]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/slub.c
mm/sl[aou]b: Move kmem_cache allocations into common code
[mirror_ubuntu-eoan-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 { return 0; }
db265eca 211static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 212
81819f0f
CL
213#endif
214
4fdccdfb 215static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
216{
217#ifdef CONFIG_SLUB_STATS
84e554e6 218 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
81819f0f
CL
226static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227{
81819f0f 228 return s->node[node];
81819f0f
CL
229}
230
6446faa2 231/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
232static inline int check_valid_pointer(struct kmem_cache *s,
233 struct page *page, const void *object)
234{
235 void *base;
236
a973e9dd 237 if (!object)
02cbc874
CL
238 return 1;
239
a973e9dd 240 base = page_address(page);
39b26464 241 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
242 (object - base) % s->size) {
243 return 0;
244 }
245
246 return 1;
247}
248
7656c72b
CL
249static inline void *get_freepointer(struct kmem_cache *s, void *object)
250{
251 return *(void **)(object + s->offset);
252}
253
0ad9500e
ED
254static void prefetch_freepointer(const struct kmem_cache *s, void *object)
255{
256 prefetch(object + s->offset);
257}
258
1393d9a1
CL
259static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
260{
261 void *p;
262
263#ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
265#else
266 p = get_freepointer(s, object);
267#endif
268 return p;
269}
270
7656c72b
CL
271static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
272{
273 *(void **)(object + s->offset) = fp;
274}
275
276/* Loop over all objects in a slab */
224a88be
CL
277#define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
279 __p += (__s)->size)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
1d07171c
CL
349/* Interrupts must be disabled (for the fallback code to work right) */
350static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
351 void *freelist_old, unsigned long counters_old,
352 void *freelist_new, unsigned long counters_new,
353 const char *n)
354{
355 VM_BUG_ON(!irqs_disabled());
2565409f
HC
356#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 358 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 359 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
360 freelist_old, counters_old,
361 freelist_new, counters_new))
362 return 1;
363 } else
364#endif
365 {
366 slab_lock(page);
367 if (page->freelist == freelist_old && page->counters == counters_old) {
368 page->freelist = freelist_new;
369 page->counters = counters_new;
370 slab_unlock(page);
371 return 1;
372 }
373 slab_unlock(page);
374 }
375
376 cpu_relax();
377 stat(s, CMPXCHG_DOUBLE_FAIL);
378
379#ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
381#endif
382
383 return 0;
384}
385
b789ef51
CL
386static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
387 void *freelist_old, unsigned long counters_old,
388 void *freelist_new, unsigned long counters_new,
389 const char *n)
390{
2565409f
HC
391#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 393 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 394 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
395 freelist_old, counters_old,
396 freelist_new, counters_new))
397 return 1;
398 } else
399#endif
400 {
1d07171c
CL
401 unsigned long flags;
402
403 local_irq_save(flags);
881db7fb 404 slab_lock(page);
b789ef51
CL
405 if (page->freelist == freelist_old && page->counters == counters_old) {
406 page->freelist = freelist_new;
407 page->counters = counters_new;
881db7fb 408 slab_unlock(page);
1d07171c 409 local_irq_restore(flags);
b789ef51
CL
410 return 1;
411 }
881db7fb 412 slab_unlock(page);
1d07171c 413 local_irq_restore(flags);
b789ef51
CL
414 }
415
416 cpu_relax();
417 stat(s, CMPXCHG_DOUBLE_FAIL);
418
419#ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
421#endif
422
423 return 0;
424}
425
41ecc55b 426#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
427/*
428 * Determine a map of object in use on a page.
429 *
881db7fb 430 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
431 * not vanish from under us.
432 */
433static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
434{
435 void *p;
436 void *addr = page_address(page);
437
438 for (p = page->freelist; p; p = get_freepointer(s, p))
439 set_bit(slab_index(p, s, addr), map);
440}
441
41ecc55b
CL
442/*
443 * Debug settings:
444 */
f0630fff
CL
445#ifdef CONFIG_SLUB_DEBUG_ON
446static int slub_debug = DEBUG_DEFAULT_FLAGS;
447#else
41ecc55b 448static int slub_debug;
f0630fff 449#endif
41ecc55b
CL
450
451static char *slub_debug_slabs;
fa5ec8a1 452static int disable_higher_order_debug;
41ecc55b 453
81819f0f
CL
454/*
455 * Object debugging
456 */
457static void print_section(char *text, u8 *addr, unsigned int length)
458{
ffc79d28
SAS
459 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
460 length, 1);
81819f0f
CL
461}
462
81819f0f
CL
463static struct track *get_track(struct kmem_cache *s, void *object,
464 enum track_item alloc)
465{
466 struct track *p;
467
468 if (s->offset)
469 p = object + s->offset + sizeof(void *);
470 else
471 p = object + s->inuse;
472
473 return p + alloc;
474}
475
476static void set_track(struct kmem_cache *s, void *object,
ce71e27c 477 enum track_item alloc, unsigned long addr)
81819f0f 478{
1a00df4a 479 struct track *p = get_track(s, object, alloc);
81819f0f 480
81819f0f 481 if (addr) {
d6543e39
BG
482#ifdef CONFIG_STACKTRACE
483 struct stack_trace trace;
484 int i;
485
486 trace.nr_entries = 0;
487 trace.max_entries = TRACK_ADDRS_COUNT;
488 trace.entries = p->addrs;
489 trace.skip = 3;
490 save_stack_trace(&trace);
491
492 /* See rant in lockdep.c */
493 if (trace.nr_entries != 0 &&
494 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
495 trace.nr_entries--;
496
497 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
498 p->addrs[i] = 0;
499#endif
81819f0f
CL
500 p->addr = addr;
501 p->cpu = smp_processor_id();
88e4ccf2 502 p->pid = current->pid;
81819f0f
CL
503 p->when = jiffies;
504 } else
505 memset(p, 0, sizeof(struct track));
506}
507
81819f0f
CL
508static void init_tracking(struct kmem_cache *s, void *object)
509{
24922684
CL
510 if (!(s->flags & SLAB_STORE_USER))
511 return;
512
ce71e27c
EGM
513 set_track(s, object, TRACK_FREE, 0UL);
514 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
515}
516
517static void print_track(const char *s, struct track *t)
518{
519 if (!t->addr)
520 return;
521
7daf705f 522 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 523 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
524#ifdef CONFIG_STACKTRACE
525 {
526 int i;
527 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
528 if (t->addrs[i])
529 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
530 else
531 break;
532 }
533#endif
24922684
CL
534}
535
536static void print_tracking(struct kmem_cache *s, void *object)
537{
538 if (!(s->flags & SLAB_STORE_USER))
539 return;
540
541 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
542 print_track("Freed", get_track(s, object, TRACK_FREE));
543}
544
545static void print_page_info(struct page *page)
546{
39b26464
CL
547 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
549
550}
551
552static void slab_bug(struct kmem_cache *s, char *fmt, ...)
553{
554 va_list args;
555 char buf[100];
556
557 va_start(args, fmt);
558 vsnprintf(buf, sizeof(buf), fmt, args);
559 va_end(args);
560 printk(KERN_ERR "========================================"
561 "=====================================\n");
265d47e7 562 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
563 printk(KERN_ERR "----------------------------------------"
564 "-------------------------------------\n\n");
81819f0f
CL
565}
566
24922684
CL
567static void slab_fix(struct kmem_cache *s, char *fmt, ...)
568{
569 va_list args;
570 char buf[100];
571
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
574 va_end(args);
575 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
576}
577
578static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
579{
580 unsigned int off; /* Offset of last byte */
a973e9dd 581 u8 *addr = page_address(page);
24922684
CL
582
583 print_tracking(s, p);
584
585 print_page_info(page);
586
587 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
588 p, p - addr, get_freepointer(s, p));
589
590 if (p > addr + 16)
ffc79d28 591 print_section("Bytes b4 ", p - 16, 16);
81819f0f 592
3b0efdfa 593 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 594 PAGE_SIZE));
81819f0f 595 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
596 print_section("Redzone ", p + s->object_size,
597 s->inuse - s->object_size);
81819f0f 598
81819f0f
CL
599 if (s->offset)
600 off = s->offset + sizeof(void *);
601 else
602 off = s->inuse;
603
24922684 604 if (s->flags & SLAB_STORE_USER)
81819f0f 605 off += 2 * sizeof(struct track);
81819f0f
CL
606
607 if (off != s->size)
608 /* Beginning of the filler is the free pointer */
ffc79d28 609 print_section("Padding ", p + off, s->size - off);
24922684
CL
610
611 dump_stack();
81819f0f
CL
612}
613
614static void object_err(struct kmem_cache *s, struct page *page,
615 u8 *object, char *reason)
616{
3dc50637 617 slab_bug(s, "%s", reason);
24922684 618 print_trailer(s, page, object);
81819f0f
CL
619}
620
945cf2b6 621static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
622{
623 va_list args;
624 char buf[100];
625
24922684
CL
626 va_start(args, fmt);
627 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 628 va_end(args);
3dc50637 629 slab_bug(s, "%s", buf);
24922684 630 print_page_info(page);
81819f0f
CL
631 dump_stack();
632}
633
f7cb1933 634static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
635{
636 u8 *p = object;
637
638 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
639 memset(p, POISON_FREE, s->object_size - 1);
640 p[s->object_size - 1] = POISON_END;
81819f0f
CL
641 }
642
643 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 644 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
645}
646
24922684
CL
647static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
648 void *from, void *to)
649{
650 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
651 memset(from, data, to - from);
652}
653
654static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
655 u8 *object, char *what,
06428780 656 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
657{
658 u8 *fault;
659 u8 *end;
660
79824820 661 fault = memchr_inv(start, value, bytes);
24922684
CL
662 if (!fault)
663 return 1;
664
665 end = start + bytes;
666 while (end > fault && end[-1] == value)
667 end--;
668
669 slab_bug(s, "%s overwritten", what);
670 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
671 fault, end - 1, fault[0], value);
672 print_trailer(s, page, object);
673
674 restore_bytes(s, what, value, fault, end);
675 return 0;
81819f0f
CL
676}
677
81819f0f
CL
678/*
679 * Object layout:
680 *
681 * object address
682 * Bytes of the object to be managed.
683 * If the freepointer may overlay the object then the free
684 * pointer is the first word of the object.
672bba3a 685 *
81819f0f
CL
686 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
687 * 0xa5 (POISON_END)
688 *
3b0efdfa 689 * object + s->object_size
81819f0f 690 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 691 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 692 * object_size == inuse.
672bba3a 693 *
81819f0f
CL
694 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
695 * 0xcc (RED_ACTIVE) for objects in use.
696 *
697 * object + s->inuse
672bba3a
CL
698 * Meta data starts here.
699 *
81819f0f
CL
700 * A. Free pointer (if we cannot overwrite object on free)
701 * B. Tracking data for SLAB_STORE_USER
672bba3a 702 * C. Padding to reach required alignment boundary or at mininum
6446faa2 703 * one word if debugging is on to be able to detect writes
672bba3a
CL
704 * before the word boundary.
705 *
706 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
707 *
708 * object + s->size
672bba3a 709 * Nothing is used beyond s->size.
81819f0f 710 *
3b0efdfa 711 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 712 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
713 * may be used with merged slabcaches.
714 */
715
81819f0f
CL
716static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
717{
718 unsigned long off = s->inuse; /* The end of info */
719
720 if (s->offset)
721 /* Freepointer is placed after the object. */
722 off += sizeof(void *);
723
724 if (s->flags & SLAB_STORE_USER)
725 /* We also have user information there */
726 off += 2 * sizeof(struct track);
727
728 if (s->size == off)
729 return 1;
730
24922684
CL
731 return check_bytes_and_report(s, page, p, "Object padding",
732 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
733}
734
39b26464 735/* Check the pad bytes at the end of a slab page */
81819f0f
CL
736static int slab_pad_check(struct kmem_cache *s, struct page *page)
737{
24922684
CL
738 u8 *start;
739 u8 *fault;
740 u8 *end;
741 int length;
742 int remainder;
81819f0f
CL
743
744 if (!(s->flags & SLAB_POISON))
745 return 1;
746
a973e9dd 747 start = page_address(page);
ab9a0f19 748 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
749 end = start + length;
750 remainder = length % s->size;
81819f0f
CL
751 if (!remainder)
752 return 1;
753
79824820 754 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
755 if (!fault)
756 return 1;
757 while (end > fault && end[-1] == POISON_INUSE)
758 end--;
759
760 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 761 print_section("Padding ", end - remainder, remainder);
24922684 762
8a3d271d 763 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 764 return 0;
81819f0f
CL
765}
766
767static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 768 void *object, u8 val)
81819f0f
CL
769{
770 u8 *p = object;
3b0efdfa 771 u8 *endobject = object + s->object_size;
81819f0f
CL
772
773 if (s->flags & SLAB_RED_ZONE) {
24922684 774 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 775 endobject, val, s->inuse - s->object_size))
81819f0f 776 return 0;
81819f0f 777 } else {
3b0efdfa 778 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 779 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 780 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 781 }
81819f0f
CL
782 }
783
784 if (s->flags & SLAB_POISON) {
f7cb1933 785 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 786 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 787 POISON_FREE, s->object_size - 1) ||
24922684 788 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 789 p + s->object_size - 1, POISON_END, 1)))
81819f0f 790 return 0;
81819f0f
CL
791 /*
792 * check_pad_bytes cleans up on its own.
793 */
794 check_pad_bytes(s, page, p);
795 }
796
f7cb1933 797 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
798 /*
799 * Object and freepointer overlap. Cannot check
800 * freepointer while object is allocated.
801 */
802 return 1;
803
804 /* Check free pointer validity */
805 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
806 object_err(s, page, p, "Freepointer corrupt");
807 /*
9f6c708e 808 * No choice but to zap it and thus lose the remainder
81819f0f 809 * of the free objects in this slab. May cause
672bba3a 810 * another error because the object count is now wrong.
81819f0f 811 */
a973e9dd 812 set_freepointer(s, p, NULL);
81819f0f
CL
813 return 0;
814 }
815 return 1;
816}
817
818static int check_slab(struct kmem_cache *s, struct page *page)
819{
39b26464
CL
820 int maxobj;
821
81819f0f
CL
822 VM_BUG_ON(!irqs_disabled());
823
824 if (!PageSlab(page)) {
24922684 825 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
826 return 0;
827 }
39b26464 828
ab9a0f19 829 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
830 if (page->objects > maxobj) {
831 slab_err(s, page, "objects %u > max %u",
832 s->name, page->objects, maxobj);
833 return 0;
834 }
835 if (page->inuse > page->objects) {
24922684 836 slab_err(s, page, "inuse %u > max %u",
39b26464 837 s->name, page->inuse, page->objects);
81819f0f
CL
838 return 0;
839 }
840 /* Slab_pad_check fixes things up after itself */
841 slab_pad_check(s, page);
842 return 1;
843}
844
845/*
672bba3a
CL
846 * Determine if a certain object on a page is on the freelist. Must hold the
847 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
848 */
849static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
850{
851 int nr = 0;
881db7fb 852 void *fp;
81819f0f 853 void *object = NULL;
224a88be 854 unsigned long max_objects;
81819f0f 855
881db7fb 856 fp = page->freelist;
39b26464 857 while (fp && nr <= page->objects) {
81819f0f
CL
858 if (fp == search)
859 return 1;
860 if (!check_valid_pointer(s, page, fp)) {
861 if (object) {
862 object_err(s, page, object,
863 "Freechain corrupt");
a973e9dd 864 set_freepointer(s, object, NULL);
81819f0f
CL
865 break;
866 } else {
24922684 867 slab_err(s, page, "Freepointer corrupt");
a973e9dd 868 page->freelist = NULL;
39b26464 869 page->inuse = page->objects;
24922684 870 slab_fix(s, "Freelist cleared");
81819f0f
CL
871 return 0;
872 }
873 break;
874 }
875 object = fp;
876 fp = get_freepointer(s, object);
877 nr++;
878 }
879
ab9a0f19 880 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
881 if (max_objects > MAX_OBJS_PER_PAGE)
882 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
883
884 if (page->objects != max_objects) {
885 slab_err(s, page, "Wrong number of objects. Found %d but "
886 "should be %d", page->objects, max_objects);
887 page->objects = max_objects;
888 slab_fix(s, "Number of objects adjusted.");
889 }
39b26464 890 if (page->inuse != page->objects - nr) {
70d71228 891 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
892 "counted were %d", page->inuse, page->objects - nr);
893 page->inuse = page->objects - nr;
24922684 894 slab_fix(s, "Object count adjusted.");
81819f0f
CL
895 }
896 return search == NULL;
897}
898
0121c619
CL
899static void trace(struct kmem_cache *s, struct page *page, void *object,
900 int alloc)
3ec09742
CL
901{
902 if (s->flags & SLAB_TRACE) {
903 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
904 s->name,
905 alloc ? "alloc" : "free",
906 object, page->inuse,
907 page->freelist);
908
909 if (!alloc)
3b0efdfa 910 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
911
912 dump_stack();
913 }
914}
915
c016b0bd
CL
916/*
917 * Hooks for other subsystems that check memory allocations. In a typical
918 * production configuration these hooks all should produce no code at all.
919 */
920static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
921{
c1d50836 922 flags &= gfp_allowed_mask;
c016b0bd
CL
923 lockdep_trace_alloc(flags);
924 might_sleep_if(flags & __GFP_WAIT);
925
3b0efdfa 926 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
927}
928
929static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
930{
c1d50836 931 flags &= gfp_allowed_mask;
b3d41885 932 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 933 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
934}
935
936static inline void slab_free_hook(struct kmem_cache *s, void *x)
937{
938 kmemleak_free_recursive(x, s->flags);
c016b0bd 939
d3f661d6
CL
940 /*
941 * Trouble is that we may no longer disable interupts in the fast path
942 * So in order to make the debug calls that expect irqs to be
943 * disabled we need to disable interrupts temporarily.
944 */
945#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
3b0efdfa
CL
950 kmemcheck_slab_free(s, x, s->object_size);
951 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
952 local_irq_restore(flags);
953 }
954#endif
f9b615de 955 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 956 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
957}
958
643b1138 959/*
672bba3a 960 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
961 *
962 * list_lock must be held.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
643b1138 970 list_add(&page->lru, &n->full);
643b1138
CL
971}
972
5cc6eee8
CL
973/*
974 * list_lock must be held.
975 */
643b1138
CL
976static void remove_full(struct kmem_cache *s, struct page *page)
977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
643b1138 981 list_del(&page->lru);
643b1138
CL
982}
983
0f389ec6
CL
984/* Tracking of the number of slabs for debugging purposes */
985static inline unsigned long slabs_node(struct kmem_cache *s, int node)
986{
987 struct kmem_cache_node *n = get_node(s, node);
988
989 return atomic_long_read(&n->nr_slabs);
990}
991
26c02cf0
AB
992static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
993{
994 return atomic_long_read(&n->nr_slabs);
995}
996
205ab99d 997static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
998{
999 struct kmem_cache_node *n = get_node(s, node);
1000
1001 /*
1002 * May be called early in order to allocate a slab for the
1003 * kmem_cache_node structure. Solve the chicken-egg
1004 * dilemma by deferring the increment of the count during
1005 * bootstrap (see early_kmem_cache_node_alloc).
1006 */
7340cc84 1007 if (n) {
0f389ec6 1008 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1009 atomic_long_add(objects, &n->total_objects);
1010 }
0f389ec6 1011}
205ab99d 1012static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1013{
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 atomic_long_dec(&n->nr_slabs);
205ab99d 1017 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1018}
1019
1020/* Object debug checks for alloc/free paths */
3ec09742
CL
1021static void setup_object_debug(struct kmem_cache *s, struct page *page,
1022 void *object)
1023{
1024 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1025 return;
1026
f7cb1933 1027 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1028 init_tracking(s, object);
1029}
1030
1537066c 1031static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f
CL
1090
1091 if (unlikely(s != page->slab)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
3adbefee 1095 } else if (!page->slab) {
81819f0f 1096 printk(KERN_ERR
70d71228 1097 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1098 object);
70d71228 1099 dump_stack();
06428780 1100 } else
24922684
CL
1101 object_err(s, page, object,
1102 "page slab pointer corrupt.");
81819f0f
CL
1103 goto fail;
1104 }
3ec09742 1105
3ec09742
CL
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_FREE, addr);
1108 trace(s, page, object, 0);
f7cb1933 1109 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1110out:
881db7fb 1111 slab_unlock(page);
19c7ff9e
CL
1112 /*
1113 * Keep node_lock to preserve integrity
1114 * until the object is actually freed
1115 */
1116 return n;
3ec09742 1117
81819f0f 1118fail:
19c7ff9e
CL
1119 slab_unlock(page);
1120 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1121 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1122 return NULL;
81819f0f
CL
1123}
1124
41ecc55b
CL
1125static int __init setup_slub_debug(char *str)
1126{
f0630fff
CL
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
fa5ec8a1
DR
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
f0630fff
CL
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
06428780 1160 for (; *str && *str != ','; str++) {
f0630fff
CL
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
4c13dd3b
DM
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
f0630fff
CL
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
06428780 1182 "unknown. skipped\n", *str);
f0630fff 1183 }
41ecc55b
CL
1184 }
1185
f0630fff 1186check_slabs:
41ecc55b
CL
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
f0630fff 1189out:
41ecc55b
CL
1190 return 1;
1191}
1192
1193__setup("slub_debug", setup_slub_debug);
1194
3b0efdfa 1195static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1196 unsigned long flags, const char *name,
51cc5068 1197 void (*ctor)(void *))
41ecc55b
CL
1198{
1199 /*
e153362a 1200 * Enable debugging if selected on the kernel commandline.
41ecc55b 1201 */
e153362a 1202 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
ba0268a8
CL
1205
1206 return flags;
41ecc55b
CL
1207}
1208#else
3ec09742
CL
1209static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
41ecc55b 1211
3ec09742 1212static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1213 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1214
19c7ff9e
CL
1215static inline struct kmem_cache_node *free_debug_processing(
1216 struct kmem_cache *s, struct page *page, void *object,
1217 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1218
41ecc55b
CL
1219static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1220 { return 1; }
1221static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1222 void *object, u8 val) { return 1; }
5cc6eee8
CL
1223static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1224 struct page *page) {}
2cfb7455 1225static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1226static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56
CL
1244
1245static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1246 { return 0; }
1247
1248static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1249 void *object) {}
1250
1251static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1252
ab4d5ed5 1253#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1254
81819f0f
CL
1255/*
1256 * Slab allocation and freeing
1257 */
65c3376a
CL
1258static inline struct page *alloc_slab_page(gfp_t flags, int node,
1259 struct kmem_cache_order_objects oo)
1260{
1261 int order = oo_order(oo);
1262
b1eeab67
VN
1263 flags |= __GFP_NOTRACK;
1264
2154a336 1265 if (node == NUMA_NO_NODE)
65c3376a
CL
1266 return alloc_pages(flags, order);
1267 else
6b65aaf3 1268 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1269}
1270
81819f0f
CL
1271static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1272{
06428780 1273 struct page *page;
834f3d11 1274 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1275 gfp_t alloc_gfp;
81819f0f 1276
7e0528da
CL
1277 flags &= gfp_allowed_mask;
1278
1279 if (flags & __GFP_WAIT)
1280 local_irq_enable();
1281
b7a49f0d 1282 flags |= s->allocflags;
e12ba74d 1283
ba52270d
PE
1284 /*
1285 * Let the initial higher-order allocation fail under memory pressure
1286 * so we fall-back to the minimum order allocation.
1287 */
1288 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1289
1290 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1291 if (unlikely(!page)) {
1292 oo = s->min;
1293 /*
1294 * Allocation may have failed due to fragmentation.
1295 * Try a lower order alloc if possible
1296 */
1297 page = alloc_slab_page(flags, node, oo);
81819f0f 1298
7e0528da
CL
1299 if (page)
1300 stat(s, ORDER_FALLBACK);
65c3376a 1301 }
5a896d9e 1302
737b719e 1303 if (kmemcheck_enabled && page
5086c389 1304 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1305 int pages = 1 << oo_order(oo);
1306
1307 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1308
1309 /*
1310 * Objects from caches that have a constructor don't get
1311 * cleared when they're allocated, so we need to do it here.
1312 */
1313 if (s->ctor)
1314 kmemcheck_mark_uninitialized_pages(page, pages);
1315 else
1316 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1317 }
1318
737b719e
DR
1319 if (flags & __GFP_WAIT)
1320 local_irq_disable();
1321 if (!page)
1322 return NULL;
1323
834f3d11 1324 page->objects = oo_objects(oo);
81819f0f
CL
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1328 1 << oo_order(oo));
81819f0f
CL
1329
1330 return page;
1331}
1332
1333static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335{
3ec09742 1336 setup_object_debug(s, page, object);
4f104934 1337 if (unlikely(s->ctor))
51cc5068 1338 s->ctor(object);
81819f0f
CL
1339}
1340
1341static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342{
1343 struct page *page;
81819f0f 1344 void *start;
81819f0f
CL
1345 void *last;
1346 void *p;
1347
6cb06229 1348 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1349
6cb06229
CL
1350 page = allocate_slab(s,
1351 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1352 if (!page)
1353 goto out;
1354
205ab99d 1355 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1356 page->slab = s;
c03f94cc 1357 __SetPageSlab(page);
072bb0aa
MG
1358 if (page->pfmemalloc)
1359 SetPageSlabPfmemalloc(page);
81819f0f
CL
1360
1361 start = page_address(page);
81819f0f
CL
1362
1363 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1364 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1365
1366 last = start;
224a88be 1367 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1368 setup_object(s, page, last);
1369 set_freepointer(s, last, p);
1370 last = p;
1371 }
1372 setup_object(s, page, last);
a973e9dd 1373 set_freepointer(s, last, NULL);
81819f0f
CL
1374
1375 page->freelist = start;
e6e82ea1 1376 page->inuse = page->objects;
8cb0a506 1377 page->frozen = 1;
81819f0f 1378out:
81819f0f
CL
1379 return page;
1380}
1381
1382static void __free_slab(struct kmem_cache *s, struct page *page)
1383{
834f3d11
CL
1384 int order = compound_order(page);
1385 int pages = 1 << order;
81819f0f 1386
af537b0a 1387 if (kmem_cache_debug(s)) {
81819f0f
CL
1388 void *p;
1389
1390 slab_pad_check(s, page);
224a88be
CL
1391 for_each_object(p, s, page_address(page),
1392 page->objects)
f7cb1933 1393 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1394 }
1395
b1eeab67 1396 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1397
81819f0f
CL
1398 mod_zone_page_state(page_zone(page),
1399 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1400 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1401 -pages);
81819f0f 1402
072bb0aa 1403 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1404 __ClearPageSlab(page);
1405 reset_page_mapcount(page);
1eb5ac64
NP
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1408 __free_pages(page, order);
81819f0f
CL
1409}
1410
da9a638c
LJ
1411#define need_reserve_slab_rcu \
1412 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1413
81819f0f
CL
1414static void rcu_free_slab(struct rcu_head *h)
1415{
1416 struct page *page;
1417
da9a638c
LJ
1418 if (need_reserve_slab_rcu)
1419 page = virt_to_head_page(h);
1420 else
1421 page = container_of((struct list_head *)h, struct page, lru);
1422
81819f0f
CL
1423 __free_slab(page->slab, page);
1424}
1425
1426static void free_slab(struct kmem_cache *s, struct page *page)
1427{
1428 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1429 struct rcu_head *head;
1430
1431 if (need_reserve_slab_rcu) {
1432 int order = compound_order(page);
1433 int offset = (PAGE_SIZE << order) - s->reserved;
1434
1435 VM_BUG_ON(s->reserved != sizeof(*head));
1436 head = page_address(page) + offset;
1437 } else {
1438 /*
1439 * RCU free overloads the RCU head over the LRU
1440 */
1441 head = (void *)&page->lru;
1442 }
81819f0f
CL
1443
1444 call_rcu(head, rcu_free_slab);
1445 } else
1446 __free_slab(s, page);
1447}
1448
1449static void discard_slab(struct kmem_cache *s, struct page *page)
1450{
205ab99d 1451 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1452 free_slab(s, page);
1453}
1454
1455/*
5cc6eee8
CL
1456 * Management of partially allocated slabs.
1457 *
1458 * list_lock must be held.
81819f0f 1459 */
5cc6eee8 1460static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1461 struct page *page, int tail)
81819f0f 1462{
e95eed57 1463 n->nr_partial++;
136333d1 1464 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1465 list_add_tail(&page->lru, &n->partial);
1466 else
1467 list_add(&page->lru, &n->partial);
81819f0f
CL
1468}
1469
5cc6eee8
CL
1470/*
1471 * list_lock must be held.
1472 */
1473static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1474 struct page *page)
1475{
1476 list_del(&page->lru);
1477 n->nr_partial--;
1478}
1479
81819f0f 1480/*
7ced3719
CL
1481 * Remove slab from the partial list, freeze it and
1482 * return the pointer to the freelist.
81819f0f 1483 *
497b66f2
CL
1484 * Returns a list of objects or NULL if it fails.
1485 *
7ced3719 1486 * Must hold list_lock since we modify the partial list.
81819f0f 1487 */
497b66f2 1488static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1489 struct kmem_cache_node *n, struct page *page,
49e22585 1490 int mode)
81819f0f 1491{
2cfb7455
CL
1492 void *freelist;
1493 unsigned long counters;
1494 struct page new;
1495
2cfb7455
CL
1496 /*
1497 * Zap the freelist and set the frozen bit.
1498 * The old freelist is the list of objects for the
1499 * per cpu allocation list.
1500 */
7ced3719
CL
1501 freelist = page->freelist;
1502 counters = page->counters;
1503 new.counters = counters;
23910c50 1504 if (mode) {
7ced3719 1505 new.inuse = page->objects;
23910c50
PE
1506 new.freelist = NULL;
1507 } else {
1508 new.freelist = freelist;
1509 }
2cfb7455 1510
7ced3719
CL
1511 VM_BUG_ON(new.frozen);
1512 new.frozen = 1;
2cfb7455 1513
7ced3719 1514 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1515 freelist, counters,
02d7633f 1516 new.freelist, new.counters,
7ced3719 1517 "acquire_slab"))
7ced3719 1518 return NULL;
2cfb7455
CL
1519
1520 remove_partial(n, page);
7ced3719 1521 WARN_ON(!freelist);
49e22585 1522 return freelist;
81819f0f
CL
1523}
1524
49e22585
CL
1525static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1526
81819f0f 1527/*
672bba3a 1528 * Try to allocate a partial slab from a specific node.
81819f0f 1529 */
497b66f2 1530static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1531 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1532{
49e22585
CL
1533 struct page *page, *page2;
1534 void *object = NULL;
81819f0f
CL
1535
1536 /*
1537 * Racy check. If we mistakenly see no partial slabs then we
1538 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1539 * partial slab and there is none available then get_partials()
1540 * will return NULL.
81819f0f
CL
1541 */
1542 if (!n || !n->nr_partial)
1543 return NULL;
1544
1545 spin_lock(&n->list_lock);
49e22585 1546 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1547 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1548 int available;
1549
1550 if (!t)
1551 break;
1552
12d79634 1553 if (!object) {
49e22585 1554 c->page = page;
49e22585 1555 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1556 object = t;
1557 available = page->objects - page->inuse;
1558 } else {
49e22585 1559 available = put_cpu_partial(s, page, 0);
8028dcea 1560 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1561 }
1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 break;
1564
497b66f2 1565 }
81819f0f 1566 spin_unlock(&n->list_lock);
497b66f2 1567 return object;
81819f0f
CL
1568}
1569
1570/*
672bba3a 1571 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1572 */
de3ec035 1573static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1574 struct kmem_cache_cpu *c)
81819f0f
CL
1575{
1576#ifdef CONFIG_NUMA
1577 struct zonelist *zonelist;
dd1a239f 1578 struct zoneref *z;
54a6eb5c
MG
1579 struct zone *zone;
1580 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1581 void *object;
cc9a6c87 1582 unsigned int cpuset_mems_cookie;
81819f0f
CL
1583
1584 /*
672bba3a
CL
1585 * The defrag ratio allows a configuration of the tradeoffs between
1586 * inter node defragmentation and node local allocations. A lower
1587 * defrag_ratio increases the tendency to do local allocations
1588 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1589 *
672bba3a
CL
1590 * If the defrag_ratio is set to 0 then kmalloc() always
1591 * returns node local objects. If the ratio is higher then kmalloc()
1592 * may return off node objects because partial slabs are obtained
1593 * from other nodes and filled up.
81819f0f 1594 *
6446faa2 1595 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1596 * defrag_ratio = 1000) then every (well almost) allocation will
1597 * first attempt to defrag slab caches on other nodes. This means
1598 * scanning over all nodes to look for partial slabs which may be
1599 * expensive if we do it every time we are trying to find a slab
1600 * with available objects.
81819f0f 1601 */
9824601e
CL
1602 if (!s->remote_node_defrag_ratio ||
1603 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1604 return NULL;
1605
cc9a6c87
MG
1606 do {
1607 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1608 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1609 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1610 struct kmem_cache_node *n;
1611
1612 n = get_node(s, zone_to_nid(zone));
1613
1614 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1615 n->nr_partial > s->min_partial) {
1616 object = get_partial_node(s, n, c);
1617 if (object) {
1618 /*
1619 * Return the object even if
1620 * put_mems_allowed indicated that
1621 * the cpuset mems_allowed was
1622 * updated in parallel. It's a
1623 * harmless race between the alloc
1624 * and the cpuset update.
1625 */
1626 put_mems_allowed(cpuset_mems_cookie);
1627 return object;
1628 }
c0ff7453 1629 }
81819f0f 1630 }
cc9a6c87 1631 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1632#endif
1633 return NULL;
1634}
1635
1636/*
1637 * Get a partial page, lock it and return it.
1638 */
497b66f2 1639static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1640 struct kmem_cache_cpu *c)
81819f0f 1641{
497b66f2 1642 void *object;
2154a336 1643 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1644
497b66f2
CL
1645 object = get_partial_node(s, get_node(s, searchnode), c);
1646 if (object || node != NUMA_NO_NODE)
1647 return object;
81819f0f 1648
acd19fd1 1649 return get_any_partial(s, flags, c);
81819f0f
CL
1650}
1651
8a5ec0ba
CL
1652#ifdef CONFIG_PREEMPT
1653/*
1654 * Calculate the next globally unique transaction for disambiguiation
1655 * during cmpxchg. The transactions start with the cpu number and are then
1656 * incremented by CONFIG_NR_CPUS.
1657 */
1658#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1659#else
1660/*
1661 * No preemption supported therefore also no need to check for
1662 * different cpus.
1663 */
1664#define TID_STEP 1
1665#endif
1666
1667static inline unsigned long next_tid(unsigned long tid)
1668{
1669 return tid + TID_STEP;
1670}
1671
1672static inline unsigned int tid_to_cpu(unsigned long tid)
1673{
1674 return tid % TID_STEP;
1675}
1676
1677static inline unsigned long tid_to_event(unsigned long tid)
1678{
1679 return tid / TID_STEP;
1680}
1681
1682static inline unsigned int init_tid(int cpu)
1683{
1684 return cpu;
1685}
1686
1687static inline void note_cmpxchg_failure(const char *n,
1688 const struct kmem_cache *s, unsigned long tid)
1689{
1690#ifdef SLUB_DEBUG_CMPXCHG
1691 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1692
1693 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1694
1695#ifdef CONFIG_PREEMPT
1696 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1697 printk("due to cpu change %d -> %d\n",
1698 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1699 else
1700#endif
1701 if (tid_to_event(tid) != tid_to_event(actual_tid))
1702 printk("due to cpu running other code. Event %ld->%ld\n",
1703 tid_to_event(tid), tid_to_event(actual_tid));
1704 else
1705 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1706 actual_tid, tid, next_tid(tid));
1707#endif
4fdccdfb 1708 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1709}
1710
8a5ec0ba
CL
1711void init_kmem_cache_cpus(struct kmem_cache *s)
1712{
8a5ec0ba
CL
1713 int cpu;
1714
1715 for_each_possible_cpu(cpu)
1716 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1717}
2cfb7455 1718
81819f0f
CL
1719/*
1720 * Remove the cpu slab
1721 */
c17dda40 1722static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1723{
2cfb7455 1724 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1725 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1726 int lock = 0;
1727 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1728 void *nextfree;
136333d1 1729 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1730 struct page new;
1731 struct page old;
1732
1733 if (page->freelist) {
84e554e6 1734 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1735 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1736 }
1737
894b8788 1738 /*
2cfb7455
CL
1739 * Stage one: Free all available per cpu objects back
1740 * to the page freelist while it is still frozen. Leave the
1741 * last one.
1742 *
1743 * There is no need to take the list->lock because the page
1744 * is still frozen.
1745 */
1746 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1747 void *prior;
1748 unsigned long counters;
1749
1750 do {
1751 prior = page->freelist;
1752 counters = page->counters;
1753 set_freepointer(s, freelist, prior);
1754 new.counters = counters;
1755 new.inuse--;
1756 VM_BUG_ON(!new.frozen);
1757
1d07171c 1758 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1759 prior, counters,
1760 freelist, new.counters,
1761 "drain percpu freelist"));
1762
1763 freelist = nextfree;
1764 }
1765
894b8788 1766 /*
2cfb7455
CL
1767 * Stage two: Ensure that the page is unfrozen while the
1768 * list presence reflects the actual number of objects
1769 * during unfreeze.
1770 *
1771 * We setup the list membership and then perform a cmpxchg
1772 * with the count. If there is a mismatch then the page
1773 * is not unfrozen but the page is on the wrong list.
1774 *
1775 * Then we restart the process which may have to remove
1776 * the page from the list that we just put it on again
1777 * because the number of objects in the slab may have
1778 * changed.
894b8788 1779 */
2cfb7455 1780redo:
894b8788 1781
2cfb7455
CL
1782 old.freelist = page->freelist;
1783 old.counters = page->counters;
1784 VM_BUG_ON(!old.frozen);
7c2e132c 1785
2cfb7455
CL
1786 /* Determine target state of the slab */
1787 new.counters = old.counters;
1788 if (freelist) {
1789 new.inuse--;
1790 set_freepointer(s, freelist, old.freelist);
1791 new.freelist = freelist;
1792 } else
1793 new.freelist = old.freelist;
1794
1795 new.frozen = 0;
1796
81107188 1797 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1798 m = M_FREE;
1799 else if (new.freelist) {
1800 m = M_PARTIAL;
1801 if (!lock) {
1802 lock = 1;
1803 /*
1804 * Taking the spinlock removes the possiblity
1805 * that acquire_slab() will see a slab page that
1806 * is frozen
1807 */
1808 spin_lock(&n->list_lock);
1809 }
1810 } else {
1811 m = M_FULL;
1812 if (kmem_cache_debug(s) && !lock) {
1813 lock = 1;
1814 /*
1815 * This also ensures that the scanning of full
1816 * slabs from diagnostic functions will not see
1817 * any frozen slabs.
1818 */
1819 spin_lock(&n->list_lock);
1820 }
1821 }
1822
1823 if (l != m) {
1824
1825 if (l == M_PARTIAL)
1826
1827 remove_partial(n, page);
1828
1829 else if (l == M_FULL)
894b8788 1830
2cfb7455
CL
1831 remove_full(s, page);
1832
1833 if (m == M_PARTIAL) {
1834
1835 add_partial(n, page, tail);
136333d1 1836 stat(s, tail);
2cfb7455
CL
1837
1838 } else if (m == M_FULL) {
894b8788 1839
2cfb7455
CL
1840 stat(s, DEACTIVATE_FULL);
1841 add_full(s, n, page);
1842
1843 }
1844 }
1845
1846 l = m;
1d07171c 1847 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1848 old.freelist, old.counters,
1849 new.freelist, new.counters,
1850 "unfreezing slab"))
1851 goto redo;
1852
2cfb7455
CL
1853 if (lock)
1854 spin_unlock(&n->list_lock);
1855
1856 if (m == M_FREE) {
1857 stat(s, DEACTIVATE_EMPTY);
1858 discard_slab(s, page);
1859 stat(s, FREE_SLAB);
894b8788 1860 }
81819f0f
CL
1861}
1862
d24ac77f
JK
1863/*
1864 * Unfreeze all the cpu partial slabs.
1865 *
1866 * This function must be called with interrupt disabled.
1867 */
49e22585
CL
1868static void unfreeze_partials(struct kmem_cache *s)
1869{
43d77867 1870 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1871 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1872 struct page *page, *discard_page = NULL;
49e22585
CL
1873
1874 while ((page = c->partial)) {
49e22585
CL
1875 struct page new;
1876 struct page old;
1877
1878 c->partial = page->next;
43d77867
JK
1879
1880 n2 = get_node(s, page_to_nid(page));
1881 if (n != n2) {
1882 if (n)
1883 spin_unlock(&n->list_lock);
1884
1885 n = n2;
1886 spin_lock(&n->list_lock);
1887 }
49e22585
CL
1888
1889 do {
1890
1891 old.freelist = page->freelist;
1892 old.counters = page->counters;
1893 VM_BUG_ON(!old.frozen);
1894
1895 new.counters = old.counters;
1896 new.freelist = old.freelist;
1897
1898 new.frozen = 0;
1899
d24ac77f 1900 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1901 old.freelist, old.counters,
1902 new.freelist, new.counters,
1903 "unfreezing slab"));
1904
43d77867 1905 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1906 page->next = discard_page;
1907 discard_page = page;
43d77867
JK
1908 } else {
1909 add_partial(n, page, DEACTIVATE_TO_TAIL);
1910 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1911 }
1912 }
1913
1914 if (n)
1915 spin_unlock(&n->list_lock);
9ada1934
SL
1916
1917 while (discard_page) {
1918 page = discard_page;
1919 discard_page = discard_page->next;
1920
1921 stat(s, DEACTIVATE_EMPTY);
1922 discard_slab(s, page);
1923 stat(s, FREE_SLAB);
1924 }
49e22585
CL
1925}
1926
1927/*
1928 * Put a page that was just frozen (in __slab_free) into a partial page
1929 * slot if available. This is done without interrupts disabled and without
1930 * preemption disabled. The cmpxchg is racy and may put the partial page
1931 * onto a random cpus partial slot.
1932 *
1933 * If we did not find a slot then simply move all the partials to the
1934 * per node partial list.
1935 */
1936int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1937{
1938 struct page *oldpage;
1939 int pages;
1940 int pobjects;
1941
1942 do {
1943 pages = 0;
1944 pobjects = 0;
1945 oldpage = this_cpu_read(s->cpu_slab->partial);
1946
1947 if (oldpage) {
1948 pobjects = oldpage->pobjects;
1949 pages = oldpage->pages;
1950 if (drain && pobjects > s->cpu_partial) {
1951 unsigned long flags;
1952 /*
1953 * partial array is full. Move the existing
1954 * set to the per node partial list.
1955 */
1956 local_irq_save(flags);
1957 unfreeze_partials(s);
1958 local_irq_restore(flags);
e24fc410 1959 oldpage = NULL;
49e22585
CL
1960 pobjects = 0;
1961 pages = 0;
8028dcea 1962 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1963 }
1964 }
1965
1966 pages++;
1967 pobjects += page->objects - page->inuse;
1968
1969 page->pages = pages;
1970 page->pobjects = pobjects;
1971 page->next = oldpage;
1972
933393f5 1973 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1974 return pobjects;
1975}
1976
dfb4f096 1977static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1978{
84e554e6 1979 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1980 deactivate_slab(s, c->page, c->freelist);
1981
1982 c->tid = next_tid(c->tid);
1983 c->page = NULL;
1984 c->freelist = NULL;
81819f0f
CL
1985}
1986
1987/*
1988 * Flush cpu slab.
6446faa2 1989 *
81819f0f
CL
1990 * Called from IPI handler with interrupts disabled.
1991 */
0c710013 1992static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1993{
9dfc6e68 1994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1995
49e22585
CL
1996 if (likely(c)) {
1997 if (c->page)
1998 flush_slab(s, c);
1999
2000 unfreeze_partials(s);
2001 }
81819f0f
CL
2002}
2003
2004static void flush_cpu_slab(void *d)
2005{
2006 struct kmem_cache *s = d;
81819f0f 2007
dfb4f096 2008 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2009}
2010
a8364d55
GBY
2011static bool has_cpu_slab(int cpu, void *info)
2012{
2013 struct kmem_cache *s = info;
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
02e1a9cd 2016 return c->page || c->partial;
a8364d55
GBY
2017}
2018
81819f0f
CL
2019static void flush_all(struct kmem_cache *s)
2020{
a8364d55 2021 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2022}
2023
dfb4f096
CL
2024/*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
57d437d2 2028static inline int node_match(struct page *page, int node)
dfb4f096
CL
2029{
2030#ifdef CONFIG_NUMA
57d437d2 2031 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2032 return 0;
2033#endif
2034 return 1;
2035}
2036
781b2ba6
PE
2037static int count_free(struct page *page)
2038{
2039 return page->objects - page->inuse;
2040}
2041
2042static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044{
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054}
2055
26c02cf0
AB
2056static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057{
2058#ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060#else
2061 return 0;
2062#endif
2063}
2064
781b2ba6
PE
2065static noinline void
2066slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067{
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2074 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
3b0efdfa 2077 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
781b2ba6
PE
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
26c02cf0
AB
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
781b2ba6
PE
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098}
2099
497b66f2
CL
2100static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102{
6faa6833 2103 void *freelist;
188fd063
CL
2104 struct kmem_cache_cpu *c = *pc;
2105 struct page *page;
497b66f2 2106
188fd063 2107 freelist = get_partial(s, flags, node, c);
497b66f2 2108
188fd063
CL
2109 if (freelist)
2110 return freelist;
2111
2112 page = new_slab(s, flags, node);
497b66f2
CL
2113 if (page) {
2114 c = __this_cpu_ptr(s->cpu_slab);
2115 if (c->page)
2116 flush_slab(s, c);
2117
2118 /*
2119 * No other reference to the page yet so we can
2120 * muck around with it freely without cmpxchg
2121 */
6faa6833 2122 freelist = page->freelist;
497b66f2
CL
2123 page->freelist = NULL;
2124
2125 stat(s, ALLOC_SLAB);
497b66f2
CL
2126 c->page = page;
2127 *pc = c;
2128 } else
6faa6833 2129 freelist = NULL;
497b66f2 2130
6faa6833 2131 return freelist;
497b66f2
CL
2132}
2133
072bb0aa
MG
2134static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2135{
2136 if (unlikely(PageSlabPfmemalloc(page)))
2137 return gfp_pfmemalloc_allowed(gfpflags);
2138
2139 return true;
2140}
2141
213eeb9f
CL
2142/*
2143 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2144 * or deactivate the page.
2145 *
2146 * The page is still frozen if the return value is not NULL.
2147 *
2148 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2149 *
2150 * This function must be called with interrupt disabled.
213eeb9f
CL
2151 */
2152static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2153{
2154 struct page new;
2155 unsigned long counters;
2156 void *freelist;
2157
2158 do {
2159 freelist = page->freelist;
2160 counters = page->counters;
6faa6833 2161
213eeb9f
CL
2162 new.counters = counters;
2163 VM_BUG_ON(!new.frozen);
2164
2165 new.inuse = page->objects;
2166 new.frozen = freelist != NULL;
2167
d24ac77f 2168 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2169 freelist, counters,
2170 NULL, new.counters,
2171 "get_freelist"));
2172
2173 return freelist;
2174}
2175
81819f0f 2176/*
894b8788
CL
2177 * Slow path. The lockless freelist is empty or we need to perform
2178 * debugging duties.
2179 *
894b8788
CL
2180 * Processing is still very fast if new objects have been freed to the
2181 * regular freelist. In that case we simply take over the regular freelist
2182 * as the lockless freelist and zap the regular freelist.
81819f0f 2183 *
894b8788
CL
2184 * If that is not working then we fall back to the partial lists. We take the
2185 * first element of the freelist as the object to allocate now and move the
2186 * rest of the freelist to the lockless freelist.
81819f0f 2187 *
894b8788 2188 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2189 * we need to allocate a new slab. This is the slowest path since it involves
2190 * a call to the page allocator and the setup of a new slab.
81819f0f 2191 */
ce71e27c
EGM
2192static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2193 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2194{
6faa6833 2195 void *freelist;
f6e7def7 2196 struct page *page;
8a5ec0ba
CL
2197 unsigned long flags;
2198
2199 local_irq_save(flags);
2200#ifdef CONFIG_PREEMPT
2201 /*
2202 * We may have been preempted and rescheduled on a different
2203 * cpu before disabling interrupts. Need to reload cpu area
2204 * pointer.
2205 */
2206 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2207#endif
81819f0f 2208
f6e7def7
CL
2209 page = c->page;
2210 if (!page)
81819f0f 2211 goto new_slab;
49e22585 2212redo:
6faa6833 2213
57d437d2 2214 if (unlikely(!node_match(page, node))) {
e36a2652 2215 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2216 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2217 c->page = NULL;
2218 c->freelist = NULL;
fc59c053
CL
2219 goto new_slab;
2220 }
6446faa2 2221
072bb0aa
MG
2222 /*
2223 * By rights, we should be searching for a slab page that was
2224 * PFMEMALLOC but right now, we are losing the pfmemalloc
2225 * information when the page leaves the per-cpu allocator
2226 */
2227 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2228 deactivate_slab(s, page, c->freelist);
2229 c->page = NULL;
2230 c->freelist = NULL;
2231 goto new_slab;
2232 }
2233
73736e03 2234 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2235 freelist = c->freelist;
2236 if (freelist)
73736e03 2237 goto load_freelist;
03e404af 2238
2cfb7455 2239 stat(s, ALLOC_SLOWPATH);
03e404af 2240
f6e7def7 2241 freelist = get_freelist(s, page);
6446faa2 2242
6faa6833 2243 if (!freelist) {
03e404af
CL
2244 c->page = NULL;
2245 stat(s, DEACTIVATE_BYPASS);
fc59c053 2246 goto new_slab;
03e404af 2247 }
6446faa2 2248
84e554e6 2249 stat(s, ALLOC_REFILL);
6446faa2 2250
894b8788 2251load_freelist:
507effea
CL
2252 /*
2253 * freelist is pointing to the list of objects to be used.
2254 * page is pointing to the page from which the objects are obtained.
2255 * That page must be frozen for per cpu allocations to work.
2256 */
2257 VM_BUG_ON(!c->page->frozen);
6faa6833 2258 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2259 c->tid = next_tid(c->tid);
2260 local_irq_restore(flags);
6faa6833 2261 return freelist;
81819f0f 2262
81819f0f 2263new_slab:
2cfb7455 2264
49e22585 2265 if (c->partial) {
f6e7def7
CL
2266 page = c->page = c->partial;
2267 c->partial = page->next;
49e22585
CL
2268 stat(s, CPU_PARTIAL_ALLOC);
2269 c->freelist = NULL;
2270 goto redo;
81819f0f
CL
2271 }
2272
188fd063 2273 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2274
f4697436
CL
2275 if (unlikely(!freelist)) {
2276 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2277 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2278
f4697436
CL
2279 local_irq_restore(flags);
2280 return NULL;
81819f0f 2281 }
2cfb7455 2282
f6e7def7 2283 page = c->page;
5091b74a 2284 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2285 goto load_freelist;
2cfb7455 2286
497b66f2 2287 /* Only entered in the debug case */
5091b74a 2288 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2289 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2290
f6e7def7 2291 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2292 c->page = NULL;
2293 c->freelist = NULL;
a71ae47a 2294 local_irq_restore(flags);
6faa6833 2295 return freelist;
894b8788
CL
2296}
2297
2298/*
2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300 * have the fastpath folded into their functions. So no function call
2301 * overhead for requests that can be satisfied on the fastpath.
2302 *
2303 * The fastpath works by first checking if the lockless freelist can be used.
2304 * If not then __slab_alloc is called for slow processing.
2305 *
2306 * Otherwise we can simply pick the next object from the lockless free list.
2307 */
06428780 2308static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2309 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2310{
894b8788 2311 void **object;
dfb4f096 2312 struct kmem_cache_cpu *c;
57d437d2 2313 struct page *page;
8a5ec0ba 2314 unsigned long tid;
1f84260c 2315
c016b0bd 2316 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2317 return NULL;
1f84260c 2318
8a5ec0ba 2319redo:
8a5ec0ba
CL
2320
2321 /*
2322 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2323 * enabled. We may switch back and forth between cpus while
2324 * reading from one cpu area. That does not matter as long
2325 * as we end up on the original cpu again when doing the cmpxchg.
2326 */
9dfc6e68 2327 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2328
8a5ec0ba
CL
2329 /*
2330 * The transaction ids are globally unique per cpu and per operation on
2331 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2332 * occurs on the right processor and that there was no operation on the
2333 * linked list in between.
2334 */
2335 tid = c->tid;
2336 barrier();
8a5ec0ba 2337
9dfc6e68 2338 object = c->freelist;
57d437d2 2339 page = c->page;
5091b74a 2340 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2341 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2342
2343 else {
0ad9500e
ED
2344 void *next_object = get_freepointer_safe(s, object);
2345
8a5ec0ba 2346 /*
25985edc 2347 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2348 * operation and if we are on the right processor.
2349 *
2350 * The cmpxchg does the following atomically (without lock semantics!)
2351 * 1. Relocate first pointer to the current per cpu area.
2352 * 2. Verify that tid and freelist have not been changed
2353 * 3. If they were not changed replace tid and freelist
2354 *
2355 * Since this is without lock semantics the protection is only against
2356 * code executing on this cpu *not* from access by other cpus.
2357 */
933393f5 2358 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2359 s->cpu_slab->freelist, s->cpu_slab->tid,
2360 object, tid,
0ad9500e 2361 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2362
2363 note_cmpxchg_failure("slab_alloc", s, tid);
2364 goto redo;
2365 }
0ad9500e 2366 prefetch_freepointer(s, next_object);
84e554e6 2367 stat(s, ALLOC_FASTPATH);
894b8788 2368 }
8a5ec0ba 2369
74e2134f 2370 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2371 memset(object, 0, s->object_size);
d07dbea4 2372
c016b0bd 2373 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2374
894b8788 2375 return object;
81819f0f
CL
2376}
2377
2378void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2379{
2154a336 2380 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2381
3b0efdfa 2382 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2383
2384 return ret;
81819f0f
CL
2385}
2386EXPORT_SYMBOL(kmem_cache_alloc);
2387
0f24f128 2388#ifdef CONFIG_TRACING
4a92379b
RK
2389void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2390{
2391 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2392 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2393 return ret;
2394}
2395EXPORT_SYMBOL(kmem_cache_alloc_trace);
2396
2397void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2398{
4a92379b
RK
2399 void *ret = kmalloc_order(size, flags, order);
2400 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2401 return ret;
5b882be4 2402}
4a92379b 2403EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2404#endif
2405
81819f0f
CL
2406#ifdef CONFIG_NUMA
2407void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2408{
5b882be4
EGM
2409 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2410
ca2b84cb 2411 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2412 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2413
2414 return ret;
81819f0f
CL
2415}
2416EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2417
0f24f128 2418#ifdef CONFIG_TRACING
4a92379b 2419void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2420 gfp_t gfpflags,
4a92379b 2421 int node, size_t size)
5b882be4 2422{
4a92379b
RK
2423 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2424
2425 trace_kmalloc_node(_RET_IP_, ret,
2426 size, s->size, gfpflags, node);
2427 return ret;
5b882be4 2428}
4a92379b 2429EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2430#endif
5d1f57e4 2431#endif
5b882be4 2432
81819f0f 2433/*
894b8788
CL
2434 * Slow patch handling. This may still be called frequently since objects
2435 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2436 *
894b8788
CL
2437 * So we still attempt to reduce cache line usage. Just take the slab
2438 * lock and free the item. If there is no additional partial page
2439 * handling required then we can return immediately.
81819f0f 2440 */
894b8788 2441static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2442 void *x, unsigned long addr)
81819f0f
CL
2443{
2444 void *prior;
2445 void **object = (void *)x;
2cfb7455
CL
2446 int was_frozen;
2447 int inuse;
2448 struct page new;
2449 unsigned long counters;
2450 struct kmem_cache_node *n = NULL;
61728d1e 2451 unsigned long uninitialized_var(flags);
81819f0f 2452
8a5ec0ba 2453 stat(s, FREE_SLOWPATH);
81819f0f 2454
19c7ff9e
CL
2455 if (kmem_cache_debug(s) &&
2456 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2457 return;
6446faa2 2458
2cfb7455
CL
2459 do {
2460 prior = page->freelist;
2461 counters = page->counters;
2462 set_freepointer(s, object, prior);
2463 new.counters = counters;
2464 was_frozen = new.frozen;
2465 new.inuse--;
2466 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2467
2468 if (!kmem_cache_debug(s) && !prior)
2469
2470 /*
2471 * Slab was on no list before and will be partially empty
2472 * We can defer the list move and instead freeze it.
2473 */
2474 new.frozen = 1;
2475
2476 else { /* Needs to be taken off a list */
2477
2478 n = get_node(s, page_to_nid(page));
2479 /*
2480 * Speculatively acquire the list_lock.
2481 * If the cmpxchg does not succeed then we may
2482 * drop the list_lock without any processing.
2483 *
2484 * Otherwise the list_lock will synchronize with
2485 * other processors updating the list of slabs.
2486 */
2487 spin_lock_irqsave(&n->list_lock, flags);
2488
2489 }
2cfb7455
CL
2490 }
2491 inuse = new.inuse;
81819f0f 2492
2cfb7455
CL
2493 } while (!cmpxchg_double_slab(s, page,
2494 prior, counters,
2495 object, new.counters,
2496 "__slab_free"));
81819f0f 2497
2cfb7455 2498 if (likely(!n)) {
49e22585
CL
2499
2500 /*
2501 * If we just froze the page then put it onto the
2502 * per cpu partial list.
2503 */
8028dcea 2504 if (new.frozen && !was_frozen) {
49e22585 2505 put_cpu_partial(s, page, 1);
8028dcea
AS
2506 stat(s, CPU_PARTIAL_FREE);
2507 }
49e22585 2508 /*
2cfb7455
CL
2509 * The list lock was not taken therefore no list
2510 * activity can be necessary.
2511 */
2512 if (was_frozen)
2513 stat(s, FREE_FROZEN);
80f08c19 2514 return;
2cfb7455 2515 }
81819f0f
CL
2516
2517 /*
2cfb7455
CL
2518 * was_frozen may have been set after we acquired the list_lock in
2519 * an earlier loop. So we need to check it here again.
81819f0f 2520 */
2cfb7455
CL
2521 if (was_frozen)
2522 stat(s, FREE_FROZEN);
2523 else {
2524 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2525 goto slab_empty;
81819f0f 2526
2cfb7455
CL
2527 /*
2528 * Objects left in the slab. If it was not on the partial list before
2529 * then add it.
2530 */
2531 if (unlikely(!prior)) {
2532 remove_full(s, page);
136333d1 2533 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2534 stat(s, FREE_ADD_PARTIAL);
2535 }
8ff12cfc 2536 }
80f08c19 2537 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2538 return;
2539
2540slab_empty:
a973e9dd 2541 if (prior) {
81819f0f 2542 /*
6fbabb20 2543 * Slab on the partial list.
81819f0f 2544 */
5cc6eee8 2545 remove_partial(n, page);
84e554e6 2546 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2547 } else
2548 /* Slab must be on the full list */
2549 remove_full(s, page);
2cfb7455 2550
80f08c19 2551 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2552 stat(s, FREE_SLAB);
81819f0f 2553 discard_slab(s, page);
81819f0f
CL
2554}
2555
894b8788
CL
2556/*
2557 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2558 * can perform fastpath freeing without additional function calls.
2559 *
2560 * The fastpath is only possible if we are freeing to the current cpu slab
2561 * of this processor. This typically the case if we have just allocated
2562 * the item before.
2563 *
2564 * If fastpath is not possible then fall back to __slab_free where we deal
2565 * with all sorts of special processing.
2566 */
06428780 2567static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2568 struct page *page, void *x, unsigned long addr)
894b8788
CL
2569{
2570 void **object = (void *)x;
dfb4f096 2571 struct kmem_cache_cpu *c;
8a5ec0ba 2572 unsigned long tid;
1f84260c 2573
c016b0bd
CL
2574 slab_free_hook(s, x);
2575
8a5ec0ba
CL
2576redo:
2577 /*
2578 * Determine the currently cpus per cpu slab.
2579 * The cpu may change afterward. However that does not matter since
2580 * data is retrieved via this pointer. If we are on the same cpu
2581 * during the cmpxchg then the free will succedd.
2582 */
9dfc6e68 2583 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2584
8a5ec0ba
CL
2585 tid = c->tid;
2586 barrier();
c016b0bd 2587
442b06bc 2588 if (likely(page == c->page)) {
ff12059e 2589 set_freepointer(s, object, c->freelist);
8a5ec0ba 2590
933393f5 2591 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2592 s->cpu_slab->freelist, s->cpu_slab->tid,
2593 c->freelist, tid,
2594 object, next_tid(tid)))) {
2595
2596 note_cmpxchg_failure("slab_free", s, tid);
2597 goto redo;
2598 }
84e554e6 2599 stat(s, FREE_FASTPATH);
894b8788 2600 } else
ff12059e 2601 __slab_free(s, page, x, addr);
894b8788 2602
894b8788
CL
2603}
2604
81819f0f
CL
2605void kmem_cache_free(struct kmem_cache *s, void *x)
2606{
77c5e2d0 2607 struct page *page;
81819f0f 2608
b49af68f 2609 page = virt_to_head_page(x);
81819f0f 2610
79576102
CL
2611 if (kmem_cache_debug(s) && page->slab != s) {
2612 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2613 " is from %s\n", page->slab->name, s->name);
2614 WARN_ON_ONCE(1);
2615 return;
2616 }
2617
ce71e27c 2618 slab_free(s, page, x, _RET_IP_);
5b882be4 2619
ca2b84cb 2620 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2621}
2622EXPORT_SYMBOL(kmem_cache_free);
2623
81819f0f 2624/*
672bba3a
CL
2625 * Object placement in a slab is made very easy because we always start at
2626 * offset 0. If we tune the size of the object to the alignment then we can
2627 * get the required alignment by putting one properly sized object after
2628 * another.
81819f0f
CL
2629 *
2630 * Notice that the allocation order determines the sizes of the per cpu
2631 * caches. Each processor has always one slab available for allocations.
2632 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2633 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2634 * locking overhead.
81819f0f
CL
2635 */
2636
2637/*
2638 * Mininum / Maximum order of slab pages. This influences locking overhead
2639 * and slab fragmentation. A higher order reduces the number of partial slabs
2640 * and increases the number of allocations possible without having to
2641 * take the list_lock.
2642 */
2643static int slub_min_order;
114e9e89 2644static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2645static int slub_min_objects;
81819f0f
CL
2646
2647/*
2648 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2649 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2650 */
2651static int slub_nomerge;
2652
81819f0f
CL
2653/*
2654 * Calculate the order of allocation given an slab object size.
2655 *
672bba3a
CL
2656 * The order of allocation has significant impact on performance and other
2657 * system components. Generally order 0 allocations should be preferred since
2658 * order 0 does not cause fragmentation in the page allocator. Larger objects
2659 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2660 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2661 * would be wasted.
2662 *
2663 * In order to reach satisfactory performance we must ensure that a minimum
2664 * number of objects is in one slab. Otherwise we may generate too much
2665 * activity on the partial lists which requires taking the list_lock. This is
2666 * less a concern for large slabs though which are rarely used.
81819f0f 2667 *
672bba3a
CL
2668 * slub_max_order specifies the order where we begin to stop considering the
2669 * number of objects in a slab as critical. If we reach slub_max_order then
2670 * we try to keep the page order as low as possible. So we accept more waste
2671 * of space in favor of a small page order.
81819f0f 2672 *
672bba3a
CL
2673 * Higher order allocations also allow the placement of more objects in a
2674 * slab and thereby reduce object handling overhead. If the user has
2675 * requested a higher mininum order then we start with that one instead of
2676 * the smallest order which will fit the object.
81819f0f 2677 */
5e6d444e 2678static inline int slab_order(int size, int min_objects,
ab9a0f19 2679 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2680{
2681 int order;
2682 int rem;
6300ea75 2683 int min_order = slub_min_order;
81819f0f 2684
ab9a0f19 2685 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2686 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2687
6300ea75 2688 for (order = max(min_order,
5e6d444e
CL
2689 fls(min_objects * size - 1) - PAGE_SHIFT);
2690 order <= max_order; order++) {
81819f0f 2691
5e6d444e 2692 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2693
ab9a0f19 2694 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2695 continue;
2696
ab9a0f19 2697 rem = (slab_size - reserved) % size;
81819f0f 2698
5e6d444e 2699 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2700 break;
2701
2702 }
672bba3a 2703
81819f0f
CL
2704 return order;
2705}
2706
ab9a0f19 2707static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2708{
2709 int order;
2710 int min_objects;
2711 int fraction;
e8120ff1 2712 int max_objects;
5e6d444e
CL
2713
2714 /*
2715 * Attempt to find best configuration for a slab. This
2716 * works by first attempting to generate a layout with
2717 * the best configuration and backing off gradually.
2718 *
2719 * First we reduce the acceptable waste in a slab. Then
2720 * we reduce the minimum objects required in a slab.
2721 */
2722 min_objects = slub_min_objects;
9b2cd506
CL
2723 if (!min_objects)
2724 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2725 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2726 min_objects = min(min_objects, max_objects);
2727
5e6d444e 2728 while (min_objects > 1) {
c124f5b5 2729 fraction = 16;
5e6d444e
CL
2730 while (fraction >= 4) {
2731 order = slab_order(size, min_objects,
ab9a0f19 2732 slub_max_order, fraction, reserved);
5e6d444e
CL
2733 if (order <= slub_max_order)
2734 return order;
2735 fraction /= 2;
2736 }
5086c389 2737 min_objects--;
5e6d444e
CL
2738 }
2739
2740 /*
2741 * We were unable to place multiple objects in a slab. Now
2742 * lets see if we can place a single object there.
2743 */
ab9a0f19 2744 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2745 if (order <= slub_max_order)
2746 return order;
2747
2748 /*
2749 * Doh this slab cannot be placed using slub_max_order.
2750 */
ab9a0f19 2751 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2752 if (order < MAX_ORDER)
5e6d444e
CL
2753 return order;
2754 return -ENOSYS;
2755}
2756
81819f0f 2757/*
672bba3a 2758 * Figure out what the alignment of the objects will be.
81819f0f
CL
2759 */
2760static unsigned long calculate_alignment(unsigned long flags,
2761 unsigned long align, unsigned long size)
2762{
2763 /*
6446faa2
CL
2764 * If the user wants hardware cache aligned objects then follow that
2765 * suggestion if the object is sufficiently large.
81819f0f 2766 *
6446faa2
CL
2767 * The hardware cache alignment cannot override the specified
2768 * alignment though. If that is greater then use it.
81819f0f 2769 */
b6210386
NP
2770 if (flags & SLAB_HWCACHE_ALIGN) {
2771 unsigned long ralign = cache_line_size();
2772 while (size <= ralign / 2)
2773 ralign /= 2;
2774 align = max(align, ralign);
2775 }
81819f0f
CL
2776
2777 if (align < ARCH_SLAB_MINALIGN)
b6210386 2778 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2779
2780 return ALIGN(align, sizeof(void *));
2781}
2782
5595cffc 2783static void
4053497d 2784init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2785{
2786 n->nr_partial = 0;
81819f0f
CL
2787 spin_lock_init(&n->list_lock);
2788 INIT_LIST_HEAD(&n->partial);
8ab1372f 2789#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2790 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2791 atomic_long_set(&n->total_objects, 0);
643b1138 2792 INIT_LIST_HEAD(&n->full);
8ab1372f 2793#endif
81819f0f
CL
2794}
2795
55136592 2796static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2797{
6c182dc0
CL
2798 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2799 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2800
8a5ec0ba 2801 /*
d4d84fef
CM
2802 * Must align to double word boundary for the double cmpxchg
2803 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2804 */
d4d84fef
CM
2805 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2806 2 * sizeof(void *));
8a5ec0ba
CL
2807
2808 if (!s->cpu_slab)
2809 return 0;
2810
2811 init_kmem_cache_cpus(s);
4c93c355 2812
8a5ec0ba 2813 return 1;
4c93c355 2814}
4c93c355 2815
51df1142
CL
2816static struct kmem_cache *kmem_cache_node;
2817
81819f0f
CL
2818/*
2819 * No kmalloc_node yet so do it by hand. We know that this is the first
2820 * slab on the node for this slabcache. There are no concurrent accesses
2821 * possible.
2822 *
2823 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2824 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2825 * memory on a fresh node that has no slab structures yet.
81819f0f 2826 */
55136592 2827static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2828{
2829 struct page *page;
2830 struct kmem_cache_node *n;
2831
51df1142 2832 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2833
51df1142 2834 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2835
2836 BUG_ON(!page);
a2f92ee7
CL
2837 if (page_to_nid(page) != node) {
2838 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2839 "node %d\n", node);
2840 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2841 "in order to be able to continue\n");
2842 }
2843
81819f0f
CL
2844 n = page->freelist;
2845 BUG_ON(!n);
51df1142 2846 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2847 page->inuse = 1;
8cb0a506 2848 page->frozen = 0;
51df1142 2849 kmem_cache_node->node[node] = n;
8ab1372f 2850#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2851 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2852 init_tracking(kmem_cache_node, n);
8ab1372f 2853#endif
4053497d 2854 init_kmem_cache_node(n);
51df1142 2855 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2856
136333d1 2857 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2858}
2859
2860static void free_kmem_cache_nodes(struct kmem_cache *s)
2861{
2862 int node;
2863
f64dc58c 2864 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2865 struct kmem_cache_node *n = s->node[node];
51df1142 2866
73367bd8 2867 if (n)
51df1142
CL
2868 kmem_cache_free(kmem_cache_node, n);
2869
81819f0f
CL
2870 s->node[node] = NULL;
2871 }
2872}
2873
55136592 2874static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2875{
2876 int node;
81819f0f 2877
f64dc58c 2878 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2879 struct kmem_cache_node *n;
2880
73367bd8 2881 if (slab_state == DOWN) {
55136592 2882 early_kmem_cache_node_alloc(node);
73367bd8
AD
2883 continue;
2884 }
51df1142 2885 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2886 GFP_KERNEL, node);
81819f0f 2887
73367bd8
AD
2888 if (!n) {
2889 free_kmem_cache_nodes(s);
2890 return 0;
81819f0f 2891 }
73367bd8 2892
81819f0f 2893 s->node[node] = n;
4053497d 2894 init_kmem_cache_node(n);
81819f0f
CL
2895 }
2896 return 1;
2897}
81819f0f 2898
c0bdb232 2899static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2900{
2901 if (min < MIN_PARTIAL)
2902 min = MIN_PARTIAL;
2903 else if (min > MAX_PARTIAL)
2904 min = MAX_PARTIAL;
2905 s->min_partial = min;
2906}
2907
81819f0f
CL
2908/*
2909 * calculate_sizes() determines the order and the distribution of data within
2910 * a slab object.
2911 */
06b285dc 2912static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2913{
2914 unsigned long flags = s->flags;
3b0efdfa 2915 unsigned long size = s->object_size;
81819f0f 2916 unsigned long align = s->align;
834f3d11 2917 int order;
81819f0f 2918
d8b42bf5
CL
2919 /*
2920 * Round up object size to the next word boundary. We can only
2921 * place the free pointer at word boundaries and this determines
2922 * the possible location of the free pointer.
2923 */
2924 size = ALIGN(size, sizeof(void *));
2925
2926#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2927 /*
2928 * Determine if we can poison the object itself. If the user of
2929 * the slab may touch the object after free or before allocation
2930 * then we should never poison the object itself.
2931 */
2932 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2933 !s->ctor)
81819f0f
CL
2934 s->flags |= __OBJECT_POISON;
2935 else
2936 s->flags &= ~__OBJECT_POISON;
2937
81819f0f
CL
2938
2939 /*
672bba3a 2940 * If we are Redzoning then check if there is some space between the
81819f0f 2941 * end of the object and the free pointer. If not then add an
672bba3a 2942 * additional word to have some bytes to store Redzone information.
81819f0f 2943 */
3b0efdfa 2944 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2945 size += sizeof(void *);
41ecc55b 2946#endif
81819f0f
CL
2947
2948 /*
672bba3a
CL
2949 * With that we have determined the number of bytes in actual use
2950 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2951 */
2952 s->inuse = size;
2953
2954 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2955 s->ctor)) {
81819f0f
CL
2956 /*
2957 * Relocate free pointer after the object if it is not
2958 * permitted to overwrite the first word of the object on
2959 * kmem_cache_free.
2960 *
2961 * This is the case if we do RCU, have a constructor or
2962 * destructor or are poisoning the objects.
2963 */
2964 s->offset = size;
2965 size += sizeof(void *);
2966 }
2967
c12b3c62 2968#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2969 if (flags & SLAB_STORE_USER)
2970 /*
2971 * Need to store information about allocs and frees after
2972 * the object.
2973 */
2974 size += 2 * sizeof(struct track);
2975
be7b3fbc 2976 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2977 /*
2978 * Add some empty padding so that we can catch
2979 * overwrites from earlier objects rather than let
2980 * tracking information or the free pointer be
0211a9c8 2981 * corrupted if a user writes before the start
81819f0f
CL
2982 * of the object.
2983 */
2984 size += sizeof(void *);
41ecc55b 2985#endif
672bba3a 2986
81819f0f
CL
2987 /*
2988 * Determine the alignment based on various parameters that the
65c02d4c
CL
2989 * user specified and the dynamic determination of cache line size
2990 * on bootup.
81819f0f 2991 */
3b0efdfa 2992 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2993 s->align = align;
81819f0f
CL
2994
2995 /*
2996 * SLUB stores one object immediately after another beginning from
2997 * offset 0. In order to align the objects we have to simply size
2998 * each object to conform to the alignment.
2999 */
3000 size = ALIGN(size, align);
3001 s->size = size;
06b285dc
CL
3002 if (forced_order >= 0)
3003 order = forced_order;
3004 else
ab9a0f19 3005 order = calculate_order(size, s->reserved);
81819f0f 3006
834f3d11 3007 if (order < 0)
81819f0f
CL
3008 return 0;
3009
b7a49f0d 3010 s->allocflags = 0;
834f3d11 3011 if (order)
b7a49f0d
CL
3012 s->allocflags |= __GFP_COMP;
3013
3014 if (s->flags & SLAB_CACHE_DMA)
3015 s->allocflags |= SLUB_DMA;
3016
3017 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3018 s->allocflags |= __GFP_RECLAIMABLE;
3019
81819f0f
CL
3020 /*
3021 * Determine the number of objects per slab
3022 */
ab9a0f19
LJ
3023 s->oo = oo_make(order, size, s->reserved);
3024 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3025 if (oo_objects(s->oo) > oo_objects(s->max))
3026 s->max = s->oo;
81819f0f 3027
834f3d11 3028 return !!oo_objects(s->oo);
81819f0f
CL
3029
3030}
3031
55136592 3032static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3033 const char *name, size_t size,
3034 size_t align, unsigned long flags,
51cc5068 3035 void (*ctor)(void *))
81819f0f 3036{
81819f0f
CL
3037 s->name = name;
3038 s->ctor = ctor;
3b0efdfa 3039 s->object_size = size;
81819f0f 3040 s->align = align;
ba0268a8 3041 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3042 s->reserved = 0;
81819f0f 3043
da9a638c
LJ
3044 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3045 s->reserved = sizeof(struct rcu_head);
81819f0f 3046
06b285dc 3047 if (!calculate_sizes(s, -1))
81819f0f 3048 goto error;
3de47213
DR
3049 if (disable_higher_order_debug) {
3050 /*
3051 * Disable debugging flags that store metadata if the min slab
3052 * order increased.
3053 */
3b0efdfa 3054 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3055 s->flags &= ~DEBUG_METADATA_FLAGS;
3056 s->offset = 0;
3057 if (!calculate_sizes(s, -1))
3058 goto error;
3059 }
3060 }
81819f0f 3061
2565409f
HC
3062#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3063 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3064 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3065 /* Enable fast mode */
3066 s->flags |= __CMPXCHG_DOUBLE;
3067#endif
3068
3b89d7d8
DR
3069 /*
3070 * The larger the object size is, the more pages we want on the partial
3071 * list to avoid pounding the page allocator excessively.
3072 */
49e22585
CL
3073 set_min_partial(s, ilog2(s->size) / 2);
3074
3075 /*
3076 * cpu_partial determined the maximum number of objects kept in the
3077 * per cpu partial lists of a processor.
3078 *
3079 * Per cpu partial lists mainly contain slabs that just have one
3080 * object freed. If they are used for allocation then they can be
3081 * filled up again with minimal effort. The slab will never hit the
3082 * per node partial lists and therefore no locking will be required.
3083 *
3084 * This setting also determines
3085 *
3086 * A) The number of objects from per cpu partial slabs dumped to the
3087 * per node list when we reach the limit.
9f264904 3088 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3089 * per node list when we run out of per cpu objects. We only fetch 50%
3090 * to keep some capacity around for frees.
3091 */
8f1e33da
CL
3092 if (kmem_cache_debug(s))
3093 s->cpu_partial = 0;
3094 else if (s->size >= PAGE_SIZE)
49e22585
CL
3095 s->cpu_partial = 2;
3096 else if (s->size >= 1024)
3097 s->cpu_partial = 6;
3098 else if (s->size >= 256)
3099 s->cpu_partial = 13;
3100 else
3101 s->cpu_partial = 30;
3102
81819f0f
CL
3103 s->refcount = 1;
3104#ifdef CONFIG_NUMA
e2cb96b7 3105 s->remote_node_defrag_ratio = 1000;
81819f0f 3106#endif
55136592 3107 if (!init_kmem_cache_nodes(s))
dfb4f096 3108 goto error;
81819f0f 3109
55136592 3110 if (alloc_kmem_cache_cpus(s))
278b1bb1 3111 return 0;
ff12059e 3112
4c93c355 3113 free_kmem_cache_nodes(s);
81819f0f
CL
3114error:
3115 if (flags & SLAB_PANIC)
3116 panic("Cannot create slab %s size=%lu realsize=%u "
3117 "order=%u offset=%u flags=%lx\n",
834f3d11 3118 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f 3119 s->offset, flags);
278b1bb1 3120 return -EINVAL;
81819f0f 3121}
81819f0f 3122
81819f0f
CL
3123/*
3124 * Determine the size of a slab object
3125 */
3126unsigned int kmem_cache_size(struct kmem_cache *s)
3127{
3b0efdfa 3128 return s->object_size;
81819f0f
CL
3129}
3130EXPORT_SYMBOL(kmem_cache_size);
3131
33b12c38
CL
3132static void list_slab_objects(struct kmem_cache *s, struct page *page,
3133 const char *text)
3134{
3135#ifdef CONFIG_SLUB_DEBUG
3136 void *addr = page_address(page);
3137 void *p;
a5dd5c11
NK
3138 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3139 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3140 if (!map)
3141 return;
945cf2b6 3142 slab_err(s, page, text, s->name);
33b12c38 3143 slab_lock(page);
33b12c38 3144
5f80b13a 3145 get_map(s, page, map);
33b12c38
CL
3146 for_each_object(p, s, addr, page->objects) {
3147
3148 if (!test_bit(slab_index(p, s, addr), map)) {
3149 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3150 p, p - addr);
3151 print_tracking(s, p);
3152 }
3153 }
3154 slab_unlock(page);
bbd7d57b 3155 kfree(map);
33b12c38
CL
3156#endif
3157}
3158
81819f0f 3159/*
599870b1 3160 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3161 * This is called from kmem_cache_close(). We must be the last thread
3162 * using the cache and therefore we do not need to lock anymore.
81819f0f 3163 */
599870b1 3164static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3165{
81819f0f
CL
3166 struct page *page, *h;
3167
33b12c38 3168 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3169 if (!page->inuse) {
5cc6eee8 3170 remove_partial(n, page);
81819f0f 3171 discard_slab(s, page);
33b12c38
CL
3172 } else {
3173 list_slab_objects(s, page,
945cf2b6 3174 "Objects remaining in %s on kmem_cache_close()");
599870b1 3175 }
33b12c38 3176 }
81819f0f
CL
3177}
3178
3179/*
672bba3a 3180 * Release all resources used by a slab cache.
81819f0f 3181 */
0c710013 3182static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3183{
3184 int node;
3185
3186 flush_all(s);
81819f0f 3187 /* Attempt to free all objects */
f64dc58c 3188 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3189 struct kmem_cache_node *n = get_node(s, node);
3190
599870b1
CL
3191 free_partial(s, n);
3192 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3193 return 1;
3194 }
945cf2b6 3195 free_percpu(s->cpu_slab);
81819f0f
CL
3196 free_kmem_cache_nodes(s);
3197 return 0;
3198}
3199
945cf2b6
CL
3200int __kmem_cache_shutdown(struct kmem_cache *s)
3201{
12c3667f 3202 int rc = kmem_cache_close(s);
945cf2b6 3203
12c3667f
CL
3204 if (!rc)
3205 sysfs_slab_remove(s);
3206
3207 return rc;
81819f0f 3208}
81819f0f
CL
3209
3210/********************************************************************
3211 * Kmalloc subsystem
3212 *******************************************************************/
3213
51df1142 3214struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3215EXPORT_SYMBOL(kmalloc_caches);
3216
55136592 3217#ifdef CONFIG_ZONE_DMA
51df1142 3218static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3219#endif
3220
81819f0f
CL
3221static int __init setup_slub_min_order(char *str)
3222{
06428780 3223 get_option(&str, &slub_min_order);
81819f0f
CL
3224
3225 return 1;
3226}
3227
3228__setup("slub_min_order=", setup_slub_min_order);
3229
3230static int __init setup_slub_max_order(char *str)
3231{
06428780 3232 get_option(&str, &slub_max_order);
818cf590 3233 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3234
3235 return 1;
3236}
3237
3238__setup("slub_max_order=", setup_slub_max_order);
3239
3240static int __init setup_slub_min_objects(char *str)
3241{
06428780 3242 get_option(&str, &slub_min_objects);
81819f0f
CL
3243
3244 return 1;
3245}
3246
3247__setup("slub_min_objects=", setup_slub_min_objects);
3248
3249static int __init setup_slub_nomerge(char *str)
3250{
3251 slub_nomerge = 1;
3252 return 1;
3253}
3254
3255__setup("slub_nomerge", setup_slub_nomerge);
3256
51df1142
CL
3257static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3258 int size, unsigned int flags)
81819f0f 3259{
51df1142
CL
3260 struct kmem_cache *s;
3261
278b1bb1 3262 s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3263
83b519e8
PE
3264 /*
3265 * This function is called with IRQs disabled during early-boot on
18004c5d 3266 * single CPU so there's no need to take slab_mutex here.
83b519e8 3267 */
278b1bb1 3268 if (kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3269 flags, NULL))
81819f0f
CL
3270 goto panic;
3271
3272 list_add(&s->list, &slab_caches);
51df1142 3273 return s;
81819f0f
CL
3274
3275panic:
3276 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3277 return NULL;
81819f0f
CL
3278}
3279
f1b26339
CL
3280/*
3281 * Conversion table for small slabs sizes / 8 to the index in the
3282 * kmalloc array. This is necessary for slabs < 192 since we have non power
3283 * of two cache sizes there. The size of larger slabs can be determined using
3284 * fls.
3285 */
3286static s8 size_index[24] = {
3287 3, /* 8 */
3288 4, /* 16 */
3289 5, /* 24 */
3290 5, /* 32 */
3291 6, /* 40 */
3292 6, /* 48 */
3293 6, /* 56 */
3294 6, /* 64 */
3295 1, /* 72 */
3296 1, /* 80 */
3297 1, /* 88 */
3298 1, /* 96 */
3299 7, /* 104 */
3300 7, /* 112 */
3301 7, /* 120 */
3302 7, /* 128 */
3303 2, /* 136 */
3304 2, /* 144 */
3305 2, /* 152 */
3306 2, /* 160 */
3307 2, /* 168 */
3308 2, /* 176 */
3309 2, /* 184 */
3310 2 /* 192 */
3311};
3312
acdfcd04
AK
3313static inline int size_index_elem(size_t bytes)
3314{
3315 return (bytes - 1) / 8;
3316}
3317
81819f0f
CL
3318static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3319{
f1b26339 3320 int index;
81819f0f 3321
f1b26339
CL
3322 if (size <= 192) {
3323 if (!size)
3324 return ZERO_SIZE_PTR;
81819f0f 3325
acdfcd04 3326 index = size_index[size_index_elem(size)];
aadb4bc4 3327 } else
f1b26339 3328 index = fls(size - 1);
81819f0f
CL
3329
3330#ifdef CONFIG_ZONE_DMA
f1b26339 3331 if (unlikely((flags & SLUB_DMA)))
51df1142 3332 return kmalloc_dma_caches[index];
f1b26339 3333
81819f0f 3334#endif
51df1142 3335 return kmalloc_caches[index];
81819f0f
CL
3336}
3337
3338void *__kmalloc(size_t size, gfp_t flags)
3339{
aadb4bc4 3340 struct kmem_cache *s;
5b882be4 3341 void *ret;
81819f0f 3342
ffadd4d0 3343 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3344 return kmalloc_large(size, flags);
aadb4bc4
CL
3345
3346 s = get_slab(size, flags);
3347
3348 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3349 return s;
3350
2154a336 3351 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3352
ca2b84cb 3353 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3354
3355 return ret;
81819f0f
CL
3356}
3357EXPORT_SYMBOL(__kmalloc);
3358
5d1f57e4 3359#ifdef CONFIG_NUMA
f619cfe1
CL
3360static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3361{
b1eeab67 3362 struct page *page;
e4f7c0b4 3363 void *ptr = NULL;
f619cfe1 3364
b1eeab67
VN
3365 flags |= __GFP_COMP | __GFP_NOTRACK;
3366 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3367 if (page)
e4f7c0b4
CM
3368 ptr = page_address(page);
3369
3370 kmemleak_alloc(ptr, size, 1, flags);
3371 return ptr;
f619cfe1
CL
3372}
3373
81819f0f
CL
3374void *__kmalloc_node(size_t size, gfp_t flags, int node)
3375{
aadb4bc4 3376 struct kmem_cache *s;
5b882be4 3377 void *ret;
81819f0f 3378
057685cf 3379 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3380 ret = kmalloc_large_node(size, flags, node);
3381
ca2b84cb
EGM
3382 trace_kmalloc_node(_RET_IP_, ret,
3383 size, PAGE_SIZE << get_order(size),
3384 flags, node);
5b882be4
EGM
3385
3386 return ret;
3387 }
aadb4bc4
CL
3388
3389 s = get_slab(size, flags);
3390
3391 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3392 return s;
3393
5b882be4
EGM
3394 ret = slab_alloc(s, flags, node, _RET_IP_);
3395
ca2b84cb 3396 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3397
3398 return ret;
81819f0f
CL
3399}
3400EXPORT_SYMBOL(__kmalloc_node);
3401#endif
3402
3403size_t ksize(const void *object)
3404{
272c1d21 3405 struct page *page;
81819f0f 3406
ef8b4520 3407 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3408 return 0;
3409
294a80a8 3410 page = virt_to_head_page(object);
294a80a8 3411
76994412
PE
3412 if (unlikely(!PageSlab(page))) {
3413 WARN_ON(!PageCompound(page));
294a80a8 3414 return PAGE_SIZE << compound_order(page);
76994412 3415 }
81819f0f 3416
b3d41885 3417 return slab_ksize(page->slab);
81819f0f 3418}
b1aabecd 3419EXPORT_SYMBOL(ksize);
81819f0f 3420
d18a90dd
BG
3421#ifdef CONFIG_SLUB_DEBUG
3422bool verify_mem_not_deleted(const void *x)
3423{
3424 struct page *page;
3425 void *object = (void *)x;
3426 unsigned long flags;
3427 bool rv;
3428
3429 if (unlikely(ZERO_OR_NULL_PTR(x)))
3430 return false;
3431
3432 local_irq_save(flags);
3433
3434 page = virt_to_head_page(x);
3435 if (unlikely(!PageSlab(page))) {
3436 /* maybe it was from stack? */
3437 rv = true;
3438 goto out_unlock;
3439 }
3440
3441 slab_lock(page);
3442 if (on_freelist(page->slab, page, object)) {
3443 object_err(page->slab, page, object, "Object is on free-list");
3444 rv = false;
3445 } else {
3446 rv = true;
3447 }
3448 slab_unlock(page);
3449
3450out_unlock:
3451 local_irq_restore(flags);
3452 return rv;
3453}
3454EXPORT_SYMBOL(verify_mem_not_deleted);
3455#endif
3456
81819f0f
CL
3457void kfree(const void *x)
3458{
81819f0f 3459 struct page *page;
5bb983b0 3460 void *object = (void *)x;
81819f0f 3461
2121db74
PE
3462 trace_kfree(_RET_IP_, x);
3463
2408c550 3464 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3465 return;
3466
b49af68f 3467 page = virt_to_head_page(x);
aadb4bc4 3468 if (unlikely(!PageSlab(page))) {
0937502a 3469 BUG_ON(!PageCompound(page));
e4f7c0b4 3470 kmemleak_free(x);
d9b7f226 3471 __free_pages(page, compound_order(page));
aadb4bc4
CL
3472 return;
3473 }
ce71e27c 3474 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3475}
3476EXPORT_SYMBOL(kfree);
3477
2086d26a 3478/*
672bba3a
CL
3479 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3480 * the remaining slabs by the number of items in use. The slabs with the
3481 * most items in use come first. New allocations will then fill those up
3482 * and thus they can be removed from the partial lists.
3483 *
3484 * The slabs with the least items are placed last. This results in them
3485 * being allocated from last increasing the chance that the last objects
3486 * are freed in them.
2086d26a
CL
3487 */
3488int kmem_cache_shrink(struct kmem_cache *s)
3489{
3490 int node;
3491 int i;
3492 struct kmem_cache_node *n;
3493 struct page *page;
3494 struct page *t;
205ab99d 3495 int objects = oo_objects(s->max);
2086d26a 3496 struct list_head *slabs_by_inuse =
834f3d11 3497 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3498 unsigned long flags;
3499
3500 if (!slabs_by_inuse)
3501 return -ENOMEM;
3502
3503 flush_all(s);
f64dc58c 3504 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3505 n = get_node(s, node);
3506
3507 if (!n->nr_partial)
3508 continue;
3509
834f3d11 3510 for (i = 0; i < objects; i++)
2086d26a
CL
3511 INIT_LIST_HEAD(slabs_by_inuse + i);
3512
3513 spin_lock_irqsave(&n->list_lock, flags);
3514
3515 /*
672bba3a 3516 * Build lists indexed by the items in use in each slab.
2086d26a 3517 *
672bba3a
CL
3518 * Note that concurrent frees may occur while we hold the
3519 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3520 */
3521 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3522 list_move(&page->lru, slabs_by_inuse + page->inuse);
3523 if (!page->inuse)
3524 n->nr_partial--;
2086d26a
CL
3525 }
3526
2086d26a 3527 /*
672bba3a
CL
3528 * Rebuild the partial list with the slabs filled up most
3529 * first and the least used slabs at the end.
2086d26a 3530 */
69cb8e6b 3531 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3532 list_splice(slabs_by_inuse + i, n->partial.prev);
3533
2086d26a 3534 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3535
3536 /* Release empty slabs */
3537 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3538 discard_slab(s, page);
2086d26a
CL
3539 }
3540
3541 kfree(slabs_by_inuse);
3542 return 0;
3543}
3544EXPORT_SYMBOL(kmem_cache_shrink);
3545
92a5bbc1 3546#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3547static int slab_mem_going_offline_callback(void *arg)
3548{
3549 struct kmem_cache *s;
3550
18004c5d 3551 mutex_lock(&slab_mutex);
b9049e23
YG
3552 list_for_each_entry(s, &slab_caches, list)
3553 kmem_cache_shrink(s);
18004c5d 3554 mutex_unlock(&slab_mutex);
b9049e23
YG
3555
3556 return 0;
3557}
3558
3559static void slab_mem_offline_callback(void *arg)
3560{
3561 struct kmem_cache_node *n;
3562 struct kmem_cache *s;
3563 struct memory_notify *marg = arg;
3564 int offline_node;
3565
3566 offline_node = marg->status_change_nid;
3567
3568 /*
3569 * If the node still has available memory. we need kmem_cache_node
3570 * for it yet.
3571 */
3572 if (offline_node < 0)
3573 return;
3574
18004c5d 3575 mutex_lock(&slab_mutex);
b9049e23
YG
3576 list_for_each_entry(s, &slab_caches, list) {
3577 n = get_node(s, offline_node);
3578 if (n) {
3579 /*
3580 * if n->nr_slabs > 0, slabs still exist on the node
3581 * that is going down. We were unable to free them,
c9404c9c 3582 * and offline_pages() function shouldn't call this
b9049e23
YG
3583 * callback. So, we must fail.
3584 */
0f389ec6 3585 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3586
3587 s->node[offline_node] = NULL;
8de66a0c 3588 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3589 }
3590 }
18004c5d 3591 mutex_unlock(&slab_mutex);
b9049e23
YG
3592}
3593
3594static int slab_mem_going_online_callback(void *arg)
3595{
3596 struct kmem_cache_node *n;
3597 struct kmem_cache *s;
3598 struct memory_notify *marg = arg;
3599 int nid = marg->status_change_nid;
3600 int ret = 0;
3601
3602 /*
3603 * If the node's memory is already available, then kmem_cache_node is
3604 * already created. Nothing to do.
3605 */
3606 if (nid < 0)
3607 return 0;
3608
3609 /*
0121c619 3610 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3611 * allocate a kmem_cache_node structure in order to bring the node
3612 * online.
3613 */
18004c5d 3614 mutex_lock(&slab_mutex);
b9049e23
YG
3615 list_for_each_entry(s, &slab_caches, list) {
3616 /*
3617 * XXX: kmem_cache_alloc_node will fallback to other nodes
3618 * since memory is not yet available from the node that
3619 * is brought up.
3620 */
8de66a0c 3621 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3622 if (!n) {
3623 ret = -ENOMEM;
3624 goto out;
3625 }
4053497d 3626 init_kmem_cache_node(n);
b9049e23
YG
3627 s->node[nid] = n;
3628 }
3629out:
18004c5d 3630 mutex_unlock(&slab_mutex);
b9049e23
YG
3631 return ret;
3632}
3633
3634static int slab_memory_callback(struct notifier_block *self,
3635 unsigned long action, void *arg)
3636{
3637 int ret = 0;
3638
3639 switch (action) {
3640 case MEM_GOING_ONLINE:
3641 ret = slab_mem_going_online_callback(arg);
3642 break;
3643 case MEM_GOING_OFFLINE:
3644 ret = slab_mem_going_offline_callback(arg);
3645 break;
3646 case MEM_OFFLINE:
3647 case MEM_CANCEL_ONLINE:
3648 slab_mem_offline_callback(arg);
3649 break;
3650 case MEM_ONLINE:
3651 case MEM_CANCEL_OFFLINE:
3652 break;
3653 }
dc19f9db
KH
3654 if (ret)
3655 ret = notifier_from_errno(ret);
3656 else
3657 ret = NOTIFY_OK;
b9049e23
YG
3658 return ret;
3659}
3660
3661#endif /* CONFIG_MEMORY_HOTPLUG */
3662
81819f0f
CL
3663/********************************************************************
3664 * Basic setup of slabs
3665 *******************************************************************/
3666
51df1142
CL
3667/*
3668 * Used for early kmem_cache structures that were allocated using
3669 * the page allocator
3670 */
3671
3672static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3673{
3674 int node;
3675
3676 list_add(&s->list, &slab_caches);
3677 s->refcount = -1;
3678
3679 for_each_node_state(node, N_NORMAL_MEMORY) {
3680 struct kmem_cache_node *n = get_node(s, node);
3681 struct page *p;
3682
3683 if (n) {
3684 list_for_each_entry(p, &n->partial, lru)
3685 p->slab = s;
3686
607bf324 3687#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3688 list_for_each_entry(p, &n->full, lru)
3689 p->slab = s;
3690#endif
3691 }
3692 }
3693}
3694
81819f0f
CL
3695void __init kmem_cache_init(void)
3696{
3697 int i;
4b356be0 3698 int caches = 0;
51df1142
CL
3699 struct kmem_cache *temp_kmem_cache;
3700 int order;
51df1142
CL
3701 struct kmem_cache *temp_kmem_cache_node;
3702 unsigned long kmalloc_size;
3703
fc8d8620
SG
3704 if (debug_guardpage_minorder())
3705 slub_max_order = 0;
3706
51df1142 3707 kmem_size = offsetof(struct kmem_cache, node) +
cbb79694 3708 nr_node_ids * sizeof(struct kmem_cache_node *);
51df1142
CL
3709
3710 /* Allocate two kmem_caches from the page allocator */
3711 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3712 order = get_order(2 * kmalloc_size);
3713 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3714
81819f0f
CL
3715 /*
3716 * Must first have the slab cache available for the allocations of the
672bba3a 3717 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3718 * kmem_cache_open for slab_state == DOWN.
3719 */
51df1142
CL
3720 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3721
3722 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3723 sizeof(struct kmem_cache_node),
3724 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3725
0c40ba4f 3726 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3727
3728 /* Able to allocate the per node structures */
3729 slab_state = PARTIAL;
3730
51df1142
CL
3731 temp_kmem_cache = kmem_cache;
3732 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3733 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3734 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3735 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3736
51df1142
CL
3737 /*
3738 * Allocate kmem_cache_node properly from the kmem_cache slab.
3739 * kmem_cache_node is separately allocated so no need to
3740 * update any list pointers.
3741 */
3742 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3743
51df1142
CL
3744 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3745 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3746
3747 kmem_cache_bootstrap_fixup(kmem_cache_node);
3748
3749 caches++;
51df1142
CL
3750 kmem_cache_bootstrap_fixup(kmem_cache);
3751 caches++;
3752 /* Free temporary boot structure */
3753 free_pages((unsigned long)temp_kmem_cache, order);
3754
3755 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3756
3757 /*
3758 * Patch up the size_index table if we have strange large alignment
3759 * requirements for the kmalloc array. This is only the case for
6446faa2 3760 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3761 *
3762 * Largest permitted alignment is 256 bytes due to the way we
3763 * handle the index determination for the smaller caches.
3764 *
3765 * Make sure that nothing crazy happens if someone starts tinkering
3766 * around with ARCH_KMALLOC_MINALIGN
3767 */
3768 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3769 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3770
acdfcd04
AK
3771 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3772 int elem = size_index_elem(i);
3773 if (elem >= ARRAY_SIZE(size_index))
3774 break;
3775 size_index[elem] = KMALLOC_SHIFT_LOW;
3776 }
f1b26339 3777
acdfcd04
AK
3778 if (KMALLOC_MIN_SIZE == 64) {
3779 /*
3780 * The 96 byte size cache is not used if the alignment
3781 * is 64 byte.
3782 */
3783 for (i = 64 + 8; i <= 96; i += 8)
3784 size_index[size_index_elem(i)] = 7;
3785 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3786 /*
3787 * The 192 byte sized cache is not used if the alignment
3788 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3789 * instead.
3790 */
3791 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3792 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3793 }
3794
51df1142
CL
3795 /* Caches that are not of the two-to-the-power-of size */
3796 if (KMALLOC_MIN_SIZE <= 32) {
3797 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3798 caches++;
3799 }
3800
3801 if (KMALLOC_MIN_SIZE <= 64) {
3802 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3803 caches++;
3804 }
3805
3806 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3807 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3808 caches++;
3809 }
3810
81819f0f
CL
3811 slab_state = UP;
3812
3813 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3814 if (KMALLOC_MIN_SIZE <= 32) {
3815 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3816 BUG_ON(!kmalloc_caches[1]->name);
3817 }
3818
3819 if (KMALLOC_MIN_SIZE <= 64) {
3820 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3821 BUG_ON(!kmalloc_caches[2]->name);
3822 }
3823
d7278bd7
CL
3824 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3825 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3826
3827 BUG_ON(!s);
51df1142 3828 kmalloc_caches[i]->name = s;
d7278bd7 3829 }
81819f0f
CL
3830
3831#ifdef CONFIG_SMP
3832 register_cpu_notifier(&slab_notifier);
9dfc6e68 3833#endif
81819f0f 3834
55136592 3835#ifdef CONFIG_ZONE_DMA
51df1142
CL
3836 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3837 struct kmem_cache *s = kmalloc_caches[i];
55136592 3838
51df1142 3839 if (s && s->size) {
55136592 3840 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3841 "dma-kmalloc-%d", s->object_size);
55136592
CL
3842
3843 BUG_ON(!name);
51df1142 3844 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3845 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3846 }
3847 }
3848#endif
3adbefee
IM
3849 printk(KERN_INFO
3850 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3851 " CPUs=%d, Nodes=%d\n",
3852 caches, cache_line_size(),
81819f0f
CL
3853 slub_min_order, slub_max_order, slub_min_objects,
3854 nr_cpu_ids, nr_node_ids);
3855}
3856
7e85ee0c
PE
3857void __init kmem_cache_init_late(void)
3858{
7e85ee0c
PE
3859}
3860
81819f0f
CL
3861/*
3862 * Find a mergeable slab cache
3863 */
3864static int slab_unmergeable(struct kmem_cache *s)
3865{
3866 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3867 return 1;
3868
c59def9f 3869 if (s->ctor)
81819f0f
CL
3870 return 1;
3871
8ffa6875
CL
3872 /*
3873 * We may have set a slab to be unmergeable during bootstrap.
3874 */
3875 if (s->refcount < 0)
3876 return 1;
3877
81819f0f
CL
3878 return 0;
3879}
3880
3881static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3882 size_t align, unsigned long flags, const char *name,
51cc5068 3883 void (*ctor)(void *))
81819f0f 3884{
5b95a4ac 3885 struct kmem_cache *s;
81819f0f
CL
3886
3887 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3888 return NULL;
3889
c59def9f 3890 if (ctor)
81819f0f
CL
3891 return NULL;
3892
3893 size = ALIGN(size, sizeof(void *));
3894 align = calculate_alignment(flags, align, size);
3895 size = ALIGN(size, align);
ba0268a8 3896 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3897
5b95a4ac 3898 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3899 if (slab_unmergeable(s))
3900 continue;
3901
3902 if (size > s->size)
3903 continue;
3904
ba0268a8 3905 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3906 continue;
3907 /*
3908 * Check if alignment is compatible.
3909 * Courtesy of Adrian Drzewiecki
3910 */
06428780 3911 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3912 continue;
3913
3914 if (s->size - size >= sizeof(void *))
3915 continue;
3916
3917 return s;
3918 }
3919 return NULL;
3920}
3921
cbb79694 3922struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
51cc5068 3923 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3924{
3925 struct kmem_cache *s;
3926
ba0268a8 3927 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3928 if (s) {
3929 s->refcount++;
3930 /*
3931 * Adjust the object sizes so that we clear
3932 * the complete object on kzalloc.
3933 */
3b0efdfa 3934 s->object_size = max(s->object_size, (int)size);
81819f0f 3935 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3936
7b8f3b66 3937 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3938 s->refcount--;
cbb79694 3939 s = NULL;
7b8f3b66 3940 }
a0e1d1be 3941 }
6446faa2 3942
cbb79694
CL
3943 return s;
3944}
3945
278b1bb1
CL
3946int __kmem_cache_create(struct kmem_cache *s,
3947 const char *name, size_t size,
cbb79694
CL
3948 size_t align, unsigned long flags, void (*ctor)(void *))
3949{
278b1bb1 3950 return kmem_cache_open(s, name, size, align, flags, ctor);
81819f0f 3951}
81819f0f 3952
81819f0f 3953#ifdef CONFIG_SMP
81819f0f 3954/*
672bba3a
CL
3955 * Use the cpu notifier to insure that the cpu slabs are flushed when
3956 * necessary.
81819f0f
CL
3957 */
3958static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3959 unsigned long action, void *hcpu)
3960{
3961 long cpu = (long)hcpu;
5b95a4ac
CL
3962 struct kmem_cache *s;
3963 unsigned long flags;
81819f0f
CL
3964
3965 switch (action) {
3966 case CPU_UP_CANCELED:
8bb78442 3967 case CPU_UP_CANCELED_FROZEN:
81819f0f 3968 case CPU_DEAD:
8bb78442 3969 case CPU_DEAD_FROZEN:
18004c5d 3970 mutex_lock(&slab_mutex);
5b95a4ac
CL
3971 list_for_each_entry(s, &slab_caches, list) {
3972 local_irq_save(flags);
3973 __flush_cpu_slab(s, cpu);
3974 local_irq_restore(flags);
3975 }
18004c5d 3976 mutex_unlock(&slab_mutex);
81819f0f
CL
3977 break;
3978 default:
3979 break;
3980 }
3981 return NOTIFY_OK;
3982}
3983
06428780 3984static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3985 .notifier_call = slab_cpuup_callback
06428780 3986};
81819f0f
CL
3987
3988#endif
3989
ce71e27c 3990void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3991{
aadb4bc4 3992 struct kmem_cache *s;
94b528d0 3993 void *ret;
aadb4bc4 3994
ffadd4d0 3995 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3996 return kmalloc_large(size, gfpflags);
3997
aadb4bc4 3998 s = get_slab(size, gfpflags);
81819f0f 3999
2408c550 4000 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4001 return s;
81819f0f 4002
2154a336 4003 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4004
25985edc 4005 /* Honor the call site pointer we received. */
ca2b84cb 4006 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4007
4008 return ret;
81819f0f
CL
4009}
4010
5d1f57e4 4011#ifdef CONFIG_NUMA
81819f0f 4012void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4013 int node, unsigned long caller)
81819f0f 4014{
aadb4bc4 4015 struct kmem_cache *s;
94b528d0 4016 void *ret;
aadb4bc4 4017
d3e14aa3
XF
4018 if (unlikely(size > SLUB_MAX_SIZE)) {
4019 ret = kmalloc_large_node(size, gfpflags, node);
4020
4021 trace_kmalloc_node(caller, ret,
4022 size, PAGE_SIZE << get_order(size),
4023 gfpflags, node);
4024
4025 return ret;
4026 }
eada35ef 4027
aadb4bc4 4028 s = get_slab(size, gfpflags);
81819f0f 4029
2408c550 4030 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4031 return s;
81819f0f 4032
94b528d0
EGM
4033 ret = slab_alloc(s, gfpflags, node, caller);
4034
25985edc 4035 /* Honor the call site pointer we received. */
ca2b84cb 4036 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4037
4038 return ret;
81819f0f 4039}
5d1f57e4 4040#endif
81819f0f 4041
ab4d5ed5 4042#ifdef CONFIG_SYSFS
205ab99d
CL
4043static int count_inuse(struct page *page)
4044{
4045 return page->inuse;
4046}
4047
4048static int count_total(struct page *page)
4049{
4050 return page->objects;
4051}
ab4d5ed5 4052#endif
205ab99d 4053
ab4d5ed5 4054#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4055static int validate_slab(struct kmem_cache *s, struct page *page,
4056 unsigned long *map)
53e15af0
CL
4057{
4058 void *p;
a973e9dd 4059 void *addr = page_address(page);
53e15af0
CL
4060
4061 if (!check_slab(s, page) ||
4062 !on_freelist(s, page, NULL))
4063 return 0;
4064
4065 /* Now we know that a valid freelist exists */
39b26464 4066 bitmap_zero(map, page->objects);
53e15af0 4067
5f80b13a
CL
4068 get_map(s, page, map);
4069 for_each_object(p, s, addr, page->objects) {
4070 if (test_bit(slab_index(p, s, addr), map))
4071 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4072 return 0;
53e15af0
CL
4073 }
4074
224a88be 4075 for_each_object(p, s, addr, page->objects)
7656c72b 4076 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4077 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4078 return 0;
4079 return 1;
4080}
4081
434e245d
CL
4082static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4083 unsigned long *map)
53e15af0 4084{
881db7fb
CL
4085 slab_lock(page);
4086 validate_slab(s, page, map);
4087 slab_unlock(page);
53e15af0
CL
4088}
4089
434e245d
CL
4090static int validate_slab_node(struct kmem_cache *s,
4091 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4092{
4093 unsigned long count = 0;
4094 struct page *page;
4095 unsigned long flags;
4096
4097 spin_lock_irqsave(&n->list_lock, flags);
4098
4099 list_for_each_entry(page, &n->partial, lru) {
434e245d 4100 validate_slab_slab(s, page, map);
53e15af0
CL
4101 count++;
4102 }
4103 if (count != n->nr_partial)
4104 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4105 "counter=%ld\n", s->name, count, n->nr_partial);
4106
4107 if (!(s->flags & SLAB_STORE_USER))
4108 goto out;
4109
4110 list_for_each_entry(page, &n->full, lru) {
434e245d 4111 validate_slab_slab(s, page, map);
53e15af0
CL
4112 count++;
4113 }
4114 if (count != atomic_long_read(&n->nr_slabs))
4115 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4116 "counter=%ld\n", s->name, count,
4117 atomic_long_read(&n->nr_slabs));
4118
4119out:
4120 spin_unlock_irqrestore(&n->list_lock, flags);
4121 return count;
4122}
4123
434e245d 4124static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4125{
4126 int node;
4127 unsigned long count = 0;
205ab99d 4128 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4129 sizeof(unsigned long), GFP_KERNEL);
4130
4131 if (!map)
4132 return -ENOMEM;
53e15af0
CL
4133
4134 flush_all(s);
f64dc58c 4135 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4136 struct kmem_cache_node *n = get_node(s, node);
4137
434e245d 4138 count += validate_slab_node(s, n, map);
53e15af0 4139 }
434e245d 4140 kfree(map);
53e15af0
CL
4141 return count;
4142}
88a420e4 4143/*
672bba3a 4144 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4145 * and freed.
4146 */
4147
4148struct location {
4149 unsigned long count;
ce71e27c 4150 unsigned long addr;
45edfa58
CL
4151 long long sum_time;
4152 long min_time;
4153 long max_time;
4154 long min_pid;
4155 long max_pid;
174596a0 4156 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4157 nodemask_t nodes;
88a420e4
CL
4158};
4159
4160struct loc_track {
4161 unsigned long max;
4162 unsigned long count;
4163 struct location *loc;
4164};
4165
4166static void free_loc_track(struct loc_track *t)
4167{
4168 if (t->max)
4169 free_pages((unsigned long)t->loc,
4170 get_order(sizeof(struct location) * t->max));
4171}
4172
68dff6a9 4173static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4174{
4175 struct location *l;
4176 int order;
4177
88a420e4
CL
4178 order = get_order(sizeof(struct location) * max);
4179
68dff6a9 4180 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4181 if (!l)
4182 return 0;
4183
4184 if (t->count) {
4185 memcpy(l, t->loc, sizeof(struct location) * t->count);
4186 free_loc_track(t);
4187 }
4188 t->max = max;
4189 t->loc = l;
4190 return 1;
4191}
4192
4193static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4194 const struct track *track)
88a420e4
CL
4195{
4196 long start, end, pos;
4197 struct location *l;
ce71e27c 4198 unsigned long caddr;
45edfa58 4199 unsigned long age = jiffies - track->when;
88a420e4
CL
4200
4201 start = -1;
4202 end = t->count;
4203
4204 for ( ; ; ) {
4205 pos = start + (end - start + 1) / 2;
4206
4207 /*
4208 * There is nothing at "end". If we end up there
4209 * we need to add something to before end.
4210 */
4211 if (pos == end)
4212 break;
4213
4214 caddr = t->loc[pos].addr;
45edfa58
CL
4215 if (track->addr == caddr) {
4216
4217 l = &t->loc[pos];
4218 l->count++;
4219 if (track->when) {
4220 l->sum_time += age;
4221 if (age < l->min_time)
4222 l->min_time = age;
4223 if (age > l->max_time)
4224 l->max_time = age;
4225
4226 if (track->pid < l->min_pid)
4227 l->min_pid = track->pid;
4228 if (track->pid > l->max_pid)
4229 l->max_pid = track->pid;
4230
174596a0
RR
4231 cpumask_set_cpu(track->cpu,
4232 to_cpumask(l->cpus));
45edfa58
CL
4233 }
4234 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4235 return 1;
4236 }
4237
45edfa58 4238 if (track->addr < caddr)
88a420e4
CL
4239 end = pos;
4240 else
4241 start = pos;
4242 }
4243
4244 /*
672bba3a 4245 * Not found. Insert new tracking element.
88a420e4 4246 */
68dff6a9 4247 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4248 return 0;
4249
4250 l = t->loc + pos;
4251 if (pos < t->count)
4252 memmove(l + 1, l,
4253 (t->count - pos) * sizeof(struct location));
4254 t->count++;
4255 l->count = 1;
45edfa58
CL
4256 l->addr = track->addr;
4257 l->sum_time = age;
4258 l->min_time = age;
4259 l->max_time = age;
4260 l->min_pid = track->pid;
4261 l->max_pid = track->pid;
174596a0
RR
4262 cpumask_clear(to_cpumask(l->cpus));
4263 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4264 nodes_clear(l->nodes);
4265 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4266 return 1;
4267}
4268
4269static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4270 struct page *page, enum track_item alloc,
a5dd5c11 4271 unsigned long *map)
88a420e4 4272{
a973e9dd 4273 void *addr = page_address(page);
88a420e4
CL
4274 void *p;
4275
39b26464 4276 bitmap_zero(map, page->objects);
5f80b13a 4277 get_map(s, page, map);
88a420e4 4278
224a88be 4279 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4280 if (!test_bit(slab_index(p, s, addr), map))
4281 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4282}
4283
4284static int list_locations(struct kmem_cache *s, char *buf,
4285 enum track_item alloc)
4286{
e374d483 4287 int len = 0;
88a420e4 4288 unsigned long i;
68dff6a9 4289 struct loc_track t = { 0, 0, NULL };
88a420e4 4290 int node;
bbd7d57b
ED
4291 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4292 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4293
bbd7d57b
ED
4294 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4295 GFP_TEMPORARY)) {
4296 kfree(map);
68dff6a9 4297 return sprintf(buf, "Out of memory\n");
bbd7d57b 4298 }
88a420e4
CL
4299 /* Push back cpu slabs */
4300 flush_all(s);
4301
f64dc58c 4302 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4303 struct kmem_cache_node *n = get_node(s, node);
4304 unsigned long flags;
4305 struct page *page;
4306
9e86943b 4307 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4308 continue;
4309
4310 spin_lock_irqsave(&n->list_lock, flags);
4311 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4312 process_slab(&t, s, page, alloc, map);
88a420e4 4313 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4314 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4315 spin_unlock_irqrestore(&n->list_lock, flags);
4316 }
4317
4318 for (i = 0; i < t.count; i++) {
45edfa58 4319 struct location *l = &t.loc[i];
88a420e4 4320
9c246247 4321 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4322 break;
e374d483 4323 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4324
4325 if (l->addr)
62c70bce 4326 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4327 else
e374d483 4328 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4329
4330 if (l->sum_time != l->min_time) {
e374d483 4331 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4332 l->min_time,
4333 (long)div_u64(l->sum_time, l->count),
4334 l->max_time);
45edfa58 4335 } else
e374d483 4336 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4337 l->min_time);
4338
4339 if (l->min_pid != l->max_pid)
e374d483 4340 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4341 l->min_pid, l->max_pid);
4342 else
e374d483 4343 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4344 l->min_pid);
4345
174596a0
RR
4346 if (num_online_cpus() > 1 &&
4347 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4348 len < PAGE_SIZE - 60) {
4349 len += sprintf(buf + len, " cpus=");
4350 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4351 to_cpumask(l->cpus));
45edfa58
CL
4352 }
4353
62bc62a8 4354 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4355 len < PAGE_SIZE - 60) {
4356 len += sprintf(buf + len, " nodes=");
4357 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4358 l->nodes);
4359 }
4360
e374d483 4361 len += sprintf(buf + len, "\n");
88a420e4
CL
4362 }
4363
4364 free_loc_track(&t);
bbd7d57b 4365 kfree(map);
88a420e4 4366 if (!t.count)
e374d483
HH
4367 len += sprintf(buf, "No data\n");
4368 return len;
88a420e4 4369}
ab4d5ed5 4370#endif
88a420e4 4371
a5a84755
CL
4372#ifdef SLUB_RESILIENCY_TEST
4373static void resiliency_test(void)
4374{
4375 u8 *p;
4376
4377 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4378
4379 printk(KERN_ERR "SLUB resiliency testing\n");
4380 printk(KERN_ERR "-----------------------\n");
4381 printk(KERN_ERR "A. Corruption after allocation\n");
4382
4383 p = kzalloc(16, GFP_KERNEL);
4384 p[16] = 0x12;
4385 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4386 " 0x12->0x%p\n\n", p + 16);
4387
4388 validate_slab_cache(kmalloc_caches[4]);
4389
4390 /* Hmmm... The next two are dangerous */
4391 p = kzalloc(32, GFP_KERNEL);
4392 p[32 + sizeof(void *)] = 0x34;
4393 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4394 " 0x34 -> -0x%p\n", p);
4395 printk(KERN_ERR
4396 "If allocated object is overwritten then not detectable\n\n");
4397
4398 validate_slab_cache(kmalloc_caches[5]);
4399 p = kzalloc(64, GFP_KERNEL);
4400 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4401 *p = 0x56;
4402 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4403 p);
4404 printk(KERN_ERR
4405 "If allocated object is overwritten then not detectable\n\n");
4406 validate_slab_cache(kmalloc_caches[6]);
4407
4408 printk(KERN_ERR "\nB. Corruption after free\n");
4409 p = kzalloc(128, GFP_KERNEL);
4410 kfree(p);
4411 *p = 0x78;
4412 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4413 validate_slab_cache(kmalloc_caches[7]);
4414
4415 p = kzalloc(256, GFP_KERNEL);
4416 kfree(p);
4417 p[50] = 0x9a;
4418 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4419 p);
4420 validate_slab_cache(kmalloc_caches[8]);
4421
4422 p = kzalloc(512, GFP_KERNEL);
4423 kfree(p);
4424 p[512] = 0xab;
4425 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4426 validate_slab_cache(kmalloc_caches[9]);
4427}
4428#else
4429#ifdef CONFIG_SYSFS
4430static void resiliency_test(void) {};
4431#endif
4432#endif
4433
ab4d5ed5 4434#ifdef CONFIG_SYSFS
81819f0f 4435enum slab_stat_type {
205ab99d
CL
4436 SL_ALL, /* All slabs */
4437 SL_PARTIAL, /* Only partially allocated slabs */
4438 SL_CPU, /* Only slabs used for cpu caches */
4439 SL_OBJECTS, /* Determine allocated objects not slabs */
4440 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4441};
4442
205ab99d 4443#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4444#define SO_PARTIAL (1 << SL_PARTIAL)
4445#define SO_CPU (1 << SL_CPU)
4446#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4447#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4448
62e5c4b4
CG
4449static ssize_t show_slab_objects(struct kmem_cache *s,
4450 char *buf, unsigned long flags)
81819f0f
CL
4451{
4452 unsigned long total = 0;
81819f0f
CL
4453 int node;
4454 int x;
4455 unsigned long *nodes;
4456 unsigned long *per_cpu;
4457
4458 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4459 if (!nodes)
4460 return -ENOMEM;
81819f0f
CL
4461 per_cpu = nodes + nr_node_ids;
4462
205ab99d
CL
4463 if (flags & SO_CPU) {
4464 int cpu;
81819f0f 4465
205ab99d 4466 for_each_possible_cpu(cpu) {
9dfc6e68 4467 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4468 int node;
49e22585 4469 struct page *page;
dfb4f096 4470
bc6697d8 4471 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4472 if (!page)
4473 continue;
205ab99d 4474
ec3ab083
CL
4475 node = page_to_nid(page);
4476 if (flags & SO_TOTAL)
4477 x = page->objects;
4478 else if (flags & SO_OBJECTS)
4479 x = page->inuse;
4480 else
4481 x = 1;
49e22585 4482
ec3ab083
CL
4483 total += x;
4484 nodes[node] += x;
4485
4486 page = ACCESS_ONCE(c->partial);
49e22585
CL
4487 if (page) {
4488 x = page->pobjects;
bc6697d8
ED
4489 total += x;
4490 nodes[node] += x;
49e22585 4491 }
ec3ab083 4492
bc6697d8 4493 per_cpu[node]++;
81819f0f
CL
4494 }
4495 }
4496
04d94879 4497 lock_memory_hotplug();
ab4d5ed5 4498#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4499 if (flags & SO_ALL) {
4500 for_each_node_state(node, N_NORMAL_MEMORY) {
4501 struct kmem_cache_node *n = get_node(s, node);
4502
4503 if (flags & SO_TOTAL)
4504 x = atomic_long_read(&n->total_objects);
4505 else if (flags & SO_OBJECTS)
4506 x = atomic_long_read(&n->total_objects) -
4507 count_partial(n, count_free);
81819f0f 4508
81819f0f 4509 else
205ab99d 4510 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4511 total += x;
4512 nodes[node] += x;
4513 }
4514
ab4d5ed5
CL
4515 } else
4516#endif
4517 if (flags & SO_PARTIAL) {
205ab99d
CL
4518 for_each_node_state(node, N_NORMAL_MEMORY) {
4519 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4520
205ab99d
CL
4521 if (flags & SO_TOTAL)
4522 x = count_partial(n, count_total);
4523 else if (flags & SO_OBJECTS)
4524 x = count_partial(n, count_inuse);
81819f0f 4525 else
205ab99d 4526 x = n->nr_partial;
81819f0f
CL
4527 total += x;
4528 nodes[node] += x;
4529 }
4530 }
81819f0f
CL
4531 x = sprintf(buf, "%lu", total);
4532#ifdef CONFIG_NUMA
f64dc58c 4533 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4534 if (nodes[node])
4535 x += sprintf(buf + x, " N%d=%lu",
4536 node, nodes[node]);
4537#endif
04d94879 4538 unlock_memory_hotplug();
81819f0f
CL
4539 kfree(nodes);
4540 return x + sprintf(buf + x, "\n");
4541}
4542
ab4d5ed5 4543#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4544static int any_slab_objects(struct kmem_cache *s)
4545{
4546 int node;
81819f0f 4547
dfb4f096 4548 for_each_online_node(node) {
81819f0f
CL
4549 struct kmem_cache_node *n = get_node(s, node);
4550
dfb4f096
CL
4551 if (!n)
4552 continue;
4553
4ea33e2d 4554 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4555 return 1;
4556 }
4557 return 0;
4558}
ab4d5ed5 4559#endif
81819f0f
CL
4560
4561#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4562#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4563
4564struct slab_attribute {
4565 struct attribute attr;
4566 ssize_t (*show)(struct kmem_cache *s, char *buf);
4567 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4568};
4569
4570#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4571 static struct slab_attribute _name##_attr = \
4572 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4573
4574#define SLAB_ATTR(_name) \
4575 static struct slab_attribute _name##_attr = \
ab067e99 4576 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4577
81819f0f
CL
4578static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4579{
4580 return sprintf(buf, "%d\n", s->size);
4581}
4582SLAB_ATTR_RO(slab_size);
4583
4584static ssize_t align_show(struct kmem_cache *s, char *buf)
4585{
4586 return sprintf(buf, "%d\n", s->align);
4587}
4588SLAB_ATTR_RO(align);
4589
4590static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4591{
3b0efdfa 4592 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4593}
4594SLAB_ATTR_RO(object_size);
4595
4596static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4597{
834f3d11 4598 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4599}
4600SLAB_ATTR_RO(objs_per_slab);
4601
06b285dc
CL
4602static ssize_t order_store(struct kmem_cache *s,
4603 const char *buf, size_t length)
4604{
0121c619
CL
4605 unsigned long order;
4606 int err;
4607
4608 err = strict_strtoul(buf, 10, &order);
4609 if (err)
4610 return err;
06b285dc
CL
4611
4612 if (order > slub_max_order || order < slub_min_order)
4613 return -EINVAL;
4614
4615 calculate_sizes(s, order);
4616 return length;
4617}
4618
81819f0f
CL
4619static ssize_t order_show(struct kmem_cache *s, char *buf)
4620{
834f3d11 4621 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4622}
06b285dc 4623SLAB_ATTR(order);
81819f0f 4624
73d342b1
DR
4625static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4626{
4627 return sprintf(buf, "%lu\n", s->min_partial);
4628}
4629
4630static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4631 size_t length)
4632{
4633 unsigned long min;
4634 int err;
4635
4636 err = strict_strtoul(buf, 10, &min);
4637 if (err)
4638 return err;
4639
c0bdb232 4640 set_min_partial(s, min);
73d342b1
DR
4641 return length;
4642}
4643SLAB_ATTR(min_partial);
4644
49e22585
CL
4645static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4646{
4647 return sprintf(buf, "%u\n", s->cpu_partial);
4648}
4649
4650static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4651 size_t length)
4652{
4653 unsigned long objects;
4654 int err;
4655
4656 err = strict_strtoul(buf, 10, &objects);
4657 if (err)
4658 return err;
74ee4ef1
DR
4659 if (objects && kmem_cache_debug(s))
4660 return -EINVAL;
49e22585
CL
4661
4662 s->cpu_partial = objects;
4663 flush_all(s);
4664 return length;
4665}
4666SLAB_ATTR(cpu_partial);
4667
81819f0f
CL
4668static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4669{
62c70bce
JP
4670 if (!s->ctor)
4671 return 0;
4672 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4673}
4674SLAB_ATTR_RO(ctor);
4675
81819f0f
CL
4676static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4677{
4678 return sprintf(buf, "%d\n", s->refcount - 1);
4679}
4680SLAB_ATTR_RO(aliases);
4681
81819f0f
CL
4682static ssize_t partial_show(struct kmem_cache *s, char *buf)
4683{
d9acf4b7 4684 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4685}
4686SLAB_ATTR_RO(partial);
4687
4688static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4689{
d9acf4b7 4690 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4691}
4692SLAB_ATTR_RO(cpu_slabs);
4693
4694static ssize_t objects_show(struct kmem_cache *s, char *buf)
4695{
205ab99d 4696 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4697}
4698SLAB_ATTR_RO(objects);
4699
205ab99d
CL
4700static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4701{
4702 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4703}
4704SLAB_ATTR_RO(objects_partial);
4705
49e22585
CL
4706static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4707{
4708 int objects = 0;
4709 int pages = 0;
4710 int cpu;
4711 int len;
4712
4713 for_each_online_cpu(cpu) {
4714 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4715
4716 if (page) {
4717 pages += page->pages;
4718 objects += page->pobjects;
4719 }
4720 }
4721
4722 len = sprintf(buf, "%d(%d)", objects, pages);
4723
4724#ifdef CONFIG_SMP
4725 for_each_online_cpu(cpu) {
4726 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4727
4728 if (page && len < PAGE_SIZE - 20)
4729 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4730 page->pobjects, page->pages);
4731 }
4732#endif
4733 return len + sprintf(buf + len, "\n");
4734}
4735SLAB_ATTR_RO(slabs_cpu_partial);
4736
a5a84755
CL
4737static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4738{
4739 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4740}
4741
4742static ssize_t reclaim_account_store(struct kmem_cache *s,
4743 const char *buf, size_t length)
4744{
4745 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4746 if (buf[0] == '1')
4747 s->flags |= SLAB_RECLAIM_ACCOUNT;
4748 return length;
4749}
4750SLAB_ATTR(reclaim_account);
4751
4752static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4753{
4754 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4755}
4756SLAB_ATTR_RO(hwcache_align);
4757
4758#ifdef CONFIG_ZONE_DMA
4759static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4760{
4761 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4762}
4763SLAB_ATTR_RO(cache_dma);
4764#endif
4765
4766static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4767{
4768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4769}
4770SLAB_ATTR_RO(destroy_by_rcu);
4771
ab9a0f19
LJ
4772static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4773{
4774 return sprintf(buf, "%d\n", s->reserved);
4775}
4776SLAB_ATTR_RO(reserved);
4777
ab4d5ed5 4778#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4779static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4780{
4781 return show_slab_objects(s, buf, SO_ALL);
4782}
4783SLAB_ATTR_RO(slabs);
4784
205ab99d
CL
4785static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4786{
4787 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4788}
4789SLAB_ATTR_RO(total_objects);
4790
81819f0f
CL
4791static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4792{
4793 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4794}
4795
4796static ssize_t sanity_checks_store(struct kmem_cache *s,
4797 const char *buf, size_t length)
4798{
4799 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4800 if (buf[0] == '1') {
4801 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4802 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4803 }
81819f0f
CL
4804 return length;
4805}
4806SLAB_ATTR(sanity_checks);
4807
4808static ssize_t trace_show(struct kmem_cache *s, char *buf)
4809{
4810 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4811}
4812
4813static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4814 size_t length)
4815{
4816 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4817 if (buf[0] == '1') {
4818 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4819 s->flags |= SLAB_TRACE;
b789ef51 4820 }
81819f0f
CL
4821 return length;
4822}
4823SLAB_ATTR(trace);
4824
81819f0f
CL
4825static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4826{
4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4828}
4829
4830static ssize_t red_zone_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4832{
4833 if (any_slab_objects(s))
4834 return -EBUSY;
4835
4836 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4837 if (buf[0] == '1') {
4838 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4839 s->flags |= SLAB_RED_ZONE;
b789ef51 4840 }
06b285dc 4841 calculate_sizes(s, -1);
81819f0f
CL
4842 return length;
4843}
4844SLAB_ATTR(red_zone);
4845
4846static ssize_t poison_show(struct kmem_cache *s, char *buf)
4847{
4848 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4849}
4850
4851static ssize_t poison_store(struct kmem_cache *s,
4852 const char *buf, size_t length)
4853{
4854 if (any_slab_objects(s))
4855 return -EBUSY;
4856
4857 s->flags &= ~SLAB_POISON;
b789ef51
CL
4858 if (buf[0] == '1') {
4859 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4860 s->flags |= SLAB_POISON;
b789ef51 4861 }
06b285dc 4862 calculate_sizes(s, -1);
81819f0f
CL
4863 return length;
4864}
4865SLAB_ATTR(poison);
4866
4867static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4868{
4869 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4870}
4871
4872static ssize_t store_user_store(struct kmem_cache *s,
4873 const char *buf, size_t length)
4874{
4875 if (any_slab_objects(s))
4876 return -EBUSY;
4877
4878 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4879 if (buf[0] == '1') {
4880 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4881 s->flags |= SLAB_STORE_USER;
b789ef51 4882 }
06b285dc 4883 calculate_sizes(s, -1);
81819f0f
CL
4884 return length;
4885}
4886SLAB_ATTR(store_user);
4887
53e15af0
CL
4888static ssize_t validate_show(struct kmem_cache *s, char *buf)
4889{
4890 return 0;
4891}
4892
4893static ssize_t validate_store(struct kmem_cache *s,
4894 const char *buf, size_t length)
4895{
434e245d
CL
4896 int ret = -EINVAL;
4897
4898 if (buf[0] == '1') {
4899 ret = validate_slab_cache(s);
4900 if (ret >= 0)
4901 ret = length;
4902 }
4903 return ret;
53e15af0
CL
4904}
4905SLAB_ATTR(validate);
a5a84755
CL
4906
4907static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4908{
4909 if (!(s->flags & SLAB_STORE_USER))
4910 return -ENOSYS;
4911 return list_locations(s, buf, TRACK_ALLOC);
4912}
4913SLAB_ATTR_RO(alloc_calls);
4914
4915static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4916{
4917 if (!(s->flags & SLAB_STORE_USER))
4918 return -ENOSYS;
4919 return list_locations(s, buf, TRACK_FREE);
4920}
4921SLAB_ATTR_RO(free_calls);
4922#endif /* CONFIG_SLUB_DEBUG */
4923
4924#ifdef CONFIG_FAILSLAB
4925static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4926{
4927 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4928}
4929
4930static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4931 size_t length)
4932{
4933 s->flags &= ~SLAB_FAILSLAB;
4934 if (buf[0] == '1')
4935 s->flags |= SLAB_FAILSLAB;
4936 return length;
4937}
4938SLAB_ATTR(failslab);
ab4d5ed5 4939#endif
53e15af0 4940
2086d26a
CL
4941static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4942{
4943 return 0;
4944}
4945
4946static ssize_t shrink_store(struct kmem_cache *s,
4947 const char *buf, size_t length)
4948{
4949 if (buf[0] == '1') {
4950 int rc = kmem_cache_shrink(s);
4951
4952 if (rc)
4953 return rc;
4954 } else
4955 return -EINVAL;
4956 return length;
4957}
4958SLAB_ATTR(shrink);
4959
81819f0f 4960#ifdef CONFIG_NUMA
9824601e 4961static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4962{
9824601e 4963 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4964}
4965
9824601e 4966static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4967 const char *buf, size_t length)
4968{
0121c619
CL
4969 unsigned long ratio;
4970 int err;
4971
4972 err = strict_strtoul(buf, 10, &ratio);
4973 if (err)
4974 return err;
4975
e2cb96b7 4976 if (ratio <= 100)
0121c619 4977 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4978
81819f0f
CL
4979 return length;
4980}
9824601e 4981SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4982#endif
4983
8ff12cfc 4984#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4985static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4986{
4987 unsigned long sum = 0;
4988 int cpu;
4989 int len;
4990 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4991
4992 if (!data)
4993 return -ENOMEM;
4994
4995 for_each_online_cpu(cpu) {
9dfc6e68 4996 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4997
4998 data[cpu] = x;
4999 sum += x;
5000 }
5001
5002 len = sprintf(buf, "%lu", sum);
5003
50ef37b9 5004#ifdef CONFIG_SMP
8ff12cfc
CL
5005 for_each_online_cpu(cpu) {
5006 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5007 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5008 }
50ef37b9 5009#endif
8ff12cfc
CL
5010 kfree(data);
5011 return len + sprintf(buf + len, "\n");
5012}
5013
78eb00cc
DR
5014static void clear_stat(struct kmem_cache *s, enum stat_item si)
5015{
5016 int cpu;
5017
5018 for_each_online_cpu(cpu)
9dfc6e68 5019 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5020}
5021
8ff12cfc
CL
5022#define STAT_ATTR(si, text) \
5023static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5024{ \
5025 return show_stat(s, buf, si); \
5026} \
78eb00cc
DR
5027static ssize_t text##_store(struct kmem_cache *s, \
5028 const char *buf, size_t length) \
5029{ \
5030 if (buf[0] != '0') \
5031 return -EINVAL; \
5032 clear_stat(s, si); \
5033 return length; \
5034} \
5035SLAB_ATTR(text); \
8ff12cfc
CL
5036
5037STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5038STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5039STAT_ATTR(FREE_FASTPATH, free_fastpath);
5040STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5041STAT_ATTR(FREE_FROZEN, free_frozen);
5042STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5043STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5044STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5045STAT_ATTR(ALLOC_SLAB, alloc_slab);
5046STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5047STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5048STAT_ATTR(FREE_SLAB, free_slab);
5049STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5050STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5051STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5052STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5053STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5054STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5055STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5056STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5057STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5058STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5059STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5060STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5061STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5062STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5063#endif
5064
06428780 5065static struct attribute *slab_attrs[] = {
81819f0f
CL
5066 &slab_size_attr.attr,
5067 &object_size_attr.attr,
5068 &objs_per_slab_attr.attr,
5069 &order_attr.attr,
73d342b1 5070 &min_partial_attr.attr,
49e22585 5071 &cpu_partial_attr.attr,
81819f0f 5072 &objects_attr.attr,
205ab99d 5073 &objects_partial_attr.attr,
81819f0f
CL
5074 &partial_attr.attr,
5075 &cpu_slabs_attr.attr,
5076 &ctor_attr.attr,
81819f0f
CL
5077 &aliases_attr.attr,
5078 &align_attr.attr,
81819f0f
CL
5079 &hwcache_align_attr.attr,
5080 &reclaim_account_attr.attr,
5081 &destroy_by_rcu_attr.attr,
a5a84755 5082 &shrink_attr.attr,
ab9a0f19 5083 &reserved_attr.attr,
49e22585 5084 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5085#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5086 &total_objects_attr.attr,
5087 &slabs_attr.attr,
5088 &sanity_checks_attr.attr,
5089 &trace_attr.attr,
81819f0f
CL
5090 &red_zone_attr.attr,
5091 &poison_attr.attr,
5092 &store_user_attr.attr,
53e15af0 5093 &validate_attr.attr,
88a420e4
CL
5094 &alloc_calls_attr.attr,
5095 &free_calls_attr.attr,
ab4d5ed5 5096#endif
81819f0f
CL
5097#ifdef CONFIG_ZONE_DMA
5098 &cache_dma_attr.attr,
5099#endif
5100#ifdef CONFIG_NUMA
9824601e 5101 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5102#endif
5103#ifdef CONFIG_SLUB_STATS
5104 &alloc_fastpath_attr.attr,
5105 &alloc_slowpath_attr.attr,
5106 &free_fastpath_attr.attr,
5107 &free_slowpath_attr.attr,
5108 &free_frozen_attr.attr,
5109 &free_add_partial_attr.attr,
5110 &free_remove_partial_attr.attr,
5111 &alloc_from_partial_attr.attr,
5112 &alloc_slab_attr.attr,
5113 &alloc_refill_attr.attr,
e36a2652 5114 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5115 &free_slab_attr.attr,
5116 &cpuslab_flush_attr.attr,
5117 &deactivate_full_attr.attr,
5118 &deactivate_empty_attr.attr,
5119 &deactivate_to_head_attr.attr,
5120 &deactivate_to_tail_attr.attr,
5121 &deactivate_remote_frees_attr.attr,
03e404af 5122 &deactivate_bypass_attr.attr,
65c3376a 5123 &order_fallback_attr.attr,
b789ef51
CL
5124 &cmpxchg_double_fail_attr.attr,
5125 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5126 &cpu_partial_alloc_attr.attr,
5127 &cpu_partial_free_attr.attr,
8028dcea
AS
5128 &cpu_partial_node_attr.attr,
5129 &cpu_partial_drain_attr.attr,
81819f0f 5130#endif
4c13dd3b
DM
5131#ifdef CONFIG_FAILSLAB
5132 &failslab_attr.attr,
5133#endif
5134
81819f0f
CL
5135 NULL
5136};
5137
5138static struct attribute_group slab_attr_group = {
5139 .attrs = slab_attrs,
5140};
5141
5142static ssize_t slab_attr_show(struct kobject *kobj,
5143 struct attribute *attr,
5144 char *buf)
5145{
5146 struct slab_attribute *attribute;
5147 struct kmem_cache *s;
5148 int err;
5149
5150 attribute = to_slab_attr(attr);
5151 s = to_slab(kobj);
5152
5153 if (!attribute->show)
5154 return -EIO;
5155
5156 err = attribute->show(s, buf);
5157
5158 return err;
5159}
5160
5161static ssize_t slab_attr_store(struct kobject *kobj,
5162 struct attribute *attr,
5163 const char *buf, size_t len)
5164{
5165 struct slab_attribute *attribute;
5166 struct kmem_cache *s;
5167 int err;
5168
5169 attribute = to_slab_attr(attr);
5170 s = to_slab(kobj);
5171
5172 if (!attribute->store)
5173 return -EIO;
5174
5175 err = attribute->store(s, buf, len);
5176
5177 return err;
5178}
5179
52cf25d0 5180static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5181 .show = slab_attr_show,
5182 .store = slab_attr_store,
5183};
5184
5185static struct kobj_type slab_ktype = {
5186 .sysfs_ops = &slab_sysfs_ops,
5187};
5188
5189static int uevent_filter(struct kset *kset, struct kobject *kobj)
5190{
5191 struct kobj_type *ktype = get_ktype(kobj);
5192
5193 if (ktype == &slab_ktype)
5194 return 1;
5195 return 0;
5196}
5197
9cd43611 5198static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5199 .filter = uevent_filter,
5200};
5201
27c3a314 5202static struct kset *slab_kset;
81819f0f
CL
5203
5204#define ID_STR_LENGTH 64
5205
5206/* Create a unique string id for a slab cache:
6446faa2
CL
5207 *
5208 * Format :[flags-]size
81819f0f
CL
5209 */
5210static char *create_unique_id(struct kmem_cache *s)
5211{
5212 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5213 char *p = name;
5214
5215 BUG_ON(!name);
5216
5217 *p++ = ':';
5218 /*
5219 * First flags affecting slabcache operations. We will only
5220 * get here for aliasable slabs so we do not need to support
5221 * too many flags. The flags here must cover all flags that
5222 * are matched during merging to guarantee that the id is
5223 * unique.
5224 */
5225 if (s->flags & SLAB_CACHE_DMA)
5226 *p++ = 'd';
5227 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5228 *p++ = 'a';
5229 if (s->flags & SLAB_DEBUG_FREE)
5230 *p++ = 'F';
5a896d9e
VN
5231 if (!(s->flags & SLAB_NOTRACK))
5232 *p++ = 't';
81819f0f
CL
5233 if (p != name + 1)
5234 *p++ = '-';
5235 p += sprintf(p, "%07d", s->size);
5236 BUG_ON(p > name + ID_STR_LENGTH - 1);
5237 return name;
5238}
5239
96d17b7b 5240int sysfs_slab_add(struct kmem_cache *s)
81819f0f
CL
5241{
5242 int err;
5243 const char *name;
5244 int unmergeable;
5245
97d06609 5246 if (slab_state < FULL)
81819f0f
CL
5247 /* Defer until later */
5248 return 0;
5249
5250 unmergeable = slab_unmergeable(s);
5251 if (unmergeable) {
5252 /*
5253 * Slabcache can never be merged so we can use the name proper.
5254 * This is typically the case for debug situations. In that
5255 * case we can catch duplicate names easily.
5256 */
27c3a314 5257 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5258 name = s->name;
5259 } else {
5260 /*
5261 * Create a unique name for the slab as a target
5262 * for the symlinks.
5263 */
5264 name = create_unique_id(s);
5265 }
5266
27c3a314 5267 s->kobj.kset = slab_kset;
1eada11c
GKH
5268 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5269 if (err) {
5270 kobject_put(&s->kobj);
81819f0f 5271 return err;
1eada11c 5272 }
81819f0f
CL
5273
5274 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5275 if (err) {
5276 kobject_del(&s->kobj);
5277 kobject_put(&s->kobj);
81819f0f 5278 return err;
5788d8ad 5279 }
81819f0f
CL
5280 kobject_uevent(&s->kobj, KOBJ_ADD);
5281 if (!unmergeable) {
5282 /* Setup first alias */
5283 sysfs_slab_alias(s, s->name);
5284 kfree(name);
5285 }
5286 return 0;
5287}
5288
5289static void sysfs_slab_remove(struct kmem_cache *s)
5290{
97d06609 5291 if (slab_state < FULL)
2bce6485
CL
5292 /*
5293 * Sysfs has not been setup yet so no need to remove the
5294 * cache from sysfs.
5295 */
5296 return;
5297
81819f0f
CL
5298 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5299 kobject_del(&s->kobj);
151c602f 5300 kobject_put(&s->kobj);
81819f0f
CL
5301}
5302
5303/*
5304 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5305 * available lest we lose that information.
81819f0f
CL
5306 */
5307struct saved_alias {
5308 struct kmem_cache *s;
5309 const char *name;
5310 struct saved_alias *next;
5311};
5312
5af328a5 5313static struct saved_alias *alias_list;
81819f0f
CL
5314
5315static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5316{
5317 struct saved_alias *al;
5318
97d06609 5319 if (slab_state == FULL) {
81819f0f
CL
5320 /*
5321 * If we have a leftover link then remove it.
5322 */
27c3a314
GKH
5323 sysfs_remove_link(&slab_kset->kobj, name);
5324 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5325 }
5326
5327 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5328 if (!al)
5329 return -ENOMEM;
5330
5331 al->s = s;
5332 al->name = name;
5333 al->next = alias_list;
5334 alias_list = al;
5335 return 0;
5336}
5337
5338static int __init slab_sysfs_init(void)
5339{
5b95a4ac 5340 struct kmem_cache *s;
81819f0f
CL
5341 int err;
5342
18004c5d 5343 mutex_lock(&slab_mutex);
2bce6485 5344
0ff21e46 5345 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5346 if (!slab_kset) {
18004c5d 5347 mutex_unlock(&slab_mutex);
81819f0f
CL
5348 printk(KERN_ERR "Cannot register slab subsystem.\n");
5349 return -ENOSYS;
5350 }
5351
97d06609 5352 slab_state = FULL;
26a7bd03 5353
5b95a4ac 5354 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5355 err = sysfs_slab_add(s);
5d540fb7
CL
5356 if (err)
5357 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5358 " to sysfs\n", s->name);
26a7bd03 5359 }
81819f0f
CL
5360
5361 while (alias_list) {
5362 struct saved_alias *al = alias_list;
5363
5364 alias_list = alias_list->next;
5365 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5366 if (err)
5367 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5368 " %s to sysfs\n", al->name);
81819f0f
CL
5369 kfree(al);
5370 }
5371
18004c5d 5372 mutex_unlock(&slab_mutex);
81819f0f
CL
5373 resiliency_test();
5374 return 0;
5375}
5376
5377__initcall(slab_sysfs_init);
ab4d5ed5 5378#endif /* CONFIG_SYSFS */
57ed3eda
PE
5379
5380/*
5381 * The /proc/slabinfo ABI
5382 */
158a9624 5383#ifdef CONFIG_SLABINFO
57ed3eda
PE
5384static void print_slabinfo_header(struct seq_file *m)
5385{
5386 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5387 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5388 "<objperslab> <pagesperslab>");
5389 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5390 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5391 seq_putc(m, '\n');
5392}
5393
5394static void *s_start(struct seq_file *m, loff_t *pos)
5395{
5396 loff_t n = *pos;
5397
18004c5d 5398 mutex_lock(&slab_mutex);
57ed3eda
PE
5399 if (!n)
5400 print_slabinfo_header(m);
5401
5402 return seq_list_start(&slab_caches, *pos);
5403}
5404
5405static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5406{
5407 return seq_list_next(p, &slab_caches, pos);
5408}
5409
5410static void s_stop(struct seq_file *m, void *p)
5411{
18004c5d 5412 mutex_unlock(&slab_mutex);
57ed3eda
PE
5413}
5414
5415static int s_show(struct seq_file *m, void *p)
5416{
5417 unsigned long nr_partials = 0;
5418 unsigned long nr_slabs = 0;
5419 unsigned long nr_inuse = 0;
205ab99d
CL
5420 unsigned long nr_objs = 0;
5421 unsigned long nr_free = 0;
57ed3eda
PE
5422 struct kmem_cache *s;
5423 int node;
5424
5425 s = list_entry(p, struct kmem_cache, list);
5426
5427 for_each_online_node(node) {
5428 struct kmem_cache_node *n = get_node(s, node);
5429
5430 if (!n)
5431 continue;
5432
5433 nr_partials += n->nr_partial;
5434 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5435 nr_objs += atomic_long_read(&n->total_objects);
5436 nr_free += count_partial(n, count_free);
57ed3eda
PE
5437 }
5438
205ab99d 5439 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5440
5441 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5442 nr_objs, s->size, oo_objects(s->oo),
5443 (1 << oo_order(s->oo)));
57ed3eda
PE
5444 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5445 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5446 0UL);
5447 seq_putc(m, '\n');
5448 return 0;
5449}
5450
7b3c3a50 5451static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5452 .start = s_start,
5453 .next = s_next,
5454 .stop = s_stop,
5455 .show = s_show,
5456};
5457
7b3c3a50
AD
5458static int slabinfo_open(struct inode *inode, struct file *file)
5459{
5460 return seq_open(file, &slabinfo_op);
5461}
5462
5463static const struct file_operations proc_slabinfo_operations = {
5464 .open = slabinfo_open,
5465 .read = seq_read,
5466 .llseek = seq_lseek,
5467 .release = seq_release,
5468};
5469
5470static int __init slab_proc_init(void)
5471{
ab067e99 5472 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5473 return 0;
5474}
5475module_init(slab_proc_init);
158a9624 5476#endif /* CONFIG_SLABINFO */