 * linked list in between.
2288 */
2289 tid = c->tid;
2290 barrier();
8a5ec0ba 2291
9dfc6e68 2292 object = c->freelist;
9dfc6e68 2293 if (unlikely(!object || !node_match(c, node)))
894b8788 2294
dfb4f096 2295 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2296
2297 else {
8a5ec0ba 2298 /*
25985edc 2299 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2300 * operation and if we are on the right processor.
2301 *
2302 * The cmpxchg does the following atomically (without lock semantics!)
2303 * 1. Relocate first pointer to the current per cpu area.
2304 * 2. Verify that tid and freelist have not been changed
2305 * 3. If they were not changed replace tid and freelist
2306 *
2307 * Since this is without lock semantics the protection is only against
2308 * code executing on this cpu *not* from access by other cpus.
2309 */
30106b8c 2310 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2311 s->cpu_slab->freelist, s->cpu_slab->tid,
2312 object, tid,
1393d9a1 2313 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2314
2315 note_cmpxchg_failure("slab_alloc", s, tid);
2316 goto redo;
2317 }
84e554e6 2318 stat(s, ALLOC_FASTPATH);
894b8788 2319 }
8a5ec0ba 2320
74e2134f 2321 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2322 memset(object, 0, s->objsize);
d07dbea4 2323
c016b0bd 2324 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2325
894b8788 2326 return object;
81819f0f
CL
2327}
2328
2329void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2330{
2154a336 2331 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2332
ca2b84cb 2333 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2334
2335 return ret;
81819f0f
CL
2336}
2337EXPORT_SYMBOL(kmem_cache_alloc);
2338
0f24f128 2339#ifdef CONFIG_TRACING
4a92379b
RK
2340void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2341{
2342 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2343 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2344 return ret;
2345}
2346EXPORT_SYMBOL(kmem_cache_alloc_trace);
2347
2348void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2349{
4a92379b
RK
2350 void *ret = kmalloc_order(size, flags, order);
2351 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2352 return ret;
5b882be4 2353}
4a92379b 2354EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2355#endif
2356
81819f0f
CL
2357#ifdef CONFIG_NUMA
2358void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2359{
5b882be4
EGM
2360 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2361
ca2b84cb
EGM
2362 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2363 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2364
2365 return ret;
81819f0f
CL
2366}
2367EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2368
0f24f128 2369#ifdef CONFIG_TRACING
4a92379b 2370void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2371 gfp_t gfpflags,
4a92379b 2372 int node, size_t size)
5b882be4 2373{
4a92379b
RK
2374 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2375
2376 trace_kmalloc_node(_RET_IP_, ret,
2377 size, s->size, gfpflags, node);
2378 return ret;
5b882be4 2379}
4a92379b 2380EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2381#endif
5d1f57e4 2382#endif
5b882be4 2383
81819f0f 2384/*
894b8788
CL
2385 * Slow patch handling. This may still be called frequently since objects
2386 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2387 *
894b8788
CL
2388 * So we still attempt to reduce cache line usage. Just take the slab
2389 * lock and free the item. If there is no additional partial page
2390 * handling required then we can return immediately.
81819f0f 2391 */
894b8788 2392static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2393 void *x, unsigned long addr)
81819f0f
CL
2394{
2395 void *prior;
2396 void **object = (void *)x;
2cfb7455
CL
2397 int was_frozen;
2398 int inuse;
2399 struct page new;
2400 unsigned long counters;
2401 struct kmem_cache_node *n = NULL;
61728d1e 2402 unsigned long uninitialized_var(flags);
81819f0f 2403
8a5ec0ba 2404 stat(s, FREE_SLOWPATH);
81819f0f 2405
8dc16c6c 2406 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2407 return;
6446faa2 2408
2cfb7455
CL
2409 do {
2410 prior = page->freelist;
2411 counters = page->counters;
2412 set_freepointer(s, object, prior);
2413 new.counters = counters;
2414 was_frozen = new.frozen;
2415 new.inuse--;
2416 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2417
2418 if (!kmem_cache_debug(s) && !prior)
2419
2420 /*
2421 * Slab was on no list before and will be partially empty
2422 * We can defer the list move and instead freeze it.
2423 */
2424 new.frozen = 1;
2425
2426 else { /* Needs to be taken off a list */
2427
2428 n = get_node(s, page_to_nid(page));
2429 /*
2430 * Speculatively acquire the list_lock.
2431 * If the cmpxchg does not succeed then we may
2432 * drop the list_lock without any processing.
2433 *
2434 * Otherwise the list_lock will synchronize with
2435 * other processors updating the list of slabs.
2436 */
2437 spin_lock_irqsave(&n->list_lock, flags);
2438
2439 }
2cfb7455
CL
2440 }
2441 inuse = new.inuse;
81819f0f 2442
2cfb7455
CL
2443 } while (!cmpxchg_double_slab(s, page,
2444 prior, counters,
2445 object, new.counters,
2446 "__slab_free"));
81819f0f 2447
2cfb7455 2448 if (likely(!n)) {
49e22585
CL
2449
2450 /*
2451 * If we just froze the page then put it onto the
2452 * per cpu partial list.
2453 */
2454 if (new.frozen && !was_frozen)
2455 put_cpu_partial(s, page, 1);
2456
2457 /*
2cfb7455
CL
2458 * The list lock was not taken therefore no list
2459 * activity can be necessary.
2460 */
2461 if (was_frozen)
2462 stat(s, FREE_FROZEN);
80f08c19 2463 return;
2cfb7455 2464 }
81819f0f
CL
2465
2466 /*
2cfb7455
CL
2467 * was_frozen may have been set after we acquired the list_lock in
2468 * an earlier loop. So we need to check it here again.
81819f0f 2469 */
2cfb7455
CL
2470 if (was_frozen)
2471 stat(s, FREE_FROZEN);
2472 else {
2473 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2474 goto slab_empty;
81819f0f 2475
2cfb7455
CL
2476 /*
2477 * Objects left in the slab. If it was not on the partial list before
2478 * then add it.
2479 */
2480 if (unlikely(!prior)) {
2481 remove_full(s, page);
136333d1 2482 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2483 stat(s, FREE_ADD_PARTIAL);
2484 }
8ff12cfc 2485 }
80f08c19 2486 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2487 return;
2488
2489slab_empty:
a973e9dd 2490 if (prior) {
81819f0f 2491 /*
6fbabb20 2492 * Slab on the partial list.
81819f0f 2493 */
5cc6eee8 2494 remove_partial(n, page);
84e554e6 2495 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2496 } else
2497 /* Slab must be on the full list */
2498 remove_full(s, page);
2cfb7455 2499
80f08c19 2500 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2501 stat(s, FREE_SLAB);
81819f0f 2502 discard_slab(s, page);
81819f0f
CL
2503}
2504
894b8788
CL
2505/*
2506 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2507 * can perform fastpath freeing without additional function calls.
2508 *
2509 * The fastpath is only possible if we are freeing to the current cpu slab
2510 * of this processor. This typically the case if we have just allocated
2511 * the item before.
2512 *
2513 * If fastpath is not possible then fall back to __slab_free where we deal
2514 * with all sorts of special processing.
2515 */
06428780 2516static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2517 struct page *page, void *x, unsigned long addr)
894b8788
CL
2518{
2519 void **object = (void *)x;
dfb4f096 2520 struct kmem_cache_cpu *c;
8a5ec0ba 2521 unsigned long tid;
1f84260c 2522
c016b0bd
CL
2523 slab_free_hook(s, x);
2524
8a5ec0ba
CL
2525redo:
2526 /*
2527 * Determine the currently cpus per cpu slab.
2528 * The cpu may change afterward. However that does not matter since
2529 * data is retrieved via this pointer. If we are on the same cpu
2530 * during the cmpxchg then the free will succedd.
2531 */
9dfc6e68 2532 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2533
8a5ec0ba
CL
2534 tid = c->tid;
2535 barrier();
c016b0bd 2536
442b06bc 2537 if (likely(page == c->page)) {
ff12059e 2538 set_freepointer(s, object, c->freelist);
8a5ec0ba 2539
30106b8c 2540 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2541 s->cpu_slab->freelist, s->cpu_slab->tid,
2542 c->freelist, tid,
2543 object, next_tid(tid)))) {
2544
2545 note_cmpxchg_failure("slab_free", s, tid);
2546 goto redo;
2547 }
84e554e6 2548 stat(s, FREE_FASTPATH);
894b8788 2549 } else
ff12059e 2550 __slab_free(s, page, x, addr);
894b8788 2551
894b8788
CL
2552}
2553
81819f0f
CL
2554void kmem_cache_free(struct kmem_cache *s, void *x)
2555{
77c5e2d0 2556 struct page *page;
81819f0f 2557
b49af68f 2558 page = virt_to_head_page(x);
81819f0f 2559
ce71e27c 2560 slab_free(s, page, x, _RET_IP_);
5b882be4 2561
ca2b84cb 2562 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2563}
2564EXPORT_SYMBOL(kmem_cache_free);
2565
81819f0f 2566/*
672bba3a
CL
2567 * Object placement in a slab is made very easy because we always start at
2568 * offset 0. If we tune the size of the object to the alignment then we can
2569 * get the required alignment by putting one properly sized object after
2570 * another.
81819f0f
CL
2571 *
2572 * Notice that the allocation order determines the sizes of the per cpu
2573 * caches. Each processor has always one slab available for allocations.
2574 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2575 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2576 * locking overhead.
81819f0f
CL
2577 */
2578
2579/*
2580 * Mininum / Maximum order of slab pages. This influences locking overhead
2581 * and slab fragmentation. A higher order reduces the number of partial slabs
2582 * and increases the number of allocations possible without having to
2583 * take the list_lock.
2584 */
2585static int slub_min_order;
114e9e89 2586static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2587static int slub_min_objects;
81819f0f
CL
2588
2589/*
2590 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2591 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2592 */
2593static int slub_nomerge;
2594
81819f0f
CL
2595/*
2596 * Calculate the order of allocation given an slab object size.
2597 *
672bba3a
CL
2598 * The order of allocation has significant impact on performance and other
2599 * system components. Generally order 0 allocations should be preferred since
2600 * order 0 does not cause fragmentation in the page allocator. Larger objects
2601 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2602 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2603 * would be wasted.
2604 *
2605 * In order to reach satisfactory performance we must ensure that a minimum
2606 * number of objects is in one slab. Otherwise we may generate too much
2607 * activity on the partial lists which requires taking the list_lock. This is
2608 * less a concern for large slabs though which are rarely used.
81819f0f 2609 *
672bba3a
CL
2610 * slub_max_order specifies the order where we begin to stop considering the
2611 * number of objects in a slab as critical. If we reach slub_max_order then
2612 * we try to keep the page order as low as possible. So we accept more waste
2613 * of space in favor of a small page order.
81819f0f 2614 *
672bba3a
CL
2615 * Higher order allocations also allow the placement of more objects in a
2616 * slab and thereby reduce object handling overhead. If the user has
2617 * requested a higher mininum order then we start with that one instead of
2618 * the smallest order which will fit the object.
81819f0f 2619 */
5e6d444e 2620static inline int slab_order(int size, int min_objects,
ab9a0f19 2621 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2622{
2623 int order;
2624 int rem;
6300ea75 2625 int min_order = slub_min_order;
81819f0f 2626
ab9a0f19 2627 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2628 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2629
6300ea75 2630 for (order = max(min_order,
5e6d444e
CL
2631 fls(min_objects * size - 1) - PAGE_SHIFT);
2632 order <= max_order; order++) {
81819f0f 2633
5e6d444e 2634 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2635
ab9a0f19 2636 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2637 continue;
2638
ab9a0f19 2639 rem = (slab_size - reserved) % size;
81819f0f 2640
5e6d444e 2641 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2642 break;
2643
2644 }
672bba3a 2645
81819f0f
CL
2646 return order;
2647}
2648
ab9a0f19 2649static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2650{
2651 int order;
2652 int min_objects;
2653 int fraction;
e8120ff1 2654 int max_objects;
5e6d444e
CL
2655
2656 /*
2657 * Attempt to find best configuration for a slab. This
2658 * works by first attempting to generate a layout with
2659 * the best configuration and backing off gradually.
2660 *
2661 * First we reduce the acceptable waste in a slab. Then
2662 * we reduce the minimum objects required in a slab.
2663 */
2664 min_objects = slub_min_objects;
9b2cd506
CL
2665 if (!min_objects)
2666 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2667 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2668 min_objects = min(min_objects, max_objects);
2669
5e6d444e 2670 while (min_objects > 1) {
c124f5b5 2671 fraction = 16;
5e6d444e
CL
2672 while (fraction >= 4) {
2673 order = slab_order(size, min_objects,
ab9a0f19 2674 slub_max_order, fraction, reserved);
5e6d444e
CL
2675 if (order <= slub_max_order)
2676 return order;
2677 fraction /= 2;
2678 }
5086c389 2679 min_objects--;
5e6d444e
CL
2680 }
2681
2682 /*
2683 * We were unable to place multiple objects in a slab. Now
2684 * lets see if we can place a single object there.
2685 */
ab9a0f19 2686 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2687 if (order <= slub_max_order)
2688 return order;
2689
2690 /*
2691 * Doh this slab cannot be placed using slub_max_order.
2692 */
ab9a0f19 2693 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2694 if (order < MAX_ORDER)
5e6d444e
CL
2695 return order;
2696 return -ENOSYS;
2697}
2698
81819f0f 2699/*
672bba3a 2700 * Figure out what the alignment of the objects will be.
81819f0f
CL
2701 */
2702static unsigned long calculate_alignment(unsigned long flags,
2703 unsigned long align, unsigned long size)
2704{
2705 /*
6446faa2
CL
2706 * If the user wants hardware cache aligned objects then follow that
2707 * suggestion if the object is sufficiently large.
81819f0f 2708 *
6446faa2
CL
2709 * The hardware cache alignment cannot override the specified
2710 * alignment though. If that is greater then use it.
81819f0f 2711 */
b6210386
NP
2712 if (flags & SLAB_HWCACHE_ALIGN) {
2713 unsigned long ralign = cache_line_size();
2714 while (size <= ralign / 2)
2715 ralign /= 2;
2716 align = max(align, ralign);
2717 }
81819f0f
CL
2718
2719 if (align < ARCH_SLAB_MINALIGN)
b6210386 2720 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2721
2722 return ALIGN(align, sizeof(void *));
2723}
2724
5595cffc
PE
2725static void
2726init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2727{
2728 n->nr_partial = 0;
81819f0f
CL
2729 spin_lock_init(&n->list_lock);
2730 INIT_LIST_HEAD(&n->partial);
8ab1372f 2731#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2732 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2733 atomic_long_set(&n->total_objects, 0);
643b1138 2734 INIT_LIST_HEAD(&n->full);
8ab1372f 2735#endif
81819f0f
CL
2736}
2737
55136592 2738static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2739{
6c182dc0
CL
2740 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2741 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2742
8a5ec0ba 2743 /*
d4d84fef
CM
2744 * Must align to double word boundary for the double cmpxchg
2745 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2746 */
d4d84fef
CM
2747 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2748 2 * sizeof(void *));
8a5ec0ba
CL
2749
2750 if (!s->cpu_slab)
2751 return 0;
2752
2753 init_kmem_cache_cpus(s);
4c93c355 2754
8a5ec0ba 2755 return 1;
4c93c355 2756}
4c93c355 2757
51df1142
CL
2758static struct kmem_cache *kmem_cache_node;
2759
81819f0f
CL
2760/*
2761 * No kmalloc_node yet so do it by hand. We know that this is the first
2762 * slab on the node for this slabcache. There are no concurrent accesses
2763 * possible.
2764 *
2765 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2766 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2767 * memory on a fresh node that has no slab structures yet.
81819f0f 2768 */
55136592 2769static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2770{
2771 struct page *page;
2772 struct kmem_cache_node *n;
2773
51df1142 2774 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2775
51df1142 2776 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2777
2778 BUG_ON(!page);
a2f92ee7
CL
2779 if (page_to_nid(page) != node) {
2780 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2781 "node %d\n", node);
2782 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2783 "in order to be able to continue\n");
2784 }
2785
81819f0f
CL
2786 n = page->freelist;
2787 BUG_ON(!n);
51df1142 2788 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2789 page->inuse = 1;
8cb0a506 2790 page->frozen = 0;
51df1142 2791 kmem_cache_node->node[node] = n;
8ab1372f 2792#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2793 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2794 init_tracking(kmem_cache_node, n);
8ab1372f 2795#endif
51df1142
CL
2796 init_kmem_cache_node(n, kmem_cache_node);
2797 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2798
136333d1 2799 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2800}
2801
2802static void free_kmem_cache_nodes(struct kmem_cache *s)
2803{
2804 int node;
2805
f64dc58c 2806 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2807 struct kmem_cache_node *n = s->node[node];
51df1142 2808
73367bd8 2809 if (n)
51df1142
CL
2810 kmem_cache_free(kmem_cache_node, n);
2811
81819f0f
CL
2812 s->node[node] = NULL;
2813 }
2814}
2815
55136592 2816static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2817{
2818 int node;
81819f0f 2819
f64dc58c 2820 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2821 struct kmem_cache_node *n;
2822
73367bd8 2823 if (slab_state == DOWN) {
55136592 2824 early_kmem_cache_node_alloc(node);
73367bd8
AD
2825 continue;
2826 }
51df1142 2827 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2828 GFP_KERNEL, node);
81819f0f 2829
73367bd8
AD
2830 if (!n) {
2831 free_kmem_cache_nodes(s);
2832 return 0;
81819f0f 2833 }
73367bd8 2834
81819f0f 2835 s->node[node] = n;
5595cffc 2836 init_kmem_cache_node(n, s);
81819f0f
CL
2837 }
2838 return 1;
2839}
81819f0f 2840
c0bdb232 2841static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2842{
2843 if (min < MIN_PARTIAL)
2844 min = MIN_PARTIAL;
2845 else if (min > MAX_PARTIAL)
2846 min = MAX_PARTIAL;
2847 s->min_partial = min;
2848}
2849
81819f0f
CL
2850/*
2851 * calculate_sizes() determines the order and the distribution of data within
2852 * a slab object.
2853 */
06b285dc 2854static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2855{
2856 unsigned long flags = s->flags;
2857 unsigned long size = s->objsize;
2858 unsigned long align = s->align;
834f3d11 2859 int order;
81819f0f 2860
d8b42bf5
CL
2861 /*
2862 * Round up object size to the next word boundary. We can only
2863 * place the free pointer at word boundaries and this determines
2864 * the possible location of the free pointer.
2865 */
2866 size = ALIGN(size, sizeof(void *));
2867
2868#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2869 /*
2870 * Determine if we can poison the object itself. If the user of
2871 * the slab may touch the object after free or before allocation
2872 * then we should never poison the object itself.
2873 */
2874 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2875 !s->ctor)
81819f0f
CL
2876 s->flags |= __OBJECT_POISON;
2877 else
2878 s->flags &= ~__OBJECT_POISON;
2879
81819f0f
CL
2880
2881 /*
672bba3a 2882 * If we are Redzoning then check if there is some space between the
81819f0f 2883 * end of the object and the free pointer. If not then add an
672bba3a 2884 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2885 */
2886 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2887 size += sizeof(void *);
41ecc55b 2888#endif
81819f0f
CL
2889
2890 /*
672bba3a
CL
2891 * With that we have determined the number of bytes in actual use
2892 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2893 */
2894 s->inuse = size;
2895
2896 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2897 s->ctor)) {
81819f0f
CL
2898 /*
2899 * Relocate free pointer after the object if it is not
2900 * permitted to overwrite the first word of the object on
2901 * kmem_cache_free.
2902 *
2903 * This is the case if we do RCU, have a constructor or
2904 * destructor or are poisoning the objects.
2905 */
2906 s->offset = size;
2907 size += sizeof(void *);
2908 }
2909
c12b3c62 2910#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2911 if (flags & SLAB_STORE_USER)
2912 /*
2913 * Need to store information about allocs and frees after
2914 * the object.
2915 */
2916 size += 2 * sizeof(struct track);
2917
be7b3fbc 2918 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2919 /*
2920 * Add some empty padding so that we can catch
2921 * overwrites from earlier objects rather than let
2922 * tracking information or the free pointer be
0211a9c8 2923 * corrupted if a user writes before the start
81819f0f
CL
2924 * of the object.
2925 */
2926 size += sizeof(void *);
41ecc55b 2927#endif
672bba3a 2928
81819f0f
CL
2929 /*
2930 * Determine the alignment based on various parameters that the
65c02d4c
CL
2931 * user specified and the dynamic determination of cache line size
2932 * on bootup.
81819f0f
CL
2933 */
2934 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2935 s->align = align;
81819f0f
CL
2936
2937 /*
2938 * SLUB stores one object immediately after another beginning from
2939 * offset 0. In order to align the objects we have to simply size
2940 * each object to conform to the alignment.
2941 */
2942 size = ALIGN(size, align);
2943 s->size = size;
06b285dc
CL
2944 if (forced_order >= 0)
2945 order = forced_order;
2946 else
ab9a0f19 2947 order = calculate_order(size, s->reserved);
81819f0f 2948
834f3d11 2949 if (order < 0)
81819f0f
CL
2950 return 0;
2951
b7a49f0d 2952 s->allocflags = 0;
834f3d11 2953 if (order)
b7a49f0d
CL
2954 s->allocflags |= __GFP_COMP;
2955
2956 if (s->flags & SLAB_CACHE_DMA)
2957 s->allocflags |= SLUB_DMA;
2958
2959 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2960 s->allocflags |= __GFP_RECLAIMABLE;
2961
81819f0f
CL
2962 /*
2963 * Determine the number of objects per slab
2964 */
ab9a0f19
LJ
2965 s->oo = oo_make(order, size, s->reserved);
2966 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2967 if (oo_objects(s->oo) > oo_objects(s->max))
2968 s->max = s->oo;
81819f0f 2969
834f3d11 2970 return !!oo_objects(s->oo);
81819f0f
CL
2971
2972}
2973
55136592 2974static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2975 const char *name, size_t size,
2976 size_t align, unsigned long flags,
51cc5068 2977 void (*ctor)(void *))
81819f0f
CL
2978{
2979 memset(s, 0, kmem_size);
2980 s->name = name;
2981 s->ctor = ctor;
81819f0f 2982 s->objsize = size;
81819f0f 2983 s->align = align;
ba0268a8 2984 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2985 s->reserved = 0;
81819f0f 2986
da9a638c
LJ
2987 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2988 s->reserved = sizeof(struct rcu_head);
81819f0f 2989
06b285dc 2990 if (!calculate_sizes(s, -1))
81819f0f 2991 goto error;
3de47213
DR
2992 if (disable_higher_order_debug) {
2993 /*
2994 * Disable debugging flags that store metadata if the min slab
2995 * order increased.
2996 */
2997 if (get_order(s->size) > get_order(s->objsize)) {
2998 s->flags &= ~DEBUG_METADATA_FLAGS;
2999 s->offset = 0;
3000 if (!calculate_sizes(s, -1))
3001 goto error;
3002 }
3003 }
81819f0f 3004
b789ef51
CL
3005#ifdef CONFIG_CMPXCHG_DOUBLE
3006 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3007 /* Enable fast mode */
3008 s->flags |= __CMPXCHG_DOUBLE;
3009#endif
3010
3b89d7d8
DR
3011 /*
3012 * The larger the object size is, the more pages we want on the partial
3013 * list to avoid pounding the page allocator excessively.
3014 */
49e22585
CL
3015 set_min_partial(s, ilog2(s->size) / 2);
3016
3017 /*
3018 * cpu_partial determined the maximum number of objects kept in the
3019 * per cpu partial lists of a processor.
3020 *
3021 * Per cpu partial lists mainly contain slabs that just have one
3022 * object freed. If they are used for allocation then they can be
3023 * filled up again with minimal effort. The slab will never hit the
3024 * per node partial lists and therefore no locking will be required.
3025 *
3026 * This setting also determines
3027 *
3028 * A) The number of objects from per cpu partial slabs dumped to the
3029 * per node list when we reach the limit.
9f264904 3030 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3031 * per node list when we run out of per cpu objects. We only fetch 50%
3032 * to keep some capacity around for frees.
3033 */
3034 if (s->size >= PAGE_SIZE)
3035 s->cpu_partial = 2;
3036 else if (s->size >= 1024)
3037 s->cpu_partial = 6;
3038 else if (s->size >= 256)
3039 s->cpu_partial = 13;
3040 else
3041 s->cpu_partial = 30;
3042
81819f0f
CL
3043 s->refcount = 1;
3044#ifdef CONFIG_NUMA
e2cb96b7 3045 s->remote_node_defrag_ratio = 1000;
81819f0f 3046#endif
55136592 3047 if (!init_kmem_cache_nodes(s))
dfb4f096 3048 goto error;
81819f0f 3049
55136592 3050 if (alloc_kmem_cache_cpus(s))
81819f0f 3051 return 1;
ff12059e 3052
4c93c355 3053 free_kmem_cache_nodes(s);
81819f0f
CL
3054error:
3055 if (flags & SLAB_PANIC)
3056 panic("Cannot create slab %s size=%lu realsize=%u "
3057 "order=%u offset=%u flags=%lx\n",
834f3d11 3058 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3059 s->offset, flags);
3060 return 0;
3061}
81819f0f 3062
81819f0f
CL
3063/*
3064 * Determine the size of a slab object
3065 */
3066unsigned int kmem_cache_size(struct kmem_cache *s)
3067{
3068 return s->objsize;
3069}
3070EXPORT_SYMBOL(kmem_cache_size);
3071
33b12c38
CL
3072static void list_slab_objects(struct kmem_cache *s, struct page *page,
3073 const char *text)
3074{
3075#ifdef CONFIG_SLUB_DEBUG
3076 void *addr = page_address(page);
3077 void *p;
a5dd5c11
NK
3078 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3079 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3080 if (!map)
3081 return;
33b12c38
CL
3082 slab_err(s, page, "%s", text);
3083 slab_lock(page);
33b12c38 3084
5f80b13a 3085 get_map(s, page, map);
33b12c38
CL
3086 for_each_object(p, s, addr, page->objects) {
3087
3088 if (!test_bit(slab_index(p, s, addr), map)) {
3089 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3090 p, p - addr);
3091 print_tracking(s, p);
3092 }
3093 }
3094 slab_unlock(page);
bbd7d57b 3095 kfree(map);
33b12c38
CL
3096#endif
3097}
3098
81819f0f 3099/*
599870b1 3100 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3101 * This is called from kmem_cache_close(). We must be the last thread
3102 * using the cache and therefore we do not need to lock anymore.
81819f0f 3103 */
599870b1 3104static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3105{
81819f0f
CL
3106 struct page *page, *h;
3107
33b12c38 3108 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3109 if (!page->inuse) {
5cc6eee8 3110 remove_partial(n, page);
81819f0f 3111 discard_slab(s, page);
33b12c38
CL
3112 } else {
3113 list_slab_objects(s, page,
3114 "Objects remaining on kmem_cache_close()");
599870b1 3115 }
33b12c38 3116 }
81819f0f
CL
3117}
3118
3119/*
672bba3a 3120 * Release all resources used by a slab cache.
81819f0f 3121 */
0c710013 3122static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3123{
3124 int node;
3125
3126 flush_all(s);
9dfc6e68 3127 free_percpu(s->cpu_slab);
81819f0f 3128 /* Attempt to free all objects */
f64dc58c 3129 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3130 struct kmem_cache_node *n = get_node(s, node);
3131
599870b1
CL
3132 free_partial(s, n);
3133 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3134 return 1;
3135 }
3136 free_kmem_cache_nodes(s);
3137 return 0;
3138}
3139
3140/*
3141 * Close a cache and release the kmem_cache structure
3142 * (must be used for caches created using kmem_cache_create)
3143 */
3144void kmem_cache_destroy(struct kmem_cache *s)
3145{
3146 down_write(&slub_lock);
3147 s->refcount--;
3148 if (!s->refcount) {
3149 list_del(&s->list);
69cb8e6b 3150 up_write(&slub_lock);
d629d819
PE
3151 if (kmem_cache_close(s)) {
3152 printk(KERN_ERR "SLUB %s: %s called for cache that "
3153 "still has objects.\n", s->name, __func__);
3154 dump_stack();
3155 }
d76b1590
ED
3156 if (s->flags & SLAB_DESTROY_BY_RCU)
3157 rcu_barrier();
81819f0f 3158 sysfs_slab_remove(s);
69cb8e6b
CL
3159 } else
3160 up_write(&slub_lock);
81819f0f
CL
3161}
3162EXPORT_SYMBOL(kmem_cache_destroy);
3163
3164/********************************************************************
3165 * Kmalloc subsystem
3166 *******************************************************************/
3167
51df1142 3168struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3169EXPORT_SYMBOL(kmalloc_caches);
3170
51df1142
CL
3171static struct kmem_cache *kmem_cache;
3172
55136592 3173#ifdef CONFIG_ZONE_DMA
51df1142 3174static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3175#endif
3176
81819f0f
CL
3177static int __init setup_slub_min_order(char *str)
3178{
06428780 3179 get_option(&str, &slub_min_order);
81819f0f
CL
3180
3181 return 1;
3182}
3183
3184__setup("slub_min_order=", setup_slub_min_order);
3185
3186static int __init setup_slub_max_order(char *str)
3187{
06428780 3188 get_option(&str, &slub_max_order);
818cf590 3189 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3190
3191 return 1;
3192}
3193
3194__setup("slub_max_order=", setup_slub_max_order);
3195
3196static int __init setup_slub_min_objects(char *str)
3197{
06428780 3198 get_option(&str, &slub_min_objects);
81819f0f
CL
3199
3200 return 1;
3201}
3202
3203__setup("slub_min_objects=", setup_slub_min_objects);
3204
3205static int __init setup_slub_nomerge(char *str)
3206{
3207 slub_nomerge = 1;
3208 return 1;
3209}
3210
3211__setup("slub_nomerge", setup_slub_nomerge);
3212
51df1142
CL
3213static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3214 int size, unsigned int flags)
81819f0f 3215{
51df1142
CL
3216 struct kmem_cache *s;
3217
3218 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3219
83b519e8
PE
3220 /*
3221 * This function is called with IRQs disabled during early-boot on
3222 * single CPU so there's no need to take slub_lock here.
3223 */
55136592 3224 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3225 flags, NULL))
81819f0f
CL
3226 goto panic;
3227
3228 list_add(&s->list, &slab_caches);
51df1142 3229 return s;
81819f0f
CL
3230
3231panic:
3232 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3233 return NULL;
81819f0f
CL
3234}
3235
f1b26339
CL
3236/*
3237 * Conversion table for small slabs sizes / 8 to the index in the
3238 * kmalloc array. This is necessary for slabs < 192 since we have non power
3239 * of two cache sizes there. The size of larger slabs can be determined using
3240 * fls.
3241 */
3242static s8 size_index[24] = {
3243 3, /* 8 */
3244 4, /* 16 */
3245 5, /* 24 */
3246 5, /* 32 */
3247 6, /* 40 */
3248 6, /* 48 */
3249 6, /* 56 */
3250 6, /* 64 */
3251 1, /* 72 */
3252 1, /* 80 */
3253 1, /* 88 */
3254 1, /* 96 */
3255 7, /* 104 */
3256 7, /* 112 */
3257 7, /* 120 */
3258 7, /* 128 */
3259 2, /* 136 */
3260 2, /* 144 */
3261 2, /* 152 */
3262 2, /* 160 */
3263 2, /* 168 */
3264 2, /* 176 */
3265 2, /* 184 */
3266 2 /* 192 */
3267};
3268
acdfcd04
AK
3269static inline int size_index_elem(size_t bytes)
3270{
3271 return (bytes - 1) / 8;
3272}
3273
81819f0f
CL
3274static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3275{
f1b26339 3276 int index;
81819f0f 3277
f1b26339
CL
3278 if (size <= 192) {
3279 if (!size)
3280 return ZERO_SIZE_PTR;
81819f0f 3281
acdfcd04 3282 index = size_index[size_index_elem(size)];
aadb4bc4 3283 } else
f1b26339 3284 index = fls(size - 1);
81819f0f
CL
3285
3286#ifdef CONFIG_ZONE_DMA
f1b26339 3287 if (unlikely((flags & SLUB_DMA)))
51df1142 3288 return kmalloc_dma_caches[index];
f1b26339 3289
81819f0f 3290#endif
51df1142 3291 return kmalloc_caches[index];
81819f0f
CL
3292}
3293
3294void *__kmalloc(size_t size, gfp_t flags)
3295{
aadb4bc4 3296 struct kmem_cache *s;
5b882be4 3297 void *ret;
81819f0f 3298
ffadd4d0 3299 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3300 return kmalloc_large(size, flags);
aadb4bc4
CL
3301
3302 s = get_slab(size, flags);
3303
3304 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3305 return s;
3306
2154a336 3307 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3308
ca2b84cb 3309 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3310
3311 return ret;
81819f0f
CL
3312}
3313EXPORT_SYMBOL(__kmalloc);
3314
5d1f57e4 3315#ifdef CONFIG_NUMA
f619cfe1
CL
3316static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3317{
b1eeab67 3318 struct page *page;
e4f7c0b4 3319 void *ptr = NULL;
f619cfe1 3320
b1eeab67
VN
3321 flags |= __GFP_COMP | __GFP_NOTRACK;
3322 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3323 if (page)
e4f7c0b4
CM
3324 ptr = page_address(page);
3325
3326 kmemleak_alloc(ptr, size, 1, flags);
3327 return ptr;
f619cfe1
CL
3328}
3329
81819f0f
CL
3330void *__kmalloc_node(size_t size, gfp_t flags, int node)
3331{
aadb4bc4 3332 struct kmem_cache *s;
5b882be4 3333 void *ret;
81819f0f 3334
057685cf 3335 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3336 ret = kmalloc_large_node(size, flags, node);
3337
ca2b84cb
EGM
3338 trace_kmalloc_node(_RET_IP_, ret,
3339 size, PAGE_SIZE << get_order(size),
3340 flags, node);
5b882be4
EGM
3341
3342 return ret;
3343 }
aadb4bc4
CL
3344
3345 s = get_slab(size, flags);
3346
3347 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3348 return s;
3349
5b882be4
EGM
3350 ret = slab_alloc(s, flags, node, _RET_IP_);
3351
ca2b84cb 3352 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3353
3354 return ret;
81819f0f
CL
3355}
3356EXPORT_SYMBOL(__kmalloc_node);
3357#endif
3358
3359size_t ksize(const void *object)
3360{
272c1d21 3361 struct page *page;
81819f0f 3362
ef8b4520 3363 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3364 return 0;
3365
294a80a8 3366 page = virt_to_head_page(object);
294a80a8 3367
76994412
PE
3368 if (unlikely(!PageSlab(page))) {
3369 WARN_ON(!PageCompound(page));
294a80a8 3370 return PAGE_SIZE << compound_order(page);
76994412 3371 }
81819f0f 3372
b3d41885 3373 return slab_ksize(page->slab);
81819f0f 3374}
b1aabecd 3375EXPORT_SYMBOL(ksize);
81819f0f 3376
d18a90dd
BG
3377#ifdef CONFIG_SLUB_DEBUG
3378bool verify_mem_not_deleted(const void *x)
3379{
3380 struct page *page;
3381 void *object = (void *)x;
3382 unsigned long flags;
3383 bool rv;
3384
3385 if (unlikely(ZERO_OR_NULL_PTR(x)))
3386 return false;
3387
3388 local_irq_save(flags);
3389
3390 page = virt_to_head_page(x);
3391 if (unlikely(!PageSlab(page))) {
3392 /* maybe it was from stack? */
3393 rv = true;
3394 goto out_unlock;
3395 }
3396
3397 slab_lock(page);
3398 if (on_freelist(page->slab, page, object)) {
3399 object_err(page->slab, page, object, "Object is on free-list");
3400 rv = false;
3401 } else {
3402 rv = true;
3403 }
3404 slab_unlock(page);
3405
3406out_unlock:
3407 local_irq_restore(flags);
3408 return rv;
3409}
3410EXPORT_SYMBOL(verify_mem_not_deleted);
3411#endif
3412
81819f0f
CL
3413void kfree(const void *x)
3414{
81819f0f 3415 struct page *page;
5bb983b0 3416 void *object = (void *)x;
81819f0f 3417
2121db74
PE
3418 trace_kfree(_RET_IP_, x);
3419
2408c550 3420 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3421 return;
3422
b49af68f 3423 page = virt_to_head_page(x);
aadb4bc4 3424 if (unlikely(!PageSlab(page))) {
0937502a 3425 BUG_ON(!PageCompound(page));
e4f7c0b4 3426 kmemleak_free(x);
aadb4bc4
CL
3427 put_page(page);
3428 return;
3429 }
ce71e27c 3430 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3431}
3432EXPORT_SYMBOL(kfree);
3433
2086d26a 3434/*
672bba3a
CL
3435 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3436 * the remaining slabs by the number of items in use. The slabs with the
3437 * most items in use come first. New allocations will then fill those up
3438 * and thus they can be removed from the partial lists.
3439 *
3440 * The slabs with the least items are placed last. This results in them
3441 * being allocated from last increasing the chance that the last objects
3442 * are freed in them.
2086d26a
CL
3443 */
3444int kmem_cache_shrink(struct kmem_cache *s)
3445{
3446 int node;
3447 int i;
3448 struct kmem_cache_node *n;
3449 struct page *page;
3450 struct page *t;
205ab99d 3451 int objects = oo_objects(s->max);
2086d26a 3452 struct list_head *slabs_by_inuse =
834f3d11 3453 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3454 unsigned long flags;
3455
3456 if (!slabs_by_inuse)
3457 return -ENOMEM;
3458
3459 flush_all(s);
f64dc58c 3460 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3461 n = get_node(s, node);
3462
3463 if (!n->nr_partial)
3464 continue;
3465
834f3d11 3466 for (i = 0; i < objects; i++)
2086d26a
CL
3467 INIT_LIST_HEAD(slabs_by_inuse + i);
3468
3469 spin_lock_irqsave(&n->list_lock, flags);
3470
3471 /*
672bba3a 3472 * Build lists indexed by the items in use in each slab.
2086d26a 3473 *
672bba3a
CL
3474 * Note that concurrent frees may occur while we hold the
3475 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3476 */
3477 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3478 list_move(&page->lru, slabs_by_inuse + page->inuse);
3479 if (!page->inuse)
3480 n->nr_partial--;
2086d26a
CL
3481 }
3482
2086d26a 3483 /*
672bba3a
CL
3484 * Rebuild the partial list with the slabs filled up most
3485 * first and the least used slabs at the end.
2086d26a 3486 */
69cb8e6b 3487 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3488 list_splice(slabs_by_inuse + i, n->partial.prev);
3489
2086d26a 3490 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3491
3492 /* Release empty slabs */
3493 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3494 discard_slab(s, page);
2086d26a
CL
3495 }
3496
3497 kfree(slabs_by_inuse);
3498 return 0;
3499}
3500EXPORT_SYMBOL(kmem_cache_shrink);
3501
92a5bbc1 3502#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3503static int slab_mem_going_offline_callback(void *arg)
3504{
3505 struct kmem_cache *s;
3506
3507 down_read(&slub_lock);
3508 list_for_each_entry(s, &slab_caches, list)
3509 kmem_cache_shrink(s);
3510 up_read(&slub_lock);
3511
3512 return 0;
3513}
3514
3515static void slab_mem_offline_callback(void *arg)
3516{
3517 struct kmem_cache_node *n;
3518 struct kmem_cache *s;
3519 struct memory_notify *marg = arg;
3520 int offline_node;
3521
3522 offline_node = marg->status_change_nid;
3523
3524 /*
3525 * If the node still has available memory. we need kmem_cache_node
3526 * for it yet.
3527 */
3528 if (offline_node < 0)
3529 return;
3530
3531 down_read(&slub_lock);
3532 list_for_each_entry(s, &slab_caches, list) {
3533 n = get_node(s, offline_node);
3534 if (n) {
3535 /*
3536 * if n->nr_slabs > 0, slabs still exist on the node
3537 * that is going down. We were unable to free them,
c9404c9c 3538 * and offline_pages() function shouldn't call this
b9049e23
YG
3539 * callback. So, we must fail.
3540 */
0f389ec6 3541 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3542
3543 s->node[offline_node] = NULL;
8de66a0c 3544 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3545 }
3546 }
3547 up_read(&slub_lock);
3548}
3549
3550static int slab_mem_going_online_callback(void *arg)
3551{
3552 struct kmem_cache_node *n;
3553 struct kmem_cache *s;
3554 struct memory_notify *marg = arg;
3555 int nid = marg->status_change_nid;
3556 int ret = 0;
3557
3558 /*
3559 * If the node's memory is already available, then kmem_cache_node is
3560 * already created. Nothing to do.
3561 */
3562 if (nid < 0)
3563 return 0;
3564
3565 /*
0121c619 3566 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3567 * allocate a kmem_cache_node structure in order to bring the node
3568 * online.
3569 */
3570 down_read(&slub_lock);
3571 list_for_each_entry(s, &slab_caches, list) {
3572 /*
3573 * XXX: kmem_cache_alloc_node will fallback to other nodes
3574 * since memory is not yet available from the node that
3575 * is brought up.
3576 */
8de66a0c 3577 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3578 if (!n) {
3579 ret = -ENOMEM;
3580 goto out;
3581 }
5595cffc 3582 init_kmem_cache_node(n, s);
b9049e23
YG
3583 s->node[nid] = n;
3584 }
3585out:
3586 up_read(&slub_lock);
3587 return ret;
3588}
3589
3590static int slab_memory_callback(struct notifier_block *self,
3591 unsigned long action, void *arg)
3592{
3593 int ret = 0;
3594
3595 switch (action) {
3596 case MEM_GOING_ONLINE:
3597 ret = slab_mem_going_online_callback(arg);
3598 break;
3599 case MEM_GOING_OFFLINE:
3600 ret = slab_mem_going_offline_callback(arg);
3601 break;
3602 case MEM_OFFLINE:
3603 case MEM_CANCEL_ONLINE:
3604 slab_mem_offline_callback(arg);
3605 break;
3606 case MEM_ONLINE:
3607 case MEM_CANCEL_OFFLINE:
3608 break;
3609 }
dc19f9db
KH
3610 if (ret)
3611 ret = notifier_from_errno(ret);
3612 else
3613 ret = NOTIFY_OK;
b9049e23
YG
3614 return ret;
3615}
3616
3617#endif /* CONFIG_MEMORY_HOTPLUG */
3618
81819f0f
CL
3619/********************************************************************
3620 * Basic setup of slabs
3621 *******************************************************************/
3622
51df1142
CL
3623/*
3624 * Used for early kmem_cache structures that were allocated using
3625 * the page allocator
3626 */
3627
3628static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3629{
3630 int node;
3631
3632 list_add(&s->list, &slab_caches);
3633 s->refcount = -1;
3634
3635 for_each_node_state(node, N_NORMAL_MEMORY) {
3636 struct kmem_cache_node *n = get_node(s, node);
3637 struct page *p;
3638
3639 if (n) {
3640 list_for_each_entry(p, &n->partial, lru)
3641 p->slab = s;
3642
607bf324 3643#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3644 list_for_each_entry(p, &n->full, lru)
3645 p->slab = s;
3646#endif
3647 }
3648 }
3649}
3650
81819f0f
CL
3651void __init kmem_cache_init(void)
3652{
3653 int i;
4b356be0 3654 int caches = 0;
51df1142
CL
3655 struct kmem_cache *temp_kmem_cache;
3656 int order;
51df1142
CL
3657 struct kmem_cache *temp_kmem_cache_node;
3658 unsigned long kmalloc_size;
3659
3660 kmem_size = offsetof(struct kmem_cache, node) +
3661 nr_node_ids * sizeof(struct kmem_cache_node *);
3662
3663 /* Allocate two kmem_caches from the page allocator */
3664 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3665 order = get_order(2 * kmalloc_size);
3666 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3667
81819f0f
CL
3668 /*
3669 * Must first have the slab cache available for the allocations of the
672bba3a 3670 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3671 * kmem_cache_open for slab_state == DOWN.
3672 */
51df1142
CL
3673 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3674
3675 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3676 sizeof(struct kmem_cache_node),
3677 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3678
0c40ba4f 3679 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3680
3681 /* Able to allocate the per node structures */
3682 slab_state = PARTIAL;
3683
51df1142
CL
3684 temp_kmem_cache = kmem_cache;
3685 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3686 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3687 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3688 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3689
51df1142
CL
3690 /*
3691 * Allocate kmem_cache_node properly from the kmem_cache slab.
3692 * kmem_cache_node is separately allocated so no need to
3693 * update any list pointers.
3694 */
3695 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3696
51df1142
CL
3697 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3698 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3699
3700 kmem_cache_bootstrap_fixup(kmem_cache_node);
3701
3702 caches++;
51df1142
CL
3703 kmem_cache_bootstrap_fixup(kmem_cache);
3704 caches++;
3705 /* Free temporary boot structure */
3706 free_pages((unsigned long)temp_kmem_cache, order);
3707
3708 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3709
3710 /*
3711 * Patch up the size_index table if we have strange large alignment
3712 * requirements for the kmalloc array. This is only the case for
6446faa2 3713 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3714 *
3715 * Largest permitted alignment is 256 bytes due to the way we
3716 * handle the index determination for the smaller caches.
3717 *
3718 * Make sure that nothing crazy happens if someone starts tinkering
3719 * around with ARCH_KMALLOC_MINALIGN
3720 */
3721 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3722 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3723
acdfcd04
AK
3724 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3725 int elem = size_index_elem(i);
3726 if (elem >= ARRAY_SIZE(size_index))
3727 break;
3728 size_index[elem] = KMALLOC_SHIFT_LOW;
3729 }
f1b26339 3730
acdfcd04
AK
3731 if (KMALLOC_MIN_SIZE == 64) {
3732 /*
3733 * The 96 byte size cache is not used if the alignment
3734 * is 64 byte.
3735 */
3736 for (i = 64 + 8; i <= 96; i += 8)
3737 size_index[size_index_elem(i)] = 7;
3738 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3739 /*
3740 * The 192 byte sized cache is not used if the alignment
3741 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3742 * instead.
3743 */
3744 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3745 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3746 }
3747
51df1142
CL
3748 /* Caches that are not of the two-to-the-power-of size */
3749 if (KMALLOC_MIN_SIZE <= 32) {
3750 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3751 caches++;
3752 }
3753
3754 if (KMALLOC_MIN_SIZE <= 64) {
3755 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3756 caches++;
3757 }
3758
3759 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3760 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3761 caches++;
3762 }
3763
81819f0f
CL
3764 slab_state = UP;
3765
3766 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3767 if (KMALLOC_MIN_SIZE <= 32) {
3768 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3769 BUG_ON(!kmalloc_caches[1]->name);
3770 }
3771
3772 if (KMALLOC_MIN_SIZE <= 64) {
3773 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3774 BUG_ON(!kmalloc_caches[2]->name);
3775 }
3776
d7278bd7
CL
3777 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3778 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3779
3780 BUG_ON(!s);
51df1142 3781 kmalloc_caches[i]->name = s;
d7278bd7 3782 }
81819f0f
CL
3783
3784#ifdef CONFIG_SMP
3785 register_cpu_notifier(&slab_notifier);
9dfc6e68 3786#endif
81819f0f 3787
55136592 3788#ifdef CONFIG_ZONE_DMA
51df1142
CL
3789 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3790 struct kmem_cache *s = kmalloc_caches[i];
55136592 3791
51df1142 3792 if (s && s->size) {
55136592
CL
3793 char *name = kasprintf(GFP_NOWAIT,
3794 "dma-kmalloc-%d", s->objsize);
3795
3796 BUG_ON(!name);
51df1142
CL
3797 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3798 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3799 }
3800 }
3801#endif
3adbefee
IM
3802 printk(KERN_INFO
3803 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3804 " CPUs=%d, Nodes=%d\n",
3805 caches, cache_line_size(),
81819f0f
CL
3806 slub_min_order, slub_max_order, slub_min_objects,
3807 nr_cpu_ids, nr_node_ids);
3808}
3809
7e85ee0c
PE
3810void __init kmem_cache_init_late(void)
3811{
7e85ee0c
PE
3812}
3813
81819f0f
CL
3814/*
3815 * Find a mergeable slab cache
3816 */
3817static int slab_unmergeable(struct kmem_cache *s)
3818{
3819 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3820 return 1;
3821
c59def9f 3822 if (s->ctor)
81819f0f
CL
3823 return 1;
3824
8ffa6875
CL
3825 /*
3826 * We may have set a slab to be unmergeable during bootstrap.
3827 */
3828 if (s->refcount < 0)
3829 return 1;
3830
81819f0f
CL
3831 return 0;
3832}
3833
3834static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3835 size_t align, unsigned long flags, const char *name,
51cc5068 3836 void (*ctor)(void *))
81819f0f 3837{
5b95a4ac 3838 struct kmem_cache *s;
81819f0f
CL
3839
3840 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3841 return NULL;
3842
c59def9f 3843 if (ctor)
81819f0f
CL
3844 return NULL;
3845
3846 size = ALIGN(size, sizeof(void *));
3847 align = calculate_alignment(flags, align, size);
3848 size = ALIGN(size, align);
ba0268a8 3849 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3850
5b95a4ac 3851 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3852 if (slab_unmergeable(s))
3853 continue;
3854
3855 if (size > s->size)
3856 continue;
3857
ba0268a8 3858 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3859 continue;
3860 /*
3861 * Check if alignment is compatible.
3862 * Courtesy of Adrian Drzewiecki
3863 */
06428780 3864 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3865 continue;
3866
3867 if (s->size - size >= sizeof(void *))
3868 continue;
3869
3870 return s;
3871 }
3872 return NULL;
3873}
3874
3875struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3876 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3877{
3878 struct kmem_cache *s;
84c1cf62 3879 char *n;
81819f0f 3880
fe1ff49d
BH
3881 if (WARN_ON(!name))
3882 return NULL;
3883
81819f0f 3884 down_write(&slub_lock);
ba0268a8 3885 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3886 if (s) {
3887 s->refcount++;
3888 /*
3889 * Adjust the object sizes so that we clear
3890 * the complete object on kzalloc.
3891 */
3892 s->objsize = max(s->objsize, (int)size);
3893 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3894
7b8f3b66 3895 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3896 s->refcount--;
81819f0f 3897 goto err;
7b8f3b66 3898 }
2bce6485 3899 up_write(&slub_lock);
a0e1d1be
CL
3900 return s;
3901 }
6446faa2 3902
84c1cf62
PE
3903 n = kstrdup(name, GFP_KERNEL);
3904 if (!n)
3905 goto err;
3906
a0e1d1be
CL
3907 s = kmalloc(kmem_size, GFP_KERNEL);
3908 if (s) {
84c1cf62 3909 if (kmem_cache_open(s, n,
c59def9f 3910 size, align, flags, ctor)) {
81819f0f 3911 list_add(&s->list, &slab_caches);
7b8f3b66 3912 if (sysfs_slab_add(s)) {
7b8f3b66 3913 list_del(&s->list);
84c1cf62 3914 kfree(n);
7b8f3b66 3915 kfree(s);
a0e1d1be 3916 goto err;
7b8f3b66 3917 }
2bce6485 3918 up_write(&slub_lock);
a0e1d1be
CL
3919 return s;
3920 }
84c1cf62 3921 kfree(n);
a0e1d1be 3922 kfree(s);
81819f0f 3923 }
68cee4f1 3924err:
81819f0f 3925 up_write(&slub_lock);
81819f0f 3926
81819f0f
CL
3927 if (flags & SLAB_PANIC)
3928 panic("Cannot create slabcache %s\n", name);
3929 else
3930 s = NULL;
3931 return s;
3932}
3933EXPORT_SYMBOL(kmem_cache_create);
3934
81819f0f 3935#ifdef CONFIG_SMP
81819f0f 3936/*
672bba3a
CL
3937 * Use the cpu notifier to insure that the cpu slabs are flushed when
3938 * necessary.
81819f0f
CL
3939 */
3940static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3941 unsigned long action, void *hcpu)
3942{
3943 long cpu = (long)hcpu;
5b95a4ac
CL
3944 struct kmem_cache *s;
3945 unsigned long flags;
81819f0f
CL
3946
3947 switch (action) {
3948 case CPU_UP_CANCELED:
8bb78442 3949 case CPU_UP_CANCELED_FROZEN:
81819f0f 3950 case CPU_DEAD:
8bb78442 3951 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3952 down_read(&slub_lock);
3953 list_for_each_entry(s, &slab_caches, list) {
3954 local_irq_save(flags);
3955 __flush_cpu_slab(s, cpu);
3956 local_irq_restore(flags);
3957 }
3958 up_read(&slub_lock);
81819f0f
CL
3959 break;
3960 default:
3961 break;
3962 }
3963 return NOTIFY_OK;
3964}
3965
06428780 3966static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3967 .notifier_call = slab_cpuup_callback
06428780 3968};
81819f0f
CL
3969
3970#endif
3971
ce71e27c 3972void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3973{
aadb4bc4 3974 struct kmem_cache *s;
94b528d0 3975 void *ret;
aadb4bc4 3976
ffadd4d0 3977 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3978 return kmalloc_large(size, gfpflags);
3979
aadb4bc4 3980 s = get_slab(size, gfpflags);
81819f0f 3981
2408c550 3982 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3983 return s;
81819f0f 3984
2154a336 3985 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3986
25985edc 3987 /* Honor the call site pointer we received. */
ca2b84cb 3988 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3989
3990 return ret;
81819f0f
CL
3991}
3992
5d1f57e4 3993#ifdef CONFIG_NUMA
81819f0f 3994void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3995 int node, unsigned long caller)
81819f0f 3996{
aadb4bc4 3997 struct kmem_cache *s;
94b528d0 3998 void *ret;
aadb4bc4 3999
d3e14aa3
XF
4000 if (unlikely(size > SLUB_MAX_SIZE)) {
4001 ret = kmalloc_large_node(size, gfpflags, node);
4002
4003 trace_kmalloc_node(caller, ret,
4004 size, PAGE_SIZE << get_order(size),
4005 gfpflags, node);
4006
4007 return ret;
4008 }
eada35ef 4009
aadb4bc4 4010 s = get_slab(size, gfpflags);
81819f0f 4011
2408c550 4012 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4013 return s;
81819f0f 4014
94b528d0
EGM
4015 ret = slab_alloc(s, gfpflags, node, caller);
4016
25985edc 4017 /* Honor the call site pointer we received. */
ca2b84cb 4018 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4019
4020 return ret;
81819f0f 4021}
5d1f57e4 4022#endif
81819f0f 4023
ab4d5ed5 4024#ifdef CONFIG_SYSFS
205ab99d
CL
4025static int count_inuse(struct page *page)
4026{
4027 return page->inuse;
4028}
4029
4030static int count_total(struct page *page)
4031{
4032 return page->objects;
4033}
ab4d5ed5 4034#endif
205ab99d 4035
ab4d5ed5 4036#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4037static int validate_slab(struct kmem_cache *s, struct page *page,
4038 unsigned long *map)
53e15af0
CL
4039{
4040 void *p;
a973e9dd 4041 void *addr = page_address(page);
53e15af0
CL
4042
4043 if (!check_slab(s, page) ||
4044 !on_freelist(s, page, NULL))
4045 return 0;
4046
4047 /* Now we know that a valid freelist exists */
39b26464 4048 bitmap_zero(map, page->objects);
53e15af0 4049
5f80b13a
CL
4050 get_map(s, page, map);
4051 for_each_object(p, s, addr, page->objects) {
4052 if (test_bit(slab_index(p, s, addr), map))
4053 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4054 return 0;
53e15af0
CL
4055 }
4056
224a88be 4057 for_each_object(p, s, addr, page->objects)
7656c72b 4058 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4059 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4060 return 0;
4061 return 1;
4062}
4063
434e245d
CL
4064static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4065 unsigned long *map)
53e15af0 4066{
881db7fb
CL
4067 slab_lock(page);
4068 validate_slab(s, page, map);
4069 slab_unlock(page);
53e15af0
CL
4070}
4071
434e245d
CL
4072static int validate_slab_node(struct kmem_cache *s,
4073 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4074{
4075 unsigned long count = 0;
4076 struct page *page;
4077 unsigned long flags;
4078
4079 spin_lock_irqsave(&n->list_lock, flags);
4080
4081 list_for_each_entry(page, &n->partial, lru) {
434e245d 4082 validate_slab_slab(s, page, map);
53e15af0
CL
4083 count++;
4084 }
4085 if (count != n->nr_partial)
4086 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4087 "counter=%ld\n", s->name, count, n->nr_partial);
4088
4089 if (!(s->flags & SLAB_STORE_USER))
4090 goto out;
4091
4092 list_for_each_entry(page, &n->full, lru) {
434e245d 4093 validate_slab_slab(s, page, map);
53e15af0
CL
4094 count++;
4095 }
4096 if (count != atomic_long_read(&n->nr_slabs))
4097 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4098 "counter=%ld\n", s->name, count,
4099 atomic_long_read(&n->nr_slabs));
4100
4101out:
4102 spin_unlock_irqrestore(&n->list_lock, flags);
4103 return count;
4104}
4105
434e245d 4106static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4107{
4108 int node;
4109 unsigned long count = 0;
205ab99d 4110 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4111 sizeof(unsigned long), GFP_KERNEL);
4112
4113 if (!map)
4114 return -ENOMEM;
53e15af0
CL
4115
4116 flush_all(s);
f64dc58c 4117 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4118 struct kmem_cache_node *n = get_node(s, node);
4119
434e245d 4120 count += validate_slab_node(s, n, map);
53e15af0 4121 }
434e245d 4122 kfree(map);
53e15af0
CL
4123 return count;
4124}
88a420e4 4125/*
672bba3a 4126 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4127 * and freed.
4128 */
4129
4130struct location {
4131 unsigned long count;
ce71e27c 4132 unsigned long addr;
45edfa58
CL
4133 long long sum_time;
4134 long min_time;
4135 long max_time;
4136 long min_pid;
4137 long max_pid;
174596a0 4138 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4139 nodemask_t nodes;
88a420e4
CL
4140};
4141
4142struct loc_track {
4143 unsigned long max;
4144 unsigned long count;
4145 struct location *loc;
4146};
4147
4148static void free_loc_track(struct loc_track *t)
4149{
4150 if (t->max)
4151 free_pages((unsigned long)t->loc,
4152 get_order(sizeof(struct location) * t->max));
4153}
4154
68dff6a9 4155static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4156{
4157 struct location *l;
4158 int order;
4159
88a420e4
CL
4160 order = get_order(sizeof(struct location) * max);
4161
68dff6a9 4162 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4163 if (!l)
4164 return 0;
4165
4166 if (t->count) {
4167 memcpy(l, t->loc, sizeof(struct location) * t->count);
4168 free_loc_track(t);
4169 }
4170 t->max = max;
4171 t->loc = l;
4172 return 1;
4173}
4174
4175static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4176 const struct track *track)
88a420e4
CL
4177{
4178 long start, end, pos;
4179 struct location *l;
ce71e27c 4180 unsigned long caddr;
45edfa58 4181 unsigned long age = jiffies - track->when;
88a420e4
CL
4182
4183 start = -1;
4184 end = t->count;
4185
4186 for ( ; ; ) {
4187 pos = start + (end - start + 1) / 2;
4188
4189 /*
4190 * There is nothing at "end". If we end up there
4191 * we need to add something to before end.
4192 */
4193 if (pos == end)
4194 break;
4195
4196 caddr = t->loc[pos].addr;
45edfa58
CL
4197 if (track->addr == caddr) {
4198
4199 l = &t->loc[pos];
4200 l->count++;
4201 if (track->when) {
4202 l->sum_time += age;
4203 if (age < l->min_time)
4204 l->min_time = age;
4205 if (age > l->max_time)
4206 l->max_time = age;
4207
4208 if (track->pid < l->min_pid)
4209 l->min_pid = track->pid;
4210 if (track->pid > l->max_pid)
4211 l->max_pid = track->pid;
4212
174596a0
RR
4213 cpumask_set_cpu(track->cpu,
4214 to_cpumask(l->cpus));
45edfa58
CL
4215 }
4216 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4217 return 1;
4218 }
4219
45edfa58 4220 if (track->addr < caddr)
88a420e4
CL
4221 end = pos;
4222 else
4223 start = pos;
4224 }
4225
4226 /*
672bba3a 4227 * Not found. Insert new tracking element.
88a420e4 4228 */
68dff6a9 4229 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4230 return 0;
4231
4232 l = t->loc + pos;
4233 if (pos < t->count)
4234 memmove(l + 1, l,
4235 (t->count - pos) * sizeof(struct location));
4236 t->count++;
4237 l->count = 1;
45edfa58
CL
4238 l->addr = track->addr;
4239 l->sum_time = age;
4240 l->min_time = age;
4241 l->max_time = age;
4242 l->min_pid = track->pid;
4243 l->max_pid = track->pid;
174596a0
RR
4244 cpumask_clear(to_cpumask(l->cpus));
4245 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4246 nodes_clear(l->nodes);
4247 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4248 return 1;
4249}
4250
4251static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4252 struct page *page, enum track_item alloc,
a5dd5c11 4253 unsigned long *map)
88a420e4 4254{
a973e9dd 4255 void *addr = page_address(page);
88a420e4
CL
4256 void *p;
4257
39b26464 4258 bitmap_zero(map, page->objects);
5f80b13a 4259 get_map(s, page, map);
88a420e4 4260
224a88be 4261 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4262 if (!test_bit(slab_index(p, s, addr), map))
4263 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4264}
4265
4266static int list_locations(struct kmem_cache *s, char *buf,
4267 enum track_item alloc)
4268{
e374d483 4269 int len = 0;
88a420e4 4270 unsigned long i;
68dff6a9 4271 struct loc_track t = { 0, 0, NULL };
88a420e4 4272 int node;
bbd7d57b
ED
4273 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4274 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4275
bbd7d57b
ED
4276 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4277 GFP_TEMPORARY)) {
4278 kfree(map);
68dff6a9 4279 return sprintf(buf, "Out of memory\n");
bbd7d57b 4280 }
88a420e4
CL
4281 /* Push back cpu slabs */
4282 flush_all(s);
4283
f64dc58c 4284 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4285 struct kmem_cache_node *n = get_node(s, node);
4286 unsigned long flags;
4287 struct page *page;
4288
9e86943b 4289 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4290 continue;
4291
4292 spin_lock_irqsave(&n->list_lock, flags);
4293 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4294 process_slab(&t, s, page, alloc, map);
88a420e4 4295 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4296 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4297 spin_unlock_irqrestore(&n->list_lock, flags);
4298 }
4299
4300 for (i = 0; i < t.count; i++) {
45edfa58 4301 struct location *l = &t.loc[i];
88a420e4 4302
9c246247 4303 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4304 break;
e374d483 4305 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4306
4307 if (l->addr)
62c70bce 4308 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4309 else
e374d483 4310 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4311
4312 if (l->sum_time != l->min_time) {
e374d483 4313 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4314 l->min_time,
4315 (long)div_u64(l->sum_time, l->count),
4316 l->max_time);
45edfa58 4317 } else
e374d483 4318 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4319 l->min_time);
4320
4321 if (l->min_pid != l->max_pid)
e374d483 4322 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4323 l->min_pid, l->max_pid);
4324 else
e374d483 4325 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4326 l->min_pid);
4327
174596a0
RR
4328 if (num_online_cpus() > 1 &&
4329 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4330 len < PAGE_SIZE - 60) {
4331 len += sprintf(buf + len, " cpus=");
4332 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4333 to_cpumask(l->cpus));
45edfa58
CL
4334 }
4335
62bc62a8 4336 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4337 len < PAGE_SIZE - 60) {
4338 len += sprintf(buf + len, " nodes=");
4339 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4340 l->nodes);
4341 }
4342
e374d483 4343 len += sprintf(buf + len, "\n");
88a420e4
CL
4344 }
4345
4346 free_loc_track(&t);
bbd7d57b 4347 kfree(map);
88a420e4 4348 if (!t.count)
e374d483
HH
4349 len += sprintf(buf, "No data\n");
4350 return len;
88a420e4 4351}
ab4d5ed5 4352#endif
88a420e4 4353
a5a84755
CL
4354#ifdef SLUB_RESILIENCY_TEST
4355static void resiliency_test(void)
4356{
4357 u8 *p;
4358
4359 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4360
4361 printk(KERN_ERR "SLUB resiliency testing\n");
4362 printk(KERN_ERR "-----------------------\n");
4363 printk(KERN_ERR "A. Corruption after allocation\n");
4364
4365 p = kzalloc(16, GFP_KERNEL);
4366 p[16] = 0x12;
4367 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4368 " 0x12->0x%p\n\n", p + 16);
4369
4370 validate_slab_cache(kmalloc_caches[4]);
4371
4372 /* Hmmm... The next two are dangerous */
4373 p = kzalloc(32, GFP_KERNEL);
4374 p[32 + sizeof(void *)] = 0x34;
4375 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4376 " 0x34 -> -0x%p\n", p);
4377 printk(KERN_ERR
4378 "If allocated object is overwritten then not detectable\n\n");
4379
4380 validate_slab_cache(kmalloc_caches[5]);
4381 p = kzalloc(64, GFP_KERNEL);
4382 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4383 *p = 0x56;
4384 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4385 p);
4386 printk(KERN_ERR
4387 "If allocated object is overwritten then not detectable\n\n");
4388 validate_slab_cache(kmalloc_caches[6]);
4389
4390 printk(KERN_ERR "\nB. Corruption after free\n");
4391 p = kzalloc(128, GFP_KERNEL);
4392 kfree(p);
4393 *p = 0x78;
4394 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4395 validate_slab_cache(kmalloc_caches[7]);
4396
4397 p = kzalloc(256, GFP_KERNEL);
4398 kfree(p);
4399 p[50] = 0x9a;
4400 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4401 p);
4402 validate_slab_cache(kmalloc_caches[8]);
4403
4404 p = kzalloc(512, GFP_KERNEL);
4405 kfree(p);
4406 p[512] = 0xab;
4407 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4408 validate_slab_cache(kmalloc_caches[9]);
4409}
4410#else
4411#ifdef CONFIG_SYSFS
4412static void resiliency_test(void) {};
4413#endif
4414#endif
4415
ab4d5ed5 4416#ifdef CONFIG_SYSFS
81819f0f 4417enum slab_stat_type {
205ab99d
CL
4418 SL_ALL, /* All slabs */
4419 SL_PARTIAL, /* Only partially allocated slabs */
4420 SL_CPU, /* Only slabs used for cpu caches */
4421 SL_OBJECTS, /* Determine allocated objects not slabs */
4422 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4423};
4424
205ab99d 4425#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4426#define SO_PARTIAL (1 << SL_PARTIAL)
4427#define SO_CPU (1 << SL_CPU)
4428#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4429#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4430
62e5c4b4
CG
4431static ssize_t show_slab_objects(struct kmem_cache *s,
4432 char *buf, unsigned long flags)
81819f0f
CL
4433{
4434 unsigned long total = 0;
81819f0f
CL
4435 int node;
4436 int x;
4437 unsigned long *nodes;
4438 unsigned long *per_cpu;
4439
4440 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4441 if (!nodes)
4442 return -ENOMEM;
81819f0f
CL
4443 per_cpu = nodes + nr_node_ids;
4444
205ab99d
CL
4445 if (flags & SO_CPU) {
4446 int cpu;
81819f0f 4447
205ab99d 4448 for_each_possible_cpu(cpu) {
9dfc6e68 4449 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4450 int node = ACCESS_ONCE(c->node);
49e22585 4451 struct page *page;
dfb4f096 4452
bc6697d8 4453 if (node < 0)
205ab99d 4454 continue;
bc6697d8
ED
4455 page = ACCESS_ONCE(c->page);
4456 if (page) {
4457 if (flags & SO_TOTAL)
4458 x = page->objects;
205ab99d 4459 else if (flags & SO_OBJECTS)
bc6697d8 4460 x = page->inuse;
81819f0f
CL
4461 else
4462 x = 1;
205ab99d 4463
81819f0f 4464 total += x;
bc6697d8 4465 nodes[node] += x;
81819f0f 4466 }
49e22585
CL
4467 page = c->partial;
4468
4469 if (page) {
4470 x = page->pobjects;
bc6697d8
ED
4471 total += x;
4472 nodes[node] += x;
49e22585 4473 }
bc6697d8 4474 per_cpu[node]++;
81819f0f
CL
4475 }
4476 }
4477
04d94879 4478 lock_memory_hotplug();
ab4d5ed5 4479#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4480 if (flags & SO_ALL) {
4481 for_each_node_state(node, N_NORMAL_MEMORY) {
4482 struct kmem_cache_node *n = get_node(s, node);
4483
4484 if (flags & SO_TOTAL)
4485 x = atomic_long_read(&n->total_objects);
4486 else if (flags & SO_OBJECTS)
4487 x = atomic_long_read(&n->total_objects) -
4488 count_partial(n, count_free);
81819f0f 4489
81819f0f 4490 else
205ab99d 4491 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4492 total += x;
4493 nodes[node] += x;
4494 }
4495
ab4d5ed5
CL
4496 } else
4497#endif
4498 if (flags & SO_PARTIAL) {
205ab99d
CL
4499 for_each_node_state(node, N_NORMAL_MEMORY) {
4500 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4501
205ab99d
CL
4502 if (flags & SO_TOTAL)
4503 x = count_partial(n, count_total);
4504 else if (flags & SO_OBJECTS)
4505 x = count_partial(n, count_inuse);
81819f0f 4506 else
205ab99d 4507 x = n->nr_partial;
81819f0f
CL
4508 total += x;
4509 nodes[node] += x;
4510 }
4511 }
81819f0f
CL
4512 x = sprintf(buf, "%lu", total);
4513#ifdef CONFIG_NUMA
f64dc58c 4514 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4515 if (nodes[node])
4516 x += sprintf(buf + x, " N%d=%lu",
4517 node, nodes[node]);
4518#endif
04d94879 4519 unlock_memory_hotplug();
81819f0f
CL
4520 kfree(nodes);
4521 return x + sprintf(buf + x, "\n");
4522}
4523
ab4d5ed5 4524#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4525static int any_slab_objects(struct kmem_cache *s)
4526{
4527 int node;
81819f0f 4528
dfb4f096 4529 for_each_online_node(node) {
81819f0f
CL
4530 struct kmem_cache_node *n = get_node(s, node);
4531
dfb4f096
CL
4532 if (!n)
4533 continue;
4534
4ea33e2d 4535 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4536 return 1;
4537 }
4538 return 0;
4539}
ab4d5ed5 4540#endif
81819f0f
CL
4541
4542#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4543#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4544
4545struct slab_attribute {
4546 struct attribute attr;
4547 ssize_t (*show)(struct kmem_cache *s, char *buf);
4548 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4549};
4550
4551#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4552 static struct slab_attribute _name##_attr = \
4553 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4554
4555#define SLAB_ATTR(_name) \
4556 static struct slab_attribute _name##_attr = \
ab067e99 4557 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4558
81819f0f
CL
4559static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4560{
4561 return sprintf(buf, "%d\n", s->size);
4562}
4563SLAB_ATTR_RO(slab_size);
4564
4565static ssize_t align_show(struct kmem_cache *s, char *buf)
4566{
4567 return sprintf(buf, "%d\n", s->align);
4568}
4569SLAB_ATTR_RO(align);
4570
4571static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4572{
4573 return sprintf(buf, "%d\n", s->objsize);
4574}
4575SLAB_ATTR_RO(object_size);
4576
4577static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4578{
834f3d11 4579 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4580}
4581SLAB_ATTR_RO(objs_per_slab);
4582
06b285dc
CL
4583static ssize_t order_store(struct kmem_cache *s,
4584 const char *buf, size_t length)
4585{
0121c619
CL
4586 unsigned long order;
4587 int err;
4588
4589 err = strict_strtoul(buf, 10, &order);
4590 if (err)
4591 return err;
06b285dc
CL
4592
4593 if (order > slub_max_order || order < slub_min_order)
4594 return -EINVAL;
4595
4596 calculate_sizes(s, order);
4597 return length;
4598}
4599
81819f0f
CL
4600static ssize_t order_show(struct kmem_cache *s, char *buf)
4601{
834f3d11 4602 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4603}
06b285dc 4604SLAB_ATTR(order);
81819f0f 4605
73d342b1
DR
4606static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4607{
4608 return sprintf(buf, "%lu\n", s->min_partial);
4609}
4610
4611static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4612 size_t length)
4613{
4614 unsigned long min;
4615 int err;
4616
4617 err = strict_strtoul(buf, 10, &min);
4618 if (err)
4619 return err;
4620
c0bdb232 4621 set_min_partial(s, min);
73d342b1
DR
4622 return length;
4623}
4624SLAB_ATTR(min_partial);
4625
49e22585
CL
4626static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4627{
4628 return sprintf(buf, "%u\n", s->cpu_partial);
4629}
4630
4631static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4632 size_t length)
4633{
4634 unsigned long objects;
4635 int err;
4636
4637 err = strict_strtoul(buf, 10, &objects);
4638 if (err)
4639 return err;
4640
4641 s->cpu_partial = objects;
4642 flush_all(s);
4643 return length;
4644}
4645SLAB_ATTR(cpu_partial);
4646
81819f0f
CL
4647static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4648{
62c70bce
JP
4649 if (!s->ctor)
4650 return 0;
4651 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4652}
4653SLAB_ATTR_RO(ctor);
4654
81819f0f
CL
4655static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4656{
4657 return sprintf(buf, "%d\n", s->refcount - 1);
4658}
4659SLAB_ATTR_RO(aliases);
4660
81819f0f
CL
4661static ssize_t partial_show(struct kmem_cache *s, char *buf)
4662{
d9acf4b7 4663 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4664}
4665SLAB_ATTR_RO(partial);
4666
4667static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4668{
d9acf4b7 4669 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4670}
4671SLAB_ATTR_RO(cpu_slabs);
4672
4673static ssize_t objects_show(struct kmem_cache *s, char *buf)
4674{
205ab99d 4675 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4676}
4677SLAB_ATTR_RO(objects);
4678
205ab99d
CL
4679static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4680{
4681 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4682}
4683SLAB_ATTR_RO(objects_partial);
4684
49e22585
CL
4685static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4686{
4687 int objects = 0;
4688 int pages = 0;
4689 int cpu;
4690 int len;
4691
4692 for_each_online_cpu(cpu) {
4693 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4694
4695 if (page) {
4696 pages += page->pages;
4697 objects += page->pobjects;
4698 }
4699 }
4700
4701 len = sprintf(buf, "%d(%d)", objects, pages);
4702
4703#ifdef CONFIG_SMP
4704 for_each_online_cpu(cpu) {
4705 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4706
4707 if (page && len < PAGE_SIZE - 20)
4708 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4709 page->pobjects, page->pages);
4710 }
4711#endif
4712 return len + sprintf(buf + len, "\n");
4713}
4714SLAB_ATTR_RO(slabs_cpu_partial);
4715
a5a84755
CL
4716static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4717{
4718 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4719}
4720
4721static ssize_t reclaim_account_store(struct kmem_cache *s,
4722 const char *buf, size_t length)
4723{
4724 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4725 if (buf[0] == '1')
4726 s->flags |= SLAB_RECLAIM_ACCOUNT;
4727 return length;
4728}
4729SLAB_ATTR(reclaim_account);
4730
4731static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4732{
4733 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4734}
4735SLAB_ATTR_RO(hwcache_align);
4736
4737#ifdef CONFIG_ZONE_DMA
4738static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4739{
4740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4741}
4742SLAB_ATTR_RO(cache_dma);
4743#endif
4744
4745static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4746{
4747 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4748}
4749SLAB_ATTR_RO(destroy_by_rcu);
4750
ab9a0f19
LJ
4751static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4752{
4753 return sprintf(buf, "%d\n", s->reserved);
4754}
4755SLAB_ATTR_RO(reserved);
4756
ab4d5ed5 4757#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4758static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4759{
4760 return show_slab_objects(s, buf, SO_ALL);
4761}
4762SLAB_ATTR_RO(slabs);
4763
205ab99d
CL
4764static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4765{
4766 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4767}
4768SLAB_ATTR_RO(total_objects);
4769
81819f0f
CL
4770static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4771{
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4773}
4774
4775static ssize_t sanity_checks_store(struct kmem_cache *s,
4776 const char *buf, size_t length)
4777{
4778 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4779 if (buf[0] == '1') {
4780 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4781 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4782 }
81819f0f
CL
4783 return length;
4784}
4785SLAB_ATTR(sanity_checks);
4786
4787static ssize_t trace_show(struct kmem_cache *s, char *buf)
4788{
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4790}
4791
4792static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4793 size_t length)
4794{
4795 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4796 if (buf[0] == '1') {
4797 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4798 s->flags |= SLAB_TRACE;
b789ef51 4799 }
81819f0f
CL
4800 return length;
4801}
4802SLAB_ATTR(trace);
4803
81819f0f
CL
4804static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4805{
4806 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4807}
4808
4809static ssize_t red_zone_store(struct kmem_cache *s,
4810 const char *buf, size_t length)
4811{
4812 if (any_slab_objects(s))
4813 return -EBUSY;
4814
4815 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4816 if (buf[0] == '1') {
4817 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4818 s->flags |= SLAB_RED_ZONE;
b789ef51 4819 }
06b285dc 4820 calculate_sizes(s, -1);
81819f0f
CL
4821 return length;
4822}
4823SLAB_ATTR(red_zone);
4824
4825static ssize_t poison_show(struct kmem_cache *s, char *buf)
4826{
4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4828}
4829
4830static ssize_t poison_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4832{
4833 if (any_slab_objects(s))
4834 return -EBUSY;
4835
4836 s->flags &= ~SLAB_POISON;
b789ef51
CL
4837 if (buf[0] == '1') {
4838 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4839 s->flags |= SLAB_POISON;
b789ef51 4840 }
06b285dc 4841 calculate_sizes(s, -1);
81819f0f
CL
4842 return length;
4843}
4844SLAB_ATTR(poison);
4845
4846static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4847{
4848 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4849}
4850
4851static ssize_t store_user_store(struct kmem_cache *s,
4852 const char *buf, size_t length)
4853{
4854 if (any_slab_objects(s))
4855 return -EBUSY;
4856
4857 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4858 if (buf[0] == '1') {
4859 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4860 s->flags |= SLAB_STORE_USER;
b789ef51 4861 }
06b285dc 4862 calculate_sizes(s, -1);
81819f0f
CL
4863 return length;
4864}
4865SLAB_ATTR(store_user);
4866
53e15af0
CL
4867static ssize_t validate_show(struct kmem_cache *s, char *buf)
4868{
4869 return 0;
4870}
4871
4872static ssize_t validate_store(struct kmem_cache *s,
4873 const char *buf, size_t length)
4874{
434e245d
CL
4875 int ret = -EINVAL;
4876
4877 if (buf[0] == '1') {
4878 ret = validate_slab_cache(s);
4879 if (ret >= 0)
4880 ret = length;
4881 }
4882 return ret;
53e15af0
CL
4883}
4884SLAB_ATTR(validate);
a5a84755
CL
4885
4886static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4887{
4888 if (!(s->flags & SLAB_STORE_USER))
4889 return -ENOSYS;
4890 return list_locations(s, buf, TRACK_ALLOC);
4891}
4892SLAB_ATTR_RO(alloc_calls);
4893
4894static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4895{
4896 if (!(s->flags & SLAB_STORE_USER))
4897 return -ENOSYS;
4898 return list_locations(s, buf, TRACK_FREE);
4899}
4900SLAB_ATTR_RO(free_calls);
4901#endif /* CONFIG_SLUB_DEBUG */
4902
4903#ifdef CONFIG_FAILSLAB
4904static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4905{
4906 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4907}
4908
4909static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4910 size_t length)
4911{
4912 s->flags &= ~SLAB_FAILSLAB;
4913 if (buf[0] == '1')
4914 s->flags |= SLAB_FAILSLAB;
4915 return length;
4916}
4917SLAB_ATTR(failslab);
ab4d5ed5 4918#endif
53e15af0 4919
2086d26a
CL
4920static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4921{
4922 return 0;
4923}
4924
4925static ssize_t shrink_store(struct kmem_cache *s,
4926 const char *buf, size_t length)
4927{
4928 if (buf[0] == '1') {
4929 int rc = kmem_cache_shrink(s);
4930
4931 if (rc)
4932 return rc;
4933 } else
4934 return -EINVAL;
4935 return length;
4936}
4937SLAB_ATTR(shrink);
4938
81819f0f 4939#ifdef CONFIG_NUMA
9824601e 4940static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4941{
9824601e 4942 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4943}
4944
9824601e 4945static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4946 const char *buf, size_t length)
4947{
0121c619
CL
4948 unsigned long ratio;
4949 int err;
4950
4951 err = strict_strtoul(buf, 10, &ratio);
4952 if (err)
4953 return err;
4954
e2cb96b7 4955 if (ratio <= 100)
0121c619 4956 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4957
81819f0f
CL
4958 return length;
4959}
9824601e 4960SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4961#endif
4962
8ff12cfc 4963#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4964static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4965{
4966 unsigned long sum = 0;
4967 int cpu;
4968 int len;
4969 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4970
4971 if (!data)
4972 return -ENOMEM;
4973
4974 for_each_online_cpu(cpu) {
9dfc6e68 4975 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4976
4977 data[cpu] = x;
4978 sum += x;
4979 }
4980
4981 len = sprintf(buf, "%lu", sum);
4982
50ef37b9 4983#ifdef CONFIG_SMP
8ff12cfc
CL
4984 for_each_online_cpu(cpu) {
4985 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4986 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4987 }
50ef37b9 4988#endif
8ff12cfc
CL
4989 kfree(data);
4990 return len + sprintf(buf + len, "\n");
4991}
4992
78eb00cc
DR
4993static void clear_stat(struct kmem_cache *s, enum stat_item si)
4994{
4995 int cpu;
4996
4997 for_each_online_cpu(cpu)
9dfc6e68 4998 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4999}
5000
8ff12cfc
CL
5001#define STAT_ATTR(si, text) \
5002static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5003{ \
5004 return show_stat(s, buf, si); \
5005} \
78eb00cc
DR
5006static ssize_t text##_store(struct kmem_cache *s, \
5007 const char *buf, size_t length) \
5008{ \
5009 if (buf[0] != '0') \
5010 return -EINVAL; \
5011 clear_stat(s, si); \
5012 return length; \
5013} \
5014SLAB_ATTR(text); \
8ff12cfc
CL
5015
5016STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5017STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5018STAT_ATTR(FREE_FASTPATH, free_fastpath);
5019STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5020STAT_ATTR(FREE_FROZEN, free_frozen);
5021STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5022STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5023STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5024STAT_ATTR(ALLOC_SLAB, alloc_slab);
5025STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5026STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5027STAT_ATTR(FREE_SLAB, free_slab);
5028STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5029STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5030STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5031STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5032STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5033STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5034STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5035STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5036STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5037STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5038STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5039STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5040#endif
5041
06428780 5042static struct attribute *slab_attrs[] = {
81819f0f
CL
5043 &slab_size_attr.attr,
5044 &object_size_attr.attr,
5045 &objs_per_slab_attr.attr,
5046 &order_attr.attr,
73d342b1 5047 &min_partial_attr.attr,
49e22585 5048 &cpu_partial_attr.attr,
81819f0f 5049 &objects_attr.attr,
205ab99d 5050 &objects_partial_attr.attr,
81819f0f
CL
5051 &partial_attr.attr,
5052 &cpu_slabs_attr.attr,
5053 &ctor_attr.attr,
81819f0f
CL
5054 &aliases_attr.attr,
5055 &align_attr.attr,
81819f0f
CL
5056 &hwcache_align_attr.attr,
5057 &reclaim_account_attr.attr,
5058 &destroy_by_rcu_attr.attr,
a5a84755 5059 &shrink_attr.attr,
ab9a0f19 5060 &reserved_attr.attr,
49e22585 5061 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5062#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5063 &total_objects_attr.attr,
5064 &slabs_attr.attr,
5065 &sanity_checks_attr.attr,
5066 &trace_attr.attr,
81819f0f
CL
5067 &red_zone_attr.attr,
5068 &poison_attr.attr,
5069 &store_user_attr.attr,
53e15af0 5070 &validate_attr.attr,
88a420e4
CL
5071 &alloc_calls_attr.attr,
5072 &free_calls_attr.attr,
ab4d5ed5 5073#endif
81819f0f
CL
5074#ifdef CONFIG_ZONE_DMA
5075 &cache_dma_attr.attr,
5076#endif
5077#ifdef CONFIG_NUMA
9824601e 5078 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5079#endif
5080#ifdef CONFIG_SLUB_STATS
5081 &alloc_fastpath_attr.attr,
5082 &alloc_slowpath_attr.attr,
5083 &free_fastpath_attr.attr,
5084 &free_slowpath_attr.attr,
5085 &free_frozen_attr.attr,
5086 &free_add_partial_attr.attr,
5087 &free_remove_partial_attr.attr,
5088 &alloc_from_partial_attr.attr,
5089 &alloc_slab_attr.attr,
5090 &alloc_refill_attr.attr,
e36a2652 5091 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5092 &free_slab_attr.attr,
5093 &cpuslab_flush_attr.attr,
5094 &deactivate_full_attr.attr,
5095 &deactivate_empty_attr.attr,
5096 &deactivate_to_head_attr.attr,
5097 &deactivate_to_tail_attr.attr,
5098 &deactivate_remote_frees_attr.attr,
03e404af 5099 &deactivate_bypass_attr.attr,
65c3376a 5100 &order_fallback_attr.attr,
b789ef51
CL
5101 &cmpxchg_double_fail_attr.attr,
5102 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5103 &cpu_partial_alloc_attr.attr,
5104 &cpu_partial_free_attr.attr,
81819f0f 5105#endif
4c13dd3b
DM
5106#ifdef CONFIG_FAILSLAB
5107 &failslab_attr.attr,
5108#endif
5109
81819f0f
CL
5110 NULL
5111};
5112
5113static struct attribute_group slab_attr_group = {
5114 .attrs = slab_attrs,
5115};
5116
5117static ssize_t slab_attr_show(struct kobject *kobj,
5118 struct attribute *attr,
5119 char *buf)
5120{
5121 struct slab_attribute *attribute;
5122 struct kmem_cache *s;
5123 int err;
5124
5125 attribute = to_slab_attr(attr);
5126 s = to_slab(kobj);
5127
5128 if (!attribute->show)
5129 return -EIO;
5130
5131 err = attribute->show(s, buf);
5132
5133 return err;
5134}
5135
5136static ssize_t slab_attr_store(struct kobject *kobj,
5137 struct attribute *attr,
5138 const char *buf, size_t len)
5139{
5140 struct slab_attribute *attribute;
5141 struct kmem_cache *s;
5142 int err;
5143
5144 attribute = to_slab_attr(attr);
5145 s = to_slab(kobj);
5146
5147 if (!attribute->store)
5148 return -EIO;
5149
5150 err = attribute->store(s, buf, len);
5151
5152 return err;
5153}
5154
151c602f
CL
5155static void kmem_cache_release(struct kobject *kobj)
5156{
5157 struct kmem_cache *s = to_slab(kobj);
5158
84c1cf62 5159 kfree(s->name);
151c602f
CL
5160 kfree(s);
5161}
5162
52cf25d0 5163static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5164 .show = slab_attr_show,
5165 .store = slab_attr_store,
5166};
5167
5168static struct kobj_type slab_ktype = {
5169 .sysfs_ops = &slab_sysfs_ops,
151c602f 5170 .release = kmem_cache_release
81819f0f
CL
5171};
5172
5173static int uevent_filter(struct kset *kset, struct kobject *kobj)
5174{
5175 struct kobj_type *ktype = get_ktype(kobj);
5176
5177 if (ktype == &slab_ktype)
5178 return 1;
5179 return 0;
5180}
5181
9cd43611 5182static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5183 .filter = uevent_filter,
5184};
5185
27c3a314 5186static struct kset *slab_kset;
81819f0f
CL
5187
5188#define ID_STR_LENGTH 64
5189
5190/* Create a unique string id for a slab cache:
6446faa2
CL
5191 *
5192 * Format :[flags-]size
81819f0f
CL
5193 */
5194static char *create_unique_id(struct kmem_cache *s)
5195{
5196 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5197 char *p = name;
5198
5199 BUG_ON(!name);
5200
5201 *p++ = ':';
5202 /*
5203 * First flags affecting slabcache operations. We will only
5204 * get here for aliasable slabs so we do not need to support
5205 * too many flags. The flags here must cover all flags that
5206 * are matched during merging to guarantee that the id is
5207 * unique.
5208 */
5209 if (s->flags & SLAB_CACHE_DMA)
5210 *p++ = 'd';
5211 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5212 *p++ = 'a';
5213 if (s->flags & SLAB_DEBUG_FREE)
5214 *p++ = 'F';
5a896d9e
VN
5215 if (!(s->flags & SLAB_NOTRACK))
5216 *p++ = 't';
81819f0f
CL
5217 if (p != name + 1)
5218 *p++ = '-';
5219 p += sprintf(p, "%07d", s->size);
5220 BUG_ON(p > name + ID_STR_LENGTH - 1);
5221 return name;
5222}
5223
5224static int sysfs_slab_add(struct kmem_cache *s)
5225{
5226 int err;
5227 const char *name;
5228 int unmergeable;
5229
5230 if (slab_state < SYSFS)
5231 /* Defer until later */
5232 return 0;
5233
5234 unmergeable = slab_unmergeable(s);
5235 if (unmergeable) {
5236 /*
5237 * Slabcache can never be merged so we can use the name proper.
5238 * This is typically the case for debug situations. In that
5239 * case we can catch duplicate names easily.
5240 */
27c3a314 5241 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5242 name = s->name;
5243 } else {
5244 /*
5245 * Create a unique name for the slab as a target
5246 * for the symlinks.
5247 */
5248 name = create_unique_id(s);
5249 }
5250
27c3a314 5251 s->kobj.kset = slab_kset;
1eada11c
GKH
5252 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5253 if (err) {
5254 kobject_put(&s->kobj);
81819f0f 5255 return err;
1eada11c 5256 }
81819f0f
CL
5257
5258 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5259 if (err) {
5260 kobject_del(&s->kobj);
5261 kobject_put(&s->kobj);
81819f0f 5262 return err;
5788d8ad 5263 }
81819f0f
CL
5264 kobject_uevent(&s->kobj, KOBJ_ADD);
5265 if (!unmergeable) {
5266 /* Setup first alias */
5267 sysfs_slab_alias(s, s->name);
5268 kfree(name);
5269 }
5270 return 0;
5271}
5272
5273static void sysfs_slab_remove(struct kmem_cache *s)
5274{
2bce6485
CL
5275 if (slab_state < SYSFS)
5276 /*
5277 * Sysfs has not been setup yet so no need to remove the
5278 * cache from sysfs.
5279 */
5280 return;
5281
81819f0f
CL
5282 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5283 kobject_del(&s->kobj);
151c602f 5284 kobject_put(&s->kobj);
81819f0f
CL
5285}
5286
5287/*
5288 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5289 * available lest we lose that information.
81819f0f
CL
5290 */
5291struct saved_alias {
5292 struct kmem_cache *s;
5293 const char *name;
5294 struct saved_alias *next;
5295};
5296
5af328a5 5297static struct saved_alias *alias_list;
81819f0f
CL
5298
5299static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5300{
5301 struct saved_alias *al;
5302
5303 if (slab_state == SYSFS) {
5304 /*
5305 * If we have a leftover link then remove it.
5306 */
27c3a314
GKH
5307 sysfs_remove_link(&slab_kset->kobj, name);
5308 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5309 }
5310
5311 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5312 if (!al)
5313 return -ENOMEM;
5314
5315 al->s = s;
5316 al->name = name;
5317 al->next = alias_list;
5318 alias_list = al;
5319 return 0;
5320}
5321
5322static int __init slab_sysfs_init(void)
5323{
5b95a4ac 5324 struct kmem_cache *s;
81819f0f
CL
5325 int err;
5326
2bce6485
CL
5327 down_write(&slub_lock);
5328
0ff21e46 5329 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5330 if (!slab_kset) {
2bce6485 5331 up_write(&slub_lock);
81819f0f
CL
5332 printk(KERN_ERR "Cannot register slab subsystem.\n");
5333 return -ENOSYS;
5334 }
5335
26a7bd03
CL
5336 slab_state = SYSFS;
5337
5b95a4ac 5338 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5339 err = sysfs_slab_add(s);
5d540fb7
CL
5340 if (err)
5341 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5342 " to sysfs\n", s->name);
26a7bd03 5343 }
81819f0f
CL
5344
5345 while (alias_list) {
5346 struct saved_alias *al = alias_list;
5347
5348 alias_list = alias_list->next;
5349 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5350 if (err)
5351 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5352 " %s to sysfs\n", s->name);
81819f0f
CL
5353 kfree(al);
5354 }
5355
2bce6485 5356 up_write(&slub_lock);
81819f0f
CL
5357 resiliency_test();
5358 return 0;
5359}
5360
5361__initcall(slab_sysfs_init);
ab4d5ed5 5362#endif /* CONFIG_SYSFS */
57ed3eda
PE
5363
5364/*
5365 * The /proc/slabinfo ABI
5366 */
158a9624 5367#ifdef CONFIG_SLABINFO
57ed3eda
PE
5368static void print_slabinfo_header(struct seq_file *m)
5369{
5370 seq_puts(m, "slabinfo - version: 2.1\n");
5371 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5372 "<objperslab> <pagesperslab>");
5373 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5374 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5375 seq_putc(m, '\n');
5376}
5377
5378static void *s_start(struct seq_file *m, loff_t *pos)
5379{
5380 loff_t n = *pos;
5381
5382 down_read(&slub_lock);
5383 if (!n)
5384 print_slabinfo_header(m);
5385
5386 return seq_list_start(&slab_caches, *pos);
5387}
5388
5389static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5390{
5391 return seq_list_next(p, &slab_caches, pos);
5392}
5393
5394static void s_stop(struct seq_file *m, void *p)
5395{
5396 up_read(&slub_lock);
5397}
5398
5399static int s_show(struct seq_file *m, void *p)
5400{
5401 unsigned long nr_partials = 0;
5402 unsigned long nr_slabs = 0;
5403 unsigned long nr_inuse = 0;
205ab99d
CL
5404 unsigned long nr_objs = 0;
5405 unsigned long nr_free = 0;
57ed3eda
PE
5406 struct kmem_cache *s;
5407 int node;
5408
5409 s = list_entry(p, struct kmem_cache, list);
5410
5411 for_each_online_node(node) {
5412 struct kmem_cache_node *n = get_node(s, node);
5413
5414 if (!n)
5415 continue;
5416
5417 nr_partials += n->nr_partial;
5418 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5419 nr_objs += atomic_long_read(&n->total_objects);
5420 nr_free += count_partial(n, count_free);
57ed3eda
PE
5421 }
5422
205ab99d 5423 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5424
5425 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5426 nr_objs, s->size, oo_objects(s->oo),
5427 (1 << oo_order(s->oo)));
57ed3eda
PE
5428 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5429 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5430 0UL);
5431 seq_putc(m, '\n');
5432 return 0;
5433}
5434
7b3c3a50 5435static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5436 .start = s_start,
5437 .next = s_next,
5438 .stop = s_stop,
5439 .show = s_show,
5440};
5441
7b3c3a50
AD
5442static int slabinfo_open(struct inode *inode, struct file *file)
5443{
5444 return seq_open(file, &slabinfo_op);
5445}
5446
5447static const struct file_operations proc_slabinfo_operations = {
5448 .open = slabinfo_open,
5449 .read = seq_read,
5450 .llseek = seq_lseek,
5451 .release = seq_release,
5452};
5453
5454static int __init slab_proc_init(void)
5455{
ab067e99 5456 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5457 return 0;
5458}
5459module_init(slab_proc_init);
158a9624 5460#endif /* CONFIG_SLABINFO */