]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
SLUB: fix build when !SLUB_DEBUG
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
36994e58 20#include <trace/kmemtrace.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
5577bd8a 109#ifdef CONFIG_SLUB_DEBUG
8a38082d 110#define SLABDEBUG 1
5577bd8a
CL
111#else
112#define SLABDEBUG 0
113#endif
114
81819f0f
CL
115/*
116 * Issues still to be resolved:
117 *
81819f0f
CL
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 *
81819f0f
CL
120 * - Variable sizing of the per node arrays
121 */
122
123/* Enable to test recovery from slab corruption on boot */
124#undef SLUB_RESILIENCY_TEST
125
2086d26a
CL
126/*
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 */
76be8950 130#define MIN_PARTIAL 5
e95eed57 131
2086d26a
CL
132/*
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
136 */
137#define MAX_PARTIAL 10
138
81819f0f
CL
139#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
672bba3a 141
81819f0f
CL
142/*
143 * Set of flags that will prevent slab merging
144 */
145#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
146 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147
148#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
149 SLAB_CACHE_DMA)
150
151#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 152#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 156#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
157#endif
158
210b5c06
CG
159#define OO_SHIFT 16
160#define OO_MASK ((1 << OO_SHIFT) - 1)
161#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162
81819f0f 163/* Internal SLUB flags */
1ceef402
CL
164#define __OBJECT_POISON 0x80000000 /* Poison object */
165#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
166
167static int kmem_size = sizeof(struct kmem_cache);
168
169#ifdef CONFIG_SMP
170static struct notifier_block slab_notifier;
171#endif
172
173static enum {
174 DOWN, /* No slab functionality available */
175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 176 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
177 SYSFS /* Sysfs up */
178} slab_state = DOWN;
179
180/* A list of all slab caches on the system */
181static DECLARE_RWSEM(slub_lock);
5af328a5 182static LIST_HEAD(slab_caches);
81819f0f 183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
187struct track {
ce71e27c 188 unsigned long addr; /* Called from address */
02cbc874
CL
189 int cpu; /* Was running on cpu */
190 int pid; /* Pid context */
191 unsigned long when; /* When did the operation occur */
192};
193
194enum track_item { TRACK_ALLOC, TRACK_FREE };
195
f6acb635 196#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
197static int sysfs_slab_add(struct kmem_cache *);
198static int sysfs_slab_alias(struct kmem_cache *, const char *);
199static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 200
81819f0f 201#else
0c710013
CL
202static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
203static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
204 { return 0; }
151c602f
CL
205static inline void sysfs_slab_remove(struct kmem_cache *s)
206{
207 kfree(s);
208}
8ff12cfc 209
81819f0f
CL
210#endif
211
8ff12cfc
CL
212static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
213{
214#ifdef CONFIG_SLUB_STATS
215 c->stat[si]++;
216#endif
217}
218
81819f0f
CL
219/********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
222
223int slab_is_available(void)
224{
225 return slab_state >= UP;
226}
227
228static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229{
230#ifdef CONFIG_NUMA
231 return s->node[node];
232#else
233 return &s->local_node;
234#endif
235}
236
dfb4f096
CL
237static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
238{
4c93c355
CL
239#ifdef CONFIG_SMP
240 return s->cpu_slab[cpu];
241#else
242 return &s->cpu_slab;
243#endif
dfb4f096
CL
244}
245
6446faa2 246/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
247static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249{
250 void *base;
251
a973e9dd 252 if (!object)
02cbc874
CL
253 return 1;
254
a973e9dd 255 base = page_address(page);
39b26464 256 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262}
263
7656c72b
CL
264/*
265 * Slow version of get and set free pointer.
266 *
267 * This version requires touching the cache lines of kmem_cache which
268 * we avoid to do in the fast alloc free paths. There we obtain the offset
269 * from the page struct.
270 */
271static inline void *get_freepointer(struct kmem_cache *s, void *object)
272{
273 return *(void **)(object + s->offset);
274}
275
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
286/* Scan freelist */
287#define for_each_free_object(__p, __s, __free) \
a973e9dd 288 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
289
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
834f3d11
CL
296static inline struct kmem_cache_order_objects oo_make(int order,
297 unsigned long size)
298{
299 struct kmem_cache_order_objects x = {
210b5c06 300 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
301 };
302
303 return x;
304}
305
306static inline int oo_order(struct kmem_cache_order_objects x)
307{
210b5c06 308 return x.x >> OO_SHIFT;
834f3d11
CL
309}
310
311static inline int oo_objects(struct kmem_cache_order_objects x)
312{
210b5c06 313 return x.x & OO_MASK;
834f3d11
CL
314}
315
41ecc55b
CL
316#ifdef CONFIG_SLUB_DEBUG
317/*
318 * Debug settings:
319 */
f0630fff
CL
320#ifdef CONFIG_SLUB_DEBUG_ON
321static int slub_debug = DEBUG_DEFAULT_FLAGS;
322#else
41ecc55b 323static int slub_debug;
f0630fff 324#endif
41ecc55b
CL
325
326static char *slub_debug_slabs;
327
81819f0f
CL
328/*
329 * Object debugging
330 */
331static void print_section(char *text, u8 *addr, unsigned int length)
332{
333 int i, offset;
334 int newline = 1;
335 char ascii[17];
336
337 ascii[16] = 0;
338
339 for (i = 0; i < length; i++) {
340 if (newline) {
24922684 341 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
342 newline = 0;
343 }
06428780 344 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
345 offset = i % 16;
346 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
347 if (offset == 15) {
06428780 348 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
349 newline = 1;
350 }
351 }
352 if (!newline) {
353 i %= 16;
354 while (i < 16) {
06428780 355 printk(KERN_CONT " ");
81819f0f
CL
356 ascii[i] = ' ';
357 i++;
358 }
06428780 359 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
360 }
361}
362
81819f0f
CL
363static struct track *get_track(struct kmem_cache *s, void *object,
364 enum track_item alloc)
365{
366 struct track *p;
367
368 if (s->offset)
369 p = object + s->offset + sizeof(void *);
370 else
371 p = object + s->inuse;
372
373 return p + alloc;
374}
375
376static void set_track(struct kmem_cache *s, void *object,
ce71e27c 377 enum track_item alloc, unsigned long addr)
81819f0f 378{
1a00df4a 379 struct track *p = get_track(s, object, alloc);
81819f0f 380
81819f0f
CL
381 if (addr) {
382 p->addr = addr;
383 p->cpu = smp_processor_id();
88e4ccf2 384 p->pid = current->pid;
81819f0f
CL
385 p->when = jiffies;
386 } else
387 memset(p, 0, sizeof(struct track));
388}
389
81819f0f
CL
390static void init_tracking(struct kmem_cache *s, void *object)
391{
24922684
CL
392 if (!(s->flags & SLAB_STORE_USER))
393 return;
394
ce71e27c
EGM
395 set_track(s, object, TRACK_FREE, 0UL);
396 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
397}
398
399static void print_track(const char *s, struct track *t)
400{
401 if (!t->addr)
402 return;
403
7daf705f 404 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 405 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
406}
407
408static void print_tracking(struct kmem_cache *s, void *object)
409{
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
414 print_track("Freed", get_track(s, object, TRACK_FREE));
415}
416
417static void print_page_info(struct page *page)
418{
39b26464
CL
419 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
421
422}
423
424static void slab_bug(struct kmem_cache *s, char *fmt, ...)
425{
426 va_list args;
427 char buf[100];
428
429 va_start(args, fmt);
430 vsnprintf(buf, sizeof(buf), fmt, args);
431 va_end(args);
432 printk(KERN_ERR "========================================"
433 "=====================================\n");
434 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
435 printk(KERN_ERR "----------------------------------------"
436 "-------------------------------------\n\n");
81819f0f
CL
437}
438
24922684
CL
439static void slab_fix(struct kmem_cache *s, char *fmt, ...)
440{
441 va_list args;
442 char buf[100];
443
444 va_start(args, fmt);
445 vsnprintf(buf, sizeof(buf), fmt, args);
446 va_end(args);
447 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448}
449
450static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
451{
452 unsigned int off; /* Offset of last byte */
a973e9dd 453 u8 *addr = page_address(page);
24922684
CL
454
455 print_tracking(s, p);
456
457 print_page_info(page);
458
459 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460 p, p - addr, get_freepointer(s, p));
461
462 if (p > addr + 16)
463 print_section("Bytes b4", p - 16, 16);
464
0ebd652b 465 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
466
467 if (s->flags & SLAB_RED_ZONE)
468 print_section("Redzone", p + s->objsize,
469 s->inuse - s->objsize);
470
81819f0f
CL
471 if (s->offset)
472 off = s->offset + sizeof(void *);
473 else
474 off = s->inuse;
475
24922684 476 if (s->flags & SLAB_STORE_USER)
81819f0f 477 off += 2 * sizeof(struct track);
81819f0f
CL
478
479 if (off != s->size)
480 /* Beginning of the filler is the free pointer */
24922684
CL
481 print_section("Padding", p + off, s->size - off);
482
483 dump_stack();
81819f0f
CL
484}
485
486static void object_err(struct kmem_cache *s, struct page *page,
487 u8 *object, char *reason)
488{
3dc50637 489 slab_bug(s, "%s", reason);
24922684 490 print_trailer(s, page, object);
81819f0f
CL
491}
492
24922684 493static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
494{
495 va_list args;
496 char buf[100];
497
24922684
CL
498 va_start(args, fmt);
499 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 500 va_end(args);
3dc50637 501 slab_bug(s, "%s", buf);
24922684 502 print_page_info(page);
81819f0f
CL
503 dump_stack();
504}
505
506static void init_object(struct kmem_cache *s, void *object, int active)
507{
508 u8 *p = object;
509
510 if (s->flags & __OBJECT_POISON) {
511 memset(p, POISON_FREE, s->objsize - 1);
06428780 512 p[s->objsize - 1] = POISON_END;
81819f0f
CL
513 }
514
515 if (s->flags & SLAB_RED_ZONE)
516 memset(p + s->objsize,
517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
518 s->inuse - s->objsize);
519}
520
24922684 521static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
522{
523 while (bytes) {
524 if (*start != (u8)value)
24922684 525 return start;
81819f0f
CL
526 start++;
527 bytes--;
528 }
24922684
CL
529 return NULL;
530}
531
532static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
533 void *from, void *to)
534{
535 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
536 memset(from, data, to - from);
537}
538
539static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
540 u8 *object, char *what,
06428780 541 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
542{
543 u8 *fault;
544 u8 *end;
545
546 fault = check_bytes(start, value, bytes);
547 if (!fault)
548 return 1;
549
550 end = start + bytes;
551 while (end > fault && end[-1] == value)
552 end--;
553
554 slab_bug(s, "%s overwritten", what);
555 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556 fault, end - 1, fault[0], value);
557 print_trailer(s, page, object);
558
559 restore_bytes(s, what, value, fault, end);
560 return 0;
81819f0f
CL
561}
562
81819f0f
CL
563/*
564 * Object layout:
565 *
566 * object address
567 * Bytes of the object to be managed.
568 * If the freepointer may overlay the object then the free
569 * pointer is the first word of the object.
672bba3a 570 *
81819f0f
CL
571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * 0xa5 (POISON_END)
573 *
574 * object + s->objsize
575 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
576 * Padding is extended by another word if Redzoning is enabled and
577 * objsize == inuse.
578 *
81819f0f
CL
579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 0xcc (RED_ACTIVE) for objects in use.
581 *
582 * object + s->inuse
672bba3a
CL
583 * Meta data starts here.
584 *
81819f0f
CL
585 * A. Free pointer (if we cannot overwrite object on free)
586 * B. Tracking data for SLAB_STORE_USER
672bba3a 587 * C. Padding to reach required alignment boundary or at mininum
6446faa2 588 * one word if debugging is on to be able to detect writes
672bba3a
CL
589 * before the word boundary.
590 *
591 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
592 *
593 * object + s->size
672bba3a 594 * Nothing is used beyond s->size.
81819f0f 595 *
672bba3a
CL
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
598 * may be used with merged slabcaches.
599 */
600
81819f0f
CL
601static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
602{
603 unsigned long off = s->inuse; /* The end of info */
604
605 if (s->offset)
606 /* Freepointer is placed after the object. */
607 off += sizeof(void *);
608
609 if (s->flags & SLAB_STORE_USER)
610 /* We also have user information there */
611 off += 2 * sizeof(struct track);
612
613 if (s->size == off)
614 return 1;
615
24922684
CL
616 return check_bytes_and_report(s, page, p, "Object padding",
617 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
618}
619
39b26464 620/* Check the pad bytes at the end of a slab page */
81819f0f
CL
621static int slab_pad_check(struct kmem_cache *s, struct page *page)
622{
24922684
CL
623 u8 *start;
624 u8 *fault;
625 u8 *end;
626 int length;
627 int remainder;
81819f0f
CL
628
629 if (!(s->flags & SLAB_POISON))
630 return 1;
631
a973e9dd 632 start = page_address(page);
834f3d11 633 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
634 end = start + length;
635 remainder = length % s->size;
81819f0f
CL
636 if (!remainder)
637 return 1;
638
39b26464 639 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
640 if (!fault)
641 return 1;
642 while (end > fault && end[-1] == POISON_INUSE)
643 end--;
644
645 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 646 print_section("Padding", end - remainder, remainder);
24922684
CL
647
648 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
649 return 0;
81819f0f
CL
650}
651
652static int check_object(struct kmem_cache *s, struct page *page,
653 void *object, int active)
654{
655 u8 *p = object;
656 u8 *endobject = object + s->objsize;
657
658 if (s->flags & SLAB_RED_ZONE) {
659 unsigned int red =
660 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
661
24922684
CL
662 if (!check_bytes_and_report(s, page, object, "Redzone",
663 endobject, red, s->inuse - s->objsize))
81819f0f 664 return 0;
81819f0f 665 } else {
3adbefee
IM
666 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
667 check_bytes_and_report(s, page, p, "Alignment padding",
668 endobject, POISON_INUSE, s->inuse - s->objsize);
669 }
81819f0f
CL
670 }
671
672 if (s->flags & SLAB_POISON) {
673 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
674 (!check_bytes_and_report(s, page, p, "Poison", p,
675 POISON_FREE, s->objsize - 1) ||
676 !check_bytes_and_report(s, page, p, "Poison",
06428780 677 p + s->objsize - 1, POISON_END, 1)))
81819f0f 678 return 0;
81819f0f
CL
679 /*
680 * check_pad_bytes cleans up on its own.
681 */
682 check_pad_bytes(s, page, p);
683 }
684
685 if (!s->offset && active)
686 /*
687 * Object and freepointer overlap. Cannot check
688 * freepointer while object is allocated.
689 */
690 return 1;
691
692 /* Check free pointer validity */
693 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
694 object_err(s, page, p, "Freepointer corrupt");
695 /*
9f6c708e 696 * No choice but to zap it and thus lose the remainder
81819f0f 697 * of the free objects in this slab. May cause
672bba3a 698 * another error because the object count is now wrong.
81819f0f 699 */
a973e9dd 700 set_freepointer(s, p, NULL);
81819f0f
CL
701 return 0;
702 }
703 return 1;
704}
705
706static int check_slab(struct kmem_cache *s, struct page *page)
707{
39b26464
CL
708 int maxobj;
709
81819f0f
CL
710 VM_BUG_ON(!irqs_disabled());
711
712 if (!PageSlab(page)) {
24922684 713 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
714 return 0;
715 }
39b26464
CL
716
717 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
718 if (page->objects > maxobj) {
719 slab_err(s, page, "objects %u > max %u",
720 s->name, page->objects, maxobj);
721 return 0;
722 }
723 if (page->inuse > page->objects) {
24922684 724 slab_err(s, page, "inuse %u > max %u",
39b26464 725 s->name, page->inuse, page->objects);
81819f0f
CL
726 return 0;
727 }
728 /* Slab_pad_check fixes things up after itself */
729 slab_pad_check(s, page);
730 return 1;
731}
732
733/*
672bba3a
CL
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
736 */
737static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738{
739 int nr = 0;
740 void *fp = page->freelist;
741 void *object = NULL;
224a88be 742 unsigned long max_objects;
81819f0f 743
39b26464 744 while (fp && nr <= page->objects) {
81819f0f
CL
745 if (fp == search)
746 return 1;
747 if (!check_valid_pointer(s, page, fp)) {
748 if (object) {
749 object_err(s, page, object,
750 "Freechain corrupt");
a973e9dd 751 set_freepointer(s, object, NULL);
81819f0f
CL
752 break;
753 } else {
24922684 754 slab_err(s, page, "Freepointer corrupt");
a973e9dd 755 page->freelist = NULL;
39b26464 756 page->inuse = page->objects;
24922684 757 slab_fix(s, "Freelist cleared");
81819f0f
CL
758 return 0;
759 }
760 break;
761 }
762 object = fp;
763 fp = get_freepointer(s, object);
764 nr++;
765 }
766
224a88be 767 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
768 if (max_objects > MAX_OBJS_PER_PAGE)
769 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
770
771 if (page->objects != max_objects) {
772 slab_err(s, page, "Wrong number of objects. Found %d but "
773 "should be %d", page->objects, max_objects);
774 page->objects = max_objects;
775 slab_fix(s, "Number of objects adjusted.");
776 }
39b26464 777 if (page->inuse != page->objects - nr) {
70d71228 778 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
779 "counted were %d", page->inuse, page->objects - nr);
780 page->inuse = page->objects - nr;
24922684 781 slab_fix(s, "Object count adjusted.");
81819f0f
CL
782 }
783 return search == NULL;
784}
785
0121c619
CL
786static void trace(struct kmem_cache *s, struct page *page, void *object,
787 int alloc)
3ec09742
CL
788{
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801}
802
643b1138 803/*
672bba3a 804 * Tracking of fully allocated slabs for debugging purposes.
643b1138 805 */
e95eed57 806static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 807{
643b1138
CL
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811}
812
813static void remove_full(struct kmem_cache *s, struct page *page)
814{
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825}
826
0f389ec6
CL
827/* Tracking of the number of slabs for debugging purposes */
828static inline unsigned long slabs_node(struct kmem_cache *s, int node)
829{
830 struct kmem_cache_node *n = get_node(s, node);
831
832 return atomic_long_read(&n->nr_slabs);
833}
834
26c02cf0
AB
835static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
836{
837 return atomic_long_read(&n->nr_slabs);
838}
839
205ab99d 840static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
841{
842 struct kmem_cache_node *n = get_node(s, node);
843
844 /*
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
849 */
205ab99d 850 if (!NUMA_BUILD || n) {
0f389ec6 851 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
852 atomic_long_add(objects, &n->total_objects);
853 }
0f389ec6 854}
205ab99d 855static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
856{
857 struct kmem_cache_node *n = get_node(s, node);
858
859 atomic_long_dec(&n->nr_slabs);
205ab99d 860 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
861}
862
863/* Object debug checks for alloc/free paths */
3ec09742
CL
864static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 void *object)
866{
867 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 return;
869
870 init_object(s, object, 0);
871 init_tracking(s, object);
872}
873
874static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 875 void *object, unsigned long addr)
81819f0f
CL
876{
877 if (!check_slab(s, page))
878 goto bad;
879
d692ef6d 880 if (!on_freelist(s, page, object)) {
24922684 881 object_err(s, page, object, "Object already allocated");
70d71228 882 goto bad;
81819f0f
CL
883 }
884
885 if (!check_valid_pointer(s, page, object)) {
886 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 887 goto bad;
81819f0f
CL
888 }
889
d692ef6d 890 if (!check_object(s, page, object, 0))
81819f0f 891 goto bad;
81819f0f 892
3ec09742
CL
893 /* Success perform special debug activities for allocs */
894 if (s->flags & SLAB_STORE_USER)
895 set_track(s, object, TRACK_ALLOC, addr);
896 trace(s, page, object, 1);
897 init_object(s, object, 1);
81819f0f 898 return 1;
3ec09742 899
81819f0f
CL
900bad:
901 if (PageSlab(page)) {
902 /*
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
672bba3a 905 * as used avoids touching the remaining objects.
81819f0f 906 */
24922684 907 slab_fix(s, "Marking all objects used");
39b26464 908 page->inuse = page->objects;
a973e9dd 909 page->freelist = NULL;
81819f0f
CL
910 }
911 return 0;
912}
913
3ec09742 914static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 915 void *object, unsigned long addr)
81819f0f
CL
916{
917 if (!check_slab(s, page))
918 goto fail;
919
920 if (!check_valid_pointer(s, page, object)) {
70d71228 921 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
922 goto fail;
923 }
924
925 if (on_freelist(s, page, object)) {
24922684 926 object_err(s, page, object, "Object already free");
81819f0f
CL
927 goto fail;
928 }
929
930 if (!check_object(s, page, object, 1))
931 return 0;
932
933 if (unlikely(s != page->slab)) {
3adbefee 934 if (!PageSlab(page)) {
70d71228
CL
935 slab_err(s, page, "Attempt to free object(0x%p) "
936 "outside of slab", object);
3adbefee 937 } else if (!page->slab) {
81819f0f 938 printk(KERN_ERR
70d71228 939 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 940 object);
70d71228 941 dump_stack();
06428780 942 } else
24922684
CL
943 object_err(s, page, object,
944 "page slab pointer corrupt.");
81819f0f
CL
945 goto fail;
946 }
3ec09742
CL
947
948 /* Special debug activities for freeing objects */
8a38082d 949 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
950 remove_full(s, page);
951 if (s->flags & SLAB_STORE_USER)
952 set_track(s, object, TRACK_FREE, addr);
953 trace(s, page, object, 0);
954 init_object(s, object, 0);
81819f0f 955 return 1;
3ec09742 956
81819f0f 957fail:
24922684 958 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
959 return 0;
960}
961
41ecc55b
CL
962static int __init setup_slub_debug(char *str)
963{
f0630fff
CL
964 slub_debug = DEBUG_DEFAULT_FLAGS;
965 if (*str++ != '=' || !*str)
966 /*
967 * No options specified. Switch on full debugging.
968 */
969 goto out;
970
971 if (*str == ',')
972 /*
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
975 */
976 goto check_slabs;
977
978 slub_debug = 0;
979 if (*str == '-')
980 /*
981 * Switch off all debugging measures.
982 */
983 goto out;
984
985 /*
986 * Determine which debug features should be switched on
987 */
06428780 988 for (; *str && *str != ','; str++) {
f0630fff
CL
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 default:
1006 printk(KERN_ERR "slub_debug option '%c' "
06428780 1007 "unknown. skipped\n", *str);
f0630fff 1008 }
41ecc55b
CL
1009 }
1010
f0630fff 1011check_slabs:
41ecc55b
CL
1012 if (*str == ',')
1013 slub_debug_slabs = str + 1;
f0630fff 1014out:
41ecc55b
CL
1015 return 1;
1016}
1017
1018__setup("slub_debug", setup_slub_debug);
1019
ba0268a8
CL
1020static unsigned long kmem_cache_flags(unsigned long objsize,
1021 unsigned long flags, const char *name,
51cc5068 1022 void (*ctor)(void *))
41ecc55b
CL
1023{
1024 /*
e153362a 1025 * Enable debugging if selected on the kernel commandline.
41ecc55b 1026 */
e153362a
CL
1027 if (slub_debug && (!slub_debug_slabs ||
1028 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1029 flags |= slub_debug;
ba0268a8
CL
1030
1031 return flags;
41ecc55b
CL
1032}
1033#else
3ec09742
CL
1034static inline void setup_object_debug(struct kmem_cache *s,
1035 struct page *page, void *object) {}
41ecc55b 1036
3ec09742 1037static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1038 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1039
3ec09742 1040static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1041 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1042
41ecc55b
CL
1043static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1044 { return 1; }
1045static inline int check_object(struct kmem_cache *s, struct page *page,
1046 void *object, int active) { return 1; }
3ec09742 1047static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1048static inline unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
51cc5068 1050 void (*ctor)(void *))
ba0268a8
CL
1051{
1052 return flags;
1053}
41ecc55b 1054#define slub_debug 0
0f389ec6
CL
1055
1056static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
26c02cf0
AB
1058static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 { return 0; }
205ab99d
CL
1060static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
41ecc55b 1064#endif
205ab99d 1065
81819f0f
CL
1066/*
1067 * Slab allocation and freeing
1068 */
65c3376a
CL
1069static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071{
1072 int order = oo_order(oo);
1073
1074 if (node == -1)
1075 return alloc_pages(flags, order);
1076 else
1077 return alloc_pages_node(node, flags, order);
1078}
1079
81819f0f
CL
1080static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1081{
06428780 1082 struct page *page;
834f3d11 1083 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1084
b7a49f0d 1085 flags |= s->allocflags;
e12ba74d 1086
65c3376a
CL
1087 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1088 oo);
1089 if (unlikely(!page)) {
1090 oo = s->min;
1091 /*
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1094 */
1095 page = alloc_slab_page(flags, node, oo);
1096 if (!page)
1097 return NULL;
81819f0f 1098
65c3376a
CL
1099 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1100 }
834f3d11 1101 page->objects = oo_objects(oo);
81819f0f
CL
1102 mod_zone_page_state(page_zone(page),
1103 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1104 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1105 1 << oo_order(oo));
81819f0f
CL
1106
1107 return page;
1108}
1109
1110static void setup_object(struct kmem_cache *s, struct page *page,
1111 void *object)
1112{
3ec09742 1113 setup_object_debug(s, page, object);
4f104934 1114 if (unlikely(s->ctor))
51cc5068 1115 s->ctor(object);
81819f0f
CL
1116}
1117
1118static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1119{
1120 struct page *page;
81819f0f 1121 void *start;
81819f0f
CL
1122 void *last;
1123 void *p;
1124
6cb06229 1125 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1126
6cb06229
CL
1127 page = allocate_slab(s,
1128 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1129 if (!page)
1130 goto out;
1131
205ab99d 1132 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1133 page->slab = s;
1134 page->flags |= 1 << PG_slab;
1135 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1136 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1137 __SetPageSlubDebug(page);
81819f0f
CL
1138
1139 start = page_address(page);
81819f0f
CL
1140
1141 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1142 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1143
1144 last = start;
224a88be 1145 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1149 }
1150 setup_object(s, page, last);
a973e9dd 1151 set_freepointer(s, last, NULL);
81819f0f
CL
1152
1153 page->freelist = start;
1154 page->inuse = 0;
1155out:
81819f0f
CL
1156 return page;
1157}
1158
1159static void __free_slab(struct kmem_cache *s, struct page *page)
1160{
834f3d11
CL
1161 int order = compound_order(page);
1162 int pages = 1 << order;
81819f0f 1163
8a38082d 1164 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1165 void *p;
1166
1167 slab_pad_check(s, page);
224a88be
CL
1168 for_each_object(p, s, page_address(page),
1169 page->objects)
81819f0f 1170 check_object(s, page, p, 0);
8a38082d 1171 __ClearPageSlubDebug(page);
81819f0f
CL
1172 }
1173
1174 mod_zone_page_state(page_zone(page),
1175 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1176 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1177 -pages);
81819f0f 1178
49bd5221
CL
1179 __ClearPageSlab(page);
1180 reset_page_mapcount(page);
1eb5ac64
NP
1181 if (current->reclaim_state)
1182 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1183 __free_pages(page, order);
81819f0f
CL
1184}
1185
1186static void rcu_free_slab(struct rcu_head *h)
1187{
1188 struct page *page;
1189
1190 page = container_of((struct list_head *)h, struct page, lru);
1191 __free_slab(page->slab, page);
1192}
1193
1194static void free_slab(struct kmem_cache *s, struct page *page)
1195{
1196 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1197 /*
1198 * RCU free overloads the RCU head over the LRU
1199 */
1200 struct rcu_head *head = (void *)&page->lru;
1201
1202 call_rcu(head, rcu_free_slab);
1203 } else
1204 __free_slab(s, page);
1205}
1206
1207static void discard_slab(struct kmem_cache *s, struct page *page)
1208{
205ab99d 1209 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1210 free_slab(s, page);
1211}
1212
1213/*
1214 * Per slab locking using the pagelock
1215 */
1216static __always_inline void slab_lock(struct page *page)
1217{
1218 bit_spin_lock(PG_locked, &page->flags);
1219}
1220
1221static __always_inline void slab_unlock(struct page *page)
1222{
a76d3546 1223 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1224}
1225
1226static __always_inline int slab_trylock(struct page *page)
1227{
1228 int rc = 1;
1229
1230 rc = bit_spin_trylock(PG_locked, &page->flags);
1231 return rc;
1232}
1233
1234/*
1235 * Management of partially allocated slabs
1236 */
7c2e132c
CL
1237static void add_partial(struct kmem_cache_node *n,
1238 struct page *page, int tail)
81819f0f 1239{
e95eed57
CL
1240 spin_lock(&n->list_lock);
1241 n->nr_partial++;
7c2e132c
CL
1242 if (tail)
1243 list_add_tail(&page->lru, &n->partial);
1244 else
1245 list_add(&page->lru, &n->partial);
81819f0f
CL
1246 spin_unlock(&n->list_lock);
1247}
1248
0121c619 1249static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1250{
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1257}
1258
1259/*
672bba3a 1260 * Lock slab and remove from the partial list.
81819f0f 1261 *
672bba3a 1262 * Must hold list_lock.
81819f0f 1263 */
0121c619
CL
1264static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1265 struct page *page)
81819f0f
CL
1266{
1267 if (slab_trylock(page)) {
1268 list_del(&page->lru);
1269 n->nr_partial--;
8a38082d 1270 __SetPageSlubFrozen(page);
81819f0f
CL
1271 return 1;
1272 }
1273 return 0;
1274}
1275
1276/*
672bba3a 1277 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1278 */
1279static struct page *get_partial_node(struct kmem_cache_node *n)
1280{
1281 struct page *page;
1282
1283 /*
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1286 * partial slab and there is none available then get_partials()
1287 * will return NULL.
81819f0f
CL
1288 */
1289 if (!n || !n->nr_partial)
1290 return NULL;
1291
1292 spin_lock(&n->list_lock);
1293 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1294 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1295 goto out;
1296 page = NULL;
1297out:
1298 spin_unlock(&n->list_lock);
1299 return page;
1300}
1301
1302/*
672bba3a 1303 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1304 */
1305static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1306{
1307#ifdef CONFIG_NUMA
1308 struct zonelist *zonelist;
dd1a239f 1309 struct zoneref *z;
54a6eb5c
MG
1310 struct zone *zone;
1311 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1312 struct page *page;
1313
1314 /*
672bba3a
CL
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1319 *
672bba3a
CL
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
81819f0f 1324 *
6446faa2 1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
81819f0f 1331 */
9824601e
CL
1332 if (!s->remote_node_defrag_ratio ||
1333 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1334 return NULL;
1335
0e88460d 1336 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1337 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1338 struct kmem_cache_node *n;
1339
54a6eb5c 1340 n = get_node(s, zone_to_nid(zone));
81819f0f 1341
54a6eb5c 1342 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1343 n->nr_partial > s->min_partial) {
81819f0f
CL
1344 page = get_partial_node(n);
1345 if (page)
1346 return page;
1347 }
1348 }
1349#endif
1350 return NULL;
1351}
1352
1353/*
1354 * Get a partial page, lock it and return it.
1355 */
1356static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
1359 int searchnode = (node == -1) ? numa_node_id() : node;
1360
1361 page = get_partial_node(get_node(s, searchnode));
1362 if (page || (flags & __GFP_THISNODE))
1363 return page;
1364
1365 return get_any_partial(s, flags);
1366}
1367
1368/*
1369 * Move a page back to the lists.
1370 *
1371 * Must be called with the slab lock held.
1372 *
1373 * On exit the slab lock will have been dropped.
1374 */
7c2e132c 1375static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1376{
e95eed57 1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1378 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1379
8a38082d 1380 __ClearPageSlubFrozen(page);
81819f0f 1381 if (page->inuse) {
e95eed57 1382
a973e9dd 1383 if (page->freelist) {
7c2e132c 1384 add_partial(n, page, tail);
8ff12cfc
CL
1385 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1386 } else {
1387 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1388 if (SLABDEBUG && PageSlubDebug(page) &&
1389 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1390 add_full(n, page);
1391 }
81819f0f
CL
1392 slab_unlock(page);
1393 } else {
8ff12cfc 1394 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1395 if (n->nr_partial < s->min_partial) {
e95eed57 1396 /*
672bba3a
CL
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
6446faa2
CL
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1402 *
0121c619
CL
1403 * kmem_cache_shrink can reclaim any empty slabs from
1404 * the partial list.
e95eed57 1405 */
7c2e132c 1406 add_partial(n, page, 1);
e95eed57
CL
1407 slab_unlock(page);
1408 } else {
1409 slab_unlock(page);
8ff12cfc 1410 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1411 discard_slab(s, page);
1412 }
81819f0f
CL
1413 }
1414}
1415
1416/*
1417 * Remove the cpu slab
1418 */
dfb4f096 1419static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1420{
dfb4f096 1421 struct page *page = c->page;
7c2e132c 1422 int tail = 1;
8ff12cfc 1423
b773ad73 1424 if (page->freelist)
8ff12cfc 1425 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1426 /*
6446faa2 1427 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1428 * because both freelists are empty. So this is unlikely
1429 * to occur.
1430 */
a973e9dd 1431 while (unlikely(c->freelist)) {
894b8788
CL
1432 void **object;
1433
7c2e132c
CL
1434 tail = 0; /* Hot objects. Put the slab first */
1435
894b8788 1436 /* Retrieve object from cpu_freelist */
dfb4f096 1437 object = c->freelist;
b3fba8da 1438 c->freelist = c->freelist[c->offset];
894b8788
CL
1439
1440 /* And put onto the regular freelist */
b3fba8da 1441 object[c->offset] = page->freelist;
894b8788
CL
1442 page->freelist = object;
1443 page->inuse--;
1444 }
dfb4f096 1445 c->page = NULL;
7c2e132c 1446 unfreeze_slab(s, page, tail);
81819f0f
CL
1447}
1448
dfb4f096 1449static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1450{
8ff12cfc 1451 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1452 slab_lock(c->page);
1453 deactivate_slab(s, c);
81819f0f
CL
1454}
1455
1456/*
1457 * Flush cpu slab.
6446faa2 1458 *
81819f0f
CL
1459 * Called from IPI handler with interrupts disabled.
1460 */
0c710013 1461static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1462{
dfb4f096 1463 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1464
dfb4f096
CL
1465 if (likely(c && c->page))
1466 flush_slab(s, c);
81819f0f
CL
1467}
1468
1469static void flush_cpu_slab(void *d)
1470{
1471 struct kmem_cache *s = d;
81819f0f 1472
dfb4f096 1473 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1474}
1475
1476static void flush_all(struct kmem_cache *s)
1477{
15c8b6c1 1478 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1479}
1480
dfb4f096
CL
1481/*
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1484 */
1485static inline int node_match(struct kmem_cache_cpu *c, int node)
1486{
1487#ifdef CONFIG_NUMA
1488 if (node != -1 && c->node != node)
1489 return 0;
1490#endif
1491 return 1;
1492}
1493
781b2ba6
PE
1494static int count_free(struct page *page)
1495{
1496 return page->objects - page->inuse;
1497}
1498
1499static unsigned long count_partial(struct kmem_cache_node *n,
1500 int (*get_count)(struct page *))
1501{
1502 unsigned long flags;
1503 unsigned long x = 0;
1504 struct page *page;
1505
1506 spin_lock_irqsave(&n->list_lock, flags);
1507 list_for_each_entry(page, &n->partial, lru)
1508 x += get_count(page);
1509 spin_unlock_irqrestore(&n->list_lock, flags);
1510 return x;
1511}
1512
26c02cf0
AB
1513static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1514{
1515#ifdef CONFIG_SLUB_DEBUG
1516 return atomic_long_read(&n->total_objects);
1517#else
1518 return 0;
1519#endif
1520}
1521
781b2ba6
PE
1522static noinline void
1523slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1524{
1525 int node;
1526
1527 printk(KERN_WARNING
1528 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 nid, gfpflags);
1530 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1531 "default order: %d, min order: %d\n", s->name, s->objsize,
1532 s->size, oo_order(s->oo), oo_order(s->min));
1533
1534 for_each_online_node(node) {
1535 struct kmem_cache_node *n = get_node(s, node);
1536 unsigned long nr_slabs;
1537 unsigned long nr_objs;
1538 unsigned long nr_free;
1539
1540 if (!n)
1541 continue;
1542
26c02cf0
AB
1543 nr_free = count_partial(n, count_free);
1544 nr_slabs = node_nr_slabs(n);
1545 nr_objs = node_nr_objs(n);
781b2ba6
PE
1546
1547 printk(KERN_WARNING
1548 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1549 node, nr_slabs, nr_objs, nr_free);
1550 }
1551}
1552
81819f0f 1553/*
894b8788
CL
1554 * Slow path. The lockless freelist is empty or we need to perform
1555 * debugging duties.
1556 *
1557 * Interrupts are disabled.
81819f0f 1558 *
894b8788
CL
1559 * Processing is still very fast if new objects have been freed to the
1560 * regular freelist. In that case we simply take over the regular freelist
1561 * as the lockless freelist and zap the regular freelist.
81819f0f 1562 *
894b8788
CL
1563 * If that is not working then we fall back to the partial lists. We take the
1564 * first element of the freelist as the object to allocate now and move the
1565 * rest of the freelist to the lockless freelist.
81819f0f 1566 *
894b8788 1567 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1568 * we need to allocate a new slab. This is the slowest path since it involves
1569 * a call to the page allocator and the setup of a new slab.
81819f0f 1570 */
ce71e27c
EGM
1571static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1572 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1573{
81819f0f 1574 void **object;
dfb4f096 1575 struct page *new;
81819f0f 1576
e72e9c23
LT
1577 /* We handle __GFP_ZERO in the caller */
1578 gfpflags &= ~__GFP_ZERO;
1579
dfb4f096 1580 if (!c->page)
81819f0f
CL
1581 goto new_slab;
1582
dfb4f096
CL
1583 slab_lock(c->page);
1584 if (unlikely(!node_match(c, node)))
81819f0f 1585 goto another_slab;
6446faa2 1586
8ff12cfc 1587 stat(c, ALLOC_REFILL);
6446faa2 1588
894b8788 1589load_freelist:
dfb4f096 1590 object = c->page->freelist;
a973e9dd 1591 if (unlikely(!object))
81819f0f 1592 goto another_slab;
8a38082d 1593 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1594 goto debug;
1595
b3fba8da 1596 c->freelist = object[c->offset];
39b26464 1597 c->page->inuse = c->page->objects;
a973e9dd 1598 c->page->freelist = NULL;
dfb4f096 1599 c->node = page_to_nid(c->page);
1f84260c 1600unlock_out:
dfb4f096 1601 slab_unlock(c->page);
8ff12cfc 1602 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1603 return object;
1604
1605another_slab:
dfb4f096 1606 deactivate_slab(s, c);
81819f0f
CL
1607
1608new_slab:
dfb4f096
CL
1609 new = get_partial(s, gfpflags, node);
1610 if (new) {
1611 c->page = new;
8ff12cfc 1612 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1613 goto load_freelist;
81819f0f
CL
1614 }
1615
b811c202
CL
1616 if (gfpflags & __GFP_WAIT)
1617 local_irq_enable();
1618
dfb4f096 1619 new = new_slab(s, gfpflags, node);
b811c202
CL
1620
1621 if (gfpflags & __GFP_WAIT)
1622 local_irq_disable();
1623
dfb4f096
CL
1624 if (new) {
1625 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1626 stat(c, ALLOC_SLAB);
05aa3450 1627 if (c->page)
dfb4f096 1628 flush_slab(s, c);
dfb4f096 1629 slab_lock(new);
8a38082d 1630 __SetPageSlubFrozen(new);
dfb4f096 1631 c->page = new;
4b6f0750 1632 goto load_freelist;
81819f0f 1633 }
781b2ba6 1634 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1635 return NULL;
81819f0f 1636debug:
dfb4f096 1637 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1638 goto another_slab;
894b8788 1639
dfb4f096 1640 c->page->inuse++;
b3fba8da 1641 c->page->freelist = object[c->offset];
ee3c72a1 1642 c->node = -1;
1f84260c 1643 goto unlock_out;
894b8788
CL
1644}
1645
1646/*
1647 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1648 * have the fastpath folded into their functions. So no function call
1649 * overhead for requests that can be satisfied on the fastpath.
1650 *
1651 * The fastpath works by first checking if the lockless freelist can be used.
1652 * If not then __slab_alloc is called for slow processing.
1653 *
1654 * Otherwise we can simply pick the next object from the lockless free list.
1655 */
06428780 1656static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1657 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1658{
894b8788 1659 void **object;
dfb4f096 1660 struct kmem_cache_cpu *c;
1f84260c 1661 unsigned long flags;
bdb21928 1662 unsigned int objsize;
1f84260c 1663
cf40bd16 1664 lockdep_trace_alloc(gfpflags);
89124d70 1665 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1666
773ff60e
AM
1667 if (should_failslab(s->objsize, gfpflags))
1668 return NULL;
1f84260c 1669
894b8788 1670 local_irq_save(flags);
dfb4f096 1671 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1672 objsize = c->objsize;
a973e9dd 1673 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1674
dfb4f096 1675 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1676
1677 else {
dfb4f096 1678 object = c->freelist;
b3fba8da 1679 c->freelist = object[c->offset];
8ff12cfc 1680 stat(c, ALLOC_FASTPATH);
894b8788
CL
1681 }
1682 local_irq_restore(flags);
d07dbea4
CL
1683
1684 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1685 memset(object, 0, objsize);
d07dbea4 1686
894b8788 1687 return object;
81819f0f
CL
1688}
1689
1690void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1691{
5b882be4
EGM
1692 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1693
ca2b84cb 1694 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1695
1696 return ret;
81819f0f
CL
1697}
1698EXPORT_SYMBOL(kmem_cache_alloc);
1699
5b882be4
EGM
1700#ifdef CONFIG_KMEMTRACE
1701void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1702{
1703 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1704}
1705EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1706#endif
1707
81819f0f
CL
1708#ifdef CONFIG_NUMA
1709void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1710{
5b882be4
EGM
1711 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1712
ca2b84cb
EGM
1713 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1714 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1715
1716 return ret;
81819f0f
CL
1717}
1718EXPORT_SYMBOL(kmem_cache_alloc_node);
1719#endif
1720
5b882be4
EGM
1721#ifdef CONFIG_KMEMTRACE
1722void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1723 gfp_t gfpflags,
1724 int node)
1725{
1726 return slab_alloc(s, gfpflags, node, _RET_IP_);
1727}
1728EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1729#endif
1730
81819f0f 1731/*
894b8788
CL
1732 * Slow patch handling. This may still be called frequently since objects
1733 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1734 *
894b8788
CL
1735 * So we still attempt to reduce cache line usage. Just take the slab
1736 * lock and free the item. If there is no additional partial page
1737 * handling required then we can return immediately.
81819f0f 1738 */
894b8788 1739static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1740 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1741{
1742 void *prior;
1743 void **object = (void *)x;
8ff12cfc 1744 struct kmem_cache_cpu *c;
81819f0f 1745
8ff12cfc
CL
1746 c = get_cpu_slab(s, raw_smp_processor_id());
1747 stat(c, FREE_SLOWPATH);
81819f0f
CL
1748 slab_lock(page);
1749
8a38082d 1750 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1751 goto debug;
6446faa2 1752
81819f0f 1753checks_ok:
b3fba8da 1754 prior = object[offset] = page->freelist;
81819f0f
CL
1755 page->freelist = object;
1756 page->inuse--;
1757
8a38082d 1758 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1759 stat(c, FREE_FROZEN);
81819f0f 1760 goto out_unlock;
8ff12cfc 1761 }
81819f0f
CL
1762
1763 if (unlikely(!page->inuse))
1764 goto slab_empty;
1765
1766 /*
6446faa2 1767 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1768 * then add it.
1769 */
a973e9dd 1770 if (unlikely(!prior)) {
7c2e132c 1771 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1772 stat(c, FREE_ADD_PARTIAL);
1773 }
81819f0f
CL
1774
1775out_unlock:
1776 slab_unlock(page);
81819f0f
CL
1777 return;
1778
1779slab_empty:
a973e9dd 1780 if (prior) {
81819f0f 1781 /*
672bba3a 1782 * Slab still on the partial list.
81819f0f
CL
1783 */
1784 remove_partial(s, page);
8ff12cfc
CL
1785 stat(c, FREE_REMOVE_PARTIAL);
1786 }
81819f0f 1787 slab_unlock(page);
8ff12cfc 1788 stat(c, FREE_SLAB);
81819f0f 1789 discard_slab(s, page);
81819f0f
CL
1790 return;
1791
1792debug:
3ec09742 1793 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1794 goto out_unlock;
77c5e2d0 1795 goto checks_ok;
81819f0f
CL
1796}
1797
894b8788
CL
1798/*
1799 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1800 * can perform fastpath freeing without additional function calls.
1801 *
1802 * The fastpath is only possible if we are freeing to the current cpu slab
1803 * of this processor. This typically the case if we have just allocated
1804 * the item before.
1805 *
1806 * If fastpath is not possible then fall back to __slab_free where we deal
1807 * with all sorts of special processing.
1808 */
06428780 1809static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1810 struct page *page, void *x, unsigned long addr)
894b8788
CL
1811{
1812 void **object = (void *)x;
dfb4f096 1813 struct kmem_cache_cpu *c;
1f84260c
CL
1814 unsigned long flags;
1815
894b8788 1816 local_irq_save(flags);
dfb4f096 1817 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1818 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1819 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1820 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1821 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1822 object[c->offset] = c->freelist;
dfb4f096 1823 c->freelist = object;
8ff12cfc 1824 stat(c, FREE_FASTPATH);
894b8788 1825 } else
b3fba8da 1826 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1827
1828 local_irq_restore(flags);
1829}
1830
81819f0f
CL
1831void kmem_cache_free(struct kmem_cache *s, void *x)
1832{
77c5e2d0 1833 struct page *page;
81819f0f 1834
b49af68f 1835 page = virt_to_head_page(x);
81819f0f 1836
ce71e27c 1837 slab_free(s, page, x, _RET_IP_);
5b882be4 1838
ca2b84cb 1839 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1840}
1841EXPORT_SYMBOL(kmem_cache_free);
1842
e9beef18 1843/* Figure out on which slab page the object resides */
81819f0f
CL
1844static struct page *get_object_page(const void *x)
1845{
b49af68f 1846 struct page *page = virt_to_head_page(x);
81819f0f
CL
1847
1848 if (!PageSlab(page))
1849 return NULL;
1850
1851 return page;
1852}
1853
1854/*
672bba3a
CL
1855 * Object placement in a slab is made very easy because we always start at
1856 * offset 0. If we tune the size of the object to the alignment then we can
1857 * get the required alignment by putting one properly sized object after
1858 * another.
81819f0f
CL
1859 *
1860 * Notice that the allocation order determines the sizes of the per cpu
1861 * caches. Each processor has always one slab available for allocations.
1862 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1863 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1864 * locking overhead.
81819f0f
CL
1865 */
1866
1867/*
1868 * Mininum / Maximum order of slab pages. This influences locking overhead
1869 * and slab fragmentation. A higher order reduces the number of partial slabs
1870 * and increases the number of allocations possible without having to
1871 * take the list_lock.
1872 */
1873static int slub_min_order;
114e9e89 1874static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1875static int slub_min_objects;
81819f0f
CL
1876
1877/*
1878 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1879 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1880 */
1881static int slub_nomerge;
1882
81819f0f
CL
1883/*
1884 * Calculate the order of allocation given an slab object size.
1885 *
672bba3a
CL
1886 * The order of allocation has significant impact on performance and other
1887 * system components. Generally order 0 allocations should be preferred since
1888 * order 0 does not cause fragmentation in the page allocator. Larger objects
1889 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1890 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1891 * would be wasted.
1892 *
1893 * In order to reach satisfactory performance we must ensure that a minimum
1894 * number of objects is in one slab. Otherwise we may generate too much
1895 * activity on the partial lists which requires taking the list_lock. This is
1896 * less a concern for large slabs though which are rarely used.
81819f0f 1897 *
672bba3a
CL
1898 * slub_max_order specifies the order where we begin to stop considering the
1899 * number of objects in a slab as critical. If we reach slub_max_order then
1900 * we try to keep the page order as low as possible. So we accept more waste
1901 * of space in favor of a small page order.
81819f0f 1902 *
672bba3a
CL
1903 * Higher order allocations also allow the placement of more objects in a
1904 * slab and thereby reduce object handling overhead. If the user has
1905 * requested a higher mininum order then we start with that one instead of
1906 * the smallest order which will fit the object.
81819f0f 1907 */
5e6d444e
CL
1908static inline int slab_order(int size, int min_objects,
1909 int max_order, int fract_leftover)
81819f0f
CL
1910{
1911 int order;
1912 int rem;
6300ea75 1913 int min_order = slub_min_order;
81819f0f 1914
210b5c06
CG
1915 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1916 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1917
6300ea75 1918 for (order = max(min_order,
5e6d444e
CL
1919 fls(min_objects * size - 1) - PAGE_SHIFT);
1920 order <= max_order; order++) {
81819f0f 1921
5e6d444e 1922 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1923
5e6d444e 1924 if (slab_size < min_objects * size)
81819f0f
CL
1925 continue;
1926
1927 rem = slab_size % size;
1928
5e6d444e 1929 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1930 break;
1931
1932 }
672bba3a 1933
81819f0f
CL
1934 return order;
1935}
1936
5e6d444e
CL
1937static inline int calculate_order(int size)
1938{
1939 int order;
1940 int min_objects;
1941 int fraction;
e8120ff1 1942 int max_objects;
5e6d444e
CL
1943
1944 /*
1945 * Attempt to find best configuration for a slab. This
1946 * works by first attempting to generate a layout with
1947 * the best configuration and backing off gradually.
1948 *
1949 * First we reduce the acceptable waste in a slab. Then
1950 * we reduce the minimum objects required in a slab.
1951 */
1952 min_objects = slub_min_objects;
9b2cd506
CL
1953 if (!min_objects)
1954 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1955 max_objects = (PAGE_SIZE << slub_max_order)/size;
1956 min_objects = min(min_objects, max_objects);
1957
5e6d444e 1958 while (min_objects > 1) {
c124f5b5 1959 fraction = 16;
5e6d444e
CL
1960 while (fraction >= 4) {
1961 order = slab_order(size, min_objects,
1962 slub_max_order, fraction);
1963 if (order <= slub_max_order)
1964 return order;
1965 fraction /= 2;
1966 }
e8120ff1 1967 min_objects --;
5e6d444e
CL
1968 }
1969
1970 /*
1971 * We were unable to place multiple objects in a slab. Now
1972 * lets see if we can place a single object there.
1973 */
1974 order = slab_order(size, 1, slub_max_order, 1);
1975 if (order <= slub_max_order)
1976 return order;
1977
1978 /*
1979 * Doh this slab cannot be placed using slub_max_order.
1980 */
1981 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 1982 if (order < MAX_ORDER)
5e6d444e
CL
1983 return order;
1984 return -ENOSYS;
1985}
1986
81819f0f 1987/*
672bba3a 1988 * Figure out what the alignment of the objects will be.
81819f0f
CL
1989 */
1990static unsigned long calculate_alignment(unsigned long flags,
1991 unsigned long align, unsigned long size)
1992{
1993 /*
6446faa2
CL
1994 * If the user wants hardware cache aligned objects then follow that
1995 * suggestion if the object is sufficiently large.
81819f0f 1996 *
6446faa2
CL
1997 * The hardware cache alignment cannot override the specified
1998 * alignment though. If that is greater then use it.
81819f0f 1999 */
b6210386
NP
2000 if (flags & SLAB_HWCACHE_ALIGN) {
2001 unsigned long ralign = cache_line_size();
2002 while (size <= ralign / 2)
2003 ralign /= 2;
2004 align = max(align, ralign);
2005 }
81819f0f
CL
2006
2007 if (align < ARCH_SLAB_MINALIGN)
b6210386 2008 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2009
2010 return ALIGN(align, sizeof(void *));
2011}
2012
dfb4f096
CL
2013static void init_kmem_cache_cpu(struct kmem_cache *s,
2014 struct kmem_cache_cpu *c)
2015{
2016 c->page = NULL;
a973e9dd 2017 c->freelist = NULL;
dfb4f096 2018 c->node = 0;
42a9fdbb
CL
2019 c->offset = s->offset / sizeof(void *);
2020 c->objsize = s->objsize;
62f75532
PE
2021#ifdef CONFIG_SLUB_STATS
2022 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2023#endif
dfb4f096
CL
2024}
2025
5595cffc
PE
2026static void
2027init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2028{
2029 n->nr_partial = 0;
81819f0f
CL
2030 spin_lock_init(&n->list_lock);
2031 INIT_LIST_HEAD(&n->partial);
8ab1372f 2032#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2033 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2034 atomic_long_set(&n->total_objects, 0);
643b1138 2035 INIT_LIST_HEAD(&n->full);
8ab1372f 2036#endif
81819f0f
CL
2037}
2038
4c93c355
CL
2039#ifdef CONFIG_SMP
2040/*
2041 * Per cpu array for per cpu structures.
2042 *
2043 * The per cpu array places all kmem_cache_cpu structures from one processor
2044 * close together meaning that it becomes possible that multiple per cpu
2045 * structures are contained in one cacheline. This may be particularly
2046 * beneficial for the kmalloc caches.
2047 *
2048 * A desktop system typically has around 60-80 slabs. With 100 here we are
2049 * likely able to get per cpu structures for all caches from the array defined
2050 * here. We must be able to cover all kmalloc caches during bootstrap.
2051 *
2052 * If the per cpu array is exhausted then fall back to kmalloc
2053 * of individual cachelines. No sharing is possible then.
2054 */
2055#define NR_KMEM_CACHE_CPU 100
2056
2057static DEFINE_PER_CPU(struct kmem_cache_cpu,
2058 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2059
2060static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2061static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2062
2063static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2064 int cpu, gfp_t flags)
2065{
2066 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2067
2068 if (c)
2069 per_cpu(kmem_cache_cpu_free, cpu) =
2070 (void *)c->freelist;
2071 else {
2072 /* Table overflow: So allocate ourselves */
2073 c = kmalloc_node(
2074 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2075 flags, cpu_to_node(cpu));
2076 if (!c)
2077 return NULL;
2078 }
2079
2080 init_kmem_cache_cpu(s, c);
2081 return c;
2082}
2083
2084static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2085{
2086 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2087 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2088 kfree(c);
2089 return;
2090 }
2091 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2092 per_cpu(kmem_cache_cpu_free, cpu) = c;
2093}
2094
2095static void free_kmem_cache_cpus(struct kmem_cache *s)
2096{
2097 int cpu;
2098
2099 for_each_online_cpu(cpu) {
2100 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2101
2102 if (c) {
2103 s->cpu_slab[cpu] = NULL;
2104 free_kmem_cache_cpu(c, cpu);
2105 }
2106 }
2107}
2108
2109static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2110{
2111 int cpu;
2112
2113 for_each_online_cpu(cpu) {
2114 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2115
2116 if (c)
2117 continue;
2118
2119 c = alloc_kmem_cache_cpu(s, cpu, flags);
2120 if (!c) {
2121 free_kmem_cache_cpus(s);
2122 return 0;
2123 }
2124 s->cpu_slab[cpu] = c;
2125 }
2126 return 1;
2127}
2128
2129/*
2130 * Initialize the per cpu array.
2131 */
2132static void init_alloc_cpu_cpu(int cpu)
2133{
2134 int i;
2135
174596a0 2136 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2137 return;
2138
2139 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2140 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2141
174596a0 2142 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2143}
2144
2145static void __init init_alloc_cpu(void)
2146{
2147 int cpu;
2148
2149 for_each_online_cpu(cpu)
2150 init_alloc_cpu_cpu(cpu);
2151 }
2152
2153#else
2154static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2155static inline void init_alloc_cpu(void) {}
2156
2157static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2158{
2159 init_kmem_cache_cpu(s, &s->cpu_slab);
2160 return 1;
2161}
2162#endif
2163
81819f0f
CL
2164#ifdef CONFIG_NUMA
2165/*
2166 * No kmalloc_node yet so do it by hand. We know that this is the first
2167 * slab on the node for this slabcache. There are no concurrent accesses
2168 * possible.
2169 *
2170 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2171 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2172 * memory on a fresh node that has no slab structures yet.
81819f0f 2173 */
0094de92 2174static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2175{
2176 struct page *page;
2177 struct kmem_cache_node *n;
ba84c73c 2178 unsigned long flags;
81819f0f
CL
2179
2180 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2181
a2f92ee7 2182 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2183
2184 BUG_ON(!page);
a2f92ee7
CL
2185 if (page_to_nid(page) != node) {
2186 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2187 "node %d\n", node);
2188 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2189 "in order to be able to continue\n");
2190 }
2191
81819f0f
CL
2192 n = page->freelist;
2193 BUG_ON(!n);
2194 page->freelist = get_freepointer(kmalloc_caches, n);
2195 page->inuse++;
2196 kmalloc_caches->node[node] = n;
8ab1372f 2197#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2198 init_object(kmalloc_caches, n, 1);
2199 init_tracking(kmalloc_caches, n);
8ab1372f 2200#endif
5595cffc 2201 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2202 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2203
ba84c73c 2204 /*
2205 * lockdep requires consistent irq usage for each lock
2206 * so even though there cannot be a race this early in
2207 * the boot sequence, we still disable irqs.
2208 */
2209 local_irq_save(flags);
7c2e132c 2210 add_partial(n, page, 0);
ba84c73c 2211 local_irq_restore(flags);
81819f0f
CL
2212}
2213
2214static void free_kmem_cache_nodes(struct kmem_cache *s)
2215{
2216 int node;
2217
f64dc58c 2218 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2219 struct kmem_cache_node *n = s->node[node];
2220 if (n && n != &s->local_node)
2221 kmem_cache_free(kmalloc_caches, n);
2222 s->node[node] = NULL;
2223 }
2224}
2225
2226static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2227{
2228 int node;
2229 int local_node;
2230
2231 if (slab_state >= UP)
2232 local_node = page_to_nid(virt_to_page(s));
2233 else
2234 local_node = 0;
2235
f64dc58c 2236 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2237 struct kmem_cache_node *n;
2238
2239 if (local_node == node)
2240 n = &s->local_node;
2241 else {
2242 if (slab_state == DOWN) {
0094de92 2243 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2244 continue;
2245 }
2246 n = kmem_cache_alloc_node(kmalloc_caches,
2247 gfpflags, node);
2248
2249 if (!n) {
2250 free_kmem_cache_nodes(s);
2251 return 0;
2252 }
2253
2254 }
2255 s->node[node] = n;
5595cffc 2256 init_kmem_cache_node(n, s);
81819f0f
CL
2257 }
2258 return 1;
2259}
2260#else
2261static void free_kmem_cache_nodes(struct kmem_cache *s)
2262{
2263}
2264
2265static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2266{
5595cffc 2267 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2268 return 1;
2269}
2270#endif
2271
c0bdb232 2272static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2273{
2274 if (min < MIN_PARTIAL)
2275 min = MIN_PARTIAL;
2276 else if (min > MAX_PARTIAL)
2277 min = MAX_PARTIAL;
2278 s->min_partial = min;
2279}
2280
81819f0f
CL
2281/*
2282 * calculate_sizes() determines the order and the distribution of data within
2283 * a slab object.
2284 */
06b285dc 2285static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2286{
2287 unsigned long flags = s->flags;
2288 unsigned long size = s->objsize;
2289 unsigned long align = s->align;
834f3d11 2290 int order;
81819f0f 2291
d8b42bf5
CL
2292 /*
2293 * Round up object size to the next word boundary. We can only
2294 * place the free pointer at word boundaries and this determines
2295 * the possible location of the free pointer.
2296 */
2297 size = ALIGN(size, sizeof(void *));
2298
2299#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2300 /*
2301 * Determine if we can poison the object itself. If the user of
2302 * the slab may touch the object after free or before allocation
2303 * then we should never poison the object itself.
2304 */
2305 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2306 !s->ctor)
81819f0f
CL
2307 s->flags |= __OBJECT_POISON;
2308 else
2309 s->flags &= ~__OBJECT_POISON;
2310
81819f0f
CL
2311
2312 /*
672bba3a 2313 * If we are Redzoning then check if there is some space between the
81819f0f 2314 * end of the object and the free pointer. If not then add an
672bba3a 2315 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2316 */
2317 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2318 size += sizeof(void *);
41ecc55b 2319#endif
81819f0f
CL
2320
2321 /*
672bba3a
CL
2322 * With that we have determined the number of bytes in actual use
2323 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2324 */
2325 s->inuse = size;
2326
2327 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2328 s->ctor)) {
81819f0f
CL
2329 /*
2330 * Relocate free pointer after the object if it is not
2331 * permitted to overwrite the first word of the object on
2332 * kmem_cache_free.
2333 *
2334 * This is the case if we do RCU, have a constructor or
2335 * destructor or are poisoning the objects.
2336 */
2337 s->offset = size;
2338 size += sizeof(void *);
2339 }
2340
c12b3c62 2341#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2342 if (flags & SLAB_STORE_USER)
2343 /*
2344 * Need to store information about allocs and frees after
2345 * the object.
2346 */
2347 size += 2 * sizeof(struct track);
2348
be7b3fbc 2349 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2350 /*
2351 * Add some empty padding so that we can catch
2352 * overwrites from earlier objects rather than let
2353 * tracking information or the free pointer be
0211a9c8 2354 * corrupted if a user writes before the start
81819f0f
CL
2355 * of the object.
2356 */
2357 size += sizeof(void *);
41ecc55b 2358#endif
672bba3a 2359
81819f0f
CL
2360 /*
2361 * Determine the alignment based on various parameters that the
65c02d4c
CL
2362 * user specified and the dynamic determination of cache line size
2363 * on bootup.
81819f0f
CL
2364 */
2365 align = calculate_alignment(flags, align, s->objsize);
2366
2367 /*
2368 * SLUB stores one object immediately after another beginning from
2369 * offset 0. In order to align the objects we have to simply size
2370 * each object to conform to the alignment.
2371 */
2372 size = ALIGN(size, align);
2373 s->size = size;
06b285dc
CL
2374 if (forced_order >= 0)
2375 order = forced_order;
2376 else
2377 order = calculate_order(size);
81819f0f 2378
834f3d11 2379 if (order < 0)
81819f0f
CL
2380 return 0;
2381
b7a49f0d 2382 s->allocflags = 0;
834f3d11 2383 if (order)
b7a49f0d
CL
2384 s->allocflags |= __GFP_COMP;
2385
2386 if (s->flags & SLAB_CACHE_DMA)
2387 s->allocflags |= SLUB_DMA;
2388
2389 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2390 s->allocflags |= __GFP_RECLAIMABLE;
2391
81819f0f
CL
2392 /*
2393 * Determine the number of objects per slab
2394 */
834f3d11 2395 s->oo = oo_make(order, size);
65c3376a 2396 s->min = oo_make(get_order(size), size);
205ab99d
CL
2397 if (oo_objects(s->oo) > oo_objects(s->max))
2398 s->max = s->oo;
81819f0f 2399
834f3d11 2400 return !!oo_objects(s->oo);
81819f0f
CL
2401
2402}
2403
81819f0f
CL
2404static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2405 const char *name, size_t size,
2406 size_t align, unsigned long flags,
51cc5068 2407 void (*ctor)(void *))
81819f0f
CL
2408{
2409 memset(s, 0, kmem_size);
2410 s->name = name;
2411 s->ctor = ctor;
81819f0f 2412 s->objsize = size;
81819f0f 2413 s->align = align;
ba0268a8 2414 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2415
06b285dc 2416 if (!calculate_sizes(s, -1))
81819f0f
CL
2417 goto error;
2418
3b89d7d8
DR
2419 /*
2420 * The larger the object size is, the more pages we want on the partial
2421 * list to avoid pounding the page allocator excessively.
2422 */
c0bdb232 2423 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2424 s->refcount = 1;
2425#ifdef CONFIG_NUMA
e2cb96b7 2426 s->remote_node_defrag_ratio = 1000;
81819f0f 2427#endif
dfb4f096
CL
2428 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2429 goto error;
81819f0f 2430
dfb4f096 2431 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2432 return 1;
4c93c355 2433 free_kmem_cache_nodes(s);
81819f0f
CL
2434error:
2435 if (flags & SLAB_PANIC)
2436 panic("Cannot create slab %s size=%lu realsize=%u "
2437 "order=%u offset=%u flags=%lx\n",
834f3d11 2438 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2439 s->offset, flags);
2440 return 0;
2441}
81819f0f
CL
2442
2443/*
2444 * Check if a given pointer is valid
2445 */
2446int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2447{
06428780 2448 struct page *page;
81819f0f
CL
2449
2450 page = get_object_page(object);
2451
2452 if (!page || s != page->slab)
2453 /* No slab or wrong slab */
2454 return 0;
2455
abcd08a6 2456 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2457 return 0;
2458
2459 /*
2460 * We could also check if the object is on the slabs freelist.
2461 * But this would be too expensive and it seems that the main
6446faa2 2462 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2463 * to a certain slab.
2464 */
2465 return 1;
2466}
2467EXPORT_SYMBOL(kmem_ptr_validate);
2468
2469/*
2470 * Determine the size of a slab object
2471 */
2472unsigned int kmem_cache_size(struct kmem_cache *s)
2473{
2474 return s->objsize;
2475}
2476EXPORT_SYMBOL(kmem_cache_size);
2477
2478const char *kmem_cache_name(struct kmem_cache *s)
2479{
2480 return s->name;
2481}
2482EXPORT_SYMBOL(kmem_cache_name);
2483
33b12c38
CL
2484static void list_slab_objects(struct kmem_cache *s, struct page *page,
2485 const char *text)
2486{
2487#ifdef CONFIG_SLUB_DEBUG
2488 void *addr = page_address(page);
2489 void *p;
2490 DECLARE_BITMAP(map, page->objects);
2491
2492 bitmap_zero(map, page->objects);
2493 slab_err(s, page, "%s", text);
2494 slab_lock(page);
2495 for_each_free_object(p, s, page->freelist)
2496 set_bit(slab_index(p, s, addr), map);
2497
2498 for_each_object(p, s, addr, page->objects) {
2499
2500 if (!test_bit(slab_index(p, s, addr), map)) {
2501 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2502 p, p - addr);
2503 print_tracking(s, p);
2504 }
2505 }
2506 slab_unlock(page);
2507#endif
2508}
2509
81819f0f 2510/*
599870b1 2511 * Attempt to free all partial slabs on a node.
81819f0f 2512 */
599870b1 2513static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2514{
81819f0f
CL
2515 unsigned long flags;
2516 struct page *page, *h;
2517
2518 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2519 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2520 if (!page->inuse) {
2521 list_del(&page->lru);
2522 discard_slab(s, page);
599870b1 2523 n->nr_partial--;
33b12c38
CL
2524 } else {
2525 list_slab_objects(s, page,
2526 "Objects remaining on kmem_cache_close()");
599870b1 2527 }
33b12c38 2528 }
81819f0f 2529 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2530}
2531
2532/*
672bba3a 2533 * Release all resources used by a slab cache.
81819f0f 2534 */
0c710013 2535static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2536{
2537 int node;
2538
2539 flush_all(s);
2540
2541 /* Attempt to free all objects */
4c93c355 2542 free_kmem_cache_cpus(s);
f64dc58c 2543 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2544 struct kmem_cache_node *n = get_node(s, node);
2545
599870b1
CL
2546 free_partial(s, n);
2547 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2548 return 1;
2549 }
2550 free_kmem_cache_nodes(s);
2551 return 0;
2552}
2553
2554/*
2555 * Close a cache and release the kmem_cache structure
2556 * (must be used for caches created using kmem_cache_create)
2557 */
2558void kmem_cache_destroy(struct kmem_cache *s)
2559{
2560 down_write(&slub_lock);
2561 s->refcount--;
2562 if (!s->refcount) {
2563 list_del(&s->list);
a0e1d1be 2564 up_write(&slub_lock);
d629d819
PE
2565 if (kmem_cache_close(s)) {
2566 printk(KERN_ERR "SLUB %s: %s called for cache that "
2567 "still has objects.\n", s->name, __func__);
2568 dump_stack();
2569 }
81819f0f 2570 sysfs_slab_remove(s);
a0e1d1be
CL
2571 } else
2572 up_write(&slub_lock);
81819f0f
CL
2573}
2574EXPORT_SYMBOL(kmem_cache_destroy);
2575
2576/********************************************************************
2577 * Kmalloc subsystem
2578 *******************************************************************/
2579
ffadd4d0 2580struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2581EXPORT_SYMBOL(kmalloc_caches);
2582
81819f0f
CL
2583static int __init setup_slub_min_order(char *str)
2584{
06428780 2585 get_option(&str, &slub_min_order);
81819f0f
CL
2586
2587 return 1;
2588}
2589
2590__setup("slub_min_order=", setup_slub_min_order);
2591
2592static int __init setup_slub_max_order(char *str)
2593{
06428780 2594 get_option(&str, &slub_max_order);
818cf590 2595 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2596
2597 return 1;
2598}
2599
2600__setup("slub_max_order=", setup_slub_max_order);
2601
2602static int __init setup_slub_min_objects(char *str)
2603{
06428780 2604 get_option(&str, &slub_min_objects);
81819f0f
CL
2605
2606 return 1;
2607}
2608
2609__setup("slub_min_objects=", setup_slub_min_objects);
2610
2611static int __init setup_slub_nomerge(char *str)
2612{
2613 slub_nomerge = 1;
2614 return 1;
2615}
2616
2617__setup("slub_nomerge", setup_slub_nomerge);
2618
81819f0f
CL
2619static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2620 const char *name, int size, gfp_t gfp_flags)
2621{
2622 unsigned int flags = 0;
2623
2624 if (gfp_flags & SLUB_DMA)
2625 flags = SLAB_CACHE_DMA;
2626
2627 down_write(&slub_lock);
2628 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2629 flags, NULL))
81819f0f
CL
2630 goto panic;
2631
2632 list_add(&s->list, &slab_caches);
2633 up_write(&slub_lock);
2634 if (sysfs_slab_add(s))
2635 goto panic;
2636 return s;
2637
2638panic:
2639 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2640}
2641
2e443fd0 2642#ifdef CONFIG_ZONE_DMA
ffadd4d0 2643static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2644
2645static void sysfs_add_func(struct work_struct *w)
2646{
2647 struct kmem_cache *s;
2648
2649 down_write(&slub_lock);
2650 list_for_each_entry(s, &slab_caches, list) {
2651 if (s->flags & __SYSFS_ADD_DEFERRED) {
2652 s->flags &= ~__SYSFS_ADD_DEFERRED;
2653 sysfs_slab_add(s);
2654 }
2655 }
2656 up_write(&slub_lock);
2657}
2658
2659static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2660
2e443fd0
CL
2661static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2662{
2663 struct kmem_cache *s;
2e443fd0
CL
2664 char *text;
2665 size_t realsize;
2666
2667 s = kmalloc_caches_dma[index];
2668 if (s)
2669 return s;
2670
2671 /* Dynamically create dma cache */
1ceef402
CL
2672 if (flags & __GFP_WAIT)
2673 down_write(&slub_lock);
2674 else {
2675 if (!down_write_trylock(&slub_lock))
2676 goto out;
2677 }
2678
2679 if (kmalloc_caches_dma[index])
2680 goto unlock_out;
2e443fd0 2681
7b55f620 2682 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2683 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2684 (unsigned int)realsize);
1ceef402
CL
2685 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2686
2687 if (!s || !text || !kmem_cache_open(s, flags, text,
2688 realsize, ARCH_KMALLOC_MINALIGN,
2689 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2690 kfree(s);
2691 kfree(text);
2692 goto unlock_out;
dfce8648 2693 }
1ceef402
CL
2694
2695 list_add(&s->list, &slab_caches);
2696 kmalloc_caches_dma[index] = s;
2697
2698 schedule_work(&sysfs_add_work);
2699
2700unlock_out:
dfce8648 2701 up_write(&slub_lock);
1ceef402 2702out:
dfce8648 2703 return kmalloc_caches_dma[index];
2e443fd0
CL
2704}
2705#endif
2706
f1b26339
CL
2707/*
2708 * Conversion table for small slabs sizes / 8 to the index in the
2709 * kmalloc array. This is necessary for slabs < 192 since we have non power
2710 * of two cache sizes there. The size of larger slabs can be determined using
2711 * fls.
2712 */
2713static s8 size_index[24] = {
2714 3, /* 8 */
2715 4, /* 16 */
2716 5, /* 24 */
2717 5, /* 32 */
2718 6, /* 40 */
2719 6, /* 48 */
2720 6, /* 56 */
2721 6, /* 64 */
2722 1, /* 72 */
2723 1, /* 80 */
2724 1, /* 88 */
2725 1, /* 96 */
2726 7, /* 104 */
2727 7, /* 112 */
2728 7, /* 120 */
2729 7, /* 128 */
2730 2, /* 136 */
2731 2, /* 144 */
2732 2, /* 152 */
2733 2, /* 160 */
2734 2, /* 168 */
2735 2, /* 176 */
2736 2, /* 184 */
2737 2 /* 192 */
2738};
2739
81819f0f
CL
2740static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2741{
f1b26339 2742 int index;
81819f0f 2743
f1b26339
CL
2744 if (size <= 192) {
2745 if (!size)
2746 return ZERO_SIZE_PTR;
81819f0f 2747
f1b26339 2748 index = size_index[(size - 1) / 8];
aadb4bc4 2749 } else
f1b26339 2750 index = fls(size - 1);
81819f0f
CL
2751
2752#ifdef CONFIG_ZONE_DMA
f1b26339 2753 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2754 return dma_kmalloc_cache(index, flags);
f1b26339 2755
81819f0f
CL
2756#endif
2757 return &kmalloc_caches[index];
2758}
2759
2760void *__kmalloc(size_t size, gfp_t flags)
2761{
aadb4bc4 2762 struct kmem_cache *s;
5b882be4 2763 void *ret;
81819f0f 2764
ffadd4d0 2765 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2766 return kmalloc_large(size, flags);
aadb4bc4
CL
2767
2768 s = get_slab(size, flags);
2769
2770 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2771 return s;
2772
5b882be4
EGM
2773 ret = slab_alloc(s, flags, -1, _RET_IP_);
2774
ca2b84cb 2775 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2776
2777 return ret;
81819f0f
CL
2778}
2779EXPORT_SYMBOL(__kmalloc);
2780
f619cfe1
CL
2781static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2782{
2783 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2784 get_order(size));
2785
2786 if (page)
2787 return page_address(page);
2788 else
2789 return NULL;
2790}
2791
81819f0f
CL
2792#ifdef CONFIG_NUMA
2793void *__kmalloc_node(size_t size, gfp_t flags, int node)
2794{
aadb4bc4 2795 struct kmem_cache *s;
5b882be4 2796 void *ret;
81819f0f 2797
057685cf 2798 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2799 ret = kmalloc_large_node(size, flags, node);
2800
ca2b84cb
EGM
2801 trace_kmalloc_node(_RET_IP_, ret,
2802 size, PAGE_SIZE << get_order(size),
2803 flags, node);
5b882be4
EGM
2804
2805 return ret;
2806 }
aadb4bc4
CL
2807
2808 s = get_slab(size, flags);
2809
2810 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2811 return s;
2812
5b882be4
EGM
2813 ret = slab_alloc(s, flags, node, _RET_IP_);
2814
ca2b84cb 2815 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2816
2817 return ret;
81819f0f
CL
2818}
2819EXPORT_SYMBOL(__kmalloc_node);
2820#endif
2821
2822size_t ksize(const void *object)
2823{
272c1d21 2824 struct page *page;
81819f0f
CL
2825 struct kmem_cache *s;
2826
ef8b4520 2827 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2828 return 0;
2829
294a80a8 2830 page = virt_to_head_page(object);
294a80a8 2831
76994412
PE
2832 if (unlikely(!PageSlab(page))) {
2833 WARN_ON(!PageCompound(page));
294a80a8 2834 return PAGE_SIZE << compound_order(page);
76994412 2835 }
81819f0f 2836 s = page->slab;
81819f0f 2837
ae20bfda 2838#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2839 /*
2840 * Debugging requires use of the padding between object
2841 * and whatever may come after it.
2842 */
2843 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2844 return s->objsize;
2845
ae20bfda 2846#endif
81819f0f
CL
2847 /*
2848 * If we have the need to store the freelist pointer
2849 * back there or track user information then we can
2850 * only use the space before that information.
2851 */
2852 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2853 return s->inuse;
81819f0f
CL
2854 /*
2855 * Else we can use all the padding etc for the allocation
2856 */
2857 return s->size;
2858}
b1aabecd 2859EXPORT_SYMBOL(ksize);
81819f0f
CL
2860
2861void kfree(const void *x)
2862{
81819f0f 2863 struct page *page;
5bb983b0 2864 void *object = (void *)x;
81819f0f 2865
2121db74
PE
2866 trace_kfree(_RET_IP_, x);
2867
2408c550 2868 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2869 return;
2870
b49af68f 2871 page = virt_to_head_page(x);
aadb4bc4 2872 if (unlikely(!PageSlab(page))) {
0937502a 2873 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2874 put_page(page);
2875 return;
2876 }
ce71e27c 2877 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2878}
2879EXPORT_SYMBOL(kfree);
2880
2086d26a 2881/*
672bba3a
CL
2882 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2883 * the remaining slabs by the number of items in use. The slabs with the
2884 * most items in use come first. New allocations will then fill those up
2885 * and thus they can be removed from the partial lists.
2886 *
2887 * The slabs with the least items are placed last. This results in them
2888 * being allocated from last increasing the chance that the last objects
2889 * are freed in them.
2086d26a
CL
2890 */
2891int kmem_cache_shrink(struct kmem_cache *s)
2892{
2893 int node;
2894 int i;
2895 struct kmem_cache_node *n;
2896 struct page *page;
2897 struct page *t;
205ab99d 2898 int objects = oo_objects(s->max);
2086d26a 2899 struct list_head *slabs_by_inuse =
834f3d11 2900 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2901 unsigned long flags;
2902
2903 if (!slabs_by_inuse)
2904 return -ENOMEM;
2905
2906 flush_all(s);
f64dc58c 2907 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2908 n = get_node(s, node);
2909
2910 if (!n->nr_partial)
2911 continue;
2912
834f3d11 2913 for (i = 0; i < objects; i++)
2086d26a
CL
2914 INIT_LIST_HEAD(slabs_by_inuse + i);
2915
2916 spin_lock_irqsave(&n->list_lock, flags);
2917
2918 /*
672bba3a 2919 * Build lists indexed by the items in use in each slab.
2086d26a 2920 *
672bba3a
CL
2921 * Note that concurrent frees may occur while we hold the
2922 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2923 */
2924 list_for_each_entry_safe(page, t, &n->partial, lru) {
2925 if (!page->inuse && slab_trylock(page)) {
2926 /*
2927 * Must hold slab lock here because slab_free
2928 * may have freed the last object and be
2929 * waiting to release the slab.
2930 */
2931 list_del(&page->lru);
2932 n->nr_partial--;
2933 slab_unlock(page);
2934 discard_slab(s, page);
2935 } else {
fcda3d89
CL
2936 list_move(&page->lru,
2937 slabs_by_inuse + page->inuse);
2086d26a
CL
2938 }
2939 }
2940
2086d26a 2941 /*
672bba3a
CL
2942 * Rebuild the partial list with the slabs filled up most
2943 * first and the least used slabs at the end.
2086d26a 2944 */
834f3d11 2945 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2946 list_splice(slabs_by_inuse + i, n->partial.prev);
2947
2086d26a
CL
2948 spin_unlock_irqrestore(&n->list_lock, flags);
2949 }
2950
2951 kfree(slabs_by_inuse);
2952 return 0;
2953}
2954EXPORT_SYMBOL(kmem_cache_shrink);
2955
b9049e23
YG
2956#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2957static int slab_mem_going_offline_callback(void *arg)
2958{
2959 struct kmem_cache *s;
2960
2961 down_read(&slub_lock);
2962 list_for_each_entry(s, &slab_caches, list)
2963 kmem_cache_shrink(s);
2964 up_read(&slub_lock);
2965
2966 return 0;
2967}
2968
2969static void slab_mem_offline_callback(void *arg)
2970{
2971 struct kmem_cache_node *n;
2972 struct kmem_cache *s;
2973 struct memory_notify *marg = arg;
2974 int offline_node;
2975
2976 offline_node = marg->status_change_nid;
2977
2978 /*
2979 * If the node still has available memory. we need kmem_cache_node
2980 * for it yet.
2981 */
2982 if (offline_node < 0)
2983 return;
2984
2985 down_read(&slub_lock);
2986 list_for_each_entry(s, &slab_caches, list) {
2987 n = get_node(s, offline_node);
2988 if (n) {
2989 /*
2990 * if n->nr_slabs > 0, slabs still exist on the node
2991 * that is going down. We were unable to free them,
2992 * and offline_pages() function shoudn't call this
2993 * callback. So, we must fail.
2994 */
0f389ec6 2995 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2996
2997 s->node[offline_node] = NULL;
2998 kmem_cache_free(kmalloc_caches, n);
2999 }
3000 }
3001 up_read(&slub_lock);
3002}
3003
3004static int slab_mem_going_online_callback(void *arg)
3005{
3006 struct kmem_cache_node *n;
3007 struct kmem_cache *s;
3008 struct memory_notify *marg = arg;
3009 int nid = marg->status_change_nid;
3010 int ret = 0;
3011
3012 /*
3013 * If the node's memory is already available, then kmem_cache_node is
3014 * already created. Nothing to do.
3015 */
3016 if (nid < 0)
3017 return 0;
3018
3019 /*
0121c619 3020 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3021 * allocate a kmem_cache_node structure in order to bring the node
3022 * online.
3023 */
3024 down_read(&slub_lock);
3025 list_for_each_entry(s, &slab_caches, list) {
3026 /*
3027 * XXX: kmem_cache_alloc_node will fallback to other nodes
3028 * since memory is not yet available from the node that
3029 * is brought up.
3030 */
3031 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3032 if (!n) {
3033 ret = -ENOMEM;
3034 goto out;
3035 }
5595cffc 3036 init_kmem_cache_node(n, s);
b9049e23
YG
3037 s->node[nid] = n;
3038 }
3039out:
3040 up_read(&slub_lock);
3041 return ret;
3042}
3043
3044static int slab_memory_callback(struct notifier_block *self,
3045 unsigned long action, void *arg)
3046{
3047 int ret = 0;
3048
3049 switch (action) {
3050 case MEM_GOING_ONLINE:
3051 ret = slab_mem_going_online_callback(arg);
3052 break;
3053 case MEM_GOING_OFFLINE:
3054 ret = slab_mem_going_offline_callback(arg);
3055 break;
3056 case MEM_OFFLINE:
3057 case MEM_CANCEL_ONLINE:
3058 slab_mem_offline_callback(arg);
3059 break;
3060 case MEM_ONLINE:
3061 case MEM_CANCEL_OFFLINE:
3062 break;
3063 }
dc19f9db
KH
3064 if (ret)
3065 ret = notifier_from_errno(ret);
3066 else
3067 ret = NOTIFY_OK;
b9049e23
YG
3068 return ret;
3069}
3070
3071#endif /* CONFIG_MEMORY_HOTPLUG */
3072
81819f0f
CL
3073/********************************************************************
3074 * Basic setup of slabs
3075 *******************************************************************/
3076
3077void __init kmem_cache_init(void)
3078{
3079 int i;
4b356be0 3080 int caches = 0;
81819f0f 3081
4c93c355
CL
3082 init_alloc_cpu();
3083
81819f0f
CL
3084#ifdef CONFIG_NUMA
3085 /*
3086 * Must first have the slab cache available for the allocations of the
672bba3a 3087 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3088 * kmem_cache_open for slab_state == DOWN.
3089 */
3090 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3091 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 3092 kmalloc_caches[0].refcount = -1;
4b356be0 3093 caches++;
b9049e23 3094
0c40ba4f 3095 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3096#endif
3097
3098 /* Able to allocate the per node structures */
3099 slab_state = PARTIAL;
3100
3101 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3102 if (KMALLOC_MIN_SIZE <= 64) {
3103 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 3104 "kmalloc-96", 96, GFP_KERNEL);
4b356be0 3105 caches++;
4b356be0 3106 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 3107 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3108 caches++;
3109 }
81819f0f 3110
ffadd4d0 3111 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f
CL
3112 create_kmalloc_cache(&kmalloc_caches[i],
3113 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3114 caches++;
3115 }
81819f0f 3116
f1b26339
CL
3117
3118 /*
3119 * Patch up the size_index table if we have strange large alignment
3120 * requirements for the kmalloc array. This is only the case for
6446faa2 3121 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3122 *
3123 * Largest permitted alignment is 256 bytes due to the way we
3124 * handle the index determination for the smaller caches.
3125 *
3126 * Make sure that nothing crazy happens if someone starts tinkering
3127 * around with ARCH_KMALLOC_MINALIGN
3128 */
3129 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3130 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3131
12ad6843 3132 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3133 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3134
41d54d3b
CL
3135 if (KMALLOC_MIN_SIZE == 128) {
3136 /*
3137 * The 192 byte sized cache is not used if the alignment
3138 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3139 * instead.
3140 */
3141 for (i = 128 + 8; i <= 192; i += 8)
3142 size_index[(i - 1) / 8] = 8;
3143 }
3144
81819f0f
CL
3145 slab_state = UP;
3146
3147 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3148 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f
CL
3149 kmalloc_caches[i]. name =
3150 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3151
3152#ifdef CONFIG_SMP
3153 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3154 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3155 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3156#else
3157 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3158#endif
3159
3adbefee
IM
3160 printk(KERN_INFO
3161 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3162 " CPUs=%d, Nodes=%d\n",
3163 caches, cache_line_size(),
81819f0f
CL
3164 slub_min_order, slub_max_order, slub_min_objects,
3165 nr_cpu_ids, nr_node_ids);
3166}
3167
3168/*
3169 * Find a mergeable slab cache
3170 */
3171static int slab_unmergeable(struct kmem_cache *s)
3172{
3173 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3174 return 1;
3175
c59def9f 3176 if (s->ctor)
81819f0f
CL
3177 return 1;
3178
8ffa6875
CL
3179 /*
3180 * We may have set a slab to be unmergeable during bootstrap.
3181 */
3182 if (s->refcount < 0)
3183 return 1;
3184
81819f0f
CL
3185 return 0;
3186}
3187
3188static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3189 size_t align, unsigned long flags, const char *name,
51cc5068 3190 void (*ctor)(void *))
81819f0f 3191{
5b95a4ac 3192 struct kmem_cache *s;
81819f0f
CL
3193
3194 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3195 return NULL;
3196
c59def9f 3197 if (ctor)
81819f0f
CL
3198 return NULL;
3199
3200 size = ALIGN(size, sizeof(void *));
3201 align = calculate_alignment(flags, align, size);
3202 size = ALIGN(size, align);
ba0268a8 3203 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3204
5b95a4ac 3205 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3206 if (slab_unmergeable(s))
3207 continue;
3208
3209 if (size > s->size)
3210 continue;
3211
ba0268a8 3212 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3213 continue;
3214 /*
3215 * Check if alignment is compatible.
3216 * Courtesy of Adrian Drzewiecki
3217 */
06428780 3218 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3219 continue;
3220
3221 if (s->size - size >= sizeof(void *))
3222 continue;
3223
3224 return s;
3225 }
3226 return NULL;
3227}
3228
3229struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3230 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3231{
3232 struct kmem_cache *s;
3233
3234 down_write(&slub_lock);
ba0268a8 3235 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3236 if (s) {
42a9fdbb
CL
3237 int cpu;
3238
81819f0f
CL
3239 s->refcount++;
3240 /*
3241 * Adjust the object sizes so that we clear
3242 * the complete object on kzalloc.
3243 */
3244 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3245
3246 /*
3247 * And then we need to update the object size in the
3248 * per cpu structures
3249 */
3250 for_each_online_cpu(cpu)
3251 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3252
81819f0f 3253 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3254 up_write(&slub_lock);
6446faa2 3255
7b8f3b66
DR
3256 if (sysfs_slab_alias(s, name)) {
3257 down_write(&slub_lock);
3258 s->refcount--;
3259 up_write(&slub_lock);
81819f0f 3260 goto err;
7b8f3b66 3261 }
a0e1d1be
CL
3262 return s;
3263 }
6446faa2 3264
a0e1d1be
CL
3265 s = kmalloc(kmem_size, GFP_KERNEL);
3266 if (s) {
3267 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3268 size, align, flags, ctor)) {
81819f0f 3269 list_add(&s->list, &slab_caches);
a0e1d1be 3270 up_write(&slub_lock);
7b8f3b66
DR
3271 if (sysfs_slab_add(s)) {
3272 down_write(&slub_lock);
3273 list_del(&s->list);
3274 up_write(&slub_lock);
3275 kfree(s);
a0e1d1be 3276 goto err;
7b8f3b66 3277 }
a0e1d1be
CL
3278 return s;
3279 }
3280 kfree(s);
81819f0f
CL
3281 }
3282 up_write(&slub_lock);
81819f0f
CL
3283
3284err:
81819f0f
CL
3285 if (flags & SLAB_PANIC)
3286 panic("Cannot create slabcache %s\n", name);
3287 else
3288 s = NULL;
3289 return s;
3290}
3291EXPORT_SYMBOL(kmem_cache_create);
3292
81819f0f 3293#ifdef CONFIG_SMP
81819f0f 3294/*
672bba3a
CL
3295 * Use the cpu notifier to insure that the cpu slabs are flushed when
3296 * necessary.
81819f0f
CL
3297 */
3298static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3299 unsigned long action, void *hcpu)
3300{
3301 long cpu = (long)hcpu;
5b95a4ac
CL
3302 struct kmem_cache *s;
3303 unsigned long flags;
81819f0f
CL
3304
3305 switch (action) {
4c93c355
CL
3306 case CPU_UP_PREPARE:
3307 case CPU_UP_PREPARE_FROZEN:
3308 init_alloc_cpu_cpu(cpu);
3309 down_read(&slub_lock);
3310 list_for_each_entry(s, &slab_caches, list)
3311 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3312 GFP_KERNEL);
3313 up_read(&slub_lock);
3314 break;
3315
81819f0f 3316 case CPU_UP_CANCELED:
8bb78442 3317 case CPU_UP_CANCELED_FROZEN:
81819f0f 3318 case CPU_DEAD:
8bb78442 3319 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3320 down_read(&slub_lock);
3321 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3322 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3323
5b95a4ac
CL
3324 local_irq_save(flags);
3325 __flush_cpu_slab(s, cpu);
3326 local_irq_restore(flags);
4c93c355
CL
3327 free_kmem_cache_cpu(c, cpu);
3328 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3329 }
3330 up_read(&slub_lock);
81819f0f
CL
3331 break;
3332 default:
3333 break;
3334 }
3335 return NOTIFY_OK;
3336}
3337
06428780 3338static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3339 .notifier_call = slab_cpuup_callback
06428780 3340};
81819f0f
CL
3341
3342#endif
3343
ce71e27c 3344void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3345{
aadb4bc4 3346 struct kmem_cache *s;
94b528d0 3347 void *ret;
aadb4bc4 3348
ffadd4d0 3349 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3350 return kmalloc_large(size, gfpflags);
3351
aadb4bc4 3352 s = get_slab(size, gfpflags);
81819f0f 3353
2408c550 3354 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3355 return s;
81819f0f 3356
94b528d0
EGM
3357 ret = slab_alloc(s, gfpflags, -1, caller);
3358
3359 /* Honor the call site pointer we recieved. */
ca2b84cb 3360 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3361
3362 return ret;
81819f0f
CL
3363}
3364
3365void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3366 int node, unsigned long caller)
81819f0f 3367{
aadb4bc4 3368 struct kmem_cache *s;
94b528d0 3369 void *ret;
aadb4bc4 3370
ffadd4d0 3371 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3372 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3373
aadb4bc4 3374 s = get_slab(size, gfpflags);
81819f0f 3375
2408c550 3376 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3377 return s;
81819f0f 3378
94b528d0
EGM
3379 ret = slab_alloc(s, gfpflags, node, caller);
3380
3381 /* Honor the call site pointer we recieved. */
ca2b84cb 3382 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3383
3384 return ret;
81819f0f
CL
3385}
3386
f6acb635 3387#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3388static int count_inuse(struct page *page)
3389{
3390 return page->inuse;
3391}
3392
3393static int count_total(struct page *page)
3394{
3395 return page->objects;
205ab99d 3396}
5b06c853 3397
434e245d
CL
3398static int validate_slab(struct kmem_cache *s, struct page *page,
3399 unsigned long *map)
53e15af0
CL
3400{
3401 void *p;
a973e9dd 3402 void *addr = page_address(page);
53e15af0
CL
3403
3404 if (!check_slab(s, page) ||
3405 !on_freelist(s, page, NULL))
3406 return 0;
3407
3408 /* Now we know that a valid freelist exists */
39b26464 3409 bitmap_zero(map, page->objects);
53e15af0 3410
7656c72b
CL
3411 for_each_free_object(p, s, page->freelist) {
3412 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3413 if (!check_object(s, page, p, 0))
3414 return 0;
3415 }
3416
224a88be 3417 for_each_object(p, s, addr, page->objects)
7656c72b 3418 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3419 if (!check_object(s, page, p, 1))
3420 return 0;
3421 return 1;
3422}
3423
434e245d
CL
3424static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3425 unsigned long *map)
53e15af0
CL
3426{
3427 if (slab_trylock(page)) {
434e245d 3428 validate_slab(s, page, map);
53e15af0
CL
3429 slab_unlock(page);
3430 } else
3431 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3432 s->name, page);
3433
3434 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3435 if (!PageSlubDebug(page))
3436 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3437 "on slab 0x%p\n", s->name, page);
3438 } else {
8a38082d
AW
3439 if (PageSlubDebug(page))
3440 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3441 "slab 0x%p\n", s->name, page);
3442 }
3443}
3444
434e245d
CL
3445static int validate_slab_node(struct kmem_cache *s,
3446 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3447{
3448 unsigned long count = 0;
3449 struct page *page;
3450 unsigned long flags;
3451
3452 spin_lock_irqsave(&n->list_lock, flags);
3453
3454 list_for_each_entry(page, &n->partial, lru) {
434e245d 3455 validate_slab_slab(s, page, map);
53e15af0
CL
3456 count++;
3457 }
3458 if (count != n->nr_partial)
3459 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3460 "counter=%ld\n", s->name, count, n->nr_partial);
3461
3462 if (!(s->flags & SLAB_STORE_USER))
3463 goto out;
3464
3465 list_for_each_entry(page, &n->full, lru) {
434e245d 3466 validate_slab_slab(s, page, map);
53e15af0
CL
3467 count++;
3468 }
3469 if (count != atomic_long_read(&n->nr_slabs))
3470 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3471 "counter=%ld\n", s->name, count,
3472 atomic_long_read(&n->nr_slabs));
3473
3474out:
3475 spin_unlock_irqrestore(&n->list_lock, flags);
3476 return count;
3477}
3478
434e245d 3479static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3480{
3481 int node;
3482 unsigned long count = 0;
205ab99d 3483 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3484 sizeof(unsigned long), GFP_KERNEL);
3485
3486 if (!map)
3487 return -ENOMEM;
53e15af0
CL
3488
3489 flush_all(s);
f64dc58c 3490 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3491 struct kmem_cache_node *n = get_node(s, node);
3492
434e245d 3493 count += validate_slab_node(s, n, map);
53e15af0 3494 }
434e245d 3495 kfree(map);
53e15af0
CL
3496 return count;
3497}
3498
b3459709
CL
3499#ifdef SLUB_RESILIENCY_TEST
3500static void resiliency_test(void)
3501{
3502 u8 *p;
3503
3504 printk(KERN_ERR "SLUB resiliency testing\n");
3505 printk(KERN_ERR "-----------------------\n");
3506 printk(KERN_ERR "A. Corruption after allocation\n");
3507
3508 p = kzalloc(16, GFP_KERNEL);
3509 p[16] = 0x12;
3510 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3511 " 0x12->0x%p\n\n", p + 16);
3512
3513 validate_slab_cache(kmalloc_caches + 4);
3514
3515 /* Hmmm... The next two are dangerous */
3516 p = kzalloc(32, GFP_KERNEL);
3517 p[32 + sizeof(void *)] = 0x34;
3518 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3519 " 0x34 -> -0x%p\n", p);
3520 printk(KERN_ERR
3521 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3522
3523 validate_slab_cache(kmalloc_caches + 5);
3524 p = kzalloc(64, GFP_KERNEL);
3525 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3526 *p = 0x56;
3527 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3528 p);
3adbefee
IM
3529 printk(KERN_ERR
3530 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3531 validate_slab_cache(kmalloc_caches + 6);
3532
3533 printk(KERN_ERR "\nB. Corruption after free\n");
3534 p = kzalloc(128, GFP_KERNEL);
3535 kfree(p);
3536 *p = 0x78;
3537 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3538 validate_slab_cache(kmalloc_caches + 7);
3539
3540 p = kzalloc(256, GFP_KERNEL);
3541 kfree(p);
3542 p[50] = 0x9a;
3adbefee
IM
3543 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3544 p);
b3459709
CL
3545 validate_slab_cache(kmalloc_caches + 8);
3546
3547 p = kzalloc(512, GFP_KERNEL);
3548 kfree(p);
3549 p[512] = 0xab;
3550 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3551 validate_slab_cache(kmalloc_caches + 9);
3552}
3553#else
3554static void resiliency_test(void) {};
3555#endif
3556
88a420e4 3557/*
672bba3a 3558 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3559 * and freed.
3560 */
3561
3562struct location {
3563 unsigned long count;
ce71e27c 3564 unsigned long addr;
45edfa58
CL
3565 long long sum_time;
3566 long min_time;
3567 long max_time;
3568 long min_pid;
3569 long max_pid;
174596a0 3570 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3571 nodemask_t nodes;
88a420e4
CL
3572};
3573
3574struct loc_track {
3575 unsigned long max;
3576 unsigned long count;
3577 struct location *loc;
3578};
3579
3580static void free_loc_track(struct loc_track *t)
3581{
3582 if (t->max)
3583 free_pages((unsigned long)t->loc,
3584 get_order(sizeof(struct location) * t->max));
3585}
3586
68dff6a9 3587static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3588{
3589 struct location *l;
3590 int order;
3591
88a420e4
CL
3592 order = get_order(sizeof(struct location) * max);
3593
68dff6a9 3594 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3595 if (!l)
3596 return 0;
3597
3598 if (t->count) {
3599 memcpy(l, t->loc, sizeof(struct location) * t->count);
3600 free_loc_track(t);
3601 }
3602 t->max = max;
3603 t->loc = l;
3604 return 1;
3605}
3606
3607static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3608 const struct track *track)
88a420e4
CL
3609{
3610 long start, end, pos;
3611 struct location *l;
ce71e27c 3612 unsigned long caddr;
45edfa58 3613 unsigned long age = jiffies - track->when;
88a420e4
CL
3614
3615 start = -1;
3616 end = t->count;
3617
3618 for ( ; ; ) {
3619 pos = start + (end - start + 1) / 2;
3620
3621 /*
3622 * There is nothing at "end". If we end up there
3623 * we need to add something to before end.
3624 */
3625 if (pos == end)
3626 break;
3627
3628 caddr = t->loc[pos].addr;
45edfa58
CL
3629 if (track->addr == caddr) {
3630
3631 l = &t->loc[pos];
3632 l->count++;
3633 if (track->when) {
3634 l->sum_time += age;
3635 if (age < l->min_time)
3636 l->min_time = age;
3637 if (age > l->max_time)
3638 l->max_time = age;
3639
3640 if (track->pid < l->min_pid)
3641 l->min_pid = track->pid;
3642 if (track->pid > l->max_pid)
3643 l->max_pid = track->pid;
3644
174596a0
RR
3645 cpumask_set_cpu(track->cpu,
3646 to_cpumask(l->cpus));
45edfa58
CL
3647 }
3648 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3649 return 1;
3650 }
3651
45edfa58 3652 if (track->addr < caddr)
88a420e4
CL
3653 end = pos;
3654 else
3655 start = pos;
3656 }
3657
3658 /*
672bba3a 3659 * Not found. Insert new tracking element.
88a420e4 3660 */
68dff6a9 3661 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3662 return 0;
3663
3664 l = t->loc + pos;
3665 if (pos < t->count)
3666 memmove(l + 1, l,
3667 (t->count - pos) * sizeof(struct location));
3668 t->count++;
3669 l->count = 1;
45edfa58
CL
3670 l->addr = track->addr;
3671 l->sum_time = age;
3672 l->min_time = age;
3673 l->max_time = age;
3674 l->min_pid = track->pid;
3675 l->max_pid = track->pid;
174596a0
RR
3676 cpumask_clear(to_cpumask(l->cpus));
3677 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3678 nodes_clear(l->nodes);
3679 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3680 return 1;
3681}
3682
3683static void process_slab(struct loc_track *t, struct kmem_cache *s,
3684 struct page *page, enum track_item alloc)
3685{
a973e9dd 3686 void *addr = page_address(page);
39b26464 3687 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3688 void *p;
3689
39b26464 3690 bitmap_zero(map, page->objects);
7656c72b
CL
3691 for_each_free_object(p, s, page->freelist)
3692 set_bit(slab_index(p, s, addr), map);
88a420e4 3693
224a88be 3694 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3695 if (!test_bit(slab_index(p, s, addr), map))
3696 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3697}
3698
3699static int list_locations(struct kmem_cache *s, char *buf,
3700 enum track_item alloc)
3701{
e374d483 3702 int len = 0;
88a420e4 3703 unsigned long i;
68dff6a9 3704 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3705 int node;
3706
68dff6a9 3707 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3708 GFP_TEMPORARY))
68dff6a9 3709 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3710
3711 /* Push back cpu slabs */
3712 flush_all(s);
3713
f64dc58c 3714 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3715 struct kmem_cache_node *n = get_node(s, node);
3716 unsigned long flags;
3717 struct page *page;
3718
9e86943b 3719 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3720 continue;
3721
3722 spin_lock_irqsave(&n->list_lock, flags);
3723 list_for_each_entry(page, &n->partial, lru)
3724 process_slab(&t, s, page, alloc);
3725 list_for_each_entry(page, &n->full, lru)
3726 process_slab(&t, s, page, alloc);
3727 spin_unlock_irqrestore(&n->list_lock, flags);
3728 }
3729
3730 for (i = 0; i < t.count; i++) {
45edfa58 3731 struct location *l = &t.loc[i];
88a420e4 3732
9c246247 3733 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3734 break;
e374d483 3735 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3736
3737 if (l->addr)
e374d483 3738 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3739 else
e374d483 3740 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3741
3742 if (l->sum_time != l->min_time) {
e374d483 3743 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3744 l->min_time,
3745 (long)div_u64(l->sum_time, l->count),
3746 l->max_time);
45edfa58 3747 } else
e374d483 3748 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3749 l->min_time);
3750
3751 if (l->min_pid != l->max_pid)
e374d483 3752 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3753 l->min_pid, l->max_pid);
3754 else
e374d483 3755 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3756 l->min_pid);
3757
174596a0
RR
3758 if (num_online_cpus() > 1 &&
3759 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3760 len < PAGE_SIZE - 60) {
3761 len += sprintf(buf + len, " cpus=");
3762 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3763 to_cpumask(l->cpus));
45edfa58
CL
3764 }
3765
84966343 3766 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3767 len < PAGE_SIZE - 60) {
3768 len += sprintf(buf + len, " nodes=");
3769 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3770 l->nodes);
3771 }
3772
e374d483 3773 len += sprintf(buf + len, "\n");
88a420e4
CL
3774 }
3775
3776 free_loc_track(&t);
3777 if (!t.count)
e374d483
HH
3778 len += sprintf(buf, "No data\n");
3779 return len;
88a420e4
CL
3780}
3781
81819f0f 3782enum slab_stat_type {
205ab99d
CL
3783 SL_ALL, /* All slabs */
3784 SL_PARTIAL, /* Only partially allocated slabs */
3785 SL_CPU, /* Only slabs used for cpu caches */
3786 SL_OBJECTS, /* Determine allocated objects not slabs */
3787 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3788};
3789
205ab99d 3790#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3791#define SO_PARTIAL (1 << SL_PARTIAL)
3792#define SO_CPU (1 << SL_CPU)
3793#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3794#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3795
62e5c4b4
CG
3796static ssize_t show_slab_objects(struct kmem_cache *s,
3797 char *buf, unsigned long flags)
81819f0f
CL
3798{
3799 unsigned long total = 0;
81819f0f
CL
3800 int node;
3801 int x;
3802 unsigned long *nodes;
3803 unsigned long *per_cpu;
3804
3805 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3806 if (!nodes)
3807 return -ENOMEM;
81819f0f
CL
3808 per_cpu = nodes + nr_node_ids;
3809
205ab99d
CL
3810 if (flags & SO_CPU) {
3811 int cpu;
81819f0f 3812
205ab99d
CL
3813 for_each_possible_cpu(cpu) {
3814 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3815
205ab99d
CL
3816 if (!c || c->node < 0)
3817 continue;
3818
3819 if (c->page) {
3820 if (flags & SO_TOTAL)
3821 x = c->page->objects;
3822 else if (flags & SO_OBJECTS)
3823 x = c->page->inuse;
81819f0f
CL
3824 else
3825 x = 1;
205ab99d 3826
81819f0f 3827 total += x;
205ab99d 3828 nodes[c->node] += x;
81819f0f 3829 }
205ab99d 3830 per_cpu[c->node]++;
81819f0f
CL
3831 }
3832 }
3833
205ab99d
CL
3834 if (flags & SO_ALL) {
3835 for_each_node_state(node, N_NORMAL_MEMORY) {
3836 struct kmem_cache_node *n = get_node(s, node);
3837
3838 if (flags & SO_TOTAL)
3839 x = atomic_long_read(&n->total_objects);
3840 else if (flags & SO_OBJECTS)
3841 x = atomic_long_read(&n->total_objects) -
3842 count_partial(n, count_free);
81819f0f 3843
81819f0f 3844 else
205ab99d 3845 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3846 total += x;
3847 nodes[node] += x;
3848 }
3849
205ab99d
CL
3850 } else if (flags & SO_PARTIAL) {
3851 for_each_node_state(node, N_NORMAL_MEMORY) {
3852 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3853
205ab99d
CL
3854 if (flags & SO_TOTAL)
3855 x = count_partial(n, count_total);
3856 else if (flags & SO_OBJECTS)
3857 x = count_partial(n, count_inuse);
81819f0f 3858 else
205ab99d 3859 x = n->nr_partial;
81819f0f
CL
3860 total += x;
3861 nodes[node] += x;
3862 }
3863 }
81819f0f
CL
3864 x = sprintf(buf, "%lu", total);
3865#ifdef CONFIG_NUMA
f64dc58c 3866 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3867 if (nodes[node])
3868 x += sprintf(buf + x, " N%d=%lu",
3869 node, nodes[node]);
3870#endif
3871 kfree(nodes);
3872 return x + sprintf(buf + x, "\n");
3873}
3874
3875static int any_slab_objects(struct kmem_cache *s)
3876{
3877 int node;
81819f0f 3878
dfb4f096 3879 for_each_online_node(node) {
81819f0f
CL
3880 struct kmem_cache_node *n = get_node(s, node);
3881
dfb4f096
CL
3882 if (!n)
3883 continue;
3884
4ea33e2d 3885 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3886 return 1;
3887 }
3888 return 0;
3889}
3890
3891#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3892#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3893
3894struct slab_attribute {
3895 struct attribute attr;
3896 ssize_t (*show)(struct kmem_cache *s, char *buf);
3897 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3898};
3899
3900#define SLAB_ATTR_RO(_name) \
3901 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3902
3903#define SLAB_ATTR(_name) \
3904 static struct slab_attribute _name##_attr = \
3905 __ATTR(_name, 0644, _name##_show, _name##_store)
3906
81819f0f
CL
3907static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3908{
3909 return sprintf(buf, "%d\n", s->size);
3910}
3911SLAB_ATTR_RO(slab_size);
3912
3913static ssize_t align_show(struct kmem_cache *s, char *buf)
3914{
3915 return sprintf(buf, "%d\n", s->align);
3916}
3917SLAB_ATTR_RO(align);
3918
3919static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3920{
3921 return sprintf(buf, "%d\n", s->objsize);
3922}
3923SLAB_ATTR_RO(object_size);
3924
3925static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3926{
834f3d11 3927 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3928}
3929SLAB_ATTR_RO(objs_per_slab);
3930
06b285dc
CL
3931static ssize_t order_store(struct kmem_cache *s,
3932 const char *buf, size_t length)
3933{
0121c619
CL
3934 unsigned long order;
3935 int err;
3936
3937 err = strict_strtoul(buf, 10, &order);
3938 if (err)
3939 return err;
06b285dc
CL
3940
3941 if (order > slub_max_order || order < slub_min_order)
3942 return -EINVAL;
3943
3944 calculate_sizes(s, order);
3945 return length;
3946}
3947
81819f0f
CL
3948static ssize_t order_show(struct kmem_cache *s, char *buf)
3949{
834f3d11 3950 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3951}
06b285dc 3952SLAB_ATTR(order);
81819f0f 3953
73d342b1
DR
3954static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3955{
3956 return sprintf(buf, "%lu\n", s->min_partial);
3957}
3958
3959static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3960 size_t length)
3961{
3962 unsigned long min;
3963 int err;
3964
3965 err = strict_strtoul(buf, 10, &min);
3966 if (err)
3967 return err;
3968
c0bdb232 3969 set_min_partial(s, min);
73d342b1
DR
3970 return length;
3971}
3972SLAB_ATTR(min_partial);
3973
81819f0f
CL
3974static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3975{
3976 if (s->ctor) {
3977 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3978
3979 return n + sprintf(buf + n, "\n");
3980 }
3981 return 0;
3982}
3983SLAB_ATTR_RO(ctor);
3984
81819f0f
CL
3985static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3986{
3987 return sprintf(buf, "%d\n", s->refcount - 1);
3988}
3989SLAB_ATTR_RO(aliases);
3990
3991static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3992{
205ab99d 3993 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3994}
3995SLAB_ATTR_RO(slabs);
3996
3997static ssize_t partial_show(struct kmem_cache *s, char *buf)
3998{
d9acf4b7 3999 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4000}
4001SLAB_ATTR_RO(partial);
4002
4003static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4004{
d9acf4b7 4005 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4006}
4007SLAB_ATTR_RO(cpu_slabs);
4008
4009static ssize_t objects_show(struct kmem_cache *s, char *buf)
4010{
205ab99d 4011 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4012}
4013SLAB_ATTR_RO(objects);
4014
205ab99d
CL
4015static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4016{
4017 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4018}
4019SLAB_ATTR_RO(objects_partial);
4020
4021static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4022{
4023 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4024}
4025SLAB_ATTR_RO(total_objects);
4026
81819f0f
CL
4027static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4028{
4029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4030}
4031
4032static ssize_t sanity_checks_store(struct kmem_cache *s,
4033 const char *buf, size_t length)
4034{
4035 s->flags &= ~SLAB_DEBUG_FREE;
4036 if (buf[0] == '1')
4037 s->flags |= SLAB_DEBUG_FREE;
4038 return length;
4039}
4040SLAB_ATTR(sanity_checks);
4041
4042static ssize_t trace_show(struct kmem_cache *s, char *buf)
4043{
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4045}
4046
4047static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4048 size_t length)
4049{
4050 s->flags &= ~SLAB_TRACE;
4051 if (buf[0] == '1')
4052 s->flags |= SLAB_TRACE;
4053 return length;
4054}
4055SLAB_ATTR(trace);
4056
4057static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4058{
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4060}
4061
4062static ssize_t reclaim_account_store(struct kmem_cache *s,
4063 const char *buf, size_t length)
4064{
4065 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4066 if (buf[0] == '1')
4067 s->flags |= SLAB_RECLAIM_ACCOUNT;
4068 return length;
4069}
4070SLAB_ATTR(reclaim_account);
4071
4072static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4073{
5af60839 4074 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4075}
4076SLAB_ATTR_RO(hwcache_align);
4077
4078#ifdef CONFIG_ZONE_DMA
4079static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4080{
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4082}
4083SLAB_ATTR_RO(cache_dma);
4084#endif
4085
4086static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4087{
4088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4089}
4090SLAB_ATTR_RO(destroy_by_rcu);
4091
4092static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4093{
4094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4095}
4096
4097static ssize_t red_zone_store(struct kmem_cache *s,
4098 const char *buf, size_t length)
4099{
4100 if (any_slab_objects(s))
4101 return -EBUSY;
4102
4103 s->flags &= ~SLAB_RED_ZONE;
4104 if (buf[0] == '1')
4105 s->flags |= SLAB_RED_ZONE;
06b285dc 4106 calculate_sizes(s, -1);
81819f0f
CL
4107 return length;
4108}
4109SLAB_ATTR(red_zone);
4110
4111static ssize_t poison_show(struct kmem_cache *s, char *buf)
4112{
4113 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4114}
4115
4116static ssize_t poison_store(struct kmem_cache *s,
4117 const char *buf, size_t length)
4118{
4119 if (any_slab_objects(s))
4120 return -EBUSY;
4121
4122 s->flags &= ~SLAB_POISON;
4123 if (buf[0] == '1')
4124 s->flags |= SLAB_POISON;
06b285dc 4125 calculate_sizes(s, -1);
81819f0f
CL
4126 return length;
4127}
4128SLAB_ATTR(poison);
4129
4130static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4131{
4132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4133}
4134
4135static ssize_t store_user_store(struct kmem_cache *s,
4136 const char *buf, size_t length)
4137{
4138 if (any_slab_objects(s))
4139 return -EBUSY;
4140
4141 s->flags &= ~SLAB_STORE_USER;
4142 if (buf[0] == '1')
4143 s->flags |= SLAB_STORE_USER;
06b285dc 4144 calculate_sizes(s, -1);
81819f0f
CL
4145 return length;
4146}
4147SLAB_ATTR(store_user);
4148
53e15af0
CL
4149static ssize_t validate_show(struct kmem_cache *s, char *buf)
4150{
4151 return 0;
4152}
4153
4154static ssize_t validate_store(struct kmem_cache *s,
4155 const char *buf, size_t length)
4156{
434e245d
CL
4157 int ret = -EINVAL;
4158
4159 if (buf[0] == '1') {
4160 ret = validate_slab_cache(s);
4161 if (ret >= 0)
4162 ret = length;
4163 }
4164 return ret;
53e15af0
CL
4165}
4166SLAB_ATTR(validate);
4167
2086d26a
CL
4168static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4169{
4170 return 0;
4171}
4172
4173static ssize_t shrink_store(struct kmem_cache *s,
4174 const char *buf, size_t length)
4175{
4176 if (buf[0] == '1') {
4177 int rc = kmem_cache_shrink(s);
4178
4179 if (rc)
4180 return rc;
4181 } else
4182 return -EINVAL;
4183 return length;
4184}
4185SLAB_ATTR(shrink);
4186
88a420e4
CL
4187static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4188{
4189 if (!(s->flags & SLAB_STORE_USER))
4190 return -ENOSYS;
4191 return list_locations(s, buf, TRACK_ALLOC);
4192}
4193SLAB_ATTR_RO(alloc_calls);
4194
4195static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4196{
4197 if (!(s->flags & SLAB_STORE_USER))
4198 return -ENOSYS;
4199 return list_locations(s, buf, TRACK_FREE);
4200}
4201SLAB_ATTR_RO(free_calls);
4202
81819f0f 4203#ifdef CONFIG_NUMA
9824601e 4204static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4205{
9824601e 4206 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4207}
4208
9824601e 4209static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4210 const char *buf, size_t length)
4211{
0121c619
CL
4212 unsigned long ratio;
4213 int err;
4214
4215 err = strict_strtoul(buf, 10, &ratio);
4216 if (err)
4217 return err;
4218
e2cb96b7 4219 if (ratio <= 100)
0121c619 4220 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4221
81819f0f
CL
4222 return length;
4223}
9824601e 4224SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4225#endif
4226
8ff12cfc 4227#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4228static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4229{
4230 unsigned long sum = 0;
4231 int cpu;
4232 int len;
4233 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4234
4235 if (!data)
4236 return -ENOMEM;
4237
4238 for_each_online_cpu(cpu) {
4239 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4240
4241 data[cpu] = x;
4242 sum += x;
4243 }
4244
4245 len = sprintf(buf, "%lu", sum);
4246
50ef37b9 4247#ifdef CONFIG_SMP
8ff12cfc
CL
4248 for_each_online_cpu(cpu) {
4249 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4250 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4251 }
50ef37b9 4252#endif
8ff12cfc
CL
4253 kfree(data);
4254 return len + sprintf(buf + len, "\n");
4255}
4256
4257#define STAT_ATTR(si, text) \
4258static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4259{ \
4260 return show_stat(s, buf, si); \
4261} \
4262SLAB_ATTR_RO(text); \
4263
4264STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4265STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4266STAT_ATTR(FREE_FASTPATH, free_fastpath);
4267STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4268STAT_ATTR(FREE_FROZEN, free_frozen);
4269STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4270STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4271STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4272STAT_ATTR(ALLOC_SLAB, alloc_slab);
4273STAT_ATTR(ALLOC_REFILL, alloc_refill);
4274STAT_ATTR(FREE_SLAB, free_slab);
4275STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4276STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4277STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4278STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4279STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4280STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4281STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4282#endif
4283
06428780 4284static struct attribute *slab_attrs[] = {
81819f0f
CL
4285 &slab_size_attr.attr,
4286 &object_size_attr.attr,
4287 &objs_per_slab_attr.attr,
4288 &order_attr.attr,
73d342b1 4289 &min_partial_attr.attr,
81819f0f 4290 &objects_attr.attr,
205ab99d
CL
4291 &objects_partial_attr.attr,
4292 &total_objects_attr.attr,
81819f0f
CL
4293 &slabs_attr.attr,
4294 &partial_attr.attr,
4295 &cpu_slabs_attr.attr,
4296 &ctor_attr.attr,
81819f0f
CL
4297 &aliases_attr.attr,
4298 &align_attr.attr,
4299 &sanity_checks_attr.attr,
4300 &trace_attr.attr,
4301 &hwcache_align_attr.attr,
4302 &reclaim_account_attr.attr,
4303 &destroy_by_rcu_attr.attr,
4304 &red_zone_attr.attr,
4305 &poison_attr.attr,
4306 &store_user_attr.attr,
53e15af0 4307 &validate_attr.attr,
2086d26a 4308 &shrink_attr.attr,
88a420e4
CL
4309 &alloc_calls_attr.attr,
4310 &free_calls_attr.attr,
81819f0f
CL
4311#ifdef CONFIG_ZONE_DMA
4312 &cache_dma_attr.attr,
4313#endif
4314#ifdef CONFIG_NUMA
9824601e 4315 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4316#endif
4317#ifdef CONFIG_SLUB_STATS
4318 &alloc_fastpath_attr.attr,
4319 &alloc_slowpath_attr.attr,
4320 &free_fastpath_attr.attr,
4321 &free_slowpath_attr.attr,
4322 &free_frozen_attr.attr,
4323 &free_add_partial_attr.attr,
4324 &free_remove_partial_attr.attr,
4325 &alloc_from_partial_attr.attr,
4326 &alloc_slab_attr.attr,
4327 &alloc_refill_attr.attr,
4328 &free_slab_attr.attr,
4329 &cpuslab_flush_attr.attr,
4330 &deactivate_full_attr.attr,
4331 &deactivate_empty_attr.attr,
4332 &deactivate_to_head_attr.attr,
4333 &deactivate_to_tail_attr.attr,
4334 &deactivate_remote_frees_attr.attr,
65c3376a 4335 &order_fallback_attr.attr,
81819f0f
CL
4336#endif
4337 NULL
4338};
4339
4340static struct attribute_group slab_attr_group = {
4341 .attrs = slab_attrs,
4342};
4343
4344static ssize_t slab_attr_show(struct kobject *kobj,
4345 struct attribute *attr,
4346 char *buf)
4347{
4348 struct slab_attribute *attribute;
4349 struct kmem_cache *s;
4350 int err;
4351
4352 attribute = to_slab_attr(attr);
4353 s = to_slab(kobj);
4354
4355 if (!attribute->show)
4356 return -EIO;
4357
4358 err = attribute->show(s, buf);
4359
4360 return err;
4361}
4362
4363static ssize_t slab_attr_store(struct kobject *kobj,
4364 struct attribute *attr,
4365 const char *buf, size_t len)
4366{
4367 struct slab_attribute *attribute;
4368 struct kmem_cache *s;
4369 int err;
4370
4371 attribute = to_slab_attr(attr);
4372 s = to_slab(kobj);
4373
4374 if (!attribute->store)
4375 return -EIO;
4376
4377 err = attribute->store(s, buf, len);
4378
4379 return err;
4380}
4381
151c602f
CL
4382static void kmem_cache_release(struct kobject *kobj)
4383{
4384 struct kmem_cache *s = to_slab(kobj);
4385
4386 kfree(s);
4387}
4388
81819f0f
CL
4389static struct sysfs_ops slab_sysfs_ops = {
4390 .show = slab_attr_show,
4391 .store = slab_attr_store,
4392};
4393
4394static struct kobj_type slab_ktype = {
4395 .sysfs_ops = &slab_sysfs_ops,
151c602f 4396 .release = kmem_cache_release
81819f0f
CL
4397};
4398
4399static int uevent_filter(struct kset *kset, struct kobject *kobj)
4400{
4401 struct kobj_type *ktype = get_ktype(kobj);
4402
4403 if (ktype == &slab_ktype)
4404 return 1;
4405 return 0;
4406}
4407
4408static struct kset_uevent_ops slab_uevent_ops = {
4409 .filter = uevent_filter,
4410};
4411
27c3a314 4412static struct kset *slab_kset;
81819f0f
CL
4413
4414#define ID_STR_LENGTH 64
4415
4416/* Create a unique string id for a slab cache:
6446faa2
CL
4417 *
4418 * Format :[flags-]size
81819f0f
CL
4419 */
4420static char *create_unique_id(struct kmem_cache *s)
4421{
4422 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4423 char *p = name;
4424
4425 BUG_ON(!name);
4426
4427 *p++ = ':';
4428 /*
4429 * First flags affecting slabcache operations. We will only
4430 * get here for aliasable slabs so we do not need to support
4431 * too many flags. The flags here must cover all flags that
4432 * are matched during merging to guarantee that the id is
4433 * unique.
4434 */
4435 if (s->flags & SLAB_CACHE_DMA)
4436 *p++ = 'd';
4437 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4438 *p++ = 'a';
4439 if (s->flags & SLAB_DEBUG_FREE)
4440 *p++ = 'F';
4441 if (p != name + 1)
4442 *p++ = '-';
4443 p += sprintf(p, "%07d", s->size);
4444 BUG_ON(p > name + ID_STR_LENGTH - 1);
4445 return name;
4446}
4447
4448static int sysfs_slab_add(struct kmem_cache *s)
4449{
4450 int err;
4451 const char *name;
4452 int unmergeable;
4453
4454 if (slab_state < SYSFS)
4455 /* Defer until later */
4456 return 0;
4457
4458 unmergeable = slab_unmergeable(s);
4459 if (unmergeable) {
4460 /*
4461 * Slabcache can never be merged so we can use the name proper.
4462 * This is typically the case for debug situations. In that
4463 * case we can catch duplicate names easily.
4464 */
27c3a314 4465 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4466 name = s->name;
4467 } else {
4468 /*
4469 * Create a unique name for the slab as a target
4470 * for the symlinks.
4471 */
4472 name = create_unique_id(s);
4473 }
4474
27c3a314 4475 s->kobj.kset = slab_kset;
1eada11c
GKH
4476 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4477 if (err) {
4478 kobject_put(&s->kobj);
81819f0f 4479 return err;
1eada11c 4480 }
81819f0f
CL
4481
4482 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4483 if (err)
4484 return err;
4485 kobject_uevent(&s->kobj, KOBJ_ADD);
4486 if (!unmergeable) {
4487 /* Setup first alias */
4488 sysfs_slab_alias(s, s->name);
4489 kfree(name);
4490 }
4491 return 0;
4492}
4493
4494static void sysfs_slab_remove(struct kmem_cache *s)
4495{
4496 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4497 kobject_del(&s->kobj);
151c602f 4498 kobject_put(&s->kobj);
81819f0f
CL
4499}
4500
4501/*
4502 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4503 * available lest we lose that information.
81819f0f
CL
4504 */
4505struct saved_alias {
4506 struct kmem_cache *s;
4507 const char *name;
4508 struct saved_alias *next;
4509};
4510
5af328a5 4511static struct saved_alias *alias_list;
81819f0f
CL
4512
4513static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4514{
4515 struct saved_alias *al;
4516
4517 if (slab_state == SYSFS) {
4518 /*
4519 * If we have a leftover link then remove it.
4520 */
27c3a314
GKH
4521 sysfs_remove_link(&slab_kset->kobj, name);
4522 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4523 }
4524
4525 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4526 if (!al)
4527 return -ENOMEM;
4528
4529 al->s = s;
4530 al->name = name;
4531 al->next = alias_list;
4532 alias_list = al;
4533 return 0;
4534}
4535
4536static int __init slab_sysfs_init(void)
4537{
5b95a4ac 4538 struct kmem_cache *s;
81819f0f
CL
4539 int err;
4540
0ff21e46 4541 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4542 if (!slab_kset) {
81819f0f
CL
4543 printk(KERN_ERR "Cannot register slab subsystem.\n");
4544 return -ENOSYS;
4545 }
4546
26a7bd03
CL
4547 slab_state = SYSFS;
4548
5b95a4ac 4549 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4550 err = sysfs_slab_add(s);
5d540fb7
CL
4551 if (err)
4552 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4553 " to sysfs\n", s->name);
26a7bd03 4554 }
81819f0f
CL
4555
4556 while (alias_list) {
4557 struct saved_alias *al = alias_list;
4558
4559 alias_list = alias_list->next;
4560 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4561 if (err)
4562 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4563 " %s to sysfs\n", s->name);
81819f0f
CL
4564 kfree(al);
4565 }
4566
4567 resiliency_test();
4568 return 0;
4569}
4570
4571__initcall(slab_sysfs_init);
81819f0f 4572#endif
57ed3eda
PE
4573
4574/*
4575 * The /proc/slabinfo ABI
4576 */
158a9624 4577#ifdef CONFIG_SLABINFO
57ed3eda
PE
4578static void print_slabinfo_header(struct seq_file *m)
4579{
4580 seq_puts(m, "slabinfo - version: 2.1\n");
4581 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4582 "<objperslab> <pagesperslab>");
4583 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4584 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4585 seq_putc(m, '\n');
4586}
4587
4588static void *s_start(struct seq_file *m, loff_t *pos)
4589{
4590 loff_t n = *pos;
4591
4592 down_read(&slub_lock);
4593 if (!n)
4594 print_slabinfo_header(m);
4595
4596 return seq_list_start(&slab_caches, *pos);
4597}
4598
4599static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4600{
4601 return seq_list_next(p, &slab_caches, pos);
4602}
4603
4604static void s_stop(struct seq_file *m, void *p)
4605{
4606 up_read(&slub_lock);
4607}
4608
4609static int s_show(struct seq_file *m, void *p)
4610{
4611 unsigned long nr_partials = 0;
4612 unsigned long nr_slabs = 0;
4613 unsigned long nr_inuse = 0;
205ab99d
CL
4614 unsigned long nr_objs = 0;
4615 unsigned long nr_free = 0;
57ed3eda
PE
4616 struct kmem_cache *s;
4617 int node;
4618
4619 s = list_entry(p, struct kmem_cache, list);
4620
4621 for_each_online_node(node) {
4622 struct kmem_cache_node *n = get_node(s, node);
4623
4624 if (!n)
4625 continue;
4626
4627 nr_partials += n->nr_partial;
4628 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4629 nr_objs += atomic_long_read(&n->total_objects);
4630 nr_free += count_partial(n, count_free);
57ed3eda
PE
4631 }
4632
205ab99d 4633 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4634
4635 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4636 nr_objs, s->size, oo_objects(s->oo),
4637 (1 << oo_order(s->oo)));
57ed3eda
PE
4638 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4639 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4640 0UL);
4641 seq_putc(m, '\n');
4642 return 0;
4643}
4644
7b3c3a50 4645static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4646 .start = s_start,
4647 .next = s_next,
4648 .stop = s_stop,
4649 .show = s_show,
4650};
4651
7b3c3a50
AD
4652static int slabinfo_open(struct inode *inode, struct file *file)
4653{
4654 return seq_open(file, &slabinfo_op);
4655}
4656
4657static const struct file_operations proc_slabinfo_operations = {
4658 .open = slabinfo_open,
4659 .read = seq_read,
4660 .llseek = seq_lseek,
4661 .release = seq_release,
4662};
4663
4664static int __init slab_proc_init(void)
4665{
4666 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4667 return 0;
4668}
4669module_init(slab_proc_init);
158a9624 4670#endif /* CONFIG_SLABINFO */