]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
mm/page_alloc: use ac->high_zoneidx for classzone_idx
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec
KC
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
442static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443static DEFINE_SPINLOCK(object_map_lock);
444
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
90e9f6a6 451static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 452 __acquires(&object_map_lock)
5f80b13a
CL
453{
454 void *p;
455 void *addr = page_address(page);
456
90e9f6a6
YZ
457 VM_BUG_ON(!irqs_disabled());
458
459 spin_lock(&object_map_lock);
460
461 bitmap_zero(object_map, page->objects);
462
5f80b13a 463 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
464 set_bit(slab_index(p, s, addr), object_map);
465
466 return object_map;
467}
468
81aba9e0 469static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
470{
471 VM_BUG_ON(map != object_map);
472 lockdep_assert_held(&object_map_lock);
473
474 spin_unlock(&object_map_lock);
5f80b13a
CL
475}
476
870b1fbb 477static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
478{
479 if (s->flags & SLAB_RED_ZONE)
480 return s->size - s->red_left_pad;
481
482 return s->size;
483}
484
485static inline void *restore_red_left(struct kmem_cache *s, void *p)
486{
487 if (s->flags & SLAB_RED_ZONE)
488 p -= s->red_left_pad;
489
490 return p;
491}
492
41ecc55b
CL
493/*
494 * Debug settings:
495 */
89d3c87e 496#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 497static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 498#else
d50112ed 499static slab_flags_t slub_debug;
f0630fff 500#endif
41ecc55b
CL
501
502static char *slub_debug_slabs;
fa5ec8a1 503static int disable_higher_order_debug;
41ecc55b 504
a79316c6
AR
505/*
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
510 */
511static inline void metadata_access_enable(void)
512{
513 kasan_disable_current();
514}
515
516static inline void metadata_access_disable(void)
517{
518 kasan_enable_current();
519}
520
81819f0f
CL
521/*
522 * Object debugging
523 */
d86bd1be
JK
524
525/* Verify that a pointer has an address that is valid within a slab page */
526static inline int check_valid_pointer(struct kmem_cache *s,
527 struct page *page, void *object)
528{
529 void *base;
530
531 if (!object)
532 return 1;
533
534 base = page_address(page);
338cfaad 535 object = kasan_reset_tag(object);
d86bd1be
JK
536 object = restore_red_left(s, object);
537 if (object < base || object >= base + page->objects * s->size ||
538 (object - base) % s->size) {
539 return 0;
540 }
541
542 return 1;
543}
544
aa2efd5e
DT
545static void print_section(char *level, char *text, u8 *addr,
546 unsigned int length)
81819f0f 547{
a79316c6 548 metadata_access_enable();
aa2efd5e 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 550 length, 1);
a79316c6 551 metadata_access_disable();
81819f0f
CL
552}
553
cbfc35a4
WL
554/*
555 * See comment in calculate_sizes().
556 */
557static inline bool freeptr_outside_object(struct kmem_cache *s)
558{
559 return s->offset >= s->inuse;
560}
561
562/*
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
565 */
566static inline unsigned int get_info_end(struct kmem_cache *s)
567{
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
570 else
571 return s->inuse;
572}
573
81819f0f
CL
574static struct track *get_track(struct kmem_cache *s, void *object,
575 enum track_item alloc)
576{
577 struct track *p;
578
cbfc35a4 579 p = object + get_info_end(s);
81819f0f
CL
580
581 return p + alloc;
582}
583
584static void set_track(struct kmem_cache *s, void *object,
ce71e27c 585 enum track_item alloc, unsigned long addr)
81819f0f 586{
1a00df4a 587 struct track *p = get_track(s, object, alloc);
81819f0f 588
81819f0f 589 if (addr) {
d6543e39 590#ifdef CONFIG_STACKTRACE
79716799 591 unsigned int nr_entries;
d6543e39 592
a79316c6 593 metadata_access_enable();
79716799 594 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 595 metadata_access_disable();
d6543e39 596
79716799
TG
597 if (nr_entries < TRACK_ADDRS_COUNT)
598 p->addrs[nr_entries] = 0;
d6543e39 599#endif
81819f0f
CL
600 p->addr = addr;
601 p->cpu = smp_processor_id();
88e4ccf2 602 p->pid = current->pid;
81819f0f 603 p->when = jiffies;
b8ca7ff7 604 } else {
81819f0f 605 memset(p, 0, sizeof(struct track));
b8ca7ff7 606 }
81819f0f
CL
607}
608
81819f0f
CL
609static void init_tracking(struct kmem_cache *s, void *object)
610{
24922684
CL
611 if (!(s->flags & SLAB_STORE_USER))
612 return;
613
ce71e27c
EGM
614 set_track(s, object, TRACK_FREE, 0UL);
615 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
616}
617
86609d33 618static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
619{
620 if (!t->addr)
621 return;
622
f9f58285 623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 624 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
625#ifdef CONFIG_STACKTRACE
626 {
627 int i;
628 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
629 if (t->addrs[i])
f9f58285 630 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
631 else
632 break;
633 }
634#endif
24922684
CL
635}
636
637static void print_tracking(struct kmem_cache *s, void *object)
638{
86609d33 639 unsigned long pr_time = jiffies;
24922684
CL
640 if (!(s->flags & SLAB_STORE_USER))
641 return;
642
86609d33
CP
643 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
644 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
645}
646
647static void print_page_info(struct page *page)
648{
f9f58285 649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 650 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
651
652}
653
654static void slab_bug(struct kmem_cache *s, char *fmt, ...)
655{
ecc42fbe 656 struct va_format vaf;
24922684 657 va_list args;
24922684
CL
658
659 va_start(args, fmt);
ecc42fbe
FF
660 vaf.fmt = fmt;
661 vaf.va = &args;
f9f58285 662 pr_err("=============================================================================\n");
ecc42fbe 663 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 664 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 665
373d4d09 666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 667 va_end(args);
81819f0f
CL
668}
669
24922684
CL
670static void slab_fix(struct kmem_cache *s, char *fmt, ...)
671{
ecc42fbe 672 struct va_format vaf;
24922684 673 va_list args;
24922684
CL
674
675 va_start(args, fmt);
ecc42fbe
FF
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 679 va_end(args);
24922684
CL
680}
681
52f23478
DZ
682static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
683 void *freelist, void *nextfree)
684{
685 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
686 !check_valid_pointer(s, page, nextfree)) {
687 object_err(s, page, freelist, "Freechain corrupt");
688 freelist = NULL;
689 slab_fix(s, "Isolate corrupted freechain");
690 return true;
691 }
692
693 return false;
694}
695
24922684 696static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
697{
698 unsigned int off; /* Offset of last byte */
a973e9dd 699 u8 *addr = page_address(page);
24922684
CL
700
701 print_tracking(s, p);
702
703 print_page_info(page);
704
f9f58285
FF
705 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
706 p, p - addr, get_freepointer(s, p));
24922684 707
d86bd1be 708 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
709 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
710 s->red_left_pad);
d86bd1be 711 else if (p > addr + 16)
aa2efd5e 712 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 713
aa2efd5e 714 print_section(KERN_ERR, "Object ", p,
1b473f29 715 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 716 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 717 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 718 s->inuse - s->object_size);
81819f0f 719
cbfc35a4 720 off = get_info_end(s);
81819f0f 721
24922684 722 if (s->flags & SLAB_STORE_USER)
81819f0f 723 off += 2 * sizeof(struct track);
81819f0f 724
80a9201a
AP
725 off += kasan_metadata_size(s);
726
d86bd1be 727 if (off != size_from_object(s))
81819f0f 728 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
729 print_section(KERN_ERR, "Padding ", p + off,
730 size_from_object(s) - off);
24922684
CL
731
732 dump_stack();
81819f0f
CL
733}
734
75c66def 735void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
736 u8 *object, char *reason)
737{
3dc50637 738 slab_bug(s, "%s", reason);
24922684 739 print_trailer(s, page, object);
81819f0f
CL
740}
741
a38965bf 742static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 743 const char *fmt, ...)
81819f0f
CL
744{
745 va_list args;
746 char buf[100];
747
24922684
CL
748 va_start(args, fmt);
749 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 750 va_end(args);
3dc50637 751 slab_bug(s, "%s", buf);
24922684 752 print_page_info(page);
81819f0f
CL
753 dump_stack();
754}
755
f7cb1933 756static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
757{
758 u8 *p = object;
759
d86bd1be
JK
760 if (s->flags & SLAB_RED_ZONE)
761 memset(p - s->red_left_pad, val, s->red_left_pad);
762
81819f0f 763 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
764 memset(p, POISON_FREE, s->object_size - 1);
765 p[s->object_size - 1] = POISON_END;
81819f0f
CL
766 }
767
768 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 769 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
770}
771
24922684
CL
772static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
773 void *from, void *to)
774{
775 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
776 memset(from, data, to - from);
777}
778
779static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
780 u8 *object, char *what,
06428780 781 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
782{
783 u8 *fault;
784 u8 *end;
e1b70dd1 785 u8 *addr = page_address(page);
24922684 786
a79316c6 787 metadata_access_enable();
79824820 788 fault = memchr_inv(start, value, bytes);
a79316c6 789 metadata_access_disable();
24922684
CL
790 if (!fault)
791 return 1;
792
793 end = start + bytes;
794 while (end > fault && end[-1] == value)
795 end--;
796
797 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
798 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
799 fault, end - 1, fault - addr,
800 fault[0], value);
24922684
CL
801 print_trailer(s, page, object);
802
803 restore_bytes(s, what, value, fault, end);
804 return 0;
81819f0f
CL
805}
806
81819f0f
CL
807/*
808 * Object layout:
809 *
810 * object address
811 * Bytes of the object to be managed.
812 * If the freepointer may overlay the object then the free
cbfc35a4 813 * pointer is at the middle of the object.
672bba3a 814 *
81819f0f
CL
815 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
816 * 0xa5 (POISON_END)
817 *
3b0efdfa 818 * object + s->object_size
81819f0f 819 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 820 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 821 * object_size == inuse.
672bba3a 822 *
81819f0f
CL
823 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
824 * 0xcc (RED_ACTIVE) for objects in use.
825 *
826 * object + s->inuse
672bba3a
CL
827 * Meta data starts here.
828 *
81819f0f
CL
829 * A. Free pointer (if we cannot overwrite object on free)
830 * B. Tracking data for SLAB_STORE_USER
672bba3a 831 * C. Padding to reach required alignment boundary or at mininum
6446faa2 832 * one word if debugging is on to be able to detect writes
672bba3a
CL
833 * before the word boundary.
834 *
835 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
836 *
837 * object + s->size
672bba3a 838 * Nothing is used beyond s->size.
81819f0f 839 *
3b0efdfa 840 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 841 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
842 * may be used with merged slabcaches.
843 */
844
81819f0f
CL
845static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
846{
cbfc35a4 847 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
848
849 if (s->flags & SLAB_STORE_USER)
850 /* We also have user information there */
851 off += 2 * sizeof(struct track);
852
80a9201a
AP
853 off += kasan_metadata_size(s);
854
d86bd1be 855 if (size_from_object(s) == off)
81819f0f
CL
856 return 1;
857
24922684 858 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 859 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
860}
861
39b26464 862/* Check the pad bytes at the end of a slab page */
81819f0f
CL
863static int slab_pad_check(struct kmem_cache *s, struct page *page)
864{
24922684
CL
865 u8 *start;
866 u8 *fault;
867 u8 *end;
5d682681 868 u8 *pad;
24922684
CL
869 int length;
870 int remainder;
81819f0f
CL
871
872 if (!(s->flags & SLAB_POISON))
873 return 1;
874
a973e9dd 875 start = page_address(page);
a50b854e 876 length = page_size(page);
39b26464
CL
877 end = start + length;
878 remainder = length % s->size;
81819f0f
CL
879 if (!remainder)
880 return 1;
881
5d682681 882 pad = end - remainder;
a79316c6 883 metadata_access_enable();
5d682681 884 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 885 metadata_access_disable();
24922684
CL
886 if (!fault)
887 return 1;
888 while (end > fault && end[-1] == POISON_INUSE)
889 end--;
890
e1b70dd1
MC
891 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
892 fault, end - 1, fault - start);
5d682681 893 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 894
5d682681 895 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 896 return 0;
81819f0f
CL
897}
898
899static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 900 void *object, u8 val)
81819f0f
CL
901{
902 u8 *p = object;
3b0efdfa 903 u8 *endobject = object + s->object_size;
81819f0f
CL
904
905 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
906 if (!check_bytes_and_report(s, page, object, "Redzone",
907 object - s->red_left_pad, val, s->red_left_pad))
908 return 0;
909
24922684 910 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 911 endobject, val, s->inuse - s->object_size))
81819f0f 912 return 0;
81819f0f 913 } else {
3b0efdfa 914 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 915 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
916 endobject, POISON_INUSE,
917 s->inuse - s->object_size);
3adbefee 918 }
81819f0f
CL
919 }
920
921 if (s->flags & SLAB_POISON) {
f7cb1933 922 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 923 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 924 POISON_FREE, s->object_size - 1) ||
24922684 925 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 926 p + s->object_size - 1, POISON_END, 1)))
81819f0f 927 return 0;
81819f0f
CL
928 /*
929 * check_pad_bytes cleans up on its own.
930 */
931 check_pad_bytes(s, page, p);
932 }
933
cbfc35a4 934 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
935 /*
936 * Object and freepointer overlap. Cannot check
937 * freepointer while object is allocated.
938 */
939 return 1;
940
941 /* Check free pointer validity */
942 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
943 object_err(s, page, p, "Freepointer corrupt");
944 /*
9f6c708e 945 * No choice but to zap it and thus lose the remainder
81819f0f 946 * of the free objects in this slab. May cause
672bba3a 947 * another error because the object count is now wrong.
81819f0f 948 */
a973e9dd 949 set_freepointer(s, p, NULL);
81819f0f
CL
950 return 0;
951 }
952 return 1;
953}
954
955static int check_slab(struct kmem_cache *s, struct page *page)
956{
39b26464
CL
957 int maxobj;
958
81819f0f
CL
959 VM_BUG_ON(!irqs_disabled());
960
961 if (!PageSlab(page)) {
24922684 962 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
963 return 0;
964 }
39b26464 965
9736d2a9 966 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
967 if (page->objects > maxobj) {
968 slab_err(s, page, "objects %u > max %u",
f6edde9c 969 page->objects, maxobj);
39b26464
CL
970 return 0;
971 }
972 if (page->inuse > page->objects) {
24922684 973 slab_err(s, page, "inuse %u > max %u",
f6edde9c 974 page->inuse, page->objects);
81819f0f
CL
975 return 0;
976 }
977 /* Slab_pad_check fixes things up after itself */
978 slab_pad_check(s, page);
979 return 1;
980}
981
982/*
672bba3a
CL
983 * Determine if a certain object on a page is on the freelist. Must hold the
984 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
985 */
986static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
987{
988 int nr = 0;
881db7fb 989 void *fp;
81819f0f 990 void *object = NULL;
f6edde9c 991 int max_objects;
81819f0f 992
881db7fb 993 fp = page->freelist;
39b26464 994 while (fp && nr <= page->objects) {
81819f0f
CL
995 if (fp == search)
996 return 1;
997 if (!check_valid_pointer(s, page, fp)) {
998 if (object) {
999 object_err(s, page, object,
1000 "Freechain corrupt");
a973e9dd 1001 set_freepointer(s, object, NULL);
81819f0f 1002 } else {
24922684 1003 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1004 page->freelist = NULL;
39b26464 1005 page->inuse = page->objects;
24922684 1006 slab_fix(s, "Freelist cleared");
81819f0f
CL
1007 return 0;
1008 }
1009 break;
1010 }
1011 object = fp;
1012 fp = get_freepointer(s, object);
1013 nr++;
1014 }
1015
9736d2a9 1016 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1017 if (max_objects > MAX_OBJS_PER_PAGE)
1018 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1019
1020 if (page->objects != max_objects) {
756a025f
JP
1021 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1022 page->objects, max_objects);
224a88be
CL
1023 page->objects = max_objects;
1024 slab_fix(s, "Number of objects adjusted.");
1025 }
39b26464 1026 if (page->inuse != page->objects - nr) {
756a025f
JP
1027 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1028 page->inuse, page->objects - nr);
39b26464 1029 page->inuse = page->objects - nr;
24922684 1030 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1031 }
1032 return search == NULL;
1033}
1034
0121c619
CL
1035static void trace(struct kmem_cache *s, struct page *page, void *object,
1036 int alloc)
3ec09742
CL
1037{
1038 if (s->flags & SLAB_TRACE) {
f9f58285 1039 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1040 s->name,
1041 alloc ? "alloc" : "free",
1042 object, page->inuse,
1043 page->freelist);
1044
1045 if (!alloc)
aa2efd5e 1046 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1047 s->object_size);
3ec09742
CL
1048
1049 dump_stack();
1050 }
1051}
1052
643b1138 1053/*
672bba3a 1054 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1055 */
5cc6eee8
CL
1056static void add_full(struct kmem_cache *s,
1057 struct kmem_cache_node *n, struct page *page)
643b1138 1058{
5cc6eee8
CL
1059 if (!(s->flags & SLAB_STORE_USER))
1060 return;
1061
255d0884 1062 lockdep_assert_held(&n->list_lock);
916ac052 1063 list_add(&page->slab_list, &n->full);
643b1138
CL
1064}
1065
c65c1877 1066static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1067{
643b1138
CL
1068 if (!(s->flags & SLAB_STORE_USER))
1069 return;
1070
255d0884 1071 lockdep_assert_held(&n->list_lock);
916ac052 1072 list_del(&page->slab_list);
643b1138
CL
1073}
1074
0f389ec6
CL
1075/* Tracking of the number of slabs for debugging purposes */
1076static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1077{
1078 struct kmem_cache_node *n = get_node(s, node);
1079
1080 return atomic_long_read(&n->nr_slabs);
1081}
1082
26c02cf0
AB
1083static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1084{
1085 return atomic_long_read(&n->nr_slabs);
1086}
1087
205ab99d 1088static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1089{
1090 struct kmem_cache_node *n = get_node(s, node);
1091
1092 /*
1093 * May be called early in order to allocate a slab for the
1094 * kmem_cache_node structure. Solve the chicken-egg
1095 * dilemma by deferring the increment of the count during
1096 * bootstrap (see early_kmem_cache_node_alloc).
1097 */
338b2642 1098 if (likely(n)) {
0f389ec6 1099 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1100 atomic_long_add(objects, &n->total_objects);
1101 }
0f389ec6 1102}
205ab99d 1103static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1104{
1105 struct kmem_cache_node *n = get_node(s, node);
1106
1107 atomic_long_dec(&n->nr_slabs);
205ab99d 1108 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1109}
1110
1111/* Object debug checks for alloc/free paths */
3ec09742
CL
1112static void setup_object_debug(struct kmem_cache *s, struct page *page,
1113 void *object)
1114{
1115 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1116 return;
1117
f7cb1933 1118 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1119 init_tracking(s, object);
1120}
1121
a50b854e
MWO
1122static
1123void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1124{
1125 if (!(s->flags & SLAB_POISON))
1126 return;
1127
1128 metadata_access_enable();
a50b854e 1129 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1130 metadata_access_disable();
1131}
1132
becfda68 1133static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1134 struct page *page, void *object)
81819f0f
CL
1135{
1136 if (!check_slab(s, page))
becfda68 1137 return 0;
81819f0f 1138
81819f0f
CL
1139 if (!check_valid_pointer(s, page, object)) {
1140 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1141 return 0;
81819f0f
CL
1142 }
1143
f7cb1933 1144 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1145 return 0;
1146
1147 return 1;
1148}
1149
1150static noinline int alloc_debug_processing(struct kmem_cache *s,
1151 struct page *page,
1152 void *object, unsigned long addr)
1153{
1154 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1155 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1156 goto bad;
1157 }
81819f0f 1158
3ec09742
CL
1159 /* Success perform special debug activities for allocs */
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_ALLOC, addr);
1162 trace(s, page, object, 1);
f7cb1933 1163 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1164 return 1;
3ec09742 1165
81819f0f
CL
1166bad:
1167 if (PageSlab(page)) {
1168 /*
1169 * If this is a slab page then lets do the best we can
1170 * to avoid issues in the future. Marking all objects
672bba3a 1171 * as used avoids touching the remaining objects.
81819f0f 1172 */
24922684 1173 slab_fix(s, "Marking all objects used");
39b26464 1174 page->inuse = page->objects;
a973e9dd 1175 page->freelist = NULL;
81819f0f
CL
1176 }
1177 return 0;
1178}
1179
becfda68
LA
1180static inline int free_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object, unsigned long addr)
81819f0f 1182{
81819f0f 1183 if (!check_valid_pointer(s, page, object)) {
70d71228 1184 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1185 return 0;
81819f0f
CL
1186 }
1187
1188 if (on_freelist(s, page, object)) {
24922684 1189 object_err(s, page, object, "Object already free");
becfda68 1190 return 0;
81819f0f
CL
1191 }
1192
f7cb1933 1193 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1194 return 0;
81819f0f 1195
1b4f59e3 1196 if (unlikely(s != page->slab_cache)) {
3adbefee 1197 if (!PageSlab(page)) {
756a025f
JP
1198 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1199 object);
1b4f59e3 1200 } else if (!page->slab_cache) {
f9f58285
FF
1201 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1202 object);
70d71228 1203 dump_stack();
06428780 1204 } else
24922684
CL
1205 object_err(s, page, object,
1206 "page slab pointer corrupt.");
becfda68
LA
1207 return 0;
1208 }
1209 return 1;
1210}
1211
1212/* Supports checking bulk free of a constructed freelist */
1213static noinline int free_debug_processing(
1214 struct kmem_cache *s, struct page *page,
1215 void *head, void *tail, int bulk_cnt,
1216 unsigned long addr)
1217{
1218 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1219 void *object = head;
1220 int cnt = 0;
1221 unsigned long uninitialized_var(flags);
1222 int ret = 0;
1223
1224 spin_lock_irqsave(&n->list_lock, flags);
1225 slab_lock(page);
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!check_slab(s, page))
1229 goto out;
1230 }
1231
1232next_object:
1233 cnt++;
1234
1235 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1236 if (!free_consistency_checks(s, page, object, addr))
1237 goto out;
81819f0f 1238 }
3ec09742 1239
3ec09742
CL
1240 if (s->flags & SLAB_STORE_USER)
1241 set_track(s, object, TRACK_FREE, addr);
1242 trace(s, page, object, 0);
81084651 1243 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1244 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1245
1246 /* Reached end of constructed freelist yet? */
1247 if (object != tail) {
1248 object = get_freepointer(s, object);
1249 goto next_object;
1250 }
804aa132
LA
1251 ret = 1;
1252
5c2e4bbb 1253out:
81084651
JDB
1254 if (cnt != bulk_cnt)
1255 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1256 bulk_cnt, cnt);
1257
881db7fb 1258 slab_unlock(page);
282acb43 1259 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1260 if (!ret)
1261 slab_fix(s, "Object at 0x%p not freed", object);
1262 return ret;
81819f0f
CL
1263}
1264
41ecc55b
CL
1265static int __init setup_slub_debug(char *str)
1266{
f0630fff
CL
1267 slub_debug = DEBUG_DEFAULT_FLAGS;
1268 if (*str++ != '=' || !*str)
1269 /*
1270 * No options specified. Switch on full debugging.
1271 */
1272 goto out;
1273
1274 if (*str == ',')
1275 /*
1276 * No options but restriction on slabs. This means full
1277 * debugging for slabs matching a pattern.
1278 */
1279 goto check_slabs;
1280
1281 slub_debug = 0;
1282 if (*str == '-')
1283 /*
1284 * Switch off all debugging measures.
1285 */
1286 goto out;
1287
1288 /*
1289 * Determine which debug features should be switched on
1290 */
06428780 1291 for (; *str && *str != ','; str++) {
f0630fff
CL
1292 switch (tolower(*str)) {
1293 case 'f':
becfda68 1294 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1295 break;
1296 case 'z':
1297 slub_debug |= SLAB_RED_ZONE;
1298 break;
1299 case 'p':
1300 slub_debug |= SLAB_POISON;
1301 break;
1302 case 'u':
1303 slub_debug |= SLAB_STORE_USER;
1304 break;
1305 case 't':
1306 slub_debug |= SLAB_TRACE;
1307 break;
4c13dd3b
DM
1308 case 'a':
1309 slub_debug |= SLAB_FAILSLAB;
1310 break;
08303a73
CA
1311 case 'o':
1312 /*
1313 * Avoid enabling debugging on caches if its minimum
1314 * order would increase as a result.
1315 */
1316 disable_higher_order_debug = 1;
1317 break;
f0630fff 1318 default:
f9f58285
FF
1319 pr_err("slub_debug option '%c' unknown. skipped\n",
1320 *str);
f0630fff 1321 }
41ecc55b
CL
1322 }
1323
f0630fff 1324check_slabs:
41ecc55b
CL
1325 if (*str == ',')
1326 slub_debug_slabs = str + 1;
f0630fff 1327out:
6471384a
AP
1328 if ((static_branch_unlikely(&init_on_alloc) ||
1329 static_branch_unlikely(&init_on_free)) &&
1330 (slub_debug & SLAB_POISON))
1331 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1332 return 1;
1333}
1334
1335__setup("slub_debug", setup_slub_debug);
1336
c5fd3ca0
AT
1337/*
1338 * kmem_cache_flags - apply debugging options to the cache
1339 * @object_size: the size of an object without meta data
1340 * @flags: flags to set
1341 * @name: name of the cache
1342 * @ctor: constructor function
1343 *
1344 * Debug option(s) are applied to @flags. In addition to the debug
1345 * option(s), if a slab name (or multiple) is specified i.e.
1346 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1347 * then only the select slabs will receive the debug option(s).
1348 */
0293d1fd 1349slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1350 slab_flags_t flags, const char *name,
51cc5068 1351 void (*ctor)(void *))
41ecc55b 1352{
c5fd3ca0
AT
1353 char *iter;
1354 size_t len;
1355
1356 /* If slub_debug = 0, it folds into the if conditional. */
1357 if (!slub_debug_slabs)
1358 return flags | slub_debug;
1359
1360 len = strlen(name);
1361 iter = slub_debug_slabs;
1362 while (*iter) {
1363 char *end, *glob;
1364 size_t cmplen;
1365
9cf3a8d8 1366 end = strchrnul(iter, ',');
c5fd3ca0
AT
1367
1368 glob = strnchr(iter, end - iter, '*');
1369 if (glob)
1370 cmplen = glob - iter;
1371 else
1372 cmplen = max_t(size_t, len, (end - iter));
1373
1374 if (!strncmp(name, iter, cmplen)) {
1375 flags |= slub_debug;
1376 break;
1377 }
1378
1379 if (!*end)
1380 break;
1381 iter = end + 1;
1382 }
ba0268a8
CL
1383
1384 return flags;
41ecc55b 1385}
b4a64718 1386#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1387static inline void setup_object_debug(struct kmem_cache *s,
1388 struct page *page, void *object) {}
a50b854e
MWO
1389static inline
1390void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1391
3ec09742 1392static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1393 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1394
282acb43 1395static inline int free_debug_processing(
81084651
JDB
1396 struct kmem_cache *s, struct page *page,
1397 void *head, void *tail, int bulk_cnt,
282acb43 1398 unsigned long addr) { return 0; }
41ecc55b 1399
41ecc55b
CL
1400static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1401 { return 1; }
1402static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1403 void *object, u8 val) { return 1; }
5cc6eee8
CL
1404static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1405 struct page *page) {}
c65c1877
PZ
1406static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1407 struct page *page) {}
0293d1fd 1408slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1409 slab_flags_t flags, const char *name,
51cc5068 1410 void (*ctor)(void *))
ba0268a8
CL
1411{
1412 return flags;
1413}
41ecc55b 1414#define slub_debug 0
0f389ec6 1415
fdaa45e9
IM
1416#define disable_higher_order_debug 0
1417
0f389ec6
CL
1418static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1419 { return 0; }
26c02cf0
AB
1420static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1421 { return 0; }
205ab99d
CL
1422static inline void inc_slabs_node(struct kmem_cache *s, int node,
1423 int objects) {}
1424static inline void dec_slabs_node(struct kmem_cache *s, int node,
1425 int objects) {}
7d550c56 1426
52f23478
DZ
1427static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1428 void *freelist, void *nextfree)
1429{
1430 return false;
1431}
02e72cc6
AR
1432#endif /* CONFIG_SLUB_DEBUG */
1433
1434/*
1435 * Hooks for other subsystems that check memory allocations. In a typical
1436 * production configuration these hooks all should produce no code at all.
1437 */
0116523c 1438static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1439{
53128245 1440 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1441 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1442 kmemleak_alloc(ptr, size, 1, flags);
53128245 1443 return ptr;
d56791b3
RB
1444}
1445
ee3ce779 1446static __always_inline void kfree_hook(void *x)
d56791b3
RB
1447{
1448 kmemleak_free(x);
ee3ce779 1449 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1450}
1451
c3895391 1452static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1453{
1454 kmemleak_free_recursive(x, s->flags);
7d550c56 1455
02e72cc6
AR
1456 /*
1457 * Trouble is that we may no longer disable interrupts in the fast path
1458 * So in order to make the debug calls that expect irqs to be
1459 * disabled we need to disable interrupts temporarily.
1460 */
4675ff05 1461#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1462 {
1463 unsigned long flags;
1464
1465 local_irq_save(flags);
02e72cc6
AR
1466 debug_check_no_locks_freed(x, s->object_size);
1467 local_irq_restore(flags);
1468 }
1469#endif
1470 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1471 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1472
c3895391
AK
1473 /* KASAN might put x into memory quarantine, delaying its reuse */
1474 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1475}
205ab99d 1476
c3895391
AK
1477static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1478 void **head, void **tail)
81084651 1479{
6471384a
AP
1480
1481 void *object;
1482 void *next = *head;
1483 void *old_tail = *tail ? *tail : *head;
1484 int rsize;
1485
aea4df4c
LA
1486 /* Head and tail of the reconstructed freelist */
1487 *head = NULL;
1488 *tail = NULL;
1b7e816f 1489
aea4df4c
LA
1490 do {
1491 object = next;
1492 next = get_freepointer(s, object);
1493
1494 if (slab_want_init_on_free(s)) {
6471384a
AP
1495 /*
1496 * Clear the object and the metadata, but don't touch
1497 * the redzone.
1498 */
1499 memset(object, 0, s->object_size);
1500 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1501 : 0;
1502 memset((char *)object + s->inuse, 0,
1503 s->size - s->inuse - rsize);
81084651 1504
aea4df4c 1505 }
c3895391
AK
1506 /* If object's reuse doesn't have to be delayed */
1507 if (!slab_free_hook(s, object)) {
1508 /* Move object to the new freelist */
1509 set_freepointer(s, object, *head);
1510 *head = object;
1511 if (!*tail)
1512 *tail = object;
1513 }
1514 } while (object != old_tail);
1515
1516 if (*head == *tail)
1517 *tail = NULL;
1518
1519 return *head != NULL;
81084651
JDB
1520}
1521
4d176711 1522static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1523 void *object)
1524{
1525 setup_object_debug(s, page, object);
4d176711 1526 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1527 if (unlikely(s->ctor)) {
1528 kasan_unpoison_object_data(s, object);
1529 s->ctor(object);
1530 kasan_poison_object_data(s, object);
1531 }
4d176711 1532 return object;
588f8ba9
TG
1533}
1534
81819f0f
CL
1535/*
1536 * Slab allocation and freeing
1537 */
5dfb4175
VD
1538static inline struct page *alloc_slab_page(struct kmem_cache *s,
1539 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1540{
5dfb4175 1541 struct page *page;
19af27af 1542 unsigned int order = oo_order(oo);
65c3376a 1543
2154a336 1544 if (node == NUMA_NO_NODE)
5dfb4175 1545 page = alloc_pages(flags, order);
65c3376a 1546 else
96db800f 1547 page = __alloc_pages_node(node, flags, order);
5dfb4175 1548
6cea1d56 1549 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1550 __free_pages(page, order);
1551 page = NULL;
1552 }
5dfb4175
VD
1553
1554 return page;
65c3376a
CL
1555}
1556
210e7a43
TG
1557#ifdef CONFIG_SLAB_FREELIST_RANDOM
1558/* Pre-initialize the random sequence cache */
1559static int init_cache_random_seq(struct kmem_cache *s)
1560{
19af27af 1561 unsigned int count = oo_objects(s->oo);
210e7a43 1562 int err;
210e7a43 1563
a810007a
SR
1564 /* Bailout if already initialised */
1565 if (s->random_seq)
1566 return 0;
1567
210e7a43
TG
1568 err = cache_random_seq_create(s, count, GFP_KERNEL);
1569 if (err) {
1570 pr_err("SLUB: Unable to initialize free list for %s\n",
1571 s->name);
1572 return err;
1573 }
1574
1575 /* Transform to an offset on the set of pages */
1576 if (s->random_seq) {
19af27af
AD
1577 unsigned int i;
1578
210e7a43
TG
1579 for (i = 0; i < count; i++)
1580 s->random_seq[i] *= s->size;
1581 }
1582 return 0;
1583}
1584
1585/* Initialize each random sequence freelist per cache */
1586static void __init init_freelist_randomization(void)
1587{
1588 struct kmem_cache *s;
1589
1590 mutex_lock(&slab_mutex);
1591
1592 list_for_each_entry(s, &slab_caches, list)
1593 init_cache_random_seq(s);
1594
1595 mutex_unlock(&slab_mutex);
1596}
1597
1598/* Get the next entry on the pre-computed freelist randomized */
1599static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1600 unsigned long *pos, void *start,
1601 unsigned long page_limit,
1602 unsigned long freelist_count)
1603{
1604 unsigned int idx;
1605
1606 /*
1607 * If the target page allocation failed, the number of objects on the
1608 * page might be smaller than the usual size defined by the cache.
1609 */
1610 do {
1611 idx = s->random_seq[*pos];
1612 *pos += 1;
1613 if (*pos >= freelist_count)
1614 *pos = 0;
1615 } while (unlikely(idx >= page_limit));
1616
1617 return (char *)start + idx;
1618}
1619
1620/* Shuffle the single linked freelist based on a random pre-computed sequence */
1621static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1622{
1623 void *start;
1624 void *cur;
1625 void *next;
1626 unsigned long idx, pos, page_limit, freelist_count;
1627
1628 if (page->objects < 2 || !s->random_seq)
1629 return false;
1630
1631 freelist_count = oo_objects(s->oo);
1632 pos = get_random_int() % freelist_count;
1633
1634 page_limit = page->objects * s->size;
1635 start = fixup_red_left(s, page_address(page));
1636
1637 /* First entry is used as the base of the freelist */
1638 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1639 freelist_count);
4d176711 1640 cur = setup_object(s, page, cur);
210e7a43
TG
1641 page->freelist = cur;
1642
1643 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1644 next = next_freelist_entry(s, page, &pos, start, page_limit,
1645 freelist_count);
4d176711 1646 next = setup_object(s, page, next);
210e7a43
TG
1647 set_freepointer(s, cur, next);
1648 cur = next;
1649 }
210e7a43
TG
1650 set_freepointer(s, cur, NULL);
1651
1652 return true;
1653}
1654#else
1655static inline int init_cache_random_seq(struct kmem_cache *s)
1656{
1657 return 0;
1658}
1659static inline void init_freelist_randomization(void) { }
1660static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1661{
1662 return false;
1663}
1664#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1665
81819f0f
CL
1666static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1667{
06428780 1668 struct page *page;
834f3d11 1669 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1670 gfp_t alloc_gfp;
4d176711 1671 void *start, *p, *next;
a50b854e 1672 int idx;
210e7a43 1673 bool shuffle;
81819f0f 1674
7e0528da
CL
1675 flags &= gfp_allowed_mask;
1676
d0164adc 1677 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1678 local_irq_enable();
1679
b7a49f0d 1680 flags |= s->allocflags;
e12ba74d 1681
ba52270d
PE
1682 /*
1683 * Let the initial higher-order allocation fail under memory pressure
1684 * so we fall-back to the minimum order allocation.
1685 */
1686 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1687 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1688 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1689
5dfb4175 1690 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1691 if (unlikely(!page)) {
1692 oo = s->min;
80c3a998 1693 alloc_gfp = flags;
65c3376a
CL
1694 /*
1695 * Allocation may have failed due to fragmentation.
1696 * Try a lower order alloc if possible
1697 */
5dfb4175 1698 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1699 if (unlikely(!page))
1700 goto out;
1701 stat(s, ORDER_FALLBACK);
65c3376a 1702 }
5a896d9e 1703
834f3d11 1704 page->objects = oo_objects(oo);
81819f0f 1705
1b4f59e3 1706 page->slab_cache = s;
c03f94cc 1707 __SetPageSlab(page);
2f064f34 1708 if (page_is_pfmemalloc(page))
072bb0aa 1709 SetPageSlabPfmemalloc(page);
81819f0f 1710
a7101224 1711 kasan_poison_slab(page);
81819f0f 1712
a7101224 1713 start = page_address(page);
81819f0f 1714
a50b854e 1715 setup_page_debug(s, page, start);
0316bec2 1716
210e7a43
TG
1717 shuffle = shuffle_freelist(s, page);
1718
1719 if (!shuffle) {
4d176711
AK
1720 start = fixup_red_left(s, start);
1721 start = setup_object(s, page, start);
1722 page->freelist = start;
18e50661
AK
1723 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1724 next = p + s->size;
1725 next = setup_object(s, page, next);
1726 set_freepointer(s, p, next);
1727 p = next;
1728 }
1729 set_freepointer(s, p, NULL);
81819f0f 1730 }
81819f0f 1731
e6e82ea1 1732 page->inuse = page->objects;
8cb0a506 1733 page->frozen = 1;
588f8ba9 1734
81819f0f 1735out:
d0164adc 1736 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1737 local_irq_disable();
1738 if (!page)
1739 return NULL;
1740
588f8ba9
TG
1741 inc_slabs_node(s, page_to_nid(page), page->objects);
1742
81819f0f
CL
1743 return page;
1744}
1745
588f8ba9
TG
1746static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1747{
1748 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1749 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1750 flags &= ~GFP_SLAB_BUG_MASK;
1751 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1752 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1753 dump_stack();
588f8ba9
TG
1754 }
1755
1756 return allocate_slab(s,
1757 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1758}
1759
81819f0f
CL
1760static void __free_slab(struct kmem_cache *s, struct page *page)
1761{
834f3d11
CL
1762 int order = compound_order(page);
1763 int pages = 1 << order;
81819f0f 1764
becfda68 1765 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1766 void *p;
1767
1768 slab_pad_check(s, page);
224a88be
CL
1769 for_each_object(p, s, page_address(page),
1770 page->objects)
f7cb1933 1771 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1772 }
1773
072bb0aa 1774 __ClearPageSlabPfmemalloc(page);
49bd5221 1775 __ClearPageSlab(page);
1f458cbf 1776
d4fc5069 1777 page->mapping = NULL;
1eb5ac64
NP
1778 if (current->reclaim_state)
1779 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1780 uncharge_slab_page(page, order, s);
27ee57c9 1781 __free_pages(page, order);
81819f0f
CL
1782}
1783
1784static void rcu_free_slab(struct rcu_head *h)
1785{
bf68c214 1786 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1787
1b4f59e3 1788 __free_slab(page->slab_cache, page);
81819f0f
CL
1789}
1790
1791static void free_slab(struct kmem_cache *s, struct page *page)
1792{
5f0d5a3a 1793 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1794 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1795 } else
1796 __free_slab(s, page);
1797}
1798
1799static void discard_slab(struct kmem_cache *s, struct page *page)
1800{
205ab99d 1801 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1802 free_slab(s, page);
1803}
1804
1805/*
5cc6eee8 1806 * Management of partially allocated slabs.
81819f0f 1807 */
1e4dd946
SR
1808static inline void
1809__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1810{
e95eed57 1811 n->nr_partial++;
136333d1 1812 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1813 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1814 else
916ac052 1815 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1816}
1817
1e4dd946
SR
1818static inline void add_partial(struct kmem_cache_node *n,
1819 struct page *page, int tail)
62e346a8 1820{
c65c1877 1821 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1822 __add_partial(n, page, tail);
1823}
c65c1877 1824
1e4dd946
SR
1825static inline void remove_partial(struct kmem_cache_node *n,
1826 struct page *page)
1827{
1828 lockdep_assert_held(&n->list_lock);
916ac052 1829 list_del(&page->slab_list);
52b4b950 1830 n->nr_partial--;
1e4dd946
SR
1831}
1832
81819f0f 1833/*
7ced3719
CL
1834 * Remove slab from the partial list, freeze it and
1835 * return the pointer to the freelist.
81819f0f 1836 *
497b66f2 1837 * Returns a list of objects or NULL if it fails.
81819f0f 1838 */
497b66f2 1839static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1840 struct kmem_cache_node *n, struct page *page,
633b0764 1841 int mode, int *objects)
81819f0f 1842{
2cfb7455
CL
1843 void *freelist;
1844 unsigned long counters;
1845 struct page new;
1846
c65c1877
PZ
1847 lockdep_assert_held(&n->list_lock);
1848
2cfb7455
CL
1849 /*
1850 * Zap the freelist and set the frozen bit.
1851 * The old freelist is the list of objects for the
1852 * per cpu allocation list.
1853 */
7ced3719
CL
1854 freelist = page->freelist;
1855 counters = page->counters;
1856 new.counters = counters;
633b0764 1857 *objects = new.objects - new.inuse;
23910c50 1858 if (mode) {
7ced3719 1859 new.inuse = page->objects;
23910c50
PE
1860 new.freelist = NULL;
1861 } else {
1862 new.freelist = freelist;
1863 }
2cfb7455 1864
a0132ac0 1865 VM_BUG_ON(new.frozen);
7ced3719 1866 new.frozen = 1;
2cfb7455 1867
7ced3719 1868 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1869 freelist, counters,
02d7633f 1870 new.freelist, new.counters,
7ced3719 1871 "acquire_slab"))
7ced3719 1872 return NULL;
2cfb7455
CL
1873
1874 remove_partial(n, page);
7ced3719 1875 WARN_ON(!freelist);
49e22585 1876 return freelist;
81819f0f
CL
1877}
1878
633b0764 1879static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1880static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1881
81819f0f 1882/*
672bba3a 1883 * Try to allocate a partial slab from a specific node.
81819f0f 1884 */
8ba00bb6
JK
1885static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1886 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1887{
49e22585
CL
1888 struct page *page, *page2;
1889 void *object = NULL;
e5d9998f 1890 unsigned int available = 0;
633b0764 1891 int objects;
81819f0f
CL
1892
1893 /*
1894 * Racy check. If we mistakenly see no partial slabs then we
1895 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1896 * partial slab and there is none available then get_partials()
1897 * will return NULL.
81819f0f
CL
1898 */
1899 if (!n || !n->nr_partial)
1900 return NULL;
1901
1902 spin_lock(&n->list_lock);
916ac052 1903 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1904 void *t;
49e22585 1905
8ba00bb6
JK
1906 if (!pfmemalloc_match(page, flags))
1907 continue;
1908
633b0764 1909 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1910 if (!t)
1911 break;
1912
633b0764 1913 available += objects;
12d79634 1914 if (!object) {
49e22585 1915 c->page = page;
49e22585 1916 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1917 object = t;
49e22585 1918 } else {
633b0764 1919 put_cpu_partial(s, page, 0);
8028dcea 1920 stat(s, CPU_PARTIAL_NODE);
49e22585 1921 }
345c905d 1922 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1923 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1924 break;
1925
497b66f2 1926 }
81819f0f 1927 spin_unlock(&n->list_lock);
497b66f2 1928 return object;
81819f0f
CL
1929}
1930
1931/*
672bba3a 1932 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1933 */
de3ec035 1934static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1935 struct kmem_cache_cpu *c)
81819f0f
CL
1936{
1937#ifdef CONFIG_NUMA
1938 struct zonelist *zonelist;
dd1a239f 1939 struct zoneref *z;
54a6eb5c
MG
1940 struct zone *zone;
1941 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1942 void *object;
cc9a6c87 1943 unsigned int cpuset_mems_cookie;
81819f0f
CL
1944
1945 /*
672bba3a
CL
1946 * The defrag ratio allows a configuration of the tradeoffs between
1947 * inter node defragmentation and node local allocations. A lower
1948 * defrag_ratio increases the tendency to do local allocations
1949 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1950 *
672bba3a
CL
1951 * If the defrag_ratio is set to 0 then kmalloc() always
1952 * returns node local objects. If the ratio is higher then kmalloc()
1953 * may return off node objects because partial slabs are obtained
1954 * from other nodes and filled up.
81819f0f 1955 *
43efd3ea
LP
1956 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1957 * (which makes defrag_ratio = 1000) then every (well almost)
1958 * allocation will first attempt to defrag slab caches on other nodes.
1959 * This means scanning over all nodes to look for partial slabs which
1960 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1961 * with available objects.
81819f0f 1962 */
9824601e
CL
1963 if (!s->remote_node_defrag_ratio ||
1964 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1965 return NULL;
1966
cc9a6c87 1967 do {
d26914d1 1968 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1969 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1970 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1971 struct kmem_cache_node *n;
1972
1973 n = get_node(s, zone_to_nid(zone));
1974
dee2f8aa 1975 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1976 n->nr_partial > s->min_partial) {
8ba00bb6 1977 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1978 if (object) {
1979 /*
d26914d1
MG
1980 * Don't check read_mems_allowed_retry()
1981 * here - if mems_allowed was updated in
1982 * parallel, that was a harmless race
1983 * between allocation and the cpuset
1984 * update
cc9a6c87 1985 */
cc9a6c87
MG
1986 return object;
1987 }
c0ff7453 1988 }
81819f0f 1989 }
d26914d1 1990 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1991#endif /* CONFIG_NUMA */
81819f0f
CL
1992 return NULL;
1993}
1994
1995/*
1996 * Get a partial page, lock it and return it.
1997 */
497b66f2 1998static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1999 struct kmem_cache_cpu *c)
81819f0f 2000{
497b66f2 2001 void *object;
a561ce00
JK
2002 int searchnode = node;
2003
2004 if (node == NUMA_NO_NODE)
2005 searchnode = numa_mem_id();
81819f0f 2006
8ba00bb6 2007 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2008 if (object || node != NUMA_NO_NODE)
2009 return object;
81819f0f 2010
acd19fd1 2011 return get_any_partial(s, flags, c);
81819f0f
CL
2012}
2013
923717cb 2014#ifdef CONFIG_PREEMPTION
8a5ec0ba
CL
2015/*
2016 * Calculate the next globally unique transaction for disambiguiation
2017 * during cmpxchg. The transactions start with the cpu number and are then
2018 * incremented by CONFIG_NR_CPUS.
2019 */
2020#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2021#else
2022/*
2023 * No preemption supported therefore also no need to check for
2024 * different cpus.
2025 */
2026#define TID_STEP 1
2027#endif
2028
2029static inline unsigned long next_tid(unsigned long tid)
2030{
2031 return tid + TID_STEP;
2032}
2033
9d5f0be0 2034#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2035static inline unsigned int tid_to_cpu(unsigned long tid)
2036{
2037 return tid % TID_STEP;
2038}
2039
2040static inline unsigned long tid_to_event(unsigned long tid)
2041{
2042 return tid / TID_STEP;
2043}
9d5f0be0 2044#endif
8a5ec0ba
CL
2045
2046static inline unsigned int init_tid(int cpu)
2047{
2048 return cpu;
2049}
2050
2051static inline void note_cmpxchg_failure(const char *n,
2052 const struct kmem_cache *s, unsigned long tid)
2053{
2054#ifdef SLUB_DEBUG_CMPXCHG
2055 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2056
f9f58285 2057 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2058
923717cb 2059#ifdef CONFIG_PREEMPTION
8a5ec0ba 2060 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2061 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2062 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2063 else
2064#endif
2065 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2066 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2067 tid_to_event(tid), tid_to_event(actual_tid));
2068 else
f9f58285 2069 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2070 actual_tid, tid, next_tid(tid));
2071#endif
4fdccdfb 2072 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2073}
2074
788e1aad 2075static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2076{
8a5ec0ba
CL
2077 int cpu;
2078
2079 for_each_possible_cpu(cpu)
2080 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2081}
2cfb7455 2082
81819f0f
CL
2083/*
2084 * Remove the cpu slab
2085 */
d0e0ac97 2086static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2087 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2088{
2cfb7455 2089 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2090 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2091 int lock = 0;
2092 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2093 void *nextfree;
136333d1 2094 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2095 struct page new;
2096 struct page old;
2097
2098 if (page->freelist) {
84e554e6 2099 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2100 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2101 }
2102
894b8788 2103 /*
2cfb7455
CL
2104 * Stage one: Free all available per cpu objects back
2105 * to the page freelist while it is still frozen. Leave the
2106 * last one.
2107 *
2108 * There is no need to take the list->lock because the page
2109 * is still frozen.
2110 */
2111 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2112 void *prior;
2113 unsigned long counters;
2114
52f23478
DZ
2115 /*
2116 * If 'nextfree' is invalid, it is possible that the object at
2117 * 'freelist' is already corrupted. So isolate all objects
2118 * starting at 'freelist'.
2119 */
2120 if (freelist_corrupted(s, page, freelist, nextfree))
2121 break;
2122
2cfb7455
CL
2123 do {
2124 prior = page->freelist;
2125 counters = page->counters;
2126 set_freepointer(s, freelist, prior);
2127 new.counters = counters;
2128 new.inuse--;
a0132ac0 2129 VM_BUG_ON(!new.frozen);
2cfb7455 2130
1d07171c 2131 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2132 prior, counters,
2133 freelist, new.counters,
2134 "drain percpu freelist"));
2135
2136 freelist = nextfree;
2137 }
2138
894b8788 2139 /*
2cfb7455
CL
2140 * Stage two: Ensure that the page is unfrozen while the
2141 * list presence reflects the actual number of objects
2142 * during unfreeze.
2143 *
2144 * We setup the list membership and then perform a cmpxchg
2145 * with the count. If there is a mismatch then the page
2146 * is not unfrozen but the page is on the wrong list.
2147 *
2148 * Then we restart the process which may have to remove
2149 * the page from the list that we just put it on again
2150 * because the number of objects in the slab may have
2151 * changed.
894b8788 2152 */
2cfb7455 2153redo:
894b8788 2154
2cfb7455
CL
2155 old.freelist = page->freelist;
2156 old.counters = page->counters;
a0132ac0 2157 VM_BUG_ON(!old.frozen);
7c2e132c 2158
2cfb7455
CL
2159 /* Determine target state of the slab */
2160 new.counters = old.counters;
2161 if (freelist) {
2162 new.inuse--;
2163 set_freepointer(s, freelist, old.freelist);
2164 new.freelist = freelist;
2165 } else
2166 new.freelist = old.freelist;
2167
2168 new.frozen = 0;
2169
8a5b20ae 2170 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2171 m = M_FREE;
2172 else if (new.freelist) {
2173 m = M_PARTIAL;
2174 if (!lock) {
2175 lock = 1;
2176 /*
8bb4e7a2 2177 * Taking the spinlock removes the possibility
2cfb7455
CL
2178 * that acquire_slab() will see a slab page that
2179 * is frozen
2180 */
2181 spin_lock(&n->list_lock);
2182 }
2183 } else {
2184 m = M_FULL;
2185 if (kmem_cache_debug(s) && !lock) {
2186 lock = 1;
2187 /*
2188 * This also ensures that the scanning of full
2189 * slabs from diagnostic functions will not see
2190 * any frozen slabs.
2191 */
2192 spin_lock(&n->list_lock);
2193 }
2194 }
2195
2196 if (l != m) {
2cfb7455 2197 if (l == M_PARTIAL)
2cfb7455 2198 remove_partial(n, page);
2cfb7455 2199 else if (l == M_FULL)
c65c1877 2200 remove_full(s, n, page);
2cfb7455 2201
88349a28 2202 if (m == M_PARTIAL)
2cfb7455 2203 add_partial(n, page, tail);
88349a28 2204 else if (m == M_FULL)
2cfb7455 2205 add_full(s, n, page);
2cfb7455
CL
2206 }
2207
2208 l = m;
1d07171c 2209 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2210 old.freelist, old.counters,
2211 new.freelist, new.counters,
2212 "unfreezing slab"))
2213 goto redo;
2214
2cfb7455
CL
2215 if (lock)
2216 spin_unlock(&n->list_lock);
2217
88349a28
WY
2218 if (m == M_PARTIAL)
2219 stat(s, tail);
2220 else if (m == M_FULL)
2221 stat(s, DEACTIVATE_FULL);
2222 else if (m == M_FREE) {
2cfb7455
CL
2223 stat(s, DEACTIVATE_EMPTY);
2224 discard_slab(s, page);
2225 stat(s, FREE_SLAB);
894b8788 2226 }
d4ff6d35
WY
2227
2228 c->page = NULL;
2229 c->freelist = NULL;
81819f0f
CL
2230}
2231
d24ac77f
JK
2232/*
2233 * Unfreeze all the cpu partial slabs.
2234 *
59a09917
CL
2235 * This function must be called with interrupts disabled
2236 * for the cpu using c (or some other guarantee must be there
2237 * to guarantee no concurrent accesses).
d24ac77f 2238 */
59a09917
CL
2239static void unfreeze_partials(struct kmem_cache *s,
2240 struct kmem_cache_cpu *c)
49e22585 2241{
345c905d 2242#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2243 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2244 struct page *page, *discard_page = NULL;
49e22585 2245
4c7ba22e 2246 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2247 struct page new;
2248 struct page old;
2249
4c7ba22e 2250 slub_set_percpu_partial(c, page);
43d77867
JK
2251
2252 n2 = get_node(s, page_to_nid(page));
2253 if (n != n2) {
2254 if (n)
2255 spin_unlock(&n->list_lock);
2256
2257 n = n2;
2258 spin_lock(&n->list_lock);
2259 }
49e22585
CL
2260
2261 do {
2262
2263 old.freelist = page->freelist;
2264 old.counters = page->counters;
a0132ac0 2265 VM_BUG_ON(!old.frozen);
49e22585
CL
2266
2267 new.counters = old.counters;
2268 new.freelist = old.freelist;
2269
2270 new.frozen = 0;
2271
d24ac77f 2272 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2273 old.freelist, old.counters,
2274 new.freelist, new.counters,
2275 "unfreezing slab"));
2276
8a5b20ae 2277 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2278 page->next = discard_page;
2279 discard_page = page;
43d77867
JK
2280 } else {
2281 add_partial(n, page, DEACTIVATE_TO_TAIL);
2282 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2283 }
2284 }
2285
2286 if (n)
2287 spin_unlock(&n->list_lock);
9ada1934
SL
2288
2289 while (discard_page) {
2290 page = discard_page;
2291 discard_page = discard_page->next;
2292
2293 stat(s, DEACTIVATE_EMPTY);
2294 discard_slab(s, page);
2295 stat(s, FREE_SLAB);
2296 }
6dfd1b65 2297#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2298}
2299
2300/*
9234bae9
WY
2301 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2302 * partial page slot if available.
49e22585
CL
2303 *
2304 * If we did not find a slot then simply move all the partials to the
2305 * per node partial list.
2306 */
633b0764 2307static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2308{
345c905d 2309#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2310 struct page *oldpage;
2311 int pages;
2312 int pobjects;
2313
d6e0b7fa 2314 preempt_disable();
49e22585
CL
2315 do {
2316 pages = 0;
2317 pobjects = 0;
2318 oldpage = this_cpu_read(s->cpu_slab->partial);
2319
2320 if (oldpage) {
2321 pobjects = oldpage->pobjects;
2322 pages = oldpage->pages;
bbd4e305 2323 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2324 unsigned long flags;
2325 /*
2326 * partial array is full. Move the existing
2327 * set to the per node partial list.
2328 */
2329 local_irq_save(flags);
59a09917 2330 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2331 local_irq_restore(flags);
e24fc410 2332 oldpage = NULL;
49e22585
CL
2333 pobjects = 0;
2334 pages = 0;
8028dcea 2335 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2336 }
2337 }
2338
2339 pages++;
2340 pobjects += page->objects - page->inuse;
2341
2342 page->pages = pages;
2343 page->pobjects = pobjects;
2344 page->next = oldpage;
2345
d0e0ac97
CG
2346 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2347 != oldpage);
bbd4e305 2348 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2349 unsigned long flags;
2350
2351 local_irq_save(flags);
2352 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2353 local_irq_restore(flags);
2354 }
2355 preempt_enable();
6dfd1b65 2356#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2357}
2358
dfb4f096 2359static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2360{
84e554e6 2361 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2362 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2363
2364 c->tid = next_tid(c->tid);
81819f0f
CL
2365}
2366
2367/*
2368 * Flush cpu slab.
6446faa2 2369 *
81819f0f
CL
2370 * Called from IPI handler with interrupts disabled.
2371 */
0c710013 2372static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2373{
9dfc6e68 2374 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2375
1265ef2d
WY
2376 if (c->page)
2377 flush_slab(s, c);
49e22585 2378
1265ef2d 2379 unfreeze_partials(s, c);
81819f0f
CL
2380}
2381
2382static void flush_cpu_slab(void *d)
2383{
2384 struct kmem_cache *s = d;
81819f0f 2385
dfb4f096 2386 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2387}
2388
a8364d55
GBY
2389static bool has_cpu_slab(int cpu, void *info)
2390{
2391 struct kmem_cache *s = info;
2392 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2393
a93cf07b 2394 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2395}
2396
81819f0f
CL
2397static void flush_all(struct kmem_cache *s)
2398{
cb923159 2399 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2400}
2401
a96a87bf
SAS
2402/*
2403 * Use the cpu notifier to insure that the cpu slabs are flushed when
2404 * necessary.
2405 */
2406static int slub_cpu_dead(unsigned int cpu)
2407{
2408 struct kmem_cache *s;
2409 unsigned long flags;
2410
2411 mutex_lock(&slab_mutex);
2412 list_for_each_entry(s, &slab_caches, list) {
2413 local_irq_save(flags);
2414 __flush_cpu_slab(s, cpu);
2415 local_irq_restore(flags);
2416 }
2417 mutex_unlock(&slab_mutex);
2418 return 0;
2419}
2420
dfb4f096
CL
2421/*
2422 * Check if the objects in a per cpu structure fit numa
2423 * locality expectations.
2424 */
57d437d2 2425static inline int node_match(struct page *page, int node)
dfb4f096
CL
2426{
2427#ifdef CONFIG_NUMA
6159d0f5 2428 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2429 return 0;
2430#endif
2431 return 1;
2432}
2433
9a02d699 2434#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2435static int count_free(struct page *page)
2436{
2437 return page->objects - page->inuse;
2438}
2439
9a02d699
DR
2440static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2441{
2442 return atomic_long_read(&n->total_objects);
2443}
2444#endif /* CONFIG_SLUB_DEBUG */
2445
2446#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2447static unsigned long count_partial(struct kmem_cache_node *n,
2448 int (*get_count)(struct page *))
2449{
2450 unsigned long flags;
2451 unsigned long x = 0;
2452 struct page *page;
2453
2454 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2455 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2456 x += get_count(page);
2457 spin_unlock_irqrestore(&n->list_lock, flags);
2458 return x;
2459}
9a02d699 2460#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2461
781b2ba6
PE
2462static noinline void
2463slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2464{
9a02d699
DR
2465#ifdef CONFIG_SLUB_DEBUG
2466 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2467 DEFAULT_RATELIMIT_BURST);
781b2ba6 2468 int node;
fa45dc25 2469 struct kmem_cache_node *n;
781b2ba6 2470
9a02d699
DR
2471 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2472 return;
2473
5b3810e5
VB
2474 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2475 nid, gfpflags, &gfpflags);
19af27af 2476 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2477 s->name, s->object_size, s->size, oo_order(s->oo),
2478 oo_order(s->min));
781b2ba6 2479
3b0efdfa 2480 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2481 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2482 s->name);
fa5ec8a1 2483
fa45dc25 2484 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2485 unsigned long nr_slabs;
2486 unsigned long nr_objs;
2487 unsigned long nr_free;
2488
26c02cf0
AB
2489 nr_free = count_partial(n, count_free);
2490 nr_slabs = node_nr_slabs(n);
2491 nr_objs = node_nr_objs(n);
781b2ba6 2492
f9f58285 2493 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2494 node, nr_slabs, nr_objs, nr_free);
2495 }
9a02d699 2496#endif
781b2ba6
PE
2497}
2498
497b66f2
CL
2499static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2500 int node, struct kmem_cache_cpu **pc)
2501{
6faa6833 2502 void *freelist;
188fd063
CL
2503 struct kmem_cache_cpu *c = *pc;
2504 struct page *page;
497b66f2 2505
128227e7
MW
2506 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2507
188fd063 2508 freelist = get_partial(s, flags, node, c);
497b66f2 2509
188fd063
CL
2510 if (freelist)
2511 return freelist;
2512
2513 page = new_slab(s, flags, node);
497b66f2 2514 if (page) {
7c8e0181 2515 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2516 if (c->page)
2517 flush_slab(s, c);
2518
2519 /*
2520 * No other reference to the page yet so we can
2521 * muck around with it freely without cmpxchg
2522 */
6faa6833 2523 freelist = page->freelist;
497b66f2
CL
2524 page->freelist = NULL;
2525
2526 stat(s, ALLOC_SLAB);
497b66f2
CL
2527 c->page = page;
2528 *pc = c;
edde82b6 2529 }
497b66f2 2530
6faa6833 2531 return freelist;
497b66f2
CL
2532}
2533
072bb0aa
MG
2534static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2535{
2536 if (unlikely(PageSlabPfmemalloc(page)))
2537 return gfp_pfmemalloc_allowed(gfpflags);
2538
2539 return true;
2540}
2541
213eeb9f 2542/*
d0e0ac97
CG
2543 * Check the page->freelist of a page and either transfer the freelist to the
2544 * per cpu freelist or deactivate the page.
213eeb9f
CL
2545 *
2546 * The page is still frozen if the return value is not NULL.
2547 *
2548 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2549 *
2550 * This function must be called with interrupt disabled.
213eeb9f
CL
2551 */
2552static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2553{
2554 struct page new;
2555 unsigned long counters;
2556 void *freelist;
2557
2558 do {
2559 freelist = page->freelist;
2560 counters = page->counters;
6faa6833 2561
213eeb9f 2562 new.counters = counters;
a0132ac0 2563 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2564
2565 new.inuse = page->objects;
2566 new.frozen = freelist != NULL;
2567
d24ac77f 2568 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2569 freelist, counters,
2570 NULL, new.counters,
2571 "get_freelist"));
2572
2573 return freelist;
2574}
2575
81819f0f 2576/*
894b8788
CL
2577 * Slow path. The lockless freelist is empty or we need to perform
2578 * debugging duties.
2579 *
894b8788
CL
2580 * Processing is still very fast if new objects have been freed to the
2581 * regular freelist. In that case we simply take over the regular freelist
2582 * as the lockless freelist and zap the regular freelist.
81819f0f 2583 *
894b8788
CL
2584 * If that is not working then we fall back to the partial lists. We take the
2585 * first element of the freelist as the object to allocate now and move the
2586 * rest of the freelist to the lockless freelist.
81819f0f 2587 *
894b8788 2588 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2589 * we need to allocate a new slab. This is the slowest path since it involves
2590 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2591 *
2592 * Version of __slab_alloc to use when we know that interrupts are
2593 * already disabled (which is the case for bulk allocation).
81819f0f 2594 */
a380a3c7 2595static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2596 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2597{
6faa6833 2598 void *freelist;
f6e7def7 2599 struct page *page;
81819f0f 2600
f6e7def7 2601 page = c->page;
0715e6c5
VB
2602 if (!page) {
2603 /*
2604 * if the node is not online or has no normal memory, just
2605 * ignore the node constraint
2606 */
2607 if (unlikely(node != NUMA_NO_NODE &&
2608 !node_state(node, N_NORMAL_MEMORY)))
2609 node = NUMA_NO_NODE;
81819f0f 2610 goto new_slab;
0715e6c5 2611 }
49e22585 2612redo:
6faa6833 2613
57d437d2 2614 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2615 /*
2616 * same as above but node_match() being false already
2617 * implies node != NUMA_NO_NODE
2618 */
2619 if (!node_state(node, N_NORMAL_MEMORY)) {
2620 node = NUMA_NO_NODE;
2621 goto redo;
2622 } else {
a561ce00 2623 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2624 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2625 goto new_slab;
2626 }
fc59c053 2627 }
6446faa2 2628
072bb0aa
MG
2629 /*
2630 * By rights, we should be searching for a slab page that was
2631 * PFMEMALLOC but right now, we are losing the pfmemalloc
2632 * information when the page leaves the per-cpu allocator
2633 */
2634 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2635 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2636 goto new_slab;
2637 }
2638
73736e03 2639 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2640 freelist = c->freelist;
2641 if (freelist)
73736e03 2642 goto load_freelist;
03e404af 2643
f6e7def7 2644 freelist = get_freelist(s, page);
6446faa2 2645
6faa6833 2646 if (!freelist) {
03e404af
CL
2647 c->page = NULL;
2648 stat(s, DEACTIVATE_BYPASS);
fc59c053 2649 goto new_slab;
03e404af 2650 }
6446faa2 2651
84e554e6 2652 stat(s, ALLOC_REFILL);
6446faa2 2653
894b8788 2654load_freelist:
507effea
CL
2655 /*
2656 * freelist is pointing to the list of objects to be used.
2657 * page is pointing to the page from which the objects are obtained.
2658 * That page must be frozen for per cpu allocations to work.
2659 */
a0132ac0 2660 VM_BUG_ON(!c->page->frozen);
6faa6833 2661 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2662 c->tid = next_tid(c->tid);
6faa6833 2663 return freelist;
81819f0f 2664
81819f0f 2665new_slab:
2cfb7455 2666
a93cf07b
WY
2667 if (slub_percpu_partial(c)) {
2668 page = c->page = slub_percpu_partial(c);
2669 slub_set_percpu_partial(c, page);
49e22585 2670 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2671 goto redo;
81819f0f
CL
2672 }
2673
188fd063 2674 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2675
f4697436 2676 if (unlikely(!freelist)) {
9a02d699 2677 slab_out_of_memory(s, gfpflags, node);
f4697436 2678 return NULL;
81819f0f 2679 }
2cfb7455 2680
f6e7def7 2681 page = c->page;
5091b74a 2682 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2683 goto load_freelist;
2cfb7455 2684
497b66f2 2685 /* Only entered in the debug case */
d0e0ac97
CG
2686 if (kmem_cache_debug(s) &&
2687 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2688 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2689
d4ff6d35 2690 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2691 return freelist;
894b8788
CL
2692}
2693
a380a3c7
CL
2694/*
2695 * Another one that disabled interrupt and compensates for possible
2696 * cpu changes by refetching the per cpu area pointer.
2697 */
2698static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2699 unsigned long addr, struct kmem_cache_cpu *c)
2700{
2701 void *p;
2702 unsigned long flags;
2703
2704 local_irq_save(flags);
923717cb 2705#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2706 /*
2707 * We may have been preempted and rescheduled on a different
2708 * cpu before disabling interrupts. Need to reload cpu area
2709 * pointer.
2710 */
2711 c = this_cpu_ptr(s->cpu_slab);
2712#endif
2713
2714 p = ___slab_alloc(s, gfpflags, node, addr, c);
2715 local_irq_restore(flags);
2716 return p;
2717}
2718
0f181f9f
AP
2719/*
2720 * If the object has been wiped upon free, make sure it's fully initialized by
2721 * zeroing out freelist pointer.
2722 */
2723static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2724 void *obj)
2725{
2726 if (unlikely(slab_want_init_on_free(s)) && obj)
2727 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2728}
2729
894b8788
CL
2730/*
2731 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2732 * have the fastpath folded into their functions. So no function call
2733 * overhead for requests that can be satisfied on the fastpath.
2734 *
2735 * The fastpath works by first checking if the lockless freelist can be used.
2736 * If not then __slab_alloc is called for slow processing.
2737 *
2738 * Otherwise we can simply pick the next object from the lockless free list.
2739 */
2b847c3c 2740static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2741 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2742{
03ec0ed5 2743 void *object;
dfb4f096 2744 struct kmem_cache_cpu *c;
57d437d2 2745 struct page *page;
8a5ec0ba 2746 unsigned long tid;
1f84260c 2747
8135be5a
VD
2748 s = slab_pre_alloc_hook(s, gfpflags);
2749 if (!s)
773ff60e 2750 return NULL;
8a5ec0ba 2751redo:
8a5ec0ba
CL
2752 /*
2753 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2754 * enabled. We may switch back and forth between cpus while
2755 * reading from one cpu area. That does not matter as long
2756 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2757 *
9aabf810 2758 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2759 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2760 * to check if it is matched or not.
8a5ec0ba 2761 */
9aabf810
JK
2762 do {
2763 tid = this_cpu_read(s->cpu_slab->tid);
2764 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2765 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2766 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2767
2768 /*
2769 * Irqless object alloc/free algorithm used here depends on sequence
2770 * of fetching cpu_slab's data. tid should be fetched before anything
2771 * on c to guarantee that object and page associated with previous tid
2772 * won't be used with current tid. If we fetch tid first, object and
2773 * page could be one associated with next tid and our alloc/free
2774 * request will be failed. In this case, we will retry. So, no problem.
2775 */
2776 barrier();
8a5ec0ba 2777
8a5ec0ba
CL
2778 /*
2779 * The transaction ids are globally unique per cpu and per operation on
2780 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2781 * occurs on the right processor and that there was no operation on the
2782 * linked list in between.
2783 */
8a5ec0ba 2784
9dfc6e68 2785 object = c->freelist;
57d437d2 2786 page = c->page;
8eae1492 2787 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2788 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2789 stat(s, ALLOC_SLOWPATH);
2790 } else {
0ad9500e
ED
2791 void *next_object = get_freepointer_safe(s, object);
2792
8a5ec0ba 2793 /*
25985edc 2794 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2795 * operation and if we are on the right processor.
2796 *
d0e0ac97
CG
2797 * The cmpxchg does the following atomically (without lock
2798 * semantics!)
8a5ec0ba
CL
2799 * 1. Relocate first pointer to the current per cpu area.
2800 * 2. Verify that tid and freelist have not been changed
2801 * 3. If they were not changed replace tid and freelist
2802 *
d0e0ac97
CG
2803 * Since this is without lock semantics the protection is only
2804 * against code executing on this cpu *not* from access by
2805 * other cpus.
8a5ec0ba 2806 */
933393f5 2807 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2808 s->cpu_slab->freelist, s->cpu_slab->tid,
2809 object, tid,
0ad9500e 2810 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2811
2812 note_cmpxchg_failure("slab_alloc", s, tid);
2813 goto redo;
2814 }
0ad9500e 2815 prefetch_freepointer(s, next_object);
84e554e6 2816 stat(s, ALLOC_FASTPATH);
894b8788 2817 }
0f181f9f
AP
2818
2819 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2820
6471384a 2821 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2822 memset(object, 0, s->object_size);
d07dbea4 2823
03ec0ed5 2824 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2825
894b8788 2826 return object;
81819f0f
CL
2827}
2828
2b847c3c
EG
2829static __always_inline void *slab_alloc(struct kmem_cache *s,
2830 gfp_t gfpflags, unsigned long addr)
2831{
2832 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2833}
2834
81819f0f
CL
2835void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2836{
2b847c3c 2837 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2838
d0e0ac97
CG
2839 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2840 s->size, gfpflags);
5b882be4
EGM
2841
2842 return ret;
81819f0f
CL
2843}
2844EXPORT_SYMBOL(kmem_cache_alloc);
2845
0f24f128 2846#ifdef CONFIG_TRACING
4a92379b
RK
2847void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2848{
2b847c3c 2849 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2850 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2851 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2852 return ret;
2853}
2854EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2855#endif
2856
81819f0f
CL
2857#ifdef CONFIG_NUMA
2858void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2859{
2b847c3c 2860 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2861
ca2b84cb 2862 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2863 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2864
2865 return ret;
81819f0f
CL
2866}
2867EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2868
0f24f128 2869#ifdef CONFIG_TRACING
4a92379b 2870void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2871 gfp_t gfpflags,
4a92379b 2872 int node, size_t size)
5b882be4 2873{
2b847c3c 2874 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2875
2876 trace_kmalloc_node(_RET_IP_, ret,
2877 size, s->size, gfpflags, node);
0316bec2 2878
0116523c 2879 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2880 return ret;
5b882be4 2881}
4a92379b 2882EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2883#endif
6dfd1b65 2884#endif /* CONFIG_NUMA */
5b882be4 2885
81819f0f 2886/*
94e4d712 2887 * Slow path handling. This may still be called frequently since objects
894b8788 2888 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2889 *
894b8788
CL
2890 * So we still attempt to reduce cache line usage. Just take the slab
2891 * lock and free the item. If there is no additional partial page
2892 * handling required then we can return immediately.
81819f0f 2893 */
894b8788 2894static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2895 void *head, void *tail, int cnt,
2896 unsigned long addr)
2897
81819f0f
CL
2898{
2899 void *prior;
2cfb7455 2900 int was_frozen;
2cfb7455
CL
2901 struct page new;
2902 unsigned long counters;
2903 struct kmem_cache_node *n = NULL;
61728d1e 2904 unsigned long uninitialized_var(flags);
81819f0f 2905
8a5ec0ba 2906 stat(s, FREE_SLOWPATH);
81819f0f 2907
19c7ff9e 2908 if (kmem_cache_debug(s) &&
282acb43 2909 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2910 return;
6446faa2 2911
2cfb7455 2912 do {
837d678d
JK
2913 if (unlikely(n)) {
2914 spin_unlock_irqrestore(&n->list_lock, flags);
2915 n = NULL;
2916 }
2cfb7455
CL
2917 prior = page->freelist;
2918 counters = page->counters;
81084651 2919 set_freepointer(s, tail, prior);
2cfb7455
CL
2920 new.counters = counters;
2921 was_frozen = new.frozen;
81084651 2922 new.inuse -= cnt;
837d678d 2923 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2924
c65c1877 2925 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2926
2927 /*
d0e0ac97
CG
2928 * Slab was on no list before and will be
2929 * partially empty
2930 * We can defer the list move and instead
2931 * freeze it.
49e22585
CL
2932 */
2933 new.frozen = 1;
2934
c65c1877 2935 } else { /* Needs to be taken off a list */
49e22585 2936
b455def2 2937 n = get_node(s, page_to_nid(page));
49e22585
CL
2938 /*
2939 * Speculatively acquire the list_lock.
2940 * If the cmpxchg does not succeed then we may
2941 * drop the list_lock without any processing.
2942 *
2943 * Otherwise the list_lock will synchronize with
2944 * other processors updating the list of slabs.
2945 */
2946 spin_lock_irqsave(&n->list_lock, flags);
2947
2948 }
2cfb7455 2949 }
81819f0f 2950
2cfb7455
CL
2951 } while (!cmpxchg_double_slab(s, page,
2952 prior, counters,
81084651 2953 head, new.counters,
2cfb7455 2954 "__slab_free"));
81819f0f 2955
2cfb7455 2956 if (likely(!n)) {
49e22585
CL
2957
2958 /*
2959 * If we just froze the page then put it onto the
2960 * per cpu partial list.
2961 */
8028dcea 2962 if (new.frozen && !was_frozen) {
49e22585 2963 put_cpu_partial(s, page, 1);
8028dcea
AS
2964 stat(s, CPU_PARTIAL_FREE);
2965 }
49e22585 2966 /*
2cfb7455
CL
2967 * The list lock was not taken therefore no list
2968 * activity can be necessary.
2969 */
b455def2
L
2970 if (was_frozen)
2971 stat(s, FREE_FROZEN);
2972 return;
2973 }
81819f0f 2974
8a5b20ae 2975 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2976 goto slab_empty;
2977
81819f0f 2978 /*
837d678d
JK
2979 * Objects left in the slab. If it was not on the partial list before
2980 * then add it.
81819f0f 2981 */
345c905d 2982 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2983 remove_full(s, n, page);
837d678d
JK
2984 add_partial(n, page, DEACTIVATE_TO_TAIL);
2985 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2986 }
80f08c19 2987 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2988 return;
2989
2990slab_empty:
a973e9dd 2991 if (prior) {
81819f0f 2992 /*
6fbabb20 2993 * Slab on the partial list.
81819f0f 2994 */
5cc6eee8 2995 remove_partial(n, page);
84e554e6 2996 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2997 } else {
6fbabb20 2998 /* Slab must be on the full list */
c65c1877
PZ
2999 remove_full(s, n, page);
3000 }
2cfb7455 3001
80f08c19 3002 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3003 stat(s, FREE_SLAB);
81819f0f 3004 discard_slab(s, page);
81819f0f
CL
3005}
3006
894b8788
CL
3007/*
3008 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3009 * can perform fastpath freeing without additional function calls.
3010 *
3011 * The fastpath is only possible if we are freeing to the current cpu slab
3012 * of this processor. This typically the case if we have just allocated
3013 * the item before.
3014 *
3015 * If fastpath is not possible then fall back to __slab_free where we deal
3016 * with all sorts of special processing.
81084651
JDB
3017 *
3018 * Bulk free of a freelist with several objects (all pointing to the
3019 * same page) possible by specifying head and tail ptr, plus objects
3020 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3021 */
80a9201a
AP
3022static __always_inline void do_slab_free(struct kmem_cache *s,
3023 struct page *page, void *head, void *tail,
3024 int cnt, unsigned long addr)
894b8788 3025{
81084651 3026 void *tail_obj = tail ? : head;
dfb4f096 3027 struct kmem_cache_cpu *c;
8a5ec0ba 3028 unsigned long tid;
8a5ec0ba
CL
3029redo:
3030 /*
3031 * Determine the currently cpus per cpu slab.
3032 * The cpu may change afterward. However that does not matter since
3033 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3034 * during the cmpxchg then the free will succeed.
8a5ec0ba 3035 */
9aabf810
JK
3036 do {
3037 tid = this_cpu_read(s->cpu_slab->tid);
3038 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3039 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3040 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3041
9aabf810
JK
3042 /* Same with comment on barrier() in slab_alloc_node() */
3043 barrier();
c016b0bd 3044
442b06bc 3045 if (likely(page == c->page)) {
5076190d
LT
3046 void **freelist = READ_ONCE(c->freelist);
3047
3048 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3049
933393f5 3050 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3051 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3052 freelist, tid,
81084651 3053 head, next_tid(tid)))) {
8a5ec0ba
CL
3054
3055 note_cmpxchg_failure("slab_free", s, tid);
3056 goto redo;
3057 }
84e554e6 3058 stat(s, FREE_FASTPATH);
894b8788 3059 } else
81084651 3060 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3061
894b8788
CL
3062}
3063
80a9201a
AP
3064static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3065 void *head, void *tail, int cnt,
3066 unsigned long addr)
3067{
80a9201a 3068 /*
c3895391
AK
3069 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3070 * to remove objects, whose reuse must be delayed.
80a9201a 3071 */
c3895391
AK
3072 if (slab_free_freelist_hook(s, &head, &tail))
3073 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3074}
3075
2bd926b4 3076#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3077void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3078{
3079 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3080}
3081#endif
3082
81819f0f
CL
3083void kmem_cache_free(struct kmem_cache *s, void *x)
3084{
b9ce5ef4
GC
3085 s = cache_from_obj(s, x);
3086 if (!s)
79576102 3087 return;
81084651 3088 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3089 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3090}
3091EXPORT_SYMBOL(kmem_cache_free);
3092
d0ecd894 3093struct detached_freelist {
fbd02630 3094 struct page *page;
d0ecd894
JDB
3095 void *tail;
3096 void *freelist;
3097 int cnt;
376bf125 3098 struct kmem_cache *s;
d0ecd894 3099};
fbd02630 3100
d0ecd894
JDB
3101/*
3102 * This function progressively scans the array with free objects (with
3103 * a limited look ahead) and extract objects belonging to the same
3104 * page. It builds a detached freelist directly within the given
3105 * page/objects. This can happen without any need for
3106 * synchronization, because the objects are owned by running process.
3107 * The freelist is build up as a single linked list in the objects.
3108 * The idea is, that this detached freelist can then be bulk
3109 * transferred to the real freelist(s), but only requiring a single
3110 * synchronization primitive. Look ahead in the array is limited due
3111 * to performance reasons.
3112 */
376bf125
JDB
3113static inline
3114int build_detached_freelist(struct kmem_cache *s, size_t size,
3115 void **p, struct detached_freelist *df)
d0ecd894
JDB
3116{
3117 size_t first_skipped_index = 0;
3118 int lookahead = 3;
3119 void *object;
ca257195 3120 struct page *page;
fbd02630 3121
d0ecd894
JDB
3122 /* Always re-init detached_freelist */
3123 df->page = NULL;
fbd02630 3124
d0ecd894
JDB
3125 do {
3126 object = p[--size];
ca257195 3127 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3128 } while (!object && size);
3eed034d 3129
d0ecd894
JDB
3130 if (!object)
3131 return 0;
fbd02630 3132
ca257195
JDB
3133 page = virt_to_head_page(object);
3134 if (!s) {
3135 /* Handle kalloc'ed objects */
3136 if (unlikely(!PageSlab(page))) {
3137 BUG_ON(!PageCompound(page));
3138 kfree_hook(object);
4949148a 3139 __free_pages(page, compound_order(page));
ca257195
JDB
3140 p[size] = NULL; /* mark object processed */
3141 return size;
3142 }
3143 /* Derive kmem_cache from object */
3144 df->s = page->slab_cache;
3145 } else {
3146 df->s = cache_from_obj(s, object); /* Support for memcg */
3147 }
376bf125 3148
d0ecd894 3149 /* Start new detached freelist */
ca257195 3150 df->page = page;
376bf125 3151 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3152 df->tail = object;
3153 df->freelist = object;
3154 p[size] = NULL; /* mark object processed */
3155 df->cnt = 1;
3156
3157 while (size) {
3158 object = p[--size];
3159 if (!object)
3160 continue; /* Skip processed objects */
3161
3162 /* df->page is always set at this point */
3163 if (df->page == virt_to_head_page(object)) {
3164 /* Opportunity build freelist */
376bf125 3165 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3166 df->freelist = object;
3167 df->cnt++;
3168 p[size] = NULL; /* mark object processed */
3169
3170 continue;
fbd02630 3171 }
d0ecd894
JDB
3172
3173 /* Limit look ahead search */
3174 if (!--lookahead)
3175 break;
3176
3177 if (!first_skipped_index)
3178 first_skipped_index = size + 1;
fbd02630 3179 }
d0ecd894
JDB
3180
3181 return first_skipped_index;
3182}
3183
d0ecd894 3184/* Note that interrupts must be enabled when calling this function. */
376bf125 3185void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3186{
3187 if (WARN_ON(!size))
3188 return;
3189
3190 do {
3191 struct detached_freelist df;
3192
3193 size = build_detached_freelist(s, size, p, &df);
84582c8a 3194 if (!df.page)
d0ecd894
JDB
3195 continue;
3196
376bf125 3197 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3198 } while (likely(size));
484748f0
CL
3199}
3200EXPORT_SYMBOL(kmem_cache_free_bulk);
3201
994eb764 3202/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3203int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3204 void **p)
484748f0 3205{
994eb764
JDB
3206 struct kmem_cache_cpu *c;
3207 int i;
3208
03ec0ed5
JDB
3209 /* memcg and kmem_cache debug support */
3210 s = slab_pre_alloc_hook(s, flags);
3211 if (unlikely(!s))
3212 return false;
994eb764
JDB
3213 /*
3214 * Drain objects in the per cpu slab, while disabling local
3215 * IRQs, which protects against PREEMPT and interrupts
3216 * handlers invoking normal fastpath.
3217 */
3218 local_irq_disable();
3219 c = this_cpu_ptr(s->cpu_slab);
3220
3221 for (i = 0; i < size; i++) {
3222 void *object = c->freelist;
3223
ebe909e0 3224 if (unlikely(!object)) {
fd4d9c7d
JH
3225 /*
3226 * We may have removed an object from c->freelist using
3227 * the fastpath in the previous iteration; in that case,
3228 * c->tid has not been bumped yet.
3229 * Since ___slab_alloc() may reenable interrupts while
3230 * allocating memory, we should bump c->tid now.
3231 */
3232 c->tid = next_tid(c->tid);
3233
ebe909e0
JDB
3234 /*
3235 * Invoking slow path likely have side-effect
3236 * of re-populating per CPU c->freelist
3237 */
87098373 3238 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3239 _RET_IP_, c);
87098373
CL
3240 if (unlikely(!p[i]))
3241 goto error;
3242
ebe909e0 3243 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3244 maybe_wipe_obj_freeptr(s, p[i]);
3245
ebe909e0
JDB
3246 continue; /* goto for-loop */
3247 }
994eb764
JDB
3248 c->freelist = get_freepointer(s, object);
3249 p[i] = object;
0f181f9f 3250 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3251 }
3252 c->tid = next_tid(c->tid);
3253 local_irq_enable();
3254
3255 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3256 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3257 int j;
3258
3259 for (j = 0; j < i; j++)
3260 memset(p[j], 0, s->object_size);
3261 }
3262
03ec0ed5
JDB
3263 /* memcg and kmem_cache debug support */
3264 slab_post_alloc_hook(s, flags, size, p);
865762a8 3265 return i;
87098373 3266error:
87098373 3267 local_irq_enable();
03ec0ed5
JDB
3268 slab_post_alloc_hook(s, flags, i, p);
3269 __kmem_cache_free_bulk(s, i, p);
865762a8 3270 return 0;
484748f0
CL
3271}
3272EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3273
3274
81819f0f 3275/*
672bba3a
CL
3276 * Object placement in a slab is made very easy because we always start at
3277 * offset 0. If we tune the size of the object to the alignment then we can
3278 * get the required alignment by putting one properly sized object after
3279 * another.
81819f0f
CL
3280 *
3281 * Notice that the allocation order determines the sizes of the per cpu
3282 * caches. Each processor has always one slab available for allocations.
3283 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3284 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3285 * locking overhead.
81819f0f
CL
3286 */
3287
3288/*
3289 * Mininum / Maximum order of slab pages. This influences locking overhead
3290 * and slab fragmentation. A higher order reduces the number of partial slabs
3291 * and increases the number of allocations possible without having to
3292 * take the list_lock.
3293 */
19af27af
AD
3294static unsigned int slub_min_order;
3295static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3296static unsigned int slub_min_objects;
81819f0f 3297
81819f0f
CL
3298/*
3299 * Calculate the order of allocation given an slab object size.
3300 *
672bba3a
CL
3301 * The order of allocation has significant impact on performance and other
3302 * system components. Generally order 0 allocations should be preferred since
3303 * order 0 does not cause fragmentation in the page allocator. Larger objects
3304 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3305 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3306 * would be wasted.
3307 *
3308 * In order to reach satisfactory performance we must ensure that a minimum
3309 * number of objects is in one slab. Otherwise we may generate too much
3310 * activity on the partial lists which requires taking the list_lock. This is
3311 * less a concern for large slabs though which are rarely used.
81819f0f 3312 *
672bba3a
CL
3313 * slub_max_order specifies the order where we begin to stop considering the
3314 * number of objects in a slab as critical. If we reach slub_max_order then
3315 * we try to keep the page order as low as possible. So we accept more waste
3316 * of space in favor of a small page order.
81819f0f 3317 *
672bba3a
CL
3318 * Higher order allocations also allow the placement of more objects in a
3319 * slab and thereby reduce object handling overhead. If the user has
3320 * requested a higher mininum order then we start with that one instead of
3321 * the smallest order which will fit the object.
81819f0f 3322 */
19af27af
AD
3323static inline unsigned int slab_order(unsigned int size,
3324 unsigned int min_objects, unsigned int max_order,
9736d2a9 3325 unsigned int fract_leftover)
81819f0f 3326{
19af27af
AD
3327 unsigned int min_order = slub_min_order;
3328 unsigned int order;
81819f0f 3329
9736d2a9 3330 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3331 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3332
9736d2a9 3333 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3334 order <= max_order; order++) {
81819f0f 3335
19af27af
AD
3336 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3337 unsigned int rem;
81819f0f 3338
9736d2a9 3339 rem = slab_size % size;
81819f0f 3340
5e6d444e 3341 if (rem <= slab_size / fract_leftover)
81819f0f 3342 break;
81819f0f 3343 }
672bba3a 3344
81819f0f
CL
3345 return order;
3346}
3347
9736d2a9 3348static inline int calculate_order(unsigned int size)
5e6d444e 3349{
19af27af
AD
3350 unsigned int order;
3351 unsigned int min_objects;
3352 unsigned int max_objects;
5e6d444e
CL
3353
3354 /*
3355 * Attempt to find best configuration for a slab. This
3356 * works by first attempting to generate a layout with
3357 * the best configuration and backing off gradually.
3358 *
422ff4d7 3359 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3360 * we reduce the minimum objects required in a slab.
3361 */
3362 min_objects = slub_min_objects;
9b2cd506
CL
3363 if (!min_objects)
3364 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3365 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3366 min_objects = min(min_objects, max_objects);
3367
5e6d444e 3368 while (min_objects > 1) {
19af27af
AD
3369 unsigned int fraction;
3370
c124f5b5 3371 fraction = 16;
5e6d444e
CL
3372 while (fraction >= 4) {
3373 order = slab_order(size, min_objects,
9736d2a9 3374 slub_max_order, fraction);
5e6d444e
CL
3375 if (order <= slub_max_order)
3376 return order;
3377 fraction /= 2;
3378 }
5086c389 3379 min_objects--;
5e6d444e
CL
3380 }
3381
3382 /*
3383 * We were unable to place multiple objects in a slab. Now
3384 * lets see if we can place a single object there.
3385 */
9736d2a9 3386 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3387 if (order <= slub_max_order)
3388 return order;
3389
3390 /*
3391 * Doh this slab cannot be placed using slub_max_order.
3392 */
9736d2a9 3393 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3394 if (order < MAX_ORDER)
5e6d444e
CL
3395 return order;
3396 return -ENOSYS;
3397}
3398
5595cffc 3399static void
4053497d 3400init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3401{
3402 n->nr_partial = 0;
81819f0f
CL
3403 spin_lock_init(&n->list_lock);
3404 INIT_LIST_HEAD(&n->partial);
8ab1372f 3405#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3406 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3407 atomic_long_set(&n->total_objects, 0);
643b1138 3408 INIT_LIST_HEAD(&n->full);
8ab1372f 3409#endif
81819f0f
CL
3410}
3411
55136592 3412static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3413{
6c182dc0 3414 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3415 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3416
8a5ec0ba 3417 /*
d4d84fef
CM
3418 * Must align to double word boundary for the double cmpxchg
3419 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3420 */
d4d84fef
CM
3421 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3422 2 * sizeof(void *));
8a5ec0ba
CL
3423
3424 if (!s->cpu_slab)
3425 return 0;
3426
3427 init_kmem_cache_cpus(s);
4c93c355 3428
8a5ec0ba 3429 return 1;
4c93c355 3430}
4c93c355 3431
51df1142
CL
3432static struct kmem_cache *kmem_cache_node;
3433
81819f0f
CL
3434/*
3435 * No kmalloc_node yet so do it by hand. We know that this is the first
3436 * slab on the node for this slabcache. There are no concurrent accesses
3437 * possible.
3438 *
721ae22a
ZYW
3439 * Note that this function only works on the kmem_cache_node
3440 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3441 * memory on a fresh node that has no slab structures yet.
81819f0f 3442 */
55136592 3443static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3444{
3445 struct page *page;
3446 struct kmem_cache_node *n;
3447
51df1142 3448 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3449
51df1142 3450 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3451
3452 BUG_ON(!page);
a2f92ee7 3453 if (page_to_nid(page) != node) {
f9f58285
FF
3454 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3455 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3456 }
3457
81819f0f
CL
3458 n = page->freelist;
3459 BUG_ON(!n);
8ab1372f 3460#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3461 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3462 init_tracking(kmem_cache_node, n);
8ab1372f 3463#endif
12b22386 3464 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3465 GFP_KERNEL);
12b22386
AK
3466 page->freelist = get_freepointer(kmem_cache_node, n);
3467 page->inuse = 1;
3468 page->frozen = 0;
3469 kmem_cache_node->node[node] = n;
4053497d 3470 init_kmem_cache_node(n);
51df1142 3471 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3472
67b6c900 3473 /*
1e4dd946
SR
3474 * No locks need to be taken here as it has just been
3475 * initialized and there is no concurrent access.
67b6c900 3476 */
1e4dd946 3477 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3478}
3479
3480static void free_kmem_cache_nodes(struct kmem_cache *s)
3481{
3482 int node;
fa45dc25 3483 struct kmem_cache_node *n;
81819f0f 3484
fa45dc25 3485 for_each_kmem_cache_node(s, node, n) {
81819f0f 3486 s->node[node] = NULL;
ea37df54 3487 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3488 }
3489}
3490
52b4b950
DS
3491void __kmem_cache_release(struct kmem_cache *s)
3492{
210e7a43 3493 cache_random_seq_destroy(s);
52b4b950
DS
3494 free_percpu(s->cpu_slab);
3495 free_kmem_cache_nodes(s);
3496}
3497
55136592 3498static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3499{
3500 int node;
81819f0f 3501
f64dc58c 3502 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3503 struct kmem_cache_node *n;
3504
73367bd8 3505 if (slab_state == DOWN) {
55136592 3506 early_kmem_cache_node_alloc(node);
73367bd8
AD
3507 continue;
3508 }
51df1142 3509 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3510 GFP_KERNEL, node);
81819f0f 3511
73367bd8
AD
3512 if (!n) {
3513 free_kmem_cache_nodes(s);
3514 return 0;
81819f0f 3515 }
73367bd8 3516
4053497d 3517 init_kmem_cache_node(n);
ea37df54 3518 s->node[node] = n;
81819f0f
CL
3519 }
3520 return 1;
3521}
81819f0f 3522
c0bdb232 3523static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3524{
3525 if (min < MIN_PARTIAL)
3526 min = MIN_PARTIAL;
3527 else if (min > MAX_PARTIAL)
3528 min = MAX_PARTIAL;
3529 s->min_partial = min;
3530}
3531
e6d0e1dc
WY
3532static void set_cpu_partial(struct kmem_cache *s)
3533{
3534#ifdef CONFIG_SLUB_CPU_PARTIAL
3535 /*
3536 * cpu_partial determined the maximum number of objects kept in the
3537 * per cpu partial lists of a processor.
3538 *
3539 * Per cpu partial lists mainly contain slabs that just have one
3540 * object freed. If they are used for allocation then they can be
3541 * filled up again with minimal effort. The slab will never hit the
3542 * per node partial lists and therefore no locking will be required.
3543 *
3544 * This setting also determines
3545 *
3546 * A) The number of objects from per cpu partial slabs dumped to the
3547 * per node list when we reach the limit.
3548 * B) The number of objects in cpu partial slabs to extract from the
3549 * per node list when we run out of per cpu objects. We only fetch
3550 * 50% to keep some capacity around for frees.
3551 */
3552 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3553 slub_set_cpu_partial(s, 0);
e6d0e1dc 3554 else if (s->size >= PAGE_SIZE)
bbd4e305 3555 slub_set_cpu_partial(s, 2);
e6d0e1dc 3556 else if (s->size >= 1024)
bbd4e305 3557 slub_set_cpu_partial(s, 6);
e6d0e1dc 3558 else if (s->size >= 256)
bbd4e305 3559 slub_set_cpu_partial(s, 13);
e6d0e1dc 3560 else
bbd4e305 3561 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3562#endif
3563}
3564
81819f0f
CL
3565/*
3566 * calculate_sizes() determines the order and the distribution of data within
3567 * a slab object.
3568 */
06b285dc 3569static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3570{
d50112ed 3571 slab_flags_t flags = s->flags;
be4a7988 3572 unsigned int size = s->object_size;
89b83f28 3573 unsigned int freepointer_area;
19af27af 3574 unsigned int order;
81819f0f 3575
d8b42bf5
CL
3576 /*
3577 * Round up object size to the next word boundary. We can only
3578 * place the free pointer at word boundaries and this determines
3579 * the possible location of the free pointer.
3580 */
3581 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3582 /*
3583 * This is the area of the object where a freepointer can be
3584 * safely written. If redzoning adds more to the inuse size, we
3585 * can't use that portion for writing the freepointer, so
3586 * s->offset must be limited within this for the general case.
3587 */
3588 freepointer_area = size;
d8b42bf5
CL
3589
3590#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3591 /*
3592 * Determine if we can poison the object itself. If the user of
3593 * the slab may touch the object after free or before allocation
3594 * then we should never poison the object itself.
3595 */
5f0d5a3a 3596 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3597 !s->ctor)
81819f0f
CL
3598 s->flags |= __OBJECT_POISON;
3599 else
3600 s->flags &= ~__OBJECT_POISON;
3601
81819f0f
CL
3602
3603 /*
672bba3a 3604 * If we are Redzoning then check if there is some space between the
81819f0f 3605 * end of the object and the free pointer. If not then add an
672bba3a 3606 * additional word to have some bytes to store Redzone information.
81819f0f 3607 */
3b0efdfa 3608 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3609 size += sizeof(void *);
41ecc55b 3610#endif
81819f0f
CL
3611
3612 /*
672bba3a
CL
3613 * With that we have determined the number of bytes in actual use
3614 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3615 */
3616 s->inuse = size;
3617
5f0d5a3a 3618 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3619 s->ctor)) {
81819f0f
CL
3620 /*
3621 * Relocate free pointer after the object if it is not
3622 * permitted to overwrite the first word of the object on
3623 * kmem_cache_free.
3624 *
3625 * This is the case if we do RCU, have a constructor or
3626 * destructor or are poisoning the objects.
cbfc35a4
WL
3627 *
3628 * The assumption that s->offset >= s->inuse means free
3629 * pointer is outside of the object is used in the
3630 * freeptr_outside_object() function. If that is no
3631 * longer true, the function needs to be modified.
81819f0f
CL
3632 */
3633 s->offset = size;
3634 size += sizeof(void *);
89b83f28 3635 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3636 /*
3637 * Store freelist pointer near middle of object to keep
3638 * it away from the edges of the object to avoid small
3639 * sized over/underflows from neighboring allocations.
3640 */
89b83f28 3641 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3642 }
3643
c12b3c62 3644#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3645 if (flags & SLAB_STORE_USER)
3646 /*
3647 * Need to store information about allocs and frees after
3648 * the object.
3649 */
3650 size += 2 * sizeof(struct track);
80a9201a 3651#endif
81819f0f 3652
80a9201a
AP
3653 kasan_cache_create(s, &size, &s->flags);
3654#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3655 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3656 /*
3657 * Add some empty padding so that we can catch
3658 * overwrites from earlier objects rather than let
3659 * tracking information or the free pointer be
0211a9c8 3660 * corrupted if a user writes before the start
81819f0f
CL
3661 * of the object.
3662 */
3663 size += sizeof(void *);
d86bd1be
JK
3664
3665 s->red_left_pad = sizeof(void *);
3666 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3667 size += s->red_left_pad;
3668 }
41ecc55b 3669#endif
672bba3a 3670
81819f0f
CL
3671 /*
3672 * SLUB stores one object immediately after another beginning from
3673 * offset 0. In order to align the objects we have to simply size
3674 * each object to conform to the alignment.
3675 */
45906855 3676 size = ALIGN(size, s->align);
81819f0f 3677 s->size = size;
06b285dc
CL
3678 if (forced_order >= 0)
3679 order = forced_order;
3680 else
9736d2a9 3681 order = calculate_order(size);
81819f0f 3682
19af27af 3683 if ((int)order < 0)
81819f0f
CL
3684 return 0;
3685
b7a49f0d 3686 s->allocflags = 0;
834f3d11 3687 if (order)
b7a49f0d
CL
3688 s->allocflags |= __GFP_COMP;
3689
3690 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3691 s->allocflags |= GFP_DMA;
b7a49f0d 3692
6d6ea1e9
NB
3693 if (s->flags & SLAB_CACHE_DMA32)
3694 s->allocflags |= GFP_DMA32;
3695
b7a49f0d
CL
3696 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3697 s->allocflags |= __GFP_RECLAIMABLE;
3698
81819f0f
CL
3699 /*
3700 * Determine the number of objects per slab
3701 */
9736d2a9
MW
3702 s->oo = oo_make(order, size);
3703 s->min = oo_make(get_order(size), size);
205ab99d
CL
3704 if (oo_objects(s->oo) > oo_objects(s->max))
3705 s->max = s->oo;
81819f0f 3706
834f3d11 3707 return !!oo_objects(s->oo);
81819f0f
CL
3708}
3709
d50112ed 3710static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3711{
8a13a4cc 3712 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3713#ifdef CONFIG_SLAB_FREELIST_HARDENED
3714 s->random = get_random_long();
3715#endif
81819f0f 3716
06b285dc 3717 if (!calculate_sizes(s, -1))
81819f0f 3718 goto error;
3de47213
DR
3719 if (disable_higher_order_debug) {
3720 /*
3721 * Disable debugging flags that store metadata if the min slab
3722 * order increased.
3723 */
3b0efdfa 3724 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3725 s->flags &= ~DEBUG_METADATA_FLAGS;
3726 s->offset = 0;
3727 if (!calculate_sizes(s, -1))
3728 goto error;
3729 }
3730 }
81819f0f 3731
2565409f
HC
3732#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3733 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3734 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3735 /* Enable fast mode */
3736 s->flags |= __CMPXCHG_DOUBLE;
3737#endif
3738
3b89d7d8
DR
3739 /*
3740 * The larger the object size is, the more pages we want on the partial
3741 * list to avoid pounding the page allocator excessively.
3742 */
49e22585
CL
3743 set_min_partial(s, ilog2(s->size) / 2);
3744
e6d0e1dc 3745 set_cpu_partial(s);
49e22585 3746
81819f0f 3747#ifdef CONFIG_NUMA
e2cb96b7 3748 s->remote_node_defrag_ratio = 1000;
81819f0f 3749#endif
210e7a43
TG
3750
3751 /* Initialize the pre-computed randomized freelist if slab is up */
3752 if (slab_state >= UP) {
3753 if (init_cache_random_seq(s))
3754 goto error;
3755 }
3756
55136592 3757 if (!init_kmem_cache_nodes(s))
dfb4f096 3758 goto error;
81819f0f 3759
55136592 3760 if (alloc_kmem_cache_cpus(s))
278b1bb1 3761 return 0;
ff12059e 3762
4c93c355 3763 free_kmem_cache_nodes(s);
81819f0f 3764error:
278b1bb1 3765 return -EINVAL;
81819f0f 3766}
81819f0f 3767
33b12c38 3768static void list_slab_objects(struct kmem_cache *s, struct page *page,
aa456c7a 3769 const char *text, unsigned long *map)
33b12c38
CL
3770{
3771#ifdef CONFIG_SLUB_DEBUG
3772 void *addr = page_address(page);
3773 void *p;
aa456c7a
CL
3774
3775 if (!map)
3776 return;
90e9f6a6 3777
945cf2b6 3778 slab_err(s, page, text, s->name);
33b12c38 3779 slab_lock(page);
33b12c38 3780
90e9f6a6 3781 map = get_map(s, page);
33b12c38
CL
3782 for_each_object(p, s, addr, page->objects) {
3783
3784 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3785 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3786 print_tracking(s, p);
3787 }
3788 }
3789 slab_unlock(page);
3790#endif
3791}
3792
81819f0f 3793/*
599870b1 3794 * Attempt to free all partial slabs on a node.
52b4b950
DS
3795 * This is called from __kmem_cache_shutdown(). We must take list_lock
3796 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3797 */
599870b1 3798static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3799{
60398923 3800 LIST_HEAD(discard);
81819f0f 3801 struct page *page, *h;
aa456c7a
CL
3802 unsigned long *map = NULL;
3803
3804#ifdef CONFIG_SLUB_DEBUG
3805 map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
3806#endif
81819f0f 3807
52b4b950
DS
3808 BUG_ON(irqs_disabled());
3809 spin_lock_irq(&n->list_lock);
916ac052 3810 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3811 if (!page->inuse) {
52b4b950 3812 remove_partial(n, page);
916ac052 3813 list_add(&page->slab_list, &discard);
33b12c38
CL
3814 } else {
3815 list_slab_objects(s, page,
aa456c7a
CL
3816 "Objects remaining in %s on __kmem_cache_shutdown()",
3817 map);
599870b1 3818 }
33b12c38 3819 }
52b4b950 3820 spin_unlock_irq(&n->list_lock);
60398923 3821
aa456c7a
CL
3822#ifdef CONFIG_SLUB_DEBUG
3823 bitmap_free(map);
3824#endif
3825
916ac052 3826 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3827 discard_slab(s, page);
81819f0f
CL
3828}
3829
f9e13c0a
SB
3830bool __kmem_cache_empty(struct kmem_cache *s)
3831{
3832 int node;
3833 struct kmem_cache_node *n;
3834
3835 for_each_kmem_cache_node(s, node, n)
3836 if (n->nr_partial || slabs_node(s, node))
3837 return false;
3838 return true;
3839}
3840
81819f0f 3841/*
672bba3a 3842 * Release all resources used by a slab cache.
81819f0f 3843 */
52b4b950 3844int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3845{
3846 int node;
fa45dc25 3847 struct kmem_cache_node *n;
81819f0f
CL
3848
3849 flush_all(s);
81819f0f 3850 /* Attempt to free all objects */
fa45dc25 3851 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3852 free_partial(s, n);
3853 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3854 return 1;
3855 }
bf5eb3de 3856 sysfs_slab_remove(s);
81819f0f
CL
3857 return 0;
3858}
3859
81819f0f
CL
3860/********************************************************************
3861 * Kmalloc subsystem
3862 *******************************************************************/
3863
81819f0f
CL
3864static int __init setup_slub_min_order(char *str)
3865{
19af27af 3866 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3867
3868 return 1;
3869}
3870
3871__setup("slub_min_order=", setup_slub_min_order);
3872
3873static int __init setup_slub_max_order(char *str)
3874{
19af27af
AD
3875 get_option(&str, (int *)&slub_max_order);
3876 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3877
3878 return 1;
3879}
3880
3881__setup("slub_max_order=", setup_slub_max_order);
3882
3883static int __init setup_slub_min_objects(char *str)
3884{
19af27af 3885 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3886
3887 return 1;
3888}
3889
3890__setup("slub_min_objects=", setup_slub_min_objects);
3891
81819f0f
CL
3892void *__kmalloc(size_t size, gfp_t flags)
3893{
aadb4bc4 3894 struct kmem_cache *s;
5b882be4 3895 void *ret;
81819f0f 3896
95a05b42 3897 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3898 return kmalloc_large(size, flags);
aadb4bc4 3899
2c59dd65 3900 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3901
3902 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3903 return s;
3904
2b847c3c 3905 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3906
ca2b84cb 3907 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3908
0116523c 3909 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3910
5b882be4 3911 return ret;
81819f0f
CL
3912}
3913EXPORT_SYMBOL(__kmalloc);
3914
5d1f57e4 3915#ifdef CONFIG_NUMA
f619cfe1
CL
3916static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3917{
b1eeab67 3918 struct page *page;
e4f7c0b4 3919 void *ptr = NULL;
6a486c0a 3920 unsigned int order = get_order(size);
f619cfe1 3921
75f296d9 3922 flags |= __GFP_COMP;
6a486c0a
VB
3923 page = alloc_pages_node(node, flags, order);
3924 if (page) {
e4f7c0b4 3925 ptr = page_address(page);
6a486c0a
VB
3926 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3927 1 << order);
3928 }
e4f7c0b4 3929
0116523c 3930 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3931}
3932
81819f0f
CL
3933void *__kmalloc_node(size_t size, gfp_t flags, int node)
3934{
aadb4bc4 3935 struct kmem_cache *s;
5b882be4 3936 void *ret;
81819f0f 3937
95a05b42 3938 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3939 ret = kmalloc_large_node(size, flags, node);
3940
ca2b84cb
EGM
3941 trace_kmalloc_node(_RET_IP_, ret,
3942 size, PAGE_SIZE << get_order(size),
3943 flags, node);
5b882be4
EGM
3944
3945 return ret;
3946 }
aadb4bc4 3947
2c59dd65 3948 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3949
3950 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3951 return s;
3952
2b847c3c 3953 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3954
ca2b84cb 3955 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3956
0116523c 3957 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3958
5b882be4 3959 return ret;
81819f0f
CL
3960}
3961EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3962#endif /* CONFIG_NUMA */
81819f0f 3963
ed18adc1
KC
3964#ifdef CONFIG_HARDENED_USERCOPY
3965/*
afcc90f8
KC
3966 * Rejects incorrectly sized objects and objects that are to be copied
3967 * to/from userspace but do not fall entirely within the containing slab
3968 * cache's usercopy region.
ed18adc1
KC
3969 *
3970 * Returns NULL if check passes, otherwise const char * to name of cache
3971 * to indicate an error.
3972 */
f4e6e289
KC
3973void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3974 bool to_user)
ed18adc1
KC
3975{
3976 struct kmem_cache *s;
44065b2e 3977 unsigned int offset;
ed18adc1
KC
3978 size_t object_size;
3979
96fedce2
AK
3980 ptr = kasan_reset_tag(ptr);
3981
ed18adc1
KC
3982 /* Find object and usable object size. */
3983 s = page->slab_cache;
ed18adc1
KC
3984
3985 /* Reject impossible pointers. */
3986 if (ptr < page_address(page))
f4e6e289
KC
3987 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3988 to_user, 0, n);
ed18adc1
KC
3989
3990 /* Find offset within object. */
3991 offset = (ptr - page_address(page)) % s->size;
3992
3993 /* Adjust for redzone and reject if within the redzone. */
3994 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3995 if (offset < s->red_left_pad)
f4e6e289
KC
3996 usercopy_abort("SLUB object in left red zone",
3997 s->name, to_user, offset, n);
ed18adc1
KC
3998 offset -= s->red_left_pad;
3999 }
4000
afcc90f8
KC
4001 /* Allow address range falling entirely within usercopy region. */
4002 if (offset >= s->useroffset &&
4003 offset - s->useroffset <= s->usersize &&
4004 n <= s->useroffset - offset + s->usersize)
f4e6e289 4005 return;
ed18adc1 4006
afcc90f8
KC
4007 /*
4008 * If the copy is still within the allocated object, produce
4009 * a warning instead of rejecting the copy. This is intended
4010 * to be a temporary method to find any missing usercopy
4011 * whitelists.
4012 */
4013 object_size = slab_ksize(s);
2d891fbc
KC
4014 if (usercopy_fallback &&
4015 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4016 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4017 return;
4018 }
ed18adc1 4019
f4e6e289 4020 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4021}
4022#endif /* CONFIG_HARDENED_USERCOPY */
4023
10d1f8cb 4024size_t __ksize(const void *object)
81819f0f 4025{
272c1d21 4026 struct page *page;
81819f0f 4027
ef8b4520 4028 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4029 return 0;
4030
294a80a8 4031 page = virt_to_head_page(object);
294a80a8 4032
76994412
PE
4033 if (unlikely(!PageSlab(page))) {
4034 WARN_ON(!PageCompound(page));
a50b854e 4035 return page_size(page);
76994412 4036 }
81819f0f 4037
1b4f59e3 4038 return slab_ksize(page->slab_cache);
81819f0f 4039}
10d1f8cb 4040EXPORT_SYMBOL(__ksize);
81819f0f
CL
4041
4042void kfree(const void *x)
4043{
81819f0f 4044 struct page *page;
5bb983b0 4045 void *object = (void *)x;
81819f0f 4046
2121db74
PE
4047 trace_kfree(_RET_IP_, x);
4048
2408c550 4049 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4050 return;
4051
b49af68f 4052 page = virt_to_head_page(x);
aadb4bc4 4053 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4054 unsigned int order = compound_order(page);
4055
0937502a 4056 BUG_ON(!PageCompound(page));
47adccce 4057 kfree_hook(object);
6a486c0a
VB
4058 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4059 -(1 << order));
4060 __free_pages(page, order);
aadb4bc4
CL
4061 return;
4062 }
81084651 4063 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4064}
4065EXPORT_SYMBOL(kfree);
4066
832f37f5
VD
4067#define SHRINK_PROMOTE_MAX 32
4068
2086d26a 4069/*
832f37f5
VD
4070 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4071 * up most to the head of the partial lists. New allocations will then
4072 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4073 *
4074 * The slabs with the least items are placed last. This results in them
4075 * being allocated from last increasing the chance that the last objects
4076 * are freed in them.
2086d26a 4077 */
c9fc5864 4078int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4079{
4080 int node;
4081 int i;
4082 struct kmem_cache_node *n;
4083 struct page *page;
4084 struct page *t;
832f37f5
VD
4085 struct list_head discard;
4086 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4087 unsigned long flags;
ce3712d7 4088 int ret = 0;
2086d26a 4089
2086d26a 4090 flush_all(s);
fa45dc25 4091 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4092 INIT_LIST_HEAD(&discard);
4093 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4094 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4095
4096 spin_lock_irqsave(&n->list_lock, flags);
4097
4098 /*
832f37f5 4099 * Build lists of slabs to discard or promote.
2086d26a 4100 *
672bba3a
CL
4101 * Note that concurrent frees may occur while we hold the
4102 * list_lock. page->inuse here is the upper limit.
2086d26a 4103 */
916ac052 4104 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4105 int free = page->objects - page->inuse;
4106
4107 /* Do not reread page->inuse */
4108 barrier();
4109
4110 /* We do not keep full slabs on the list */
4111 BUG_ON(free <= 0);
4112
4113 if (free == page->objects) {
916ac052 4114 list_move(&page->slab_list, &discard);
69cb8e6b 4115 n->nr_partial--;
832f37f5 4116 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4117 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4118 }
4119
2086d26a 4120 /*
832f37f5
VD
4121 * Promote the slabs filled up most to the head of the
4122 * partial list.
2086d26a 4123 */
832f37f5
VD
4124 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4125 list_splice(promote + i, &n->partial);
2086d26a 4126
2086d26a 4127 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4128
4129 /* Release empty slabs */
916ac052 4130 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4131 discard_slab(s, page);
ce3712d7
VD
4132
4133 if (slabs_node(s, node))
4134 ret = 1;
2086d26a
CL
4135 }
4136
ce3712d7 4137 return ret;
2086d26a 4138}
2086d26a 4139
c9fc5864 4140#ifdef CONFIG_MEMCG
43486694 4141void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4142{
50862ce7
TH
4143 /*
4144 * Called with all the locks held after a sched RCU grace period.
4145 * Even if @s becomes empty after shrinking, we can't know that @s
4146 * doesn't have allocations already in-flight and thus can't
4147 * destroy @s until the associated memcg is released.
4148 *
4149 * However, let's remove the sysfs files for empty caches here.
4150 * Each cache has a lot of interface files which aren't
4151 * particularly useful for empty draining caches; otherwise, we can
4152 * easily end up with millions of unnecessary sysfs files on
4153 * systems which have a lot of memory and transient cgroups.
4154 */
4155 if (!__kmem_cache_shrink(s))
4156 sysfs_slab_remove(s);
01fb58bc
TH
4157}
4158
c9fc5864
TH
4159void __kmemcg_cache_deactivate(struct kmem_cache *s)
4160{
4161 /*
4162 * Disable empty slabs caching. Used to avoid pinning offline
4163 * memory cgroups by kmem pages that can be freed.
4164 */
e6d0e1dc 4165 slub_set_cpu_partial(s, 0);
c9fc5864 4166 s->min_partial = 0;
c9fc5864 4167}
6dfd1b65 4168#endif /* CONFIG_MEMCG */
c9fc5864 4169
b9049e23
YG
4170static int slab_mem_going_offline_callback(void *arg)
4171{
4172 struct kmem_cache *s;
4173
18004c5d 4174 mutex_lock(&slab_mutex);
b9049e23 4175 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4176 __kmem_cache_shrink(s);
18004c5d 4177 mutex_unlock(&slab_mutex);
b9049e23
YG
4178
4179 return 0;
4180}
4181
4182static void slab_mem_offline_callback(void *arg)
4183{
4184 struct kmem_cache_node *n;
4185 struct kmem_cache *s;
4186 struct memory_notify *marg = arg;
4187 int offline_node;
4188
b9d5ab25 4189 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4190
4191 /*
4192 * If the node still has available memory. we need kmem_cache_node
4193 * for it yet.
4194 */
4195 if (offline_node < 0)
4196 return;
4197
18004c5d 4198 mutex_lock(&slab_mutex);
b9049e23
YG
4199 list_for_each_entry(s, &slab_caches, list) {
4200 n = get_node(s, offline_node);
4201 if (n) {
4202 /*
4203 * if n->nr_slabs > 0, slabs still exist on the node
4204 * that is going down. We were unable to free them,
c9404c9c 4205 * and offline_pages() function shouldn't call this
b9049e23
YG
4206 * callback. So, we must fail.
4207 */
0f389ec6 4208 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4209
4210 s->node[offline_node] = NULL;
8de66a0c 4211 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4212 }
4213 }
18004c5d 4214 mutex_unlock(&slab_mutex);
b9049e23
YG
4215}
4216
4217static int slab_mem_going_online_callback(void *arg)
4218{
4219 struct kmem_cache_node *n;
4220 struct kmem_cache *s;
4221 struct memory_notify *marg = arg;
b9d5ab25 4222 int nid = marg->status_change_nid_normal;
b9049e23
YG
4223 int ret = 0;
4224
4225 /*
4226 * If the node's memory is already available, then kmem_cache_node is
4227 * already created. Nothing to do.
4228 */
4229 if (nid < 0)
4230 return 0;
4231
4232 /*
0121c619 4233 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4234 * allocate a kmem_cache_node structure in order to bring the node
4235 * online.
4236 */
18004c5d 4237 mutex_lock(&slab_mutex);
b9049e23
YG
4238 list_for_each_entry(s, &slab_caches, list) {
4239 /*
4240 * XXX: kmem_cache_alloc_node will fallback to other nodes
4241 * since memory is not yet available from the node that
4242 * is brought up.
4243 */
8de66a0c 4244 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4245 if (!n) {
4246 ret = -ENOMEM;
4247 goto out;
4248 }
4053497d 4249 init_kmem_cache_node(n);
b9049e23
YG
4250 s->node[nid] = n;
4251 }
4252out:
18004c5d 4253 mutex_unlock(&slab_mutex);
b9049e23
YG
4254 return ret;
4255}
4256
4257static int slab_memory_callback(struct notifier_block *self,
4258 unsigned long action, void *arg)
4259{
4260 int ret = 0;
4261
4262 switch (action) {
4263 case MEM_GOING_ONLINE:
4264 ret = slab_mem_going_online_callback(arg);
4265 break;
4266 case MEM_GOING_OFFLINE:
4267 ret = slab_mem_going_offline_callback(arg);
4268 break;
4269 case MEM_OFFLINE:
4270 case MEM_CANCEL_ONLINE:
4271 slab_mem_offline_callback(arg);
4272 break;
4273 case MEM_ONLINE:
4274 case MEM_CANCEL_OFFLINE:
4275 break;
4276 }
dc19f9db
KH
4277 if (ret)
4278 ret = notifier_from_errno(ret);
4279 else
4280 ret = NOTIFY_OK;
b9049e23
YG
4281 return ret;
4282}
4283
3ac38faa
AM
4284static struct notifier_block slab_memory_callback_nb = {
4285 .notifier_call = slab_memory_callback,
4286 .priority = SLAB_CALLBACK_PRI,
4287};
b9049e23 4288
81819f0f
CL
4289/********************************************************************
4290 * Basic setup of slabs
4291 *******************************************************************/
4292
51df1142
CL
4293/*
4294 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4295 * the page allocator. Allocate them properly then fix up the pointers
4296 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4297 */
4298
dffb4d60 4299static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4300{
4301 int node;
dffb4d60 4302 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4303 struct kmem_cache_node *n;
51df1142 4304
dffb4d60 4305 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4306
7d557b3c
GC
4307 /*
4308 * This runs very early, and only the boot processor is supposed to be
4309 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4310 * IPIs around.
4311 */
4312 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4313 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4314 struct page *p;
4315
916ac052 4316 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4317 p->slab_cache = s;
51df1142 4318
607bf324 4319#ifdef CONFIG_SLUB_DEBUG
916ac052 4320 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4321 p->slab_cache = s;
51df1142 4322#endif
51df1142 4323 }
f7ce3190 4324 slab_init_memcg_params(s);
dffb4d60 4325 list_add(&s->list, &slab_caches);
c03914b7 4326 memcg_link_cache(s, NULL);
dffb4d60 4327 return s;
51df1142
CL
4328}
4329
81819f0f
CL
4330void __init kmem_cache_init(void)
4331{
dffb4d60
CL
4332 static __initdata struct kmem_cache boot_kmem_cache,
4333 boot_kmem_cache_node;
51df1142 4334
fc8d8620
SG
4335 if (debug_guardpage_minorder())
4336 slub_max_order = 0;
4337
dffb4d60
CL
4338 kmem_cache_node = &boot_kmem_cache_node;
4339 kmem_cache = &boot_kmem_cache;
51df1142 4340
dffb4d60 4341 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4342 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4343
3ac38faa 4344 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4345
4346 /* Able to allocate the per node structures */
4347 slab_state = PARTIAL;
4348
dffb4d60
CL
4349 create_boot_cache(kmem_cache, "kmem_cache",
4350 offsetof(struct kmem_cache, node) +
4351 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4352 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4353
dffb4d60 4354 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4355 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4356
4357 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4358 setup_kmalloc_cache_index_table();
f97d5f63 4359 create_kmalloc_caches(0);
81819f0f 4360
210e7a43
TG
4361 /* Setup random freelists for each cache */
4362 init_freelist_randomization();
4363
a96a87bf
SAS
4364 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4365 slub_cpu_dead);
81819f0f 4366
b9726c26 4367 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4368 cache_line_size(),
81819f0f
CL
4369 slub_min_order, slub_max_order, slub_min_objects,
4370 nr_cpu_ids, nr_node_ids);
4371}
4372
7e85ee0c
PE
4373void __init kmem_cache_init_late(void)
4374{
7e85ee0c
PE
4375}
4376
2633d7a0 4377struct kmem_cache *
f4957d5b 4378__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4379 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4380{
426589f5 4381 struct kmem_cache *s, *c;
81819f0f 4382
a44cb944 4383 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4384 if (s) {
4385 s->refcount++;
84d0ddd6 4386
81819f0f
CL
4387 /*
4388 * Adjust the object sizes so that we clear
4389 * the complete object on kzalloc.
4390 */
1b473f29 4391 s->object_size = max(s->object_size, size);
52ee6d74 4392 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4393
426589f5 4394 for_each_memcg_cache(c, s) {
84d0ddd6 4395 c->object_size = s->object_size;
52ee6d74 4396 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4397 }
4398
7b8f3b66 4399 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4400 s->refcount--;
cbb79694 4401 s = NULL;
7b8f3b66 4402 }
a0e1d1be 4403 }
6446faa2 4404
cbb79694
CL
4405 return s;
4406}
84c1cf62 4407
d50112ed 4408int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4409{
aac3a166
PE
4410 int err;
4411
4412 err = kmem_cache_open(s, flags);
4413 if (err)
4414 return err;
20cea968 4415
45530c44
CL
4416 /* Mutex is not taken during early boot */
4417 if (slab_state <= UP)
4418 return 0;
4419
107dab5c 4420 memcg_propagate_slab_attrs(s);
aac3a166 4421 err = sysfs_slab_add(s);
aac3a166 4422 if (err)
52b4b950 4423 __kmem_cache_release(s);
20cea968 4424
aac3a166 4425 return err;
81819f0f 4426}
81819f0f 4427
ce71e27c 4428void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4429{
aadb4bc4 4430 struct kmem_cache *s;
94b528d0 4431 void *ret;
aadb4bc4 4432
95a05b42 4433 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4434 return kmalloc_large(size, gfpflags);
4435
2c59dd65 4436 s = kmalloc_slab(size, gfpflags);
81819f0f 4437
2408c550 4438 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4439 return s;
81819f0f 4440
2b847c3c 4441 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4442
25985edc 4443 /* Honor the call site pointer we received. */
ca2b84cb 4444 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4445
4446 return ret;
81819f0f 4447}
fd7cb575 4448EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4449
5d1f57e4 4450#ifdef CONFIG_NUMA
81819f0f 4451void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4452 int node, unsigned long caller)
81819f0f 4453{
aadb4bc4 4454 struct kmem_cache *s;
94b528d0 4455 void *ret;
aadb4bc4 4456
95a05b42 4457 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4458 ret = kmalloc_large_node(size, gfpflags, node);
4459
4460 trace_kmalloc_node(caller, ret,
4461 size, PAGE_SIZE << get_order(size),
4462 gfpflags, node);
4463
4464 return ret;
4465 }
eada35ef 4466
2c59dd65 4467 s = kmalloc_slab(size, gfpflags);
81819f0f 4468
2408c550 4469 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4470 return s;
81819f0f 4471
2b847c3c 4472 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4473
25985edc 4474 /* Honor the call site pointer we received. */
ca2b84cb 4475 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4476
4477 return ret;
81819f0f 4478}
fd7cb575 4479EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4480#endif
81819f0f 4481
ab4d5ed5 4482#ifdef CONFIG_SYSFS
205ab99d
CL
4483static int count_inuse(struct page *page)
4484{
4485 return page->inuse;
4486}
4487
4488static int count_total(struct page *page)
4489{
4490 return page->objects;
4491}
ab4d5ed5 4492#endif
205ab99d 4493
ab4d5ed5 4494#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4495static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4496{
4497 void *p;
a973e9dd 4498 void *addr = page_address(page);
90e9f6a6
YZ
4499 unsigned long *map;
4500
4501 slab_lock(page);
53e15af0 4502
dd98afd4 4503 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4504 goto unlock;
53e15af0
CL
4505
4506 /* Now we know that a valid freelist exists */
90e9f6a6 4507 map = get_map(s, page);
5f80b13a 4508 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4509 u8 val = test_bit(slab_index(p, s, addr), map) ?
4510 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4511
dd98afd4
YZ
4512 if (!check_object(s, page, p, val))
4513 break;
4514 }
90e9f6a6
YZ
4515 put_map(map);
4516unlock:
881db7fb 4517 slab_unlock(page);
53e15af0
CL
4518}
4519
434e245d 4520static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4521 struct kmem_cache_node *n)
53e15af0
CL
4522{
4523 unsigned long count = 0;
4524 struct page *page;
4525 unsigned long flags;
4526
4527 spin_lock_irqsave(&n->list_lock, flags);
4528
916ac052 4529 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4530 validate_slab(s, page);
53e15af0
CL
4531 count++;
4532 }
4533 if (count != n->nr_partial)
f9f58285
FF
4534 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4535 s->name, count, n->nr_partial);
53e15af0
CL
4536
4537 if (!(s->flags & SLAB_STORE_USER))
4538 goto out;
4539
916ac052 4540 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4541 validate_slab(s, page);
53e15af0
CL
4542 count++;
4543 }
4544 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4545 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4546 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4547
4548out:
4549 spin_unlock_irqrestore(&n->list_lock, flags);
4550 return count;
4551}
4552
434e245d 4553static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4554{
4555 int node;
4556 unsigned long count = 0;
fa45dc25 4557 struct kmem_cache_node *n;
53e15af0
CL
4558
4559 flush_all(s);
fa45dc25 4560 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4561 count += validate_slab_node(s, n);
4562
53e15af0
CL
4563 return count;
4564}
88a420e4 4565/*
672bba3a 4566 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4567 * and freed.
4568 */
4569
4570struct location {
4571 unsigned long count;
ce71e27c 4572 unsigned long addr;
45edfa58
CL
4573 long long sum_time;
4574 long min_time;
4575 long max_time;
4576 long min_pid;
4577 long max_pid;
174596a0 4578 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4579 nodemask_t nodes;
88a420e4
CL
4580};
4581
4582struct loc_track {
4583 unsigned long max;
4584 unsigned long count;
4585 struct location *loc;
4586};
4587
4588static void free_loc_track(struct loc_track *t)
4589{
4590 if (t->max)
4591 free_pages((unsigned long)t->loc,
4592 get_order(sizeof(struct location) * t->max));
4593}
4594
68dff6a9 4595static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4596{
4597 struct location *l;
4598 int order;
4599
88a420e4
CL
4600 order = get_order(sizeof(struct location) * max);
4601
68dff6a9 4602 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4603 if (!l)
4604 return 0;
4605
4606 if (t->count) {
4607 memcpy(l, t->loc, sizeof(struct location) * t->count);
4608 free_loc_track(t);
4609 }
4610 t->max = max;
4611 t->loc = l;
4612 return 1;
4613}
4614
4615static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4616 const struct track *track)
88a420e4
CL
4617{
4618 long start, end, pos;
4619 struct location *l;
ce71e27c 4620 unsigned long caddr;
45edfa58 4621 unsigned long age = jiffies - track->when;
88a420e4
CL
4622
4623 start = -1;
4624 end = t->count;
4625
4626 for ( ; ; ) {
4627 pos = start + (end - start + 1) / 2;
4628
4629 /*
4630 * There is nothing at "end". If we end up there
4631 * we need to add something to before end.
4632 */
4633 if (pos == end)
4634 break;
4635
4636 caddr = t->loc[pos].addr;
45edfa58
CL
4637 if (track->addr == caddr) {
4638
4639 l = &t->loc[pos];
4640 l->count++;
4641 if (track->when) {
4642 l->sum_time += age;
4643 if (age < l->min_time)
4644 l->min_time = age;
4645 if (age > l->max_time)
4646 l->max_time = age;
4647
4648 if (track->pid < l->min_pid)
4649 l->min_pid = track->pid;
4650 if (track->pid > l->max_pid)
4651 l->max_pid = track->pid;
4652
174596a0
RR
4653 cpumask_set_cpu(track->cpu,
4654 to_cpumask(l->cpus));
45edfa58
CL
4655 }
4656 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4657 return 1;
4658 }
4659
45edfa58 4660 if (track->addr < caddr)
88a420e4
CL
4661 end = pos;
4662 else
4663 start = pos;
4664 }
4665
4666 /*
672bba3a 4667 * Not found. Insert new tracking element.
88a420e4 4668 */
68dff6a9 4669 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4670 return 0;
4671
4672 l = t->loc + pos;
4673 if (pos < t->count)
4674 memmove(l + 1, l,
4675 (t->count - pos) * sizeof(struct location));
4676 t->count++;
4677 l->count = 1;
45edfa58
CL
4678 l->addr = track->addr;
4679 l->sum_time = age;
4680 l->min_time = age;
4681 l->max_time = age;
4682 l->min_pid = track->pid;
4683 l->max_pid = track->pid;
174596a0
RR
4684 cpumask_clear(to_cpumask(l->cpus));
4685 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4686 nodes_clear(l->nodes);
4687 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4688 return 1;
4689}
4690
4691static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4692 struct page *page, enum track_item alloc)
88a420e4 4693{
a973e9dd 4694 void *addr = page_address(page);
88a420e4 4695 void *p;
90e9f6a6 4696 unsigned long *map;
88a420e4 4697
90e9f6a6 4698 map = get_map(s, page);
224a88be 4699 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4700 if (!test_bit(slab_index(p, s, addr), map))
4701 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4702 put_map(map);
88a420e4
CL
4703}
4704
4705static int list_locations(struct kmem_cache *s, char *buf,
4706 enum track_item alloc)
4707{
e374d483 4708 int len = 0;
88a420e4 4709 unsigned long i;
68dff6a9 4710 struct loc_track t = { 0, 0, NULL };
88a420e4 4711 int node;
fa45dc25 4712 struct kmem_cache_node *n;
88a420e4 4713
90e9f6a6
YZ
4714 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4715 GFP_KERNEL)) {
68dff6a9 4716 return sprintf(buf, "Out of memory\n");
bbd7d57b 4717 }
88a420e4
CL
4718 /* Push back cpu slabs */
4719 flush_all(s);
4720
fa45dc25 4721 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4722 unsigned long flags;
4723 struct page *page;
4724
9e86943b 4725 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4726 continue;
4727
4728 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4729 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4730 process_slab(&t, s, page, alloc);
916ac052 4731 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4732 process_slab(&t, s, page, alloc);
88a420e4
CL
4733 spin_unlock_irqrestore(&n->list_lock, flags);
4734 }
4735
4736 for (i = 0; i < t.count; i++) {
45edfa58 4737 struct location *l = &t.loc[i];
88a420e4 4738
9c246247 4739 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4740 break;
e374d483 4741 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4742
4743 if (l->addr)
62c70bce 4744 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4745 else
e374d483 4746 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4747
4748 if (l->sum_time != l->min_time) {
e374d483 4749 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4750 l->min_time,
4751 (long)div_u64(l->sum_time, l->count),
4752 l->max_time);
45edfa58 4753 } else
e374d483 4754 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4755 l->min_time);
4756
4757 if (l->min_pid != l->max_pid)
e374d483 4758 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4759 l->min_pid, l->max_pid);
4760 else
e374d483 4761 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4762 l->min_pid);
4763
174596a0
RR
4764 if (num_online_cpus() > 1 &&
4765 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4766 len < PAGE_SIZE - 60)
4767 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4768 " cpus=%*pbl",
4769 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4770
62bc62a8 4771 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4772 len < PAGE_SIZE - 60)
4773 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4774 " nodes=%*pbl",
4775 nodemask_pr_args(&l->nodes));
45edfa58 4776
e374d483 4777 len += sprintf(buf + len, "\n");
88a420e4
CL
4778 }
4779
4780 free_loc_track(&t);
4781 if (!t.count)
e374d483
HH
4782 len += sprintf(buf, "No data\n");
4783 return len;
88a420e4 4784}
6dfd1b65 4785#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4786
a5a84755 4787#ifdef SLUB_RESILIENCY_TEST
c07b8183 4788static void __init resiliency_test(void)
a5a84755
CL
4789{
4790 u8 *p;
cc252eae 4791 int type = KMALLOC_NORMAL;
a5a84755 4792
95a05b42 4793 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4794
f9f58285
FF
4795 pr_err("SLUB resiliency testing\n");
4796 pr_err("-----------------------\n");
4797 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4798
4799 p = kzalloc(16, GFP_KERNEL);
4800 p[16] = 0x12;
f9f58285
FF
4801 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4802 p + 16);
a5a84755 4803
cc252eae 4804 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4805
4806 /* Hmmm... The next two are dangerous */
4807 p = kzalloc(32, GFP_KERNEL);
4808 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4809 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4810 p);
4811 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4812
cc252eae 4813 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4814 p = kzalloc(64, GFP_KERNEL);
4815 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4816 *p = 0x56;
f9f58285
FF
4817 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4818 p);
4819 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4820 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4821
f9f58285 4822 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4823 p = kzalloc(128, GFP_KERNEL);
4824 kfree(p);
4825 *p = 0x78;
f9f58285 4826 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4827 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4828
4829 p = kzalloc(256, GFP_KERNEL);
4830 kfree(p);
4831 p[50] = 0x9a;
f9f58285 4832 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4833 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4834
4835 p = kzalloc(512, GFP_KERNEL);
4836 kfree(p);
4837 p[512] = 0xab;
f9f58285 4838 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4839 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4840}
4841#else
4842#ifdef CONFIG_SYSFS
4843static void resiliency_test(void) {};
4844#endif
6dfd1b65 4845#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4846
ab4d5ed5 4847#ifdef CONFIG_SYSFS
81819f0f 4848enum slab_stat_type {
205ab99d
CL
4849 SL_ALL, /* All slabs */
4850 SL_PARTIAL, /* Only partially allocated slabs */
4851 SL_CPU, /* Only slabs used for cpu caches */
4852 SL_OBJECTS, /* Determine allocated objects not slabs */
4853 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4854};
4855
205ab99d 4856#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4857#define SO_PARTIAL (1 << SL_PARTIAL)
4858#define SO_CPU (1 << SL_CPU)
4859#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4860#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4861
1663f26d
TH
4862#ifdef CONFIG_MEMCG
4863static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4864
4865static int __init setup_slub_memcg_sysfs(char *str)
4866{
4867 int v;
4868
4869 if (get_option(&str, &v) > 0)
4870 memcg_sysfs_enabled = v;
4871
4872 return 1;
4873}
4874
4875__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4876#endif
4877
62e5c4b4
CG
4878static ssize_t show_slab_objects(struct kmem_cache *s,
4879 char *buf, unsigned long flags)
81819f0f
CL
4880{
4881 unsigned long total = 0;
81819f0f
CL
4882 int node;
4883 int x;
4884 unsigned long *nodes;
81819f0f 4885
6396bb22 4886 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4887 if (!nodes)
4888 return -ENOMEM;
81819f0f 4889
205ab99d
CL
4890 if (flags & SO_CPU) {
4891 int cpu;
81819f0f 4892
205ab99d 4893 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4894 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4895 cpu);
ec3ab083 4896 int node;
49e22585 4897 struct page *page;
dfb4f096 4898
4db0c3c2 4899 page = READ_ONCE(c->page);
ec3ab083
CL
4900 if (!page)
4901 continue;
205ab99d 4902
ec3ab083
CL
4903 node = page_to_nid(page);
4904 if (flags & SO_TOTAL)
4905 x = page->objects;
4906 else if (flags & SO_OBJECTS)
4907 x = page->inuse;
4908 else
4909 x = 1;
49e22585 4910
ec3ab083
CL
4911 total += x;
4912 nodes[node] += x;
4913
a93cf07b 4914 page = slub_percpu_partial_read_once(c);
49e22585 4915 if (page) {
8afb1474
LZ
4916 node = page_to_nid(page);
4917 if (flags & SO_TOTAL)
4918 WARN_ON_ONCE(1);
4919 else if (flags & SO_OBJECTS)
4920 WARN_ON_ONCE(1);
4921 else
4922 x = page->pages;
bc6697d8
ED
4923 total += x;
4924 nodes[node] += x;
49e22585 4925 }
81819f0f
CL
4926 }
4927 }
4928
e4f8e513
QC
4929 /*
4930 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4931 * already held which will conflict with an existing lock order:
4932 *
4933 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4934 *
4935 * We don't really need mem_hotplug_lock (to hold off
4936 * slab_mem_going_offline_callback) here because slab's memory hot
4937 * unplug code doesn't destroy the kmem_cache->node[] data.
4938 */
4939
ab4d5ed5 4940#ifdef CONFIG_SLUB_DEBUG
205ab99d 4941 if (flags & SO_ALL) {
fa45dc25
CL
4942 struct kmem_cache_node *n;
4943
4944 for_each_kmem_cache_node(s, node, n) {
205ab99d 4945
d0e0ac97
CG
4946 if (flags & SO_TOTAL)
4947 x = atomic_long_read(&n->total_objects);
4948 else if (flags & SO_OBJECTS)
4949 x = atomic_long_read(&n->total_objects) -
4950 count_partial(n, count_free);
81819f0f 4951 else
205ab99d 4952 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4953 total += x;
4954 nodes[node] += x;
4955 }
4956
ab4d5ed5
CL
4957 } else
4958#endif
4959 if (flags & SO_PARTIAL) {
fa45dc25 4960 struct kmem_cache_node *n;
81819f0f 4961
fa45dc25 4962 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4963 if (flags & SO_TOTAL)
4964 x = count_partial(n, count_total);
4965 else if (flags & SO_OBJECTS)
4966 x = count_partial(n, count_inuse);
81819f0f 4967 else
205ab99d 4968 x = n->nr_partial;
81819f0f
CL
4969 total += x;
4970 nodes[node] += x;
4971 }
4972 }
81819f0f
CL
4973 x = sprintf(buf, "%lu", total);
4974#ifdef CONFIG_NUMA
fa45dc25 4975 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4976 if (nodes[node])
4977 x += sprintf(buf + x, " N%d=%lu",
4978 node, nodes[node]);
4979#endif
4980 kfree(nodes);
4981 return x + sprintf(buf + x, "\n");
4982}
4983
ab4d5ed5 4984#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4985static int any_slab_objects(struct kmem_cache *s)
4986{
4987 int node;
fa45dc25 4988 struct kmem_cache_node *n;
81819f0f 4989
fa45dc25 4990 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4991 if (atomic_long_read(&n->total_objects))
81819f0f 4992 return 1;
fa45dc25 4993
81819f0f
CL
4994 return 0;
4995}
ab4d5ed5 4996#endif
81819f0f
CL
4997
4998#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4999#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5000
5001struct slab_attribute {
5002 struct attribute attr;
5003 ssize_t (*show)(struct kmem_cache *s, char *buf);
5004 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5005};
5006
5007#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5008 static struct slab_attribute _name##_attr = \
5009 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5010
5011#define SLAB_ATTR(_name) \
5012 static struct slab_attribute _name##_attr = \
ab067e99 5013 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5014
81819f0f
CL
5015static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5016{
44065b2e 5017 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5018}
5019SLAB_ATTR_RO(slab_size);
5020
5021static ssize_t align_show(struct kmem_cache *s, char *buf)
5022{
3a3791ec 5023 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5024}
5025SLAB_ATTR_RO(align);
5026
5027static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5028{
1b473f29 5029 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5030}
5031SLAB_ATTR_RO(object_size);
5032
5033static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5034{
19af27af 5035 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5036}
5037SLAB_ATTR_RO(objs_per_slab);
5038
06b285dc
CL
5039static ssize_t order_store(struct kmem_cache *s,
5040 const char *buf, size_t length)
5041{
19af27af 5042 unsigned int order;
0121c619
CL
5043 int err;
5044
19af27af 5045 err = kstrtouint(buf, 10, &order);
0121c619
CL
5046 if (err)
5047 return err;
06b285dc
CL
5048
5049 if (order > slub_max_order || order < slub_min_order)
5050 return -EINVAL;
5051
5052 calculate_sizes(s, order);
5053 return length;
5054}
5055
81819f0f
CL
5056static ssize_t order_show(struct kmem_cache *s, char *buf)
5057{
19af27af 5058 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5059}
06b285dc 5060SLAB_ATTR(order);
81819f0f 5061
73d342b1
DR
5062static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5063{
5064 return sprintf(buf, "%lu\n", s->min_partial);
5065}
5066
5067static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5068 size_t length)
5069{
5070 unsigned long min;
5071 int err;
5072
3dbb95f7 5073 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5074 if (err)
5075 return err;
5076
c0bdb232 5077 set_min_partial(s, min);
73d342b1
DR
5078 return length;
5079}
5080SLAB_ATTR(min_partial);
5081
49e22585
CL
5082static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5083{
e6d0e1dc 5084 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5085}
5086
5087static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5088 size_t length)
5089{
e5d9998f 5090 unsigned int objects;
49e22585
CL
5091 int err;
5092
e5d9998f 5093 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5094 if (err)
5095 return err;
345c905d 5096 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5097 return -EINVAL;
49e22585 5098
e6d0e1dc 5099 slub_set_cpu_partial(s, objects);
49e22585
CL
5100 flush_all(s);
5101 return length;
5102}
5103SLAB_ATTR(cpu_partial);
5104
81819f0f
CL
5105static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5106{
62c70bce
JP
5107 if (!s->ctor)
5108 return 0;
5109 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5110}
5111SLAB_ATTR_RO(ctor);
5112
81819f0f
CL
5113static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5114{
4307c14f 5115 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5116}
5117SLAB_ATTR_RO(aliases);
5118
81819f0f
CL
5119static ssize_t partial_show(struct kmem_cache *s, char *buf)
5120{
d9acf4b7 5121 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5122}
5123SLAB_ATTR_RO(partial);
5124
5125static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5126{
d9acf4b7 5127 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5128}
5129SLAB_ATTR_RO(cpu_slabs);
5130
5131static ssize_t objects_show(struct kmem_cache *s, char *buf)
5132{
205ab99d 5133 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5134}
5135SLAB_ATTR_RO(objects);
5136
205ab99d
CL
5137static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5138{
5139 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5140}
5141SLAB_ATTR_RO(objects_partial);
5142
49e22585
CL
5143static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5144{
5145 int objects = 0;
5146 int pages = 0;
5147 int cpu;
5148 int len;
5149
5150 for_each_online_cpu(cpu) {
a93cf07b
WY
5151 struct page *page;
5152
5153 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5154
5155 if (page) {
5156 pages += page->pages;
5157 objects += page->pobjects;
5158 }
5159 }
5160
5161 len = sprintf(buf, "%d(%d)", objects, pages);
5162
5163#ifdef CONFIG_SMP
5164 for_each_online_cpu(cpu) {
a93cf07b
WY
5165 struct page *page;
5166
5167 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5168
5169 if (page && len < PAGE_SIZE - 20)
5170 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5171 page->pobjects, page->pages);
5172 }
5173#endif
5174 return len + sprintf(buf + len, "\n");
5175}
5176SLAB_ATTR_RO(slabs_cpu_partial);
5177
a5a84755
CL
5178static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5179{
5180 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5181}
5182
5183static ssize_t reclaim_account_store(struct kmem_cache *s,
5184 const char *buf, size_t length)
5185{
5186 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5187 if (buf[0] == '1')
5188 s->flags |= SLAB_RECLAIM_ACCOUNT;
5189 return length;
5190}
5191SLAB_ATTR(reclaim_account);
5192
5193static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5194{
5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5196}
5197SLAB_ATTR_RO(hwcache_align);
5198
5199#ifdef CONFIG_ZONE_DMA
5200static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5201{
5202 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5203}
5204SLAB_ATTR_RO(cache_dma);
5205#endif
5206
8eb8284b
DW
5207static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5208{
7bbdb81e 5209 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5210}
5211SLAB_ATTR_RO(usersize);
5212
a5a84755
CL
5213static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5214{
5f0d5a3a 5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5216}
5217SLAB_ATTR_RO(destroy_by_rcu);
5218
ab4d5ed5 5219#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5220static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5221{
5222 return show_slab_objects(s, buf, SO_ALL);
5223}
5224SLAB_ATTR_RO(slabs);
5225
205ab99d
CL
5226static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5227{
5228 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5229}
5230SLAB_ATTR_RO(total_objects);
5231
81819f0f
CL
5232static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5233{
becfda68 5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5235}
5236
5237static ssize_t sanity_checks_store(struct kmem_cache *s,
5238 const char *buf, size_t length)
5239{
becfda68 5240 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5241 if (buf[0] == '1') {
5242 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5243 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5244 }
81819f0f
CL
5245 return length;
5246}
5247SLAB_ATTR(sanity_checks);
5248
5249static ssize_t trace_show(struct kmem_cache *s, char *buf)
5250{
5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5252}
5253
5254static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5255 size_t length)
5256{
c9e16131
CL
5257 /*
5258 * Tracing a merged cache is going to give confusing results
5259 * as well as cause other issues like converting a mergeable
5260 * cache into an umergeable one.
5261 */
5262 if (s->refcount > 1)
5263 return -EINVAL;
5264
81819f0f 5265 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5266 if (buf[0] == '1') {
5267 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5268 s->flags |= SLAB_TRACE;
b789ef51 5269 }
81819f0f
CL
5270 return length;
5271}
5272SLAB_ATTR(trace);
5273
81819f0f
CL
5274static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5275{
5276 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5277}
5278
5279static ssize_t red_zone_store(struct kmem_cache *s,
5280 const char *buf, size_t length)
5281{
5282 if (any_slab_objects(s))
5283 return -EBUSY;
5284
5285 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5286 if (buf[0] == '1') {
81819f0f 5287 s->flags |= SLAB_RED_ZONE;
b789ef51 5288 }
06b285dc 5289 calculate_sizes(s, -1);
81819f0f
CL
5290 return length;
5291}
5292SLAB_ATTR(red_zone);
5293
5294static ssize_t poison_show(struct kmem_cache *s, char *buf)
5295{
5296 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5297}
5298
5299static ssize_t poison_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301{
5302 if (any_slab_objects(s))
5303 return -EBUSY;
5304
5305 s->flags &= ~SLAB_POISON;
b789ef51 5306 if (buf[0] == '1') {
81819f0f 5307 s->flags |= SLAB_POISON;
b789ef51 5308 }
06b285dc 5309 calculate_sizes(s, -1);
81819f0f
CL
5310 return length;
5311}
5312SLAB_ATTR(poison);
5313
5314static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5315{
5316 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5317}
5318
5319static ssize_t store_user_store(struct kmem_cache *s,
5320 const char *buf, size_t length)
5321{
5322 if (any_slab_objects(s))
5323 return -EBUSY;
5324
5325 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5326 if (buf[0] == '1') {
5327 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5328 s->flags |= SLAB_STORE_USER;
b789ef51 5329 }
06b285dc 5330 calculate_sizes(s, -1);
81819f0f
CL
5331 return length;
5332}
5333SLAB_ATTR(store_user);
5334
53e15af0
CL
5335static ssize_t validate_show(struct kmem_cache *s, char *buf)
5336{
5337 return 0;
5338}
5339
5340static ssize_t validate_store(struct kmem_cache *s,
5341 const char *buf, size_t length)
5342{
434e245d
CL
5343 int ret = -EINVAL;
5344
5345 if (buf[0] == '1') {
5346 ret = validate_slab_cache(s);
5347 if (ret >= 0)
5348 ret = length;
5349 }
5350 return ret;
53e15af0
CL
5351}
5352SLAB_ATTR(validate);
a5a84755
CL
5353
5354static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5355{
5356 if (!(s->flags & SLAB_STORE_USER))
5357 return -ENOSYS;
5358 return list_locations(s, buf, TRACK_ALLOC);
5359}
5360SLAB_ATTR_RO(alloc_calls);
5361
5362static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5363{
5364 if (!(s->flags & SLAB_STORE_USER))
5365 return -ENOSYS;
5366 return list_locations(s, buf, TRACK_FREE);
5367}
5368SLAB_ATTR_RO(free_calls);
5369#endif /* CONFIG_SLUB_DEBUG */
5370
5371#ifdef CONFIG_FAILSLAB
5372static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5373{
5374 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5375}
5376
5377static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5378 size_t length)
5379{
c9e16131
CL
5380 if (s->refcount > 1)
5381 return -EINVAL;
5382
a5a84755
CL
5383 s->flags &= ~SLAB_FAILSLAB;
5384 if (buf[0] == '1')
5385 s->flags |= SLAB_FAILSLAB;
5386 return length;
5387}
5388SLAB_ATTR(failslab);
ab4d5ed5 5389#endif
53e15af0 5390
2086d26a
CL
5391static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5392{
5393 return 0;
5394}
5395
5396static ssize_t shrink_store(struct kmem_cache *s,
5397 const char *buf, size_t length)
5398{
832f37f5 5399 if (buf[0] == '1')
04f768a3 5400 kmem_cache_shrink_all(s);
832f37f5 5401 else
2086d26a
CL
5402 return -EINVAL;
5403 return length;
5404}
5405SLAB_ATTR(shrink);
5406
81819f0f 5407#ifdef CONFIG_NUMA
9824601e 5408static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5409{
eb7235eb 5410 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5411}
5412
9824601e 5413static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5414 const char *buf, size_t length)
5415{
eb7235eb 5416 unsigned int ratio;
0121c619
CL
5417 int err;
5418
eb7235eb 5419 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5420 if (err)
5421 return err;
eb7235eb
AD
5422 if (ratio > 100)
5423 return -ERANGE;
0121c619 5424
eb7235eb 5425 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5426
81819f0f
CL
5427 return length;
5428}
9824601e 5429SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5430#endif
5431
8ff12cfc 5432#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5433static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5434{
5435 unsigned long sum = 0;
5436 int cpu;
5437 int len;
6da2ec56 5438 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5439
5440 if (!data)
5441 return -ENOMEM;
5442
5443 for_each_online_cpu(cpu) {
9dfc6e68 5444 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5445
5446 data[cpu] = x;
5447 sum += x;
5448 }
5449
5450 len = sprintf(buf, "%lu", sum);
5451
50ef37b9 5452#ifdef CONFIG_SMP
8ff12cfc
CL
5453 for_each_online_cpu(cpu) {
5454 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5455 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5456 }
50ef37b9 5457#endif
8ff12cfc
CL
5458 kfree(data);
5459 return len + sprintf(buf + len, "\n");
5460}
5461
78eb00cc
DR
5462static void clear_stat(struct kmem_cache *s, enum stat_item si)
5463{
5464 int cpu;
5465
5466 for_each_online_cpu(cpu)
9dfc6e68 5467 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5468}
5469
8ff12cfc
CL
5470#define STAT_ATTR(si, text) \
5471static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5472{ \
5473 return show_stat(s, buf, si); \
5474} \
78eb00cc
DR
5475static ssize_t text##_store(struct kmem_cache *s, \
5476 const char *buf, size_t length) \
5477{ \
5478 if (buf[0] != '0') \
5479 return -EINVAL; \
5480 clear_stat(s, si); \
5481 return length; \
5482} \
5483SLAB_ATTR(text); \
8ff12cfc
CL
5484
5485STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5486STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5487STAT_ATTR(FREE_FASTPATH, free_fastpath);
5488STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5489STAT_ATTR(FREE_FROZEN, free_frozen);
5490STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5491STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5492STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5493STAT_ATTR(ALLOC_SLAB, alloc_slab);
5494STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5495STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5496STAT_ATTR(FREE_SLAB, free_slab);
5497STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5498STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5499STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5500STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5501STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5502STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5503STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5504STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5505STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5506STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5507STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5508STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5509STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5510STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5511#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5512
06428780 5513static struct attribute *slab_attrs[] = {
81819f0f
CL
5514 &slab_size_attr.attr,
5515 &object_size_attr.attr,
5516 &objs_per_slab_attr.attr,
5517 &order_attr.attr,
73d342b1 5518 &min_partial_attr.attr,
49e22585 5519 &cpu_partial_attr.attr,
81819f0f 5520 &objects_attr.attr,
205ab99d 5521 &objects_partial_attr.attr,
81819f0f
CL
5522 &partial_attr.attr,
5523 &cpu_slabs_attr.attr,
5524 &ctor_attr.attr,
81819f0f
CL
5525 &aliases_attr.attr,
5526 &align_attr.attr,
81819f0f
CL
5527 &hwcache_align_attr.attr,
5528 &reclaim_account_attr.attr,
5529 &destroy_by_rcu_attr.attr,
a5a84755 5530 &shrink_attr.attr,
49e22585 5531 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5532#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5533 &total_objects_attr.attr,
5534 &slabs_attr.attr,
5535 &sanity_checks_attr.attr,
5536 &trace_attr.attr,
81819f0f
CL
5537 &red_zone_attr.attr,
5538 &poison_attr.attr,
5539 &store_user_attr.attr,
53e15af0 5540 &validate_attr.attr,
88a420e4
CL
5541 &alloc_calls_attr.attr,
5542 &free_calls_attr.attr,
ab4d5ed5 5543#endif
81819f0f
CL
5544#ifdef CONFIG_ZONE_DMA
5545 &cache_dma_attr.attr,
5546#endif
5547#ifdef CONFIG_NUMA
9824601e 5548 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5549#endif
5550#ifdef CONFIG_SLUB_STATS
5551 &alloc_fastpath_attr.attr,
5552 &alloc_slowpath_attr.attr,
5553 &free_fastpath_attr.attr,
5554 &free_slowpath_attr.attr,
5555 &free_frozen_attr.attr,
5556 &free_add_partial_attr.attr,
5557 &free_remove_partial_attr.attr,
5558 &alloc_from_partial_attr.attr,
5559 &alloc_slab_attr.attr,
5560 &alloc_refill_attr.attr,
e36a2652 5561 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5562 &free_slab_attr.attr,
5563 &cpuslab_flush_attr.attr,
5564 &deactivate_full_attr.attr,
5565 &deactivate_empty_attr.attr,
5566 &deactivate_to_head_attr.attr,
5567 &deactivate_to_tail_attr.attr,
5568 &deactivate_remote_frees_attr.attr,
03e404af 5569 &deactivate_bypass_attr.attr,
65c3376a 5570 &order_fallback_attr.attr,
b789ef51
CL
5571 &cmpxchg_double_fail_attr.attr,
5572 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5573 &cpu_partial_alloc_attr.attr,
5574 &cpu_partial_free_attr.attr,
8028dcea
AS
5575 &cpu_partial_node_attr.attr,
5576 &cpu_partial_drain_attr.attr,
81819f0f 5577#endif
4c13dd3b
DM
5578#ifdef CONFIG_FAILSLAB
5579 &failslab_attr.attr,
5580#endif
8eb8284b 5581 &usersize_attr.attr,
4c13dd3b 5582
81819f0f
CL
5583 NULL
5584};
5585
1fdaaa23 5586static const struct attribute_group slab_attr_group = {
81819f0f
CL
5587 .attrs = slab_attrs,
5588};
5589
5590static ssize_t slab_attr_show(struct kobject *kobj,
5591 struct attribute *attr,
5592 char *buf)
5593{
5594 struct slab_attribute *attribute;
5595 struct kmem_cache *s;
5596 int err;
5597
5598 attribute = to_slab_attr(attr);
5599 s = to_slab(kobj);
5600
5601 if (!attribute->show)
5602 return -EIO;
5603
5604 err = attribute->show(s, buf);
5605
5606 return err;
5607}
5608
5609static ssize_t slab_attr_store(struct kobject *kobj,
5610 struct attribute *attr,
5611 const char *buf, size_t len)
5612{
5613 struct slab_attribute *attribute;
5614 struct kmem_cache *s;
5615 int err;
5616
5617 attribute = to_slab_attr(attr);
5618 s = to_slab(kobj);
5619
5620 if (!attribute->store)
5621 return -EIO;
5622
5623 err = attribute->store(s, buf, len);
127424c8 5624#ifdef CONFIG_MEMCG
107dab5c 5625 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5626 struct kmem_cache *c;
81819f0f 5627
107dab5c
GC
5628 mutex_lock(&slab_mutex);
5629 if (s->max_attr_size < len)
5630 s->max_attr_size = len;
5631
ebe945c2
GC
5632 /*
5633 * This is a best effort propagation, so this function's return
5634 * value will be determined by the parent cache only. This is
5635 * basically because not all attributes will have a well
5636 * defined semantics for rollbacks - most of the actions will
5637 * have permanent effects.
5638 *
5639 * Returning the error value of any of the children that fail
5640 * is not 100 % defined, in the sense that users seeing the
5641 * error code won't be able to know anything about the state of
5642 * the cache.
5643 *
5644 * Only returning the error code for the parent cache at least
5645 * has well defined semantics. The cache being written to
5646 * directly either failed or succeeded, in which case we loop
5647 * through the descendants with best-effort propagation.
5648 */
426589f5
VD
5649 for_each_memcg_cache(c, s)
5650 attribute->store(c, buf, len);
107dab5c
GC
5651 mutex_unlock(&slab_mutex);
5652 }
5653#endif
81819f0f
CL
5654 return err;
5655}
5656
107dab5c
GC
5657static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5658{
127424c8 5659#ifdef CONFIG_MEMCG
107dab5c
GC
5660 int i;
5661 char *buffer = NULL;
93030d83 5662 struct kmem_cache *root_cache;
107dab5c 5663
93030d83 5664 if (is_root_cache(s))
107dab5c
GC
5665 return;
5666
f7ce3190 5667 root_cache = s->memcg_params.root_cache;
93030d83 5668
107dab5c
GC
5669 /*
5670 * This mean this cache had no attribute written. Therefore, no point
5671 * in copying default values around
5672 */
93030d83 5673 if (!root_cache->max_attr_size)
107dab5c
GC
5674 return;
5675
5676 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5677 char mbuf[64];
5678 char *buf;
5679 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5680 ssize_t len;
107dab5c
GC
5681
5682 if (!attr || !attr->store || !attr->show)
5683 continue;
5684
5685 /*
5686 * It is really bad that we have to allocate here, so we will
5687 * do it only as a fallback. If we actually allocate, though,
5688 * we can just use the allocated buffer until the end.
5689 *
5690 * Most of the slub attributes will tend to be very small in
5691 * size, but sysfs allows buffers up to a page, so they can
5692 * theoretically happen.
5693 */
5694 if (buffer)
5695 buf = buffer;
a68ee057
QC
5696 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5697 !IS_ENABLED(CONFIG_SLUB_STATS))
107dab5c
GC
5698 buf = mbuf;
5699 else {
5700 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5701 if (WARN_ON(!buffer))
5702 continue;
5703 buf = buffer;
5704 }
5705
478fe303
TG
5706 len = attr->show(root_cache, buf);
5707 if (len > 0)
5708 attr->store(s, buf, len);
107dab5c
GC
5709 }
5710
5711 if (buffer)
5712 free_page((unsigned long)buffer);
6dfd1b65 5713#endif /* CONFIG_MEMCG */
107dab5c
GC
5714}
5715
41a21285
CL
5716static void kmem_cache_release(struct kobject *k)
5717{
5718 slab_kmem_cache_release(to_slab(k));
5719}
5720
52cf25d0 5721static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5722 .show = slab_attr_show,
5723 .store = slab_attr_store,
5724};
5725
5726static struct kobj_type slab_ktype = {
5727 .sysfs_ops = &slab_sysfs_ops,
41a21285 5728 .release = kmem_cache_release,
81819f0f
CL
5729};
5730
27c3a314 5731static struct kset *slab_kset;
81819f0f 5732
9a41707b
VD
5733static inline struct kset *cache_kset(struct kmem_cache *s)
5734{
127424c8 5735#ifdef CONFIG_MEMCG
9a41707b 5736 if (!is_root_cache(s))
f7ce3190 5737 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5738#endif
5739 return slab_kset;
5740}
5741
81819f0f
CL
5742#define ID_STR_LENGTH 64
5743
5744/* Create a unique string id for a slab cache:
6446faa2
CL
5745 *
5746 * Format :[flags-]size
81819f0f
CL
5747 */
5748static char *create_unique_id(struct kmem_cache *s)
5749{
5750 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5751 char *p = name;
5752
5753 BUG_ON(!name);
5754
5755 *p++ = ':';
5756 /*
5757 * First flags affecting slabcache operations. We will only
5758 * get here for aliasable slabs so we do not need to support
5759 * too many flags. The flags here must cover all flags that
5760 * are matched during merging to guarantee that the id is
5761 * unique.
5762 */
5763 if (s->flags & SLAB_CACHE_DMA)
5764 *p++ = 'd';
6d6ea1e9
NB
5765 if (s->flags & SLAB_CACHE_DMA32)
5766 *p++ = 'D';
81819f0f
CL
5767 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5768 *p++ = 'a';
becfda68 5769 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5770 *p++ = 'F';
230e9fc2
VD
5771 if (s->flags & SLAB_ACCOUNT)
5772 *p++ = 'A';
81819f0f
CL
5773 if (p != name + 1)
5774 *p++ = '-';
44065b2e 5775 p += sprintf(p, "%07u", s->size);
2633d7a0 5776
81819f0f
CL
5777 BUG_ON(p > name + ID_STR_LENGTH - 1);
5778 return name;
5779}
5780
3b7b3140
TH
5781static void sysfs_slab_remove_workfn(struct work_struct *work)
5782{
5783 struct kmem_cache *s =
5784 container_of(work, struct kmem_cache, kobj_remove_work);
5785
5786 if (!s->kobj.state_in_sysfs)
5787 /*
5788 * For a memcg cache, this may be called during
5789 * deactivation and again on shutdown. Remove only once.
5790 * A cache is never shut down before deactivation is
5791 * complete, so no need to worry about synchronization.
5792 */
f6ba4880 5793 goto out;
3b7b3140
TH
5794
5795#ifdef CONFIG_MEMCG
5796 kset_unregister(s->memcg_kset);
5797#endif
f6ba4880 5798out:
3b7b3140
TH
5799 kobject_put(&s->kobj);
5800}
5801
81819f0f
CL
5802static int sysfs_slab_add(struct kmem_cache *s)
5803{
5804 int err;
5805 const char *name;
1663f26d 5806 struct kset *kset = cache_kset(s);
45530c44 5807 int unmergeable = slab_unmergeable(s);
81819f0f 5808
3b7b3140
TH
5809 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5810
1663f26d
TH
5811 if (!kset) {
5812 kobject_init(&s->kobj, &slab_ktype);
5813 return 0;
5814 }
5815
11066386
MC
5816 if (!unmergeable && disable_higher_order_debug &&
5817 (slub_debug & DEBUG_METADATA_FLAGS))
5818 unmergeable = 1;
5819
81819f0f
CL
5820 if (unmergeable) {
5821 /*
5822 * Slabcache can never be merged so we can use the name proper.
5823 * This is typically the case for debug situations. In that
5824 * case we can catch duplicate names easily.
5825 */
27c3a314 5826 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5827 name = s->name;
5828 } else {
5829 /*
5830 * Create a unique name for the slab as a target
5831 * for the symlinks.
5832 */
5833 name = create_unique_id(s);
5834 }
5835
1663f26d 5836 s->kobj.kset = kset;
26e4f205 5837 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5838 if (err) {
5839 kobject_put(&s->kobj);
80da026a 5840 goto out;
dde3c6b7 5841 }
81819f0f
CL
5842
5843 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5844 if (err)
5845 goto out_del_kobj;
9a41707b 5846
127424c8 5847#ifdef CONFIG_MEMCG
1663f26d 5848 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5849 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5850 if (!s->memcg_kset) {
54b6a731
DJ
5851 err = -ENOMEM;
5852 goto out_del_kobj;
9a41707b
VD
5853 }
5854 }
5855#endif
5856
81819f0f
CL
5857 if (!unmergeable) {
5858 /* Setup first alias */
5859 sysfs_slab_alias(s, s->name);
81819f0f 5860 }
54b6a731
DJ
5861out:
5862 if (!unmergeable)
5863 kfree(name);
5864 return err;
5865out_del_kobj:
5866 kobject_del(&s->kobj);
54b6a731 5867 goto out;
81819f0f
CL
5868}
5869
bf5eb3de 5870static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5871{
97d06609 5872 if (slab_state < FULL)
2bce6485
CL
5873 /*
5874 * Sysfs has not been setup yet so no need to remove the
5875 * cache from sysfs.
5876 */
5877 return;
5878
3b7b3140
TH
5879 kobject_get(&s->kobj);
5880 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5881}
5882
d50d82fa
MP
5883void sysfs_slab_unlink(struct kmem_cache *s)
5884{
5885 if (slab_state >= FULL)
5886 kobject_del(&s->kobj);
5887}
5888
bf5eb3de
TH
5889void sysfs_slab_release(struct kmem_cache *s)
5890{
5891 if (slab_state >= FULL)
5892 kobject_put(&s->kobj);
81819f0f
CL
5893}
5894
5895/*
5896 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5897 * available lest we lose that information.
81819f0f
CL
5898 */
5899struct saved_alias {
5900 struct kmem_cache *s;
5901 const char *name;
5902 struct saved_alias *next;
5903};
5904
5af328a5 5905static struct saved_alias *alias_list;
81819f0f
CL
5906
5907static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5908{
5909 struct saved_alias *al;
5910
97d06609 5911 if (slab_state == FULL) {
81819f0f
CL
5912 /*
5913 * If we have a leftover link then remove it.
5914 */
27c3a314
GKH
5915 sysfs_remove_link(&slab_kset->kobj, name);
5916 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5917 }
5918
5919 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5920 if (!al)
5921 return -ENOMEM;
5922
5923 al->s = s;
5924 al->name = name;
5925 al->next = alias_list;
5926 alias_list = al;
5927 return 0;
5928}
5929
5930static int __init slab_sysfs_init(void)
5931{
5b95a4ac 5932 struct kmem_cache *s;
81819f0f
CL
5933 int err;
5934
18004c5d 5935 mutex_lock(&slab_mutex);
2bce6485 5936
d7660ce5 5937 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5938 if (!slab_kset) {
18004c5d 5939 mutex_unlock(&slab_mutex);
f9f58285 5940 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5941 return -ENOSYS;
5942 }
5943
97d06609 5944 slab_state = FULL;
26a7bd03 5945
5b95a4ac 5946 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5947 err = sysfs_slab_add(s);
5d540fb7 5948 if (err)
f9f58285
FF
5949 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5950 s->name);
26a7bd03 5951 }
81819f0f
CL
5952
5953 while (alias_list) {
5954 struct saved_alias *al = alias_list;
5955
5956 alias_list = alias_list->next;
5957 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5958 if (err)
f9f58285
FF
5959 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5960 al->name);
81819f0f
CL
5961 kfree(al);
5962 }
5963
18004c5d 5964 mutex_unlock(&slab_mutex);
81819f0f
CL
5965 resiliency_test();
5966 return 0;
5967}
5968
5969__initcall(slab_sysfs_init);
ab4d5ed5 5970#endif /* CONFIG_SYSFS */
57ed3eda
PE
5971
5972/*
5973 * The /proc/slabinfo ABI
5974 */
5b365771 5975#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5976void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5977{
57ed3eda 5978 unsigned long nr_slabs = 0;
205ab99d
CL
5979 unsigned long nr_objs = 0;
5980 unsigned long nr_free = 0;
57ed3eda 5981 int node;
fa45dc25 5982 struct kmem_cache_node *n;
57ed3eda 5983
fa45dc25 5984 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5985 nr_slabs += node_nr_slabs(n);
5986 nr_objs += node_nr_objs(n);
205ab99d 5987 nr_free += count_partial(n, count_free);
57ed3eda
PE
5988 }
5989
0d7561c6
GC
5990 sinfo->active_objs = nr_objs - nr_free;
5991 sinfo->num_objs = nr_objs;
5992 sinfo->active_slabs = nr_slabs;
5993 sinfo->num_slabs = nr_slabs;
5994 sinfo->objects_per_slab = oo_objects(s->oo);
5995 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5996}
5997
0d7561c6 5998void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5999{
7b3c3a50
AD
6000}
6001
b7454ad3
GC
6002ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6003 size_t count, loff_t *ppos)
7b3c3a50 6004{
b7454ad3 6005 return -EIO;
7b3c3a50 6006}
5b365771 6007#endif /* CONFIG_SLUB_DEBUG */