]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
slub: add 'likely' macro to inc_slabs_node()
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
2633d7a0 34#include <linux/memcontrol.h>
81819f0f 35
4a92379b
RK
36#include <trace/events/kmem.h>
37
072bb0aa
MG
38#include "internal.h"
39
81819f0f
CL
40/*
41 * Lock order:
18004c5d 42 * 1. slab_mutex (Global Mutex)
881db7fb
CL
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 45 *
18004c5d 46 * slab_mutex
881db7fb 47 *
18004c5d 48 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
81819f0f
CL
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
672bba3a
CL
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 85 * freed then the slab will show up again on the partial lists.
672bba3a
CL
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
81819f0f
CL
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
4b6f0750
CL
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
dfb4f096 107 * freelist that allows lockless access to
894b8788
CL
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
81819f0f
CL
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
894b8788 113 * the fast path and disables lockless freelists.
81819f0f
CL
114 */
115
af537b0a
CL
116static inline int kmem_cache_debug(struct kmem_cache *s)
117{
5577bd8a 118#ifdef CONFIG_SLUB_DEBUG
af537b0a 119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 120#else
af537b0a 121 return 0;
5577bd8a 122#endif
af537b0a 123}
5577bd8a 124
81819f0f
CL
125/*
126 * Issues still to be resolved:
127 *
81819f0f
CL
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
81819f0f
CL
130 * - Variable sizing of the per node arrays
131 */
132
133/* Enable to test recovery from slab corruption on boot */
134#undef SLUB_RESILIENCY_TEST
135
b789ef51
CL
136/* Enable to log cmpxchg failures */
137#undef SLUB_DEBUG_CMPXCHG
138
2086d26a
CL
139/*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
76be8950 143#define MIN_PARTIAL 5
e95eed57 144
2086d26a
CL
145/*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150#define MAX_PARTIAL 10
151
81819f0f
CL
152#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
672bba3a 154
fa5ec8a1 155/*
3de47213
DR
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
fa5ec8a1 159 */
3de47213 160#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 161
81819f0f
CL
162/*
163 * Set of flags that will prevent slab merging
164 */
165#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
81819f0f
CL
168
169#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 170 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
203static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
db265eca 209static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 210
107dab5c 211static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
212#endif
213
4fdccdfb 214static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
215{
216#ifdef CONFIG_SLUB_STATS
84e554e6 217 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
218#endif
219}
220
81819f0f
CL
221/********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
81819f0f
CL
225static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226{
81819f0f 227 return s->node[node];
81819f0f
CL
228}
229
6446faa2 230/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
231static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233{
234 void *base;
235
a973e9dd 236 if (!object)
02cbc874
CL
237 return 1;
238
a973e9dd 239 base = page_address(page);
39b26464 240 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246}
247
7656c72b
CL
248static inline void *get_freepointer(struct kmem_cache *s, void *object)
249{
250 return *(void **)(object + s->offset);
251}
252
0ad9500e
ED
253static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254{
255 prefetch(object + s->offset);
256}
257
1393d9a1
CL
258static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259{
260 void *p;
261
262#ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264#else
265 p = get_freepointer(s, object);
266#endif
267 return p;
268}
269
7656c72b
CL
270static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271{
272 *(void **)(object + s->offset) = fp;
273}
274
275/* Loop over all objects in a slab */
224a88be
CL
276#define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
278 __p += (__s)->size)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
1d07171c
CL
348/* Interrupts must be disabled (for the fallback code to work right) */
349static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353{
354 VM_BUG_ON(!irqs_disabled());
2565409f
HC
355#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 357 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 358 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363#endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378#ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380#endif
381
382 return 0;
383}
384
b789ef51
CL
385static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389{
2565409f
HC
390#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 392 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 393 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398#endif
399 {
1d07171c
CL
400 unsigned long flags;
401
402 local_irq_save(flags);
881db7fb 403 slab_lock(page);
b789ef51
CL
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
881db7fb 407 slab_unlock(page);
1d07171c 408 local_irq_restore(flags);
b789ef51
CL
409 return 1;
410 }
881db7fb 411 slab_unlock(page);
1d07171c 412 local_irq_restore(flags);
b789ef51
CL
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418#ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420#endif
421
422 return 0;
423}
424
41ecc55b 425#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
426/*
427 * Determine a map of object in use on a page.
428 *
881db7fb 429 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
430 * not vanish from under us.
431 */
432static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433{
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439}
440
41ecc55b
CL
441/*
442 * Debug settings:
443 */
f0630fff
CL
444#ifdef CONFIG_SLUB_DEBUG_ON
445static int slub_debug = DEBUG_DEFAULT_FLAGS;
446#else
41ecc55b 447static int slub_debug;
f0630fff 448#endif
41ecc55b
CL
449
450static char *slub_debug_slabs;
fa5ec8a1 451static int disable_higher_order_debug;
41ecc55b 452
81819f0f
CL
453/*
454 * Object debugging
455 */
456static void print_section(char *text, u8 *addr, unsigned int length)
457{
ffc79d28
SAS
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
81819f0f
CL
460}
461
81819f0f
CL
462static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464{
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473}
474
475static void set_track(struct kmem_cache *s, void *object,
ce71e27c 476 enum track_item alloc, unsigned long addr)
81819f0f 477{
1a00df4a 478 struct track *p = get_track(s, object, alloc);
81819f0f 479
81819f0f 480 if (addr) {
d6543e39
BG
481#ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498#endif
81819f0f
CL
499 p->addr = addr;
500 p->cpu = smp_processor_id();
88e4ccf2 501 p->pid = current->pid;
81819f0f
CL
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505}
506
81819f0f
CL
507static void init_tracking(struct kmem_cache *s, void *object)
508{
24922684
CL
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
ce71e27c
EGM
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
514}
515
516static void print_track(const char *s, struct track *t)
517{
518 if (!t->addr)
519 return;
520
7daf705f 521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
523#ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532#endif
24922684
CL
533}
534
535static void print_tracking(struct kmem_cache *s, void *object)
536{
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542}
543
544static void print_page_info(struct page *page)
545{
39b26464
CL
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
548
549}
550
551static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552{
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
265d47e7 561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
645df230
DJ
564
565 add_taint(TAINT_BAD_PAGE);
81819f0f
CL
566}
567
24922684
CL
568static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569{
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577}
578
579static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
580{
581 unsigned int off; /* Offset of last byte */
a973e9dd 582 u8 *addr = page_address(page);
24922684
CL
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
ffc79d28 592 print_section("Bytes b4 ", p - 16, 16);
81819f0f 593
3b0efdfa 594 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 595 PAGE_SIZE));
81819f0f 596 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
81819f0f 599
81819f0f
CL
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
24922684 605 if (s->flags & SLAB_STORE_USER)
81819f0f 606 off += 2 * sizeof(struct track);
81819f0f
CL
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
ffc79d28 610 print_section("Padding ", p + off, s->size - off);
24922684
CL
611
612 dump_stack();
81819f0f
CL
613}
614
615static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617{
3dc50637 618 slab_bug(s, "%s", reason);
24922684 619 print_trailer(s, page, object);
81819f0f
CL
620}
621
945cf2b6 622static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
623{
624 va_list args;
625 char buf[100];
626
24922684
CL
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 629 va_end(args);
3dc50637 630 slab_bug(s, "%s", buf);
24922684 631 print_page_info(page);
81819f0f
CL
632 dump_stack();
633}
634
f7cb1933 635static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
636{
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
81819f0f
CL
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 645 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
646}
647
24922684
CL
648static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650{
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653}
654
655static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
06428780 657 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
658{
659 u8 *fault;
660 u8 *end;
661
79824820 662 fault = memchr_inv(start, value, bytes);
24922684
CL
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
81819f0f
CL
677}
678
81819f0f
CL
679/*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
672bba3a 686 *
81819f0f
CL
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
3b0efdfa 690 * object + s->object_size
81819f0f 691 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 692 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 693 * object_size == inuse.
672bba3a 694 *
81819f0f
CL
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
672bba3a
CL
699 * Meta data starts here.
700 *
81819f0f
CL
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
672bba3a 703 * C. Padding to reach required alignment boundary or at mininum
6446faa2 704 * one word if debugging is on to be able to detect writes
672bba3a
CL
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
708 *
709 * object + s->size
672bba3a 710 * Nothing is used beyond s->size.
81819f0f 711 *
3b0efdfa 712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 713 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
714 * may be used with merged slabcaches.
715 */
716
81819f0f
CL
717static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718{
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
24922684
CL
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
734}
735
39b26464 736/* Check the pad bytes at the end of a slab page */
81819f0f
CL
737static int slab_pad_check(struct kmem_cache *s, struct page *page)
738{
24922684
CL
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
81819f0f
CL
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
a973e9dd 748 start = page_address(page);
ab9a0f19 749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
750 end = start + length;
751 remainder = length % s->size;
81819f0f
CL
752 if (!remainder)
753 return 1;
754
79824820 755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 762 print_section("Padding ", end - remainder, remainder);
24922684 763
8a3d271d 764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 765 return 0;
81819f0f
CL
766}
767
768static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 769 void *object, u8 val)
81819f0f
CL
770{
771 u8 *p = object;
3b0efdfa 772 u8 *endobject = object + s->object_size;
81819f0f
CL
773
774 if (s->flags & SLAB_RED_ZONE) {
24922684 775 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 776 endobject, val, s->inuse - s->object_size))
81819f0f 777 return 0;
81819f0f 778 } else {
3b0efdfa 779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 780 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 781 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 782 }
81819f0f
CL
783 }
784
785 if (s->flags & SLAB_POISON) {
f7cb1933 786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 787 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 788 POISON_FREE, s->object_size - 1) ||
24922684 789 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 790 p + s->object_size - 1, POISON_END, 1)))
81819f0f 791 return 0;
81819f0f
CL
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
f7cb1933 798 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
9f6c708e 809 * No choice but to zap it and thus lose the remainder
81819f0f 810 * of the free objects in this slab. May cause
672bba3a 811 * another error because the object count is now wrong.
81819f0f 812 */
a973e9dd 813 set_freepointer(s, p, NULL);
81819f0f
CL
814 return 0;
815 }
816 return 1;
817}
818
819static int check_slab(struct kmem_cache *s, struct page *page)
820{
39b26464
CL
821 int maxobj;
822
81819f0f
CL
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
24922684 826 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
827 return 0;
828 }
39b26464 829
ab9a0f19 830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
24922684 837 slab_err(s, page, "inuse %u > max %u",
39b26464 838 s->name, page->inuse, page->objects);
81819f0f
CL
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844}
845
846/*
672bba3a
CL
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
849 */
850static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851{
852 int nr = 0;
881db7fb 853 void *fp;
81819f0f 854 void *object = NULL;
224a88be 855 unsigned long max_objects;
81819f0f 856
881db7fb 857 fp = page->freelist;
39b26464 858 while (fp && nr <= page->objects) {
81819f0f
CL
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
a973e9dd 865 set_freepointer(s, object, NULL);
81819f0f
CL
866 break;
867 } else {
24922684 868 slab_err(s, page, "Freepointer corrupt");
a973e9dd 869 page->freelist = NULL;
39b26464 870 page->inuse = page->objects;
24922684 871 slab_fix(s, "Freelist cleared");
81819f0f
CL
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
ab9a0f19 881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
39b26464 891 if (page->inuse != page->objects - nr) {
70d71228 892 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
24922684 895 slab_fix(s, "Object count adjusted.");
81819f0f
CL
896 }
897 return search == NULL;
898}
899
0121c619
CL
900static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
3ec09742
CL
902{
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
3b0efdfa 911 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
912
913 dump_stack();
914 }
915}
916
c016b0bd
CL
917/*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922{
c1d50836 923 flags &= gfp_allowed_mask;
c016b0bd
CL
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
3b0efdfa 927 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
928}
929
930static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931{
c1d50836 932 flags &= gfp_allowed_mask;
b3d41885 933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
935}
936
937static inline void slab_free_hook(struct kmem_cache *s, void *x)
938{
939 kmemleak_free_recursive(x, s->flags);
c016b0bd 940
d3f661d6
CL
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
3b0efdfa
CL
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
953 local_irq_restore(flags);
954 }
955#endif
f9b615de 956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 957 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
958}
959
643b1138 960/*
672bba3a 961 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
962 *
963 * list_lock must be held.
643b1138 964 */
5cc6eee8
CL
965static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
643b1138 967{
5cc6eee8
CL
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
5cc6eee8
CL
974/*
975 * list_lock must be held.
976 */
643b1138
CL
977static void remove_full(struct kmem_cache *s, struct page *page)
978{
643b1138
CL
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
338b2642 1008 if (likely(n)) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
1537066c 1032static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1033 void *object, unsigned long addr)
81819f0f
CL
1034{
1035 if (!check_slab(s, page))
1036 goto bad;
1037
81819f0f
CL
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1040 goto bad;
81819f0f
CL
1041 }
1042
f7cb1933 1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1044 goto bad;
81819f0f 1045
3ec09742
CL
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
f7cb1933 1050 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1051 return 1;
3ec09742 1052
81819f0f
CL
1053bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
672bba3a 1058 * as used avoids touching the remaining objects.
81819f0f 1059 */
24922684 1060 slab_fix(s, "Marking all objects used");
39b26464 1061 page->inuse = page->objects;
a973e9dd 1062 page->freelist = NULL;
81819f0f
CL
1063 }
1064 return 0;
1065}
1066
19c7ff9e
CL
1067static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
81819f0f 1070{
19c7ff9e 1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1072
19c7ff9e 1073 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1074 slab_lock(page);
1075
81819f0f
CL
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
70d71228 1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
24922684 1085 object_err(s, page, object, "Object already free");
81819f0f
CL
1086 goto fail;
1087 }
1088
f7cb1933 1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1090 goto out;
81819f0f 1091
1b4f59e3 1092 if (unlikely(s != page->slab_cache)) {
3adbefee 1093 if (!PageSlab(page)) {
70d71228
CL
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1b4f59e3 1096 } else if (!page->slab_cache) {
81819f0f 1097 printk(KERN_ERR
70d71228 1098 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1099 object);
70d71228 1100 dump_stack();
06428780 1101 } else
24922684
CL
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
81819f0f
CL
1104 goto fail;
1105 }
3ec09742 1106
3ec09742
CL
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1111out:
881db7fb 1112 slab_unlock(page);
19c7ff9e
CL
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
3ec09742 1118
81819f0f 1119fail:
19c7ff9e
CL
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1122 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1123 return NULL;
81819f0f
CL
1124}
1125
41ecc55b
CL
1126static int __init setup_slub_debug(char *str)
1127{
f0630fff
CL
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
fa5ec8a1
DR
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
f0630fff
CL
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
06428780 1161 for (; *str && *str != ','; str++) {
f0630fff
CL
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
4c13dd3b
DM
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
f0630fff
CL
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
06428780 1183 "unknown. skipped\n", *str);
f0630fff 1184 }
41ecc55b
CL
1185 }
1186
f0630fff 1187check_slabs:
41ecc55b
CL
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
f0630fff 1190out:
41ecc55b
CL
1191 return 1;
1192}
1193
1194__setup("slub_debug", setup_slub_debug);
1195
3b0efdfa 1196static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1197 unsigned long flags, const char *name,
51cc5068 1198 void (*ctor)(void *))
41ecc55b
CL
1199{
1200 /*
e153362a 1201 * Enable debugging if selected on the kernel commandline.
41ecc55b 1202 */
e153362a 1203 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
ba0268a8
CL
1206
1207 return flags;
41ecc55b
CL
1208}
1209#else
3ec09742
CL
1210static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
41ecc55b 1212
3ec09742 1213static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1214 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1215
19c7ff9e
CL
1216static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1219
41ecc55b
CL
1220static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1223 void *object, u8 val) { return 1; }
5cc6eee8
CL
1224static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
2cfb7455 1226static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1227static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1228 unsigned long flags, const char *name,
51cc5068 1229 void (*ctor)(void *))
ba0268a8
CL
1230{
1231 return flags;
1232}
41ecc55b 1233#define slub_debug 0
0f389ec6 1234
fdaa45e9
IM
1235#define disable_higher_order_debug 0
1236
0f389ec6
CL
1237static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
26c02cf0
AB
1239static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
205ab99d
CL
1241static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
7d550c56
CL
1245
1246static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
ab4d5ed5 1254#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1255
81819f0f
CL
1256/*
1257 * Slab allocation and freeing
1258 */
65c3376a
CL
1259static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261{
1262 int order = oo_order(oo);
1263
b1eeab67
VN
1264 flags |= __GFP_NOTRACK;
1265
2154a336 1266 if (node == NUMA_NO_NODE)
65c3376a
CL
1267 return alloc_pages(flags, order);
1268 else
6b65aaf3 1269 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1270}
1271
81819f0f
CL
1272static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273{
06428780 1274 struct page *page;
834f3d11 1275 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1276 gfp_t alloc_gfp;
81819f0f 1277
7e0528da
CL
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
b7a49f0d 1283 flags |= s->allocflags;
e12ba74d 1284
ba52270d
PE
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
81819f0f 1299
7e0528da
CL
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
65c3376a 1302 }
5a896d9e 1303
737b719e 1304 if (kmemcheck_enabled && page
5086c389 1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1318 }
1319
737b719e
DR
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
834f3d11 1325 page->objects = oo_objects(oo);
81819f0f
CL
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1329 1 << oo_order(oo));
81819f0f
CL
1330
1331 return page;
1332}
1333
1334static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336{
3ec09742 1337 setup_object_debug(s, page, object);
4f104934 1338 if (unlikely(s->ctor))
51cc5068 1339 s->ctor(object);
81819f0f
CL
1340}
1341
1342static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343{
1344 struct page *page;
81819f0f 1345 void *start;
81819f0f
CL
1346 void *last;
1347 void *p;
1f458cbf 1348 int order;
81819f0f 1349
6cb06229 1350 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1351
6cb06229
CL
1352 page = allocate_slab(s,
1353 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1354 if (!page)
1355 goto out;
1356
1f458cbf 1357 order = compound_order(page);
205ab99d 1358 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1359 memcg_bind_pages(s, order);
1b4f59e3 1360 page->slab_cache = s;
c03f94cc 1361 __SetPageSlab(page);
072bb0aa
MG
1362 if (page->pfmemalloc)
1363 SetPageSlabPfmemalloc(page);
81819f0f
CL
1364
1365 start = page_address(page);
81819f0f
CL
1366
1367 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1368 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1369
1370 last = start;
224a88be 1371 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1374 last = p;
1375 }
1376 setup_object(s, page, last);
a973e9dd 1377 set_freepointer(s, last, NULL);
81819f0f
CL
1378
1379 page->freelist = start;
e6e82ea1 1380 page->inuse = page->objects;
8cb0a506 1381 page->frozen = 1;
81819f0f 1382out:
81819f0f
CL
1383 return page;
1384}
1385
1386static void __free_slab(struct kmem_cache *s, struct page *page)
1387{
834f3d11
CL
1388 int order = compound_order(page);
1389 int pages = 1 << order;
81819f0f 1390
af537b0a 1391 if (kmem_cache_debug(s)) {
81819f0f
CL
1392 void *p;
1393
1394 slab_pad_check(s, page);
224a88be
CL
1395 for_each_object(p, s, page_address(page),
1396 page->objects)
f7cb1933 1397 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1398 }
1399
b1eeab67 1400 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1401
81819f0f
CL
1402 mod_zone_page_state(page_zone(page),
1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1405 -pages);
81819f0f 1406
072bb0aa 1407 __ClearPageSlabPfmemalloc(page);
49bd5221 1408 __ClearPageSlab(page);
1f458cbf
GC
1409
1410 memcg_release_pages(s, order);
49bd5221 1411 reset_page_mapcount(page);
1eb5ac64
NP
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1414 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1415}
1416
da9a638c
LJ
1417#define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
81819f0f
CL
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422 struct page *page;
1423
da9a638c
LJ
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1b4f59e3 1429 __free_slab(page->slab_cache, page);
81819f0f
CL
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
81819f0f
CL
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
205ab99d 1457 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1458 free_slab(s, page);
1459}
1460
1461/*
5cc6eee8
CL
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
81819f0f 1465 */
5cc6eee8 1466static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1467 struct page *page, int tail)
81819f0f 1468{
e95eed57 1469 n->nr_partial++;
136333d1 1470 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
81819f0f
CL
1474}
1475
5cc6eee8
CL
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1480 struct page *page)
1481{
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484}
1485
81819f0f 1486/*
7ced3719
CL
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
81819f0f 1489 *
497b66f2
CL
1490 * Returns a list of objects or NULL if it fails.
1491 *
7ced3719 1492 * Must hold list_lock since we modify the partial list.
81819f0f 1493 */
497b66f2 1494static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1495 struct kmem_cache_node *n, struct page *page,
633b0764 1496 int mode, int *objects)
81819f0f 1497{
2cfb7455
CL
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
2cfb7455
CL
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
7ced3719
CL
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
633b0764 1510 *objects = new.objects - new.inuse;
23910c50 1511 if (mode) {
7ced3719 1512 new.inuse = page->objects;
23910c50
PE
1513 new.freelist = NULL;
1514 } else {
1515 new.freelist = freelist;
1516 }
2cfb7455 1517
7ced3719
CL
1518 VM_BUG_ON(new.frozen);
1519 new.frozen = 1;
2cfb7455 1520
7ced3719 1521 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1522 freelist, counters,
02d7633f 1523 new.freelist, new.counters,
7ced3719 1524 "acquire_slab"))
7ced3719 1525 return NULL;
2cfb7455
CL
1526
1527 remove_partial(n, page);
7ced3719 1528 WARN_ON(!freelist);
49e22585 1529 return freelist;
81819f0f
CL
1530}
1531
633b0764 1532static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1533static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1534
81819f0f 1535/*
672bba3a 1536 * Try to allocate a partial slab from a specific node.
81819f0f 1537 */
8ba00bb6
JK
1538static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1540{
49e22585
CL
1541 struct page *page, *page2;
1542 void *object = NULL;
633b0764
JK
1543 int available = 0;
1544 int objects;
81819f0f
CL
1545
1546 /*
1547 * Racy check. If we mistakenly see no partial slabs then we
1548 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1549 * partial slab and there is none available then get_partials()
1550 * will return NULL.
81819f0f
CL
1551 */
1552 if (!n || !n->nr_partial)
1553 return NULL;
1554
1555 spin_lock(&n->list_lock);
49e22585 1556 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1557 void *t;
49e22585 1558
8ba00bb6
JK
1559 if (!pfmemalloc_match(page, flags))
1560 continue;
1561
633b0764 1562 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1563 if (!t)
1564 break;
1565
633b0764 1566 available += objects;
12d79634 1567 if (!object) {
49e22585 1568 c->page = page;
49e22585 1569 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1570 object = t;
49e22585 1571 } else {
633b0764 1572 put_cpu_partial(s, page, 0);
8028dcea 1573 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1574 }
1575 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1576 break;
1577
497b66f2 1578 }
81819f0f 1579 spin_unlock(&n->list_lock);
497b66f2 1580 return object;
81819f0f
CL
1581}
1582
1583/*
672bba3a 1584 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1585 */
de3ec035 1586static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1587 struct kmem_cache_cpu *c)
81819f0f
CL
1588{
1589#ifdef CONFIG_NUMA
1590 struct zonelist *zonelist;
dd1a239f 1591 struct zoneref *z;
54a6eb5c
MG
1592 struct zone *zone;
1593 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1594 void *object;
cc9a6c87 1595 unsigned int cpuset_mems_cookie;
81819f0f
CL
1596
1597 /*
672bba3a
CL
1598 * The defrag ratio allows a configuration of the tradeoffs between
1599 * inter node defragmentation and node local allocations. A lower
1600 * defrag_ratio increases the tendency to do local allocations
1601 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1602 *
672bba3a
CL
1603 * If the defrag_ratio is set to 0 then kmalloc() always
1604 * returns node local objects. If the ratio is higher then kmalloc()
1605 * may return off node objects because partial slabs are obtained
1606 * from other nodes and filled up.
81819f0f 1607 *
6446faa2 1608 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1609 * defrag_ratio = 1000) then every (well almost) allocation will
1610 * first attempt to defrag slab caches on other nodes. This means
1611 * scanning over all nodes to look for partial slabs which may be
1612 * expensive if we do it every time we are trying to find a slab
1613 * with available objects.
81819f0f 1614 */
9824601e
CL
1615 if (!s->remote_node_defrag_ratio ||
1616 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1617 return NULL;
1618
cc9a6c87
MG
1619 do {
1620 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1621 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1622 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1623 struct kmem_cache_node *n;
1624
1625 n = get_node(s, zone_to_nid(zone));
1626
1627 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1628 n->nr_partial > s->min_partial) {
8ba00bb6 1629 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1630 if (object) {
1631 /*
1632 * Return the object even if
1633 * put_mems_allowed indicated that
1634 * the cpuset mems_allowed was
1635 * updated in parallel. It's a
1636 * harmless race between the alloc
1637 * and the cpuset update.
1638 */
1639 put_mems_allowed(cpuset_mems_cookie);
1640 return object;
1641 }
c0ff7453 1642 }
81819f0f 1643 }
cc9a6c87 1644 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1645#endif
1646 return NULL;
1647}
1648
1649/*
1650 * Get a partial page, lock it and return it.
1651 */
497b66f2 1652static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1653 struct kmem_cache_cpu *c)
81819f0f 1654{
497b66f2 1655 void *object;
2154a336 1656 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1657
8ba00bb6 1658 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1659 if (object || node != NUMA_NO_NODE)
1660 return object;
81819f0f 1661
acd19fd1 1662 return get_any_partial(s, flags, c);
81819f0f
CL
1663}
1664
8a5ec0ba
CL
1665#ifdef CONFIG_PREEMPT
1666/*
1667 * Calculate the next globally unique transaction for disambiguiation
1668 * during cmpxchg. The transactions start with the cpu number and are then
1669 * incremented by CONFIG_NR_CPUS.
1670 */
1671#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1672#else
1673/*
1674 * No preemption supported therefore also no need to check for
1675 * different cpus.
1676 */
1677#define TID_STEP 1
1678#endif
1679
1680static inline unsigned long next_tid(unsigned long tid)
1681{
1682 return tid + TID_STEP;
1683}
1684
1685static inline unsigned int tid_to_cpu(unsigned long tid)
1686{
1687 return tid % TID_STEP;
1688}
1689
1690static inline unsigned long tid_to_event(unsigned long tid)
1691{
1692 return tid / TID_STEP;
1693}
1694
1695static inline unsigned int init_tid(int cpu)
1696{
1697 return cpu;
1698}
1699
1700static inline void note_cmpxchg_failure(const char *n,
1701 const struct kmem_cache *s, unsigned long tid)
1702{
1703#ifdef SLUB_DEBUG_CMPXCHG
1704 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1705
1706 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1707
1708#ifdef CONFIG_PREEMPT
1709 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1710 printk("due to cpu change %d -> %d\n",
1711 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1712 else
1713#endif
1714 if (tid_to_event(tid) != tid_to_event(actual_tid))
1715 printk("due to cpu running other code. Event %ld->%ld\n",
1716 tid_to_event(tid), tid_to_event(actual_tid));
1717 else
1718 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1719 actual_tid, tid, next_tid(tid));
1720#endif
4fdccdfb 1721 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1722}
1723
788e1aad 1724static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1725{
8a5ec0ba
CL
1726 int cpu;
1727
1728 for_each_possible_cpu(cpu)
1729 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1730}
2cfb7455 1731
81819f0f
CL
1732/*
1733 * Remove the cpu slab
1734 */
c17dda40 1735static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1736{
2cfb7455 1737 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739 int lock = 0;
1740 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1741 void *nextfree;
136333d1 1742 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1743 struct page new;
1744 struct page old;
1745
1746 if (page->freelist) {
84e554e6 1747 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1748 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1749 }
1750
894b8788 1751 /*
2cfb7455
CL
1752 * Stage one: Free all available per cpu objects back
1753 * to the page freelist while it is still frozen. Leave the
1754 * last one.
1755 *
1756 * There is no need to take the list->lock because the page
1757 * is still frozen.
1758 */
1759 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1760 void *prior;
1761 unsigned long counters;
1762
1763 do {
1764 prior = page->freelist;
1765 counters = page->counters;
1766 set_freepointer(s, freelist, prior);
1767 new.counters = counters;
1768 new.inuse--;
1769 VM_BUG_ON(!new.frozen);
1770
1d07171c 1771 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1772 prior, counters,
1773 freelist, new.counters,
1774 "drain percpu freelist"));
1775
1776 freelist = nextfree;
1777 }
1778
894b8788 1779 /*
2cfb7455
CL
1780 * Stage two: Ensure that the page is unfrozen while the
1781 * list presence reflects the actual number of objects
1782 * during unfreeze.
1783 *
1784 * We setup the list membership and then perform a cmpxchg
1785 * with the count. If there is a mismatch then the page
1786 * is not unfrozen but the page is on the wrong list.
1787 *
1788 * Then we restart the process which may have to remove
1789 * the page from the list that we just put it on again
1790 * because the number of objects in the slab may have
1791 * changed.
894b8788 1792 */
2cfb7455 1793redo:
894b8788 1794
2cfb7455
CL
1795 old.freelist = page->freelist;
1796 old.counters = page->counters;
1797 VM_BUG_ON(!old.frozen);
7c2e132c 1798
2cfb7455
CL
1799 /* Determine target state of the slab */
1800 new.counters = old.counters;
1801 if (freelist) {
1802 new.inuse--;
1803 set_freepointer(s, freelist, old.freelist);
1804 new.freelist = freelist;
1805 } else
1806 new.freelist = old.freelist;
1807
1808 new.frozen = 0;
1809
81107188 1810 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1811 m = M_FREE;
1812 else if (new.freelist) {
1813 m = M_PARTIAL;
1814 if (!lock) {
1815 lock = 1;
1816 /*
1817 * Taking the spinlock removes the possiblity
1818 * that acquire_slab() will see a slab page that
1819 * is frozen
1820 */
1821 spin_lock(&n->list_lock);
1822 }
1823 } else {
1824 m = M_FULL;
1825 if (kmem_cache_debug(s) && !lock) {
1826 lock = 1;
1827 /*
1828 * This also ensures that the scanning of full
1829 * slabs from diagnostic functions will not see
1830 * any frozen slabs.
1831 */
1832 spin_lock(&n->list_lock);
1833 }
1834 }
1835
1836 if (l != m) {
1837
1838 if (l == M_PARTIAL)
1839
1840 remove_partial(n, page);
1841
1842 else if (l == M_FULL)
894b8788 1843
2cfb7455
CL
1844 remove_full(s, page);
1845
1846 if (m == M_PARTIAL) {
1847
1848 add_partial(n, page, tail);
136333d1 1849 stat(s, tail);
2cfb7455
CL
1850
1851 } else if (m == M_FULL) {
894b8788 1852
2cfb7455
CL
1853 stat(s, DEACTIVATE_FULL);
1854 add_full(s, n, page);
1855
1856 }
1857 }
1858
1859 l = m;
1d07171c 1860 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1861 old.freelist, old.counters,
1862 new.freelist, new.counters,
1863 "unfreezing slab"))
1864 goto redo;
1865
2cfb7455
CL
1866 if (lock)
1867 spin_unlock(&n->list_lock);
1868
1869 if (m == M_FREE) {
1870 stat(s, DEACTIVATE_EMPTY);
1871 discard_slab(s, page);
1872 stat(s, FREE_SLAB);
894b8788 1873 }
81819f0f
CL
1874}
1875
d24ac77f
JK
1876/*
1877 * Unfreeze all the cpu partial slabs.
1878 *
59a09917
CL
1879 * This function must be called with interrupts disabled
1880 * for the cpu using c (or some other guarantee must be there
1881 * to guarantee no concurrent accesses).
d24ac77f 1882 */
59a09917
CL
1883static void unfreeze_partials(struct kmem_cache *s,
1884 struct kmem_cache_cpu *c)
49e22585 1885{
43d77867 1886 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1887 struct page *page, *discard_page = NULL;
49e22585
CL
1888
1889 while ((page = c->partial)) {
49e22585
CL
1890 struct page new;
1891 struct page old;
1892
1893 c->partial = page->next;
43d77867
JK
1894
1895 n2 = get_node(s, page_to_nid(page));
1896 if (n != n2) {
1897 if (n)
1898 spin_unlock(&n->list_lock);
1899
1900 n = n2;
1901 spin_lock(&n->list_lock);
1902 }
49e22585
CL
1903
1904 do {
1905
1906 old.freelist = page->freelist;
1907 old.counters = page->counters;
1908 VM_BUG_ON(!old.frozen);
1909
1910 new.counters = old.counters;
1911 new.freelist = old.freelist;
1912
1913 new.frozen = 0;
1914
d24ac77f 1915 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1916 old.freelist, old.counters,
1917 new.freelist, new.counters,
1918 "unfreezing slab"));
1919
43d77867 1920 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1921 page->next = discard_page;
1922 discard_page = page;
43d77867
JK
1923 } else {
1924 add_partial(n, page, DEACTIVATE_TO_TAIL);
1925 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1926 }
1927 }
1928
1929 if (n)
1930 spin_unlock(&n->list_lock);
9ada1934
SL
1931
1932 while (discard_page) {
1933 page = discard_page;
1934 discard_page = discard_page->next;
1935
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
1939 }
49e22585
CL
1940}
1941
1942/*
1943 * Put a page that was just frozen (in __slab_free) into a partial page
1944 * slot if available. This is done without interrupts disabled and without
1945 * preemption disabled. The cmpxchg is racy and may put the partial page
1946 * onto a random cpus partial slot.
1947 *
1948 * If we did not find a slot then simply move all the partials to the
1949 * per node partial list.
1950 */
633b0764 1951static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
1952{
1953 struct page *oldpage;
1954 int pages;
1955 int pobjects;
1956
1957 do {
1958 pages = 0;
1959 pobjects = 0;
1960 oldpage = this_cpu_read(s->cpu_slab->partial);
1961
1962 if (oldpage) {
1963 pobjects = oldpage->pobjects;
1964 pages = oldpage->pages;
1965 if (drain && pobjects > s->cpu_partial) {
1966 unsigned long flags;
1967 /*
1968 * partial array is full. Move the existing
1969 * set to the per node partial list.
1970 */
1971 local_irq_save(flags);
59a09917 1972 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 1973 local_irq_restore(flags);
e24fc410 1974 oldpage = NULL;
49e22585
CL
1975 pobjects = 0;
1976 pages = 0;
8028dcea 1977 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1978 }
1979 }
1980
1981 pages++;
1982 pobjects += page->objects - page->inuse;
1983
1984 page->pages = pages;
1985 page->pobjects = pobjects;
1986 page->next = oldpage;
1987
933393f5 1988 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1989}
1990
dfb4f096 1991static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1992{
84e554e6 1993 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1994 deactivate_slab(s, c->page, c->freelist);
1995
1996 c->tid = next_tid(c->tid);
1997 c->page = NULL;
1998 c->freelist = NULL;
81819f0f
CL
1999}
2000
2001/*
2002 * Flush cpu slab.
6446faa2 2003 *
81819f0f
CL
2004 * Called from IPI handler with interrupts disabled.
2005 */
0c710013 2006static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2007{
9dfc6e68 2008 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2009
49e22585
CL
2010 if (likely(c)) {
2011 if (c->page)
2012 flush_slab(s, c);
2013
59a09917 2014 unfreeze_partials(s, c);
49e22585 2015 }
81819f0f
CL
2016}
2017
2018static void flush_cpu_slab(void *d)
2019{
2020 struct kmem_cache *s = d;
81819f0f 2021
dfb4f096 2022 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2023}
2024
a8364d55
GBY
2025static bool has_cpu_slab(int cpu, void *info)
2026{
2027 struct kmem_cache *s = info;
2028 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2029
02e1a9cd 2030 return c->page || c->partial;
a8364d55
GBY
2031}
2032
81819f0f
CL
2033static void flush_all(struct kmem_cache *s)
2034{
a8364d55 2035 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2036}
2037
dfb4f096
CL
2038/*
2039 * Check if the objects in a per cpu structure fit numa
2040 * locality expectations.
2041 */
57d437d2 2042static inline int node_match(struct page *page, int node)
dfb4f096
CL
2043{
2044#ifdef CONFIG_NUMA
57d437d2 2045 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2046 return 0;
2047#endif
2048 return 1;
2049}
2050
781b2ba6
PE
2051static int count_free(struct page *page)
2052{
2053 return page->objects - page->inuse;
2054}
2055
2056static unsigned long count_partial(struct kmem_cache_node *n,
2057 int (*get_count)(struct page *))
2058{
2059 unsigned long flags;
2060 unsigned long x = 0;
2061 struct page *page;
2062
2063 spin_lock_irqsave(&n->list_lock, flags);
2064 list_for_each_entry(page, &n->partial, lru)
2065 x += get_count(page);
2066 spin_unlock_irqrestore(&n->list_lock, flags);
2067 return x;
2068}
2069
26c02cf0
AB
2070static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2071{
2072#ifdef CONFIG_SLUB_DEBUG
2073 return atomic_long_read(&n->total_objects);
2074#else
2075 return 0;
2076#endif
2077}
2078
781b2ba6
PE
2079static noinline void
2080slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2081{
2082 int node;
2083
2084 printk(KERN_WARNING
2085 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2086 nid, gfpflags);
2087 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2088 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2089 s->size, oo_order(s->oo), oo_order(s->min));
2090
3b0efdfa 2091 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2092 printk(KERN_WARNING " %s debugging increased min order, use "
2093 "slub_debug=O to disable.\n", s->name);
2094
781b2ba6
PE
2095 for_each_online_node(node) {
2096 struct kmem_cache_node *n = get_node(s, node);
2097 unsigned long nr_slabs;
2098 unsigned long nr_objs;
2099 unsigned long nr_free;
2100
2101 if (!n)
2102 continue;
2103
26c02cf0
AB
2104 nr_free = count_partial(n, count_free);
2105 nr_slabs = node_nr_slabs(n);
2106 nr_objs = node_nr_objs(n);
781b2ba6
PE
2107
2108 printk(KERN_WARNING
2109 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2110 node, nr_slabs, nr_objs, nr_free);
2111 }
2112}
2113
497b66f2
CL
2114static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2115 int node, struct kmem_cache_cpu **pc)
2116{
6faa6833 2117 void *freelist;
188fd063
CL
2118 struct kmem_cache_cpu *c = *pc;
2119 struct page *page;
497b66f2 2120
188fd063 2121 freelist = get_partial(s, flags, node, c);
497b66f2 2122
188fd063
CL
2123 if (freelist)
2124 return freelist;
2125
2126 page = new_slab(s, flags, node);
497b66f2
CL
2127 if (page) {
2128 c = __this_cpu_ptr(s->cpu_slab);
2129 if (c->page)
2130 flush_slab(s, c);
2131
2132 /*
2133 * No other reference to the page yet so we can
2134 * muck around with it freely without cmpxchg
2135 */
6faa6833 2136 freelist = page->freelist;
497b66f2
CL
2137 page->freelist = NULL;
2138
2139 stat(s, ALLOC_SLAB);
497b66f2
CL
2140 c->page = page;
2141 *pc = c;
2142 } else
6faa6833 2143 freelist = NULL;
497b66f2 2144
6faa6833 2145 return freelist;
497b66f2
CL
2146}
2147
072bb0aa
MG
2148static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2149{
2150 if (unlikely(PageSlabPfmemalloc(page)))
2151 return gfp_pfmemalloc_allowed(gfpflags);
2152
2153 return true;
2154}
2155
213eeb9f
CL
2156/*
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2159 *
2160 * The page is still frozen if the return value is not NULL.
2161 *
2162 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2163 *
2164 * This function must be called with interrupt disabled.
213eeb9f
CL
2165 */
2166static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2167{
2168 struct page new;
2169 unsigned long counters;
2170 void *freelist;
2171
2172 do {
2173 freelist = page->freelist;
2174 counters = page->counters;
6faa6833 2175
213eeb9f
CL
2176 new.counters = counters;
2177 VM_BUG_ON(!new.frozen);
2178
2179 new.inuse = page->objects;
2180 new.frozen = freelist != NULL;
2181
d24ac77f 2182 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2183 freelist, counters,
2184 NULL, new.counters,
2185 "get_freelist"));
2186
2187 return freelist;
2188}
2189
81819f0f 2190/*
894b8788
CL
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2193 *
894b8788
CL
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
81819f0f 2197 *
894b8788
CL
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
81819f0f 2201 *
894b8788 2202 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
81819f0f 2205 */
ce71e27c
EGM
2206static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2208{
6faa6833 2209 void *freelist;
f6e7def7 2210 struct page *page;
8a5ec0ba
CL
2211 unsigned long flags;
2212
2213 local_irq_save(flags);
2214#ifdef CONFIG_PREEMPT
2215 /*
2216 * We may have been preempted and rescheduled on a different
2217 * cpu before disabling interrupts. Need to reload cpu area
2218 * pointer.
2219 */
2220 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2221#endif
81819f0f 2222
f6e7def7
CL
2223 page = c->page;
2224 if (!page)
81819f0f 2225 goto new_slab;
49e22585 2226redo:
6faa6833 2227
57d437d2 2228 if (unlikely(!node_match(page, node))) {
e36a2652 2229 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2230 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2231 c->page = NULL;
2232 c->freelist = NULL;
fc59c053
CL
2233 goto new_slab;
2234 }
6446faa2 2235
072bb0aa
MG
2236 /*
2237 * By rights, we should be searching for a slab page that was
2238 * PFMEMALLOC but right now, we are losing the pfmemalloc
2239 * information when the page leaves the per-cpu allocator
2240 */
2241 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2242 deactivate_slab(s, page, c->freelist);
2243 c->page = NULL;
2244 c->freelist = NULL;
2245 goto new_slab;
2246 }
2247
73736e03 2248 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2249 freelist = c->freelist;
2250 if (freelist)
73736e03 2251 goto load_freelist;
03e404af 2252
2cfb7455 2253 stat(s, ALLOC_SLOWPATH);
03e404af 2254
f6e7def7 2255 freelist = get_freelist(s, page);
6446faa2 2256
6faa6833 2257 if (!freelist) {
03e404af
CL
2258 c->page = NULL;
2259 stat(s, DEACTIVATE_BYPASS);
fc59c053 2260 goto new_slab;
03e404af 2261 }
6446faa2 2262
84e554e6 2263 stat(s, ALLOC_REFILL);
6446faa2 2264
894b8788 2265load_freelist:
507effea
CL
2266 /*
2267 * freelist is pointing to the list of objects to be used.
2268 * page is pointing to the page from which the objects are obtained.
2269 * That page must be frozen for per cpu allocations to work.
2270 */
2271 VM_BUG_ON(!c->page->frozen);
6faa6833 2272 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2273 c->tid = next_tid(c->tid);
2274 local_irq_restore(flags);
6faa6833 2275 return freelist;
81819f0f 2276
81819f0f 2277new_slab:
2cfb7455 2278
49e22585 2279 if (c->partial) {
f6e7def7
CL
2280 page = c->page = c->partial;
2281 c->partial = page->next;
49e22585
CL
2282 stat(s, CPU_PARTIAL_ALLOC);
2283 c->freelist = NULL;
2284 goto redo;
81819f0f
CL
2285 }
2286
188fd063 2287 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2288
f4697436
CL
2289 if (unlikely(!freelist)) {
2290 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2291 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2292
f4697436
CL
2293 local_irq_restore(flags);
2294 return NULL;
81819f0f 2295 }
2cfb7455 2296
f6e7def7 2297 page = c->page;
5091b74a 2298 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2299 goto load_freelist;
2cfb7455 2300
497b66f2 2301 /* Only entered in the debug case */
5091b74a 2302 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2303 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2304
f6e7def7 2305 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2306 c->page = NULL;
2307 c->freelist = NULL;
a71ae47a 2308 local_irq_restore(flags);
6faa6833 2309 return freelist;
894b8788
CL
2310}
2311
2312/*
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2316 *
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2319 *
2320 * Otherwise we can simply pick the next object from the lockless free list.
2321 */
2b847c3c 2322static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2323 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2324{
894b8788 2325 void **object;
dfb4f096 2326 struct kmem_cache_cpu *c;
57d437d2 2327 struct page *page;
8a5ec0ba 2328 unsigned long tid;
1f84260c 2329
c016b0bd 2330 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2331 return NULL;
1f84260c 2332
d79923fa 2333 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2334redo:
8a5ec0ba
CL
2335
2336 /*
2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 * enabled. We may switch back and forth between cpus while
2339 * reading from one cpu area. That does not matter as long
2340 * as we end up on the original cpu again when doing the cmpxchg.
2341 */
9dfc6e68 2342 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2343
8a5ec0ba
CL
2344 /*
2345 * The transaction ids are globally unique per cpu and per operation on
2346 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2347 * occurs on the right processor and that there was no operation on the
2348 * linked list in between.
2349 */
2350 tid = c->tid;
2351 barrier();
8a5ec0ba 2352
9dfc6e68 2353 object = c->freelist;
57d437d2 2354 page = c->page;
5091b74a 2355 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2356 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2357
2358 else {
0ad9500e
ED
2359 void *next_object = get_freepointer_safe(s, object);
2360
8a5ec0ba 2361 /*
25985edc 2362 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2363 * operation and if we are on the right processor.
2364 *
2365 * The cmpxchg does the following atomically (without lock semantics!)
2366 * 1. Relocate first pointer to the current per cpu area.
2367 * 2. Verify that tid and freelist have not been changed
2368 * 3. If they were not changed replace tid and freelist
2369 *
2370 * Since this is without lock semantics the protection is only against
2371 * code executing on this cpu *not* from access by other cpus.
2372 */
933393f5 2373 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2374 s->cpu_slab->freelist, s->cpu_slab->tid,
2375 object, tid,
0ad9500e 2376 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2377
2378 note_cmpxchg_failure("slab_alloc", s, tid);
2379 goto redo;
2380 }
0ad9500e 2381 prefetch_freepointer(s, next_object);
84e554e6 2382 stat(s, ALLOC_FASTPATH);
894b8788 2383 }
8a5ec0ba 2384
74e2134f 2385 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2386 memset(object, 0, s->object_size);
d07dbea4 2387
c016b0bd 2388 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2389
894b8788 2390 return object;
81819f0f
CL
2391}
2392
2b847c3c
EG
2393static __always_inline void *slab_alloc(struct kmem_cache *s,
2394 gfp_t gfpflags, unsigned long addr)
2395{
2396 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2397}
2398
81819f0f
CL
2399void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2400{
2b847c3c 2401 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2402
3b0efdfa 2403 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2404
2405 return ret;
81819f0f
CL
2406}
2407EXPORT_SYMBOL(kmem_cache_alloc);
2408
0f24f128 2409#ifdef CONFIG_TRACING
4a92379b
RK
2410void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2411{
2b847c3c 2412 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2413 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2414 return ret;
2415}
2416EXPORT_SYMBOL(kmem_cache_alloc_trace);
2417
2418void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2419{
4a92379b
RK
2420 void *ret = kmalloc_order(size, flags, order);
2421 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2422 return ret;
5b882be4 2423}
4a92379b 2424EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2425#endif
2426
81819f0f
CL
2427#ifdef CONFIG_NUMA
2428void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2429{
2b847c3c 2430 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2431
ca2b84cb 2432 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2433 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2434
2435 return ret;
81819f0f
CL
2436}
2437EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2438
0f24f128 2439#ifdef CONFIG_TRACING
4a92379b 2440void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2441 gfp_t gfpflags,
4a92379b 2442 int node, size_t size)
5b882be4 2443{
2b847c3c 2444 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2445
2446 trace_kmalloc_node(_RET_IP_, ret,
2447 size, s->size, gfpflags, node);
2448 return ret;
5b882be4 2449}
4a92379b 2450EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2451#endif
5d1f57e4 2452#endif
5b882be4 2453
81819f0f 2454/*
894b8788
CL
2455 * Slow patch handling. This may still be called frequently since objects
2456 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2457 *
894b8788
CL
2458 * So we still attempt to reduce cache line usage. Just take the slab
2459 * lock and free the item. If there is no additional partial page
2460 * handling required then we can return immediately.
81819f0f 2461 */
894b8788 2462static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2463 void *x, unsigned long addr)
81819f0f
CL
2464{
2465 void *prior;
2466 void **object = (void *)x;
2cfb7455 2467 int was_frozen;
2cfb7455
CL
2468 struct page new;
2469 unsigned long counters;
2470 struct kmem_cache_node *n = NULL;
61728d1e 2471 unsigned long uninitialized_var(flags);
81819f0f 2472
8a5ec0ba 2473 stat(s, FREE_SLOWPATH);
81819f0f 2474
19c7ff9e
CL
2475 if (kmem_cache_debug(s) &&
2476 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2477 return;
6446faa2 2478
2cfb7455 2479 do {
837d678d
JK
2480 if (unlikely(n)) {
2481 spin_unlock_irqrestore(&n->list_lock, flags);
2482 n = NULL;
2483 }
2cfb7455
CL
2484 prior = page->freelist;
2485 counters = page->counters;
2486 set_freepointer(s, object, prior);
2487 new.counters = counters;
2488 was_frozen = new.frozen;
2489 new.inuse--;
837d678d 2490 if ((!new.inuse || !prior) && !was_frozen) {
49e22585
CL
2491
2492 if (!kmem_cache_debug(s) && !prior)
2493
2494 /*
2495 * Slab was on no list before and will be partially empty
2496 * We can defer the list move and instead freeze it.
2497 */
2498 new.frozen = 1;
2499
2500 else { /* Needs to be taken off a list */
2501
2502 n = get_node(s, page_to_nid(page));
2503 /*
2504 * Speculatively acquire the list_lock.
2505 * If the cmpxchg does not succeed then we may
2506 * drop the list_lock without any processing.
2507 *
2508 * Otherwise the list_lock will synchronize with
2509 * other processors updating the list of slabs.
2510 */
2511 spin_lock_irqsave(&n->list_lock, flags);
2512
2513 }
2cfb7455 2514 }
81819f0f 2515
2cfb7455
CL
2516 } while (!cmpxchg_double_slab(s, page,
2517 prior, counters,
2518 object, new.counters,
2519 "__slab_free"));
81819f0f 2520
2cfb7455 2521 if (likely(!n)) {
49e22585
CL
2522
2523 /*
2524 * If we just froze the page then put it onto the
2525 * per cpu partial list.
2526 */
8028dcea 2527 if (new.frozen && !was_frozen) {
49e22585 2528 put_cpu_partial(s, page, 1);
8028dcea
AS
2529 stat(s, CPU_PARTIAL_FREE);
2530 }
49e22585 2531 /*
2cfb7455
CL
2532 * The list lock was not taken therefore no list
2533 * activity can be necessary.
2534 */
2535 if (was_frozen)
2536 stat(s, FREE_FROZEN);
80f08c19 2537 return;
2cfb7455 2538 }
81819f0f 2539
837d678d
JK
2540 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2541 goto slab_empty;
2542
81819f0f 2543 /*
837d678d
JK
2544 * Objects left in the slab. If it was not on the partial list before
2545 * then add it.
81819f0f 2546 */
837d678d
JK
2547 if (kmem_cache_debug(s) && unlikely(!prior)) {
2548 remove_full(s, page);
2549 add_partial(n, page, DEACTIVATE_TO_TAIL);
2550 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2551 }
80f08c19 2552 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2553 return;
2554
2555slab_empty:
a973e9dd 2556 if (prior) {
81819f0f 2557 /*
6fbabb20 2558 * Slab on the partial list.
81819f0f 2559 */
5cc6eee8 2560 remove_partial(n, page);
84e554e6 2561 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2562 } else
2563 /* Slab must be on the full list */
2564 remove_full(s, page);
2cfb7455 2565
80f08c19 2566 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2567 stat(s, FREE_SLAB);
81819f0f 2568 discard_slab(s, page);
81819f0f
CL
2569}
2570
894b8788
CL
2571/*
2572 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2573 * can perform fastpath freeing without additional function calls.
2574 *
2575 * The fastpath is only possible if we are freeing to the current cpu slab
2576 * of this processor. This typically the case if we have just allocated
2577 * the item before.
2578 *
2579 * If fastpath is not possible then fall back to __slab_free where we deal
2580 * with all sorts of special processing.
2581 */
06428780 2582static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2583 struct page *page, void *x, unsigned long addr)
894b8788
CL
2584{
2585 void **object = (void *)x;
dfb4f096 2586 struct kmem_cache_cpu *c;
8a5ec0ba 2587 unsigned long tid;
1f84260c 2588
c016b0bd
CL
2589 slab_free_hook(s, x);
2590
8a5ec0ba
CL
2591redo:
2592 /*
2593 * Determine the currently cpus per cpu slab.
2594 * The cpu may change afterward. However that does not matter since
2595 * data is retrieved via this pointer. If we are on the same cpu
2596 * during the cmpxchg then the free will succedd.
2597 */
9dfc6e68 2598 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2599
8a5ec0ba
CL
2600 tid = c->tid;
2601 barrier();
c016b0bd 2602
442b06bc 2603 if (likely(page == c->page)) {
ff12059e 2604 set_freepointer(s, object, c->freelist);
8a5ec0ba 2605
933393f5 2606 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2607 s->cpu_slab->freelist, s->cpu_slab->tid,
2608 c->freelist, tid,
2609 object, next_tid(tid)))) {
2610
2611 note_cmpxchg_failure("slab_free", s, tid);
2612 goto redo;
2613 }
84e554e6 2614 stat(s, FREE_FASTPATH);
894b8788 2615 } else
ff12059e 2616 __slab_free(s, page, x, addr);
894b8788 2617
894b8788
CL
2618}
2619
81819f0f
CL
2620void kmem_cache_free(struct kmem_cache *s, void *x)
2621{
b9ce5ef4
GC
2622 s = cache_from_obj(s, x);
2623 if (!s)
79576102 2624 return;
b9ce5ef4 2625 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2626 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2627}
2628EXPORT_SYMBOL(kmem_cache_free);
2629
81819f0f 2630/*
672bba3a
CL
2631 * Object placement in a slab is made very easy because we always start at
2632 * offset 0. If we tune the size of the object to the alignment then we can
2633 * get the required alignment by putting one properly sized object after
2634 * another.
81819f0f
CL
2635 *
2636 * Notice that the allocation order determines the sizes of the per cpu
2637 * caches. Each processor has always one slab available for allocations.
2638 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2639 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2640 * locking overhead.
81819f0f
CL
2641 */
2642
2643/*
2644 * Mininum / Maximum order of slab pages. This influences locking overhead
2645 * and slab fragmentation. A higher order reduces the number of partial slabs
2646 * and increases the number of allocations possible without having to
2647 * take the list_lock.
2648 */
2649static int slub_min_order;
114e9e89 2650static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2651static int slub_min_objects;
81819f0f
CL
2652
2653/*
2654 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2655 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2656 */
2657static int slub_nomerge;
2658
81819f0f
CL
2659/*
2660 * Calculate the order of allocation given an slab object size.
2661 *
672bba3a
CL
2662 * The order of allocation has significant impact on performance and other
2663 * system components. Generally order 0 allocations should be preferred since
2664 * order 0 does not cause fragmentation in the page allocator. Larger objects
2665 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2666 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2667 * would be wasted.
2668 *
2669 * In order to reach satisfactory performance we must ensure that a minimum
2670 * number of objects is in one slab. Otherwise we may generate too much
2671 * activity on the partial lists which requires taking the list_lock. This is
2672 * less a concern for large slabs though which are rarely used.
81819f0f 2673 *
672bba3a
CL
2674 * slub_max_order specifies the order where we begin to stop considering the
2675 * number of objects in a slab as critical. If we reach slub_max_order then
2676 * we try to keep the page order as low as possible. So we accept more waste
2677 * of space in favor of a small page order.
81819f0f 2678 *
672bba3a
CL
2679 * Higher order allocations also allow the placement of more objects in a
2680 * slab and thereby reduce object handling overhead. If the user has
2681 * requested a higher mininum order then we start with that one instead of
2682 * the smallest order which will fit the object.
81819f0f 2683 */
5e6d444e 2684static inline int slab_order(int size, int min_objects,
ab9a0f19 2685 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2686{
2687 int order;
2688 int rem;
6300ea75 2689 int min_order = slub_min_order;
81819f0f 2690
ab9a0f19 2691 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2692 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2693
6300ea75 2694 for (order = max(min_order,
5e6d444e
CL
2695 fls(min_objects * size - 1) - PAGE_SHIFT);
2696 order <= max_order; order++) {
81819f0f 2697
5e6d444e 2698 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2699
ab9a0f19 2700 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2701 continue;
2702
ab9a0f19 2703 rem = (slab_size - reserved) % size;
81819f0f 2704
5e6d444e 2705 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2706 break;
2707
2708 }
672bba3a 2709
81819f0f
CL
2710 return order;
2711}
2712
ab9a0f19 2713static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2714{
2715 int order;
2716 int min_objects;
2717 int fraction;
e8120ff1 2718 int max_objects;
5e6d444e
CL
2719
2720 /*
2721 * Attempt to find best configuration for a slab. This
2722 * works by first attempting to generate a layout with
2723 * the best configuration and backing off gradually.
2724 *
2725 * First we reduce the acceptable waste in a slab. Then
2726 * we reduce the minimum objects required in a slab.
2727 */
2728 min_objects = slub_min_objects;
9b2cd506
CL
2729 if (!min_objects)
2730 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2731 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2732 min_objects = min(min_objects, max_objects);
2733
5e6d444e 2734 while (min_objects > 1) {
c124f5b5 2735 fraction = 16;
5e6d444e
CL
2736 while (fraction >= 4) {
2737 order = slab_order(size, min_objects,
ab9a0f19 2738 slub_max_order, fraction, reserved);
5e6d444e
CL
2739 if (order <= slub_max_order)
2740 return order;
2741 fraction /= 2;
2742 }
5086c389 2743 min_objects--;
5e6d444e
CL
2744 }
2745
2746 /*
2747 * We were unable to place multiple objects in a slab. Now
2748 * lets see if we can place a single object there.
2749 */
ab9a0f19 2750 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2751 if (order <= slub_max_order)
2752 return order;
2753
2754 /*
2755 * Doh this slab cannot be placed using slub_max_order.
2756 */
ab9a0f19 2757 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2758 if (order < MAX_ORDER)
5e6d444e
CL
2759 return order;
2760 return -ENOSYS;
2761}
2762
5595cffc 2763static void
4053497d 2764init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2765{
2766 n->nr_partial = 0;
81819f0f
CL
2767 spin_lock_init(&n->list_lock);
2768 INIT_LIST_HEAD(&n->partial);
8ab1372f 2769#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2770 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2771 atomic_long_set(&n->total_objects, 0);
643b1138 2772 INIT_LIST_HEAD(&n->full);
8ab1372f 2773#endif
81819f0f
CL
2774}
2775
55136592 2776static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2777{
6c182dc0 2778 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2779 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2780
8a5ec0ba 2781 /*
d4d84fef
CM
2782 * Must align to double word boundary for the double cmpxchg
2783 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2784 */
d4d84fef
CM
2785 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2786 2 * sizeof(void *));
8a5ec0ba
CL
2787
2788 if (!s->cpu_slab)
2789 return 0;
2790
2791 init_kmem_cache_cpus(s);
4c93c355 2792
8a5ec0ba 2793 return 1;
4c93c355 2794}
4c93c355 2795
51df1142
CL
2796static struct kmem_cache *kmem_cache_node;
2797
81819f0f
CL
2798/*
2799 * No kmalloc_node yet so do it by hand. We know that this is the first
2800 * slab on the node for this slabcache. There are no concurrent accesses
2801 * possible.
2802 *
2803 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2804 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2805 * memory on a fresh node that has no slab structures yet.
81819f0f 2806 */
55136592 2807static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2808{
2809 struct page *page;
2810 struct kmem_cache_node *n;
2811
51df1142 2812 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2813
51df1142 2814 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2815
2816 BUG_ON(!page);
a2f92ee7
CL
2817 if (page_to_nid(page) != node) {
2818 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2819 "node %d\n", node);
2820 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2821 "in order to be able to continue\n");
2822 }
2823
81819f0f
CL
2824 n = page->freelist;
2825 BUG_ON(!n);
51df1142 2826 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2827 page->inuse = 1;
8cb0a506 2828 page->frozen = 0;
51df1142 2829 kmem_cache_node->node[node] = n;
8ab1372f 2830#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2831 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2832 init_tracking(kmem_cache_node, n);
8ab1372f 2833#endif
4053497d 2834 init_kmem_cache_node(n);
51df1142 2835 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2836
136333d1 2837 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2838}
2839
2840static void free_kmem_cache_nodes(struct kmem_cache *s)
2841{
2842 int node;
2843
f64dc58c 2844 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2845 struct kmem_cache_node *n = s->node[node];
51df1142 2846
73367bd8 2847 if (n)
51df1142
CL
2848 kmem_cache_free(kmem_cache_node, n);
2849
81819f0f
CL
2850 s->node[node] = NULL;
2851 }
2852}
2853
55136592 2854static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2855{
2856 int node;
81819f0f 2857
f64dc58c 2858 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2859 struct kmem_cache_node *n;
2860
73367bd8 2861 if (slab_state == DOWN) {
55136592 2862 early_kmem_cache_node_alloc(node);
73367bd8
AD
2863 continue;
2864 }
51df1142 2865 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2866 GFP_KERNEL, node);
81819f0f 2867
73367bd8
AD
2868 if (!n) {
2869 free_kmem_cache_nodes(s);
2870 return 0;
81819f0f 2871 }
73367bd8 2872
81819f0f 2873 s->node[node] = n;
4053497d 2874 init_kmem_cache_node(n);
81819f0f
CL
2875 }
2876 return 1;
2877}
81819f0f 2878
c0bdb232 2879static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2880{
2881 if (min < MIN_PARTIAL)
2882 min = MIN_PARTIAL;
2883 else if (min > MAX_PARTIAL)
2884 min = MAX_PARTIAL;
2885 s->min_partial = min;
2886}
2887
81819f0f
CL
2888/*
2889 * calculate_sizes() determines the order and the distribution of data within
2890 * a slab object.
2891 */
06b285dc 2892static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2893{
2894 unsigned long flags = s->flags;
3b0efdfa 2895 unsigned long size = s->object_size;
834f3d11 2896 int order;
81819f0f 2897
d8b42bf5
CL
2898 /*
2899 * Round up object size to the next word boundary. We can only
2900 * place the free pointer at word boundaries and this determines
2901 * the possible location of the free pointer.
2902 */
2903 size = ALIGN(size, sizeof(void *));
2904
2905#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2906 /*
2907 * Determine if we can poison the object itself. If the user of
2908 * the slab may touch the object after free or before allocation
2909 * then we should never poison the object itself.
2910 */
2911 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2912 !s->ctor)
81819f0f
CL
2913 s->flags |= __OBJECT_POISON;
2914 else
2915 s->flags &= ~__OBJECT_POISON;
2916
81819f0f
CL
2917
2918 /*
672bba3a 2919 * If we are Redzoning then check if there is some space between the
81819f0f 2920 * end of the object and the free pointer. If not then add an
672bba3a 2921 * additional word to have some bytes to store Redzone information.
81819f0f 2922 */
3b0efdfa 2923 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2924 size += sizeof(void *);
41ecc55b 2925#endif
81819f0f
CL
2926
2927 /*
672bba3a
CL
2928 * With that we have determined the number of bytes in actual use
2929 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2930 */
2931 s->inuse = size;
2932
2933 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2934 s->ctor)) {
81819f0f
CL
2935 /*
2936 * Relocate free pointer after the object if it is not
2937 * permitted to overwrite the first word of the object on
2938 * kmem_cache_free.
2939 *
2940 * This is the case if we do RCU, have a constructor or
2941 * destructor or are poisoning the objects.
2942 */
2943 s->offset = size;
2944 size += sizeof(void *);
2945 }
2946
c12b3c62 2947#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2948 if (flags & SLAB_STORE_USER)
2949 /*
2950 * Need to store information about allocs and frees after
2951 * the object.
2952 */
2953 size += 2 * sizeof(struct track);
2954
be7b3fbc 2955 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2956 /*
2957 * Add some empty padding so that we can catch
2958 * overwrites from earlier objects rather than let
2959 * tracking information or the free pointer be
0211a9c8 2960 * corrupted if a user writes before the start
81819f0f
CL
2961 * of the object.
2962 */
2963 size += sizeof(void *);
41ecc55b 2964#endif
672bba3a 2965
81819f0f
CL
2966 /*
2967 * SLUB stores one object immediately after another beginning from
2968 * offset 0. In order to align the objects we have to simply size
2969 * each object to conform to the alignment.
2970 */
45906855 2971 size = ALIGN(size, s->align);
81819f0f 2972 s->size = size;
06b285dc
CL
2973 if (forced_order >= 0)
2974 order = forced_order;
2975 else
ab9a0f19 2976 order = calculate_order(size, s->reserved);
81819f0f 2977
834f3d11 2978 if (order < 0)
81819f0f
CL
2979 return 0;
2980
b7a49f0d 2981 s->allocflags = 0;
834f3d11 2982 if (order)
b7a49f0d
CL
2983 s->allocflags |= __GFP_COMP;
2984
2985 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 2986 s->allocflags |= GFP_DMA;
b7a49f0d
CL
2987
2988 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2989 s->allocflags |= __GFP_RECLAIMABLE;
2990
81819f0f
CL
2991 /*
2992 * Determine the number of objects per slab
2993 */
ab9a0f19
LJ
2994 s->oo = oo_make(order, size, s->reserved);
2995 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2996 if (oo_objects(s->oo) > oo_objects(s->max))
2997 s->max = s->oo;
81819f0f 2998
834f3d11 2999 return !!oo_objects(s->oo);
81819f0f
CL
3000}
3001
8a13a4cc 3002static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3003{
8a13a4cc 3004 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3005 s->reserved = 0;
81819f0f 3006
da9a638c
LJ
3007 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3008 s->reserved = sizeof(struct rcu_head);
81819f0f 3009
06b285dc 3010 if (!calculate_sizes(s, -1))
81819f0f 3011 goto error;
3de47213
DR
3012 if (disable_higher_order_debug) {
3013 /*
3014 * Disable debugging flags that store metadata if the min slab
3015 * order increased.
3016 */
3b0efdfa 3017 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3018 s->flags &= ~DEBUG_METADATA_FLAGS;
3019 s->offset = 0;
3020 if (!calculate_sizes(s, -1))
3021 goto error;
3022 }
3023 }
81819f0f 3024
2565409f
HC
3025#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3026 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3027 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3028 /* Enable fast mode */
3029 s->flags |= __CMPXCHG_DOUBLE;
3030#endif
3031
3b89d7d8
DR
3032 /*
3033 * The larger the object size is, the more pages we want on the partial
3034 * list to avoid pounding the page allocator excessively.
3035 */
49e22585
CL
3036 set_min_partial(s, ilog2(s->size) / 2);
3037
3038 /*
3039 * cpu_partial determined the maximum number of objects kept in the
3040 * per cpu partial lists of a processor.
3041 *
3042 * Per cpu partial lists mainly contain slabs that just have one
3043 * object freed. If they are used for allocation then they can be
3044 * filled up again with minimal effort. The slab will never hit the
3045 * per node partial lists and therefore no locking will be required.
3046 *
3047 * This setting also determines
3048 *
3049 * A) The number of objects from per cpu partial slabs dumped to the
3050 * per node list when we reach the limit.
9f264904 3051 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3052 * per node list when we run out of per cpu objects. We only fetch 50%
3053 * to keep some capacity around for frees.
3054 */
8f1e33da
CL
3055 if (kmem_cache_debug(s))
3056 s->cpu_partial = 0;
3057 else if (s->size >= PAGE_SIZE)
49e22585
CL
3058 s->cpu_partial = 2;
3059 else if (s->size >= 1024)
3060 s->cpu_partial = 6;
3061 else if (s->size >= 256)
3062 s->cpu_partial = 13;
3063 else
3064 s->cpu_partial = 30;
3065
81819f0f 3066#ifdef CONFIG_NUMA
e2cb96b7 3067 s->remote_node_defrag_ratio = 1000;
81819f0f 3068#endif
55136592 3069 if (!init_kmem_cache_nodes(s))
dfb4f096 3070 goto error;
81819f0f 3071
55136592 3072 if (alloc_kmem_cache_cpus(s))
278b1bb1 3073 return 0;
ff12059e 3074
4c93c355 3075 free_kmem_cache_nodes(s);
81819f0f
CL
3076error:
3077 if (flags & SLAB_PANIC)
3078 panic("Cannot create slab %s size=%lu realsize=%u "
3079 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3080 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3081 s->offset, flags);
278b1bb1 3082 return -EINVAL;
81819f0f 3083}
81819f0f 3084
33b12c38
CL
3085static void list_slab_objects(struct kmem_cache *s, struct page *page,
3086 const char *text)
3087{
3088#ifdef CONFIG_SLUB_DEBUG
3089 void *addr = page_address(page);
3090 void *p;
a5dd5c11
NK
3091 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3092 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3093 if (!map)
3094 return;
945cf2b6 3095 slab_err(s, page, text, s->name);
33b12c38 3096 slab_lock(page);
33b12c38 3097
5f80b13a 3098 get_map(s, page, map);
33b12c38
CL
3099 for_each_object(p, s, addr, page->objects) {
3100
3101 if (!test_bit(slab_index(p, s, addr), map)) {
3102 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3103 p, p - addr);
3104 print_tracking(s, p);
3105 }
3106 }
3107 slab_unlock(page);
bbd7d57b 3108 kfree(map);
33b12c38
CL
3109#endif
3110}
3111
81819f0f 3112/*
599870b1 3113 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3114 * This is called from kmem_cache_close(). We must be the last thread
3115 * using the cache and therefore we do not need to lock anymore.
81819f0f 3116 */
599870b1 3117static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3118{
81819f0f
CL
3119 struct page *page, *h;
3120
33b12c38 3121 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3122 if (!page->inuse) {
5cc6eee8 3123 remove_partial(n, page);
81819f0f 3124 discard_slab(s, page);
33b12c38
CL
3125 } else {
3126 list_slab_objects(s, page,
945cf2b6 3127 "Objects remaining in %s on kmem_cache_close()");
599870b1 3128 }
33b12c38 3129 }
81819f0f
CL
3130}
3131
3132/*
672bba3a 3133 * Release all resources used by a slab cache.
81819f0f 3134 */
0c710013 3135static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3136{
3137 int node;
3138
3139 flush_all(s);
81819f0f 3140 /* Attempt to free all objects */
f64dc58c 3141 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3142 struct kmem_cache_node *n = get_node(s, node);
3143
599870b1
CL
3144 free_partial(s, n);
3145 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3146 return 1;
3147 }
945cf2b6 3148 free_percpu(s->cpu_slab);
81819f0f
CL
3149 free_kmem_cache_nodes(s);
3150 return 0;
3151}
3152
945cf2b6 3153int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3154{
12c3667f 3155 int rc = kmem_cache_close(s);
945cf2b6 3156
5413dfba
GC
3157 if (!rc) {
3158 /*
3159 * We do the same lock strategy around sysfs_slab_add, see
3160 * __kmem_cache_create. Because this is pretty much the last
3161 * operation we do and the lock will be released shortly after
3162 * that in slab_common.c, we could just move sysfs_slab_remove
3163 * to a later point in common code. We should do that when we
3164 * have a common sysfs framework for all allocators.
3165 */
3166 mutex_unlock(&slab_mutex);
81819f0f 3167 sysfs_slab_remove(s);
5413dfba
GC
3168 mutex_lock(&slab_mutex);
3169 }
12c3667f
CL
3170
3171 return rc;
81819f0f 3172}
81819f0f
CL
3173
3174/********************************************************************
3175 * Kmalloc subsystem
3176 *******************************************************************/
3177
81819f0f
CL
3178static int __init setup_slub_min_order(char *str)
3179{
06428780 3180 get_option(&str, &slub_min_order);
81819f0f
CL
3181
3182 return 1;
3183}
3184
3185__setup("slub_min_order=", setup_slub_min_order);
3186
3187static int __init setup_slub_max_order(char *str)
3188{
06428780 3189 get_option(&str, &slub_max_order);
818cf590 3190 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3191
3192 return 1;
3193}
3194
3195__setup("slub_max_order=", setup_slub_max_order);
3196
3197static int __init setup_slub_min_objects(char *str)
3198{
06428780 3199 get_option(&str, &slub_min_objects);
81819f0f
CL
3200
3201 return 1;
3202}
3203
3204__setup("slub_min_objects=", setup_slub_min_objects);
3205
3206static int __init setup_slub_nomerge(char *str)
3207{
3208 slub_nomerge = 1;
3209 return 1;
3210}
3211
3212__setup("slub_nomerge", setup_slub_nomerge);
3213
81819f0f
CL
3214void *__kmalloc(size_t size, gfp_t flags)
3215{
aadb4bc4 3216 struct kmem_cache *s;
5b882be4 3217 void *ret;
81819f0f 3218
95a05b42 3219 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3220 return kmalloc_large(size, flags);
aadb4bc4 3221
2c59dd65 3222 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3223
3224 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3225 return s;
3226
2b847c3c 3227 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3228
ca2b84cb 3229 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3230
3231 return ret;
81819f0f
CL
3232}
3233EXPORT_SYMBOL(__kmalloc);
3234
5d1f57e4 3235#ifdef CONFIG_NUMA
f619cfe1
CL
3236static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3237{
b1eeab67 3238 struct page *page;
e4f7c0b4 3239 void *ptr = NULL;
f619cfe1 3240
d79923fa 3241 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3242 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3243 if (page)
e4f7c0b4
CM
3244 ptr = page_address(page);
3245
3246 kmemleak_alloc(ptr, size, 1, flags);
3247 return ptr;
f619cfe1
CL
3248}
3249
81819f0f
CL
3250void *__kmalloc_node(size_t size, gfp_t flags, int node)
3251{
aadb4bc4 3252 struct kmem_cache *s;
5b882be4 3253 void *ret;
81819f0f 3254
95a05b42 3255 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3256 ret = kmalloc_large_node(size, flags, node);
3257
ca2b84cb
EGM
3258 trace_kmalloc_node(_RET_IP_, ret,
3259 size, PAGE_SIZE << get_order(size),
3260 flags, node);
5b882be4
EGM
3261
3262 return ret;
3263 }
aadb4bc4 3264
2c59dd65 3265 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3266
3267 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3268 return s;
3269
2b847c3c 3270 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3271
ca2b84cb 3272 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3273
3274 return ret;
81819f0f
CL
3275}
3276EXPORT_SYMBOL(__kmalloc_node);
3277#endif
3278
3279size_t ksize(const void *object)
3280{
272c1d21 3281 struct page *page;
81819f0f 3282
ef8b4520 3283 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3284 return 0;
3285
294a80a8 3286 page = virt_to_head_page(object);
294a80a8 3287
76994412
PE
3288 if (unlikely(!PageSlab(page))) {
3289 WARN_ON(!PageCompound(page));
294a80a8 3290 return PAGE_SIZE << compound_order(page);
76994412 3291 }
81819f0f 3292
1b4f59e3 3293 return slab_ksize(page->slab_cache);
81819f0f 3294}
b1aabecd 3295EXPORT_SYMBOL(ksize);
81819f0f 3296
d18a90dd
BG
3297#ifdef CONFIG_SLUB_DEBUG
3298bool verify_mem_not_deleted(const void *x)
3299{
3300 struct page *page;
3301 void *object = (void *)x;
3302 unsigned long flags;
3303 bool rv;
3304
3305 if (unlikely(ZERO_OR_NULL_PTR(x)))
3306 return false;
3307
3308 local_irq_save(flags);
3309
3310 page = virt_to_head_page(x);
3311 if (unlikely(!PageSlab(page))) {
3312 /* maybe it was from stack? */
3313 rv = true;
3314 goto out_unlock;
3315 }
3316
3317 slab_lock(page);
1b4f59e3
GC
3318 if (on_freelist(page->slab_cache, page, object)) {
3319 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3320 rv = false;
3321 } else {
3322 rv = true;
3323 }
3324 slab_unlock(page);
3325
3326out_unlock:
3327 local_irq_restore(flags);
3328 return rv;
3329}
3330EXPORT_SYMBOL(verify_mem_not_deleted);
3331#endif
3332
81819f0f
CL
3333void kfree(const void *x)
3334{
81819f0f 3335 struct page *page;
5bb983b0 3336 void *object = (void *)x;
81819f0f 3337
2121db74
PE
3338 trace_kfree(_RET_IP_, x);
3339
2408c550 3340 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3341 return;
3342
b49af68f 3343 page = virt_to_head_page(x);
aadb4bc4 3344 if (unlikely(!PageSlab(page))) {
0937502a 3345 BUG_ON(!PageCompound(page));
e4f7c0b4 3346 kmemleak_free(x);
d79923fa 3347 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3348 return;
3349 }
1b4f59e3 3350 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3351}
3352EXPORT_SYMBOL(kfree);
3353
2086d26a 3354/*
672bba3a
CL
3355 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3356 * the remaining slabs by the number of items in use. The slabs with the
3357 * most items in use come first. New allocations will then fill those up
3358 * and thus they can be removed from the partial lists.
3359 *
3360 * The slabs with the least items are placed last. This results in them
3361 * being allocated from last increasing the chance that the last objects
3362 * are freed in them.
2086d26a
CL
3363 */
3364int kmem_cache_shrink(struct kmem_cache *s)
3365{
3366 int node;
3367 int i;
3368 struct kmem_cache_node *n;
3369 struct page *page;
3370 struct page *t;
205ab99d 3371 int objects = oo_objects(s->max);
2086d26a 3372 struct list_head *slabs_by_inuse =
834f3d11 3373 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3374 unsigned long flags;
3375
3376 if (!slabs_by_inuse)
3377 return -ENOMEM;
3378
3379 flush_all(s);
f64dc58c 3380 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3381 n = get_node(s, node);
3382
3383 if (!n->nr_partial)
3384 continue;
3385
834f3d11 3386 for (i = 0; i < objects; i++)
2086d26a
CL
3387 INIT_LIST_HEAD(slabs_by_inuse + i);
3388
3389 spin_lock_irqsave(&n->list_lock, flags);
3390
3391 /*
672bba3a 3392 * Build lists indexed by the items in use in each slab.
2086d26a 3393 *
672bba3a
CL
3394 * Note that concurrent frees may occur while we hold the
3395 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3396 */
3397 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3398 list_move(&page->lru, slabs_by_inuse + page->inuse);
3399 if (!page->inuse)
3400 n->nr_partial--;
2086d26a
CL
3401 }
3402
2086d26a 3403 /*
672bba3a
CL
3404 * Rebuild the partial list with the slabs filled up most
3405 * first and the least used slabs at the end.
2086d26a 3406 */
69cb8e6b 3407 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3408 list_splice(slabs_by_inuse + i, n->partial.prev);
3409
2086d26a 3410 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3411
3412 /* Release empty slabs */
3413 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3414 discard_slab(s, page);
2086d26a
CL
3415 }
3416
3417 kfree(slabs_by_inuse);
3418 return 0;
3419}
3420EXPORT_SYMBOL(kmem_cache_shrink);
3421
92a5bbc1 3422#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3423static int slab_mem_going_offline_callback(void *arg)
3424{
3425 struct kmem_cache *s;
3426
18004c5d 3427 mutex_lock(&slab_mutex);
b9049e23
YG
3428 list_for_each_entry(s, &slab_caches, list)
3429 kmem_cache_shrink(s);
18004c5d 3430 mutex_unlock(&slab_mutex);
b9049e23
YG
3431
3432 return 0;
3433}
3434
3435static void slab_mem_offline_callback(void *arg)
3436{
3437 struct kmem_cache_node *n;
3438 struct kmem_cache *s;
3439 struct memory_notify *marg = arg;
3440 int offline_node;
3441
b9d5ab25 3442 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3443
3444 /*
3445 * If the node still has available memory. we need kmem_cache_node
3446 * for it yet.
3447 */
3448 if (offline_node < 0)
3449 return;
3450
18004c5d 3451 mutex_lock(&slab_mutex);
b9049e23
YG
3452 list_for_each_entry(s, &slab_caches, list) {
3453 n = get_node(s, offline_node);
3454 if (n) {
3455 /*
3456 * if n->nr_slabs > 0, slabs still exist on the node
3457 * that is going down. We were unable to free them,
c9404c9c 3458 * and offline_pages() function shouldn't call this
b9049e23
YG
3459 * callback. So, we must fail.
3460 */
0f389ec6 3461 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3462
3463 s->node[offline_node] = NULL;
8de66a0c 3464 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3465 }
3466 }
18004c5d 3467 mutex_unlock(&slab_mutex);
b9049e23
YG
3468}
3469
3470static int slab_mem_going_online_callback(void *arg)
3471{
3472 struct kmem_cache_node *n;
3473 struct kmem_cache *s;
3474 struct memory_notify *marg = arg;
b9d5ab25 3475 int nid = marg->status_change_nid_normal;
b9049e23
YG
3476 int ret = 0;
3477
3478 /*
3479 * If the node's memory is already available, then kmem_cache_node is
3480 * already created. Nothing to do.
3481 */
3482 if (nid < 0)
3483 return 0;
3484
3485 /*
0121c619 3486 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3487 * allocate a kmem_cache_node structure in order to bring the node
3488 * online.
3489 */
18004c5d 3490 mutex_lock(&slab_mutex);
b9049e23
YG
3491 list_for_each_entry(s, &slab_caches, list) {
3492 /*
3493 * XXX: kmem_cache_alloc_node will fallback to other nodes
3494 * since memory is not yet available from the node that
3495 * is brought up.
3496 */
8de66a0c 3497 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3498 if (!n) {
3499 ret = -ENOMEM;
3500 goto out;
3501 }
4053497d 3502 init_kmem_cache_node(n);
b9049e23
YG
3503 s->node[nid] = n;
3504 }
3505out:
18004c5d 3506 mutex_unlock(&slab_mutex);
b9049e23
YG
3507 return ret;
3508}
3509
3510static int slab_memory_callback(struct notifier_block *self,
3511 unsigned long action, void *arg)
3512{
3513 int ret = 0;
3514
3515 switch (action) {
3516 case MEM_GOING_ONLINE:
3517 ret = slab_mem_going_online_callback(arg);
3518 break;
3519 case MEM_GOING_OFFLINE:
3520 ret = slab_mem_going_offline_callback(arg);
3521 break;
3522 case MEM_OFFLINE:
3523 case MEM_CANCEL_ONLINE:
3524 slab_mem_offline_callback(arg);
3525 break;
3526 case MEM_ONLINE:
3527 case MEM_CANCEL_OFFLINE:
3528 break;
3529 }
dc19f9db
KH
3530 if (ret)
3531 ret = notifier_from_errno(ret);
3532 else
3533 ret = NOTIFY_OK;
b9049e23
YG
3534 return ret;
3535}
3536
3537#endif /* CONFIG_MEMORY_HOTPLUG */
3538
81819f0f
CL
3539/********************************************************************
3540 * Basic setup of slabs
3541 *******************************************************************/
3542
51df1142
CL
3543/*
3544 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3545 * the page allocator. Allocate them properly then fix up the pointers
3546 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3547 */
3548
dffb4d60 3549static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3550{
3551 int node;
dffb4d60 3552 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3553
dffb4d60 3554 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3555
7d557b3c
GC
3556 /*
3557 * This runs very early, and only the boot processor is supposed to be
3558 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3559 * IPIs around.
3560 */
3561 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3562 for_each_node_state(node, N_NORMAL_MEMORY) {
3563 struct kmem_cache_node *n = get_node(s, node);
3564 struct page *p;
3565
3566 if (n) {
3567 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3568 p->slab_cache = s;
51df1142 3569
607bf324 3570#ifdef CONFIG_SLUB_DEBUG
51df1142 3571 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3572 p->slab_cache = s;
51df1142
CL
3573#endif
3574 }
3575 }
dffb4d60
CL
3576 list_add(&s->list, &slab_caches);
3577 return s;
51df1142
CL
3578}
3579
81819f0f
CL
3580void __init kmem_cache_init(void)
3581{
dffb4d60
CL
3582 static __initdata struct kmem_cache boot_kmem_cache,
3583 boot_kmem_cache_node;
51df1142 3584
fc8d8620
SG
3585 if (debug_guardpage_minorder())
3586 slub_max_order = 0;
3587
dffb4d60
CL
3588 kmem_cache_node = &boot_kmem_cache_node;
3589 kmem_cache = &boot_kmem_cache;
51df1142 3590
dffb4d60
CL
3591 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3592 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3593
0c40ba4f 3594 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3595
3596 /* Able to allocate the per node structures */
3597 slab_state = PARTIAL;
3598
dffb4d60
CL
3599 create_boot_cache(kmem_cache, "kmem_cache",
3600 offsetof(struct kmem_cache, node) +
3601 nr_node_ids * sizeof(struct kmem_cache_node *),
3602 SLAB_HWCACHE_ALIGN);
8a13a4cc 3603
dffb4d60 3604 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3605
51df1142
CL
3606 /*
3607 * Allocate kmem_cache_node properly from the kmem_cache slab.
3608 * kmem_cache_node is separately allocated so no need to
3609 * update any list pointers.
3610 */
dffb4d60 3611 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3612
3613 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3614 create_kmalloc_caches(0);
81819f0f
CL
3615
3616#ifdef CONFIG_SMP
3617 register_cpu_notifier(&slab_notifier);
9dfc6e68 3618#endif
81819f0f 3619
3adbefee 3620 printk(KERN_INFO
f97d5f63 3621 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3622 " CPUs=%d, Nodes=%d\n",
f97d5f63 3623 cache_line_size(),
81819f0f
CL
3624 slub_min_order, slub_max_order, slub_min_objects,
3625 nr_cpu_ids, nr_node_ids);
3626}
3627
7e85ee0c
PE
3628void __init kmem_cache_init_late(void)
3629{
7e85ee0c
PE
3630}
3631
81819f0f
CL
3632/*
3633 * Find a mergeable slab cache
3634 */
3635static int slab_unmergeable(struct kmem_cache *s)
3636{
3637 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3638 return 1;
3639
c59def9f 3640 if (s->ctor)
81819f0f
CL
3641 return 1;
3642
8ffa6875
CL
3643 /*
3644 * We may have set a slab to be unmergeable during bootstrap.
3645 */
3646 if (s->refcount < 0)
3647 return 1;
3648
81819f0f
CL
3649 return 0;
3650}
3651
2633d7a0 3652static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3653 size_t align, unsigned long flags, const char *name,
51cc5068 3654 void (*ctor)(void *))
81819f0f 3655{
5b95a4ac 3656 struct kmem_cache *s;
81819f0f
CL
3657
3658 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3659 return NULL;
3660
c59def9f 3661 if (ctor)
81819f0f
CL
3662 return NULL;
3663
3664 size = ALIGN(size, sizeof(void *));
3665 align = calculate_alignment(flags, align, size);
3666 size = ALIGN(size, align);
ba0268a8 3667 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3668
5b95a4ac 3669 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3670 if (slab_unmergeable(s))
3671 continue;
3672
3673 if (size > s->size)
3674 continue;
3675
ba0268a8 3676 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3677 continue;
3678 /*
3679 * Check if alignment is compatible.
3680 * Courtesy of Adrian Drzewiecki
3681 */
06428780 3682 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3683 continue;
3684
3685 if (s->size - size >= sizeof(void *))
3686 continue;
3687
2633d7a0
GC
3688 if (!cache_match_memcg(s, memcg))
3689 continue;
3690
81819f0f
CL
3691 return s;
3692 }
3693 return NULL;
3694}
3695
2633d7a0
GC
3696struct kmem_cache *
3697__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3698 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3699{
3700 struct kmem_cache *s;
3701
2633d7a0 3702 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3703 if (s) {
3704 s->refcount++;
3705 /*
3706 * Adjust the object sizes so that we clear
3707 * the complete object on kzalloc.
3708 */
3b0efdfa 3709 s->object_size = max(s->object_size, (int)size);
81819f0f 3710 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3711
7b8f3b66 3712 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3713 s->refcount--;
cbb79694 3714 s = NULL;
7b8f3b66 3715 }
a0e1d1be 3716 }
6446faa2 3717
cbb79694
CL
3718 return s;
3719}
84c1cf62 3720
8a13a4cc 3721int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3722{
aac3a166
PE
3723 int err;
3724
3725 err = kmem_cache_open(s, flags);
3726 if (err)
3727 return err;
20cea968 3728
45530c44
CL
3729 /* Mutex is not taken during early boot */
3730 if (slab_state <= UP)
3731 return 0;
3732
107dab5c 3733 memcg_propagate_slab_attrs(s);
aac3a166
PE
3734 mutex_unlock(&slab_mutex);
3735 err = sysfs_slab_add(s);
3736 mutex_lock(&slab_mutex);
20cea968 3737
aac3a166
PE
3738 if (err)
3739 kmem_cache_close(s);
20cea968 3740
aac3a166 3741 return err;
81819f0f 3742}
81819f0f 3743
81819f0f 3744#ifdef CONFIG_SMP
81819f0f 3745/*
672bba3a
CL
3746 * Use the cpu notifier to insure that the cpu slabs are flushed when
3747 * necessary.
81819f0f
CL
3748 */
3749static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3750 unsigned long action, void *hcpu)
3751{
3752 long cpu = (long)hcpu;
5b95a4ac
CL
3753 struct kmem_cache *s;
3754 unsigned long flags;
81819f0f
CL
3755
3756 switch (action) {
3757 case CPU_UP_CANCELED:
8bb78442 3758 case CPU_UP_CANCELED_FROZEN:
81819f0f 3759 case CPU_DEAD:
8bb78442 3760 case CPU_DEAD_FROZEN:
18004c5d 3761 mutex_lock(&slab_mutex);
5b95a4ac
CL
3762 list_for_each_entry(s, &slab_caches, list) {
3763 local_irq_save(flags);
3764 __flush_cpu_slab(s, cpu);
3765 local_irq_restore(flags);
3766 }
18004c5d 3767 mutex_unlock(&slab_mutex);
81819f0f
CL
3768 break;
3769 default:
3770 break;
3771 }
3772 return NOTIFY_OK;
3773}
3774
06428780 3775static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3776 .notifier_call = slab_cpuup_callback
06428780 3777};
81819f0f
CL
3778
3779#endif
3780
ce71e27c 3781void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3782{
aadb4bc4 3783 struct kmem_cache *s;
94b528d0 3784 void *ret;
aadb4bc4 3785
95a05b42 3786 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3787 return kmalloc_large(size, gfpflags);
3788
2c59dd65 3789 s = kmalloc_slab(size, gfpflags);
81819f0f 3790
2408c550 3791 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3792 return s;
81819f0f 3793
2b847c3c 3794 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3795
25985edc 3796 /* Honor the call site pointer we received. */
ca2b84cb 3797 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3798
3799 return ret;
81819f0f
CL
3800}
3801
5d1f57e4 3802#ifdef CONFIG_NUMA
81819f0f 3803void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3804 int node, unsigned long caller)
81819f0f 3805{
aadb4bc4 3806 struct kmem_cache *s;
94b528d0 3807 void *ret;
aadb4bc4 3808
95a05b42 3809 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3810 ret = kmalloc_large_node(size, gfpflags, node);
3811
3812 trace_kmalloc_node(caller, ret,
3813 size, PAGE_SIZE << get_order(size),
3814 gfpflags, node);
3815
3816 return ret;
3817 }
eada35ef 3818
2c59dd65 3819 s = kmalloc_slab(size, gfpflags);
81819f0f 3820
2408c550 3821 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3822 return s;
81819f0f 3823
2b847c3c 3824 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3825
25985edc 3826 /* Honor the call site pointer we received. */
ca2b84cb 3827 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3828
3829 return ret;
81819f0f 3830}
5d1f57e4 3831#endif
81819f0f 3832
ab4d5ed5 3833#ifdef CONFIG_SYSFS
205ab99d
CL
3834static int count_inuse(struct page *page)
3835{
3836 return page->inuse;
3837}
3838
3839static int count_total(struct page *page)
3840{
3841 return page->objects;
3842}
ab4d5ed5 3843#endif
205ab99d 3844
ab4d5ed5 3845#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3846static int validate_slab(struct kmem_cache *s, struct page *page,
3847 unsigned long *map)
53e15af0
CL
3848{
3849 void *p;
a973e9dd 3850 void *addr = page_address(page);
53e15af0
CL
3851
3852 if (!check_slab(s, page) ||
3853 !on_freelist(s, page, NULL))
3854 return 0;
3855
3856 /* Now we know that a valid freelist exists */
39b26464 3857 bitmap_zero(map, page->objects);
53e15af0 3858
5f80b13a
CL
3859 get_map(s, page, map);
3860 for_each_object(p, s, addr, page->objects) {
3861 if (test_bit(slab_index(p, s, addr), map))
3862 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3863 return 0;
53e15af0
CL
3864 }
3865
224a88be 3866 for_each_object(p, s, addr, page->objects)
7656c72b 3867 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3868 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3869 return 0;
3870 return 1;
3871}
3872
434e245d
CL
3873static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3874 unsigned long *map)
53e15af0 3875{
881db7fb
CL
3876 slab_lock(page);
3877 validate_slab(s, page, map);
3878 slab_unlock(page);
53e15af0
CL
3879}
3880
434e245d
CL
3881static int validate_slab_node(struct kmem_cache *s,
3882 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3883{
3884 unsigned long count = 0;
3885 struct page *page;
3886 unsigned long flags;
3887
3888 spin_lock_irqsave(&n->list_lock, flags);
3889
3890 list_for_each_entry(page, &n->partial, lru) {
434e245d 3891 validate_slab_slab(s, page, map);
53e15af0
CL
3892 count++;
3893 }
3894 if (count != n->nr_partial)
3895 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3896 "counter=%ld\n", s->name, count, n->nr_partial);
3897
3898 if (!(s->flags & SLAB_STORE_USER))
3899 goto out;
3900
3901 list_for_each_entry(page, &n->full, lru) {
434e245d 3902 validate_slab_slab(s, page, map);
53e15af0
CL
3903 count++;
3904 }
3905 if (count != atomic_long_read(&n->nr_slabs))
3906 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3907 "counter=%ld\n", s->name, count,
3908 atomic_long_read(&n->nr_slabs));
3909
3910out:
3911 spin_unlock_irqrestore(&n->list_lock, flags);
3912 return count;
3913}
3914
434e245d 3915static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3916{
3917 int node;
3918 unsigned long count = 0;
205ab99d 3919 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3920 sizeof(unsigned long), GFP_KERNEL);
3921
3922 if (!map)
3923 return -ENOMEM;
53e15af0
CL
3924
3925 flush_all(s);
f64dc58c 3926 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3927 struct kmem_cache_node *n = get_node(s, node);
3928
434e245d 3929 count += validate_slab_node(s, n, map);
53e15af0 3930 }
434e245d 3931 kfree(map);
53e15af0
CL
3932 return count;
3933}
88a420e4 3934/*
672bba3a 3935 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3936 * and freed.
3937 */
3938
3939struct location {
3940 unsigned long count;
ce71e27c 3941 unsigned long addr;
45edfa58
CL
3942 long long sum_time;
3943 long min_time;
3944 long max_time;
3945 long min_pid;
3946 long max_pid;
174596a0 3947 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3948 nodemask_t nodes;
88a420e4
CL
3949};
3950
3951struct loc_track {
3952 unsigned long max;
3953 unsigned long count;
3954 struct location *loc;
3955};
3956
3957static void free_loc_track(struct loc_track *t)
3958{
3959 if (t->max)
3960 free_pages((unsigned long)t->loc,
3961 get_order(sizeof(struct location) * t->max));
3962}
3963
68dff6a9 3964static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3965{
3966 struct location *l;
3967 int order;
3968
88a420e4
CL
3969 order = get_order(sizeof(struct location) * max);
3970
68dff6a9 3971 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3972 if (!l)
3973 return 0;
3974
3975 if (t->count) {
3976 memcpy(l, t->loc, sizeof(struct location) * t->count);
3977 free_loc_track(t);
3978 }
3979 t->max = max;
3980 t->loc = l;
3981 return 1;
3982}
3983
3984static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3985 const struct track *track)
88a420e4
CL
3986{
3987 long start, end, pos;
3988 struct location *l;
ce71e27c 3989 unsigned long caddr;
45edfa58 3990 unsigned long age = jiffies - track->when;
88a420e4
CL
3991
3992 start = -1;
3993 end = t->count;
3994
3995 for ( ; ; ) {
3996 pos = start + (end - start + 1) / 2;
3997
3998 /*
3999 * There is nothing at "end". If we end up there
4000 * we need to add something to before end.
4001 */
4002 if (pos == end)
4003 break;
4004
4005 caddr = t->loc[pos].addr;
45edfa58
CL
4006 if (track->addr == caddr) {
4007
4008 l = &t->loc[pos];
4009 l->count++;
4010 if (track->when) {
4011 l->sum_time += age;
4012 if (age < l->min_time)
4013 l->min_time = age;
4014 if (age > l->max_time)
4015 l->max_time = age;
4016
4017 if (track->pid < l->min_pid)
4018 l->min_pid = track->pid;
4019 if (track->pid > l->max_pid)
4020 l->max_pid = track->pid;
4021
174596a0
RR
4022 cpumask_set_cpu(track->cpu,
4023 to_cpumask(l->cpus));
45edfa58
CL
4024 }
4025 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4026 return 1;
4027 }
4028
45edfa58 4029 if (track->addr < caddr)
88a420e4
CL
4030 end = pos;
4031 else
4032 start = pos;
4033 }
4034
4035 /*
672bba3a 4036 * Not found. Insert new tracking element.
88a420e4 4037 */
68dff6a9 4038 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4039 return 0;
4040
4041 l = t->loc + pos;
4042 if (pos < t->count)
4043 memmove(l + 1, l,
4044 (t->count - pos) * sizeof(struct location));
4045 t->count++;
4046 l->count = 1;
45edfa58
CL
4047 l->addr = track->addr;
4048 l->sum_time = age;
4049 l->min_time = age;
4050 l->max_time = age;
4051 l->min_pid = track->pid;
4052 l->max_pid = track->pid;
174596a0
RR
4053 cpumask_clear(to_cpumask(l->cpus));
4054 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4055 nodes_clear(l->nodes);
4056 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4057 return 1;
4058}
4059
4060static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4061 struct page *page, enum track_item alloc,
a5dd5c11 4062 unsigned long *map)
88a420e4 4063{
a973e9dd 4064 void *addr = page_address(page);
88a420e4
CL
4065 void *p;
4066
39b26464 4067 bitmap_zero(map, page->objects);
5f80b13a 4068 get_map(s, page, map);
88a420e4 4069
224a88be 4070 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4071 if (!test_bit(slab_index(p, s, addr), map))
4072 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4073}
4074
4075static int list_locations(struct kmem_cache *s, char *buf,
4076 enum track_item alloc)
4077{
e374d483 4078 int len = 0;
88a420e4 4079 unsigned long i;
68dff6a9 4080 struct loc_track t = { 0, 0, NULL };
88a420e4 4081 int node;
bbd7d57b
ED
4082 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4083 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4084
bbd7d57b
ED
4085 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4086 GFP_TEMPORARY)) {
4087 kfree(map);
68dff6a9 4088 return sprintf(buf, "Out of memory\n");
bbd7d57b 4089 }
88a420e4
CL
4090 /* Push back cpu slabs */
4091 flush_all(s);
4092
f64dc58c 4093 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4094 struct kmem_cache_node *n = get_node(s, node);
4095 unsigned long flags;
4096 struct page *page;
4097
9e86943b 4098 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4099 continue;
4100
4101 spin_lock_irqsave(&n->list_lock, flags);
4102 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4103 process_slab(&t, s, page, alloc, map);
88a420e4 4104 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4105 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4106 spin_unlock_irqrestore(&n->list_lock, flags);
4107 }
4108
4109 for (i = 0; i < t.count; i++) {
45edfa58 4110 struct location *l = &t.loc[i];
88a420e4 4111
9c246247 4112 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4113 break;
e374d483 4114 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4115
4116 if (l->addr)
62c70bce 4117 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4118 else
e374d483 4119 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4120
4121 if (l->sum_time != l->min_time) {
e374d483 4122 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4123 l->min_time,
4124 (long)div_u64(l->sum_time, l->count),
4125 l->max_time);
45edfa58 4126 } else
e374d483 4127 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4128 l->min_time);
4129
4130 if (l->min_pid != l->max_pid)
e374d483 4131 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4132 l->min_pid, l->max_pid);
4133 else
e374d483 4134 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4135 l->min_pid);
4136
174596a0
RR
4137 if (num_online_cpus() > 1 &&
4138 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4139 len < PAGE_SIZE - 60) {
4140 len += sprintf(buf + len, " cpus=");
4141 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4142 to_cpumask(l->cpus));
45edfa58
CL
4143 }
4144
62bc62a8 4145 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4146 len < PAGE_SIZE - 60) {
4147 len += sprintf(buf + len, " nodes=");
4148 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4149 l->nodes);
4150 }
4151
e374d483 4152 len += sprintf(buf + len, "\n");
88a420e4
CL
4153 }
4154
4155 free_loc_track(&t);
bbd7d57b 4156 kfree(map);
88a420e4 4157 if (!t.count)
e374d483
HH
4158 len += sprintf(buf, "No data\n");
4159 return len;
88a420e4 4160}
ab4d5ed5 4161#endif
88a420e4 4162
a5a84755
CL
4163#ifdef SLUB_RESILIENCY_TEST
4164static void resiliency_test(void)
4165{
4166 u8 *p;
4167
95a05b42 4168 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4169
4170 printk(KERN_ERR "SLUB resiliency testing\n");
4171 printk(KERN_ERR "-----------------------\n");
4172 printk(KERN_ERR "A. Corruption after allocation\n");
4173
4174 p = kzalloc(16, GFP_KERNEL);
4175 p[16] = 0x12;
4176 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4177 " 0x12->0x%p\n\n", p + 16);
4178
4179 validate_slab_cache(kmalloc_caches[4]);
4180
4181 /* Hmmm... The next two are dangerous */
4182 p = kzalloc(32, GFP_KERNEL);
4183 p[32 + sizeof(void *)] = 0x34;
4184 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4185 " 0x34 -> -0x%p\n", p);
4186 printk(KERN_ERR
4187 "If allocated object is overwritten then not detectable\n\n");
4188
4189 validate_slab_cache(kmalloc_caches[5]);
4190 p = kzalloc(64, GFP_KERNEL);
4191 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4192 *p = 0x56;
4193 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4194 p);
4195 printk(KERN_ERR
4196 "If allocated object is overwritten then not detectable\n\n");
4197 validate_slab_cache(kmalloc_caches[6]);
4198
4199 printk(KERN_ERR "\nB. Corruption after free\n");
4200 p = kzalloc(128, GFP_KERNEL);
4201 kfree(p);
4202 *p = 0x78;
4203 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4204 validate_slab_cache(kmalloc_caches[7]);
4205
4206 p = kzalloc(256, GFP_KERNEL);
4207 kfree(p);
4208 p[50] = 0x9a;
4209 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4210 p);
4211 validate_slab_cache(kmalloc_caches[8]);
4212
4213 p = kzalloc(512, GFP_KERNEL);
4214 kfree(p);
4215 p[512] = 0xab;
4216 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4217 validate_slab_cache(kmalloc_caches[9]);
4218}
4219#else
4220#ifdef CONFIG_SYSFS
4221static void resiliency_test(void) {};
4222#endif
4223#endif
4224
ab4d5ed5 4225#ifdef CONFIG_SYSFS
81819f0f 4226enum slab_stat_type {
205ab99d
CL
4227 SL_ALL, /* All slabs */
4228 SL_PARTIAL, /* Only partially allocated slabs */
4229 SL_CPU, /* Only slabs used for cpu caches */
4230 SL_OBJECTS, /* Determine allocated objects not slabs */
4231 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4232};
4233
205ab99d 4234#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4235#define SO_PARTIAL (1 << SL_PARTIAL)
4236#define SO_CPU (1 << SL_CPU)
4237#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4238#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4239
62e5c4b4
CG
4240static ssize_t show_slab_objects(struct kmem_cache *s,
4241 char *buf, unsigned long flags)
81819f0f
CL
4242{
4243 unsigned long total = 0;
81819f0f
CL
4244 int node;
4245 int x;
4246 unsigned long *nodes;
4247 unsigned long *per_cpu;
4248
4249 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4250 if (!nodes)
4251 return -ENOMEM;
81819f0f
CL
4252 per_cpu = nodes + nr_node_ids;
4253
205ab99d
CL
4254 if (flags & SO_CPU) {
4255 int cpu;
81819f0f 4256
205ab99d 4257 for_each_possible_cpu(cpu) {
9dfc6e68 4258 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4259 int node;
49e22585 4260 struct page *page;
dfb4f096 4261
bc6697d8 4262 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4263 if (!page)
4264 continue;
205ab99d 4265
ec3ab083
CL
4266 node = page_to_nid(page);
4267 if (flags & SO_TOTAL)
4268 x = page->objects;
4269 else if (flags & SO_OBJECTS)
4270 x = page->inuse;
4271 else
4272 x = 1;
49e22585 4273
ec3ab083
CL
4274 total += x;
4275 nodes[node] += x;
4276
4277 page = ACCESS_ONCE(c->partial);
49e22585
CL
4278 if (page) {
4279 x = page->pobjects;
bc6697d8
ED
4280 total += x;
4281 nodes[node] += x;
49e22585 4282 }
ec3ab083 4283
bc6697d8 4284 per_cpu[node]++;
81819f0f
CL
4285 }
4286 }
4287
04d94879 4288 lock_memory_hotplug();
ab4d5ed5 4289#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4290 if (flags & SO_ALL) {
4291 for_each_node_state(node, N_NORMAL_MEMORY) {
4292 struct kmem_cache_node *n = get_node(s, node);
4293
4294 if (flags & SO_TOTAL)
4295 x = atomic_long_read(&n->total_objects);
4296 else if (flags & SO_OBJECTS)
4297 x = atomic_long_read(&n->total_objects) -
4298 count_partial(n, count_free);
81819f0f 4299
81819f0f 4300 else
205ab99d 4301 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4302 total += x;
4303 nodes[node] += x;
4304 }
4305
ab4d5ed5
CL
4306 } else
4307#endif
4308 if (flags & SO_PARTIAL) {
205ab99d
CL
4309 for_each_node_state(node, N_NORMAL_MEMORY) {
4310 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4311
205ab99d
CL
4312 if (flags & SO_TOTAL)
4313 x = count_partial(n, count_total);
4314 else if (flags & SO_OBJECTS)
4315 x = count_partial(n, count_inuse);
81819f0f 4316 else
205ab99d 4317 x = n->nr_partial;
81819f0f
CL
4318 total += x;
4319 nodes[node] += x;
4320 }
4321 }
81819f0f
CL
4322 x = sprintf(buf, "%lu", total);
4323#ifdef CONFIG_NUMA
f64dc58c 4324 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4325 if (nodes[node])
4326 x += sprintf(buf + x, " N%d=%lu",
4327 node, nodes[node]);
4328#endif
04d94879 4329 unlock_memory_hotplug();
81819f0f
CL
4330 kfree(nodes);
4331 return x + sprintf(buf + x, "\n");
4332}
4333
ab4d5ed5 4334#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4335static int any_slab_objects(struct kmem_cache *s)
4336{
4337 int node;
81819f0f 4338
dfb4f096 4339 for_each_online_node(node) {
81819f0f
CL
4340 struct kmem_cache_node *n = get_node(s, node);
4341
dfb4f096
CL
4342 if (!n)
4343 continue;
4344
4ea33e2d 4345 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4346 return 1;
4347 }
4348 return 0;
4349}
ab4d5ed5 4350#endif
81819f0f
CL
4351
4352#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4353#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4354
4355struct slab_attribute {
4356 struct attribute attr;
4357 ssize_t (*show)(struct kmem_cache *s, char *buf);
4358 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4359};
4360
4361#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4362 static struct slab_attribute _name##_attr = \
4363 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4364
4365#define SLAB_ATTR(_name) \
4366 static struct slab_attribute _name##_attr = \
ab067e99 4367 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4368
81819f0f
CL
4369static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4370{
4371 return sprintf(buf, "%d\n", s->size);
4372}
4373SLAB_ATTR_RO(slab_size);
4374
4375static ssize_t align_show(struct kmem_cache *s, char *buf)
4376{
4377 return sprintf(buf, "%d\n", s->align);
4378}
4379SLAB_ATTR_RO(align);
4380
4381static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4382{
3b0efdfa 4383 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4384}
4385SLAB_ATTR_RO(object_size);
4386
4387static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4388{
834f3d11 4389 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4390}
4391SLAB_ATTR_RO(objs_per_slab);
4392
06b285dc
CL
4393static ssize_t order_store(struct kmem_cache *s,
4394 const char *buf, size_t length)
4395{
0121c619
CL
4396 unsigned long order;
4397 int err;
4398
4399 err = strict_strtoul(buf, 10, &order);
4400 if (err)
4401 return err;
06b285dc
CL
4402
4403 if (order > slub_max_order || order < slub_min_order)
4404 return -EINVAL;
4405
4406 calculate_sizes(s, order);
4407 return length;
4408}
4409
81819f0f
CL
4410static ssize_t order_show(struct kmem_cache *s, char *buf)
4411{
834f3d11 4412 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4413}
06b285dc 4414SLAB_ATTR(order);
81819f0f 4415
73d342b1
DR
4416static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4417{
4418 return sprintf(buf, "%lu\n", s->min_partial);
4419}
4420
4421static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4422 size_t length)
4423{
4424 unsigned long min;
4425 int err;
4426
4427 err = strict_strtoul(buf, 10, &min);
4428 if (err)
4429 return err;
4430
c0bdb232 4431 set_min_partial(s, min);
73d342b1
DR
4432 return length;
4433}
4434SLAB_ATTR(min_partial);
4435
49e22585
CL
4436static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4437{
4438 return sprintf(buf, "%u\n", s->cpu_partial);
4439}
4440
4441static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4442 size_t length)
4443{
4444 unsigned long objects;
4445 int err;
4446
4447 err = strict_strtoul(buf, 10, &objects);
4448 if (err)
4449 return err;
74ee4ef1
DR
4450 if (objects && kmem_cache_debug(s))
4451 return -EINVAL;
49e22585
CL
4452
4453 s->cpu_partial = objects;
4454 flush_all(s);
4455 return length;
4456}
4457SLAB_ATTR(cpu_partial);
4458
81819f0f
CL
4459static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4460{
62c70bce
JP
4461 if (!s->ctor)
4462 return 0;
4463 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4464}
4465SLAB_ATTR_RO(ctor);
4466
81819f0f
CL
4467static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4468{
4469 return sprintf(buf, "%d\n", s->refcount - 1);
4470}
4471SLAB_ATTR_RO(aliases);
4472
81819f0f
CL
4473static ssize_t partial_show(struct kmem_cache *s, char *buf)
4474{
d9acf4b7 4475 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4476}
4477SLAB_ATTR_RO(partial);
4478
4479static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4480{
d9acf4b7 4481 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4482}
4483SLAB_ATTR_RO(cpu_slabs);
4484
4485static ssize_t objects_show(struct kmem_cache *s, char *buf)
4486{
205ab99d 4487 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4488}
4489SLAB_ATTR_RO(objects);
4490
205ab99d
CL
4491static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4492{
4493 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4494}
4495SLAB_ATTR_RO(objects_partial);
4496
49e22585
CL
4497static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4498{
4499 int objects = 0;
4500 int pages = 0;
4501 int cpu;
4502 int len;
4503
4504 for_each_online_cpu(cpu) {
4505 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4506
4507 if (page) {
4508 pages += page->pages;
4509 objects += page->pobjects;
4510 }
4511 }
4512
4513 len = sprintf(buf, "%d(%d)", objects, pages);
4514
4515#ifdef CONFIG_SMP
4516 for_each_online_cpu(cpu) {
4517 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4518
4519 if (page && len < PAGE_SIZE - 20)
4520 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4521 page->pobjects, page->pages);
4522 }
4523#endif
4524 return len + sprintf(buf + len, "\n");
4525}
4526SLAB_ATTR_RO(slabs_cpu_partial);
4527
a5a84755
CL
4528static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4529{
4530 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4531}
4532
4533static ssize_t reclaim_account_store(struct kmem_cache *s,
4534 const char *buf, size_t length)
4535{
4536 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4537 if (buf[0] == '1')
4538 s->flags |= SLAB_RECLAIM_ACCOUNT;
4539 return length;
4540}
4541SLAB_ATTR(reclaim_account);
4542
4543static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4544{
4545 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4546}
4547SLAB_ATTR_RO(hwcache_align);
4548
4549#ifdef CONFIG_ZONE_DMA
4550static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4553}
4554SLAB_ATTR_RO(cache_dma);
4555#endif
4556
4557static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4558{
4559 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4560}
4561SLAB_ATTR_RO(destroy_by_rcu);
4562
ab9a0f19
LJ
4563static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4564{
4565 return sprintf(buf, "%d\n", s->reserved);
4566}
4567SLAB_ATTR_RO(reserved);
4568
ab4d5ed5 4569#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4570static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4571{
4572 return show_slab_objects(s, buf, SO_ALL);
4573}
4574SLAB_ATTR_RO(slabs);
4575
205ab99d
CL
4576static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4577{
4578 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4579}
4580SLAB_ATTR_RO(total_objects);
4581
81819f0f
CL
4582static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4583{
4584 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4585}
4586
4587static ssize_t sanity_checks_store(struct kmem_cache *s,
4588 const char *buf, size_t length)
4589{
4590 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4591 if (buf[0] == '1') {
4592 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4593 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4594 }
81819f0f
CL
4595 return length;
4596}
4597SLAB_ATTR(sanity_checks);
4598
4599static ssize_t trace_show(struct kmem_cache *s, char *buf)
4600{
4601 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4602}
4603
4604static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4605 size_t length)
4606{
4607 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4608 if (buf[0] == '1') {
4609 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4610 s->flags |= SLAB_TRACE;
b789ef51 4611 }
81819f0f
CL
4612 return length;
4613}
4614SLAB_ATTR(trace);
4615
81819f0f
CL
4616static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4617{
4618 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4619}
4620
4621static ssize_t red_zone_store(struct kmem_cache *s,
4622 const char *buf, size_t length)
4623{
4624 if (any_slab_objects(s))
4625 return -EBUSY;
4626
4627 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4628 if (buf[0] == '1') {
4629 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4630 s->flags |= SLAB_RED_ZONE;
b789ef51 4631 }
06b285dc 4632 calculate_sizes(s, -1);
81819f0f
CL
4633 return length;
4634}
4635SLAB_ATTR(red_zone);
4636
4637static ssize_t poison_show(struct kmem_cache *s, char *buf)
4638{
4639 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4640}
4641
4642static ssize_t poison_store(struct kmem_cache *s,
4643 const char *buf, size_t length)
4644{
4645 if (any_slab_objects(s))
4646 return -EBUSY;
4647
4648 s->flags &= ~SLAB_POISON;
b789ef51
CL
4649 if (buf[0] == '1') {
4650 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4651 s->flags |= SLAB_POISON;
b789ef51 4652 }
06b285dc 4653 calculate_sizes(s, -1);
81819f0f
CL
4654 return length;
4655}
4656SLAB_ATTR(poison);
4657
4658static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4659{
4660 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4661}
4662
4663static ssize_t store_user_store(struct kmem_cache *s,
4664 const char *buf, size_t length)
4665{
4666 if (any_slab_objects(s))
4667 return -EBUSY;
4668
4669 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4670 if (buf[0] == '1') {
4671 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4672 s->flags |= SLAB_STORE_USER;
b789ef51 4673 }
06b285dc 4674 calculate_sizes(s, -1);
81819f0f
CL
4675 return length;
4676}
4677SLAB_ATTR(store_user);
4678
53e15af0
CL
4679static ssize_t validate_show(struct kmem_cache *s, char *buf)
4680{
4681 return 0;
4682}
4683
4684static ssize_t validate_store(struct kmem_cache *s,
4685 const char *buf, size_t length)
4686{
434e245d
CL
4687 int ret = -EINVAL;
4688
4689 if (buf[0] == '1') {
4690 ret = validate_slab_cache(s);
4691 if (ret >= 0)
4692 ret = length;
4693 }
4694 return ret;
53e15af0
CL
4695}
4696SLAB_ATTR(validate);
a5a84755
CL
4697
4698static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4699{
4700 if (!(s->flags & SLAB_STORE_USER))
4701 return -ENOSYS;
4702 return list_locations(s, buf, TRACK_ALLOC);
4703}
4704SLAB_ATTR_RO(alloc_calls);
4705
4706static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4707{
4708 if (!(s->flags & SLAB_STORE_USER))
4709 return -ENOSYS;
4710 return list_locations(s, buf, TRACK_FREE);
4711}
4712SLAB_ATTR_RO(free_calls);
4713#endif /* CONFIG_SLUB_DEBUG */
4714
4715#ifdef CONFIG_FAILSLAB
4716static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4717{
4718 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4719}
4720
4721static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4722 size_t length)
4723{
4724 s->flags &= ~SLAB_FAILSLAB;
4725 if (buf[0] == '1')
4726 s->flags |= SLAB_FAILSLAB;
4727 return length;
4728}
4729SLAB_ATTR(failslab);
ab4d5ed5 4730#endif
53e15af0 4731
2086d26a
CL
4732static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4733{
4734 return 0;
4735}
4736
4737static ssize_t shrink_store(struct kmem_cache *s,
4738 const char *buf, size_t length)
4739{
4740 if (buf[0] == '1') {
4741 int rc = kmem_cache_shrink(s);
4742
4743 if (rc)
4744 return rc;
4745 } else
4746 return -EINVAL;
4747 return length;
4748}
4749SLAB_ATTR(shrink);
4750
81819f0f 4751#ifdef CONFIG_NUMA
9824601e 4752static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4753{
9824601e 4754 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4755}
4756
9824601e 4757static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4758 const char *buf, size_t length)
4759{
0121c619
CL
4760 unsigned long ratio;
4761 int err;
4762
4763 err = strict_strtoul(buf, 10, &ratio);
4764 if (err)
4765 return err;
4766
e2cb96b7 4767 if (ratio <= 100)
0121c619 4768 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4769
81819f0f
CL
4770 return length;
4771}
9824601e 4772SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4773#endif
4774
8ff12cfc 4775#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4776static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4777{
4778 unsigned long sum = 0;
4779 int cpu;
4780 int len;
4781 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4782
4783 if (!data)
4784 return -ENOMEM;
4785
4786 for_each_online_cpu(cpu) {
9dfc6e68 4787 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4788
4789 data[cpu] = x;
4790 sum += x;
4791 }
4792
4793 len = sprintf(buf, "%lu", sum);
4794
50ef37b9 4795#ifdef CONFIG_SMP
8ff12cfc
CL
4796 for_each_online_cpu(cpu) {
4797 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4798 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4799 }
50ef37b9 4800#endif
8ff12cfc
CL
4801 kfree(data);
4802 return len + sprintf(buf + len, "\n");
4803}
4804
78eb00cc
DR
4805static void clear_stat(struct kmem_cache *s, enum stat_item si)
4806{
4807 int cpu;
4808
4809 for_each_online_cpu(cpu)
9dfc6e68 4810 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4811}
4812
8ff12cfc
CL
4813#define STAT_ATTR(si, text) \
4814static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4815{ \
4816 return show_stat(s, buf, si); \
4817} \
78eb00cc
DR
4818static ssize_t text##_store(struct kmem_cache *s, \
4819 const char *buf, size_t length) \
4820{ \
4821 if (buf[0] != '0') \
4822 return -EINVAL; \
4823 clear_stat(s, si); \
4824 return length; \
4825} \
4826SLAB_ATTR(text); \
8ff12cfc
CL
4827
4828STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4829STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4830STAT_ATTR(FREE_FASTPATH, free_fastpath);
4831STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4832STAT_ATTR(FREE_FROZEN, free_frozen);
4833STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4834STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4835STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4836STAT_ATTR(ALLOC_SLAB, alloc_slab);
4837STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4838STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4839STAT_ATTR(FREE_SLAB, free_slab);
4840STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4841STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4842STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4843STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4844STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4845STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4846STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4847STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4848STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4849STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4850STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4851STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4852STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4853STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4854#endif
4855
06428780 4856static struct attribute *slab_attrs[] = {
81819f0f
CL
4857 &slab_size_attr.attr,
4858 &object_size_attr.attr,
4859 &objs_per_slab_attr.attr,
4860 &order_attr.attr,
73d342b1 4861 &min_partial_attr.attr,
49e22585 4862 &cpu_partial_attr.attr,
81819f0f 4863 &objects_attr.attr,
205ab99d 4864 &objects_partial_attr.attr,
81819f0f
CL
4865 &partial_attr.attr,
4866 &cpu_slabs_attr.attr,
4867 &ctor_attr.attr,
81819f0f
CL
4868 &aliases_attr.attr,
4869 &align_attr.attr,
81819f0f
CL
4870 &hwcache_align_attr.attr,
4871 &reclaim_account_attr.attr,
4872 &destroy_by_rcu_attr.attr,
a5a84755 4873 &shrink_attr.attr,
ab9a0f19 4874 &reserved_attr.attr,
49e22585 4875 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4876#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4877 &total_objects_attr.attr,
4878 &slabs_attr.attr,
4879 &sanity_checks_attr.attr,
4880 &trace_attr.attr,
81819f0f
CL
4881 &red_zone_attr.attr,
4882 &poison_attr.attr,
4883 &store_user_attr.attr,
53e15af0 4884 &validate_attr.attr,
88a420e4
CL
4885 &alloc_calls_attr.attr,
4886 &free_calls_attr.attr,
ab4d5ed5 4887#endif
81819f0f
CL
4888#ifdef CONFIG_ZONE_DMA
4889 &cache_dma_attr.attr,
4890#endif
4891#ifdef CONFIG_NUMA
9824601e 4892 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4893#endif
4894#ifdef CONFIG_SLUB_STATS
4895 &alloc_fastpath_attr.attr,
4896 &alloc_slowpath_attr.attr,
4897 &free_fastpath_attr.attr,
4898 &free_slowpath_attr.attr,
4899 &free_frozen_attr.attr,
4900 &free_add_partial_attr.attr,
4901 &free_remove_partial_attr.attr,
4902 &alloc_from_partial_attr.attr,
4903 &alloc_slab_attr.attr,
4904 &alloc_refill_attr.attr,
e36a2652 4905 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4906 &free_slab_attr.attr,
4907 &cpuslab_flush_attr.attr,
4908 &deactivate_full_attr.attr,
4909 &deactivate_empty_attr.attr,
4910 &deactivate_to_head_attr.attr,
4911 &deactivate_to_tail_attr.attr,
4912 &deactivate_remote_frees_attr.attr,
03e404af 4913 &deactivate_bypass_attr.attr,
65c3376a 4914 &order_fallback_attr.attr,
b789ef51
CL
4915 &cmpxchg_double_fail_attr.attr,
4916 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4917 &cpu_partial_alloc_attr.attr,
4918 &cpu_partial_free_attr.attr,
8028dcea
AS
4919 &cpu_partial_node_attr.attr,
4920 &cpu_partial_drain_attr.attr,
81819f0f 4921#endif
4c13dd3b
DM
4922#ifdef CONFIG_FAILSLAB
4923 &failslab_attr.attr,
4924#endif
4925
81819f0f
CL
4926 NULL
4927};
4928
4929static struct attribute_group slab_attr_group = {
4930 .attrs = slab_attrs,
4931};
4932
4933static ssize_t slab_attr_show(struct kobject *kobj,
4934 struct attribute *attr,
4935 char *buf)
4936{
4937 struct slab_attribute *attribute;
4938 struct kmem_cache *s;
4939 int err;
4940
4941 attribute = to_slab_attr(attr);
4942 s = to_slab(kobj);
4943
4944 if (!attribute->show)
4945 return -EIO;
4946
4947 err = attribute->show(s, buf);
4948
4949 return err;
4950}
4951
4952static ssize_t slab_attr_store(struct kobject *kobj,
4953 struct attribute *attr,
4954 const char *buf, size_t len)
4955{
4956 struct slab_attribute *attribute;
4957 struct kmem_cache *s;
4958 int err;
4959
4960 attribute = to_slab_attr(attr);
4961 s = to_slab(kobj);
4962
4963 if (!attribute->store)
4964 return -EIO;
4965
4966 err = attribute->store(s, buf, len);
107dab5c
GC
4967#ifdef CONFIG_MEMCG_KMEM
4968 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4969 int i;
81819f0f 4970
107dab5c
GC
4971 mutex_lock(&slab_mutex);
4972 if (s->max_attr_size < len)
4973 s->max_attr_size = len;
4974
ebe945c2
GC
4975 /*
4976 * This is a best effort propagation, so this function's return
4977 * value will be determined by the parent cache only. This is
4978 * basically because not all attributes will have a well
4979 * defined semantics for rollbacks - most of the actions will
4980 * have permanent effects.
4981 *
4982 * Returning the error value of any of the children that fail
4983 * is not 100 % defined, in the sense that users seeing the
4984 * error code won't be able to know anything about the state of
4985 * the cache.
4986 *
4987 * Only returning the error code for the parent cache at least
4988 * has well defined semantics. The cache being written to
4989 * directly either failed or succeeded, in which case we loop
4990 * through the descendants with best-effort propagation.
4991 */
107dab5c
GC
4992 for_each_memcg_cache_index(i) {
4993 struct kmem_cache *c = cache_from_memcg(s, i);
107dab5c
GC
4994 if (c)
4995 attribute->store(c, buf, len);
4996 }
4997 mutex_unlock(&slab_mutex);
4998 }
4999#endif
81819f0f
CL
5000 return err;
5001}
5002
107dab5c
GC
5003static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5004{
5005#ifdef CONFIG_MEMCG_KMEM
5006 int i;
5007 char *buffer = NULL;
5008
5009 if (!is_root_cache(s))
5010 return;
5011
5012 /*
5013 * This mean this cache had no attribute written. Therefore, no point
5014 * in copying default values around
5015 */
5016 if (!s->max_attr_size)
5017 return;
5018
5019 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5020 char mbuf[64];
5021 char *buf;
5022 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5023
5024 if (!attr || !attr->store || !attr->show)
5025 continue;
5026
5027 /*
5028 * It is really bad that we have to allocate here, so we will
5029 * do it only as a fallback. If we actually allocate, though,
5030 * we can just use the allocated buffer until the end.
5031 *
5032 * Most of the slub attributes will tend to be very small in
5033 * size, but sysfs allows buffers up to a page, so they can
5034 * theoretically happen.
5035 */
5036 if (buffer)
5037 buf = buffer;
5038 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5039 buf = mbuf;
5040 else {
5041 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5042 if (WARN_ON(!buffer))
5043 continue;
5044 buf = buffer;
5045 }
5046
5047 attr->show(s->memcg_params->root_cache, buf);
5048 attr->store(s, buf, strlen(buf));
5049 }
5050
5051 if (buffer)
5052 free_page((unsigned long)buffer);
5053#endif
5054}
5055
52cf25d0 5056static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5057 .show = slab_attr_show,
5058 .store = slab_attr_store,
5059};
5060
5061static struct kobj_type slab_ktype = {
5062 .sysfs_ops = &slab_sysfs_ops,
5063};
5064
5065static int uevent_filter(struct kset *kset, struct kobject *kobj)
5066{
5067 struct kobj_type *ktype = get_ktype(kobj);
5068
5069 if (ktype == &slab_ktype)
5070 return 1;
5071 return 0;
5072}
5073
9cd43611 5074static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5075 .filter = uevent_filter,
5076};
5077
27c3a314 5078static struct kset *slab_kset;
81819f0f
CL
5079
5080#define ID_STR_LENGTH 64
5081
5082/* Create a unique string id for a slab cache:
6446faa2
CL
5083 *
5084 * Format :[flags-]size
81819f0f
CL
5085 */
5086static char *create_unique_id(struct kmem_cache *s)
5087{
5088 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5089 char *p = name;
5090
5091 BUG_ON(!name);
5092
5093 *p++ = ':';
5094 /*
5095 * First flags affecting slabcache operations. We will only
5096 * get here for aliasable slabs so we do not need to support
5097 * too many flags. The flags here must cover all flags that
5098 * are matched during merging to guarantee that the id is
5099 * unique.
5100 */
5101 if (s->flags & SLAB_CACHE_DMA)
5102 *p++ = 'd';
5103 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5104 *p++ = 'a';
5105 if (s->flags & SLAB_DEBUG_FREE)
5106 *p++ = 'F';
5a896d9e
VN
5107 if (!(s->flags & SLAB_NOTRACK))
5108 *p++ = 't';
81819f0f
CL
5109 if (p != name + 1)
5110 *p++ = '-';
5111 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5112
5113#ifdef CONFIG_MEMCG_KMEM
5114 if (!is_root_cache(s))
5115 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5116#endif
5117
81819f0f
CL
5118 BUG_ON(p > name + ID_STR_LENGTH - 1);
5119 return name;
5120}
5121
5122static int sysfs_slab_add(struct kmem_cache *s)
5123{
5124 int err;
5125 const char *name;
45530c44 5126 int unmergeable = slab_unmergeable(s);
81819f0f 5127
81819f0f
CL
5128 if (unmergeable) {
5129 /*
5130 * Slabcache can never be merged so we can use the name proper.
5131 * This is typically the case for debug situations. In that
5132 * case we can catch duplicate names easily.
5133 */
27c3a314 5134 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5135 name = s->name;
5136 } else {
5137 /*
5138 * Create a unique name for the slab as a target
5139 * for the symlinks.
5140 */
5141 name = create_unique_id(s);
5142 }
5143
27c3a314 5144 s->kobj.kset = slab_kset;
1eada11c
GKH
5145 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5146 if (err) {
5147 kobject_put(&s->kobj);
81819f0f 5148 return err;
1eada11c 5149 }
81819f0f
CL
5150
5151 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5152 if (err) {
5153 kobject_del(&s->kobj);
5154 kobject_put(&s->kobj);
81819f0f 5155 return err;
5788d8ad 5156 }
81819f0f
CL
5157 kobject_uevent(&s->kobj, KOBJ_ADD);
5158 if (!unmergeable) {
5159 /* Setup first alias */
5160 sysfs_slab_alias(s, s->name);
5161 kfree(name);
5162 }
5163 return 0;
5164}
5165
5166static void sysfs_slab_remove(struct kmem_cache *s)
5167{
97d06609 5168 if (slab_state < FULL)
2bce6485
CL
5169 /*
5170 * Sysfs has not been setup yet so no need to remove the
5171 * cache from sysfs.
5172 */
5173 return;
5174
81819f0f
CL
5175 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5176 kobject_del(&s->kobj);
151c602f 5177 kobject_put(&s->kobj);
81819f0f
CL
5178}
5179
5180/*
5181 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5182 * available lest we lose that information.
81819f0f
CL
5183 */
5184struct saved_alias {
5185 struct kmem_cache *s;
5186 const char *name;
5187 struct saved_alias *next;
5188};
5189
5af328a5 5190static struct saved_alias *alias_list;
81819f0f
CL
5191
5192static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5193{
5194 struct saved_alias *al;
5195
97d06609 5196 if (slab_state == FULL) {
81819f0f
CL
5197 /*
5198 * If we have a leftover link then remove it.
5199 */
27c3a314
GKH
5200 sysfs_remove_link(&slab_kset->kobj, name);
5201 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5202 }
5203
5204 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5205 if (!al)
5206 return -ENOMEM;
5207
5208 al->s = s;
5209 al->name = name;
5210 al->next = alias_list;
5211 alias_list = al;
5212 return 0;
5213}
5214
5215static int __init slab_sysfs_init(void)
5216{
5b95a4ac 5217 struct kmem_cache *s;
81819f0f
CL
5218 int err;
5219
18004c5d 5220 mutex_lock(&slab_mutex);
2bce6485 5221
0ff21e46 5222 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5223 if (!slab_kset) {
18004c5d 5224 mutex_unlock(&slab_mutex);
81819f0f
CL
5225 printk(KERN_ERR "Cannot register slab subsystem.\n");
5226 return -ENOSYS;
5227 }
5228
97d06609 5229 slab_state = FULL;
26a7bd03 5230
5b95a4ac 5231 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5232 err = sysfs_slab_add(s);
5d540fb7
CL
5233 if (err)
5234 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5235 " to sysfs\n", s->name);
26a7bd03 5236 }
81819f0f
CL
5237
5238 while (alias_list) {
5239 struct saved_alias *al = alias_list;
5240
5241 alias_list = alias_list->next;
5242 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5243 if (err)
5244 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5245 " %s to sysfs\n", al->name);
81819f0f
CL
5246 kfree(al);
5247 }
5248
18004c5d 5249 mutex_unlock(&slab_mutex);
81819f0f
CL
5250 resiliency_test();
5251 return 0;
5252}
5253
5254__initcall(slab_sysfs_init);
ab4d5ed5 5255#endif /* CONFIG_SYSFS */
57ed3eda
PE
5256
5257/*
5258 * The /proc/slabinfo ABI
5259 */
158a9624 5260#ifdef CONFIG_SLABINFO
0d7561c6 5261void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda
PE
5262{
5263 unsigned long nr_partials = 0;
5264 unsigned long nr_slabs = 0;
205ab99d
CL
5265 unsigned long nr_objs = 0;
5266 unsigned long nr_free = 0;
57ed3eda
PE
5267 int node;
5268
57ed3eda
PE
5269 for_each_online_node(node) {
5270 struct kmem_cache_node *n = get_node(s, node);
5271
5272 if (!n)
5273 continue;
5274
5275 nr_partials += n->nr_partial;
5276 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5277 nr_objs += atomic_long_read(&n->total_objects);
5278 nr_free += count_partial(n, count_free);
57ed3eda
PE
5279 }
5280
0d7561c6
GC
5281 sinfo->active_objs = nr_objs - nr_free;
5282 sinfo->num_objs = nr_objs;
5283 sinfo->active_slabs = nr_slabs;
5284 sinfo->num_slabs = nr_slabs;
5285 sinfo->objects_per_slab = oo_objects(s->oo);
5286 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5287}
5288
0d7561c6 5289void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5290{
7b3c3a50
AD
5291}
5292
b7454ad3
GC
5293ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5294 size_t count, loff_t *ppos)
7b3c3a50 5295{
b7454ad3 5296 return -EIO;
7b3c3a50 5297}
158a9624 5298#endif /* CONFIG_SLABINFO */