]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
slub: Drop fallback to page allocator method
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f 207
65c02d4c
CL
208/* Not all arches define cache_line_size */
209#ifndef cache_line_size
210#define cache_line_size() L1_CACHE_BYTES
211#endif
212
81819f0f
CL
213static int kmem_size = sizeof(struct kmem_cache);
214
215#ifdef CONFIG_SMP
216static struct notifier_block slab_notifier;
217#endif
218
219static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 222 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
223 SYSFS /* Sysfs up */
224} slab_state = DOWN;
225
226/* A list of all slab caches on the system */
227static DECLARE_RWSEM(slub_lock);
5af328a5 228static LIST_HEAD(slab_caches);
81819f0f 229
02cbc874
CL
230/*
231 * Tracking user of a slab.
232 */
233struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
238};
239
240enum track_item { TRACK_ALLOC, TRACK_FREE };
241
41ecc55b 242#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
243static int sysfs_slab_add(struct kmem_cache *);
244static int sysfs_slab_alias(struct kmem_cache *, const char *);
245static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 246
81819f0f 247#else
0c710013
CL
248static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
249static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
250 { return 0; }
151c602f
CL
251static inline void sysfs_slab_remove(struct kmem_cache *s)
252{
253 kfree(s);
254}
8ff12cfc 255
81819f0f
CL
256#endif
257
8ff12cfc
CL
258static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
259{
260#ifdef CONFIG_SLUB_STATS
261 c->stat[si]++;
262#endif
263}
264
81819f0f
CL
265/********************************************************************
266 * Core slab cache functions
267 *******************************************************************/
268
269int slab_is_available(void)
270{
271 return slab_state >= UP;
272}
273
274static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
275{
276#ifdef CONFIG_NUMA
277 return s->node[node];
278#else
279 return &s->local_node;
280#endif
281}
282
dfb4f096
CL
283static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
284{
4c93c355
CL
285#ifdef CONFIG_SMP
286 return s->cpu_slab[cpu];
287#else
288 return &s->cpu_slab;
289#endif
dfb4f096
CL
290}
291
6446faa2 292/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
293static inline int check_valid_pointer(struct kmem_cache *s,
294 struct page *page, const void *object)
295{
296 void *base;
297
a973e9dd 298 if (!object)
02cbc874
CL
299 return 1;
300
a973e9dd 301 base = page_address(page);
39b26464 302 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
303 (object - base) % s->size) {
304 return 0;
305 }
306
307 return 1;
308}
309
7656c72b
CL
310/*
311 * Slow version of get and set free pointer.
312 *
313 * This version requires touching the cache lines of kmem_cache which
314 * we avoid to do in the fast alloc free paths. There we obtain the offset
315 * from the page struct.
316 */
317static inline void *get_freepointer(struct kmem_cache *s, void *object)
318{
319 return *(void **)(object + s->offset);
320}
321
322static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
323{
324 *(void **)(object + s->offset) = fp;
325}
326
327/* Loop over all objects in a slab */
224a88be
CL
328#define for_each_object(__p, __s, __addr, __objects) \
329 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
330 __p += (__s)->size)
331
332/* Scan freelist */
333#define for_each_free_object(__p, __s, __free) \
a973e9dd 334 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
335
336/* Determine object index from a given position */
337static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
338{
339 return (p - addr) / s->size;
340}
341
834f3d11
CL
342static inline struct kmem_cache_order_objects oo_make(int order,
343 unsigned long size)
344{
345 struct kmem_cache_order_objects x = {
346 (order << 16) + (PAGE_SIZE << order) / size
347 };
348
349 return x;
350}
351
352static inline int oo_order(struct kmem_cache_order_objects x)
353{
354 return x.x >> 16;
355}
356
357static inline int oo_objects(struct kmem_cache_order_objects x)
358{
359 return x.x & ((1 << 16) - 1);
360}
361
41ecc55b
CL
362#ifdef CONFIG_SLUB_DEBUG
363/*
364 * Debug settings:
365 */
f0630fff
CL
366#ifdef CONFIG_SLUB_DEBUG_ON
367static int slub_debug = DEBUG_DEFAULT_FLAGS;
368#else
41ecc55b 369static int slub_debug;
f0630fff 370#endif
41ecc55b
CL
371
372static char *slub_debug_slabs;
373
81819f0f
CL
374/*
375 * Object debugging
376 */
377static void print_section(char *text, u8 *addr, unsigned int length)
378{
379 int i, offset;
380 int newline = 1;
381 char ascii[17];
382
383 ascii[16] = 0;
384
385 for (i = 0; i < length; i++) {
386 if (newline) {
24922684 387 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
388 newline = 0;
389 }
06428780 390 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
391 offset = i % 16;
392 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
393 if (offset == 15) {
06428780 394 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
395 newline = 1;
396 }
397 }
398 if (!newline) {
399 i %= 16;
400 while (i < 16) {
06428780 401 printk(KERN_CONT " ");
81819f0f
CL
402 ascii[i] = ' ';
403 i++;
404 }
06428780 405 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
406 }
407}
408
81819f0f
CL
409static struct track *get_track(struct kmem_cache *s, void *object,
410 enum track_item alloc)
411{
412 struct track *p;
413
414 if (s->offset)
415 p = object + s->offset + sizeof(void *);
416 else
417 p = object + s->inuse;
418
419 return p + alloc;
420}
421
422static void set_track(struct kmem_cache *s, void *object,
423 enum track_item alloc, void *addr)
424{
425 struct track *p;
426
427 if (s->offset)
428 p = object + s->offset + sizeof(void *);
429 else
430 p = object + s->inuse;
431
432 p += alloc;
433 if (addr) {
434 p->addr = addr;
435 p->cpu = smp_processor_id();
436 p->pid = current ? current->pid : -1;
437 p->when = jiffies;
438 } else
439 memset(p, 0, sizeof(struct track));
440}
441
81819f0f
CL
442static void init_tracking(struct kmem_cache *s, void *object)
443{
24922684
CL
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 set_track(s, object, TRACK_FREE, NULL);
448 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
449}
450
451static void print_track(const char *s, struct track *t)
452{
453 if (!t->addr)
454 return;
455
24922684 456 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 457 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
458 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
459}
460
461static void print_tracking(struct kmem_cache *s, void *object)
462{
463 if (!(s->flags & SLAB_STORE_USER))
464 return;
465
466 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
467 print_track("Freed", get_track(s, object, TRACK_FREE));
468}
469
470static void print_page_info(struct page *page)
471{
39b26464
CL
472 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
473 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
474
475}
476
477static void slab_bug(struct kmem_cache *s, char *fmt, ...)
478{
479 va_list args;
480 char buf[100];
481
482 va_start(args, fmt);
483 vsnprintf(buf, sizeof(buf), fmt, args);
484 va_end(args);
485 printk(KERN_ERR "========================================"
486 "=====================================\n");
487 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
488 printk(KERN_ERR "----------------------------------------"
489 "-------------------------------------\n\n");
81819f0f
CL
490}
491
24922684
CL
492static void slab_fix(struct kmem_cache *s, char *fmt, ...)
493{
494 va_list args;
495 char buf[100];
496
497 va_start(args, fmt);
498 vsnprintf(buf, sizeof(buf), fmt, args);
499 va_end(args);
500 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
501}
502
503static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
504{
505 unsigned int off; /* Offset of last byte */
a973e9dd 506 u8 *addr = page_address(page);
24922684
CL
507
508 print_tracking(s, p);
509
510 print_page_info(page);
511
512 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
513 p, p - addr, get_freepointer(s, p));
514
515 if (p > addr + 16)
516 print_section("Bytes b4", p - 16, 16);
517
518 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
519
520 if (s->flags & SLAB_RED_ZONE)
521 print_section("Redzone", p + s->objsize,
522 s->inuse - s->objsize);
523
81819f0f
CL
524 if (s->offset)
525 off = s->offset + sizeof(void *);
526 else
527 off = s->inuse;
528
24922684 529 if (s->flags & SLAB_STORE_USER)
81819f0f 530 off += 2 * sizeof(struct track);
81819f0f
CL
531
532 if (off != s->size)
533 /* Beginning of the filler is the free pointer */
24922684
CL
534 print_section("Padding", p + off, s->size - off);
535
536 dump_stack();
81819f0f
CL
537}
538
539static void object_err(struct kmem_cache *s, struct page *page,
540 u8 *object, char *reason)
541{
3dc50637 542 slab_bug(s, "%s", reason);
24922684 543 print_trailer(s, page, object);
81819f0f
CL
544}
545
24922684 546static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
547{
548 va_list args;
549 char buf[100];
550
24922684
CL
551 va_start(args, fmt);
552 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 553 va_end(args);
3dc50637 554 slab_bug(s, "%s", buf);
24922684 555 print_page_info(page);
81819f0f
CL
556 dump_stack();
557}
558
559static void init_object(struct kmem_cache *s, void *object, int active)
560{
561 u8 *p = object;
562
563 if (s->flags & __OBJECT_POISON) {
564 memset(p, POISON_FREE, s->objsize - 1);
06428780 565 p[s->objsize - 1] = POISON_END;
81819f0f
CL
566 }
567
568 if (s->flags & SLAB_RED_ZONE)
569 memset(p + s->objsize,
570 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
571 s->inuse - s->objsize);
572}
573
24922684 574static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
575{
576 while (bytes) {
577 if (*start != (u8)value)
24922684 578 return start;
81819f0f
CL
579 start++;
580 bytes--;
581 }
24922684
CL
582 return NULL;
583}
584
585static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
586 void *from, void *to)
587{
588 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
589 memset(from, data, to - from);
590}
591
592static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
593 u8 *object, char *what,
06428780 594 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
595{
596 u8 *fault;
597 u8 *end;
598
599 fault = check_bytes(start, value, bytes);
600 if (!fault)
601 return 1;
602
603 end = start + bytes;
604 while (end > fault && end[-1] == value)
605 end--;
606
607 slab_bug(s, "%s overwritten", what);
608 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
609 fault, end - 1, fault[0], value);
610 print_trailer(s, page, object);
611
612 restore_bytes(s, what, value, fault, end);
613 return 0;
81819f0f
CL
614}
615
81819f0f
CL
616/*
617 * Object layout:
618 *
619 * object address
620 * Bytes of the object to be managed.
621 * If the freepointer may overlay the object then the free
622 * pointer is the first word of the object.
672bba3a 623 *
81819f0f
CL
624 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
625 * 0xa5 (POISON_END)
626 *
627 * object + s->objsize
628 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
629 * Padding is extended by another word if Redzoning is enabled and
630 * objsize == inuse.
631 *
81819f0f
CL
632 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
633 * 0xcc (RED_ACTIVE) for objects in use.
634 *
635 * object + s->inuse
672bba3a
CL
636 * Meta data starts here.
637 *
81819f0f
CL
638 * A. Free pointer (if we cannot overwrite object on free)
639 * B. Tracking data for SLAB_STORE_USER
672bba3a 640 * C. Padding to reach required alignment boundary or at mininum
6446faa2 641 * one word if debugging is on to be able to detect writes
672bba3a
CL
642 * before the word boundary.
643 *
644 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
645 *
646 * object + s->size
672bba3a 647 * Nothing is used beyond s->size.
81819f0f 648 *
672bba3a
CL
649 * If slabcaches are merged then the objsize and inuse boundaries are mostly
650 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
651 * may be used with merged slabcaches.
652 */
653
81819f0f
CL
654static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
655{
656 unsigned long off = s->inuse; /* The end of info */
657
658 if (s->offset)
659 /* Freepointer is placed after the object. */
660 off += sizeof(void *);
661
662 if (s->flags & SLAB_STORE_USER)
663 /* We also have user information there */
664 off += 2 * sizeof(struct track);
665
666 if (s->size == off)
667 return 1;
668
24922684
CL
669 return check_bytes_and_report(s, page, p, "Object padding",
670 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
671}
672
39b26464 673/* Check the pad bytes at the end of a slab page */
81819f0f
CL
674static int slab_pad_check(struct kmem_cache *s, struct page *page)
675{
24922684
CL
676 u8 *start;
677 u8 *fault;
678 u8 *end;
679 int length;
680 int remainder;
81819f0f
CL
681
682 if (!(s->flags & SLAB_POISON))
683 return 1;
684
a973e9dd 685 start = page_address(page);
834f3d11 686 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
687 end = start + length;
688 remainder = length % s->size;
81819f0f
CL
689 if (!remainder)
690 return 1;
691
39b26464 692 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
693 if (!fault)
694 return 1;
695 while (end > fault && end[-1] == POISON_INUSE)
696 end--;
697
698 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 699 print_section("Padding", end - remainder, remainder);
24922684
CL
700
701 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
702 return 0;
81819f0f
CL
703}
704
705static int check_object(struct kmem_cache *s, struct page *page,
706 void *object, int active)
707{
708 u8 *p = object;
709 u8 *endobject = object + s->objsize;
710
711 if (s->flags & SLAB_RED_ZONE) {
712 unsigned int red =
713 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
714
24922684
CL
715 if (!check_bytes_and_report(s, page, object, "Redzone",
716 endobject, red, s->inuse - s->objsize))
81819f0f 717 return 0;
81819f0f 718 } else {
3adbefee
IM
719 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
720 check_bytes_and_report(s, page, p, "Alignment padding",
721 endobject, POISON_INUSE, s->inuse - s->objsize);
722 }
81819f0f
CL
723 }
724
725 if (s->flags & SLAB_POISON) {
726 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
727 (!check_bytes_and_report(s, page, p, "Poison", p,
728 POISON_FREE, s->objsize - 1) ||
729 !check_bytes_and_report(s, page, p, "Poison",
06428780 730 p + s->objsize - 1, POISON_END, 1)))
81819f0f 731 return 0;
81819f0f
CL
732 /*
733 * check_pad_bytes cleans up on its own.
734 */
735 check_pad_bytes(s, page, p);
736 }
737
738 if (!s->offset && active)
739 /*
740 * Object and freepointer overlap. Cannot check
741 * freepointer while object is allocated.
742 */
743 return 1;
744
745 /* Check free pointer validity */
746 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
747 object_err(s, page, p, "Freepointer corrupt");
748 /*
749 * No choice but to zap it and thus loose the remainder
750 * of the free objects in this slab. May cause
672bba3a 751 * another error because the object count is now wrong.
81819f0f 752 */
a973e9dd 753 set_freepointer(s, p, NULL);
81819f0f
CL
754 return 0;
755 }
756 return 1;
757}
758
759static int check_slab(struct kmem_cache *s, struct page *page)
760{
39b26464
CL
761 int maxobj;
762
81819f0f
CL
763 VM_BUG_ON(!irqs_disabled());
764
765 if (!PageSlab(page)) {
24922684 766 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
767 return 0;
768 }
39b26464
CL
769
770 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
771 if (page->objects > maxobj) {
772 slab_err(s, page, "objects %u > max %u",
773 s->name, page->objects, maxobj);
774 return 0;
775 }
776 if (page->inuse > page->objects) {
24922684 777 slab_err(s, page, "inuse %u > max %u",
39b26464 778 s->name, page->inuse, page->objects);
81819f0f
CL
779 return 0;
780 }
781 /* Slab_pad_check fixes things up after itself */
782 slab_pad_check(s, page);
783 return 1;
784}
785
786/*
672bba3a
CL
787 * Determine if a certain object on a page is on the freelist. Must hold the
788 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
789 */
790static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
791{
792 int nr = 0;
793 void *fp = page->freelist;
794 void *object = NULL;
224a88be 795 unsigned long max_objects;
81819f0f 796
39b26464 797 while (fp && nr <= page->objects) {
81819f0f
CL
798 if (fp == search)
799 return 1;
800 if (!check_valid_pointer(s, page, fp)) {
801 if (object) {
802 object_err(s, page, object,
803 "Freechain corrupt");
a973e9dd 804 set_freepointer(s, object, NULL);
81819f0f
CL
805 break;
806 } else {
24922684 807 slab_err(s, page, "Freepointer corrupt");
a973e9dd 808 page->freelist = NULL;
39b26464 809 page->inuse = page->objects;
24922684 810 slab_fix(s, "Freelist cleared");
81819f0f
CL
811 return 0;
812 }
813 break;
814 }
815 object = fp;
816 fp = get_freepointer(s, object);
817 nr++;
818 }
819
224a88be
CL
820 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
821 if (max_objects > 65535)
822 max_objects = 65535;
823
824 if (page->objects != max_objects) {
825 slab_err(s, page, "Wrong number of objects. Found %d but "
826 "should be %d", page->objects, max_objects);
827 page->objects = max_objects;
828 slab_fix(s, "Number of objects adjusted.");
829 }
39b26464 830 if (page->inuse != page->objects - nr) {
70d71228 831 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
832 "counted were %d", page->inuse, page->objects - nr);
833 page->inuse = page->objects - nr;
24922684 834 slab_fix(s, "Object count adjusted.");
81819f0f
CL
835 }
836 return search == NULL;
837}
838
3ec09742
CL
839static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
840{
841 if (s->flags & SLAB_TRACE) {
842 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
843 s->name,
844 alloc ? "alloc" : "free",
845 object, page->inuse,
846 page->freelist);
847
848 if (!alloc)
849 print_section("Object", (void *)object, s->objsize);
850
851 dump_stack();
852 }
853}
854
643b1138 855/*
672bba3a 856 * Tracking of fully allocated slabs for debugging purposes.
643b1138 857 */
e95eed57 858static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 859{
643b1138
CL
860 spin_lock(&n->list_lock);
861 list_add(&page->lru, &n->full);
862 spin_unlock(&n->list_lock);
863}
864
865static void remove_full(struct kmem_cache *s, struct page *page)
866{
867 struct kmem_cache_node *n;
868
869 if (!(s->flags & SLAB_STORE_USER))
870 return;
871
872 n = get_node(s, page_to_nid(page));
873
874 spin_lock(&n->list_lock);
875 list_del(&page->lru);
876 spin_unlock(&n->list_lock);
877}
878
0f389ec6
CL
879/* Tracking of the number of slabs for debugging purposes */
880static inline unsigned long slabs_node(struct kmem_cache *s, int node)
881{
882 struct kmem_cache_node *n = get_node(s, node);
883
884 return atomic_long_read(&n->nr_slabs);
885}
886
205ab99d 887static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
888{
889 struct kmem_cache_node *n = get_node(s, node);
890
891 /*
892 * May be called early in order to allocate a slab for the
893 * kmem_cache_node structure. Solve the chicken-egg
894 * dilemma by deferring the increment of the count during
895 * bootstrap (see early_kmem_cache_node_alloc).
896 */
205ab99d 897 if (!NUMA_BUILD || n) {
0f389ec6 898 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
899 atomic_long_add(objects, &n->total_objects);
900 }
0f389ec6 901}
205ab99d 902static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
903{
904 struct kmem_cache_node *n = get_node(s, node);
905
906 atomic_long_dec(&n->nr_slabs);
205ab99d 907 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
908}
909
910/* Object debug checks for alloc/free paths */
3ec09742
CL
911static void setup_object_debug(struct kmem_cache *s, struct page *page,
912 void *object)
913{
914 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
915 return;
916
917 init_object(s, object, 0);
918 init_tracking(s, object);
919}
920
921static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
922 void *object, void *addr)
81819f0f
CL
923{
924 if (!check_slab(s, page))
925 goto bad;
926
d692ef6d 927 if (!on_freelist(s, page, object)) {
24922684 928 object_err(s, page, object, "Object already allocated");
70d71228 929 goto bad;
81819f0f
CL
930 }
931
932 if (!check_valid_pointer(s, page, object)) {
933 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 934 goto bad;
81819f0f
CL
935 }
936
d692ef6d 937 if (!check_object(s, page, object, 0))
81819f0f 938 goto bad;
81819f0f 939
3ec09742
CL
940 /* Success perform special debug activities for allocs */
941 if (s->flags & SLAB_STORE_USER)
942 set_track(s, object, TRACK_ALLOC, addr);
943 trace(s, page, object, 1);
944 init_object(s, object, 1);
81819f0f 945 return 1;
3ec09742 946
81819f0f
CL
947bad:
948 if (PageSlab(page)) {
949 /*
950 * If this is a slab page then lets do the best we can
951 * to avoid issues in the future. Marking all objects
672bba3a 952 * as used avoids touching the remaining objects.
81819f0f 953 */
24922684 954 slab_fix(s, "Marking all objects used");
39b26464 955 page->inuse = page->objects;
a973e9dd 956 page->freelist = NULL;
81819f0f
CL
957 }
958 return 0;
959}
960
3ec09742
CL
961static int free_debug_processing(struct kmem_cache *s, struct page *page,
962 void *object, void *addr)
81819f0f
CL
963{
964 if (!check_slab(s, page))
965 goto fail;
966
967 if (!check_valid_pointer(s, page, object)) {
70d71228 968 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
969 goto fail;
970 }
971
972 if (on_freelist(s, page, object)) {
24922684 973 object_err(s, page, object, "Object already free");
81819f0f
CL
974 goto fail;
975 }
976
977 if (!check_object(s, page, object, 1))
978 return 0;
979
980 if (unlikely(s != page->slab)) {
3adbefee 981 if (!PageSlab(page)) {
70d71228
CL
982 slab_err(s, page, "Attempt to free object(0x%p) "
983 "outside of slab", object);
3adbefee 984 } else if (!page->slab) {
81819f0f 985 printk(KERN_ERR
70d71228 986 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 987 object);
70d71228 988 dump_stack();
06428780 989 } else
24922684
CL
990 object_err(s, page, object,
991 "page slab pointer corrupt.");
81819f0f
CL
992 goto fail;
993 }
3ec09742
CL
994
995 /* Special debug activities for freeing objects */
a973e9dd 996 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
997 remove_full(s, page);
998 if (s->flags & SLAB_STORE_USER)
999 set_track(s, object, TRACK_FREE, addr);
1000 trace(s, page, object, 0);
1001 init_object(s, object, 0);
81819f0f 1002 return 1;
3ec09742 1003
81819f0f 1004fail:
24922684 1005 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1006 return 0;
1007}
1008
41ecc55b
CL
1009static int __init setup_slub_debug(char *str)
1010{
f0630fff
CL
1011 slub_debug = DEBUG_DEFAULT_FLAGS;
1012 if (*str++ != '=' || !*str)
1013 /*
1014 * No options specified. Switch on full debugging.
1015 */
1016 goto out;
1017
1018 if (*str == ',')
1019 /*
1020 * No options but restriction on slabs. This means full
1021 * debugging for slabs matching a pattern.
1022 */
1023 goto check_slabs;
1024
1025 slub_debug = 0;
1026 if (*str == '-')
1027 /*
1028 * Switch off all debugging measures.
1029 */
1030 goto out;
1031
1032 /*
1033 * Determine which debug features should be switched on
1034 */
06428780 1035 for (; *str && *str != ','; str++) {
f0630fff
CL
1036 switch (tolower(*str)) {
1037 case 'f':
1038 slub_debug |= SLAB_DEBUG_FREE;
1039 break;
1040 case 'z':
1041 slub_debug |= SLAB_RED_ZONE;
1042 break;
1043 case 'p':
1044 slub_debug |= SLAB_POISON;
1045 break;
1046 case 'u':
1047 slub_debug |= SLAB_STORE_USER;
1048 break;
1049 case 't':
1050 slub_debug |= SLAB_TRACE;
1051 break;
1052 default:
1053 printk(KERN_ERR "slub_debug option '%c' "
06428780 1054 "unknown. skipped\n", *str);
f0630fff 1055 }
41ecc55b
CL
1056 }
1057
f0630fff 1058check_slabs:
41ecc55b
CL
1059 if (*str == ',')
1060 slub_debug_slabs = str + 1;
f0630fff 1061out:
41ecc55b
CL
1062 return 1;
1063}
1064
1065__setup("slub_debug", setup_slub_debug);
1066
ba0268a8
CL
1067static unsigned long kmem_cache_flags(unsigned long objsize,
1068 unsigned long flags, const char *name,
4ba9b9d0 1069 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1070{
1071 /*
e153362a 1072 * Enable debugging if selected on the kernel commandline.
41ecc55b 1073 */
e153362a
CL
1074 if (slub_debug && (!slub_debug_slabs ||
1075 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1076 flags |= slub_debug;
ba0268a8
CL
1077
1078 return flags;
41ecc55b
CL
1079}
1080#else
3ec09742
CL
1081static inline void setup_object_debug(struct kmem_cache *s,
1082 struct page *page, void *object) {}
41ecc55b 1083
3ec09742
CL
1084static inline int alloc_debug_processing(struct kmem_cache *s,
1085 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1086
3ec09742
CL
1087static inline int free_debug_processing(struct kmem_cache *s,
1088 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1089
41ecc55b
CL
1090static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1091 { return 1; }
1092static inline int check_object(struct kmem_cache *s, struct page *page,
1093 void *object, int active) { return 1; }
3ec09742 1094static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1095static inline unsigned long kmem_cache_flags(unsigned long objsize,
1096 unsigned long flags, const char *name,
4ba9b9d0 1097 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1098{
1099 return flags;
1100}
41ecc55b 1101#define slub_debug 0
0f389ec6
CL
1102
1103static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1104 { return 0; }
205ab99d
CL
1105static inline void inc_slabs_node(struct kmem_cache *s, int node,
1106 int objects) {}
1107static inline void dec_slabs_node(struct kmem_cache *s, int node,
1108 int objects) {}
41ecc55b 1109#endif
205ab99d 1110
81819f0f
CL
1111/*
1112 * Slab allocation and freeing
1113 */
65c3376a
CL
1114static inline struct page *alloc_slab_page(gfp_t flags, int node,
1115 struct kmem_cache_order_objects oo)
1116{
1117 int order = oo_order(oo);
1118
1119 if (node == -1)
1120 return alloc_pages(flags, order);
1121 else
1122 return alloc_pages_node(node, flags, order);
1123}
1124
81819f0f
CL
1125static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1126{
06428780 1127 struct page *page;
834f3d11 1128 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1129
b7a49f0d 1130 flags |= s->allocflags;
e12ba74d 1131
65c3376a
CL
1132 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1133 oo);
1134 if (unlikely(!page)) {
1135 oo = s->min;
1136 /*
1137 * Allocation may have failed due to fragmentation.
1138 * Try a lower order alloc if possible
1139 */
1140 page = alloc_slab_page(flags, node, oo);
1141 if (!page)
1142 return NULL;
81819f0f 1143
65c3376a
CL
1144 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1145 }
834f3d11 1146 page->objects = oo_objects(oo);
81819f0f
CL
1147 mod_zone_page_state(page_zone(page),
1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1150 1 << oo_order(oo));
81819f0f
CL
1151
1152 return page;
1153}
1154
1155static void setup_object(struct kmem_cache *s, struct page *page,
1156 void *object)
1157{
3ec09742 1158 setup_object_debug(s, page, object);
4f104934 1159 if (unlikely(s->ctor))
4ba9b9d0 1160 s->ctor(s, object);
81819f0f
CL
1161}
1162
1163static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1164{
1165 struct page *page;
81819f0f 1166 void *start;
81819f0f
CL
1167 void *last;
1168 void *p;
1169
6cb06229 1170 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1171
6cb06229
CL
1172 page = allocate_slab(s,
1173 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1174 if (!page)
1175 goto out;
1176
205ab99d 1177 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1178 page->slab = s;
1179 page->flags |= 1 << PG_slab;
1180 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1182 SetSlabDebug(page);
81819f0f
CL
1183
1184 start = page_address(page);
81819f0f
CL
1185
1186 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1187 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1188
1189 last = start;
224a88be 1190 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1191 setup_object(s, page, last);
1192 set_freepointer(s, last, p);
1193 last = p;
1194 }
1195 setup_object(s, page, last);
a973e9dd 1196 set_freepointer(s, last, NULL);
81819f0f
CL
1197
1198 page->freelist = start;
1199 page->inuse = 0;
1200out:
81819f0f
CL
1201 return page;
1202}
1203
1204static void __free_slab(struct kmem_cache *s, struct page *page)
1205{
834f3d11
CL
1206 int order = compound_order(page);
1207 int pages = 1 << order;
81819f0f 1208
c59def9f 1209 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1210 void *p;
1211
1212 slab_pad_check(s, page);
224a88be
CL
1213 for_each_object(p, s, page_address(page),
1214 page->objects)
81819f0f 1215 check_object(s, page, p, 0);
2208b764 1216 ClearSlabDebug(page);
81819f0f
CL
1217 }
1218
1219 mod_zone_page_state(page_zone(page),
1220 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1221 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1222 -pages);
81819f0f 1223
49bd5221
CL
1224 __ClearPageSlab(page);
1225 reset_page_mapcount(page);
834f3d11 1226 __free_pages(page, order);
81819f0f
CL
1227}
1228
1229static void rcu_free_slab(struct rcu_head *h)
1230{
1231 struct page *page;
1232
1233 page = container_of((struct list_head *)h, struct page, lru);
1234 __free_slab(page->slab, page);
1235}
1236
1237static void free_slab(struct kmem_cache *s, struct page *page)
1238{
1239 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1240 /*
1241 * RCU free overloads the RCU head over the LRU
1242 */
1243 struct rcu_head *head = (void *)&page->lru;
1244
1245 call_rcu(head, rcu_free_slab);
1246 } else
1247 __free_slab(s, page);
1248}
1249
1250static void discard_slab(struct kmem_cache *s, struct page *page)
1251{
205ab99d 1252 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1253 free_slab(s, page);
1254}
1255
1256/*
1257 * Per slab locking using the pagelock
1258 */
1259static __always_inline void slab_lock(struct page *page)
1260{
1261 bit_spin_lock(PG_locked, &page->flags);
1262}
1263
1264static __always_inline void slab_unlock(struct page *page)
1265{
a76d3546 1266 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1267}
1268
1269static __always_inline int slab_trylock(struct page *page)
1270{
1271 int rc = 1;
1272
1273 rc = bit_spin_trylock(PG_locked, &page->flags);
1274 return rc;
1275}
1276
1277/*
1278 * Management of partially allocated slabs
1279 */
7c2e132c
CL
1280static void add_partial(struct kmem_cache_node *n,
1281 struct page *page, int tail)
81819f0f 1282{
e95eed57
CL
1283 spin_lock(&n->list_lock);
1284 n->nr_partial++;
7c2e132c
CL
1285 if (tail)
1286 list_add_tail(&page->lru, &n->partial);
1287 else
1288 list_add(&page->lru, &n->partial);
81819f0f
CL
1289 spin_unlock(&n->list_lock);
1290}
1291
1292static void remove_partial(struct kmem_cache *s,
1293 struct page *page)
1294{
1295 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1296
1297 spin_lock(&n->list_lock);
1298 list_del(&page->lru);
1299 n->nr_partial--;
1300 spin_unlock(&n->list_lock);
1301}
1302
1303/*
672bba3a 1304 * Lock slab and remove from the partial list.
81819f0f 1305 *
672bba3a 1306 * Must hold list_lock.
81819f0f 1307 */
4b6f0750 1308static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1309{
1310 if (slab_trylock(page)) {
1311 list_del(&page->lru);
1312 n->nr_partial--;
4b6f0750 1313 SetSlabFrozen(page);
81819f0f
CL
1314 return 1;
1315 }
1316 return 0;
1317}
1318
1319/*
672bba3a 1320 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1321 */
1322static struct page *get_partial_node(struct kmem_cache_node *n)
1323{
1324 struct page *page;
1325
1326 /*
1327 * Racy check. If we mistakenly see no partial slabs then we
1328 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1329 * partial slab and there is none available then get_partials()
1330 * will return NULL.
81819f0f
CL
1331 */
1332 if (!n || !n->nr_partial)
1333 return NULL;
1334
1335 spin_lock(&n->list_lock);
1336 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1337 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1338 goto out;
1339 page = NULL;
1340out:
1341 spin_unlock(&n->list_lock);
1342 return page;
1343}
1344
1345/*
672bba3a 1346 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1347 */
1348static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1349{
1350#ifdef CONFIG_NUMA
1351 struct zonelist *zonelist;
1352 struct zone **z;
1353 struct page *page;
1354
1355 /*
672bba3a
CL
1356 * The defrag ratio allows a configuration of the tradeoffs between
1357 * inter node defragmentation and node local allocations. A lower
1358 * defrag_ratio increases the tendency to do local allocations
1359 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1360 *
672bba3a
CL
1361 * If the defrag_ratio is set to 0 then kmalloc() always
1362 * returns node local objects. If the ratio is higher then kmalloc()
1363 * may return off node objects because partial slabs are obtained
1364 * from other nodes and filled up.
81819f0f 1365 *
6446faa2 1366 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1367 * defrag_ratio = 1000) then every (well almost) allocation will
1368 * first attempt to defrag slab caches on other nodes. This means
1369 * scanning over all nodes to look for partial slabs which may be
1370 * expensive if we do it every time we are trying to find a slab
1371 * with available objects.
81819f0f 1372 */
9824601e
CL
1373 if (!s->remote_node_defrag_ratio ||
1374 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1375 return NULL;
1376
3adbefee
IM
1377 zonelist = &NODE_DATA(
1378 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1379 for (z = zonelist->zones; *z; z++) {
1380 struct kmem_cache_node *n;
1381
1382 n = get_node(s, zone_to_nid(*z));
1383
1384 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1385 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1386 page = get_partial_node(n);
1387 if (page)
1388 return page;
1389 }
1390 }
1391#endif
1392 return NULL;
1393}
1394
1395/*
1396 * Get a partial page, lock it and return it.
1397 */
1398static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1399{
1400 struct page *page;
1401 int searchnode = (node == -1) ? numa_node_id() : node;
1402
1403 page = get_partial_node(get_node(s, searchnode));
1404 if (page || (flags & __GFP_THISNODE))
1405 return page;
1406
1407 return get_any_partial(s, flags);
1408}
1409
1410/*
1411 * Move a page back to the lists.
1412 *
1413 * Must be called with the slab lock held.
1414 *
1415 * On exit the slab lock will have been dropped.
1416 */
7c2e132c 1417static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1418{
e95eed57 1419 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1420 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1421
4b6f0750 1422 ClearSlabFrozen(page);
81819f0f 1423 if (page->inuse) {
e95eed57 1424
a973e9dd 1425 if (page->freelist) {
7c2e132c 1426 add_partial(n, page, tail);
8ff12cfc
CL
1427 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1428 } else {
1429 stat(c, DEACTIVATE_FULL);
1430 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1431 add_full(n, page);
1432 }
81819f0f
CL
1433 slab_unlock(page);
1434 } else {
8ff12cfc 1435 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1436 if (n->nr_partial < MIN_PARTIAL) {
1437 /*
672bba3a
CL
1438 * Adding an empty slab to the partial slabs in order
1439 * to avoid page allocator overhead. This slab needs
1440 * to come after the other slabs with objects in
6446faa2
CL
1441 * so that the others get filled first. That way the
1442 * size of the partial list stays small.
1443 *
1444 * kmem_cache_shrink can reclaim any empty slabs from the
1445 * partial list.
e95eed57 1446 */
7c2e132c 1447 add_partial(n, page, 1);
e95eed57
CL
1448 slab_unlock(page);
1449 } else {
1450 slab_unlock(page);
8ff12cfc 1451 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1452 discard_slab(s, page);
1453 }
81819f0f
CL
1454 }
1455}
1456
1457/*
1458 * Remove the cpu slab
1459 */
dfb4f096 1460static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1461{
dfb4f096 1462 struct page *page = c->page;
7c2e132c 1463 int tail = 1;
8ff12cfc 1464
b773ad73 1465 if (page->freelist)
8ff12cfc 1466 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1467 /*
6446faa2 1468 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1469 * because both freelists are empty. So this is unlikely
1470 * to occur.
1471 */
a973e9dd 1472 while (unlikely(c->freelist)) {
894b8788
CL
1473 void **object;
1474
7c2e132c
CL
1475 tail = 0; /* Hot objects. Put the slab first */
1476
894b8788 1477 /* Retrieve object from cpu_freelist */
dfb4f096 1478 object = c->freelist;
b3fba8da 1479 c->freelist = c->freelist[c->offset];
894b8788
CL
1480
1481 /* And put onto the regular freelist */
b3fba8da 1482 object[c->offset] = page->freelist;
894b8788
CL
1483 page->freelist = object;
1484 page->inuse--;
1485 }
dfb4f096 1486 c->page = NULL;
7c2e132c 1487 unfreeze_slab(s, page, tail);
81819f0f
CL
1488}
1489
dfb4f096 1490static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1491{
8ff12cfc 1492 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1493 slab_lock(c->page);
1494 deactivate_slab(s, c);
81819f0f
CL
1495}
1496
1497/*
1498 * Flush cpu slab.
6446faa2 1499 *
81819f0f
CL
1500 * Called from IPI handler with interrupts disabled.
1501 */
0c710013 1502static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1503{
dfb4f096 1504 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1505
dfb4f096
CL
1506 if (likely(c && c->page))
1507 flush_slab(s, c);
81819f0f
CL
1508}
1509
1510static void flush_cpu_slab(void *d)
1511{
1512 struct kmem_cache *s = d;
81819f0f 1513
dfb4f096 1514 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1515}
1516
1517static void flush_all(struct kmem_cache *s)
1518{
1519#ifdef CONFIG_SMP
1520 on_each_cpu(flush_cpu_slab, s, 1, 1);
1521#else
1522 unsigned long flags;
1523
1524 local_irq_save(flags);
1525 flush_cpu_slab(s);
1526 local_irq_restore(flags);
1527#endif
1528}
1529
dfb4f096
CL
1530/*
1531 * Check if the objects in a per cpu structure fit numa
1532 * locality expectations.
1533 */
1534static inline int node_match(struct kmem_cache_cpu *c, int node)
1535{
1536#ifdef CONFIG_NUMA
1537 if (node != -1 && c->node != node)
1538 return 0;
1539#endif
1540 return 1;
1541}
1542
81819f0f 1543/*
894b8788
CL
1544 * Slow path. The lockless freelist is empty or we need to perform
1545 * debugging duties.
1546 *
1547 * Interrupts are disabled.
81819f0f 1548 *
894b8788
CL
1549 * Processing is still very fast if new objects have been freed to the
1550 * regular freelist. In that case we simply take over the regular freelist
1551 * as the lockless freelist and zap the regular freelist.
81819f0f 1552 *
894b8788
CL
1553 * If that is not working then we fall back to the partial lists. We take the
1554 * first element of the freelist as the object to allocate now and move the
1555 * rest of the freelist to the lockless freelist.
81819f0f 1556 *
894b8788 1557 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1558 * we need to allocate a new slab. This is the slowest path since it involves
1559 * a call to the page allocator and the setup of a new slab.
81819f0f 1560 */
894b8788 1561static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1562 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1563{
81819f0f 1564 void **object;
dfb4f096 1565 struct page *new;
81819f0f 1566
e72e9c23
LT
1567 /* We handle __GFP_ZERO in the caller */
1568 gfpflags &= ~__GFP_ZERO;
1569
dfb4f096 1570 if (!c->page)
81819f0f
CL
1571 goto new_slab;
1572
dfb4f096
CL
1573 slab_lock(c->page);
1574 if (unlikely(!node_match(c, node)))
81819f0f 1575 goto another_slab;
6446faa2 1576
8ff12cfc 1577 stat(c, ALLOC_REFILL);
6446faa2 1578
894b8788 1579load_freelist:
dfb4f096 1580 object = c->page->freelist;
a973e9dd 1581 if (unlikely(!object))
81819f0f 1582 goto another_slab;
dfb4f096 1583 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1584 goto debug;
1585
b3fba8da 1586 c->freelist = object[c->offset];
39b26464 1587 c->page->inuse = c->page->objects;
a973e9dd 1588 c->page->freelist = NULL;
dfb4f096 1589 c->node = page_to_nid(c->page);
1f84260c 1590unlock_out:
dfb4f096 1591 slab_unlock(c->page);
8ff12cfc 1592 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1593 return object;
1594
1595another_slab:
dfb4f096 1596 deactivate_slab(s, c);
81819f0f
CL
1597
1598new_slab:
dfb4f096
CL
1599 new = get_partial(s, gfpflags, node);
1600 if (new) {
1601 c->page = new;
8ff12cfc 1602 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1603 goto load_freelist;
81819f0f
CL
1604 }
1605
b811c202
CL
1606 if (gfpflags & __GFP_WAIT)
1607 local_irq_enable();
1608
dfb4f096 1609 new = new_slab(s, gfpflags, node);
b811c202
CL
1610
1611 if (gfpflags & __GFP_WAIT)
1612 local_irq_disable();
1613
dfb4f096
CL
1614 if (new) {
1615 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1616 stat(c, ALLOC_SLAB);
05aa3450 1617 if (c->page)
dfb4f096 1618 flush_slab(s, c);
dfb4f096
CL
1619 slab_lock(new);
1620 SetSlabFrozen(new);
1621 c->page = new;
4b6f0750 1622 goto load_freelist;
81819f0f 1623 }
71c7a06f 1624 return NULL;
81819f0f 1625debug:
dfb4f096 1626 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1627 goto another_slab;
894b8788 1628
dfb4f096 1629 c->page->inuse++;
b3fba8da 1630 c->page->freelist = object[c->offset];
ee3c72a1 1631 c->node = -1;
1f84260c 1632 goto unlock_out;
894b8788
CL
1633}
1634
1635/*
1636 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1637 * have the fastpath folded into their functions. So no function call
1638 * overhead for requests that can be satisfied on the fastpath.
1639 *
1640 * The fastpath works by first checking if the lockless freelist can be used.
1641 * If not then __slab_alloc is called for slow processing.
1642 *
1643 * Otherwise we can simply pick the next object from the lockless free list.
1644 */
06428780 1645static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1646 gfp_t gfpflags, int node, void *addr)
894b8788 1647{
894b8788 1648 void **object;
dfb4f096 1649 struct kmem_cache_cpu *c;
1f84260c
CL
1650 unsigned long flags;
1651
894b8788 1652 local_irq_save(flags);
dfb4f096 1653 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1654 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1655
dfb4f096 1656 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1657
1658 else {
dfb4f096 1659 object = c->freelist;
b3fba8da 1660 c->freelist = object[c->offset];
8ff12cfc 1661 stat(c, ALLOC_FASTPATH);
894b8788
CL
1662 }
1663 local_irq_restore(flags);
d07dbea4
CL
1664
1665 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1666 memset(object, 0, c->objsize);
d07dbea4 1667
894b8788 1668 return object;
81819f0f
CL
1669}
1670
1671void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1672{
ce15fea8 1673 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1674}
1675EXPORT_SYMBOL(kmem_cache_alloc);
1676
1677#ifdef CONFIG_NUMA
1678void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1679{
ce15fea8 1680 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1681}
1682EXPORT_SYMBOL(kmem_cache_alloc_node);
1683#endif
1684
1685/*
894b8788
CL
1686 * Slow patch handling. This may still be called frequently since objects
1687 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1688 *
894b8788
CL
1689 * So we still attempt to reduce cache line usage. Just take the slab
1690 * lock and free the item. If there is no additional partial page
1691 * handling required then we can return immediately.
81819f0f 1692 */
894b8788 1693static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1694 void *x, void *addr, unsigned int offset)
81819f0f
CL
1695{
1696 void *prior;
1697 void **object = (void *)x;
8ff12cfc 1698 struct kmem_cache_cpu *c;
81819f0f 1699
8ff12cfc
CL
1700 c = get_cpu_slab(s, raw_smp_processor_id());
1701 stat(c, FREE_SLOWPATH);
81819f0f
CL
1702 slab_lock(page);
1703
35e5d7ee 1704 if (unlikely(SlabDebug(page)))
81819f0f 1705 goto debug;
6446faa2 1706
81819f0f 1707checks_ok:
b3fba8da 1708 prior = object[offset] = page->freelist;
81819f0f
CL
1709 page->freelist = object;
1710 page->inuse--;
1711
8ff12cfc
CL
1712 if (unlikely(SlabFrozen(page))) {
1713 stat(c, FREE_FROZEN);
81819f0f 1714 goto out_unlock;
8ff12cfc 1715 }
81819f0f
CL
1716
1717 if (unlikely(!page->inuse))
1718 goto slab_empty;
1719
1720 /*
6446faa2 1721 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1722 * then add it.
1723 */
a973e9dd 1724 if (unlikely(!prior)) {
7c2e132c 1725 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1726 stat(c, FREE_ADD_PARTIAL);
1727 }
81819f0f
CL
1728
1729out_unlock:
1730 slab_unlock(page);
81819f0f
CL
1731 return;
1732
1733slab_empty:
a973e9dd 1734 if (prior) {
81819f0f 1735 /*
672bba3a 1736 * Slab still on the partial list.
81819f0f
CL
1737 */
1738 remove_partial(s, page);
8ff12cfc
CL
1739 stat(c, FREE_REMOVE_PARTIAL);
1740 }
81819f0f 1741 slab_unlock(page);
8ff12cfc 1742 stat(c, FREE_SLAB);
81819f0f 1743 discard_slab(s, page);
81819f0f
CL
1744 return;
1745
1746debug:
3ec09742 1747 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1748 goto out_unlock;
77c5e2d0 1749 goto checks_ok;
81819f0f
CL
1750}
1751
894b8788
CL
1752/*
1753 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1754 * can perform fastpath freeing without additional function calls.
1755 *
1756 * The fastpath is only possible if we are freeing to the current cpu slab
1757 * of this processor. This typically the case if we have just allocated
1758 * the item before.
1759 *
1760 * If fastpath is not possible then fall back to __slab_free where we deal
1761 * with all sorts of special processing.
1762 */
06428780 1763static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1764 struct page *page, void *x, void *addr)
1765{
1766 void **object = (void *)x;
dfb4f096 1767 struct kmem_cache_cpu *c;
1f84260c
CL
1768 unsigned long flags;
1769
894b8788 1770 local_irq_save(flags);
dfb4f096 1771 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1772 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1773 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1774 object[c->offset] = c->freelist;
dfb4f096 1775 c->freelist = object;
8ff12cfc 1776 stat(c, FREE_FASTPATH);
894b8788 1777 } else
b3fba8da 1778 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1779
1780 local_irq_restore(flags);
1781}
1782
81819f0f
CL
1783void kmem_cache_free(struct kmem_cache *s, void *x)
1784{
77c5e2d0 1785 struct page *page;
81819f0f 1786
b49af68f 1787 page = virt_to_head_page(x);
81819f0f 1788
77c5e2d0 1789 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1790}
1791EXPORT_SYMBOL(kmem_cache_free);
1792
1793/* Figure out on which slab object the object resides */
1794static struct page *get_object_page(const void *x)
1795{
b49af68f 1796 struct page *page = virt_to_head_page(x);
81819f0f
CL
1797
1798 if (!PageSlab(page))
1799 return NULL;
1800
1801 return page;
1802}
1803
1804/*
672bba3a
CL
1805 * Object placement in a slab is made very easy because we always start at
1806 * offset 0. If we tune the size of the object to the alignment then we can
1807 * get the required alignment by putting one properly sized object after
1808 * another.
81819f0f
CL
1809 *
1810 * Notice that the allocation order determines the sizes of the per cpu
1811 * caches. Each processor has always one slab available for allocations.
1812 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1813 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1814 * locking overhead.
81819f0f
CL
1815 */
1816
1817/*
1818 * Mininum / Maximum order of slab pages. This influences locking overhead
1819 * and slab fragmentation. A higher order reduces the number of partial slabs
1820 * and increases the number of allocations possible without having to
1821 * take the list_lock.
1822 */
1823static int slub_min_order;
1824static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1825static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1826
1827/*
1828 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1829 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1830 */
1831static int slub_nomerge;
1832
81819f0f
CL
1833/*
1834 * Calculate the order of allocation given an slab object size.
1835 *
672bba3a
CL
1836 * The order of allocation has significant impact on performance and other
1837 * system components. Generally order 0 allocations should be preferred since
1838 * order 0 does not cause fragmentation in the page allocator. Larger objects
1839 * be problematic to put into order 0 slabs because there may be too much
1840 * unused space left. We go to a higher order if more than 1/8th of the slab
1841 * would be wasted.
1842 *
1843 * In order to reach satisfactory performance we must ensure that a minimum
1844 * number of objects is in one slab. Otherwise we may generate too much
1845 * activity on the partial lists which requires taking the list_lock. This is
1846 * less a concern for large slabs though which are rarely used.
81819f0f 1847 *
672bba3a
CL
1848 * slub_max_order specifies the order where we begin to stop considering the
1849 * number of objects in a slab as critical. If we reach slub_max_order then
1850 * we try to keep the page order as low as possible. So we accept more waste
1851 * of space in favor of a small page order.
81819f0f 1852 *
672bba3a
CL
1853 * Higher order allocations also allow the placement of more objects in a
1854 * slab and thereby reduce object handling overhead. If the user has
1855 * requested a higher mininum order then we start with that one instead of
1856 * the smallest order which will fit the object.
81819f0f 1857 */
5e6d444e
CL
1858static inline int slab_order(int size, int min_objects,
1859 int max_order, int fract_leftover)
81819f0f
CL
1860{
1861 int order;
1862 int rem;
6300ea75 1863 int min_order = slub_min_order;
81819f0f 1864
39b26464
CL
1865 if ((PAGE_SIZE << min_order) / size > 65535)
1866 return get_order(size * 65535) - 1;
1867
6300ea75 1868 for (order = max(min_order,
5e6d444e
CL
1869 fls(min_objects * size - 1) - PAGE_SHIFT);
1870 order <= max_order; order++) {
81819f0f 1871
5e6d444e 1872 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1873
5e6d444e 1874 if (slab_size < min_objects * size)
81819f0f
CL
1875 continue;
1876
1877 rem = slab_size % size;
1878
5e6d444e 1879 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1880 break;
1881
1882 }
672bba3a 1883
81819f0f
CL
1884 return order;
1885}
1886
5e6d444e
CL
1887static inline int calculate_order(int size)
1888{
1889 int order;
1890 int min_objects;
1891 int fraction;
1892
1893 /*
1894 * Attempt to find best configuration for a slab. This
1895 * works by first attempting to generate a layout with
1896 * the best configuration and backing off gradually.
1897 *
1898 * First we reduce the acceptable waste in a slab. Then
1899 * we reduce the minimum objects required in a slab.
1900 */
1901 min_objects = slub_min_objects;
1902 while (min_objects > 1) {
1903 fraction = 8;
1904 while (fraction >= 4) {
1905 order = slab_order(size, min_objects,
1906 slub_max_order, fraction);
1907 if (order <= slub_max_order)
1908 return order;
1909 fraction /= 2;
1910 }
1911 min_objects /= 2;
1912 }
1913
1914 /*
1915 * We were unable to place multiple objects in a slab. Now
1916 * lets see if we can place a single object there.
1917 */
1918 order = slab_order(size, 1, slub_max_order, 1);
1919 if (order <= slub_max_order)
1920 return order;
1921
1922 /*
1923 * Doh this slab cannot be placed using slub_max_order.
1924 */
1925 order = slab_order(size, 1, MAX_ORDER, 1);
1926 if (order <= MAX_ORDER)
1927 return order;
1928 return -ENOSYS;
1929}
1930
81819f0f 1931/*
672bba3a 1932 * Figure out what the alignment of the objects will be.
81819f0f
CL
1933 */
1934static unsigned long calculate_alignment(unsigned long flags,
1935 unsigned long align, unsigned long size)
1936{
1937 /*
6446faa2
CL
1938 * If the user wants hardware cache aligned objects then follow that
1939 * suggestion if the object is sufficiently large.
81819f0f 1940 *
6446faa2
CL
1941 * The hardware cache alignment cannot override the specified
1942 * alignment though. If that is greater then use it.
81819f0f 1943 */
b6210386
NP
1944 if (flags & SLAB_HWCACHE_ALIGN) {
1945 unsigned long ralign = cache_line_size();
1946 while (size <= ralign / 2)
1947 ralign /= 2;
1948 align = max(align, ralign);
1949 }
81819f0f
CL
1950
1951 if (align < ARCH_SLAB_MINALIGN)
b6210386 1952 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1953
1954 return ALIGN(align, sizeof(void *));
1955}
1956
dfb4f096
CL
1957static void init_kmem_cache_cpu(struct kmem_cache *s,
1958 struct kmem_cache_cpu *c)
1959{
1960 c->page = NULL;
a973e9dd 1961 c->freelist = NULL;
dfb4f096 1962 c->node = 0;
42a9fdbb
CL
1963 c->offset = s->offset / sizeof(void *);
1964 c->objsize = s->objsize;
62f75532
PE
1965#ifdef CONFIG_SLUB_STATS
1966 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967#endif
dfb4f096
CL
1968}
1969
81819f0f
CL
1970static void init_kmem_cache_node(struct kmem_cache_node *n)
1971{
1972 n->nr_partial = 0;
81819f0f
CL
1973 spin_lock_init(&n->list_lock);
1974 INIT_LIST_HEAD(&n->partial);
8ab1372f 1975#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1976 atomic_long_set(&n->nr_slabs, 0);
643b1138 1977 INIT_LIST_HEAD(&n->full);
8ab1372f 1978#endif
81819f0f
CL
1979}
1980
4c93c355
CL
1981#ifdef CONFIG_SMP
1982/*
1983 * Per cpu array for per cpu structures.
1984 *
1985 * The per cpu array places all kmem_cache_cpu structures from one processor
1986 * close together meaning that it becomes possible that multiple per cpu
1987 * structures are contained in one cacheline. This may be particularly
1988 * beneficial for the kmalloc caches.
1989 *
1990 * A desktop system typically has around 60-80 slabs. With 100 here we are
1991 * likely able to get per cpu structures for all caches from the array defined
1992 * here. We must be able to cover all kmalloc caches during bootstrap.
1993 *
1994 * If the per cpu array is exhausted then fall back to kmalloc
1995 * of individual cachelines. No sharing is possible then.
1996 */
1997#define NR_KMEM_CACHE_CPU 100
1998
1999static DEFINE_PER_CPU(struct kmem_cache_cpu,
2000 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2001
2002static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2003static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2004
2005static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2006 int cpu, gfp_t flags)
2007{
2008 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2009
2010 if (c)
2011 per_cpu(kmem_cache_cpu_free, cpu) =
2012 (void *)c->freelist;
2013 else {
2014 /* Table overflow: So allocate ourselves */
2015 c = kmalloc_node(
2016 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2017 flags, cpu_to_node(cpu));
2018 if (!c)
2019 return NULL;
2020 }
2021
2022 init_kmem_cache_cpu(s, c);
2023 return c;
2024}
2025
2026static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2027{
2028 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2029 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2030 kfree(c);
2031 return;
2032 }
2033 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2034 per_cpu(kmem_cache_cpu_free, cpu) = c;
2035}
2036
2037static void free_kmem_cache_cpus(struct kmem_cache *s)
2038{
2039 int cpu;
2040
2041 for_each_online_cpu(cpu) {
2042 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2043
2044 if (c) {
2045 s->cpu_slab[cpu] = NULL;
2046 free_kmem_cache_cpu(c, cpu);
2047 }
2048 }
2049}
2050
2051static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2052{
2053 int cpu;
2054
2055 for_each_online_cpu(cpu) {
2056 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2057
2058 if (c)
2059 continue;
2060
2061 c = alloc_kmem_cache_cpu(s, cpu, flags);
2062 if (!c) {
2063 free_kmem_cache_cpus(s);
2064 return 0;
2065 }
2066 s->cpu_slab[cpu] = c;
2067 }
2068 return 1;
2069}
2070
2071/*
2072 * Initialize the per cpu array.
2073 */
2074static void init_alloc_cpu_cpu(int cpu)
2075{
2076 int i;
2077
2078 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2079 return;
2080
2081 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2082 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2083
2084 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2085}
2086
2087static void __init init_alloc_cpu(void)
2088{
2089 int cpu;
2090
2091 for_each_online_cpu(cpu)
2092 init_alloc_cpu_cpu(cpu);
2093 }
2094
2095#else
2096static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2097static inline void init_alloc_cpu(void) {}
2098
2099static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2100{
2101 init_kmem_cache_cpu(s, &s->cpu_slab);
2102 return 1;
2103}
2104#endif
2105
81819f0f
CL
2106#ifdef CONFIG_NUMA
2107/*
2108 * No kmalloc_node yet so do it by hand. We know that this is the first
2109 * slab on the node for this slabcache. There are no concurrent accesses
2110 * possible.
2111 *
2112 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2113 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2114 * memory on a fresh node that has no slab structures yet.
81819f0f 2115 */
1cd7daa5
AB
2116static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2117 int node)
81819f0f
CL
2118{
2119 struct page *page;
2120 struct kmem_cache_node *n;
ba84c73c 2121 unsigned long flags;
81819f0f
CL
2122
2123 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2124
a2f92ee7 2125 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2126
2127 BUG_ON(!page);
a2f92ee7
CL
2128 if (page_to_nid(page) != node) {
2129 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2130 "node %d\n", node);
2131 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2132 "in order to be able to continue\n");
2133 }
2134
81819f0f
CL
2135 n = page->freelist;
2136 BUG_ON(!n);
2137 page->freelist = get_freepointer(kmalloc_caches, n);
2138 page->inuse++;
2139 kmalloc_caches->node[node] = n;
8ab1372f 2140#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2141 init_object(kmalloc_caches, n, 1);
2142 init_tracking(kmalloc_caches, n);
8ab1372f 2143#endif
81819f0f 2144 init_kmem_cache_node(n);
205ab99d 2145 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2146
ba84c73c 2147 /*
2148 * lockdep requires consistent irq usage for each lock
2149 * so even though there cannot be a race this early in
2150 * the boot sequence, we still disable irqs.
2151 */
2152 local_irq_save(flags);
7c2e132c 2153 add_partial(n, page, 0);
ba84c73c 2154 local_irq_restore(flags);
81819f0f
CL
2155 return n;
2156}
2157
2158static void free_kmem_cache_nodes(struct kmem_cache *s)
2159{
2160 int node;
2161
f64dc58c 2162 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2163 struct kmem_cache_node *n = s->node[node];
2164 if (n && n != &s->local_node)
2165 kmem_cache_free(kmalloc_caches, n);
2166 s->node[node] = NULL;
2167 }
2168}
2169
2170static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171{
2172 int node;
2173 int local_node;
2174
2175 if (slab_state >= UP)
2176 local_node = page_to_nid(virt_to_page(s));
2177 else
2178 local_node = 0;
2179
f64dc58c 2180 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2181 struct kmem_cache_node *n;
2182
2183 if (local_node == node)
2184 n = &s->local_node;
2185 else {
2186 if (slab_state == DOWN) {
2187 n = early_kmem_cache_node_alloc(gfpflags,
2188 node);
2189 continue;
2190 }
2191 n = kmem_cache_alloc_node(kmalloc_caches,
2192 gfpflags, node);
2193
2194 if (!n) {
2195 free_kmem_cache_nodes(s);
2196 return 0;
2197 }
2198
2199 }
2200 s->node[node] = n;
2201 init_kmem_cache_node(n);
2202 }
2203 return 1;
2204}
2205#else
2206static void free_kmem_cache_nodes(struct kmem_cache *s)
2207{
2208}
2209
2210static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2211{
2212 init_kmem_cache_node(&s->local_node);
2213 return 1;
2214}
2215#endif
2216
2217/*
2218 * calculate_sizes() determines the order and the distribution of data within
2219 * a slab object.
2220 */
2221static int calculate_sizes(struct kmem_cache *s)
2222{
2223 unsigned long flags = s->flags;
2224 unsigned long size = s->objsize;
2225 unsigned long align = s->align;
834f3d11 2226 int order;
81819f0f 2227
d8b42bf5
CL
2228 /*
2229 * Round up object size to the next word boundary. We can only
2230 * place the free pointer at word boundaries and this determines
2231 * the possible location of the free pointer.
2232 */
2233 size = ALIGN(size, sizeof(void *));
2234
2235#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2236 /*
2237 * Determine if we can poison the object itself. If the user of
2238 * the slab may touch the object after free or before allocation
2239 * then we should never poison the object itself.
2240 */
2241 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2242 !s->ctor)
81819f0f
CL
2243 s->flags |= __OBJECT_POISON;
2244 else
2245 s->flags &= ~__OBJECT_POISON;
2246
81819f0f
CL
2247
2248 /*
672bba3a 2249 * If we are Redzoning then check if there is some space between the
81819f0f 2250 * end of the object and the free pointer. If not then add an
672bba3a 2251 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2252 */
2253 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2254 size += sizeof(void *);
41ecc55b 2255#endif
81819f0f
CL
2256
2257 /*
672bba3a
CL
2258 * With that we have determined the number of bytes in actual use
2259 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2260 */
2261 s->inuse = size;
2262
2263 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2264 s->ctor)) {
81819f0f
CL
2265 /*
2266 * Relocate free pointer after the object if it is not
2267 * permitted to overwrite the first word of the object on
2268 * kmem_cache_free.
2269 *
2270 * This is the case if we do RCU, have a constructor or
2271 * destructor or are poisoning the objects.
2272 */
2273 s->offset = size;
2274 size += sizeof(void *);
2275 }
2276
c12b3c62 2277#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2278 if (flags & SLAB_STORE_USER)
2279 /*
2280 * Need to store information about allocs and frees after
2281 * the object.
2282 */
2283 size += 2 * sizeof(struct track);
2284
be7b3fbc 2285 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2286 /*
2287 * Add some empty padding so that we can catch
2288 * overwrites from earlier objects rather than let
2289 * tracking information or the free pointer be
2290 * corrupted if an user writes before the start
2291 * of the object.
2292 */
2293 size += sizeof(void *);
41ecc55b 2294#endif
672bba3a 2295
81819f0f
CL
2296 /*
2297 * Determine the alignment based on various parameters that the
65c02d4c
CL
2298 * user specified and the dynamic determination of cache line size
2299 * on bootup.
81819f0f
CL
2300 */
2301 align = calculate_alignment(flags, align, s->objsize);
2302
2303 /*
2304 * SLUB stores one object immediately after another beginning from
2305 * offset 0. In order to align the objects we have to simply size
2306 * each object to conform to the alignment.
2307 */
2308 size = ALIGN(size, align);
2309 s->size = size;
319d1e24 2310 order = calculate_order(size);
71c7a06f 2311
834f3d11 2312 if (order < 0)
81819f0f
CL
2313 return 0;
2314
b7a49f0d 2315 s->allocflags = 0;
834f3d11 2316 if (order)
b7a49f0d
CL
2317 s->allocflags |= __GFP_COMP;
2318
2319 if (s->flags & SLAB_CACHE_DMA)
2320 s->allocflags |= SLUB_DMA;
2321
2322 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2323 s->allocflags |= __GFP_RECLAIMABLE;
2324
81819f0f
CL
2325 /*
2326 * Determine the number of objects per slab
2327 */
834f3d11 2328 s->oo = oo_make(order, size);
65c3376a 2329 s->min = oo_make(get_order(size), size);
205ab99d
CL
2330 if (oo_objects(s->oo) > oo_objects(s->max))
2331 s->max = s->oo;
81819f0f 2332
834f3d11 2333 return !!oo_objects(s->oo);
81819f0f
CL
2334
2335}
2336
81819f0f
CL
2337static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2338 const char *name, size_t size,
2339 size_t align, unsigned long flags,
4ba9b9d0 2340 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2341{
2342 memset(s, 0, kmem_size);
2343 s->name = name;
2344 s->ctor = ctor;
81819f0f 2345 s->objsize = size;
81819f0f 2346 s->align = align;
ba0268a8 2347 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2348
2349 if (!calculate_sizes(s))
2350 goto error;
2351
2352 s->refcount = 1;
2353#ifdef CONFIG_NUMA
9824601e 2354 s->remote_node_defrag_ratio = 100;
81819f0f 2355#endif
dfb4f096
CL
2356 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2357 goto error;
81819f0f 2358
dfb4f096 2359 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2360 return 1;
4c93c355 2361 free_kmem_cache_nodes(s);
81819f0f
CL
2362error:
2363 if (flags & SLAB_PANIC)
2364 panic("Cannot create slab %s size=%lu realsize=%u "
2365 "order=%u offset=%u flags=%lx\n",
834f3d11 2366 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2367 s->offset, flags);
2368 return 0;
2369}
81819f0f
CL
2370
2371/*
2372 * Check if a given pointer is valid
2373 */
2374int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2375{
06428780 2376 struct page *page;
81819f0f
CL
2377
2378 page = get_object_page(object);
2379
2380 if (!page || s != page->slab)
2381 /* No slab or wrong slab */
2382 return 0;
2383
abcd08a6 2384 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2385 return 0;
2386
2387 /*
2388 * We could also check if the object is on the slabs freelist.
2389 * But this would be too expensive and it seems that the main
6446faa2 2390 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2391 * to a certain slab.
2392 */
2393 return 1;
2394}
2395EXPORT_SYMBOL(kmem_ptr_validate);
2396
2397/*
2398 * Determine the size of a slab object
2399 */
2400unsigned int kmem_cache_size(struct kmem_cache *s)
2401{
2402 return s->objsize;
2403}
2404EXPORT_SYMBOL(kmem_cache_size);
2405
2406const char *kmem_cache_name(struct kmem_cache *s)
2407{
2408 return s->name;
2409}
2410EXPORT_SYMBOL(kmem_cache_name);
2411
33b12c38
CL
2412static void list_slab_objects(struct kmem_cache *s, struct page *page,
2413 const char *text)
2414{
2415#ifdef CONFIG_SLUB_DEBUG
2416 void *addr = page_address(page);
2417 void *p;
2418 DECLARE_BITMAP(map, page->objects);
2419
2420 bitmap_zero(map, page->objects);
2421 slab_err(s, page, "%s", text);
2422 slab_lock(page);
2423 for_each_free_object(p, s, page->freelist)
2424 set_bit(slab_index(p, s, addr), map);
2425
2426 for_each_object(p, s, addr, page->objects) {
2427
2428 if (!test_bit(slab_index(p, s, addr), map)) {
2429 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2430 p, p - addr);
2431 print_tracking(s, p);
2432 }
2433 }
2434 slab_unlock(page);
2435#endif
2436}
2437
81819f0f 2438/*
599870b1 2439 * Attempt to free all partial slabs on a node.
81819f0f 2440 */
599870b1 2441static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2442{
81819f0f
CL
2443 unsigned long flags;
2444 struct page *page, *h;
2445
2446 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2447 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2448 if (!page->inuse) {
2449 list_del(&page->lru);
2450 discard_slab(s, page);
599870b1 2451 n->nr_partial--;
33b12c38
CL
2452 } else {
2453 list_slab_objects(s, page,
2454 "Objects remaining on kmem_cache_close()");
599870b1 2455 }
33b12c38 2456 }
81819f0f 2457 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2458}
2459
2460/*
672bba3a 2461 * Release all resources used by a slab cache.
81819f0f 2462 */
0c710013 2463static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2464{
2465 int node;
2466
2467 flush_all(s);
2468
2469 /* Attempt to free all objects */
4c93c355 2470 free_kmem_cache_cpus(s);
f64dc58c 2471 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2472 struct kmem_cache_node *n = get_node(s, node);
2473
599870b1
CL
2474 free_partial(s, n);
2475 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2476 return 1;
2477 }
2478 free_kmem_cache_nodes(s);
2479 return 0;
2480}
2481
2482/*
2483 * Close a cache and release the kmem_cache structure
2484 * (must be used for caches created using kmem_cache_create)
2485 */
2486void kmem_cache_destroy(struct kmem_cache *s)
2487{
2488 down_write(&slub_lock);
2489 s->refcount--;
2490 if (!s->refcount) {
2491 list_del(&s->list);
a0e1d1be 2492 up_write(&slub_lock);
d629d819
PE
2493 if (kmem_cache_close(s)) {
2494 printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 "still has objects.\n", s->name, __func__);
2496 dump_stack();
2497 }
81819f0f 2498 sysfs_slab_remove(s);
a0e1d1be
CL
2499 } else
2500 up_write(&slub_lock);
81819f0f
CL
2501}
2502EXPORT_SYMBOL(kmem_cache_destroy);
2503
2504/********************************************************************
2505 * Kmalloc subsystem
2506 *******************************************************************/
2507
331dc558 2508struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2509EXPORT_SYMBOL(kmalloc_caches);
2510
81819f0f
CL
2511static int __init setup_slub_min_order(char *str)
2512{
06428780 2513 get_option(&str, &slub_min_order);
81819f0f
CL
2514
2515 return 1;
2516}
2517
2518__setup("slub_min_order=", setup_slub_min_order);
2519
2520static int __init setup_slub_max_order(char *str)
2521{
06428780 2522 get_option(&str, &slub_max_order);
81819f0f
CL
2523
2524 return 1;
2525}
2526
2527__setup("slub_max_order=", setup_slub_max_order);
2528
2529static int __init setup_slub_min_objects(char *str)
2530{
06428780 2531 get_option(&str, &slub_min_objects);
81819f0f
CL
2532
2533 return 1;
2534}
2535
2536__setup("slub_min_objects=", setup_slub_min_objects);
2537
2538static int __init setup_slub_nomerge(char *str)
2539{
2540 slub_nomerge = 1;
2541 return 1;
2542}
2543
2544__setup("slub_nomerge", setup_slub_nomerge);
2545
81819f0f
CL
2546static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2547 const char *name, int size, gfp_t gfp_flags)
2548{
2549 unsigned int flags = 0;
2550
2551 if (gfp_flags & SLUB_DMA)
2552 flags = SLAB_CACHE_DMA;
2553
2554 down_write(&slub_lock);
2555 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2556 flags, NULL))
81819f0f
CL
2557 goto panic;
2558
2559 list_add(&s->list, &slab_caches);
2560 up_write(&slub_lock);
2561 if (sysfs_slab_add(s))
2562 goto panic;
2563 return s;
2564
2565panic:
2566 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2567}
2568
2e443fd0 2569#ifdef CONFIG_ZONE_DMA
4097d601 2570static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2571
2572static void sysfs_add_func(struct work_struct *w)
2573{
2574 struct kmem_cache *s;
2575
2576 down_write(&slub_lock);
2577 list_for_each_entry(s, &slab_caches, list) {
2578 if (s->flags & __SYSFS_ADD_DEFERRED) {
2579 s->flags &= ~__SYSFS_ADD_DEFERRED;
2580 sysfs_slab_add(s);
2581 }
2582 }
2583 up_write(&slub_lock);
2584}
2585
2586static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2587
2e443fd0
CL
2588static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2589{
2590 struct kmem_cache *s;
2e443fd0
CL
2591 char *text;
2592 size_t realsize;
2593
2594 s = kmalloc_caches_dma[index];
2595 if (s)
2596 return s;
2597
2598 /* Dynamically create dma cache */
1ceef402
CL
2599 if (flags & __GFP_WAIT)
2600 down_write(&slub_lock);
2601 else {
2602 if (!down_write_trylock(&slub_lock))
2603 goto out;
2604 }
2605
2606 if (kmalloc_caches_dma[index])
2607 goto unlock_out;
2e443fd0 2608
7b55f620 2609 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2610 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2611 (unsigned int)realsize);
1ceef402
CL
2612 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2613
2614 if (!s || !text || !kmem_cache_open(s, flags, text,
2615 realsize, ARCH_KMALLOC_MINALIGN,
2616 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2617 kfree(s);
2618 kfree(text);
2619 goto unlock_out;
dfce8648 2620 }
1ceef402
CL
2621
2622 list_add(&s->list, &slab_caches);
2623 kmalloc_caches_dma[index] = s;
2624
2625 schedule_work(&sysfs_add_work);
2626
2627unlock_out:
dfce8648 2628 up_write(&slub_lock);
1ceef402 2629out:
dfce8648 2630 return kmalloc_caches_dma[index];
2e443fd0
CL
2631}
2632#endif
2633
f1b26339
CL
2634/*
2635 * Conversion table for small slabs sizes / 8 to the index in the
2636 * kmalloc array. This is necessary for slabs < 192 since we have non power
2637 * of two cache sizes there. The size of larger slabs can be determined using
2638 * fls.
2639 */
2640static s8 size_index[24] = {
2641 3, /* 8 */
2642 4, /* 16 */
2643 5, /* 24 */
2644 5, /* 32 */
2645 6, /* 40 */
2646 6, /* 48 */
2647 6, /* 56 */
2648 6, /* 64 */
2649 1, /* 72 */
2650 1, /* 80 */
2651 1, /* 88 */
2652 1, /* 96 */
2653 7, /* 104 */
2654 7, /* 112 */
2655 7, /* 120 */
2656 7, /* 128 */
2657 2, /* 136 */
2658 2, /* 144 */
2659 2, /* 152 */
2660 2, /* 160 */
2661 2, /* 168 */
2662 2, /* 176 */
2663 2, /* 184 */
2664 2 /* 192 */
2665};
2666
81819f0f
CL
2667static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2668{
f1b26339 2669 int index;
81819f0f 2670
f1b26339
CL
2671 if (size <= 192) {
2672 if (!size)
2673 return ZERO_SIZE_PTR;
81819f0f 2674
f1b26339 2675 index = size_index[(size - 1) / 8];
aadb4bc4 2676 } else
f1b26339 2677 index = fls(size - 1);
81819f0f
CL
2678
2679#ifdef CONFIG_ZONE_DMA
f1b26339 2680 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2681 return dma_kmalloc_cache(index, flags);
f1b26339 2682
81819f0f
CL
2683#endif
2684 return &kmalloc_caches[index];
2685}
2686
2687void *__kmalloc(size_t size, gfp_t flags)
2688{
aadb4bc4 2689 struct kmem_cache *s;
81819f0f 2690
331dc558 2691 if (unlikely(size > PAGE_SIZE))
eada35ef 2692 return kmalloc_large(size, flags);
aadb4bc4
CL
2693
2694 s = get_slab(size, flags);
2695
2696 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2697 return s;
2698
ce15fea8 2699 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2700}
2701EXPORT_SYMBOL(__kmalloc);
2702
f619cfe1
CL
2703static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2704{
2705 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2706 get_order(size));
2707
2708 if (page)
2709 return page_address(page);
2710 else
2711 return NULL;
2712}
2713
81819f0f
CL
2714#ifdef CONFIG_NUMA
2715void *__kmalloc_node(size_t size, gfp_t flags, int node)
2716{
aadb4bc4 2717 struct kmem_cache *s;
81819f0f 2718
331dc558 2719 if (unlikely(size > PAGE_SIZE))
f619cfe1 2720 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2721
2722 s = get_slab(size, flags);
2723
2724 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2725 return s;
2726
ce15fea8 2727 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2728}
2729EXPORT_SYMBOL(__kmalloc_node);
2730#endif
2731
2732size_t ksize(const void *object)
2733{
272c1d21 2734 struct page *page;
81819f0f
CL
2735 struct kmem_cache *s;
2736
ef8b4520 2737 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2738 return 0;
2739
294a80a8 2740 page = virt_to_head_page(object);
294a80a8
VN
2741
2742 if (unlikely(!PageSlab(page)))
2743 return PAGE_SIZE << compound_order(page);
2744
81819f0f 2745 s = page->slab;
81819f0f 2746
ae20bfda 2747#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2748 /*
2749 * Debugging requires use of the padding between object
2750 * and whatever may come after it.
2751 */
2752 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2753 return s->objsize;
2754
ae20bfda 2755#endif
81819f0f
CL
2756 /*
2757 * If we have the need to store the freelist pointer
2758 * back there or track user information then we can
2759 * only use the space before that information.
2760 */
2761 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2762 return s->inuse;
81819f0f
CL
2763 /*
2764 * Else we can use all the padding etc for the allocation
2765 */
2766 return s->size;
2767}
2768EXPORT_SYMBOL(ksize);
2769
2770void kfree(const void *x)
2771{
81819f0f 2772 struct page *page;
5bb983b0 2773 void *object = (void *)x;
81819f0f 2774
2408c550 2775 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2776 return;
2777
b49af68f 2778 page = virt_to_head_page(x);
aadb4bc4
CL
2779 if (unlikely(!PageSlab(page))) {
2780 put_page(page);
2781 return;
2782 }
5bb983b0 2783 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2784}
2785EXPORT_SYMBOL(kfree);
2786
2086d26a 2787/*
672bba3a
CL
2788 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2789 * the remaining slabs by the number of items in use. The slabs with the
2790 * most items in use come first. New allocations will then fill those up
2791 * and thus they can be removed from the partial lists.
2792 *
2793 * The slabs with the least items are placed last. This results in them
2794 * being allocated from last increasing the chance that the last objects
2795 * are freed in them.
2086d26a
CL
2796 */
2797int kmem_cache_shrink(struct kmem_cache *s)
2798{
2799 int node;
2800 int i;
2801 struct kmem_cache_node *n;
2802 struct page *page;
2803 struct page *t;
205ab99d 2804 int objects = oo_objects(s->max);
2086d26a 2805 struct list_head *slabs_by_inuse =
834f3d11 2806 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2807 unsigned long flags;
2808
2809 if (!slabs_by_inuse)
2810 return -ENOMEM;
2811
2812 flush_all(s);
f64dc58c 2813 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2814 n = get_node(s, node);
2815
2816 if (!n->nr_partial)
2817 continue;
2818
834f3d11 2819 for (i = 0; i < objects; i++)
2086d26a
CL
2820 INIT_LIST_HEAD(slabs_by_inuse + i);
2821
2822 spin_lock_irqsave(&n->list_lock, flags);
2823
2824 /*
672bba3a 2825 * Build lists indexed by the items in use in each slab.
2086d26a 2826 *
672bba3a
CL
2827 * Note that concurrent frees may occur while we hold the
2828 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2829 */
2830 list_for_each_entry_safe(page, t, &n->partial, lru) {
2831 if (!page->inuse && slab_trylock(page)) {
2832 /*
2833 * Must hold slab lock here because slab_free
2834 * may have freed the last object and be
2835 * waiting to release the slab.
2836 */
2837 list_del(&page->lru);
2838 n->nr_partial--;
2839 slab_unlock(page);
2840 discard_slab(s, page);
2841 } else {
fcda3d89
CL
2842 list_move(&page->lru,
2843 slabs_by_inuse + page->inuse);
2086d26a
CL
2844 }
2845 }
2846
2086d26a 2847 /*
672bba3a
CL
2848 * Rebuild the partial list with the slabs filled up most
2849 * first and the least used slabs at the end.
2086d26a 2850 */
834f3d11 2851 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2852 list_splice(slabs_by_inuse + i, n->partial.prev);
2853
2086d26a
CL
2854 spin_unlock_irqrestore(&n->list_lock, flags);
2855 }
2856
2857 kfree(slabs_by_inuse);
2858 return 0;
2859}
2860EXPORT_SYMBOL(kmem_cache_shrink);
2861
b9049e23
YG
2862#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2863static int slab_mem_going_offline_callback(void *arg)
2864{
2865 struct kmem_cache *s;
2866
2867 down_read(&slub_lock);
2868 list_for_each_entry(s, &slab_caches, list)
2869 kmem_cache_shrink(s);
2870 up_read(&slub_lock);
2871
2872 return 0;
2873}
2874
2875static void slab_mem_offline_callback(void *arg)
2876{
2877 struct kmem_cache_node *n;
2878 struct kmem_cache *s;
2879 struct memory_notify *marg = arg;
2880 int offline_node;
2881
2882 offline_node = marg->status_change_nid;
2883
2884 /*
2885 * If the node still has available memory. we need kmem_cache_node
2886 * for it yet.
2887 */
2888 if (offline_node < 0)
2889 return;
2890
2891 down_read(&slub_lock);
2892 list_for_each_entry(s, &slab_caches, list) {
2893 n = get_node(s, offline_node);
2894 if (n) {
2895 /*
2896 * if n->nr_slabs > 0, slabs still exist on the node
2897 * that is going down. We were unable to free them,
2898 * and offline_pages() function shoudn't call this
2899 * callback. So, we must fail.
2900 */
0f389ec6 2901 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2902
2903 s->node[offline_node] = NULL;
2904 kmem_cache_free(kmalloc_caches, n);
2905 }
2906 }
2907 up_read(&slub_lock);
2908}
2909
2910static int slab_mem_going_online_callback(void *arg)
2911{
2912 struct kmem_cache_node *n;
2913 struct kmem_cache *s;
2914 struct memory_notify *marg = arg;
2915 int nid = marg->status_change_nid;
2916 int ret = 0;
2917
2918 /*
2919 * If the node's memory is already available, then kmem_cache_node is
2920 * already created. Nothing to do.
2921 */
2922 if (nid < 0)
2923 return 0;
2924
2925 /*
2926 * We are bringing a node online. No memory is availabe yet. We must
2927 * allocate a kmem_cache_node structure in order to bring the node
2928 * online.
2929 */
2930 down_read(&slub_lock);
2931 list_for_each_entry(s, &slab_caches, list) {
2932 /*
2933 * XXX: kmem_cache_alloc_node will fallback to other nodes
2934 * since memory is not yet available from the node that
2935 * is brought up.
2936 */
2937 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2938 if (!n) {
2939 ret = -ENOMEM;
2940 goto out;
2941 }
2942 init_kmem_cache_node(n);
2943 s->node[nid] = n;
2944 }
2945out:
2946 up_read(&slub_lock);
2947 return ret;
2948}
2949
2950static int slab_memory_callback(struct notifier_block *self,
2951 unsigned long action, void *arg)
2952{
2953 int ret = 0;
2954
2955 switch (action) {
2956 case MEM_GOING_ONLINE:
2957 ret = slab_mem_going_online_callback(arg);
2958 break;
2959 case MEM_GOING_OFFLINE:
2960 ret = slab_mem_going_offline_callback(arg);
2961 break;
2962 case MEM_OFFLINE:
2963 case MEM_CANCEL_ONLINE:
2964 slab_mem_offline_callback(arg);
2965 break;
2966 case MEM_ONLINE:
2967 case MEM_CANCEL_OFFLINE:
2968 break;
2969 }
2970
2971 ret = notifier_from_errno(ret);
2972 return ret;
2973}
2974
2975#endif /* CONFIG_MEMORY_HOTPLUG */
2976
81819f0f
CL
2977/********************************************************************
2978 * Basic setup of slabs
2979 *******************************************************************/
2980
2981void __init kmem_cache_init(void)
2982{
2983 int i;
4b356be0 2984 int caches = 0;
81819f0f 2985
4c93c355
CL
2986 init_alloc_cpu();
2987
81819f0f
CL
2988#ifdef CONFIG_NUMA
2989 /*
2990 * Must first have the slab cache available for the allocations of the
672bba3a 2991 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2992 * kmem_cache_open for slab_state == DOWN.
2993 */
2994 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2995 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2996 kmalloc_caches[0].refcount = -1;
4b356be0 2997 caches++;
b9049e23
YG
2998
2999 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
3000#endif
3001
3002 /* Able to allocate the per node structures */
3003 slab_state = PARTIAL;
3004
3005 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3006 if (KMALLOC_MIN_SIZE <= 64) {
3007 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 3008 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
3009 caches++;
3010 }
3011 if (KMALLOC_MIN_SIZE <= 128) {
3012 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 3013 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3014 caches++;
3015 }
81819f0f 3016
331dc558 3017 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3018 create_kmalloc_cache(&kmalloc_caches[i],
3019 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3020 caches++;
3021 }
81819f0f 3022
f1b26339
CL
3023
3024 /*
3025 * Patch up the size_index table if we have strange large alignment
3026 * requirements for the kmalloc array. This is only the case for
6446faa2 3027 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3028 *
3029 * Largest permitted alignment is 256 bytes due to the way we
3030 * handle the index determination for the smaller caches.
3031 *
3032 * Make sure that nothing crazy happens if someone starts tinkering
3033 * around with ARCH_KMALLOC_MINALIGN
3034 */
3035 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3036 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3037
12ad6843 3038 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3039 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3040
81819f0f
CL
3041 slab_state = UP;
3042
3043 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3044 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3045 kmalloc_caches[i]. name =
3046 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3047
3048#ifdef CONFIG_SMP
3049 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3050 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3051 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3052#else
3053 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3054#endif
3055
3adbefee
IM
3056 printk(KERN_INFO
3057 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3058 " CPUs=%d, Nodes=%d\n",
3059 caches, cache_line_size(),
81819f0f
CL
3060 slub_min_order, slub_max_order, slub_min_objects,
3061 nr_cpu_ids, nr_node_ids);
3062}
3063
3064/*
3065 * Find a mergeable slab cache
3066 */
3067static int slab_unmergeable(struct kmem_cache *s)
3068{
3069 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3070 return 1;
3071
c59def9f 3072 if (s->ctor)
81819f0f
CL
3073 return 1;
3074
8ffa6875
CL
3075 /*
3076 * We may have set a slab to be unmergeable during bootstrap.
3077 */
3078 if (s->refcount < 0)
3079 return 1;
3080
81819f0f
CL
3081 return 0;
3082}
3083
3084static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3085 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3086 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3087{
5b95a4ac 3088 struct kmem_cache *s;
81819f0f
CL
3089
3090 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3091 return NULL;
3092
c59def9f 3093 if (ctor)
81819f0f
CL
3094 return NULL;
3095
3096 size = ALIGN(size, sizeof(void *));
3097 align = calculate_alignment(flags, align, size);
3098 size = ALIGN(size, align);
ba0268a8 3099 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3100
5b95a4ac 3101 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3102 if (slab_unmergeable(s))
3103 continue;
3104
3105 if (size > s->size)
3106 continue;
3107
ba0268a8 3108 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3109 continue;
3110 /*
3111 * Check if alignment is compatible.
3112 * Courtesy of Adrian Drzewiecki
3113 */
06428780 3114 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3115 continue;
3116
3117 if (s->size - size >= sizeof(void *))
3118 continue;
3119
3120 return s;
3121 }
3122 return NULL;
3123}
3124
3125struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3126 size_t align, unsigned long flags,
4ba9b9d0 3127 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3128{
3129 struct kmem_cache *s;
3130
3131 down_write(&slub_lock);
ba0268a8 3132 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3133 if (s) {
42a9fdbb
CL
3134 int cpu;
3135
81819f0f
CL
3136 s->refcount++;
3137 /*
3138 * Adjust the object sizes so that we clear
3139 * the complete object on kzalloc.
3140 */
3141 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3142
3143 /*
3144 * And then we need to update the object size in the
3145 * per cpu structures
3146 */
3147 for_each_online_cpu(cpu)
3148 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3149
81819f0f 3150 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3151 up_write(&slub_lock);
6446faa2 3152
81819f0f
CL
3153 if (sysfs_slab_alias(s, name))
3154 goto err;
a0e1d1be
CL
3155 return s;
3156 }
6446faa2 3157
a0e1d1be
CL
3158 s = kmalloc(kmem_size, GFP_KERNEL);
3159 if (s) {
3160 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3161 size, align, flags, ctor)) {
81819f0f 3162 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3163 up_write(&slub_lock);
3164 if (sysfs_slab_add(s))
3165 goto err;
3166 return s;
3167 }
3168 kfree(s);
81819f0f
CL
3169 }
3170 up_write(&slub_lock);
81819f0f
CL
3171
3172err:
81819f0f
CL
3173 if (flags & SLAB_PANIC)
3174 panic("Cannot create slabcache %s\n", name);
3175 else
3176 s = NULL;
3177 return s;
3178}
3179EXPORT_SYMBOL(kmem_cache_create);
3180
81819f0f 3181#ifdef CONFIG_SMP
81819f0f 3182/*
672bba3a
CL
3183 * Use the cpu notifier to insure that the cpu slabs are flushed when
3184 * necessary.
81819f0f
CL
3185 */
3186static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3187 unsigned long action, void *hcpu)
3188{
3189 long cpu = (long)hcpu;
5b95a4ac
CL
3190 struct kmem_cache *s;
3191 unsigned long flags;
81819f0f
CL
3192
3193 switch (action) {
4c93c355
CL
3194 case CPU_UP_PREPARE:
3195 case CPU_UP_PREPARE_FROZEN:
3196 init_alloc_cpu_cpu(cpu);
3197 down_read(&slub_lock);
3198 list_for_each_entry(s, &slab_caches, list)
3199 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3200 GFP_KERNEL);
3201 up_read(&slub_lock);
3202 break;
3203
81819f0f 3204 case CPU_UP_CANCELED:
8bb78442 3205 case CPU_UP_CANCELED_FROZEN:
81819f0f 3206 case CPU_DEAD:
8bb78442 3207 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3208 down_read(&slub_lock);
3209 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3210 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3211
5b95a4ac
CL
3212 local_irq_save(flags);
3213 __flush_cpu_slab(s, cpu);
3214 local_irq_restore(flags);
4c93c355
CL
3215 free_kmem_cache_cpu(c, cpu);
3216 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3217 }
3218 up_read(&slub_lock);
81819f0f
CL
3219 break;
3220 default:
3221 break;
3222 }
3223 return NOTIFY_OK;
3224}
3225
06428780 3226static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3227 .notifier_call = slab_cpuup_callback
06428780 3228};
81819f0f
CL
3229
3230#endif
3231
81819f0f
CL
3232void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3233{
aadb4bc4
CL
3234 struct kmem_cache *s;
3235
331dc558 3236 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3237 return kmalloc_large(size, gfpflags);
3238
aadb4bc4 3239 s = get_slab(size, gfpflags);
81819f0f 3240
2408c550 3241 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3242 return s;
81819f0f 3243
ce15fea8 3244 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3245}
3246
3247void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3248 int node, void *caller)
3249{
aadb4bc4
CL
3250 struct kmem_cache *s;
3251
331dc558 3252 if (unlikely(size > PAGE_SIZE))
f619cfe1 3253 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3254
aadb4bc4 3255 s = get_slab(size, gfpflags);
81819f0f 3256
2408c550 3257 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3258 return s;
81819f0f 3259
ce15fea8 3260 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3261}
3262
5b06c853 3263#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
205ab99d
CL
3264static unsigned long count_partial(struct kmem_cache_node *n,
3265 int (*get_count)(struct page *))
5b06c853
CL
3266{
3267 unsigned long flags;
3268 unsigned long x = 0;
3269 struct page *page;
3270
3271 spin_lock_irqsave(&n->list_lock, flags);
3272 list_for_each_entry(page, &n->partial, lru)
205ab99d 3273 x += get_count(page);
5b06c853
CL
3274 spin_unlock_irqrestore(&n->list_lock, flags);
3275 return x;
3276}
205ab99d
CL
3277
3278static int count_inuse(struct page *page)
3279{
3280 return page->inuse;
3281}
3282
3283static int count_total(struct page *page)
3284{
3285 return page->objects;
3286}
3287
3288static int count_free(struct page *page)
3289{
3290 return page->objects - page->inuse;
3291}
5b06c853
CL
3292#endif
3293
41ecc55b 3294#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3295static int validate_slab(struct kmem_cache *s, struct page *page,
3296 unsigned long *map)
53e15af0
CL
3297{
3298 void *p;
a973e9dd 3299 void *addr = page_address(page);
53e15af0
CL
3300
3301 if (!check_slab(s, page) ||
3302 !on_freelist(s, page, NULL))
3303 return 0;
3304
3305 /* Now we know that a valid freelist exists */
39b26464 3306 bitmap_zero(map, page->objects);
53e15af0 3307
7656c72b
CL
3308 for_each_free_object(p, s, page->freelist) {
3309 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3310 if (!check_object(s, page, p, 0))
3311 return 0;
3312 }
3313
224a88be 3314 for_each_object(p, s, addr, page->objects)
7656c72b 3315 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3316 if (!check_object(s, page, p, 1))
3317 return 0;
3318 return 1;
3319}
3320
434e245d
CL
3321static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3322 unsigned long *map)
53e15af0
CL
3323{
3324 if (slab_trylock(page)) {
434e245d 3325 validate_slab(s, page, map);
53e15af0
CL
3326 slab_unlock(page);
3327 } else
3328 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3329 s->name, page);
3330
3331 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3332 if (!SlabDebug(page))
3333 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3334 "on slab 0x%p\n", s->name, page);
3335 } else {
35e5d7ee
CL
3336 if (SlabDebug(page))
3337 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3338 "slab 0x%p\n", s->name, page);
3339 }
3340}
3341
434e245d
CL
3342static int validate_slab_node(struct kmem_cache *s,
3343 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3344{
3345 unsigned long count = 0;
3346 struct page *page;
3347 unsigned long flags;
3348
3349 spin_lock_irqsave(&n->list_lock, flags);
3350
3351 list_for_each_entry(page, &n->partial, lru) {
434e245d 3352 validate_slab_slab(s, page, map);
53e15af0
CL
3353 count++;
3354 }
3355 if (count != n->nr_partial)
3356 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3357 "counter=%ld\n", s->name, count, n->nr_partial);
3358
3359 if (!(s->flags & SLAB_STORE_USER))
3360 goto out;
3361
3362 list_for_each_entry(page, &n->full, lru) {
434e245d 3363 validate_slab_slab(s, page, map);
53e15af0
CL
3364 count++;
3365 }
3366 if (count != atomic_long_read(&n->nr_slabs))
3367 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3368 "counter=%ld\n", s->name, count,
3369 atomic_long_read(&n->nr_slabs));
3370
3371out:
3372 spin_unlock_irqrestore(&n->list_lock, flags);
3373 return count;
3374}
3375
434e245d 3376static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3377{
3378 int node;
3379 unsigned long count = 0;
205ab99d 3380 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3381 sizeof(unsigned long), GFP_KERNEL);
3382
3383 if (!map)
3384 return -ENOMEM;
53e15af0
CL
3385
3386 flush_all(s);
f64dc58c 3387 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3388 struct kmem_cache_node *n = get_node(s, node);
3389
434e245d 3390 count += validate_slab_node(s, n, map);
53e15af0 3391 }
434e245d 3392 kfree(map);
53e15af0
CL
3393 return count;
3394}
3395
b3459709
CL
3396#ifdef SLUB_RESILIENCY_TEST
3397static void resiliency_test(void)
3398{
3399 u8 *p;
3400
3401 printk(KERN_ERR "SLUB resiliency testing\n");
3402 printk(KERN_ERR "-----------------------\n");
3403 printk(KERN_ERR "A. Corruption after allocation\n");
3404
3405 p = kzalloc(16, GFP_KERNEL);
3406 p[16] = 0x12;
3407 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3408 " 0x12->0x%p\n\n", p + 16);
3409
3410 validate_slab_cache(kmalloc_caches + 4);
3411
3412 /* Hmmm... The next two are dangerous */
3413 p = kzalloc(32, GFP_KERNEL);
3414 p[32 + sizeof(void *)] = 0x34;
3415 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3416 " 0x34 -> -0x%p\n", p);
3417 printk(KERN_ERR
3418 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3419
3420 validate_slab_cache(kmalloc_caches + 5);
3421 p = kzalloc(64, GFP_KERNEL);
3422 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3423 *p = 0x56;
3424 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3425 p);
3adbefee
IM
3426 printk(KERN_ERR
3427 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3428 validate_slab_cache(kmalloc_caches + 6);
3429
3430 printk(KERN_ERR "\nB. Corruption after free\n");
3431 p = kzalloc(128, GFP_KERNEL);
3432 kfree(p);
3433 *p = 0x78;
3434 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3435 validate_slab_cache(kmalloc_caches + 7);
3436
3437 p = kzalloc(256, GFP_KERNEL);
3438 kfree(p);
3439 p[50] = 0x9a;
3adbefee
IM
3440 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3441 p);
b3459709
CL
3442 validate_slab_cache(kmalloc_caches + 8);
3443
3444 p = kzalloc(512, GFP_KERNEL);
3445 kfree(p);
3446 p[512] = 0xab;
3447 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3448 validate_slab_cache(kmalloc_caches + 9);
3449}
3450#else
3451static void resiliency_test(void) {};
3452#endif
3453
88a420e4 3454/*
672bba3a 3455 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3456 * and freed.
3457 */
3458
3459struct location {
3460 unsigned long count;
3461 void *addr;
45edfa58
CL
3462 long long sum_time;
3463 long min_time;
3464 long max_time;
3465 long min_pid;
3466 long max_pid;
3467 cpumask_t cpus;
3468 nodemask_t nodes;
88a420e4
CL
3469};
3470
3471struct loc_track {
3472 unsigned long max;
3473 unsigned long count;
3474 struct location *loc;
3475};
3476
3477static void free_loc_track(struct loc_track *t)
3478{
3479 if (t->max)
3480 free_pages((unsigned long)t->loc,
3481 get_order(sizeof(struct location) * t->max));
3482}
3483
68dff6a9 3484static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3485{
3486 struct location *l;
3487 int order;
3488
88a420e4
CL
3489 order = get_order(sizeof(struct location) * max);
3490
68dff6a9 3491 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3492 if (!l)
3493 return 0;
3494
3495 if (t->count) {
3496 memcpy(l, t->loc, sizeof(struct location) * t->count);
3497 free_loc_track(t);
3498 }
3499 t->max = max;
3500 t->loc = l;
3501 return 1;
3502}
3503
3504static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3505 const struct track *track)
88a420e4
CL
3506{
3507 long start, end, pos;
3508 struct location *l;
3509 void *caddr;
45edfa58 3510 unsigned long age = jiffies - track->when;
88a420e4
CL
3511
3512 start = -1;
3513 end = t->count;
3514
3515 for ( ; ; ) {
3516 pos = start + (end - start + 1) / 2;
3517
3518 /*
3519 * There is nothing at "end". If we end up there
3520 * we need to add something to before end.
3521 */
3522 if (pos == end)
3523 break;
3524
3525 caddr = t->loc[pos].addr;
45edfa58
CL
3526 if (track->addr == caddr) {
3527
3528 l = &t->loc[pos];
3529 l->count++;
3530 if (track->when) {
3531 l->sum_time += age;
3532 if (age < l->min_time)
3533 l->min_time = age;
3534 if (age > l->max_time)
3535 l->max_time = age;
3536
3537 if (track->pid < l->min_pid)
3538 l->min_pid = track->pid;
3539 if (track->pid > l->max_pid)
3540 l->max_pid = track->pid;
3541
3542 cpu_set(track->cpu, l->cpus);
3543 }
3544 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3545 return 1;
3546 }
3547
45edfa58 3548 if (track->addr < caddr)
88a420e4
CL
3549 end = pos;
3550 else
3551 start = pos;
3552 }
3553
3554 /*
672bba3a 3555 * Not found. Insert new tracking element.
88a420e4 3556 */
68dff6a9 3557 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3558 return 0;
3559
3560 l = t->loc + pos;
3561 if (pos < t->count)
3562 memmove(l + 1, l,
3563 (t->count - pos) * sizeof(struct location));
3564 t->count++;
3565 l->count = 1;
45edfa58
CL
3566 l->addr = track->addr;
3567 l->sum_time = age;
3568 l->min_time = age;
3569 l->max_time = age;
3570 l->min_pid = track->pid;
3571 l->max_pid = track->pid;
3572 cpus_clear(l->cpus);
3573 cpu_set(track->cpu, l->cpus);
3574 nodes_clear(l->nodes);
3575 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3576 return 1;
3577}
3578
3579static void process_slab(struct loc_track *t, struct kmem_cache *s,
3580 struct page *page, enum track_item alloc)
3581{
a973e9dd 3582 void *addr = page_address(page);
39b26464 3583 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3584 void *p;
3585
39b26464 3586 bitmap_zero(map, page->objects);
7656c72b
CL
3587 for_each_free_object(p, s, page->freelist)
3588 set_bit(slab_index(p, s, addr), map);
88a420e4 3589
224a88be 3590 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3591 if (!test_bit(slab_index(p, s, addr), map))
3592 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3593}
3594
3595static int list_locations(struct kmem_cache *s, char *buf,
3596 enum track_item alloc)
3597{
e374d483 3598 int len = 0;
88a420e4 3599 unsigned long i;
68dff6a9 3600 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3601 int node;
3602
68dff6a9 3603 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3604 GFP_TEMPORARY))
68dff6a9 3605 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3606
3607 /* Push back cpu slabs */
3608 flush_all(s);
3609
f64dc58c 3610 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3611 struct kmem_cache_node *n = get_node(s, node);
3612 unsigned long flags;
3613 struct page *page;
3614
9e86943b 3615 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3616 continue;
3617
3618 spin_lock_irqsave(&n->list_lock, flags);
3619 list_for_each_entry(page, &n->partial, lru)
3620 process_slab(&t, s, page, alloc);
3621 list_for_each_entry(page, &n->full, lru)
3622 process_slab(&t, s, page, alloc);
3623 spin_unlock_irqrestore(&n->list_lock, flags);
3624 }
3625
3626 for (i = 0; i < t.count; i++) {
45edfa58 3627 struct location *l = &t.loc[i];
88a420e4 3628
e374d483 3629 if (len > PAGE_SIZE - 100)
88a420e4 3630 break;
e374d483 3631 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3632
3633 if (l->addr)
e374d483 3634 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3635 else
e374d483 3636 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3637
3638 if (l->sum_time != l->min_time) {
3639 unsigned long remainder;
3640
e374d483 3641 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3642 l->min_time,
3643 div_long_long_rem(l->sum_time, l->count, &remainder),
3644 l->max_time);
3645 } else
e374d483 3646 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3647 l->min_time);
3648
3649 if (l->min_pid != l->max_pid)
e374d483 3650 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3651 l->min_pid, l->max_pid);
3652 else
e374d483 3653 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3654 l->min_pid);
3655
84966343 3656 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3657 len < PAGE_SIZE - 60) {
3658 len += sprintf(buf + len, " cpus=");
3659 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3660 l->cpus);
3661 }
3662
84966343 3663 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3664 len < PAGE_SIZE - 60) {
3665 len += sprintf(buf + len, " nodes=");
3666 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3667 l->nodes);
3668 }
3669
e374d483 3670 len += sprintf(buf + len, "\n");
88a420e4
CL
3671 }
3672
3673 free_loc_track(&t);
3674 if (!t.count)
e374d483
HH
3675 len += sprintf(buf, "No data\n");
3676 return len;
88a420e4
CL
3677}
3678
81819f0f 3679enum slab_stat_type {
205ab99d
CL
3680 SL_ALL, /* All slabs */
3681 SL_PARTIAL, /* Only partially allocated slabs */
3682 SL_CPU, /* Only slabs used for cpu caches */
3683 SL_OBJECTS, /* Determine allocated objects not slabs */
3684 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3685};
3686
205ab99d 3687#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3688#define SO_PARTIAL (1 << SL_PARTIAL)
3689#define SO_CPU (1 << SL_CPU)
3690#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3691#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3692
62e5c4b4
CG
3693static ssize_t show_slab_objects(struct kmem_cache *s,
3694 char *buf, unsigned long flags)
81819f0f
CL
3695{
3696 unsigned long total = 0;
81819f0f
CL
3697 int node;
3698 int x;
3699 unsigned long *nodes;
3700 unsigned long *per_cpu;
3701
3702 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3703 if (!nodes)
3704 return -ENOMEM;
81819f0f
CL
3705 per_cpu = nodes + nr_node_ids;
3706
205ab99d
CL
3707 if (flags & SO_CPU) {
3708 int cpu;
81819f0f 3709
205ab99d
CL
3710 for_each_possible_cpu(cpu) {
3711 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3712
205ab99d
CL
3713 if (!c || c->node < 0)
3714 continue;
3715
3716 if (c->page) {
3717 if (flags & SO_TOTAL)
3718 x = c->page->objects;
3719 else if (flags & SO_OBJECTS)
3720 x = c->page->inuse;
81819f0f
CL
3721 else
3722 x = 1;
205ab99d 3723
81819f0f 3724 total += x;
205ab99d 3725 nodes[c->node] += x;
81819f0f 3726 }
205ab99d 3727 per_cpu[c->node]++;
81819f0f
CL
3728 }
3729 }
3730
205ab99d
CL
3731 if (flags & SO_ALL) {
3732 for_each_node_state(node, N_NORMAL_MEMORY) {
3733 struct kmem_cache_node *n = get_node(s, node);
3734
3735 if (flags & SO_TOTAL)
3736 x = atomic_long_read(&n->total_objects);
3737 else if (flags & SO_OBJECTS)
3738 x = atomic_long_read(&n->total_objects) -
3739 count_partial(n, count_free);
81819f0f 3740
81819f0f 3741 else
205ab99d 3742 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3743 total += x;
3744 nodes[node] += x;
3745 }
3746
205ab99d
CL
3747 } else if (flags & SO_PARTIAL) {
3748 for_each_node_state(node, N_NORMAL_MEMORY) {
3749 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3750
205ab99d
CL
3751 if (flags & SO_TOTAL)
3752 x = count_partial(n, count_total);
3753 else if (flags & SO_OBJECTS)
3754 x = count_partial(n, count_inuse);
81819f0f 3755 else
205ab99d 3756 x = n->nr_partial;
81819f0f
CL
3757 total += x;
3758 nodes[node] += x;
3759 }
3760 }
81819f0f
CL
3761 x = sprintf(buf, "%lu", total);
3762#ifdef CONFIG_NUMA
f64dc58c 3763 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3764 if (nodes[node])
3765 x += sprintf(buf + x, " N%d=%lu",
3766 node, nodes[node]);
3767#endif
3768 kfree(nodes);
3769 return x + sprintf(buf + x, "\n");
3770}
3771
3772static int any_slab_objects(struct kmem_cache *s)
3773{
3774 int node;
3775 int cpu;
3776
dfb4f096
CL
3777 for_each_possible_cpu(cpu) {
3778 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3779
3780 if (c && c->page)
81819f0f 3781 return 1;
dfb4f096 3782 }
81819f0f 3783
dfb4f096 3784 for_each_online_node(node) {
81819f0f
CL
3785 struct kmem_cache_node *n = get_node(s, node);
3786
dfb4f096
CL
3787 if (!n)
3788 continue;
3789
9e86943b 3790 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3791 return 1;
3792 }
3793 return 0;
3794}
3795
3796#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3797#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3798
3799struct slab_attribute {
3800 struct attribute attr;
3801 ssize_t (*show)(struct kmem_cache *s, char *buf);
3802 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3803};
3804
3805#define SLAB_ATTR_RO(_name) \
3806 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3807
3808#define SLAB_ATTR(_name) \
3809 static struct slab_attribute _name##_attr = \
3810 __ATTR(_name, 0644, _name##_show, _name##_store)
3811
81819f0f
CL
3812static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3813{
3814 return sprintf(buf, "%d\n", s->size);
3815}
3816SLAB_ATTR_RO(slab_size);
3817
3818static ssize_t align_show(struct kmem_cache *s, char *buf)
3819{
3820 return sprintf(buf, "%d\n", s->align);
3821}
3822SLAB_ATTR_RO(align);
3823
3824static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3825{
3826 return sprintf(buf, "%d\n", s->objsize);
3827}
3828SLAB_ATTR_RO(object_size);
3829
3830static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3831{
834f3d11 3832 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3833}
3834SLAB_ATTR_RO(objs_per_slab);
3835
3836static ssize_t order_show(struct kmem_cache *s, char *buf)
3837{
834f3d11 3838 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f
CL
3839}
3840SLAB_ATTR_RO(order);
3841
3842static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3843{
3844 if (s->ctor) {
3845 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3846
3847 return n + sprintf(buf + n, "\n");
3848 }
3849 return 0;
3850}
3851SLAB_ATTR_RO(ctor);
3852
81819f0f
CL
3853static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3854{
3855 return sprintf(buf, "%d\n", s->refcount - 1);
3856}
3857SLAB_ATTR_RO(aliases);
3858
3859static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3860{
205ab99d 3861 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3862}
3863SLAB_ATTR_RO(slabs);
3864
3865static ssize_t partial_show(struct kmem_cache *s, char *buf)
3866{
d9acf4b7 3867 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3868}
3869SLAB_ATTR_RO(partial);
3870
3871static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3872{
d9acf4b7 3873 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3874}
3875SLAB_ATTR_RO(cpu_slabs);
3876
3877static ssize_t objects_show(struct kmem_cache *s, char *buf)
3878{
205ab99d 3879 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3880}
3881SLAB_ATTR_RO(objects);
3882
205ab99d
CL
3883static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3884{
3885 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3886}
3887SLAB_ATTR_RO(objects_partial);
3888
3889static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3890{
3891 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3892}
3893SLAB_ATTR_RO(total_objects);
3894
81819f0f
CL
3895static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3896{
3897 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3898}
3899
3900static ssize_t sanity_checks_store(struct kmem_cache *s,
3901 const char *buf, size_t length)
3902{
3903 s->flags &= ~SLAB_DEBUG_FREE;
3904 if (buf[0] == '1')
3905 s->flags |= SLAB_DEBUG_FREE;
3906 return length;
3907}
3908SLAB_ATTR(sanity_checks);
3909
3910static ssize_t trace_show(struct kmem_cache *s, char *buf)
3911{
3912 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3913}
3914
3915static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3916 size_t length)
3917{
3918 s->flags &= ~SLAB_TRACE;
3919 if (buf[0] == '1')
3920 s->flags |= SLAB_TRACE;
3921 return length;
3922}
3923SLAB_ATTR(trace);
3924
3925static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3926{
3927 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3928}
3929
3930static ssize_t reclaim_account_store(struct kmem_cache *s,
3931 const char *buf, size_t length)
3932{
3933 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3934 if (buf[0] == '1')
3935 s->flags |= SLAB_RECLAIM_ACCOUNT;
3936 return length;
3937}
3938SLAB_ATTR(reclaim_account);
3939
3940static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3941{
5af60839 3942 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3943}
3944SLAB_ATTR_RO(hwcache_align);
3945
3946#ifdef CONFIG_ZONE_DMA
3947static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3948{
3949 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3950}
3951SLAB_ATTR_RO(cache_dma);
3952#endif
3953
3954static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3955{
3956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3957}
3958SLAB_ATTR_RO(destroy_by_rcu);
3959
3960static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3961{
3962 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3963}
3964
3965static ssize_t red_zone_store(struct kmem_cache *s,
3966 const char *buf, size_t length)
3967{
3968 if (any_slab_objects(s))
3969 return -EBUSY;
3970
3971 s->flags &= ~SLAB_RED_ZONE;
3972 if (buf[0] == '1')
3973 s->flags |= SLAB_RED_ZONE;
3974 calculate_sizes(s);
3975 return length;
3976}
3977SLAB_ATTR(red_zone);
3978
3979static ssize_t poison_show(struct kmem_cache *s, char *buf)
3980{
3981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3982}
3983
3984static ssize_t poison_store(struct kmem_cache *s,
3985 const char *buf, size_t length)
3986{
3987 if (any_slab_objects(s))
3988 return -EBUSY;
3989
3990 s->flags &= ~SLAB_POISON;
3991 if (buf[0] == '1')
3992 s->flags |= SLAB_POISON;
3993 calculate_sizes(s);
3994 return length;
3995}
3996SLAB_ATTR(poison);
3997
3998static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3999{
4000 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4001}
4002
4003static ssize_t store_user_store(struct kmem_cache *s,
4004 const char *buf, size_t length)
4005{
4006 if (any_slab_objects(s))
4007 return -EBUSY;
4008
4009 s->flags &= ~SLAB_STORE_USER;
4010 if (buf[0] == '1')
4011 s->flags |= SLAB_STORE_USER;
4012 calculate_sizes(s);
4013 return length;
4014}
4015SLAB_ATTR(store_user);
4016
53e15af0
CL
4017static ssize_t validate_show(struct kmem_cache *s, char *buf)
4018{
4019 return 0;
4020}
4021
4022static ssize_t validate_store(struct kmem_cache *s,
4023 const char *buf, size_t length)
4024{
434e245d
CL
4025 int ret = -EINVAL;
4026
4027 if (buf[0] == '1') {
4028 ret = validate_slab_cache(s);
4029 if (ret >= 0)
4030 ret = length;
4031 }
4032 return ret;
53e15af0
CL
4033}
4034SLAB_ATTR(validate);
4035
2086d26a
CL
4036static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4037{
4038 return 0;
4039}
4040
4041static ssize_t shrink_store(struct kmem_cache *s,
4042 const char *buf, size_t length)
4043{
4044 if (buf[0] == '1') {
4045 int rc = kmem_cache_shrink(s);
4046
4047 if (rc)
4048 return rc;
4049 } else
4050 return -EINVAL;
4051 return length;
4052}
4053SLAB_ATTR(shrink);
4054
88a420e4
CL
4055static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4056{
4057 if (!(s->flags & SLAB_STORE_USER))
4058 return -ENOSYS;
4059 return list_locations(s, buf, TRACK_ALLOC);
4060}
4061SLAB_ATTR_RO(alloc_calls);
4062
4063static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4064{
4065 if (!(s->flags & SLAB_STORE_USER))
4066 return -ENOSYS;
4067 return list_locations(s, buf, TRACK_FREE);
4068}
4069SLAB_ATTR_RO(free_calls);
4070
81819f0f 4071#ifdef CONFIG_NUMA
9824601e 4072static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4073{
9824601e 4074 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4075}
4076
9824601e 4077static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4078 const char *buf, size_t length)
4079{
4080 int n = simple_strtoul(buf, NULL, 10);
4081
4082 if (n < 100)
9824601e 4083 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
4084 return length;
4085}
9824601e 4086SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4087#endif
4088
8ff12cfc 4089#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4090static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4091{
4092 unsigned long sum = 0;
4093 int cpu;
4094 int len;
4095 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4096
4097 if (!data)
4098 return -ENOMEM;
4099
4100 for_each_online_cpu(cpu) {
4101 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4102
4103 data[cpu] = x;
4104 sum += x;
4105 }
4106
4107 len = sprintf(buf, "%lu", sum);
4108
50ef37b9 4109#ifdef CONFIG_SMP
8ff12cfc
CL
4110 for_each_online_cpu(cpu) {
4111 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4112 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4113 }
50ef37b9 4114#endif
8ff12cfc
CL
4115 kfree(data);
4116 return len + sprintf(buf + len, "\n");
4117}
4118
4119#define STAT_ATTR(si, text) \
4120static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4121{ \
4122 return show_stat(s, buf, si); \
4123} \
4124SLAB_ATTR_RO(text); \
4125
4126STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4127STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4128STAT_ATTR(FREE_FASTPATH, free_fastpath);
4129STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4130STAT_ATTR(FREE_FROZEN, free_frozen);
4131STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4132STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4133STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4134STAT_ATTR(ALLOC_SLAB, alloc_slab);
4135STAT_ATTR(ALLOC_REFILL, alloc_refill);
4136STAT_ATTR(FREE_SLAB, free_slab);
4137STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4138STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4139STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4140STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4141STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4142STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4143STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4144#endif
4145
06428780 4146static struct attribute *slab_attrs[] = {
81819f0f
CL
4147 &slab_size_attr.attr,
4148 &object_size_attr.attr,
4149 &objs_per_slab_attr.attr,
4150 &order_attr.attr,
4151 &objects_attr.attr,
205ab99d
CL
4152 &objects_partial_attr.attr,
4153 &total_objects_attr.attr,
81819f0f
CL
4154 &slabs_attr.attr,
4155 &partial_attr.attr,
4156 &cpu_slabs_attr.attr,
4157 &ctor_attr.attr,
81819f0f
CL
4158 &aliases_attr.attr,
4159 &align_attr.attr,
4160 &sanity_checks_attr.attr,
4161 &trace_attr.attr,
4162 &hwcache_align_attr.attr,
4163 &reclaim_account_attr.attr,
4164 &destroy_by_rcu_attr.attr,
4165 &red_zone_attr.attr,
4166 &poison_attr.attr,
4167 &store_user_attr.attr,
53e15af0 4168 &validate_attr.attr,
2086d26a 4169 &shrink_attr.attr,
88a420e4
CL
4170 &alloc_calls_attr.attr,
4171 &free_calls_attr.attr,
81819f0f
CL
4172#ifdef CONFIG_ZONE_DMA
4173 &cache_dma_attr.attr,
4174#endif
4175#ifdef CONFIG_NUMA
9824601e 4176 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4177#endif
4178#ifdef CONFIG_SLUB_STATS
4179 &alloc_fastpath_attr.attr,
4180 &alloc_slowpath_attr.attr,
4181 &free_fastpath_attr.attr,
4182 &free_slowpath_attr.attr,
4183 &free_frozen_attr.attr,
4184 &free_add_partial_attr.attr,
4185 &free_remove_partial_attr.attr,
4186 &alloc_from_partial_attr.attr,
4187 &alloc_slab_attr.attr,
4188 &alloc_refill_attr.attr,
4189 &free_slab_attr.attr,
4190 &cpuslab_flush_attr.attr,
4191 &deactivate_full_attr.attr,
4192 &deactivate_empty_attr.attr,
4193 &deactivate_to_head_attr.attr,
4194 &deactivate_to_tail_attr.attr,
4195 &deactivate_remote_frees_attr.attr,
65c3376a 4196 &order_fallback_attr.attr,
81819f0f
CL
4197#endif
4198 NULL
4199};
4200
4201static struct attribute_group slab_attr_group = {
4202 .attrs = slab_attrs,
4203};
4204
4205static ssize_t slab_attr_show(struct kobject *kobj,
4206 struct attribute *attr,
4207 char *buf)
4208{
4209 struct slab_attribute *attribute;
4210 struct kmem_cache *s;
4211 int err;
4212
4213 attribute = to_slab_attr(attr);
4214 s = to_slab(kobj);
4215
4216 if (!attribute->show)
4217 return -EIO;
4218
4219 err = attribute->show(s, buf);
4220
4221 return err;
4222}
4223
4224static ssize_t slab_attr_store(struct kobject *kobj,
4225 struct attribute *attr,
4226 const char *buf, size_t len)
4227{
4228 struct slab_attribute *attribute;
4229 struct kmem_cache *s;
4230 int err;
4231
4232 attribute = to_slab_attr(attr);
4233 s = to_slab(kobj);
4234
4235 if (!attribute->store)
4236 return -EIO;
4237
4238 err = attribute->store(s, buf, len);
4239
4240 return err;
4241}
4242
151c602f
CL
4243static void kmem_cache_release(struct kobject *kobj)
4244{
4245 struct kmem_cache *s = to_slab(kobj);
4246
4247 kfree(s);
4248}
4249
81819f0f
CL
4250static struct sysfs_ops slab_sysfs_ops = {
4251 .show = slab_attr_show,
4252 .store = slab_attr_store,
4253};
4254
4255static struct kobj_type slab_ktype = {
4256 .sysfs_ops = &slab_sysfs_ops,
151c602f 4257 .release = kmem_cache_release
81819f0f
CL
4258};
4259
4260static int uevent_filter(struct kset *kset, struct kobject *kobj)
4261{
4262 struct kobj_type *ktype = get_ktype(kobj);
4263
4264 if (ktype == &slab_ktype)
4265 return 1;
4266 return 0;
4267}
4268
4269static struct kset_uevent_ops slab_uevent_ops = {
4270 .filter = uevent_filter,
4271};
4272
27c3a314 4273static struct kset *slab_kset;
81819f0f
CL
4274
4275#define ID_STR_LENGTH 64
4276
4277/* Create a unique string id for a slab cache:
6446faa2
CL
4278 *
4279 * Format :[flags-]size
81819f0f
CL
4280 */
4281static char *create_unique_id(struct kmem_cache *s)
4282{
4283 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4284 char *p = name;
4285
4286 BUG_ON(!name);
4287
4288 *p++ = ':';
4289 /*
4290 * First flags affecting slabcache operations. We will only
4291 * get here for aliasable slabs so we do not need to support
4292 * too many flags. The flags here must cover all flags that
4293 * are matched during merging to guarantee that the id is
4294 * unique.
4295 */
4296 if (s->flags & SLAB_CACHE_DMA)
4297 *p++ = 'd';
4298 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4299 *p++ = 'a';
4300 if (s->flags & SLAB_DEBUG_FREE)
4301 *p++ = 'F';
4302 if (p != name + 1)
4303 *p++ = '-';
4304 p += sprintf(p, "%07d", s->size);
4305 BUG_ON(p > name + ID_STR_LENGTH - 1);
4306 return name;
4307}
4308
4309static int sysfs_slab_add(struct kmem_cache *s)
4310{
4311 int err;
4312 const char *name;
4313 int unmergeable;
4314
4315 if (slab_state < SYSFS)
4316 /* Defer until later */
4317 return 0;
4318
4319 unmergeable = slab_unmergeable(s);
4320 if (unmergeable) {
4321 /*
4322 * Slabcache can never be merged so we can use the name proper.
4323 * This is typically the case for debug situations. In that
4324 * case we can catch duplicate names easily.
4325 */
27c3a314 4326 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4327 name = s->name;
4328 } else {
4329 /*
4330 * Create a unique name for the slab as a target
4331 * for the symlinks.
4332 */
4333 name = create_unique_id(s);
4334 }
4335
27c3a314 4336 s->kobj.kset = slab_kset;
1eada11c
GKH
4337 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4338 if (err) {
4339 kobject_put(&s->kobj);
81819f0f 4340 return err;
1eada11c 4341 }
81819f0f
CL
4342
4343 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4344 if (err)
4345 return err;
4346 kobject_uevent(&s->kobj, KOBJ_ADD);
4347 if (!unmergeable) {
4348 /* Setup first alias */
4349 sysfs_slab_alias(s, s->name);
4350 kfree(name);
4351 }
4352 return 0;
4353}
4354
4355static void sysfs_slab_remove(struct kmem_cache *s)
4356{
4357 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4358 kobject_del(&s->kobj);
151c602f 4359 kobject_put(&s->kobj);
81819f0f
CL
4360}
4361
4362/*
4363 * Need to buffer aliases during bootup until sysfs becomes
4364 * available lest we loose that information.
4365 */
4366struct saved_alias {
4367 struct kmem_cache *s;
4368 const char *name;
4369 struct saved_alias *next;
4370};
4371
5af328a5 4372static struct saved_alias *alias_list;
81819f0f
CL
4373
4374static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4375{
4376 struct saved_alias *al;
4377
4378 if (slab_state == SYSFS) {
4379 /*
4380 * If we have a leftover link then remove it.
4381 */
27c3a314
GKH
4382 sysfs_remove_link(&slab_kset->kobj, name);
4383 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4384 }
4385
4386 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4387 if (!al)
4388 return -ENOMEM;
4389
4390 al->s = s;
4391 al->name = name;
4392 al->next = alias_list;
4393 alias_list = al;
4394 return 0;
4395}
4396
4397static int __init slab_sysfs_init(void)
4398{
5b95a4ac 4399 struct kmem_cache *s;
81819f0f
CL
4400 int err;
4401
0ff21e46 4402 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4403 if (!slab_kset) {
81819f0f
CL
4404 printk(KERN_ERR "Cannot register slab subsystem.\n");
4405 return -ENOSYS;
4406 }
4407
26a7bd03
CL
4408 slab_state = SYSFS;
4409
5b95a4ac 4410 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4411 err = sysfs_slab_add(s);
5d540fb7
CL
4412 if (err)
4413 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4414 " to sysfs\n", s->name);
26a7bd03 4415 }
81819f0f
CL
4416
4417 while (alias_list) {
4418 struct saved_alias *al = alias_list;
4419
4420 alias_list = alias_list->next;
4421 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4422 if (err)
4423 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4424 " %s to sysfs\n", s->name);
81819f0f
CL
4425 kfree(al);
4426 }
4427
4428 resiliency_test();
4429 return 0;
4430}
4431
4432__initcall(slab_sysfs_init);
81819f0f 4433#endif
57ed3eda
PE
4434
4435/*
4436 * The /proc/slabinfo ABI
4437 */
158a9624
LT
4438#ifdef CONFIG_SLABINFO
4439
4440ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4441 size_t count, loff_t *ppos)
4442{
4443 return -EINVAL;
4444}
4445
57ed3eda
PE
4446
4447static void print_slabinfo_header(struct seq_file *m)
4448{
4449 seq_puts(m, "slabinfo - version: 2.1\n");
4450 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4451 "<objperslab> <pagesperslab>");
4452 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4453 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4454 seq_putc(m, '\n');
4455}
4456
4457static void *s_start(struct seq_file *m, loff_t *pos)
4458{
4459 loff_t n = *pos;
4460
4461 down_read(&slub_lock);
4462 if (!n)
4463 print_slabinfo_header(m);
4464
4465 return seq_list_start(&slab_caches, *pos);
4466}
4467
4468static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4469{
4470 return seq_list_next(p, &slab_caches, pos);
4471}
4472
4473static void s_stop(struct seq_file *m, void *p)
4474{
4475 up_read(&slub_lock);
4476}
4477
4478static int s_show(struct seq_file *m, void *p)
4479{
4480 unsigned long nr_partials = 0;
4481 unsigned long nr_slabs = 0;
4482 unsigned long nr_inuse = 0;
205ab99d
CL
4483 unsigned long nr_objs = 0;
4484 unsigned long nr_free = 0;
57ed3eda
PE
4485 struct kmem_cache *s;
4486 int node;
4487
4488 s = list_entry(p, struct kmem_cache, list);
4489
4490 for_each_online_node(node) {
4491 struct kmem_cache_node *n = get_node(s, node);
4492
4493 if (!n)
4494 continue;
4495
4496 nr_partials += n->nr_partial;
4497 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4498 nr_objs += atomic_long_read(&n->total_objects);
4499 nr_free += count_partial(n, count_free);
57ed3eda
PE
4500 }
4501
205ab99d 4502 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4503
4504 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4505 nr_objs, s->size, oo_objects(s->oo),
4506 (1 << oo_order(s->oo)));
57ed3eda
PE
4507 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4508 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4509 0UL);
4510 seq_putc(m, '\n');
4511 return 0;
4512}
4513
4514const struct seq_operations slabinfo_op = {
4515 .start = s_start,
4516 .next = s_next,
4517 .stop = s_stop,
4518 .show = s_show,
4519};
4520
158a9624 4521#endif /* CONFIG_SLABINFO */