]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
gitignore: add all.config
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
213static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 214static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 215#else
0c710013
CL
216static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
db265eca 219static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 220
107dab5c 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
81819f0f
CL
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
81819f0f 237 return s->node[node];
81819f0f
CL
238}
239
6446faa2 240/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
241static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243{
244 void *base;
245
a973e9dd 246 if (!object)
02cbc874
CL
247 return 1;
248
a973e9dd 249 base = page_address(page);
39b26464 250 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256}
257
7656c72b
CL
258static inline void *get_freepointer(struct kmem_cache *s, void *object)
259{
260 return *(void **)(object + s->offset);
261}
262
0ad9500e
ED
263static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264{
265 prefetch(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 304 return s->object_size;
d71f606f
MK
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
a0320865
DH
358static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359{
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371}
372
1d07171c
CL
373/* Interrupts must be disabled (for the fallback code to work right) */
374static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378{
379 VM_BUG_ON(!irqs_disabled());
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388#endif
389 {
390 slab_lock(page);
d0e0ac97
CG
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
1d07171c 393 page->freelist = freelist_new;
a0320865 394 set_page_slub_counters(page, counters_new);
1d07171c
CL
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404#ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406#endif
407
408 return 0;
409}
410
b789ef51
CL
411static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415{
2565409f
HC
416#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 418 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 419 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424#endif
425 {
1d07171c
CL
426 unsigned long flags;
427
428 local_irq_save(flags);
881db7fb 429 slab_lock(page);
d0e0ac97
CG
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
b789ef51 432 page->freelist = freelist_new;
a0320865 433 set_page_slub_counters(page, counters_new);
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 return 1;
437 }
881db7fb 438 slab_unlock(page);
1d07171c 439 local_irq_restore(flags);
b789ef51
CL
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445#ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447#endif
448
449 return 0;
450}
451
41ecc55b 452#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
459static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460{
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466}
467
41ecc55b
CL
468/*
469 * Debug settings:
470 */
f0630fff
CL
471#ifdef CONFIG_SLUB_DEBUG_ON
472static int slub_debug = DEBUG_DEFAULT_FLAGS;
473#else
41ecc55b 474static int slub_debug;
f0630fff 475#endif
41ecc55b
CL
476
477static char *slub_debug_slabs;
fa5ec8a1 478static int disable_higher_order_debug;
41ecc55b 479
81819f0f
CL
480/*
481 * Object debugging
482 */
483static void print_section(char *text, u8 *addr, unsigned int length)
484{
ffc79d28
SAS
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
81819f0f
CL
487}
488
81819f0f
CL
489static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491{
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500}
501
502static void set_track(struct kmem_cache *s, void *object,
ce71e27c 503 enum track_item alloc, unsigned long addr)
81819f0f 504{
1a00df4a 505 struct track *p = get_track(s, object, alloc);
81819f0f 506
81819f0f 507 if (addr) {
d6543e39
BG
508#ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525#endif
81819f0f
CL
526 p->addr = addr;
527 p->cpu = smp_processor_id();
88e4ccf2 528 p->pid = current->pid;
81819f0f
CL
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532}
533
81819f0f
CL
534static void init_tracking(struct kmem_cache *s, void *object)
535{
24922684
CL
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
ce71e27c
EGM
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
541}
542
543static void print_track(const char *s, struct track *t)
544{
545 if (!t->addr)
546 return;
547
7daf705f 548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
550#ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559#endif
24922684
CL
560}
561
562static void print_tracking(struct kmem_cache *s, void *object)
563{
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569}
570
571static void print_page_info(struct page *page)
572{
d0e0ac97
CG
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
265d47e7 589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
645df230 592
373d4d09 593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
594}
595
24922684
CL
596static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597{
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605}
606
607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
608{
609 unsigned int off; /* Offset of last byte */
a973e9dd 610 u8 *addr = page_address(page);
24922684
CL
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
ffc79d28 620 print_section("Bytes b4 ", p - 16, 16);
81819f0f 621
3b0efdfa 622 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 623 PAGE_SIZE));
81819f0f 624 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
81819f0f 627
81819f0f
CL
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
24922684 633 if (s->flags & SLAB_STORE_USER)
81819f0f 634 off += 2 * sizeof(struct track);
81819f0f
CL
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
ffc79d28 638 print_section("Padding ", p + off, s->size - off);
24922684
CL
639
640 dump_stack();
81819f0f
CL
641}
642
643static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645{
3dc50637 646 slab_bug(s, "%s", reason);
24922684 647 print_trailer(s, page, object);
81819f0f
CL
648}
649
d0e0ac97
CG
650static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
81819f0f
CL
652{
653 va_list args;
654 char buf[100];
655
24922684
CL
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 658 va_end(args);
3dc50637 659 slab_bug(s, "%s", buf);
24922684 660 print_page_info(page);
81819f0f
CL
661 dump_stack();
662}
663
f7cb1933 664static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
665{
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 674 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
675}
676
24922684
CL
677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679{
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682}
683
684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
06428780 686 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
687{
688 u8 *fault;
689 u8 *end;
690
79824820 691 fault = memchr_inv(start, value, bytes);
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
79824820 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 791 print_section("Padding ", end - remainder, remainder);
24922684 792
8a3d271d 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 794 return 0;
81819f0f
CL
795}
796
797static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 798 void *object, u8 val)
81819f0f
CL
799{
800 u8 *p = object;
3b0efdfa 801 u8 *endobject = object + s->object_size;
81819f0f
CL
802
803 if (s->flags & SLAB_RED_ZONE) {
24922684 804 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 805 endobject, val, s->inuse - s->object_size))
81819f0f 806 return 0;
81819f0f 807 } else {
3b0efdfa 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 809 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
3adbefee 812 }
81819f0f
CL
813 }
814
815 if (s->flags & SLAB_POISON) {
f7cb1933 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 817 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 818 POISON_FREE, s->object_size - 1) ||
24922684 819 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 820 p + s->object_size - 1, POISON_END, 1)))
81819f0f 821 return 0;
81819f0f
CL
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
f7cb1933 828 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
9f6c708e 839 * No choice but to zap it and thus lose the remainder
81819f0f 840 * of the free objects in this slab. May cause
672bba3a 841 * another error because the object count is now wrong.
81819f0f 842 */
a973e9dd 843 set_freepointer(s, p, NULL);
81819f0f
CL
844 return 0;
845 }
846 return 1;
847}
848
849static int check_slab(struct kmem_cache *s, struct page *page)
850{
39b26464
CL
851 int maxobj;
852
81819f0f
CL
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
24922684 856 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
857 return 0;
858 }
39b26464 859
ab9a0f19 860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
24922684 867 slab_err(s, page, "inuse %u > max %u",
39b26464 868 s->name, page->inuse, page->objects);
81819f0f
CL
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874}
875
876/*
672bba3a
CL
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
879 */
880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881{
882 int nr = 0;
881db7fb 883 void *fp;
81819f0f 884 void *object = NULL;
224a88be 885 unsigned long max_objects;
81819f0f 886
881db7fb 887 fp = page->freelist;
39b26464 888 while (fp && nr <= page->objects) {
81819f0f
CL
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
a973e9dd 895 set_freepointer(s, object, NULL);
81819f0f 896 } else {
24922684 897 slab_err(s, page, "Freepointer corrupt");
a973e9dd 898 page->freelist = NULL;
39b26464 899 page->inuse = page->objects;
24922684 900 slab_fix(s, "Freelist cleared");
81819f0f
CL
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
ab9a0f19 910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
39b26464 920 if (page->inuse != page->objects - nr) {
70d71228 921 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
24922684 924 slab_fix(s, "Object count adjusted.");
81819f0f
CL
925 }
926 return search == NULL;
927}
928
0121c619
CL
929static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
3ec09742
CL
931{
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
d0e0ac97
CG
940 print_section("Object ", (void *)object,
941 s->object_size);
3ec09742
CL
942
943 dump_stack();
944 }
945}
946
c016b0bd
CL
947/*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
d56791b3
RB
951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952{
953 kmemleak_alloc(ptr, size, 1, flags);
954}
955
956static inline void kfree_hook(const void *x)
957{
958 kmemleak_free(x);
959}
960
c016b0bd
CL
961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962{
c1d50836 963 flags &= gfp_allowed_mask;
c016b0bd
CL
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
3b0efdfa 967 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
968}
969
d0e0ac97
CG
970static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
c016b0bd 972{
c1d50836 973 flags &= gfp_allowed_mask;
b3d41885 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
976}
977
978static inline void slab_free_hook(struct kmem_cache *s, void *x)
979{
980 kmemleak_free_recursive(x, s->flags);
c016b0bd 981
d3f661d6 982 /*
d1756174 983 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
3b0efdfa
CL
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
994 local_irq_restore(flags);
995 }
996#endif
f9b615de 997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 998 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
999}
1000
643b1138 1001/*
672bba3a 1002 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1003 */
5cc6eee8
CL
1004static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
643b1138 1006{
5cc6eee8
CL
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
255d0884 1010 lockdep_assert_held(&n->list_lock);
643b1138 1011 list_add(&page->lru, &n->full);
643b1138
CL
1012}
1013
c65c1877 1014static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1015{
643b1138
CL
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
255d0884 1019 lockdep_assert_held(&n->list_lock);
643b1138 1020 list_del(&page->lru);
643b1138
CL
1021}
1022
0f389ec6
CL
1023/* Tracking of the number of slabs for debugging purposes */
1024static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025{
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029}
1030
26c02cf0
AB
1031static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032{
1033 return atomic_long_read(&n->nr_slabs);
1034}
1035
205ab99d 1036static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1037{
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
338b2642 1046 if (likely(n)) {
0f389ec6 1047 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1048 atomic_long_add(objects, &n->total_objects);
1049 }
0f389ec6 1050}
205ab99d 1051static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
205ab99d 1056 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1057}
1058
1059/* Object debug checks for alloc/free paths */
3ec09742
CL
1060static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062{
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
f7cb1933 1066 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1067 init_tracking(s, object);
1068}
1069
d0e0ac97
CG
1070static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
ce71e27c 1072 void *object, unsigned long addr)
81819f0f
CL
1073{
1074 if (!check_slab(s, page))
1075 goto bad;
1076
81819f0f
CL
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1079 goto bad;
81819f0f
CL
1080 }
1081
f7cb1933 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1083 goto bad;
81819f0f 1084
3ec09742
CL
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
f7cb1933 1089 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1090 return 1;
3ec09742 1091
81819f0f
CL
1092bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
672bba3a 1097 * as used avoids touching the remaining objects.
81819f0f 1098 */
24922684 1099 slab_fix(s, "Marking all objects used");
39b26464 1100 page->inuse = page->objects;
a973e9dd 1101 page->freelist = NULL;
81819f0f
CL
1102 }
1103 return 0;
1104}
1105
19c7ff9e
CL
1106static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
81819f0f 1109{
19c7ff9e 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1111
19c7ff9e 1112 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1113 slab_lock(page);
1114
81819f0f
CL
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
70d71228 1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
24922684 1124 object_err(s, page, object, "Object already free");
81819f0f
CL
1125 goto fail;
1126 }
1127
f7cb1933 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1129 goto out;
81819f0f 1130
1b4f59e3 1131 if (unlikely(s != page->slab_cache)) {
3adbefee 1132 if (!PageSlab(page)) {
70d71228
CL
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1b4f59e3 1135 } else if (!page->slab_cache) {
81819f0f 1136 printk(KERN_ERR
70d71228 1137 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1138 object);
70d71228 1139 dump_stack();
06428780 1140 } else
24922684
CL
1141 object_err(s, page, object,
1142 "page slab pointer corrupt.");
81819f0f
CL
1143 goto fail;
1144 }
3ec09742 1145
3ec09742
CL
1146 if (s->flags & SLAB_STORE_USER)
1147 set_track(s, object, TRACK_FREE, addr);
1148 trace(s, page, object, 0);
f7cb1933 1149 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1150out:
881db7fb 1151 slab_unlock(page);
19c7ff9e
CL
1152 /*
1153 * Keep node_lock to preserve integrity
1154 * until the object is actually freed
1155 */
1156 return n;
3ec09742 1157
81819f0f 1158fail:
19c7ff9e
CL
1159 slab_unlock(page);
1160 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1161 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1162 return NULL;
81819f0f
CL
1163}
1164
41ecc55b
CL
1165static int __init setup_slub_debug(char *str)
1166{
f0630fff
CL
1167 slub_debug = DEBUG_DEFAULT_FLAGS;
1168 if (*str++ != '=' || !*str)
1169 /*
1170 * No options specified. Switch on full debugging.
1171 */
1172 goto out;
1173
1174 if (*str == ',')
1175 /*
1176 * No options but restriction on slabs. This means full
1177 * debugging for slabs matching a pattern.
1178 */
1179 goto check_slabs;
1180
fa5ec8a1
DR
1181 if (tolower(*str) == 'o') {
1182 /*
1183 * Avoid enabling debugging on caches if its minimum order
1184 * would increase as a result.
1185 */
1186 disable_higher_order_debug = 1;
1187 goto out;
1188 }
1189
f0630fff
CL
1190 slub_debug = 0;
1191 if (*str == '-')
1192 /*
1193 * Switch off all debugging measures.
1194 */
1195 goto out;
1196
1197 /*
1198 * Determine which debug features should be switched on
1199 */
06428780 1200 for (; *str && *str != ','; str++) {
f0630fff
CL
1201 switch (tolower(*str)) {
1202 case 'f':
1203 slub_debug |= SLAB_DEBUG_FREE;
1204 break;
1205 case 'z':
1206 slub_debug |= SLAB_RED_ZONE;
1207 break;
1208 case 'p':
1209 slub_debug |= SLAB_POISON;
1210 break;
1211 case 'u':
1212 slub_debug |= SLAB_STORE_USER;
1213 break;
1214 case 't':
1215 slub_debug |= SLAB_TRACE;
1216 break;
4c13dd3b
DM
1217 case 'a':
1218 slub_debug |= SLAB_FAILSLAB;
1219 break;
f0630fff
CL
1220 default:
1221 printk(KERN_ERR "slub_debug option '%c' "
06428780 1222 "unknown. skipped\n", *str);
f0630fff 1223 }
41ecc55b
CL
1224 }
1225
f0630fff 1226check_slabs:
41ecc55b
CL
1227 if (*str == ',')
1228 slub_debug_slabs = str + 1;
f0630fff 1229out:
41ecc55b
CL
1230 return 1;
1231}
1232
1233__setup("slub_debug", setup_slub_debug);
1234
3b0efdfa 1235static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1236 unsigned long flags, const char *name,
51cc5068 1237 void (*ctor)(void *))
41ecc55b
CL
1238{
1239 /*
e153362a 1240 * Enable debugging if selected on the kernel commandline.
41ecc55b 1241 */
c6f58d9b
CL
1242 if (slub_debug && (!slub_debug_slabs || (name &&
1243 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1244 flags |= slub_debug;
ba0268a8
CL
1245
1246 return flags;
41ecc55b
CL
1247}
1248#else
3ec09742
CL
1249static inline void setup_object_debug(struct kmem_cache *s,
1250 struct page *page, void *object) {}
41ecc55b 1251
3ec09742 1252static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1253 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1254
19c7ff9e
CL
1255static inline struct kmem_cache_node *free_debug_processing(
1256 struct kmem_cache *s, struct page *page, void *object,
1257 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1258
41ecc55b
CL
1259static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1260 { return 1; }
1261static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1262 void *object, u8 val) { return 1; }
5cc6eee8
CL
1263static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1264 struct page *page) {}
c65c1877
PZ
1265static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
3b0efdfa 1267static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1268 unsigned long flags, const char *name,
51cc5068 1269 void (*ctor)(void *))
ba0268a8
CL
1270{
1271 return flags;
1272}
41ecc55b 1273#define slub_debug 0
0f389ec6 1274
fdaa45e9
IM
1275#define disable_higher_order_debug 0
1276
0f389ec6
CL
1277static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1278 { return 0; }
26c02cf0
AB
1279static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1280 { return 0; }
205ab99d
CL
1281static inline void inc_slabs_node(struct kmem_cache *s, int node,
1282 int objects) {}
1283static inline void dec_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
7d550c56 1285
d56791b3
RB
1286static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1287{
1288 kmemleak_alloc(ptr, size, 1, flags);
1289}
1290
1291static inline void kfree_hook(const void *x)
1292{
1293 kmemleak_free(x);
1294}
1295
7d550c56
CL
1296static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1297 { return 0; }
1298
1299static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1300 void *object)
1301{
1302 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1303 flags & gfp_allowed_mask);
1304}
7d550c56 1305
d56791b3
RB
1306static inline void slab_free_hook(struct kmem_cache *s, void *x)
1307{
1308 kmemleak_free_recursive(x, s->flags);
1309}
7d550c56 1310
ab4d5ed5 1311#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1312
81819f0f
CL
1313/*
1314 * Slab allocation and freeing
1315 */
65c3376a
CL
1316static inline struct page *alloc_slab_page(gfp_t flags, int node,
1317 struct kmem_cache_order_objects oo)
1318{
1319 int order = oo_order(oo);
1320
b1eeab67
VN
1321 flags |= __GFP_NOTRACK;
1322
2154a336 1323 if (node == NUMA_NO_NODE)
65c3376a
CL
1324 return alloc_pages(flags, order);
1325 else
6b65aaf3 1326 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1327}
1328
81819f0f
CL
1329static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1330{
06428780 1331 struct page *page;
834f3d11 1332 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1333 gfp_t alloc_gfp;
81819f0f 1334
7e0528da
CL
1335 flags &= gfp_allowed_mask;
1336
1337 if (flags & __GFP_WAIT)
1338 local_irq_enable();
1339
b7a49f0d 1340 flags |= s->allocflags;
e12ba74d 1341
ba52270d
PE
1342 /*
1343 * Let the initial higher-order allocation fail under memory pressure
1344 * so we fall-back to the minimum order allocation.
1345 */
1346 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1347
1348 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1349 if (unlikely(!page)) {
1350 oo = s->min;
1351 /*
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1354 */
1355 page = alloc_slab_page(flags, node, oo);
81819f0f 1356
7e0528da
CL
1357 if (page)
1358 stat(s, ORDER_FALLBACK);
65c3376a 1359 }
5a896d9e 1360
737b719e 1361 if (kmemcheck_enabled && page
5086c389 1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1363 int pages = 1 << oo_order(oo);
1364
1365 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1366
1367 /*
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1370 */
1371 if (s->ctor)
1372 kmemcheck_mark_uninitialized_pages(page, pages);
1373 else
1374 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1375 }
1376
737b719e
DR
1377 if (flags & __GFP_WAIT)
1378 local_irq_disable();
1379 if (!page)
1380 return NULL;
1381
834f3d11 1382 page->objects = oo_objects(oo);
81819f0f
CL
1383 mod_zone_page_state(page_zone(page),
1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1386 1 << oo_order(oo));
81819f0f
CL
1387
1388 return page;
1389}
1390
1391static void setup_object(struct kmem_cache *s, struct page *page,
1392 void *object)
1393{
3ec09742 1394 setup_object_debug(s, page, object);
4f104934 1395 if (unlikely(s->ctor))
51cc5068 1396 s->ctor(object);
81819f0f
CL
1397}
1398
1399static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400{
1401 struct page *page;
81819f0f 1402 void *start;
81819f0f
CL
1403 void *last;
1404 void *p;
1f458cbf 1405 int order;
81819f0f 1406
6cb06229 1407 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1408
6cb06229
CL
1409 page = allocate_slab(s,
1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1411 if (!page)
1412 goto out;
1413
1f458cbf 1414 order = compound_order(page);
205ab99d 1415 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1416 memcg_bind_pages(s, order);
1b4f59e3 1417 page->slab_cache = s;
c03f94cc 1418 __SetPageSlab(page);
072bb0aa
MG
1419 if (page->pfmemalloc)
1420 SetPageSlabPfmemalloc(page);
81819f0f
CL
1421
1422 start = page_address(page);
81819f0f
CL
1423
1424 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1425 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1426
1427 last = start;
224a88be 1428 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1429 setup_object(s, page, last);
1430 set_freepointer(s, last, p);
1431 last = p;
1432 }
1433 setup_object(s, page, last);
a973e9dd 1434 set_freepointer(s, last, NULL);
81819f0f
CL
1435
1436 page->freelist = start;
e6e82ea1 1437 page->inuse = page->objects;
8cb0a506 1438 page->frozen = 1;
81819f0f 1439out:
81819f0f
CL
1440 return page;
1441}
1442
1443static void __free_slab(struct kmem_cache *s, struct page *page)
1444{
834f3d11
CL
1445 int order = compound_order(page);
1446 int pages = 1 << order;
81819f0f 1447
af537b0a 1448 if (kmem_cache_debug(s)) {
81819f0f
CL
1449 void *p;
1450
1451 slab_pad_check(s, page);
224a88be
CL
1452 for_each_object(p, s, page_address(page),
1453 page->objects)
f7cb1933 1454 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1455 }
1456
b1eeab67 1457 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1458
81819f0f
CL
1459 mod_zone_page_state(page_zone(page),
1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1462 -pages);
81819f0f 1463
072bb0aa 1464 __ClearPageSlabPfmemalloc(page);
49bd5221 1465 __ClearPageSlab(page);
1f458cbf
GC
1466
1467 memcg_release_pages(s, order);
22b751c3 1468 page_mapcount_reset(page);
1eb5ac64
NP
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1471 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1472}
1473
da9a638c
LJ
1474#define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476
81819f0f
CL
1477static void rcu_free_slab(struct rcu_head *h)
1478{
1479 struct page *page;
1480
da9a638c
LJ
1481 if (need_reserve_slab_rcu)
1482 page = virt_to_head_page(h);
1483 else
1484 page = container_of((struct list_head *)h, struct page, lru);
1485
1b4f59e3 1486 __free_slab(page->slab_cache, page);
81819f0f
CL
1487}
1488
1489static void free_slab(struct kmem_cache *s, struct page *page)
1490{
1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1492 struct rcu_head *head;
1493
1494 if (need_reserve_slab_rcu) {
1495 int order = compound_order(page);
1496 int offset = (PAGE_SIZE << order) - s->reserved;
1497
1498 VM_BUG_ON(s->reserved != sizeof(*head));
1499 head = page_address(page) + offset;
1500 } else {
1501 /*
1502 * RCU free overloads the RCU head over the LRU
1503 */
1504 head = (void *)&page->lru;
1505 }
81819f0f
CL
1506
1507 call_rcu(head, rcu_free_slab);
1508 } else
1509 __free_slab(s, page);
1510}
1511
1512static void discard_slab(struct kmem_cache *s, struct page *page)
1513{
205ab99d 1514 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1515 free_slab(s, page);
1516}
1517
1518/*
5cc6eee8 1519 * Management of partially allocated slabs.
81819f0f 1520 */
5cc6eee8 1521static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1522 struct page *page, int tail)
81819f0f 1523{
c65c1877
PZ
1524 lockdep_assert_held(&n->list_lock);
1525
e95eed57 1526 n->nr_partial++;
136333d1 1527 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1528 list_add_tail(&page->lru, &n->partial);
1529 else
1530 list_add(&page->lru, &n->partial);
81819f0f
CL
1531}
1532
5cc6eee8 1533static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1534 struct page *page)
1535{
c65c1877
PZ
1536 lockdep_assert_held(&n->list_lock);
1537
62e346a8
CL
1538 list_del(&page->lru);
1539 n->nr_partial--;
1540}
1541
81819f0f 1542/*
7ced3719
CL
1543 * Remove slab from the partial list, freeze it and
1544 * return the pointer to the freelist.
81819f0f 1545 *
497b66f2 1546 * Returns a list of objects or NULL if it fails.
81819f0f 1547 */
497b66f2 1548static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1549 struct kmem_cache_node *n, struct page *page,
633b0764 1550 int mode, int *objects)
81819f0f 1551{
2cfb7455
CL
1552 void *freelist;
1553 unsigned long counters;
1554 struct page new;
1555
c65c1877
PZ
1556 lockdep_assert_held(&n->list_lock);
1557
2cfb7455
CL
1558 /*
1559 * Zap the freelist and set the frozen bit.
1560 * The old freelist is the list of objects for the
1561 * per cpu allocation list.
1562 */
7ced3719
CL
1563 freelist = page->freelist;
1564 counters = page->counters;
1565 new.counters = counters;
633b0764 1566 *objects = new.objects - new.inuse;
23910c50 1567 if (mode) {
7ced3719 1568 new.inuse = page->objects;
23910c50
PE
1569 new.freelist = NULL;
1570 } else {
1571 new.freelist = freelist;
1572 }
2cfb7455 1573
a0132ac0 1574 VM_BUG_ON(new.frozen);
7ced3719 1575 new.frozen = 1;
2cfb7455 1576
7ced3719 1577 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1578 freelist, counters,
02d7633f 1579 new.freelist, new.counters,
7ced3719 1580 "acquire_slab"))
7ced3719 1581 return NULL;
2cfb7455
CL
1582
1583 remove_partial(n, page);
7ced3719 1584 WARN_ON(!freelist);
49e22585 1585 return freelist;
81819f0f
CL
1586}
1587
633b0764 1588static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1589static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1590
81819f0f 1591/*
672bba3a 1592 * Try to allocate a partial slab from a specific node.
81819f0f 1593 */
8ba00bb6
JK
1594static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1595 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1596{
49e22585
CL
1597 struct page *page, *page2;
1598 void *object = NULL;
633b0764
JK
1599 int available = 0;
1600 int objects;
81819f0f
CL
1601
1602 /*
1603 * Racy check. If we mistakenly see no partial slabs then we
1604 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1605 * partial slab and there is none available then get_partials()
1606 * will return NULL.
81819f0f
CL
1607 */
1608 if (!n || !n->nr_partial)
1609 return NULL;
1610
1611 spin_lock(&n->list_lock);
49e22585 1612 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1613 void *t;
49e22585 1614
8ba00bb6
JK
1615 if (!pfmemalloc_match(page, flags))
1616 continue;
1617
633b0764 1618 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1619 if (!t)
1620 break;
1621
633b0764 1622 available += objects;
12d79634 1623 if (!object) {
49e22585 1624 c->page = page;
49e22585 1625 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1626 object = t;
49e22585 1627 } else {
633b0764 1628 put_cpu_partial(s, page, 0);
8028dcea 1629 stat(s, CPU_PARTIAL_NODE);
49e22585 1630 }
345c905d
JK
1631 if (!kmem_cache_has_cpu_partial(s)
1632 || available > s->cpu_partial / 2)
49e22585
CL
1633 break;
1634
497b66f2 1635 }
81819f0f 1636 spin_unlock(&n->list_lock);
497b66f2 1637 return object;
81819f0f
CL
1638}
1639
1640/*
672bba3a 1641 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1642 */
de3ec035 1643static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1644 struct kmem_cache_cpu *c)
81819f0f
CL
1645{
1646#ifdef CONFIG_NUMA
1647 struct zonelist *zonelist;
dd1a239f 1648 struct zoneref *z;
54a6eb5c
MG
1649 struct zone *zone;
1650 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1651 void *object;
cc9a6c87 1652 unsigned int cpuset_mems_cookie;
81819f0f
CL
1653
1654 /*
672bba3a
CL
1655 * The defrag ratio allows a configuration of the tradeoffs between
1656 * inter node defragmentation and node local allocations. A lower
1657 * defrag_ratio increases the tendency to do local allocations
1658 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1659 *
672bba3a
CL
1660 * If the defrag_ratio is set to 0 then kmalloc() always
1661 * returns node local objects. If the ratio is higher then kmalloc()
1662 * may return off node objects because partial slabs are obtained
1663 * from other nodes and filled up.
81819f0f 1664 *
6446faa2 1665 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1666 * defrag_ratio = 1000) then every (well almost) allocation will
1667 * first attempt to defrag slab caches on other nodes. This means
1668 * scanning over all nodes to look for partial slabs which may be
1669 * expensive if we do it every time we are trying to find a slab
1670 * with available objects.
81819f0f 1671 */
9824601e
CL
1672 if (!s->remote_node_defrag_ratio ||
1673 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1674 return NULL;
1675
cc9a6c87
MG
1676 do {
1677 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1678 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1679 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1680 struct kmem_cache_node *n;
1681
1682 n = get_node(s, zone_to_nid(zone));
1683
1684 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1685 n->nr_partial > s->min_partial) {
8ba00bb6 1686 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1687 if (object) {
1688 /*
1689 * Return the object even if
1690 * put_mems_allowed indicated that
1691 * the cpuset mems_allowed was
1692 * updated in parallel. It's a
1693 * harmless race between the alloc
1694 * and the cpuset update.
1695 */
1696 put_mems_allowed(cpuset_mems_cookie);
1697 return object;
1698 }
c0ff7453 1699 }
81819f0f 1700 }
cc9a6c87 1701 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1702#endif
1703 return NULL;
1704}
1705
1706/*
1707 * Get a partial page, lock it and return it.
1708 */
497b66f2 1709static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1710 struct kmem_cache_cpu *c)
81819f0f 1711{
497b66f2 1712 void *object;
2154a336 1713 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1714
8ba00bb6 1715 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1716 if (object || node != NUMA_NO_NODE)
1717 return object;
81819f0f 1718
acd19fd1 1719 return get_any_partial(s, flags, c);
81819f0f
CL
1720}
1721
8a5ec0ba
CL
1722#ifdef CONFIG_PREEMPT
1723/*
1724 * Calculate the next globally unique transaction for disambiguiation
1725 * during cmpxchg. The transactions start with the cpu number and are then
1726 * incremented by CONFIG_NR_CPUS.
1727 */
1728#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1729#else
1730/*
1731 * No preemption supported therefore also no need to check for
1732 * different cpus.
1733 */
1734#define TID_STEP 1
1735#endif
1736
1737static inline unsigned long next_tid(unsigned long tid)
1738{
1739 return tid + TID_STEP;
1740}
1741
1742static inline unsigned int tid_to_cpu(unsigned long tid)
1743{
1744 return tid % TID_STEP;
1745}
1746
1747static inline unsigned long tid_to_event(unsigned long tid)
1748{
1749 return tid / TID_STEP;
1750}
1751
1752static inline unsigned int init_tid(int cpu)
1753{
1754 return cpu;
1755}
1756
1757static inline void note_cmpxchg_failure(const char *n,
1758 const struct kmem_cache *s, unsigned long tid)
1759{
1760#ifdef SLUB_DEBUG_CMPXCHG
1761 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1762
1763 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1764
1765#ifdef CONFIG_PREEMPT
1766 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1767 printk("due to cpu change %d -> %d\n",
1768 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1769 else
1770#endif
1771 if (tid_to_event(tid) != tid_to_event(actual_tid))
1772 printk("due to cpu running other code. Event %ld->%ld\n",
1773 tid_to_event(tid), tid_to_event(actual_tid));
1774 else
1775 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1776 actual_tid, tid, next_tid(tid));
1777#endif
4fdccdfb 1778 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1779}
1780
788e1aad 1781static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1782{
8a5ec0ba
CL
1783 int cpu;
1784
1785 for_each_possible_cpu(cpu)
1786 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1787}
2cfb7455 1788
81819f0f
CL
1789/*
1790 * Remove the cpu slab
1791 */
d0e0ac97
CG
1792static void deactivate_slab(struct kmem_cache *s, struct page *page,
1793 void *freelist)
81819f0f 1794{
2cfb7455 1795 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1796 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1797 int lock = 0;
1798 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1799 void *nextfree;
136333d1 1800 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1801 struct page new;
1802 struct page old;
1803
1804 if (page->freelist) {
84e554e6 1805 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1806 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1807 }
1808
894b8788 1809 /*
2cfb7455
CL
1810 * Stage one: Free all available per cpu objects back
1811 * to the page freelist while it is still frozen. Leave the
1812 * last one.
1813 *
1814 * There is no need to take the list->lock because the page
1815 * is still frozen.
1816 */
1817 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1818 void *prior;
1819 unsigned long counters;
1820
1821 do {
1822 prior = page->freelist;
1823 counters = page->counters;
1824 set_freepointer(s, freelist, prior);
1825 new.counters = counters;
1826 new.inuse--;
a0132ac0 1827 VM_BUG_ON(!new.frozen);
2cfb7455 1828
1d07171c 1829 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1830 prior, counters,
1831 freelist, new.counters,
1832 "drain percpu freelist"));
1833
1834 freelist = nextfree;
1835 }
1836
894b8788 1837 /*
2cfb7455
CL
1838 * Stage two: Ensure that the page is unfrozen while the
1839 * list presence reflects the actual number of objects
1840 * during unfreeze.
1841 *
1842 * We setup the list membership and then perform a cmpxchg
1843 * with the count. If there is a mismatch then the page
1844 * is not unfrozen but the page is on the wrong list.
1845 *
1846 * Then we restart the process which may have to remove
1847 * the page from the list that we just put it on again
1848 * because the number of objects in the slab may have
1849 * changed.
894b8788 1850 */
2cfb7455 1851redo:
894b8788 1852
2cfb7455
CL
1853 old.freelist = page->freelist;
1854 old.counters = page->counters;
a0132ac0 1855 VM_BUG_ON(!old.frozen);
7c2e132c 1856
2cfb7455
CL
1857 /* Determine target state of the slab */
1858 new.counters = old.counters;
1859 if (freelist) {
1860 new.inuse--;
1861 set_freepointer(s, freelist, old.freelist);
1862 new.freelist = freelist;
1863 } else
1864 new.freelist = old.freelist;
1865
1866 new.frozen = 0;
1867
81107188 1868 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1869 m = M_FREE;
1870 else if (new.freelist) {
1871 m = M_PARTIAL;
1872 if (!lock) {
1873 lock = 1;
1874 /*
1875 * Taking the spinlock removes the possiblity
1876 * that acquire_slab() will see a slab page that
1877 * is frozen
1878 */
1879 spin_lock(&n->list_lock);
1880 }
1881 } else {
1882 m = M_FULL;
1883 if (kmem_cache_debug(s) && !lock) {
1884 lock = 1;
1885 /*
1886 * This also ensures that the scanning of full
1887 * slabs from diagnostic functions will not see
1888 * any frozen slabs.
1889 */
1890 spin_lock(&n->list_lock);
1891 }
1892 }
1893
1894 if (l != m) {
1895
1896 if (l == M_PARTIAL)
1897
1898 remove_partial(n, page);
1899
1900 else if (l == M_FULL)
894b8788 1901
c65c1877 1902 remove_full(s, n, page);
2cfb7455
CL
1903
1904 if (m == M_PARTIAL) {
1905
1906 add_partial(n, page, tail);
136333d1 1907 stat(s, tail);
2cfb7455
CL
1908
1909 } else if (m == M_FULL) {
894b8788 1910
2cfb7455
CL
1911 stat(s, DEACTIVATE_FULL);
1912 add_full(s, n, page);
1913
1914 }
1915 }
1916
1917 l = m;
1d07171c 1918 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1919 old.freelist, old.counters,
1920 new.freelist, new.counters,
1921 "unfreezing slab"))
1922 goto redo;
1923
2cfb7455
CL
1924 if (lock)
1925 spin_unlock(&n->list_lock);
1926
1927 if (m == M_FREE) {
1928 stat(s, DEACTIVATE_EMPTY);
1929 discard_slab(s, page);
1930 stat(s, FREE_SLAB);
894b8788 1931 }
81819f0f
CL
1932}
1933
d24ac77f
JK
1934/*
1935 * Unfreeze all the cpu partial slabs.
1936 *
59a09917
CL
1937 * This function must be called with interrupts disabled
1938 * for the cpu using c (or some other guarantee must be there
1939 * to guarantee no concurrent accesses).
d24ac77f 1940 */
59a09917
CL
1941static void unfreeze_partials(struct kmem_cache *s,
1942 struct kmem_cache_cpu *c)
49e22585 1943{
345c905d 1944#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1945 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1946 struct page *page, *discard_page = NULL;
49e22585
CL
1947
1948 while ((page = c->partial)) {
49e22585
CL
1949 struct page new;
1950 struct page old;
1951
1952 c->partial = page->next;
43d77867
JK
1953
1954 n2 = get_node(s, page_to_nid(page));
1955 if (n != n2) {
1956 if (n)
1957 spin_unlock(&n->list_lock);
1958
1959 n = n2;
1960 spin_lock(&n->list_lock);
1961 }
49e22585
CL
1962
1963 do {
1964
1965 old.freelist = page->freelist;
1966 old.counters = page->counters;
a0132ac0 1967 VM_BUG_ON(!old.frozen);
49e22585
CL
1968
1969 new.counters = old.counters;
1970 new.freelist = old.freelist;
1971
1972 new.frozen = 0;
1973
d24ac77f 1974 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1975 old.freelist, old.counters,
1976 new.freelist, new.counters,
1977 "unfreezing slab"));
1978
43d77867 1979 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1980 page->next = discard_page;
1981 discard_page = page;
43d77867
JK
1982 } else {
1983 add_partial(n, page, DEACTIVATE_TO_TAIL);
1984 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1985 }
1986 }
1987
1988 if (n)
1989 spin_unlock(&n->list_lock);
9ada1934
SL
1990
1991 while (discard_page) {
1992 page = discard_page;
1993 discard_page = discard_page->next;
1994
1995 stat(s, DEACTIVATE_EMPTY);
1996 discard_slab(s, page);
1997 stat(s, FREE_SLAB);
1998 }
345c905d 1999#endif
49e22585
CL
2000}
2001
2002/*
2003 * Put a page that was just frozen (in __slab_free) into a partial page
2004 * slot if available. This is done without interrupts disabled and without
2005 * preemption disabled. The cmpxchg is racy and may put the partial page
2006 * onto a random cpus partial slot.
2007 *
2008 * If we did not find a slot then simply move all the partials to the
2009 * per node partial list.
2010 */
633b0764 2011static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2012{
345c905d 2013#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2014 struct page *oldpage;
2015 int pages;
2016 int pobjects;
2017
2018 do {
2019 pages = 0;
2020 pobjects = 0;
2021 oldpage = this_cpu_read(s->cpu_slab->partial);
2022
2023 if (oldpage) {
2024 pobjects = oldpage->pobjects;
2025 pages = oldpage->pages;
2026 if (drain && pobjects > s->cpu_partial) {
2027 unsigned long flags;
2028 /*
2029 * partial array is full. Move the existing
2030 * set to the per node partial list.
2031 */
2032 local_irq_save(flags);
59a09917 2033 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2034 local_irq_restore(flags);
e24fc410 2035 oldpage = NULL;
49e22585
CL
2036 pobjects = 0;
2037 pages = 0;
8028dcea 2038 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2039 }
2040 }
2041
2042 pages++;
2043 pobjects += page->objects - page->inuse;
2044
2045 page->pages = pages;
2046 page->pobjects = pobjects;
2047 page->next = oldpage;
2048
d0e0ac97
CG
2049 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2050 != oldpage);
345c905d 2051#endif
49e22585
CL
2052}
2053
dfb4f096 2054static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2055{
84e554e6 2056 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2057 deactivate_slab(s, c->page, c->freelist);
2058
2059 c->tid = next_tid(c->tid);
2060 c->page = NULL;
2061 c->freelist = NULL;
81819f0f
CL
2062}
2063
2064/*
2065 * Flush cpu slab.
6446faa2 2066 *
81819f0f
CL
2067 * Called from IPI handler with interrupts disabled.
2068 */
0c710013 2069static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2070{
9dfc6e68 2071 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2072
49e22585
CL
2073 if (likely(c)) {
2074 if (c->page)
2075 flush_slab(s, c);
2076
59a09917 2077 unfreeze_partials(s, c);
49e22585 2078 }
81819f0f
CL
2079}
2080
2081static void flush_cpu_slab(void *d)
2082{
2083 struct kmem_cache *s = d;
81819f0f 2084
dfb4f096 2085 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2086}
2087
a8364d55
GBY
2088static bool has_cpu_slab(int cpu, void *info)
2089{
2090 struct kmem_cache *s = info;
2091 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2092
02e1a9cd 2093 return c->page || c->partial;
a8364d55
GBY
2094}
2095
81819f0f
CL
2096static void flush_all(struct kmem_cache *s)
2097{
a8364d55 2098 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2099}
2100
dfb4f096
CL
2101/*
2102 * Check if the objects in a per cpu structure fit numa
2103 * locality expectations.
2104 */
57d437d2 2105static inline int node_match(struct page *page, int node)
dfb4f096
CL
2106{
2107#ifdef CONFIG_NUMA
4d7868e6 2108 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2109 return 0;
2110#endif
2111 return 1;
2112}
2113
781b2ba6
PE
2114static int count_free(struct page *page)
2115{
2116 return page->objects - page->inuse;
2117}
2118
2119static unsigned long count_partial(struct kmem_cache_node *n,
2120 int (*get_count)(struct page *))
2121{
2122 unsigned long flags;
2123 unsigned long x = 0;
2124 struct page *page;
2125
2126 spin_lock_irqsave(&n->list_lock, flags);
2127 list_for_each_entry(page, &n->partial, lru)
2128 x += get_count(page);
2129 spin_unlock_irqrestore(&n->list_lock, flags);
2130 return x;
2131}
2132
26c02cf0
AB
2133static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2134{
2135#ifdef CONFIG_SLUB_DEBUG
2136 return atomic_long_read(&n->total_objects);
2137#else
2138 return 0;
2139#endif
2140}
2141
781b2ba6
PE
2142static noinline void
2143slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2144{
2145 int node;
2146
2147 printk(KERN_WARNING
2148 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2149 nid, gfpflags);
2150 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2151 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2152 s->size, oo_order(s->oo), oo_order(s->min));
2153
3b0efdfa 2154 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2155 printk(KERN_WARNING " %s debugging increased min order, use "
2156 "slub_debug=O to disable.\n", s->name);
2157
781b2ba6
PE
2158 for_each_online_node(node) {
2159 struct kmem_cache_node *n = get_node(s, node);
2160 unsigned long nr_slabs;
2161 unsigned long nr_objs;
2162 unsigned long nr_free;
2163
2164 if (!n)
2165 continue;
2166
26c02cf0
AB
2167 nr_free = count_partial(n, count_free);
2168 nr_slabs = node_nr_slabs(n);
2169 nr_objs = node_nr_objs(n);
781b2ba6
PE
2170
2171 printk(KERN_WARNING
2172 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2173 node, nr_slabs, nr_objs, nr_free);
2174 }
2175}
2176
497b66f2
CL
2177static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2178 int node, struct kmem_cache_cpu **pc)
2179{
6faa6833 2180 void *freelist;
188fd063
CL
2181 struct kmem_cache_cpu *c = *pc;
2182 struct page *page;
497b66f2 2183
188fd063 2184 freelist = get_partial(s, flags, node, c);
497b66f2 2185
188fd063
CL
2186 if (freelist)
2187 return freelist;
2188
2189 page = new_slab(s, flags, node);
497b66f2
CL
2190 if (page) {
2191 c = __this_cpu_ptr(s->cpu_slab);
2192 if (c->page)
2193 flush_slab(s, c);
2194
2195 /*
2196 * No other reference to the page yet so we can
2197 * muck around with it freely without cmpxchg
2198 */
6faa6833 2199 freelist = page->freelist;
497b66f2
CL
2200 page->freelist = NULL;
2201
2202 stat(s, ALLOC_SLAB);
497b66f2
CL
2203 c->page = page;
2204 *pc = c;
2205 } else
6faa6833 2206 freelist = NULL;
497b66f2 2207
6faa6833 2208 return freelist;
497b66f2
CL
2209}
2210
072bb0aa
MG
2211static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2212{
2213 if (unlikely(PageSlabPfmemalloc(page)))
2214 return gfp_pfmemalloc_allowed(gfpflags);
2215
2216 return true;
2217}
2218
213eeb9f 2219/*
d0e0ac97
CG
2220 * Check the page->freelist of a page and either transfer the freelist to the
2221 * per cpu freelist or deactivate the page.
213eeb9f
CL
2222 *
2223 * The page is still frozen if the return value is not NULL.
2224 *
2225 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2226 *
2227 * This function must be called with interrupt disabled.
213eeb9f
CL
2228 */
2229static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2230{
2231 struct page new;
2232 unsigned long counters;
2233 void *freelist;
2234
2235 do {
2236 freelist = page->freelist;
2237 counters = page->counters;
6faa6833 2238
213eeb9f 2239 new.counters = counters;
a0132ac0 2240 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2241
2242 new.inuse = page->objects;
2243 new.frozen = freelist != NULL;
2244
d24ac77f 2245 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2246 freelist, counters,
2247 NULL, new.counters,
2248 "get_freelist"));
2249
2250 return freelist;
2251}
2252
81819f0f 2253/*
894b8788
CL
2254 * Slow path. The lockless freelist is empty or we need to perform
2255 * debugging duties.
2256 *
894b8788
CL
2257 * Processing is still very fast if new objects have been freed to the
2258 * regular freelist. In that case we simply take over the regular freelist
2259 * as the lockless freelist and zap the regular freelist.
81819f0f 2260 *
894b8788
CL
2261 * If that is not working then we fall back to the partial lists. We take the
2262 * first element of the freelist as the object to allocate now and move the
2263 * rest of the freelist to the lockless freelist.
81819f0f 2264 *
894b8788 2265 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2266 * we need to allocate a new slab. This is the slowest path since it involves
2267 * a call to the page allocator and the setup of a new slab.
81819f0f 2268 */
ce71e27c
EGM
2269static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2270 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2271{
6faa6833 2272 void *freelist;
f6e7def7 2273 struct page *page;
8a5ec0ba
CL
2274 unsigned long flags;
2275
2276 local_irq_save(flags);
2277#ifdef CONFIG_PREEMPT
2278 /*
2279 * We may have been preempted and rescheduled on a different
2280 * cpu before disabling interrupts. Need to reload cpu area
2281 * pointer.
2282 */
2283 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2284#endif
81819f0f 2285
f6e7def7
CL
2286 page = c->page;
2287 if (!page)
81819f0f 2288 goto new_slab;
49e22585 2289redo:
6faa6833 2290
57d437d2 2291 if (unlikely(!node_match(page, node))) {
e36a2652 2292 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2293 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2294 c->page = NULL;
2295 c->freelist = NULL;
fc59c053
CL
2296 goto new_slab;
2297 }
6446faa2 2298
072bb0aa
MG
2299 /*
2300 * By rights, we should be searching for a slab page that was
2301 * PFMEMALLOC but right now, we are losing the pfmemalloc
2302 * information when the page leaves the per-cpu allocator
2303 */
2304 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2305 deactivate_slab(s, page, c->freelist);
2306 c->page = NULL;
2307 c->freelist = NULL;
2308 goto new_slab;
2309 }
2310
73736e03 2311 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2312 freelist = c->freelist;
2313 if (freelist)
73736e03 2314 goto load_freelist;
03e404af 2315
2cfb7455 2316 stat(s, ALLOC_SLOWPATH);
03e404af 2317
f6e7def7 2318 freelist = get_freelist(s, page);
6446faa2 2319
6faa6833 2320 if (!freelist) {
03e404af
CL
2321 c->page = NULL;
2322 stat(s, DEACTIVATE_BYPASS);
fc59c053 2323 goto new_slab;
03e404af 2324 }
6446faa2 2325
84e554e6 2326 stat(s, ALLOC_REFILL);
6446faa2 2327
894b8788 2328load_freelist:
507effea
CL
2329 /*
2330 * freelist is pointing to the list of objects to be used.
2331 * page is pointing to the page from which the objects are obtained.
2332 * That page must be frozen for per cpu allocations to work.
2333 */
a0132ac0 2334 VM_BUG_ON(!c->page->frozen);
6faa6833 2335 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2336 c->tid = next_tid(c->tid);
2337 local_irq_restore(flags);
6faa6833 2338 return freelist;
81819f0f 2339
81819f0f 2340new_slab:
2cfb7455 2341
49e22585 2342 if (c->partial) {
f6e7def7
CL
2343 page = c->page = c->partial;
2344 c->partial = page->next;
49e22585
CL
2345 stat(s, CPU_PARTIAL_ALLOC);
2346 c->freelist = NULL;
2347 goto redo;
81819f0f
CL
2348 }
2349
188fd063 2350 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2351
f4697436
CL
2352 if (unlikely(!freelist)) {
2353 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2354 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2355
f4697436
CL
2356 local_irq_restore(flags);
2357 return NULL;
81819f0f 2358 }
2cfb7455 2359
f6e7def7 2360 page = c->page;
5091b74a 2361 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2362 goto load_freelist;
2cfb7455 2363
497b66f2 2364 /* Only entered in the debug case */
d0e0ac97
CG
2365 if (kmem_cache_debug(s) &&
2366 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2367 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2368
f6e7def7 2369 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2370 c->page = NULL;
2371 c->freelist = NULL;
a71ae47a 2372 local_irq_restore(flags);
6faa6833 2373 return freelist;
894b8788
CL
2374}
2375
2376/*
2377 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2378 * have the fastpath folded into their functions. So no function call
2379 * overhead for requests that can be satisfied on the fastpath.
2380 *
2381 * The fastpath works by first checking if the lockless freelist can be used.
2382 * If not then __slab_alloc is called for slow processing.
2383 *
2384 * Otherwise we can simply pick the next object from the lockless free list.
2385 */
2b847c3c 2386static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2387 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2388{
894b8788 2389 void **object;
dfb4f096 2390 struct kmem_cache_cpu *c;
57d437d2 2391 struct page *page;
8a5ec0ba 2392 unsigned long tid;
1f84260c 2393
c016b0bd 2394 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2395 return NULL;
1f84260c 2396
d79923fa 2397 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2398redo:
8a5ec0ba
CL
2399 /*
2400 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2401 * enabled. We may switch back and forth between cpus while
2402 * reading from one cpu area. That does not matter as long
2403 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2404 *
2405 * Preemption is disabled for the retrieval of the tid because that
2406 * must occur from the current processor. We cannot allow rescheduling
2407 * on a different processor between the determination of the pointer
2408 * and the retrieval of the tid.
8a5ec0ba 2409 */
7cccd80b 2410 preempt_disable();
9dfc6e68 2411 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2412
8a5ec0ba
CL
2413 /*
2414 * The transaction ids are globally unique per cpu and per operation on
2415 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2416 * occurs on the right processor and that there was no operation on the
2417 * linked list in between.
2418 */
2419 tid = c->tid;
7cccd80b 2420 preempt_enable();
8a5ec0ba 2421
9dfc6e68 2422 object = c->freelist;
57d437d2 2423 page = c->page;
ac6434e6 2424 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2425 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2426
2427 else {
0ad9500e
ED
2428 void *next_object = get_freepointer_safe(s, object);
2429
8a5ec0ba 2430 /*
25985edc 2431 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2432 * operation and if we are on the right processor.
2433 *
d0e0ac97
CG
2434 * The cmpxchg does the following atomically (without lock
2435 * semantics!)
8a5ec0ba
CL
2436 * 1. Relocate first pointer to the current per cpu area.
2437 * 2. Verify that tid and freelist have not been changed
2438 * 3. If they were not changed replace tid and freelist
2439 *
d0e0ac97
CG
2440 * Since this is without lock semantics the protection is only
2441 * against code executing on this cpu *not* from access by
2442 * other cpus.
8a5ec0ba 2443 */
933393f5 2444 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2445 s->cpu_slab->freelist, s->cpu_slab->tid,
2446 object, tid,
0ad9500e 2447 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2448
2449 note_cmpxchg_failure("slab_alloc", s, tid);
2450 goto redo;
2451 }
0ad9500e 2452 prefetch_freepointer(s, next_object);
84e554e6 2453 stat(s, ALLOC_FASTPATH);
894b8788 2454 }
8a5ec0ba 2455
74e2134f 2456 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2457 memset(object, 0, s->object_size);
d07dbea4 2458
c016b0bd 2459 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2460
894b8788 2461 return object;
81819f0f
CL
2462}
2463
2b847c3c
EG
2464static __always_inline void *slab_alloc(struct kmem_cache *s,
2465 gfp_t gfpflags, unsigned long addr)
2466{
2467 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2468}
2469
81819f0f
CL
2470void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2471{
2b847c3c 2472 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2473
d0e0ac97
CG
2474 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2475 s->size, gfpflags);
5b882be4
EGM
2476
2477 return ret;
81819f0f
CL
2478}
2479EXPORT_SYMBOL(kmem_cache_alloc);
2480
0f24f128 2481#ifdef CONFIG_TRACING
4a92379b
RK
2482void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2483{
2b847c3c 2484 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2485 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2486 return ret;
2487}
2488EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2489#endif
2490
81819f0f
CL
2491#ifdef CONFIG_NUMA
2492void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2493{
2b847c3c 2494 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2495
ca2b84cb 2496 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2497 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2498
2499 return ret;
81819f0f
CL
2500}
2501EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2502
0f24f128 2503#ifdef CONFIG_TRACING
4a92379b 2504void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2505 gfp_t gfpflags,
4a92379b 2506 int node, size_t size)
5b882be4 2507{
2b847c3c 2508 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2509
2510 trace_kmalloc_node(_RET_IP_, ret,
2511 size, s->size, gfpflags, node);
2512 return ret;
5b882be4 2513}
4a92379b 2514EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2515#endif
5d1f57e4 2516#endif
5b882be4 2517
81819f0f 2518/*
894b8788
CL
2519 * Slow patch handling. This may still be called frequently since objects
2520 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2521 *
894b8788
CL
2522 * So we still attempt to reduce cache line usage. Just take the slab
2523 * lock and free the item. If there is no additional partial page
2524 * handling required then we can return immediately.
81819f0f 2525 */
894b8788 2526static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2527 void *x, unsigned long addr)
81819f0f
CL
2528{
2529 void *prior;
2530 void **object = (void *)x;
2cfb7455 2531 int was_frozen;
2cfb7455
CL
2532 struct page new;
2533 unsigned long counters;
2534 struct kmem_cache_node *n = NULL;
61728d1e 2535 unsigned long uninitialized_var(flags);
81819f0f 2536
8a5ec0ba 2537 stat(s, FREE_SLOWPATH);
81819f0f 2538
19c7ff9e
CL
2539 if (kmem_cache_debug(s) &&
2540 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2541 return;
6446faa2 2542
2cfb7455 2543 do {
837d678d
JK
2544 if (unlikely(n)) {
2545 spin_unlock_irqrestore(&n->list_lock, flags);
2546 n = NULL;
2547 }
2cfb7455
CL
2548 prior = page->freelist;
2549 counters = page->counters;
2550 set_freepointer(s, object, prior);
2551 new.counters = counters;
2552 was_frozen = new.frozen;
2553 new.inuse--;
837d678d 2554 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2555
c65c1877 2556 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2557
2558 /*
d0e0ac97
CG
2559 * Slab was on no list before and will be
2560 * partially empty
2561 * We can defer the list move and instead
2562 * freeze it.
49e22585
CL
2563 */
2564 new.frozen = 1;
2565
c65c1877 2566 } else { /* Needs to be taken off a list */
49e22585
CL
2567
2568 n = get_node(s, page_to_nid(page));
2569 /*
2570 * Speculatively acquire the list_lock.
2571 * If the cmpxchg does not succeed then we may
2572 * drop the list_lock without any processing.
2573 *
2574 * Otherwise the list_lock will synchronize with
2575 * other processors updating the list of slabs.
2576 */
2577 spin_lock_irqsave(&n->list_lock, flags);
2578
2579 }
2cfb7455 2580 }
81819f0f 2581
2cfb7455
CL
2582 } while (!cmpxchg_double_slab(s, page,
2583 prior, counters,
2584 object, new.counters,
2585 "__slab_free"));
81819f0f 2586
2cfb7455 2587 if (likely(!n)) {
49e22585
CL
2588
2589 /*
2590 * If we just froze the page then put it onto the
2591 * per cpu partial list.
2592 */
8028dcea 2593 if (new.frozen && !was_frozen) {
49e22585 2594 put_cpu_partial(s, page, 1);
8028dcea
AS
2595 stat(s, CPU_PARTIAL_FREE);
2596 }
49e22585 2597 /*
2cfb7455
CL
2598 * The list lock was not taken therefore no list
2599 * activity can be necessary.
2600 */
2601 if (was_frozen)
2602 stat(s, FREE_FROZEN);
80f08c19 2603 return;
2cfb7455 2604 }
81819f0f 2605
837d678d
JK
2606 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2607 goto slab_empty;
2608
81819f0f 2609 /*
837d678d
JK
2610 * Objects left in the slab. If it was not on the partial list before
2611 * then add it.
81819f0f 2612 */
345c905d
JK
2613 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2614 if (kmem_cache_debug(s))
c65c1877 2615 remove_full(s, n, page);
837d678d
JK
2616 add_partial(n, page, DEACTIVATE_TO_TAIL);
2617 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2618 }
80f08c19 2619 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2620 return;
2621
2622slab_empty:
a973e9dd 2623 if (prior) {
81819f0f 2624 /*
6fbabb20 2625 * Slab on the partial list.
81819f0f 2626 */
5cc6eee8 2627 remove_partial(n, page);
84e554e6 2628 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2629 } else {
6fbabb20 2630 /* Slab must be on the full list */
c65c1877
PZ
2631 remove_full(s, n, page);
2632 }
2cfb7455 2633
80f08c19 2634 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2635 stat(s, FREE_SLAB);
81819f0f 2636 discard_slab(s, page);
81819f0f
CL
2637}
2638
894b8788
CL
2639/*
2640 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2641 * can perform fastpath freeing without additional function calls.
2642 *
2643 * The fastpath is only possible if we are freeing to the current cpu slab
2644 * of this processor. This typically the case if we have just allocated
2645 * the item before.
2646 *
2647 * If fastpath is not possible then fall back to __slab_free where we deal
2648 * with all sorts of special processing.
2649 */
06428780 2650static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2651 struct page *page, void *x, unsigned long addr)
894b8788
CL
2652{
2653 void **object = (void *)x;
dfb4f096 2654 struct kmem_cache_cpu *c;
8a5ec0ba 2655 unsigned long tid;
1f84260c 2656
c016b0bd
CL
2657 slab_free_hook(s, x);
2658
8a5ec0ba
CL
2659redo:
2660 /*
2661 * Determine the currently cpus per cpu slab.
2662 * The cpu may change afterward. However that does not matter since
2663 * data is retrieved via this pointer. If we are on the same cpu
2664 * during the cmpxchg then the free will succedd.
2665 */
7cccd80b 2666 preempt_disable();
9dfc6e68 2667 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2668
8a5ec0ba 2669 tid = c->tid;
7cccd80b 2670 preempt_enable();
c016b0bd 2671
442b06bc 2672 if (likely(page == c->page)) {
ff12059e 2673 set_freepointer(s, object, c->freelist);
8a5ec0ba 2674
933393f5 2675 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2676 s->cpu_slab->freelist, s->cpu_slab->tid,
2677 c->freelist, tid,
2678 object, next_tid(tid)))) {
2679
2680 note_cmpxchg_failure("slab_free", s, tid);
2681 goto redo;
2682 }
84e554e6 2683 stat(s, FREE_FASTPATH);
894b8788 2684 } else
ff12059e 2685 __slab_free(s, page, x, addr);
894b8788 2686
894b8788
CL
2687}
2688
81819f0f
CL
2689void kmem_cache_free(struct kmem_cache *s, void *x)
2690{
b9ce5ef4
GC
2691 s = cache_from_obj(s, x);
2692 if (!s)
79576102 2693 return;
b9ce5ef4 2694 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2695 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2696}
2697EXPORT_SYMBOL(kmem_cache_free);
2698
81819f0f 2699/*
672bba3a
CL
2700 * Object placement in a slab is made very easy because we always start at
2701 * offset 0. If we tune the size of the object to the alignment then we can
2702 * get the required alignment by putting one properly sized object after
2703 * another.
81819f0f
CL
2704 *
2705 * Notice that the allocation order determines the sizes of the per cpu
2706 * caches. Each processor has always one slab available for allocations.
2707 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2708 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2709 * locking overhead.
81819f0f
CL
2710 */
2711
2712/*
2713 * Mininum / Maximum order of slab pages. This influences locking overhead
2714 * and slab fragmentation. A higher order reduces the number of partial slabs
2715 * and increases the number of allocations possible without having to
2716 * take the list_lock.
2717 */
2718static int slub_min_order;
114e9e89 2719static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2720static int slub_min_objects;
81819f0f
CL
2721
2722/*
2723 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2724 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2725 */
2726static int slub_nomerge;
2727
81819f0f
CL
2728/*
2729 * Calculate the order of allocation given an slab object size.
2730 *
672bba3a
CL
2731 * The order of allocation has significant impact on performance and other
2732 * system components. Generally order 0 allocations should be preferred since
2733 * order 0 does not cause fragmentation in the page allocator. Larger objects
2734 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2735 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2736 * would be wasted.
2737 *
2738 * In order to reach satisfactory performance we must ensure that a minimum
2739 * number of objects is in one slab. Otherwise we may generate too much
2740 * activity on the partial lists which requires taking the list_lock. This is
2741 * less a concern for large slabs though which are rarely used.
81819f0f 2742 *
672bba3a
CL
2743 * slub_max_order specifies the order where we begin to stop considering the
2744 * number of objects in a slab as critical. If we reach slub_max_order then
2745 * we try to keep the page order as low as possible. So we accept more waste
2746 * of space in favor of a small page order.
81819f0f 2747 *
672bba3a
CL
2748 * Higher order allocations also allow the placement of more objects in a
2749 * slab and thereby reduce object handling overhead. If the user has
2750 * requested a higher mininum order then we start with that one instead of
2751 * the smallest order which will fit the object.
81819f0f 2752 */
5e6d444e 2753static inline int slab_order(int size, int min_objects,
ab9a0f19 2754 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2755{
2756 int order;
2757 int rem;
6300ea75 2758 int min_order = slub_min_order;
81819f0f 2759
ab9a0f19 2760 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2761 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2762
6300ea75 2763 for (order = max(min_order,
5e6d444e
CL
2764 fls(min_objects * size - 1) - PAGE_SHIFT);
2765 order <= max_order; order++) {
81819f0f 2766
5e6d444e 2767 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2768
ab9a0f19 2769 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2770 continue;
2771
ab9a0f19 2772 rem = (slab_size - reserved) % size;
81819f0f 2773
5e6d444e 2774 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2775 break;
2776
2777 }
672bba3a 2778
81819f0f
CL
2779 return order;
2780}
2781
ab9a0f19 2782static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2783{
2784 int order;
2785 int min_objects;
2786 int fraction;
e8120ff1 2787 int max_objects;
5e6d444e
CL
2788
2789 /*
2790 * Attempt to find best configuration for a slab. This
2791 * works by first attempting to generate a layout with
2792 * the best configuration and backing off gradually.
2793 *
2794 * First we reduce the acceptable waste in a slab. Then
2795 * we reduce the minimum objects required in a slab.
2796 */
2797 min_objects = slub_min_objects;
9b2cd506
CL
2798 if (!min_objects)
2799 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2800 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2801 min_objects = min(min_objects, max_objects);
2802
5e6d444e 2803 while (min_objects > 1) {
c124f5b5 2804 fraction = 16;
5e6d444e
CL
2805 while (fraction >= 4) {
2806 order = slab_order(size, min_objects,
ab9a0f19 2807 slub_max_order, fraction, reserved);
5e6d444e
CL
2808 if (order <= slub_max_order)
2809 return order;
2810 fraction /= 2;
2811 }
5086c389 2812 min_objects--;
5e6d444e
CL
2813 }
2814
2815 /*
2816 * We were unable to place multiple objects in a slab. Now
2817 * lets see if we can place a single object there.
2818 */
ab9a0f19 2819 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2820 if (order <= slub_max_order)
2821 return order;
2822
2823 /*
2824 * Doh this slab cannot be placed using slub_max_order.
2825 */
ab9a0f19 2826 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2827 if (order < MAX_ORDER)
5e6d444e
CL
2828 return order;
2829 return -ENOSYS;
2830}
2831
5595cffc 2832static void
4053497d 2833init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2834{
2835 n->nr_partial = 0;
81819f0f
CL
2836 spin_lock_init(&n->list_lock);
2837 INIT_LIST_HEAD(&n->partial);
8ab1372f 2838#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2839 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2840 atomic_long_set(&n->total_objects, 0);
643b1138 2841 INIT_LIST_HEAD(&n->full);
8ab1372f 2842#endif
81819f0f
CL
2843}
2844
55136592 2845static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2846{
6c182dc0 2847 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2848 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2849
8a5ec0ba 2850 /*
d4d84fef
CM
2851 * Must align to double word boundary for the double cmpxchg
2852 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2853 */
d4d84fef
CM
2854 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2855 2 * sizeof(void *));
8a5ec0ba
CL
2856
2857 if (!s->cpu_slab)
2858 return 0;
2859
2860 init_kmem_cache_cpus(s);
4c93c355 2861
8a5ec0ba 2862 return 1;
4c93c355 2863}
4c93c355 2864
51df1142
CL
2865static struct kmem_cache *kmem_cache_node;
2866
81819f0f
CL
2867/*
2868 * No kmalloc_node yet so do it by hand. We know that this is the first
2869 * slab on the node for this slabcache. There are no concurrent accesses
2870 * possible.
2871 *
721ae22a
ZYW
2872 * Note that this function only works on the kmem_cache_node
2873 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2874 * memory on a fresh node that has no slab structures yet.
81819f0f 2875 */
55136592 2876static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2877{
2878 struct page *page;
2879 struct kmem_cache_node *n;
2880
51df1142 2881 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2882
51df1142 2883 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2884
2885 BUG_ON(!page);
a2f92ee7
CL
2886 if (page_to_nid(page) != node) {
2887 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2888 "node %d\n", node);
2889 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2890 "in order to be able to continue\n");
2891 }
2892
81819f0f
CL
2893 n = page->freelist;
2894 BUG_ON(!n);
51df1142 2895 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2896 page->inuse = 1;
8cb0a506 2897 page->frozen = 0;
51df1142 2898 kmem_cache_node->node[node] = n;
8ab1372f 2899#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2900 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2901 init_tracking(kmem_cache_node, n);
8ab1372f 2902#endif
4053497d 2903 init_kmem_cache_node(n);
51df1142 2904 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2905
67b6c900
DH
2906 /*
2907 * the lock is for lockdep's sake, not for any actual
2908 * race protection
2909 */
2910 spin_lock(&n->list_lock);
136333d1 2911 add_partial(n, page, DEACTIVATE_TO_HEAD);
67b6c900 2912 spin_unlock(&n->list_lock);
81819f0f
CL
2913}
2914
2915static void free_kmem_cache_nodes(struct kmem_cache *s)
2916{
2917 int node;
2918
f64dc58c 2919 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2920 struct kmem_cache_node *n = s->node[node];
51df1142 2921
73367bd8 2922 if (n)
51df1142
CL
2923 kmem_cache_free(kmem_cache_node, n);
2924
81819f0f
CL
2925 s->node[node] = NULL;
2926 }
2927}
2928
55136592 2929static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2930{
2931 int node;
81819f0f 2932
f64dc58c 2933 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2934 struct kmem_cache_node *n;
2935
73367bd8 2936 if (slab_state == DOWN) {
55136592 2937 early_kmem_cache_node_alloc(node);
73367bd8
AD
2938 continue;
2939 }
51df1142 2940 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2941 GFP_KERNEL, node);
81819f0f 2942
73367bd8
AD
2943 if (!n) {
2944 free_kmem_cache_nodes(s);
2945 return 0;
81819f0f 2946 }
73367bd8 2947
81819f0f 2948 s->node[node] = n;
4053497d 2949 init_kmem_cache_node(n);
81819f0f
CL
2950 }
2951 return 1;
2952}
81819f0f 2953
c0bdb232 2954static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2955{
2956 if (min < MIN_PARTIAL)
2957 min = MIN_PARTIAL;
2958 else if (min > MAX_PARTIAL)
2959 min = MAX_PARTIAL;
2960 s->min_partial = min;
2961}
2962
81819f0f
CL
2963/*
2964 * calculate_sizes() determines the order and the distribution of data within
2965 * a slab object.
2966 */
06b285dc 2967static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2968{
2969 unsigned long flags = s->flags;
3b0efdfa 2970 unsigned long size = s->object_size;
834f3d11 2971 int order;
81819f0f 2972
d8b42bf5
CL
2973 /*
2974 * Round up object size to the next word boundary. We can only
2975 * place the free pointer at word boundaries and this determines
2976 * the possible location of the free pointer.
2977 */
2978 size = ALIGN(size, sizeof(void *));
2979
2980#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2981 /*
2982 * Determine if we can poison the object itself. If the user of
2983 * the slab may touch the object after free or before allocation
2984 * then we should never poison the object itself.
2985 */
2986 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2987 !s->ctor)
81819f0f
CL
2988 s->flags |= __OBJECT_POISON;
2989 else
2990 s->flags &= ~__OBJECT_POISON;
2991
81819f0f
CL
2992
2993 /*
672bba3a 2994 * If we are Redzoning then check if there is some space between the
81819f0f 2995 * end of the object and the free pointer. If not then add an
672bba3a 2996 * additional word to have some bytes to store Redzone information.
81819f0f 2997 */
3b0efdfa 2998 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2999 size += sizeof(void *);
41ecc55b 3000#endif
81819f0f
CL
3001
3002 /*
672bba3a
CL
3003 * With that we have determined the number of bytes in actual use
3004 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3005 */
3006 s->inuse = size;
3007
3008 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3009 s->ctor)) {
81819f0f
CL
3010 /*
3011 * Relocate free pointer after the object if it is not
3012 * permitted to overwrite the first word of the object on
3013 * kmem_cache_free.
3014 *
3015 * This is the case if we do RCU, have a constructor or
3016 * destructor or are poisoning the objects.
3017 */
3018 s->offset = size;
3019 size += sizeof(void *);
3020 }
3021
c12b3c62 3022#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3023 if (flags & SLAB_STORE_USER)
3024 /*
3025 * Need to store information about allocs and frees after
3026 * the object.
3027 */
3028 size += 2 * sizeof(struct track);
3029
be7b3fbc 3030 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3031 /*
3032 * Add some empty padding so that we can catch
3033 * overwrites from earlier objects rather than let
3034 * tracking information or the free pointer be
0211a9c8 3035 * corrupted if a user writes before the start
81819f0f
CL
3036 * of the object.
3037 */
3038 size += sizeof(void *);
41ecc55b 3039#endif
672bba3a 3040
81819f0f
CL
3041 /*
3042 * SLUB stores one object immediately after another beginning from
3043 * offset 0. In order to align the objects we have to simply size
3044 * each object to conform to the alignment.
3045 */
45906855 3046 size = ALIGN(size, s->align);
81819f0f 3047 s->size = size;
06b285dc
CL
3048 if (forced_order >= 0)
3049 order = forced_order;
3050 else
ab9a0f19 3051 order = calculate_order(size, s->reserved);
81819f0f 3052
834f3d11 3053 if (order < 0)
81819f0f
CL
3054 return 0;
3055
b7a49f0d 3056 s->allocflags = 0;
834f3d11 3057 if (order)
b7a49f0d
CL
3058 s->allocflags |= __GFP_COMP;
3059
3060 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3061 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3062
3063 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3064 s->allocflags |= __GFP_RECLAIMABLE;
3065
81819f0f
CL
3066 /*
3067 * Determine the number of objects per slab
3068 */
ab9a0f19
LJ
3069 s->oo = oo_make(order, size, s->reserved);
3070 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3071 if (oo_objects(s->oo) > oo_objects(s->max))
3072 s->max = s->oo;
81819f0f 3073
834f3d11 3074 return !!oo_objects(s->oo);
81819f0f
CL
3075}
3076
8a13a4cc 3077static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3078{
8a13a4cc 3079 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3080 s->reserved = 0;
81819f0f 3081
da9a638c
LJ
3082 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3083 s->reserved = sizeof(struct rcu_head);
81819f0f 3084
06b285dc 3085 if (!calculate_sizes(s, -1))
81819f0f 3086 goto error;
3de47213
DR
3087 if (disable_higher_order_debug) {
3088 /*
3089 * Disable debugging flags that store metadata if the min slab
3090 * order increased.
3091 */
3b0efdfa 3092 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3093 s->flags &= ~DEBUG_METADATA_FLAGS;
3094 s->offset = 0;
3095 if (!calculate_sizes(s, -1))
3096 goto error;
3097 }
3098 }
81819f0f 3099
2565409f
HC
3100#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3101 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3102 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3103 /* Enable fast mode */
3104 s->flags |= __CMPXCHG_DOUBLE;
3105#endif
3106
3b89d7d8
DR
3107 /*
3108 * The larger the object size is, the more pages we want on the partial
3109 * list to avoid pounding the page allocator excessively.
3110 */
49e22585
CL
3111 set_min_partial(s, ilog2(s->size) / 2);
3112
3113 /*
3114 * cpu_partial determined the maximum number of objects kept in the
3115 * per cpu partial lists of a processor.
3116 *
3117 * Per cpu partial lists mainly contain slabs that just have one
3118 * object freed. If they are used for allocation then they can be
3119 * filled up again with minimal effort. The slab will never hit the
3120 * per node partial lists and therefore no locking will be required.
3121 *
3122 * This setting also determines
3123 *
3124 * A) The number of objects from per cpu partial slabs dumped to the
3125 * per node list when we reach the limit.
9f264904 3126 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3127 * per node list when we run out of per cpu objects. We only fetch
3128 * 50% to keep some capacity around for frees.
49e22585 3129 */
345c905d 3130 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3131 s->cpu_partial = 0;
3132 else if (s->size >= PAGE_SIZE)
49e22585
CL
3133 s->cpu_partial = 2;
3134 else if (s->size >= 1024)
3135 s->cpu_partial = 6;
3136 else if (s->size >= 256)
3137 s->cpu_partial = 13;
3138 else
3139 s->cpu_partial = 30;
3140
81819f0f 3141#ifdef CONFIG_NUMA
e2cb96b7 3142 s->remote_node_defrag_ratio = 1000;
81819f0f 3143#endif
55136592 3144 if (!init_kmem_cache_nodes(s))
dfb4f096 3145 goto error;
81819f0f 3146
55136592 3147 if (alloc_kmem_cache_cpus(s))
278b1bb1 3148 return 0;
ff12059e 3149
4c93c355 3150 free_kmem_cache_nodes(s);
81819f0f
CL
3151error:
3152 if (flags & SLAB_PANIC)
3153 panic("Cannot create slab %s size=%lu realsize=%u "
3154 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3155 s->name, (unsigned long)s->size, s->size,
3156 oo_order(s->oo), s->offset, flags);
278b1bb1 3157 return -EINVAL;
81819f0f 3158}
81819f0f 3159
33b12c38
CL
3160static void list_slab_objects(struct kmem_cache *s, struct page *page,
3161 const char *text)
3162{
3163#ifdef CONFIG_SLUB_DEBUG
3164 void *addr = page_address(page);
3165 void *p;
a5dd5c11
NK
3166 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3167 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3168 if (!map)
3169 return;
945cf2b6 3170 slab_err(s, page, text, s->name);
33b12c38 3171 slab_lock(page);
33b12c38 3172
5f80b13a 3173 get_map(s, page, map);
33b12c38
CL
3174 for_each_object(p, s, addr, page->objects) {
3175
3176 if (!test_bit(slab_index(p, s, addr), map)) {
3177 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3178 p, p - addr);
3179 print_tracking(s, p);
3180 }
3181 }
3182 slab_unlock(page);
bbd7d57b 3183 kfree(map);
33b12c38
CL
3184#endif
3185}
3186
81819f0f 3187/*
599870b1 3188 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3189 * This is called from kmem_cache_close(). We must be the last thread
3190 * using the cache and therefore we do not need to lock anymore.
81819f0f 3191 */
599870b1 3192static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3193{
81819f0f
CL
3194 struct page *page, *h;
3195
33b12c38 3196 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3197 if (!page->inuse) {
5cc6eee8 3198 remove_partial(n, page);
81819f0f 3199 discard_slab(s, page);
33b12c38
CL
3200 } else {
3201 list_slab_objects(s, page,
945cf2b6 3202 "Objects remaining in %s on kmem_cache_close()");
599870b1 3203 }
33b12c38 3204 }
81819f0f
CL
3205}
3206
3207/*
672bba3a 3208 * Release all resources used by a slab cache.
81819f0f 3209 */
0c710013 3210static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3211{
3212 int node;
3213
3214 flush_all(s);
81819f0f 3215 /* Attempt to free all objects */
f64dc58c 3216 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3217 struct kmem_cache_node *n = get_node(s, node);
3218
599870b1
CL
3219 free_partial(s, n);
3220 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3221 return 1;
3222 }
945cf2b6 3223 free_percpu(s->cpu_slab);
81819f0f
CL
3224 free_kmem_cache_nodes(s);
3225 return 0;
3226}
3227
945cf2b6 3228int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3229{
12c3667f 3230 int rc = kmem_cache_close(s);
945cf2b6 3231
5413dfba
GC
3232 if (!rc) {
3233 /*
3234 * We do the same lock strategy around sysfs_slab_add, see
3235 * __kmem_cache_create. Because this is pretty much the last
3236 * operation we do and the lock will be released shortly after
3237 * that in slab_common.c, we could just move sysfs_slab_remove
3238 * to a later point in common code. We should do that when we
3239 * have a common sysfs framework for all allocators.
3240 */
3241 mutex_unlock(&slab_mutex);
81819f0f 3242 sysfs_slab_remove(s);
5413dfba
GC
3243 mutex_lock(&slab_mutex);
3244 }
12c3667f
CL
3245
3246 return rc;
81819f0f 3247}
81819f0f
CL
3248
3249/********************************************************************
3250 * Kmalloc subsystem
3251 *******************************************************************/
3252
81819f0f
CL
3253static int __init setup_slub_min_order(char *str)
3254{
06428780 3255 get_option(&str, &slub_min_order);
81819f0f
CL
3256
3257 return 1;
3258}
3259
3260__setup("slub_min_order=", setup_slub_min_order);
3261
3262static int __init setup_slub_max_order(char *str)
3263{
06428780 3264 get_option(&str, &slub_max_order);
818cf590 3265 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3266
3267 return 1;
3268}
3269
3270__setup("slub_max_order=", setup_slub_max_order);
3271
3272static int __init setup_slub_min_objects(char *str)
3273{
06428780 3274 get_option(&str, &slub_min_objects);
81819f0f
CL
3275
3276 return 1;
3277}
3278
3279__setup("slub_min_objects=", setup_slub_min_objects);
3280
3281static int __init setup_slub_nomerge(char *str)
3282{
3283 slub_nomerge = 1;
3284 return 1;
3285}
3286
3287__setup("slub_nomerge", setup_slub_nomerge);
3288
81819f0f
CL
3289void *__kmalloc(size_t size, gfp_t flags)
3290{
aadb4bc4 3291 struct kmem_cache *s;
5b882be4 3292 void *ret;
81819f0f 3293
95a05b42 3294 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3295 return kmalloc_large(size, flags);
aadb4bc4 3296
2c59dd65 3297 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3298
3299 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3300 return s;
3301
2b847c3c 3302 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3303
ca2b84cb 3304 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3305
3306 return ret;
81819f0f
CL
3307}
3308EXPORT_SYMBOL(__kmalloc);
3309
5d1f57e4 3310#ifdef CONFIG_NUMA
f619cfe1
CL
3311static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3312{
b1eeab67 3313 struct page *page;
e4f7c0b4 3314 void *ptr = NULL;
f619cfe1 3315
d79923fa 3316 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3317 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3318 if (page)
e4f7c0b4
CM
3319 ptr = page_address(page);
3320
d56791b3 3321 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3322 return ptr;
f619cfe1
CL
3323}
3324
81819f0f
CL
3325void *__kmalloc_node(size_t size, gfp_t flags, int node)
3326{
aadb4bc4 3327 struct kmem_cache *s;
5b882be4 3328 void *ret;
81819f0f 3329
95a05b42 3330 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3331 ret = kmalloc_large_node(size, flags, node);
3332
ca2b84cb
EGM
3333 trace_kmalloc_node(_RET_IP_, ret,
3334 size, PAGE_SIZE << get_order(size),
3335 flags, node);
5b882be4
EGM
3336
3337 return ret;
3338 }
aadb4bc4 3339
2c59dd65 3340 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3341
3342 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3343 return s;
3344
2b847c3c 3345 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3346
ca2b84cb 3347 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3348
3349 return ret;
81819f0f
CL
3350}
3351EXPORT_SYMBOL(__kmalloc_node);
3352#endif
3353
3354size_t ksize(const void *object)
3355{
272c1d21 3356 struct page *page;
81819f0f 3357
ef8b4520 3358 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3359 return 0;
3360
294a80a8 3361 page = virt_to_head_page(object);
294a80a8 3362
76994412
PE
3363 if (unlikely(!PageSlab(page))) {
3364 WARN_ON(!PageCompound(page));
294a80a8 3365 return PAGE_SIZE << compound_order(page);
76994412 3366 }
81819f0f 3367
1b4f59e3 3368 return slab_ksize(page->slab_cache);
81819f0f 3369}
b1aabecd 3370EXPORT_SYMBOL(ksize);
81819f0f
CL
3371
3372void kfree(const void *x)
3373{
81819f0f 3374 struct page *page;
5bb983b0 3375 void *object = (void *)x;
81819f0f 3376
2121db74
PE
3377 trace_kfree(_RET_IP_, x);
3378
2408c550 3379 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3380 return;
3381
b49af68f 3382 page = virt_to_head_page(x);
aadb4bc4 3383 if (unlikely(!PageSlab(page))) {
0937502a 3384 BUG_ON(!PageCompound(page));
d56791b3 3385 kfree_hook(x);
d79923fa 3386 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3387 return;
3388 }
1b4f59e3 3389 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3390}
3391EXPORT_SYMBOL(kfree);
3392
2086d26a 3393/*
672bba3a
CL
3394 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3395 * the remaining slabs by the number of items in use. The slabs with the
3396 * most items in use come first. New allocations will then fill those up
3397 * and thus they can be removed from the partial lists.
3398 *
3399 * The slabs with the least items are placed last. This results in them
3400 * being allocated from last increasing the chance that the last objects
3401 * are freed in them.
2086d26a
CL
3402 */
3403int kmem_cache_shrink(struct kmem_cache *s)
3404{
3405 int node;
3406 int i;
3407 struct kmem_cache_node *n;
3408 struct page *page;
3409 struct page *t;
205ab99d 3410 int objects = oo_objects(s->max);
2086d26a 3411 struct list_head *slabs_by_inuse =
834f3d11 3412 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3413 unsigned long flags;
3414
3415 if (!slabs_by_inuse)
3416 return -ENOMEM;
3417
3418 flush_all(s);
f64dc58c 3419 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3420 n = get_node(s, node);
3421
3422 if (!n->nr_partial)
3423 continue;
3424
834f3d11 3425 for (i = 0; i < objects; i++)
2086d26a
CL
3426 INIT_LIST_HEAD(slabs_by_inuse + i);
3427
3428 spin_lock_irqsave(&n->list_lock, flags);
3429
3430 /*
672bba3a 3431 * Build lists indexed by the items in use in each slab.
2086d26a 3432 *
672bba3a
CL
3433 * Note that concurrent frees may occur while we hold the
3434 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3435 */
3436 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3437 list_move(&page->lru, slabs_by_inuse + page->inuse);
3438 if (!page->inuse)
3439 n->nr_partial--;
2086d26a
CL
3440 }
3441
2086d26a 3442 /*
672bba3a
CL
3443 * Rebuild the partial list with the slabs filled up most
3444 * first and the least used slabs at the end.
2086d26a 3445 */
69cb8e6b 3446 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3447 list_splice(slabs_by_inuse + i, n->partial.prev);
3448
2086d26a 3449 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3450
3451 /* Release empty slabs */
3452 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3453 discard_slab(s, page);
2086d26a
CL
3454 }
3455
3456 kfree(slabs_by_inuse);
3457 return 0;
3458}
3459EXPORT_SYMBOL(kmem_cache_shrink);
3460
b9049e23
YG
3461static int slab_mem_going_offline_callback(void *arg)
3462{
3463 struct kmem_cache *s;
3464
18004c5d 3465 mutex_lock(&slab_mutex);
b9049e23
YG
3466 list_for_each_entry(s, &slab_caches, list)
3467 kmem_cache_shrink(s);
18004c5d 3468 mutex_unlock(&slab_mutex);
b9049e23
YG
3469
3470 return 0;
3471}
3472
3473static void slab_mem_offline_callback(void *arg)
3474{
3475 struct kmem_cache_node *n;
3476 struct kmem_cache *s;
3477 struct memory_notify *marg = arg;
3478 int offline_node;
3479
b9d5ab25 3480 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3481
3482 /*
3483 * If the node still has available memory. we need kmem_cache_node
3484 * for it yet.
3485 */
3486 if (offline_node < 0)
3487 return;
3488
18004c5d 3489 mutex_lock(&slab_mutex);
b9049e23
YG
3490 list_for_each_entry(s, &slab_caches, list) {
3491 n = get_node(s, offline_node);
3492 if (n) {
3493 /*
3494 * if n->nr_slabs > 0, slabs still exist on the node
3495 * that is going down. We were unable to free them,
c9404c9c 3496 * and offline_pages() function shouldn't call this
b9049e23
YG
3497 * callback. So, we must fail.
3498 */
0f389ec6 3499 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3500
3501 s->node[offline_node] = NULL;
8de66a0c 3502 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3503 }
3504 }
18004c5d 3505 mutex_unlock(&slab_mutex);
b9049e23
YG
3506}
3507
3508static int slab_mem_going_online_callback(void *arg)
3509{
3510 struct kmem_cache_node *n;
3511 struct kmem_cache *s;
3512 struct memory_notify *marg = arg;
b9d5ab25 3513 int nid = marg->status_change_nid_normal;
b9049e23
YG
3514 int ret = 0;
3515
3516 /*
3517 * If the node's memory is already available, then kmem_cache_node is
3518 * already created. Nothing to do.
3519 */
3520 if (nid < 0)
3521 return 0;
3522
3523 /*
0121c619 3524 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3525 * allocate a kmem_cache_node structure in order to bring the node
3526 * online.
3527 */
18004c5d 3528 mutex_lock(&slab_mutex);
b9049e23
YG
3529 list_for_each_entry(s, &slab_caches, list) {
3530 /*
3531 * XXX: kmem_cache_alloc_node will fallback to other nodes
3532 * since memory is not yet available from the node that
3533 * is brought up.
3534 */
8de66a0c 3535 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3536 if (!n) {
3537 ret = -ENOMEM;
3538 goto out;
3539 }
4053497d 3540 init_kmem_cache_node(n);
b9049e23
YG
3541 s->node[nid] = n;
3542 }
3543out:
18004c5d 3544 mutex_unlock(&slab_mutex);
b9049e23
YG
3545 return ret;
3546}
3547
3548static int slab_memory_callback(struct notifier_block *self,
3549 unsigned long action, void *arg)
3550{
3551 int ret = 0;
3552
3553 switch (action) {
3554 case MEM_GOING_ONLINE:
3555 ret = slab_mem_going_online_callback(arg);
3556 break;
3557 case MEM_GOING_OFFLINE:
3558 ret = slab_mem_going_offline_callback(arg);
3559 break;
3560 case MEM_OFFLINE:
3561 case MEM_CANCEL_ONLINE:
3562 slab_mem_offline_callback(arg);
3563 break;
3564 case MEM_ONLINE:
3565 case MEM_CANCEL_OFFLINE:
3566 break;
3567 }
dc19f9db
KH
3568 if (ret)
3569 ret = notifier_from_errno(ret);
3570 else
3571 ret = NOTIFY_OK;
b9049e23
YG
3572 return ret;
3573}
3574
3ac38faa
AM
3575static struct notifier_block slab_memory_callback_nb = {
3576 .notifier_call = slab_memory_callback,
3577 .priority = SLAB_CALLBACK_PRI,
3578};
b9049e23 3579
81819f0f
CL
3580/********************************************************************
3581 * Basic setup of slabs
3582 *******************************************************************/
3583
51df1142
CL
3584/*
3585 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3586 * the page allocator. Allocate them properly then fix up the pointers
3587 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3588 */
3589
dffb4d60 3590static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3591{
3592 int node;
dffb4d60 3593 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3594
dffb4d60 3595 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3596
7d557b3c
GC
3597 /*
3598 * This runs very early, and only the boot processor is supposed to be
3599 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3600 * IPIs around.
3601 */
3602 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3603 for_each_node_state(node, N_NORMAL_MEMORY) {
3604 struct kmem_cache_node *n = get_node(s, node);
3605 struct page *p;
3606
3607 if (n) {
3608 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3609 p->slab_cache = s;
51df1142 3610
607bf324 3611#ifdef CONFIG_SLUB_DEBUG
51df1142 3612 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3613 p->slab_cache = s;
51df1142
CL
3614#endif
3615 }
3616 }
dffb4d60
CL
3617 list_add(&s->list, &slab_caches);
3618 return s;
51df1142
CL
3619}
3620
81819f0f
CL
3621void __init kmem_cache_init(void)
3622{
dffb4d60
CL
3623 static __initdata struct kmem_cache boot_kmem_cache,
3624 boot_kmem_cache_node;
51df1142 3625
fc8d8620
SG
3626 if (debug_guardpage_minorder())
3627 slub_max_order = 0;
3628
dffb4d60
CL
3629 kmem_cache_node = &boot_kmem_cache_node;
3630 kmem_cache = &boot_kmem_cache;
51df1142 3631
dffb4d60
CL
3632 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3633 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3634
3ac38faa 3635 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3636
3637 /* Able to allocate the per node structures */
3638 slab_state = PARTIAL;
3639
dffb4d60
CL
3640 create_boot_cache(kmem_cache, "kmem_cache",
3641 offsetof(struct kmem_cache, node) +
3642 nr_node_ids * sizeof(struct kmem_cache_node *),
3643 SLAB_HWCACHE_ALIGN);
8a13a4cc 3644
dffb4d60 3645 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3646
51df1142
CL
3647 /*
3648 * Allocate kmem_cache_node properly from the kmem_cache slab.
3649 * kmem_cache_node is separately allocated so no need to
3650 * update any list pointers.
3651 */
dffb4d60 3652 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3653
3654 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3655 create_kmalloc_caches(0);
81819f0f
CL
3656
3657#ifdef CONFIG_SMP
3658 register_cpu_notifier(&slab_notifier);
9dfc6e68 3659#endif
81819f0f 3660
3adbefee 3661 printk(KERN_INFO
f97d5f63 3662 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3663 " CPUs=%d, Nodes=%d\n",
f97d5f63 3664 cache_line_size(),
81819f0f
CL
3665 slub_min_order, slub_max_order, slub_min_objects,
3666 nr_cpu_ids, nr_node_ids);
3667}
3668
7e85ee0c
PE
3669void __init kmem_cache_init_late(void)
3670{
7e85ee0c
PE
3671}
3672
81819f0f
CL
3673/*
3674 * Find a mergeable slab cache
3675 */
3676static int slab_unmergeable(struct kmem_cache *s)
3677{
3678 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3679 return 1;
3680
c59def9f 3681 if (s->ctor)
81819f0f
CL
3682 return 1;
3683
8ffa6875
CL
3684 /*
3685 * We may have set a slab to be unmergeable during bootstrap.
3686 */
3687 if (s->refcount < 0)
3688 return 1;
3689
81819f0f
CL
3690 return 0;
3691}
3692
2633d7a0 3693static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3694 size_t align, unsigned long flags, const char *name,
51cc5068 3695 void (*ctor)(void *))
81819f0f 3696{
5b95a4ac 3697 struct kmem_cache *s;
81819f0f
CL
3698
3699 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3700 return NULL;
3701
c59def9f 3702 if (ctor)
81819f0f
CL
3703 return NULL;
3704
3705 size = ALIGN(size, sizeof(void *));
3706 align = calculate_alignment(flags, align, size);
3707 size = ALIGN(size, align);
ba0268a8 3708 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3709
5b95a4ac 3710 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3711 if (slab_unmergeable(s))
3712 continue;
3713
3714 if (size > s->size)
3715 continue;
3716
ba0268a8 3717 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3718 continue;
3719 /*
3720 * Check if alignment is compatible.
3721 * Courtesy of Adrian Drzewiecki
3722 */
06428780 3723 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3724 continue;
3725
3726 if (s->size - size >= sizeof(void *))
3727 continue;
3728
2633d7a0
GC
3729 if (!cache_match_memcg(s, memcg))
3730 continue;
3731
81819f0f
CL
3732 return s;
3733 }
3734 return NULL;
3735}
3736
2633d7a0
GC
3737struct kmem_cache *
3738__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3739 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3740{
3741 struct kmem_cache *s;
3742
2633d7a0 3743 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3744 if (s) {
3745 s->refcount++;
3746 /*
3747 * Adjust the object sizes so that we clear
3748 * the complete object on kzalloc.
3749 */
3b0efdfa 3750 s->object_size = max(s->object_size, (int)size);
81819f0f 3751 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3752
7b8f3b66 3753 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3754 s->refcount--;
cbb79694 3755 s = NULL;
7b8f3b66 3756 }
a0e1d1be 3757 }
6446faa2 3758
cbb79694
CL
3759 return s;
3760}
84c1cf62 3761
8a13a4cc 3762int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3763{
aac3a166
PE
3764 int err;
3765
3766 err = kmem_cache_open(s, flags);
3767 if (err)
3768 return err;
20cea968 3769
45530c44
CL
3770 /* Mutex is not taken during early boot */
3771 if (slab_state <= UP)
3772 return 0;
3773
107dab5c 3774 memcg_propagate_slab_attrs(s);
aac3a166
PE
3775 mutex_unlock(&slab_mutex);
3776 err = sysfs_slab_add(s);
3777 mutex_lock(&slab_mutex);
20cea968 3778
aac3a166
PE
3779 if (err)
3780 kmem_cache_close(s);
20cea968 3781
aac3a166 3782 return err;
81819f0f 3783}
81819f0f 3784
81819f0f 3785#ifdef CONFIG_SMP
81819f0f 3786/*
672bba3a
CL
3787 * Use the cpu notifier to insure that the cpu slabs are flushed when
3788 * necessary.
81819f0f 3789 */
0db0628d 3790static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3791 unsigned long action, void *hcpu)
3792{
3793 long cpu = (long)hcpu;
5b95a4ac
CL
3794 struct kmem_cache *s;
3795 unsigned long flags;
81819f0f
CL
3796
3797 switch (action) {
3798 case CPU_UP_CANCELED:
8bb78442 3799 case CPU_UP_CANCELED_FROZEN:
81819f0f 3800 case CPU_DEAD:
8bb78442 3801 case CPU_DEAD_FROZEN:
18004c5d 3802 mutex_lock(&slab_mutex);
5b95a4ac
CL
3803 list_for_each_entry(s, &slab_caches, list) {
3804 local_irq_save(flags);
3805 __flush_cpu_slab(s, cpu);
3806 local_irq_restore(flags);
3807 }
18004c5d 3808 mutex_unlock(&slab_mutex);
81819f0f
CL
3809 break;
3810 default:
3811 break;
3812 }
3813 return NOTIFY_OK;
3814}
3815
0db0628d 3816static struct notifier_block slab_notifier = {
3adbefee 3817 .notifier_call = slab_cpuup_callback
06428780 3818};
81819f0f
CL
3819
3820#endif
3821
ce71e27c 3822void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3823{
aadb4bc4 3824 struct kmem_cache *s;
94b528d0 3825 void *ret;
aadb4bc4 3826
95a05b42 3827 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3828 return kmalloc_large(size, gfpflags);
3829
2c59dd65 3830 s = kmalloc_slab(size, gfpflags);
81819f0f 3831
2408c550 3832 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3833 return s;
81819f0f 3834
2b847c3c 3835 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3836
25985edc 3837 /* Honor the call site pointer we received. */
ca2b84cb 3838 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3839
3840 return ret;
81819f0f
CL
3841}
3842
5d1f57e4 3843#ifdef CONFIG_NUMA
81819f0f 3844void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3845 int node, unsigned long caller)
81819f0f 3846{
aadb4bc4 3847 struct kmem_cache *s;
94b528d0 3848 void *ret;
aadb4bc4 3849
95a05b42 3850 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3851 ret = kmalloc_large_node(size, gfpflags, node);
3852
3853 trace_kmalloc_node(caller, ret,
3854 size, PAGE_SIZE << get_order(size),
3855 gfpflags, node);
3856
3857 return ret;
3858 }
eada35ef 3859
2c59dd65 3860 s = kmalloc_slab(size, gfpflags);
81819f0f 3861
2408c550 3862 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3863 return s;
81819f0f 3864
2b847c3c 3865 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3866
25985edc 3867 /* Honor the call site pointer we received. */
ca2b84cb 3868 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3869
3870 return ret;
81819f0f 3871}
5d1f57e4 3872#endif
81819f0f 3873
ab4d5ed5 3874#ifdef CONFIG_SYSFS
205ab99d
CL
3875static int count_inuse(struct page *page)
3876{
3877 return page->inuse;
3878}
3879
3880static int count_total(struct page *page)
3881{
3882 return page->objects;
3883}
ab4d5ed5 3884#endif
205ab99d 3885
ab4d5ed5 3886#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3887static int validate_slab(struct kmem_cache *s, struct page *page,
3888 unsigned long *map)
53e15af0
CL
3889{
3890 void *p;
a973e9dd 3891 void *addr = page_address(page);
53e15af0
CL
3892
3893 if (!check_slab(s, page) ||
3894 !on_freelist(s, page, NULL))
3895 return 0;
3896
3897 /* Now we know that a valid freelist exists */
39b26464 3898 bitmap_zero(map, page->objects);
53e15af0 3899
5f80b13a
CL
3900 get_map(s, page, map);
3901 for_each_object(p, s, addr, page->objects) {
3902 if (test_bit(slab_index(p, s, addr), map))
3903 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3904 return 0;
53e15af0
CL
3905 }
3906
224a88be 3907 for_each_object(p, s, addr, page->objects)
7656c72b 3908 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3909 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3910 return 0;
3911 return 1;
3912}
3913
434e245d
CL
3914static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3915 unsigned long *map)
53e15af0 3916{
881db7fb
CL
3917 slab_lock(page);
3918 validate_slab(s, page, map);
3919 slab_unlock(page);
53e15af0
CL
3920}
3921
434e245d
CL
3922static int validate_slab_node(struct kmem_cache *s,
3923 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3924{
3925 unsigned long count = 0;
3926 struct page *page;
3927 unsigned long flags;
3928
3929 spin_lock_irqsave(&n->list_lock, flags);
3930
3931 list_for_each_entry(page, &n->partial, lru) {
434e245d 3932 validate_slab_slab(s, page, map);
53e15af0
CL
3933 count++;
3934 }
3935 if (count != n->nr_partial)
3936 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3937 "counter=%ld\n", s->name, count, n->nr_partial);
3938
3939 if (!(s->flags & SLAB_STORE_USER))
3940 goto out;
3941
3942 list_for_each_entry(page, &n->full, lru) {
434e245d 3943 validate_slab_slab(s, page, map);
53e15af0
CL
3944 count++;
3945 }
3946 if (count != atomic_long_read(&n->nr_slabs))
3947 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3948 "counter=%ld\n", s->name, count,
3949 atomic_long_read(&n->nr_slabs));
3950
3951out:
3952 spin_unlock_irqrestore(&n->list_lock, flags);
3953 return count;
3954}
3955
434e245d 3956static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3957{
3958 int node;
3959 unsigned long count = 0;
205ab99d 3960 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3961 sizeof(unsigned long), GFP_KERNEL);
3962
3963 if (!map)
3964 return -ENOMEM;
53e15af0
CL
3965
3966 flush_all(s);
f64dc58c 3967 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3968 struct kmem_cache_node *n = get_node(s, node);
3969
434e245d 3970 count += validate_slab_node(s, n, map);
53e15af0 3971 }
434e245d 3972 kfree(map);
53e15af0
CL
3973 return count;
3974}
88a420e4 3975/*
672bba3a 3976 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3977 * and freed.
3978 */
3979
3980struct location {
3981 unsigned long count;
ce71e27c 3982 unsigned long addr;
45edfa58
CL
3983 long long sum_time;
3984 long min_time;
3985 long max_time;
3986 long min_pid;
3987 long max_pid;
174596a0 3988 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3989 nodemask_t nodes;
88a420e4
CL
3990};
3991
3992struct loc_track {
3993 unsigned long max;
3994 unsigned long count;
3995 struct location *loc;
3996};
3997
3998static void free_loc_track(struct loc_track *t)
3999{
4000 if (t->max)
4001 free_pages((unsigned long)t->loc,
4002 get_order(sizeof(struct location) * t->max));
4003}
4004
68dff6a9 4005static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4006{
4007 struct location *l;
4008 int order;
4009
88a420e4
CL
4010 order = get_order(sizeof(struct location) * max);
4011
68dff6a9 4012 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4013 if (!l)
4014 return 0;
4015
4016 if (t->count) {
4017 memcpy(l, t->loc, sizeof(struct location) * t->count);
4018 free_loc_track(t);
4019 }
4020 t->max = max;
4021 t->loc = l;
4022 return 1;
4023}
4024
4025static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4026 const struct track *track)
88a420e4
CL
4027{
4028 long start, end, pos;
4029 struct location *l;
ce71e27c 4030 unsigned long caddr;
45edfa58 4031 unsigned long age = jiffies - track->when;
88a420e4
CL
4032
4033 start = -1;
4034 end = t->count;
4035
4036 for ( ; ; ) {
4037 pos = start + (end - start + 1) / 2;
4038
4039 /*
4040 * There is nothing at "end". If we end up there
4041 * we need to add something to before end.
4042 */
4043 if (pos == end)
4044 break;
4045
4046 caddr = t->loc[pos].addr;
45edfa58
CL
4047 if (track->addr == caddr) {
4048
4049 l = &t->loc[pos];
4050 l->count++;
4051 if (track->when) {
4052 l->sum_time += age;
4053 if (age < l->min_time)
4054 l->min_time = age;
4055 if (age > l->max_time)
4056 l->max_time = age;
4057
4058 if (track->pid < l->min_pid)
4059 l->min_pid = track->pid;
4060 if (track->pid > l->max_pid)
4061 l->max_pid = track->pid;
4062
174596a0
RR
4063 cpumask_set_cpu(track->cpu,
4064 to_cpumask(l->cpus));
45edfa58
CL
4065 }
4066 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4067 return 1;
4068 }
4069
45edfa58 4070 if (track->addr < caddr)
88a420e4
CL
4071 end = pos;
4072 else
4073 start = pos;
4074 }
4075
4076 /*
672bba3a 4077 * Not found. Insert new tracking element.
88a420e4 4078 */
68dff6a9 4079 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4080 return 0;
4081
4082 l = t->loc + pos;
4083 if (pos < t->count)
4084 memmove(l + 1, l,
4085 (t->count - pos) * sizeof(struct location));
4086 t->count++;
4087 l->count = 1;
45edfa58
CL
4088 l->addr = track->addr;
4089 l->sum_time = age;
4090 l->min_time = age;
4091 l->max_time = age;
4092 l->min_pid = track->pid;
4093 l->max_pid = track->pid;
174596a0
RR
4094 cpumask_clear(to_cpumask(l->cpus));
4095 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4096 nodes_clear(l->nodes);
4097 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4098 return 1;
4099}
4100
4101static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4102 struct page *page, enum track_item alloc,
a5dd5c11 4103 unsigned long *map)
88a420e4 4104{
a973e9dd 4105 void *addr = page_address(page);
88a420e4
CL
4106 void *p;
4107
39b26464 4108 bitmap_zero(map, page->objects);
5f80b13a 4109 get_map(s, page, map);
88a420e4 4110
224a88be 4111 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4112 if (!test_bit(slab_index(p, s, addr), map))
4113 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4114}
4115
4116static int list_locations(struct kmem_cache *s, char *buf,
4117 enum track_item alloc)
4118{
e374d483 4119 int len = 0;
88a420e4 4120 unsigned long i;
68dff6a9 4121 struct loc_track t = { 0, 0, NULL };
88a420e4 4122 int node;
bbd7d57b
ED
4123 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4124 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4125
bbd7d57b
ED
4126 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4127 GFP_TEMPORARY)) {
4128 kfree(map);
68dff6a9 4129 return sprintf(buf, "Out of memory\n");
bbd7d57b 4130 }
88a420e4
CL
4131 /* Push back cpu slabs */
4132 flush_all(s);
4133
f64dc58c 4134 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4135 struct kmem_cache_node *n = get_node(s, node);
4136 unsigned long flags;
4137 struct page *page;
4138
9e86943b 4139 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4140 continue;
4141
4142 spin_lock_irqsave(&n->list_lock, flags);
4143 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4144 process_slab(&t, s, page, alloc, map);
88a420e4 4145 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4146 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4147 spin_unlock_irqrestore(&n->list_lock, flags);
4148 }
4149
4150 for (i = 0; i < t.count; i++) {
45edfa58 4151 struct location *l = &t.loc[i];
88a420e4 4152
9c246247 4153 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4154 break;
e374d483 4155 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4156
4157 if (l->addr)
62c70bce 4158 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4159 else
e374d483 4160 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4161
4162 if (l->sum_time != l->min_time) {
e374d483 4163 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4164 l->min_time,
4165 (long)div_u64(l->sum_time, l->count),
4166 l->max_time);
45edfa58 4167 } else
e374d483 4168 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4169 l->min_time);
4170
4171 if (l->min_pid != l->max_pid)
e374d483 4172 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4173 l->min_pid, l->max_pid);
4174 else
e374d483 4175 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4176 l->min_pid);
4177
174596a0
RR
4178 if (num_online_cpus() > 1 &&
4179 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4180 len < PAGE_SIZE - 60) {
4181 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4182 len += cpulist_scnprintf(buf + len,
4183 PAGE_SIZE - len - 50,
174596a0 4184 to_cpumask(l->cpus));
45edfa58
CL
4185 }
4186
62bc62a8 4187 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4188 len < PAGE_SIZE - 60) {
4189 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4190 len += nodelist_scnprintf(buf + len,
4191 PAGE_SIZE - len - 50,
4192 l->nodes);
45edfa58
CL
4193 }
4194
e374d483 4195 len += sprintf(buf + len, "\n");
88a420e4
CL
4196 }
4197
4198 free_loc_track(&t);
bbd7d57b 4199 kfree(map);
88a420e4 4200 if (!t.count)
e374d483
HH
4201 len += sprintf(buf, "No data\n");
4202 return len;
88a420e4 4203}
ab4d5ed5 4204#endif
88a420e4 4205
a5a84755
CL
4206#ifdef SLUB_RESILIENCY_TEST
4207static void resiliency_test(void)
4208{
4209 u8 *p;
4210
95a05b42 4211 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4212
4213 printk(KERN_ERR "SLUB resiliency testing\n");
4214 printk(KERN_ERR "-----------------------\n");
4215 printk(KERN_ERR "A. Corruption after allocation\n");
4216
4217 p = kzalloc(16, GFP_KERNEL);
4218 p[16] = 0x12;
4219 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4220 " 0x12->0x%p\n\n", p + 16);
4221
4222 validate_slab_cache(kmalloc_caches[4]);
4223
4224 /* Hmmm... The next two are dangerous */
4225 p = kzalloc(32, GFP_KERNEL);
4226 p[32 + sizeof(void *)] = 0x34;
4227 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4228 " 0x34 -> -0x%p\n", p);
4229 printk(KERN_ERR
4230 "If allocated object is overwritten then not detectable\n\n");
4231
4232 validate_slab_cache(kmalloc_caches[5]);
4233 p = kzalloc(64, GFP_KERNEL);
4234 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4235 *p = 0x56;
4236 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4237 p);
4238 printk(KERN_ERR
4239 "If allocated object is overwritten then not detectable\n\n");
4240 validate_slab_cache(kmalloc_caches[6]);
4241
4242 printk(KERN_ERR "\nB. Corruption after free\n");
4243 p = kzalloc(128, GFP_KERNEL);
4244 kfree(p);
4245 *p = 0x78;
4246 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4247 validate_slab_cache(kmalloc_caches[7]);
4248
4249 p = kzalloc(256, GFP_KERNEL);
4250 kfree(p);
4251 p[50] = 0x9a;
4252 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4253 p);
4254 validate_slab_cache(kmalloc_caches[8]);
4255
4256 p = kzalloc(512, GFP_KERNEL);
4257 kfree(p);
4258 p[512] = 0xab;
4259 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4260 validate_slab_cache(kmalloc_caches[9]);
4261}
4262#else
4263#ifdef CONFIG_SYSFS
4264static void resiliency_test(void) {};
4265#endif
4266#endif
4267
ab4d5ed5 4268#ifdef CONFIG_SYSFS
81819f0f 4269enum slab_stat_type {
205ab99d
CL
4270 SL_ALL, /* All slabs */
4271 SL_PARTIAL, /* Only partially allocated slabs */
4272 SL_CPU, /* Only slabs used for cpu caches */
4273 SL_OBJECTS, /* Determine allocated objects not slabs */
4274 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4275};
4276
205ab99d 4277#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4278#define SO_PARTIAL (1 << SL_PARTIAL)
4279#define SO_CPU (1 << SL_CPU)
4280#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4281#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4282
62e5c4b4
CG
4283static ssize_t show_slab_objects(struct kmem_cache *s,
4284 char *buf, unsigned long flags)
81819f0f
CL
4285{
4286 unsigned long total = 0;
81819f0f
CL
4287 int node;
4288 int x;
4289 unsigned long *nodes;
81819f0f 4290
e35e1a97 4291 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4292 if (!nodes)
4293 return -ENOMEM;
81819f0f 4294
205ab99d
CL
4295 if (flags & SO_CPU) {
4296 int cpu;
81819f0f 4297
205ab99d 4298 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4299 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4300 cpu);
ec3ab083 4301 int node;
49e22585 4302 struct page *page;
dfb4f096 4303
bc6697d8 4304 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4305 if (!page)
4306 continue;
205ab99d 4307
ec3ab083
CL
4308 node = page_to_nid(page);
4309 if (flags & SO_TOTAL)
4310 x = page->objects;
4311 else if (flags & SO_OBJECTS)
4312 x = page->inuse;
4313 else
4314 x = 1;
49e22585 4315
ec3ab083
CL
4316 total += x;
4317 nodes[node] += x;
4318
4319 page = ACCESS_ONCE(c->partial);
49e22585 4320 if (page) {
8afb1474
LZ
4321 node = page_to_nid(page);
4322 if (flags & SO_TOTAL)
4323 WARN_ON_ONCE(1);
4324 else if (flags & SO_OBJECTS)
4325 WARN_ON_ONCE(1);
4326 else
4327 x = page->pages;
bc6697d8
ED
4328 total += x;
4329 nodes[node] += x;
49e22585 4330 }
81819f0f
CL
4331 }
4332 }
4333
04d94879 4334 lock_memory_hotplug();
ab4d5ed5 4335#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4336 if (flags & SO_ALL) {
4337 for_each_node_state(node, N_NORMAL_MEMORY) {
4338 struct kmem_cache_node *n = get_node(s, node);
4339
d0e0ac97
CG
4340 if (flags & SO_TOTAL)
4341 x = atomic_long_read(&n->total_objects);
4342 else if (flags & SO_OBJECTS)
4343 x = atomic_long_read(&n->total_objects) -
4344 count_partial(n, count_free);
81819f0f 4345 else
205ab99d 4346 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4347 total += x;
4348 nodes[node] += x;
4349 }
4350
ab4d5ed5
CL
4351 } else
4352#endif
4353 if (flags & SO_PARTIAL) {
205ab99d
CL
4354 for_each_node_state(node, N_NORMAL_MEMORY) {
4355 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4356
205ab99d
CL
4357 if (flags & SO_TOTAL)
4358 x = count_partial(n, count_total);
4359 else if (flags & SO_OBJECTS)
4360 x = count_partial(n, count_inuse);
81819f0f 4361 else
205ab99d 4362 x = n->nr_partial;
81819f0f
CL
4363 total += x;
4364 nodes[node] += x;
4365 }
4366 }
81819f0f
CL
4367 x = sprintf(buf, "%lu", total);
4368#ifdef CONFIG_NUMA
f64dc58c 4369 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4370 if (nodes[node])
4371 x += sprintf(buf + x, " N%d=%lu",
4372 node, nodes[node]);
4373#endif
04d94879 4374 unlock_memory_hotplug();
81819f0f
CL
4375 kfree(nodes);
4376 return x + sprintf(buf + x, "\n");
4377}
4378
ab4d5ed5 4379#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4380static int any_slab_objects(struct kmem_cache *s)
4381{
4382 int node;
81819f0f 4383
dfb4f096 4384 for_each_online_node(node) {
81819f0f
CL
4385 struct kmem_cache_node *n = get_node(s, node);
4386
dfb4f096
CL
4387 if (!n)
4388 continue;
4389
4ea33e2d 4390 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4391 return 1;
4392 }
4393 return 0;
4394}
ab4d5ed5 4395#endif
81819f0f
CL
4396
4397#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4398#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4399
4400struct slab_attribute {
4401 struct attribute attr;
4402 ssize_t (*show)(struct kmem_cache *s, char *buf);
4403 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4404};
4405
4406#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4407 static struct slab_attribute _name##_attr = \
4408 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4409
4410#define SLAB_ATTR(_name) \
4411 static struct slab_attribute _name##_attr = \
ab067e99 4412 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4413
81819f0f
CL
4414static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4415{
4416 return sprintf(buf, "%d\n", s->size);
4417}
4418SLAB_ATTR_RO(slab_size);
4419
4420static ssize_t align_show(struct kmem_cache *s, char *buf)
4421{
4422 return sprintf(buf, "%d\n", s->align);
4423}
4424SLAB_ATTR_RO(align);
4425
4426static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4427{
3b0efdfa 4428 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4429}
4430SLAB_ATTR_RO(object_size);
4431
4432static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4433{
834f3d11 4434 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4435}
4436SLAB_ATTR_RO(objs_per_slab);
4437
06b285dc
CL
4438static ssize_t order_store(struct kmem_cache *s,
4439 const char *buf, size_t length)
4440{
0121c619
CL
4441 unsigned long order;
4442 int err;
4443
3dbb95f7 4444 err = kstrtoul(buf, 10, &order);
0121c619
CL
4445 if (err)
4446 return err;
06b285dc
CL
4447
4448 if (order > slub_max_order || order < slub_min_order)
4449 return -EINVAL;
4450
4451 calculate_sizes(s, order);
4452 return length;
4453}
4454
81819f0f
CL
4455static ssize_t order_show(struct kmem_cache *s, char *buf)
4456{
834f3d11 4457 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4458}
06b285dc 4459SLAB_ATTR(order);
81819f0f 4460
73d342b1
DR
4461static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4462{
4463 return sprintf(buf, "%lu\n", s->min_partial);
4464}
4465
4466static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4467 size_t length)
4468{
4469 unsigned long min;
4470 int err;
4471
3dbb95f7 4472 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4473 if (err)
4474 return err;
4475
c0bdb232 4476 set_min_partial(s, min);
73d342b1
DR
4477 return length;
4478}
4479SLAB_ATTR(min_partial);
4480
49e22585
CL
4481static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4482{
4483 return sprintf(buf, "%u\n", s->cpu_partial);
4484}
4485
4486static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4487 size_t length)
4488{
4489 unsigned long objects;
4490 int err;
4491
3dbb95f7 4492 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4493 if (err)
4494 return err;
345c905d 4495 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4496 return -EINVAL;
49e22585
CL
4497
4498 s->cpu_partial = objects;
4499 flush_all(s);
4500 return length;
4501}
4502SLAB_ATTR(cpu_partial);
4503
81819f0f
CL
4504static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4505{
62c70bce
JP
4506 if (!s->ctor)
4507 return 0;
4508 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4509}
4510SLAB_ATTR_RO(ctor);
4511
81819f0f
CL
4512static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4513{
4514 return sprintf(buf, "%d\n", s->refcount - 1);
4515}
4516SLAB_ATTR_RO(aliases);
4517
81819f0f
CL
4518static ssize_t partial_show(struct kmem_cache *s, char *buf)
4519{
d9acf4b7 4520 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4521}
4522SLAB_ATTR_RO(partial);
4523
4524static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4525{
d9acf4b7 4526 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4527}
4528SLAB_ATTR_RO(cpu_slabs);
4529
4530static ssize_t objects_show(struct kmem_cache *s, char *buf)
4531{
205ab99d 4532 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4533}
4534SLAB_ATTR_RO(objects);
4535
205ab99d
CL
4536static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4537{
4538 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4539}
4540SLAB_ATTR_RO(objects_partial);
4541
49e22585
CL
4542static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4543{
4544 int objects = 0;
4545 int pages = 0;
4546 int cpu;
4547 int len;
4548
4549 for_each_online_cpu(cpu) {
4550 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4551
4552 if (page) {
4553 pages += page->pages;
4554 objects += page->pobjects;
4555 }
4556 }
4557
4558 len = sprintf(buf, "%d(%d)", objects, pages);
4559
4560#ifdef CONFIG_SMP
4561 for_each_online_cpu(cpu) {
4562 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4563
4564 if (page && len < PAGE_SIZE - 20)
4565 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4566 page->pobjects, page->pages);
4567 }
4568#endif
4569 return len + sprintf(buf + len, "\n");
4570}
4571SLAB_ATTR_RO(slabs_cpu_partial);
4572
a5a84755
CL
4573static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4574{
4575 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4576}
4577
4578static ssize_t reclaim_account_store(struct kmem_cache *s,
4579 const char *buf, size_t length)
4580{
4581 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4582 if (buf[0] == '1')
4583 s->flags |= SLAB_RECLAIM_ACCOUNT;
4584 return length;
4585}
4586SLAB_ATTR(reclaim_account);
4587
4588static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4589{
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4591}
4592SLAB_ATTR_RO(hwcache_align);
4593
4594#ifdef CONFIG_ZONE_DMA
4595static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4598}
4599SLAB_ATTR_RO(cache_dma);
4600#endif
4601
4602static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4603{
4604 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4605}
4606SLAB_ATTR_RO(destroy_by_rcu);
4607
ab9a0f19
LJ
4608static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4609{
4610 return sprintf(buf, "%d\n", s->reserved);
4611}
4612SLAB_ATTR_RO(reserved);
4613
ab4d5ed5 4614#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4615static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4616{
4617 return show_slab_objects(s, buf, SO_ALL);
4618}
4619SLAB_ATTR_RO(slabs);
4620
205ab99d
CL
4621static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4622{
4623 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4624}
4625SLAB_ATTR_RO(total_objects);
4626
81819f0f
CL
4627static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4628{
4629 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4630}
4631
4632static ssize_t sanity_checks_store(struct kmem_cache *s,
4633 const char *buf, size_t length)
4634{
4635 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4636 if (buf[0] == '1') {
4637 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4638 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4639 }
81819f0f
CL
4640 return length;
4641}
4642SLAB_ATTR(sanity_checks);
4643
4644static ssize_t trace_show(struct kmem_cache *s, char *buf)
4645{
4646 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4647}
4648
4649static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4650 size_t length)
4651{
4652 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4653 if (buf[0] == '1') {
4654 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4655 s->flags |= SLAB_TRACE;
b789ef51 4656 }
81819f0f
CL
4657 return length;
4658}
4659SLAB_ATTR(trace);
4660
81819f0f
CL
4661static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4662{
4663 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4664}
4665
4666static ssize_t red_zone_store(struct kmem_cache *s,
4667 const char *buf, size_t length)
4668{
4669 if (any_slab_objects(s))
4670 return -EBUSY;
4671
4672 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4673 if (buf[0] == '1') {
4674 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4675 s->flags |= SLAB_RED_ZONE;
b789ef51 4676 }
06b285dc 4677 calculate_sizes(s, -1);
81819f0f
CL
4678 return length;
4679}
4680SLAB_ATTR(red_zone);
4681
4682static ssize_t poison_show(struct kmem_cache *s, char *buf)
4683{
4684 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4685}
4686
4687static ssize_t poison_store(struct kmem_cache *s,
4688 const char *buf, size_t length)
4689{
4690 if (any_slab_objects(s))
4691 return -EBUSY;
4692
4693 s->flags &= ~SLAB_POISON;
b789ef51
CL
4694 if (buf[0] == '1') {
4695 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4696 s->flags |= SLAB_POISON;
b789ef51 4697 }
06b285dc 4698 calculate_sizes(s, -1);
81819f0f
CL
4699 return length;
4700}
4701SLAB_ATTR(poison);
4702
4703static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4704{
4705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4706}
4707
4708static ssize_t store_user_store(struct kmem_cache *s,
4709 const char *buf, size_t length)
4710{
4711 if (any_slab_objects(s))
4712 return -EBUSY;
4713
4714 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4715 if (buf[0] == '1') {
4716 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4717 s->flags |= SLAB_STORE_USER;
b789ef51 4718 }
06b285dc 4719 calculate_sizes(s, -1);
81819f0f
CL
4720 return length;
4721}
4722SLAB_ATTR(store_user);
4723
53e15af0
CL
4724static ssize_t validate_show(struct kmem_cache *s, char *buf)
4725{
4726 return 0;
4727}
4728
4729static ssize_t validate_store(struct kmem_cache *s,
4730 const char *buf, size_t length)
4731{
434e245d
CL
4732 int ret = -EINVAL;
4733
4734 if (buf[0] == '1') {
4735 ret = validate_slab_cache(s);
4736 if (ret >= 0)
4737 ret = length;
4738 }
4739 return ret;
53e15af0
CL
4740}
4741SLAB_ATTR(validate);
a5a84755
CL
4742
4743static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4744{
4745 if (!(s->flags & SLAB_STORE_USER))
4746 return -ENOSYS;
4747 return list_locations(s, buf, TRACK_ALLOC);
4748}
4749SLAB_ATTR_RO(alloc_calls);
4750
4751static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4752{
4753 if (!(s->flags & SLAB_STORE_USER))
4754 return -ENOSYS;
4755 return list_locations(s, buf, TRACK_FREE);
4756}
4757SLAB_ATTR_RO(free_calls);
4758#endif /* CONFIG_SLUB_DEBUG */
4759
4760#ifdef CONFIG_FAILSLAB
4761static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4762{
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4764}
4765
4766static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4767 size_t length)
4768{
4769 s->flags &= ~SLAB_FAILSLAB;
4770 if (buf[0] == '1')
4771 s->flags |= SLAB_FAILSLAB;
4772 return length;
4773}
4774SLAB_ATTR(failslab);
ab4d5ed5 4775#endif
53e15af0 4776
2086d26a
CL
4777static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4778{
4779 return 0;
4780}
4781
4782static ssize_t shrink_store(struct kmem_cache *s,
4783 const char *buf, size_t length)
4784{
4785 if (buf[0] == '1') {
4786 int rc = kmem_cache_shrink(s);
4787
4788 if (rc)
4789 return rc;
4790 } else
4791 return -EINVAL;
4792 return length;
4793}
4794SLAB_ATTR(shrink);
4795
81819f0f 4796#ifdef CONFIG_NUMA
9824601e 4797static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4798{
9824601e 4799 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4800}
4801
9824601e 4802static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4803 const char *buf, size_t length)
4804{
0121c619
CL
4805 unsigned long ratio;
4806 int err;
4807
3dbb95f7 4808 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4809 if (err)
4810 return err;
4811
e2cb96b7 4812 if (ratio <= 100)
0121c619 4813 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4814
81819f0f
CL
4815 return length;
4816}
9824601e 4817SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4818#endif
4819
8ff12cfc 4820#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4821static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4822{
4823 unsigned long sum = 0;
4824 int cpu;
4825 int len;
4826 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4827
4828 if (!data)
4829 return -ENOMEM;
4830
4831 for_each_online_cpu(cpu) {
9dfc6e68 4832 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4833
4834 data[cpu] = x;
4835 sum += x;
4836 }
4837
4838 len = sprintf(buf, "%lu", sum);
4839
50ef37b9 4840#ifdef CONFIG_SMP
8ff12cfc
CL
4841 for_each_online_cpu(cpu) {
4842 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4843 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4844 }
50ef37b9 4845#endif
8ff12cfc
CL
4846 kfree(data);
4847 return len + sprintf(buf + len, "\n");
4848}
4849
78eb00cc
DR
4850static void clear_stat(struct kmem_cache *s, enum stat_item si)
4851{
4852 int cpu;
4853
4854 for_each_online_cpu(cpu)
9dfc6e68 4855 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4856}
4857
8ff12cfc
CL
4858#define STAT_ATTR(si, text) \
4859static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4860{ \
4861 return show_stat(s, buf, si); \
4862} \
78eb00cc
DR
4863static ssize_t text##_store(struct kmem_cache *s, \
4864 const char *buf, size_t length) \
4865{ \
4866 if (buf[0] != '0') \
4867 return -EINVAL; \
4868 clear_stat(s, si); \
4869 return length; \
4870} \
4871SLAB_ATTR(text); \
8ff12cfc
CL
4872
4873STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4874STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4875STAT_ATTR(FREE_FASTPATH, free_fastpath);
4876STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4877STAT_ATTR(FREE_FROZEN, free_frozen);
4878STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4879STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4880STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4881STAT_ATTR(ALLOC_SLAB, alloc_slab);
4882STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4883STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4884STAT_ATTR(FREE_SLAB, free_slab);
4885STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4886STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4887STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4888STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4889STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4890STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4891STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4892STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4893STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4894STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4895STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4896STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4897STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4898STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4899#endif
4900
06428780 4901static struct attribute *slab_attrs[] = {
81819f0f
CL
4902 &slab_size_attr.attr,
4903 &object_size_attr.attr,
4904 &objs_per_slab_attr.attr,
4905 &order_attr.attr,
73d342b1 4906 &min_partial_attr.attr,
49e22585 4907 &cpu_partial_attr.attr,
81819f0f 4908 &objects_attr.attr,
205ab99d 4909 &objects_partial_attr.attr,
81819f0f
CL
4910 &partial_attr.attr,
4911 &cpu_slabs_attr.attr,
4912 &ctor_attr.attr,
81819f0f
CL
4913 &aliases_attr.attr,
4914 &align_attr.attr,
81819f0f
CL
4915 &hwcache_align_attr.attr,
4916 &reclaim_account_attr.attr,
4917 &destroy_by_rcu_attr.attr,
a5a84755 4918 &shrink_attr.attr,
ab9a0f19 4919 &reserved_attr.attr,
49e22585 4920 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4921#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4922 &total_objects_attr.attr,
4923 &slabs_attr.attr,
4924 &sanity_checks_attr.attr,
4925 &trace_attr.attr,
81819f0f
CL
4926 &red_zone_attr.attr,
4927 &poison_attr.attr,
4928 &store_user_attr.attr,
53e15af0 4929 &validate_attr.attr,
88a420e4
CL
4930 &alloc_calls_attr.attr,
4931 &free_calls_attr.attr,
ab4d5ed5 4932#endif
81819f0f
CL
4933#ifdef CONFIG_ZONE_DMA
4934 &cache_dma_attr.attr,
4935#endif
4936#ifdef CONFIG_NUMA
9824601e 4937 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4938#endif
4939#ifdef CONFIG_SLUB_STATS
4940 &alloc_fastpath_attr.attr,
4941 &alloc_slowpath_attr.attr,
4942 &free_fastpath_attr.attr,
4943 &free_slowpath_attr.attr,
4944 &free_frozen_attr.attr,
4945 &free_add_partial_attr.attr,
4946 &free_remove_partial_attr.attr,
4947 &alloc_from_partial_attr.attr,
4948 &alloc_slab_attr.attr,
4949 &alloc_refill_attr.attr,
e36a2652 4950 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4951 &free_slab_attr.attr,
4952 &cpuslab_flush_attr.attr,
4953 &deactivate_full_attr.attr,
4954 &deactivate_empty_attr.attr,
4955 &deactivate_to_head_attr.attr,
4956 &deactivate_to_tail_attr.attr,
4957 &deactivate_remote_frees_attr.attr,
03e404af 4958 &deactivate_bypass_attr.attr,
65c3376a 4959 &order_fallback_attr.attr,
b789ef51
CL
4960 &cmpxchg_double_fail_attr.attr,
4961 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4962 &cpu_partial_alloc_attr.attr,
4963 &cpu_partial_free_attr.attr,
8028dcea
AS
4964 &cpu_partial_node_attr.attr,
4965 &cpu_partial_drain_attr.attr,
81819f0f 4966#endif
4c13dd3b
DM
4967#ifdef CONFIG_FAILSLAB
4968 &failslab_attr.attr,
4969#endif
4970
81819f0f
CL
4971 NULL
4972};
4973
4974static struct attribute_group slab_attr_group = {
4975 .attrs = slab_attrs,
4976};
4977
4978static ssize_t slab_attr_show(struct kobject *kobj,
4979 struct attribute *attr,
4980 char *buf)
4981{
4982 struct slab_attribute *attribute;
4983 struct kmem_cache *s;
4984 int err;
4985
4986 attribute = to_slab_attr(attr);
4987 s = to_slab(kobj);
4988
4989 if (!attribute->show)
4990 return -EIO;
4991
4992 err = attribute->show(s, buf);
4993
4994 return err;
4995}
4996
4997static ssize_t slab_attr_store(struct kobject *kobj,
4998 struct attribute *attr,
4999 const char *buf, size_t len)
5000{
5001 struct slab_attribute *attribute;
5002 struct kmem_cache *s;
5003 int err;
5004
5005 attribute = to_slab_attr(attr);
5006 s = to_slab(kobj);
5007
5008 if (!attribute->store)
5009 return -EIO;
5010
5011 err = attribute->store(s, buf, len);
107dab5c
GC
5012#ifdef CONFIG_MEMCG_KMEM
5013 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5014 int i;
81819f0f 5015
107dab5c
GC
5016 mutex_lock(&slab_mutex);
5017 if (s->max_attr_size < len)
5018 s->max_attr_size = len;
5019
ebe945c2
GC
5020 /*
5021 * This is a best effort propagation, so this function's return
5022 * value will be determined by the parent cache only. This is
5023 * basically because not all attributes will have a well
5024 * defined semantics for rollbacks - most of the actions will
5025 * have permanent effects.
5026 *
5027 * Returning the error value of any of the children that fail
5028 * is not 100 % defined, in the sense that users seeing the
5029 * error code won't be able to know anything about the state of
5030 * the cache.
5031 *
5032 * Only returning the error code for the parent cache at least
5033 * has well defined semantics. The cache being written to
5034 * directly either failed or succeeded, in which case we loop
5035 * through the descendants with best-effort propagation.
5036 */
107dab5c 5037 for_each_memcg_cache_index(i) {
2ade4de8 5038 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5039 if (c)
5040 attribute->store(c, buf, len);
5041 }
5042 mutex_unlock(&slab_mutex);
5043 }
5044#endif
81819f0f
CL
5045 return err;
5046}
5047
107dab5c
GC
5048static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5049{
5050#ifdef CONFIG_MEMCG_KMEM
5051 int i;
5052 char *buffer = NULL;
5053
5054 if (!is_root_cache(s))
5055 return;
5056
5057 /*
5058 * This mean this cache had no attribute written. Therefore, no point
5059 * in copying default values around
5060 */
5061 if (!s->max_attr_size)
5062 return;
5063
5064 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5065 char mbuf[64];
5066 char *buf;
5067 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5068
5069 if (!attr || !attr->store || !attr->show)
5070 continue;
5071
5072 /*
5073 * It is really bad that we have to allocate here, so we will
5074 * do it only as a fallback. If we actually allocate, though,
5075 * we can just use the allocated buffer until the end.
5076 *
5077 * Most of the slub attributes will tend to be very small in
5078 * size, but sysfs allows buffers up to a page, so they can
5079 * theoretically happen.
5080 */
5081 if (buffer)
5082 buf = buffer;
5083 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5084 buf = mbuf;
5085 else {
5086 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5087 if (WARN_ON(!buffer))
5088 continue;
5089 buf = buffer;
5090 }
5091
5092 attr->show(s->memcg_params->root_cache, buf);
5093 attr->store(s, buf, strlen(buf));
5094 }
5095
5096 if (buffer)
5097 free_page((unsigned long)buffer);
5098#endif
5099}
5100
52cf25d0 5101static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5102 .show = slab_attr_show,
5103 .store = slab_attr_store,
5104};
5105
5106static struct kobj_type slab_ktype = {
5107 .sysfs_ops = &slab_sysfs_ops,
5108};
5109
5110static int uevent_filter(struct kset *kset, struct kobject *kobj)
5111{
5112 struct kobj_type *ktype = get_ktype(kobj);
5113
5114 if (ktype == &slab_ktype)
5115 return 1;
5116 return 0;
5117}
5118
9cd43611 5119static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5120 .filter = uevent_filter,
5121};
5122
27c3a314 5123static struct kset *slab_kset;
81819f0f
CL
5124
5125#define ID_STR_LENGTH 64
5126
5127/* Create a unique string id for a slab cache:
6446faa2
CL
5128 *
5129 * Format :[flags-]size
81819f0f
CL
5130 */
5131static char *create_unique_id(struct kmem_cache *s)
5132{
5133 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5134 char *p = name;
5135
5136 BUG_ON(!name);
5137
5138 *p++ = ':';
5139 /*
5140 * First flags affecting slabcache operations. We will only
5141 * get here for aliasable slabs so we do not need to support
5142 * too many flags. The flags here must cover all flags that
5143 * are matched during merging to guarantee that the id is
5144 * unique.
5145 */
5146 if (s->flags & SLAB_CACHE_DMA)
5147 *p++ = 'd';
5148 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5149 *p++ = 'a';
5150 if (s->flags & SLAB_DEBUG_FREE)
5151 *p++ = 'F';
5a896d9e
VN
5152 if (!(s->flags & SLAB_NOTRACK))
5153 *p++ = 't';
81819f0f
CL
5154 if (p != name + 1)
5155 *p++ = '-';
5156 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5157
5158#ifdef CONFIG_MEMCG_KMEM
5159 if (!is_root_cache(s))
d0e0ac97
CG
5160 p += sprintf(p, "-%08d",
5161 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5162#endif
5163
81819f0f
CL
5164 BUG_ON(p > name + ID_STR_LENGTH - 1);
5165 return name;
5166}
5167
5168static int sysfs_slab_add(struct kmem_cache *s)
5169{
5170 int err;
5171 const char *name;
45530c44 5172 int unmergeable = slab_unmergeable(s);
81819f0f 5173
81819f0f
CL
5174 if (unmergeable) {
5175 /*
5176 * Slabcache can never be merged so we can use the name proper.
5177 * This is typically the case for debug situations. In that
5178 * case we can catch duplicate names easily.
5179 */
27c3a314 5180 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5181 name = s->name;
5182 } else {
5183 /*
5184 * Create a unique name for the slab as a target
5185 * for the symlinks.
5186 */
5187 name = create_unique_id(s);
5188 }
5189
27c3a314 5190 s->kobj.kset = slab_kset;
26e4f205 5191 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
1eada11c
GKH
5192 if (err) {
5193 kobject_put(&s->kobj);
81819f0f 5194 return err;
1eada11c 5195 }
81819f0f
CL
5196
5197 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5198 if (err) {
5199 kobject_del(&s->kobj);
5200 kobject_put(&s->kobj);
81819f0f 5201 return err;
5788d8ad 5202 }
81819f0f
CL
5203 kobject_uevent(&s->kobj, KOBJ_ADD);
5204 if (!unmergeable) {
5205 /* Setup first alias */
5206 sysfs_slab_alias(s, s->name);
5207 kfree(name);
5208 }
5209 return 0;
5210}
5211
5212static void sysfs_slab_remove(struct kmem_cache *s)
5213{
97d06609 5214 if (slab_state < FULL)
2bce6485
CL
5215 /*
5216 * Sysfs has not been setup yet so no need to remove the
5217 * cache from sysfs.
5218 */
5219 return;
5220
81819f0f
CL
5221 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5222 kobject_del(&s->kobj);
151c602f 5223 kobject_put(&s->kobj);
81819f0f
CL
5224}
5225
5226/*
5227 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5228 * available lest we lose that information.
81819f0f
CL
5229 */
5230struct saved_alias {
5231 struct kmem_cache *s;
5232 const char *name;
5233 struct saved_alias *next;
5234};
5235
5af328a5 5236static struct saved_alias *alias_list;
81819f0f
CL
5237
5238static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5239{
5240 struct saved_alias *al;
5241
97d06609 5242 if (slab_state == FULL) {
81819f0f
CL
5243 /*
5244 * If we have a leftover link then remove it.
5245 */
27c3a314
GKH
5246 sysfs_remove_link(&slab_kset->kobj, name);
5247 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5248 }
5249
5250 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5251 if (!al)
5252 return -ENOMEM;
5253
5254 al->s = s;
5255 al->name = name;
5256 al->next = alias_list;
5257 alias_list = al;
5258 return 0;
5259}
5260
5261static int __init slab_sysfs_init(void)
5262{
5b95a4ac 5263 struct kmem_cache *s;
81819f0f
CL
5264 int err;
5265
18004c5d 5266 mutex_lock(&slab_mutex);
2bce6485 5267
0ff21e46 5268 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5269 if (!slab_kset) {
18004c5d 5270 mutex_unlock(&slab_mutex);
81819f0f
CL
5271 printk(KERN_ERR "Cannot register slab subsystem.\n");
5272 return -ENOSYS;
5273 }
5274
97d06609 5275 slab_state = FULL;
26a7bd03 5276
5b95a4ac 5277 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5278 err = sysfs_slab_add(s);
5d540fb7
CL
5279 if (err)
5280 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5281 " to sysfs\n", s->name);
26a7bd03 5282 }
81819f0f
CL
5283
5284 while (alias_list) {
5285 struct saved_alias *al = alias_list;
5286
5287 alias_list = alias_list->next;
5288 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5289 if (err)
5290 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5291 " %s to sysfs\n", al->name);
81819f0f
CL
5292 kfree(al);
5293 }
5294
18004c5d 5295 mutex_unlock(&slab_mutex);
81819f0f
CL
5296 resiliency_test();
5297 return 0;
5298}
5299
5300__initcall(slab_sysfs_init);
ab4d5ed5 5301#endif /* CONFIG_SYSFS */
57ed3eda
PE
5302
5303/*
5304 * The /proc/slabinfo ABI
5305 */
158a9624 5306#ifdef CONFIG_SLABINFO
0d7561c6 5307void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5308{
57ed3eda 5309 unsigned long nr_slabs = 0;
205ab99d
CL
5310 unsigned long nr_objs = 0;
5311 unsigned long nr_free = 0;
57ed3eda
PE
5312 int node;
5313
57ed3eda
PE
5314 for_each_online_node(node) {
5315 struct kmem_cache_node *n = get_node(s, node);
5316
5317 if (!n)
5318 continue;
5319
c17fd13e
WL
5320 nr_slabs += node_nr_slabs(n);
5321 nr_objs += node_nr_objs(n);
205ab99d 5322 nr_free += count_partial(n, count_free);
57ed3eda
PE
5323 }
5324
0d7561c6
GC
5325 sinfo->active_objs = nr_objs - nr_free;
5326 sinfo->num_objs = nr_objs;
5327 sinfo->active_slabs = nr_slabs;
5328 sinfo->num_slabs = nr_slabs;
5329 sinfo->objects_per_slab = oo_objects(s->oo);
5330 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5331}
5332
0d7561c6 5333void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5334{
7b3c3a50
AD
5335}
5336
b7454ad3
GC
5337ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5338 size_t count, loff_t *ppos)
7b3c3a50 5339{
b7454ad3 5340 return -EIO;
7b3c3a50 5341}
158a9624 5342#endif /* CONFIG_SLABINFO */