]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
cpuset: simplify cpuset_node_allowed API
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 203static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 204#else
0c710013
CL
205static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
107dab5c 208static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
209#endif
210
4fdccdfb 211static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
212{
213#ifdef CONFIG_SLUB_STATS
88da03a6
CL
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
6446faa2 226/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
227static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229{
230 void *base;
231
a973e9dd 232 if (!object)
02cbc874
CL
233 return 1;
234
a973e9dd 235 base = page_address(page);
39b26464 236 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242}
243
7656c72b
CL
244static inline void *get_freepointer(struct kmem_cache *s, void *object)
245{
246 return *(void **)(object + s->offset);
247}
248
0ad9500e
ED
249static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250{
251 prefetch(object + s->offset);
252}
253
1393d9a1
CL
254static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255{
256 void *p;
257
258#ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260#else
261 p = get_freepointer(s, object);
262#endif
263 return p;
264}
265
7656c72b
CL
266static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267{
268 *(void **)(object + s->offset) = fp;
269}
270
271/* Loop over all objects in a slab */
224a88be
CL
272#define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
274 __p += (__s)->size)
275
54266640
WY
276#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
a0320865
DH
348static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349{
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
a0320865 384 set_page_slub_counters(page, counters_new);
1d07171c
CL
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
398 return 0;
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
a0320865 423 set_page_slub_counters(page, counters_new);
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 return 1;
427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
439 return 0;
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
41ecc55b
CL
458/*
459 * Debug settings:
460 */
f0630fff
CL
461#ifdef CONFIG_SLUB_DEBUG_ON
462static int slub_debug = DEBUG_DEFAULT_FLAGS;
463#else
41ecc55b 464static int slub_debug;
f0630fff 465#endif
41ecc55b
CL
466
467static char *slub_debug_slabs;
fa5ec8a1 468static int disable_higher_order_debug;
41ecc55b 469
81819f0f
CL
470/*
471 * Object debugging
472 */
473static void print_section(char *text, u8 *addr, unsigned int length)
474{
ffc79d28
SAS
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
81819f0f
CL
477}
478
81819f0f
CL
479static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481{
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490}
491
492static void set_track(struct kmem_cache *s, void *object,
ce71e27c 493 enum track_item alloc, unsigned long addr)
81819f0f 494{
1a00df4a 495 struct track *p = get_track(s, object, alloc);
81819f0f 496
81819f0f 497 if (addr) {
d6543e39
BG
498#ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515#endif
81819f0f
CL
516 p->addr = addr;
517 p->cpu = smp_processor_id();
88e4ccf2 518 p->pid = current->pid;
81819f0f
CL
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522}
523
81819f0f
CL
524static void init_tracking(struct kmem_cache *s, void *object)
525{
24922684
CL
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
ce71e27c
EGM
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
531}
532
533static void print_track(const char *s, struct track *t)
534{
535 if (!t->addr)
536 return;
537
f9f58285
FF
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
540#ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
f9f58285 545 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
546 else
547 break;
548 }
549#endif
24922684
CL
550}
551
552static void print_tracking(struct kmem_cache *s, void *object)
553{
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559}
560
561static void print_page_info(struct page *page)
562{
f9f58285 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 564 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
565
566}
567
568static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569{
ecc42fbe 570 struct va_format vaf;
24922684 571 va_list args;
24922684
CL
572
573 va_start(args, fmt);
ecc42fbe
FF
574 vaf.fmt = fmt;
575 vaf.va = &args;
f9f58285 576 pr_err("=============================================================================\n");
ecc42fbe 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 578 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 579
373d4d09 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 581 va_end(args);
81819f0f
CL
582}
583
24922684
CL
584static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585{
ecc42fbe 586 struct va_format vaf;
24922684 587 va_list args;
24922684
CL
588
589 va_start(args, fmt);
ecc42fbe
FF
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 593 va_end(args);
24922684
CL
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
f9f58285
FF
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
24922684
CL
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
3b0efdfa 611 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
81819f0f 616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
d0e0ac97
CG
639static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
f9f58285 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
3adbefee 801 }
81819f0f
CL
802 }
803
804 if (s->flags & SLAB_POISON) {
f7cb1933 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 806 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 807 POISON_FREE, s->object_size - 1) ||
24922684 808 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 809 p + s->object_size - 1, POISON_END, 1)))
81819f0f 810 return 0;
81819f0f
CL
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
f7cb1933 817 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
9f6c708e 828 * No choice but to zap it and thus lose the remainder
81819f0f 829 * of the free objects in this slab. May cause
672bba3a 830 * another error because the object count is now wrong.
81819f0f 831 */
a973e9dd 832 set_freepointer(s, p, NULL);
81819f0f
CL
833 return 0;
834 }
835 return 1;
836}
837
838static int check_slab(struct kmem_cache *s, struct page *page)
839{
39b26464
CL
840 int maxobj;
841
81819f0f
CL
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
24922684 845 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
846 return 0;
847 }
39b26464 848
ab9a0f19 849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
852 s->name, page->objects, maxobj);
853 return 0;
854 }
855 if (page->inuse > page->objects) {
24922684 856 slab_err(s, page, "inuse %u > max %u",
39b26464 857 s->name, page->inuse, page->objects);
81819f0f
CL
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863}
864
865/*
672bba3a
CL
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
868 */
869static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870{
871 int nr = 0;
881db7fb 872 void *fp;
81819f0f 873 void *object = NULL;
224a88be 874 unsigned long max_objects;
81819f0f 875
881db7fb 876 fp = page->freelist;
39b26464 877 while (fp && nr <= page->objects) {
81819f0f
CL
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
a973e9dd 884 set_freepointer(s, object, NULL);
81819f0f 885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
f9f58285 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
d0e0ac97
CG
929 print_section("Object ", (void *)object,
930 s->object_size);
3ec09742
CL
931
932 dump_stack();
933 }
934}
935
643b1138 936/*
672bba3a 937 * Tracking of fully allocated slabs for debugging purposes.
643b1138 938 */
5cc6eee8
CL
939static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
643b1138 941{
5cc6eee8
CL
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
255d0884 945 lockdep_assert_held(&n->list_lock);
643b1138 946 list_add(&page->lru, &n->full);
643b1138
CL
947}
948
c65c1877 949static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
255d0884 954 lockdep_assert_held(&n->list_lock);
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
338b2642 981 if (likely(n)) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
d0e0ac97
CG
1005static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
ce71e27c 1007 void *object, unsigned long addr)
81819f0f
CL
1008{
1009 if (!check_slab(s, page))
1010 goto bad;
1011
81819f0f
CL
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1014 goto bad;
81819f0f
CL
1015 }
1016
f7cb1933 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1018 goto bad;
81819f0f 1019
3ec09742
CL
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
f7cb1933 1024 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1025 return 1;
3ec09742 1026
81819f0f
CL
1027bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
672bba3a 1032 * as used avoids touching the remaining objects.
81819f0f 1033 */
24922684 1034 slab_fix(s, "Marking all objects used");
39b26464 1035 page->inuse = page->objects;
a973e9dd 1036 page->freelist = NULL;
81819f0f
CL
1037 }
1038 return 0;
1039}
1040
19c7ff9e
CL
1041static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
81819f0f 1044{
19c7ff9e 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1046
19c7ff9e 1047 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1048 slab_lock(page);
1049
81819f0f
CL
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
70d71228 1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
24922684 1059 object_err(s, page, object, "Object already free");
81819f0f
CL
1060 goto fail;
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1064 goto out;
81819f0f 1065
1b4f59e3 1066 if (unlikely(s != page->slab_cache)) {
3adbefee 1067 if (!PageSlab(page)) {
70d71228
CL
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1b4f59e3 1070 } else if (!page->slab_cache) {
f9f58285
FF
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1084out:
881db7fb 1085 slab_unlock(page);
19c7ff9e
CL
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
3ec09742 1091
81819f0f 1092fail:
19c7ff9e
CL
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1095 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1096 return NULL;
81819f0f
CL
1097}
1098
41ecc55b
CL
1099static int __init setup_slub_debug(char *str)
1100{
f0630fff
CL
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
fa5ec8a1
DR
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
f0630fff
CL
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
06428780 1134 for (; *str && *str != ','; str++) {
f0630fff
CL
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
4c13dd3b
DM
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
f0630fff 1154 default:
f9f58285
FF
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
f0630fff 1157 }
41ecc55b
CL
1158 }
1159
f0630fff 1160check_slabs:
41ecc55b
CL
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
f0630fff 1163out:
41ecc55b
CL
1164 return 1;
1165}
1166
1167__setup("slub_debug", setup_slub_debug);
1168
423c929c 1169unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1170 unsigned long flags, const char *name,
51cc5068 1171 void (*ctor)(void *))
41ecc55b
CL
1172{
1173 /*
e153362a 1174 * Enable debugging if selected on the kernel commandline.
41ecc55b 1175 */
c6f58d9b
CL
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1178 flags |= slub_debug;
ba0268a8
CL
1179
1180 return flags;
41ecc55b
CL
1181}
1182#else
3ec09742
CL
1183static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
41ecc55b 1185
3ec09742 1186static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1187 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1188
19c7ff9e
CL
1189static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1192
41ecc55b
CL
1193static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1196 void *object, u8 val) { return 1; }
5cc6eee8
CL
1197static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
c65c1877
PZ
1199static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
423c929c 1201unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
ba0268a8
CL
1204{
1205 return flags;
1206}
41ecc55b 1207#define slub_debug 0
0f389ec6 1208
fdaa45e9
IM
1209#define disable_higher_order_debug 0
1210
0f389ec6
CL
1211static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
26c02cf0
AB
1213static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
205ab99d
CL
1215static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
7d550c56 1219
02e72cc6
AR
1220#endif /* CONFIG_SLUB_DEBUG */
1221
1222/*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
d56791b3
RB
1226static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227{
1228 kmemleak_alloc(ptr, size, 1, flags);
1229}
1230
1231static inline void kfree_hook(const void *x)
1232{
1233 kmemleak_free(x);
1234}
1235
7d550c56 1236static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
02e72cc6
AR
1237{
1238 flags &= gfp_allowed_mask;
1239 lockdep_trace_alloc(flags);
1240 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1241
02e72cc6
AR
1242 return should_failslab(s->object_size, flags, s->flags);
1243}
1244
1245static inline void slab_post_alloc_hook(struct kmem_cache *s,
1246 gfp_t flags, void *object)
d56791b3 1247{
02e72cc6
AR
1248 flags &= gfp_allowed_mask;
1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
d56791b3 1251}
7d550c56 1252
d56791b3
RB
1253static inline void slab_free_hook(struct kmem_cache *s, void *x)
1254{
1255 kmemleak_free_recursive(x, s->flags);
7d550c56 1256
02e72cc6
AR
1257 /*
1258 * Trouble is that we may no longer disable interrupts in the fast path
1259 * So in order to make the debug calls that expect irqs to be
1260 * disabled we need to disable interrupts temporarily.
1261 */
1262#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1263 {
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267 kmemcheck_slab_free(s, x, s->object_size);
1268 debug_check_no_locks_freed(x, s->object_size);
1269 local_irq_restore(flags);
1270 }
1271#endif
1272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1273 debug_check_no_obj_freed(x, s->object_size);
1274}
205ab99d 1275
81819f0f
CL
1276/*
1277 * Slab allocation and freeing
1278 */
5dfb4175
VD
1279static inline struct page *alloc_slab_page(struct kmem_cache *s,
1280 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1281{
5dfb4175 1282 struct page *page;
65c3376a
CL
1283 int order = oo_order(oo);
1284
b1eeab67
VN
1285 flags |= __GFP_NOTRACK;
1286
5dfb4175
VD
1287 if (memcg_charge_slab(s, flags, order))
1288 return NULL;
1289
2154a336 1290 if (node == NUMA_NO_NODE)
5dfb4175 1291 page = alloc_pages(flags, order);
65c3376a 1292 else
5dfb4175
VD
1293 page = alloc_pages_exact_node(node, flags, order);
1294
1295 if (!page)
1296 memcg_uncharge_slab(s, order);
1297
1298 return page;
65c3376a
CL
1299}
1300
81819f0f
CL
1301static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1302{
06428780 1303 struct page *page;
834f3d11 1304 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1305 gfp_t alloc_gfp;
81819f0f 1306
7e0528da
CL
1307 flags &= gfp_allowed_mask;
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_enable();
1311
b7a49f0d 1312 flags |= s->allocflags;
e12ba74d 1313
ba52270d
PE
1314 /*
1315 * Let the initial higher-order allocation fail under memory pressure
1316 * so we fall-back to the minimum order allocation.
1317 */
1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1319
5dfb4175 1320 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1321 if (unlikely(!page)) {
1322 oo = s->min;
80c3a998 1323 alloc_gfp = flags;
65c3376a
CL
1324 /*
1325 * Allocation may have failed due to fragmentation.
1326 * Try a lower order alloc if possible
1327 */
5dfb4175 1328 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1329
7e0528da
CL
1330 if (page)
1331 stat(s, ORDER_FALLBACK);
65c3376a 1332 }
5a896d9e 1333
737b719e 1334 if (kmemcheck_enabled && page
5086c389 1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1336 int pages = 1 << oo_order(oo);
1337
80c3a998 1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1339
1340 /*
1341 * Objects from caches that have a constructor don't get
1342 * cleared when they're allocated, so we need to do it here.
1343 */
1344 if (s->ctor)
1345 kmemcheck_mark_uninitialized_pages(page, pages);
1346 else
1347 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1348 }
1349
737b719e
DR
1350 if (flags & __GFP_WAIT)
1351 local_irq_disable();
1352 if (!page)
1353 return NULL;
1354
834f3d11 1355 page->objects = oo_objects(oo);
81819f0f
CL
1356 mod_zone_page_state(page_zone(page),
1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1359 1 << oo_order(oo));
81819f0f
CL
1360
1361 return page;
1362}
1363
1364static void setup_object(struct kmem_cache *s, struct page *page,
1365 void *object)
1366{
3ec09742 1367 setup_object_debug(s, page, object);
4f104934 1368 if (unlikely(s->ctor))
51cc5068 1369 s->ctor(object);
81819f0f
CL
1370}
1371
1372static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1373{
1374 struct page *page;
81819f0f 1375 void *start;
81819f0f 1376 void *p;
1f458cbf 1377 int order;
54266640 1378 int idx;
81819f0f 1379
6cb06229 1380 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1381
6cb06229
CL
1382 page = allocate_slab(s,
1383 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1384 if (!page)
1385 goto out;
1386
1f458cbf 1387 order = compound_order(page);
205ab99d 1388 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1389 page->slab_cache = s;
c03f94cc 1390 __SetPageSlab(page);
072bb0aa
MG
1391 if (page->pfmemalloc)
1392 SetPageSlabPfmemalloc(page);
81819f0f
CL
1393
1394 start = page_address(page);
81819f0f
CL
1395
1396 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1397 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1398
54266640
WY
1399 for_each_object_idx(p, idx, s, start, page->objects) {
1400 setup_object(s, page, p);
1401 if (likely(idx < page->objects))
1402 set_freepointer(s, p, p + s->size);
1403 else
1404 set_freepointer(s, p, NULL);
81819f0f 1405 }
81819f0f
CL
1406
1407 page->freelist = start;
e6e82ea1 1408 page->inuse = page->objects;
8cb0a506 1409 page->frozen = 1;
81819f0f 1410out:
81819f0f
CL
1411 return page;
1412}
1413
1414static void __free_slab(struct kmem_cache *s, struct page *page)
1415{
834f3d11
CL
1416 int order = compound_order(page);
1417 int pages = 1 << order;
81819f0f 1418
af537b0a 1419 if (kmem_cache_debug(s)) {
81819f0f
CL
1420 void *p;
1421
1422 slab_pad_check(s, page);
224a88be
CL
1423 for_each_object(p, s, page_address(page),
1424 page->objects)
f7cb1933 1425 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1426 }
1427
b1eeab67 1428 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1429
81819f0f
CL
1430 mod_zone_page_state(page_zone(page),
1431 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1432 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1433 -pages);
81819f0f 1434
072bb0aa 1435 __ClearPageSlabPfmemalloc(page);
49bd5221 1436 __ClearPageSlab(page);
1f458cbf 1437
22b751c3 1438 page_mapcount_reset(page);
1eb5ac64
NP
1439 if (current->reclaim_state)
1440 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1441 __free_pages(page, order);
1442 memcg_uncharge_slab(s, order);
81819f0f
CL
1443}
1444
da9a638c
LJ
1445#define need_reserve_slab_rcu \
1446 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1447
81819f0f
CL
1448static void rcu_free_slab(struct rcu_head *h)
1449{
1450 struct page *page;
1451
da9a638c
LJ
1452 if (need_reserve_slab_rcu)
1453 page = virt_to_head_page(h);
1454 else
1455 page = container_of((struct list_head *)h, struct page, lru);
1456
1b4f59e3 1457 __free_slab(page->slab_cache, page);
81819f0f
CL
1458}
1459
1460static void free_slab(struct kmem_cache *s, struct page *page)
1461{
1462 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1463 struct rcu_head *head;
1464
1465 if (need_reserve_slab_rcu) {
1466 int order = compound_order(page);
1467 int offset = (PAGE_SIZE << order) - s->reserved;
1468
1469 VM_BUG_ON(s->reserved != sizeof(*head));
1470 head = page_address(page) + offset;
1471 } else {
1472 /*
1473 * RCU free overloads the RCU head over the LRU
1474 */
1475 head = (void *)&page->lru;
1476 }
81819f0f
CL
1477
1478 call_rcu(head, rcu_free_slab);
1479 } else
1480 __free_slab(s, page);
1481}
1482
1483static void discard_slab(struct kmem_cache *s, struct page *page)
1484{
205ab99d 1485 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1486 free_slab(s, page);
1487}
1488
1489/*
5cc6eee8 1490 * Management of partially allocated slabs.
81819f0f 1491 */
1e4dd946
SR
1492static inline void
1493__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1494{
e95eed57 1495 n->nr_partial++;
136333d1 1496 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1497 list_add_tail(&page->lru, &n->partial);
1498 else
1499 list_add(&page->lru, &n->partial);
81819f0f
CL
1500}
1501
1e4dd946
SR
1502static inline void add_partial(struct kmem_cache_node *n,
1503 struct page *page, int tail)
62e346a8 1504{
c65c1877 1505 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1506 __add_partial(n, page, tail);
1507}
c65c1877 1508
1e4dd946
SR
1509static inline void
1510__remove_partial(struct kmem_cache_node *n, struct page *page)
1511{
62e346a8
CL
1512 list_del(&page->lru);
1513 n->nr_partial--;
1514}
1515
1e4dd946
SR
1516static inline void remove_partial(struct kmem_cache_node *n,
1517 struct page *page)
1518{
1519 lockdep_assert_held(&n->list_lock);
1520 __remove_partial(n, page);
1521}
1522
81819f0f 1523/*
7ced3719
CL
1524 * Remove slab from the partial list, freeze it and
1525 * return the pointer to the freelist.
81819f0f 1526 *
497b66f2 1527 * Returns a list of objects or NULL if it fails.
81819f0f 1528 */
497b66f2 1529static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1530 struct kmem_cache_node *n, struct page *page,
633b0764 1531 int mode, int *objects)
81819f0f 1532{
2cfb7455
CL
1533 void *freelist;
1534 unsigned long counters;
1535 struct page new;
1536
c65c1877
PZ
1537 lockdep_assert_held(&n->list_lock);
1538
2cfb7455
CL
1539 /*
1540 * Zap the freelist and set the frozen bit.
1541 * The old freelist is the list of objects for the
1542 * per cpu allocation list.
1543 */
7ced3719
CL
1544 freelist = page->freelist;
1545 counters = page->counters;
1546 new.counters = counters;
633b0764 1547 *objects = new.objects - new.inuse;
23910c50 1548 if (mode) {
7ced3719 1549 new.inuse = page->objects;
23910c50
PE
1550 new.freelist = NULL;
1551 } else {
1552 new.freelist = freelist;
1553 }
2cfb7455 1554
a0132ac0 1555 VM_BUG_ON(new.frozen);
7ced3719 1556 new.frozen = 1;
2cfb7455 1557
7ced3719 1558 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1559 freelist, counters,
02d7633f 1560 new.freelist, new.counters,
7ced3719 1561 "acquire_slab"))
7ced3719 1562 return NULL;
2cfb7455
CL
1563
1564 remove_partial(n, page);
7ced3719 1565 WARN_ON(!freelist);
49e22585 1566 return freelist;
81819f0f
CL
1567}
1568
633b0764 1569static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1570static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1571
81819f0f 1572/*
672bba3a 1573 * Try to allocate a partial slab from a specific node.
81819f0f 1574 */
8ba00bb6
JK
1575static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1576 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1577{
49e22585
CL
1578 struct page *page, *page2;
1579 void *object = NULL;
633b0764
JK
1580 int available = 0;
1581 int objects;
81819f0f
CL
1582
1583 /*
1584 * Racy check. If we mistakenly see no partial slabs then we
1585 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1586 * partial slab and there is none available then get_partials()
1587 * will return NULL.
81819f0f
CL
1588 */
1589 if (!n || !n->nr_partial)
1590 return NULL;
1591
1592 spin_lock(&n->list_lock);
49e22585 1593 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1594 void *t;
49e22585 1595
8ba00bb6
JK
1596 if (!pfmemalloc_match(page, flags))
1597 continue;
1598
633b0764 1599 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1600 if (!t)
1601 break;
1602
633b0764 1603 available += objects;
12d79634 1604 if (!object) {
49e22585 1605 c->page = page;
49e22585 1606 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1607 object = t;
49e22585 1608 } else {
633b0764 1609 put_cpu_partial(s, page, 0);
8028dcea 1610 stat(s, CPU_PARTIAL_NODE);
49e22585 1611 }
345c905d
JK
1612 if (!kmem_cache_has_cpu_partial(s)
1613 || available > s->cpu_partial / 2)
49e22585
CL
1614 break;
1615
497b66f2 1616 }
81819f0f 1617 spin_unlock(&n->list_lock);
497b66f2 1618 return object;
81819f0f
CL
1619}
1620
1621/*
672bba3a 1622 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1623 */
de3ec035 1624static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1625 struct kmem_cache_cpu *c)
81819f0f
CL
1626{
1627#ifdef CONFIG_NUMA
1628 struct zonelist *zonelist;
dd1a239f 1629 struct zoneref *z;
54a6eb5c
MG
1630 struct zone *zone;
1631 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1632 void *object;
cc9a6c87 1633 unsigned int cpuset_mems_cookie;
81819f0f
CL
1634
1635 /*
672bba3a
CL
1636 * The defrag ratio allows a configuration of the tradeoffs between
1637 * inter node defragmentation and node local allocations. A lower
1638 * defrag_ratio increases the tendency to do local allocations
1639 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1640 *
672bba3a
CL
1641 * If the defrag_ratio is set to 0 then kmalloc() always
1642 * returns node local objects. If the ratio is higher then kmalloc()
1643 * may return off node objects because partial slabs are obtained
1644 * from other nodes and filled up.
81819f0f 1645 *
6446faa2 1646 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1647 * defrag_ratio = 1000) then every (well almost) allocation will
1648 * first attempt to defrag slab caches on other nodes. This means
1649 * scanning over all nodes to look for partial slabs which may be
1650 * expensive if we do it every time we are trying to find a slab
1651 * with available objects.
81819f0f 1652 */
9824601e
CL
1653 if (!s->remote_node_defrag_ratio ||
1654 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1655 return NULL;
1656
cc9a6c87 1657 do {
d26914d1 1658 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1659 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1660 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1661 struct kmem_cache_node *n;
1662
1663 n = get_node(s, zone_to_nid(zone));
1664
344736f2
VD
1665 if (n && cpuset_zone_allowed(zone,
1666 flags | __GFP_HARDWALL) &&
cc9a6c87 1667 n->nr_partial > s->min_partial) {
8ba00bb6 1668 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1669 if (object) {
1670 /*
d26914d1
MG
1671 * Don't check read_mems_allowed_retry()
1672 * here - if mems_allowed was updated in
1673 * parallel, that was a harmless race
1674 * between allocation and the cpuset
1675 * update
cc9a6c87 1676 */
cc9a6c87
MG
1677 return object;
1678 }
c0ff7453 1679 }
81819f0f 1680 }
d26914d1 1681 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1682#endif
1683 return NULL;
1684}
1685
1686/*
1687 * Get a partial page, lock it and return it.
1688 */
497b66f2 1689static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1690 struct kmem_cache_cpu *c)
81819f0f 1691{
497b66f2 1692 void *object;
a561ce00
JK
1693 int searchnode = node;
1694
1695 if (node == NUMA_NO_NODE)
1696 searchnode = numa_mem_id();
1697 else if (!node_present_pages(node))
1698 searchnode = node_to_mem_node(node);
81819f0f 1699
8ba00bb6 1700 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1701 if (object || node != NUMA_NO_NODE)
1702 return object;
81819f0f 1703
acd19fd1 1704 return get_any_partial(s, flags, c);
81819f0f
CL
1705}
1706
8a5ec0ba
CL
1707#ifdef CONFIG_PREEMPT
1708/*
1709 * Calculate the next globally unique transaction for disambiguiation
1710 * during cmpxchg. The transactions start with the cpu number and are then
1711 * incremented by CONFIG_NR_CPUS.
1712 */
1713#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1714#else
1715/*
1716 * No preemption supported therefore also no need to check for
1717 * different cpus.
1718 */
1719#define TID_STEP 1
1720#endif
1721
1722static inline unsigned long next_tid(unsigned long tid)
1723{
1724 return tid + TID_STEP;
1725}
1726
1727static inline unsigned int tid_to_cpu(unsigned long tid)
1728{
1729 return tid % TID_STEP;
1730}
1731
1732static inline unsigned long tid_to_event(unsigned long tid)
1733{
1734 return tid / TID_STEP;
1735}
1736
1737static inline unsigned int init_tid(int cpu)
1738{
1739 return cpu;
1740}
1741
1742static inline void note_cmpxchg_failure(const char *n,
1743 const struct kmem_cache *s, unsigned long tid)
1744{
1745#ifdef SLUB_DEBUG_CMPXCHG
1746 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1747
f9f58285 1748 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1749
1750#ifdef CONFIG_PREEMPT
1751 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1752 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1753 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1754 else
1755#endif
1756 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1757 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1758 tid_to_event(tid), tid_to_event(actual_tid));
1759 else
f9f58285 1760 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1761 actual_tid, tid, next_tid(tid));
1762#endif
4fdccdfb 1763 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1764}
1765
788e1aad 1766static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1767{
8a5ec0ba
CL
1768 int cpu;
1769
1770 for_each_possible_cpu(cpu)
1771 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1772}
2cfb7455 1773
81819f0f
CL
1774/*
1775 * Remove the cpu slab
1776 */
d0e0ac97
CG
1777static void deactivate_slab(struct kmem_cache *s, struct page *page,
1778 void *freelist)
81819f0f 1779{
2cfb7455 1780 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1781 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1782 int lock = 0;
1783 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1784 void *nextfree;
136333d1 1785 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1786 struct page new;
1787 struct page old;
1788
1789 if (page->freelist) {
84e554e6 1790 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1791 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1792 }
1793
894b8788 1794 /*
2cfb7455
CL
1795 * Stage one: Free all available per cpu objects back
1796 * to the page freelist while it is still frozen. Leave the
1797 * last one.
1798 *
1799 * There is no need to take the list->lock because the page
1800 * is still frozen.
1801 */
1802 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1803 void *prior;
1804 unsigned long counters;
1805
1806 do {
1807 prior = page->freelist;
1808 counters = page->counters;
1809 set_freepointer(s, freelist, prior);
1810 new.counters = counters;
1811 new.inuse--;
a0132ac0 1812 VM_BUG_ON(!new.frozen);
2cfb7455 1813
1d07171c 1814 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1815 prior, counters,
1816 freelist, new.counters,
1817 "drain percpu freelist"));
1818
1819 freelist = nextfree;
1820 }
1821
894b8788 1822 /*
2cfb7455
CL
1823 * Stage two: Ensure that the page is unfrozen while the
1824 * list presence reflects the actual number of objects
1825 * during unfreeze.
1826 *
1827 * We setup the list membership and then perform a cmpxchg
1828 * with the count. If there is a mismatch then the page
1829 * is not unfrozen but the page is on the wrong list.
1830 *
1831 * Then we restart the process which may have to remove
1832 * the page from the list that we just put it on again
1833 * because the number of objects in the slab may have
1834 * changed.
894b8788 1835 */
2cfb7455 1836redo:
894b8788 1837
2cfb7455
CL
1838 old.freelist = page->freelist;
1839 old.counters = page->counters;
a0132ac0 1840 VM_BUG_ON(!old.frozen);
7c2e132c 1841
2cfb7455
CL
1842 /* Determine target state of the slab */
1843 new.counters = old.counters;
1844 if (freelist) {
1845 new.inuse--;
1846 set_freepointer(s, freelist, old.freelist);
1847 new.freelist = freelist;
1848 } else
1849 new.freelist = old.freelist;
1850
1851 new.frozen = 0;
1852
8a5b20ae 1853 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1854 m = M_FREE;
1855 else if (new.freelist) {
1856 m = M_PARTIAL;
1857 if (!lock) {
1858 lock = 1;
1859 /*
1860 * Taking the spinlock removes the possiblity
1861 * that acquire_slab() will see a slab page that
1862 * is frozen
1863 */
1864 spin_lock(&n->list_lock);
1865 }
1866 } else {
1867 m = M_FULL;
1868 if (kmem_cache_debug(s) && !lock) {
1869 lock = 1;
1870 /*
1871 * This also ensures that the scanning of full
1872 * slabs from diagnostic functions will not see
1873 * any frozen slabs.
1874 */
1875 spin_lock(&n->list_lock);
1876 }
1877 }
1878
1879 if (l != m) {
1880
1881 if (l == M_PARTIAL)
1882
1883 remove_partial(n, page);
1884
1885 else if (l == M_FULL)
894b8788 1886
c65c1877 1887 remove_full(s, n, page);
2cfb7455
CL
1888
1889 if (m == M_PARTIAL) {
1890
1891 add_partial(n, page, tail);
136333d1 1892 stat(s, tail);
2cfb7455
CL
1893
1894 } else if (m == M_FULL) {
894b8788 1895
2cfb7455
CL
1896 stat(s, DEACTIVATE_FULL);
1897 add_full(s, n, page);
1898
1899 }
1900 }
1901
1902 l = m;
1d07171c 1903 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1904 old.freelist, old.counters,
1905 new.freelist, new.counters,
1906 "unfreezing slab"))
1907 goto redo;
1908
2cfb7455
CL
1909 if (lock)
1910 spin_unlock(&n->list_lock);
1911
1912 if (m == M_FREE) {
1913 stat(s, DEACTIVATE_EMPTY);
1914 discard_slab(s, page);
1915 stat(s, FREE_SLAB);
894b8788 1916 }
81819f0f
CL
1917}
1918
d24ac77f
JK
1919/*
1920 * Unfreeze all the cpu partial slabs.
1921 *
59a09917
CL
1922 * This function must be called with interrupts disabled
1923 * for the cpu using c (or some other guarantee must be there
1924 * to guarantee no concurrent accesses).
d24ac77f 1925 */
59a09917
CL
1926static void unfreeze_partials(struct kmem_cache *s,
1927 struct kmem_cache_cpu *c)
49e22585 1928{
345c905d 1929#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1930 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1931 struct page *page, *discard_page = NULL;
49e22585
CL
1932
1933 while ((page = c->partial)) {
49e22585
CL
1934 struct page new;
1935 struct page old;
1936
1937 c->partial = page->next;
43d77867
JK
1938
1939 n2 = get_node(s, page_to_nid(page));
1940 if (n != n2) {
1941 if (n)
1942 spin_unlock(&n->list_lock);
1943
1944 n = n2;
1945 spin_lock(&n->list_lock);
1946 }
49e22585
CL
1947
1948 do {
1949
1950 old.freelist = page->freelist;
1951 old.counters = page->counters;
a0132ac0 1952 VM_BUG_ON(!old.frozen);
49e22585
CL
1953
1954 new.counters = old.counters;
1955 new.freelist = old.freelist;
1956
1957 new.frozen = 0;
1958
d24ac77f 1959 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1960 old.freelist, old.counters,
1961 new.freelist, new.counters,
1962 "unfreezing slab"));
1963
8a5b20ae 1964 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1965 page->next = discard_page;
1966 discard_page = page;
43d77867
JK
1967 } else {
1968 add_partial(n, page, DEACTIVATE_TO_TAIL);
1969 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1970 }
1971 }
1972
1973 if (n)
1974 spin_unlock(&n->list_lock);
9ada1934
SL
1975
1976 while (discard_page) {
1977 page = discard_page;
1978 discard_page = discard_page->next;
1979
1980 stat(s, DEACTIVATE_EMPTY);
1981 discard_slab(s, page);
1982 stat(s, FREE_SLAB);
1983 }
345c905d 1984#endif
49e22585
CL
1985}
1986
1987/*
1988 * Put a page that was just frozen (in __slab_free) into a partial page
1989 * slot if available. This is done without interrupts disabled and without
1990 * preemption disabled. The cmpxchg is racy and may put the partial page
1991 * onto a random cpus partial slot.
1992 *
1993 * If we did not find a slot then simply move all the partials to the
1994 * per node partial list.
1995 */
633b0764 1996static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 1997{
345c905d 1998#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
1999 struct page *oldpage;
2000 int pages;
2001 int pobjects;
2002
2003 do {
2004 pages = 0;
2005 pobjects = 0;
2006 oldpage = this_cpu_read(s->cpu_slab->partial);
2007
2008 if (oldpage) {
2009 pobjects = oldpage->pobjects;
2010 pages = oldpage->pages;
2011 if (drain && pobjects > s->cpu_partial) {
2012 unsigned long flags;
2013 /*
2014 * partial array is full. Move the existing
2015 * set to the per node partial list.
2016 */
2017 local_irq_save(flags);
59a09917 2018 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2019 local_irq_restore(flags);
e24fc410 2020 oldpage = NULL;
49e22585
CL
2021 pobjects = 0;
2022 pages = 0;
8028dcea 2023 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2024 }
2025 }
2026
2027 pages++;
2028 pobjects += page->objects - page->inuse;
2029
2030 page->pages = pages;
2031 page->pobjects = pobjects;
2032 page->next = oldpage;
2033
d0e0ac97
CG
2034 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2035 != oldpage);
345c905d 2036#endif
49e22585
CL
2037}
2038
dfb4f096 2039static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2040{
84e554e6 2041 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2042 deactivate_slab(s, c->page, c->freelist);
2043
2044 c->tid = next_tid(c->tid);
2045 c->page = NULL;
2046 c->freelist = NULL;
81819f0f
CL
2047}
2048
2049/*
2050 * Flush cpu slab.
6446faa2 2051 *
81819f0f
CL
2052 * Called from IPI handler with interrupts disabled.
2053 */
0c710013 2054static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2055{
9dfc6e68 2056 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2057
49e22585
CL
2058 if (likely(c)) {
2059 if (c->page)
2060 flush_slab(s, c);
2061
59a09917 2062 unfreeze_partials(s, c);
49e22585 2063 }
81819f0f
CL
2064}
2065
2066static void flush_cpu_slab(void *d)
2067{
2068 struct kmem_cache *s = d;
81819f0f 2069
dfb4f096 2070 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2071}
2072
a8364d55
GBY
2073static bool has_cpu_slab(int cpu, void *info)
2074{
2075 struct kmem_cache *s = info;
2076 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2077
02e1a9cd 2078 return c->page || c->partial;
a8364d55
GBY
2079}
2080
81819f0f
CL
2081static void flush_all(struct kmem_cache *s)
2082{
a8364d55 2083 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2084}
2085
dfb4f096
CL
2086/*
2087 * Check if the objects in a per cpu structure fit numa
2088 * locality expectations.
2089 */
57d437d2 2090static inline int node_match(struct page *page, int node)
dfb4f096
CL
2091{
2092#ifdef CONFIG_NUMA
4d7868e6 2093 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2094 return 0;
2095#endif
2096 return 1;
2097}
2098
9a02d699 2099#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2100static int count_free(struct page *page)
2101{
2102 return page->objects - page->inuse;
2103}
2104
9a02d699
DR
2105static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2106{
2107 return atomic_long_read(&n->total_objects);
2108}
2109#endif /* CONFIG_SLUB_DEBUG */
2110
2111#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2112static unsigned long count_partial(struct kmem_cache_node *n,
2113 int (*get_count)(struct page *))
2114{
2115 unsigned long flags;
2116 unsigned long x = 0;
2117 struct page *page;
2118
2119 spin_lock_irqsave(&n->list_lock, flags);
2120 list_for_each_entry(page, &n->partial, lru)
2121 x += get_count(page);
2122 spin_unlock_irqrestore(&n->list_lock, flags);
2123 return x;
2124}
9a02d699 2125#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2126
781b2ba6
PE
2127static noinline void
2128slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2129{
9a02d699
DR
2130#ifdef CONFIG_SLUB_DEBUG
2131 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2132 DEFAULT_RATELIMIT_BURST);
781b2ba6 2133 int node;
fa45dc25 2134 struct kmem_cache_node *n;
781b2ba6 2135
9a02d699
DR
2136 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2137 return;
2138
f9f58285 2139 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2140 nid, gfpflags);
f9f58285
FF
2141 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2142 s->name, s->object_size, s->size, oo_order(s->oo),
2143 oo_order(s->min));
781b2ba6 2144
3b0efdfa 2145 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2146 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2147 s->name);
fa5ec8a1 2148
fa45dc25 2149 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2150 unsigned long nr_slabs;
2151 unsigned long nr_objs;
2152 unsigned long nr_free;
2153
26c02cf0
AB
2154 nr_free = count_partial(n, count_free);
2155 nr_slabs = node_nr_slabs(n);
2156 nr_objs = node_nr_objs(n);
781b2ba6 2157
f9f58285 2158 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2159 node, nr_slabs, nr_objs, nr_free);
2160 }
9a02d699 2161#endif
781b2ba6
PE
2162}
2163
497b66f2
CL
2164static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2165 int node, struct kmem_cache_cpu **pc)
2166{
6faa6833 2167 void *freelist;
188fd063
CL
2168 struct kmem_cache_cpu *c = *pc;
2169 struct page *page;
497b66f2 2170
188fd063 2171 freelist = get_partial(s, flags, node, c);
497b66f2 2172
188fd063
CL
2173 if (freelist)
2174 return freelist;
2175
2176 page = new_slab(s, flags, node);
497b66f2 2177 if (page) {
7c8e0181 2178 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2179 if (c->page)
2180 flush_slab(s, c);
2181
2182 /*
2183 * No other reference to the page yet so we can
2184 * muck around with it freely without cmpxchg
2185 */
6faa6833 2186 freelist = page->freelist;
497b66f2
CL
2187 page->freelist = NULL;
2188
2189 stat(s, ALLOC_SLAB);
497b66f2
CL
2190 c->page = page;
2191 *pc = c;
2192 } else
6faa6833 2193 freelist = NULL;
497b66f2 2194
6faa6833 2195 return freelist;
497b66f2
CL
2196}
2197
072bb0aa
MG
2198static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2199{
2200 if (unlikely(PageSlabPfmemalloc(page)))
2201 return gfp_pfmemalloc_allowed(gfpflags);
2202
2203 return true;
2204}
2205
213eeb9f 2206/*
d0e0ac97
CG
2207 * Check the page->freelist of a page and either transfer the freelist to the
2208 * per cpu freelist or deactivate the page.
213eeb9f
CL
2209 *
2210 * The page is still frozen if the return value is not NULL.
2211 *
2212 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2213 *
2214 * This function must be called with interrupt disabled.
213eeb9f
CL
2215 */
2216static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2217{
2218 struct page new;
2219 unsigned long counters;
2220 void *freelist;
2221
2222 do {
2223 freelist = page->freelist;
2224 counters = page->counters;
6faa6833 2225
213eeb9f 2226 new.counters = counters;
a0132ac0 2227 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2228
2229 new.inuse = page->objects;
2230 new.frozen = freelist != NULL;
2231
d24ac77f 2232 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2233 freelist, counters,
2234 NULL, new.counters,
2235 "get_freelist"));
2236
2237 return freelist;
2238}
2239
81819f0f 2240/*
894b8788
CL
2241 * Slow path. The lockless freelist is empty or we need to perform
2242 * debugging duties.
2243 *
894b8788
CL
2244 * Processing is still very fast if new objects have been freed to the
2245 * regular freelist. In that case we simply take over the regular freelist
2246 * as the lockless freelist and zap the regular freelist.
81819f0f 2247 *
894b8788
CL
2248 * If that is not working then we fall back to the partial lists. We take the
2249 * first element of the freelist as the object to allocate now and move the
2250 * rest of the freelist to the lockless freelist.
81819f0f 2251 *
894b8788 2252 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2253 * we need to allocate a new slab. This is the slowest path since it involves
2254 * a call to the page allocator and the setup of a new slab.
81819f0f 2255 */
ce71e27c
EGM
2256static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2257 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2258{
6faa6833 2259 void *freelist;
f6e7def7 2260 struct page *page;
8a5ec0ba
CL
2261 unsigned long flags;
2262
2263 local_irq_save(flags);
2264#ifdef CONFIG_PREEMPT
2265 /*
2266 * We may have been preempted and rescheduled on a different
2267 * cpu before disabling interrupts. Need to reload cpu area
2268 * pointer.
2269 */
2270 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2271#endif
81819f0f 2272
f6e7def7
CL
2273 page = c->page;
2274 if (!page)
81819f0f 2275 goto new_slab;
49e22585 2276redo:
6faa6833 2277
57d437d2 2278 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2279 int searchnode = node;
2280
2281 if (node != NUMA_NO_NODE && !node_present_pages(node))
2282 searchnode = node_to_mem_node(node);
2283
2284 if (unlikely(!node_match(page, searchnode))) {
2285 stat(s, ALLOC_NODE_MISMATCH);
2286 deactivate_slab(s, page, c->freelist);
2287 c->page = NULL;
2288 c->freelist = NULL;
2289 goto new_slab;
2290 }
fc59c053 2291 }
6446faa2 2292
072bb0aa
MG
2293 /*
2294 * By rights, we should be searching for a slab page that was
2295 * PFMEMALLOC but right now, we are losing the pfmemalloc
2296 * information when the page leaves the per-cpu allocator
2297 */
2298 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2299 deactivate_slab(s, page, c->freelist);
2300 c->page = NULL;
2301 c->freelist = NULL;
2302 goto new_slab;
2303 }
2304
73736e03 2305 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2306 freelist = c->freelist;
2307 if (freelist)
73736e03 2308 goto load_freelist;
03e404af 2309
f6e7def7 2310 freelist = get_freelist(s, page);
6446faa2 2311
6faa6833 2312 if (!freelist) {
03e404af
CL
2313 c->page = NULL;
2314 stat(s, DEACTIVATE_BYPASS);
fc59c053 2315 goto new_slab;
03e404af 2316 }
6446faa2 2317
84e554e6 2318 stat(s, ALLOC_REFILL);
6446faa2 2319
894b8788 2320load_freelist:
507effea
CL
2321 /*
2322 * freelist is pointing to the list of objects to be used.
2323 * page is pointing to the page from which the objects are obtained.
2324 * That page must be frozen for per cpu allocations to work.
2325 */
a0132ac0 2326 VM_BUG_ON(!c->page->frozen);
6faa6833 2327 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2328 c->tid = next_tid(c->tid);
2329 local_irq_restore(flags);
6faa6833 2330 return freelist;
81819f0f 2331
81819f0f 2332new_slab:
2cfb7455 2333
49e22585 2334 if (c->partial) {
f6e7def7
CL
2335 page = c->page = c->partial;
2336 c->partial = page->next;
49e22585
CL
2337 stat(s, CPU_PARTIAL_ALLOC);
2338 c->freelist = NULL;
2339 goto redo;
81819f0f
CL
2340 }
2341
188fd063 2342 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2343
f4697436 2344 if (unlikely(!freelist)) {
9a02d699 2345 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2346 local_irq_restore(flags);
2347 return NULL;
81819f0f 2348 }
2cfb7455 2349
f6e7def7 2350 page = c->page;
5091b74a 2351 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2352 goto load_freelist;
2cfb7455 2353
497b66f2 2354 /* Only entered in the debug case */
d0e0ac97
CG
2355 if (kmem_cache_debug(s) &&
2356 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2357 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2358
f6e7def7 2359 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2360 c->page = NULL;
2361 c->freelist = NULL;
a71ae47a 2362 local_irq_restore(flags);
6faa6833 2363 return freelist;
894b8788
CL
2364}
2365
2366/*
2367 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2368 * have the fastpath folded into their functions. So no function call
2369 * overhead for requests that can be satisfied on the fastpath.
2370 *
2371 * The fastpath works by first checking if the lockless freelist can be used.
2372 * If not then __slab_alloc is called for slow processing.
2373 *
2374 * Otherwise we can simply pick the next object from the lockless free list.
2375 */
2b847c3c 2376static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2377 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2378{
894b8788 2379 void **object;
dfb4f096 2380 struct kmem_cache_cpu *c;
57d437d2 2381 struct page *page;
8a5ec0ba 2382 unsigned long tid;
1f84260c 2383
c016b0bd 2384 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2385 return NULL;
1f84260c 2386
d79923fa 2387 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2388redo:
8a5ec0ba
CL
2389 /*
2390 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2391 * enabled. We may switch back and forth between cpus while
2392 * reading from one cpu area. That does not matter as long
2393 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2394 *
2395 * Preemption is disabled for the retrieval of the tid because that
2396 * must occur from the current processor. We cannot allow rescheduling
2397 * on a different processor between the determination of the pointer
2398 * and the retrieval of the tid.
8a5ec0ba 2399 */
7cccd80b 2400 preempt_disable();
7c8e0181 2401 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2402
8a5ec0ba
CL
2403 /*
2404 * The transaction ids are globally unique per cpu and per operation on
2405 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2406 * occurs on the right processor and that there was no operation on the
2407 * linked list in between.
2408 */
2409 tid = c->tid;
7cccd80b 2410 preempt_enable();
8a5ec0ba 2411
9dfc6e68 2412 object = c->freelist;
57d437d2 2413 page = c->page;
8eae1492 2414 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2415 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2416 stat(s, ALLOC_SLOWPATH);
2417 } else {
0ad9500e
ED
2418 void *next_object = get_freepointer_safe(s, object);
2419
8a5ec0ba 2420 /*
25985edc 2421 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2422 * operation and if we are on the right processor.
2423 *
d0e0ac97
CG
2424 * The cmpxchg does the following atomically (without lock
2425 * semantics!)
8a5ec0ba
CL
2426 * 1. Relocate first pointer to the current per cpu area.
2427 * 2. Verify that tid and freelist have not been changed
2428 * 3. If they were not changed replace tid and freelist
2429 *
d0e0ac97
CG
2430 * Since this is without lock semantics the protection is only
2431 * against code executing on this cpu *not* from access by
2432 * other cpus.
8a5ec0ba 2433 */
933393f5 2434 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2435 s->cpu_slab->freelist, s->cpu_slab->tid,
2436 object, tid,
0ad9500e 2437 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2438
2439 note_cmpxchg_failure("slab_alloc", s, tid);
2440 goto redo;
2441 }
0ad9500e 2442 prefetch_freepointer(s, next_object);
84e554e6 2443 stat(s, ALLOC_FASTPATH);
894b8788 2444 }
8a5ec0ba 2445
74e2134f 2446 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2447 memset(object, 0, s->object_size);
d07dbea4 2448
c016b0bd 2449 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2450
894b8788 2451 return object;
81819f0f
CL
2452}
2453
2b847c3c
EG
2454static __always_inline void *slab_alloc(struct kmem_cache *s,
2455 gfp_t gfpflags, unsigned long addr)
2456{
2457 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2458}
2459
81819f0f
CL
2460void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2461{
2b847c3c 2462 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2463
d0e0ac97
CG
2464 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2465 s->size, gfpflags);
5b882be4
EGM
2466
2467 return ret;
81819f0f
CL
2468}
2469EXPORT_SYMBOL(kmem_cache_alloc);
2470
0f24f128 2471#ifdef CONFIG_TRACING
4a92379b
RK
2472void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2473{
2b847c3c 2474 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2475 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2476 return ret;
2477}
2478EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2479#endif
2480
81819f0f
CL
2481#ifdef CONFIG_NUMA
2482void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2483{
2b847c3c 2484 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2485
ca2b84cb 2486 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2487 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2488
2489 return ret;
81819f0f
CL
2490}
2491EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2492
0f24f128 2493#ifdef CONFIG_TRACING
4a92379b 2494void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2495 gfp_t gfpflags,
4a92379b 2496 int node, size_t size)
5b882be4 2497{
2b847c3c 2498 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2499
2500 trace_kmalloc_node(_RET_IP_, ret,
2501 size, s->size, gfpflags, node);
2502 return ret;
5b882be4 2503}
4a92379b 2504EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2505#endif
5d1f57e4 2506#endif
5b882be4 2507
81819f0f 2508/*
894b8788
CL
2509 * Slow patch handling. This may still be called frequently since objects
2510 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2511 *
894b8788
CL
2512 * So we still attempt to reduce cache line usage. Just take the slab
2513 * lock and free the item. If there is no additional partial page
2514 * handling required then we can return immediately.
81819f0f 2515 */
894b8788 2516static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2517 void *x, unsigned long addr)
81819f0f
CL
2518{
2519 void *prior;
2520 void **object = (void *)x;
2cfb7455 2521 int was_frozen;
2cfb7455
CL
2522 struct page new;
2523 unsigned long counters;
2524 struct kmem_cache_node *n = NULL;
61728d1e 2525 unsigned long uninitialized_var(flags);
81819f0f 2526
8a5ec0ba 2527 stat(s, FREE_SLOWPATH);
81819f0f 2528
19c7ff9e
CL
2529 if (kmem_cache_debug(s) &&
2530 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2531 return;
6446faa2 2532
2cfb7455 2533 do {
837d678d
JK
2534 if (unlikely(n)) {
2535 spin_unlock_irqrestore(&n->list_lock, flags);
2536 n = NULL;
2537 }
2cfb7455
CL
2538 prior = page->freelist;
2539 counters = page->counters;
2540 set_freepointer(s, object, prior);
2541 new.counters = counters;
2542 was_frozen = new.frozen;
2543 new.inuse--;
837d678d 2544 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2545
c65c1877 2546 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2547
2548 /*
d0e0ac97
CG
2549 * Slab was on no list before and will be
2550 * partially empty
2551 * We can defer the list move and instead
2552 * freeze it.
49e22585
CL
2553 */
2554 new.frozen = 1;
2555
c65c1877 2556 } else { /* Needs to be taken off a list */
49e22585
CL
2557
2558 n = get_node(s, page_to_nid(page));
2559 /*
2560 * Speculatively acquire the list_lock.
2561 * If the cmpxchg does not succeed then we may
2562 * drop the list_lock without any processing.
2563 *
2564 * Otherwise the list_lock will synchronize with
2565 * other processors updating the list of slabs.
2566 */
2567 spin_lock_irqsave(&n->list_lock, flags);
2568
2569 }
2cfb7455 2570 }
81819f0f 2571
2cfb7455
CL
2572 } while (!cmpxchg_double_slab(s, page,
2573 prior, counters,
2574 object, new.counters,
2575 "__slab_free"));
81819f0f 2576
2cfb7455 2577 if (likely(!n)) {
49e22585
CL
2578
2579 /*
2580 * If we just froze the page then put it onto the
2581 * per cpu partial list.
2582 */
8028dcea 2583 if (new.frozen && !was_frozen) {
49e22585 2584 put_cpu_partial(s, page, 1);
8028dcea
AS
2585 stat(s, CPU_PARTIAL_FREE);
2586 }
49e22585 2587 /*
2cfb7455
CL
2588 * The list lock was not taken therefore no list
2589 * activity can be necessary.
2590 */
2591 if (was_frozen)
2592 stat(s, FREE_FROZEN);
80f08c19 2593 return;
2cfb7455 2594 }
81819f0f 2595
8a5b20ae 2596 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2597 goto slab_empty;
2598
81819f0f 2599 /*
837d678d
JK
2600 * Objects left in the slab. If it was not on the partial list before
2601 * then add it.
81819f0f 2602 */
345c905d
JK
2603 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2604 if (kmem_cache_debug(s))
c65c1877 2605 remove_full(s, n, page);
837d678d
JK
2606 add_partial(n, page, DEACTIVATE_TO_TAIL);
2607 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2608 }
80f08c19 2609 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2610 return;
2611
2612slab_empty:
a973e9dd 2613 if (prior) {
81819f0f 2614 /*
6fbabb20 2615 * Slab on the partial list.
81819f0f 2616 */
5cc6eee8 2617 remove_partial(n, page);
84e554e6 2618 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2619 } else {
6fbabb20 2620 /* Slab must be on the full list */
c65c1877
PZ
2621 remove_full(s, n, page);
2622 }
2cfb7455 2623
80f08c19 2624 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2625 stat(s, FREE_SLAB);
81819f0f 2626 discard_slab(s, page);
81819f0f
CL
2627}
2628
894b8788
CL
2629/*
2630 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2631 * can perform fastpath freeing without additional function calls.
2632 *
2633 * The fastpath is only possible if we are freeing to the current cpu slab
2634 * of this processor. This typically the case if we have just allocated
2635 * the item before.
2636 *
2637 * If fastpath is not possible then fall back to __slab_free where we deal
2638 * with all sorts of special processing.
2639 */
06428780 2640static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2641 struct page *page, void *x, unsigned long addr)
894b8788
CL
2642{
2643 void **object = (void *)x;
dfb4f096 2644 struct kmem_cache_cpu *c;
8a5ec0ba 2645 unsigned long tid;
1f84260c 2646
c016b0bd
CL
2647 slab_free_hook(s, x);
2648
8a5ec0ba
CL
2649redo:
2650 /*
2651 * Determine the currently cpus per cpu slab.
2652 * The cpu may change afterward. However that does not matter since
2653 * data is retrieved via this pointer. If we are on the same cpu
2654 * during the cmpxchg then the free will succedd.
2655 */
7cccd80b 2656 preempt_disable();
7c8e0181 2657 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2658
8a5ec0ba 2659 tid = c->tid;
7cccd80b 2660 preempt_enable();
c016b0bd 2661
442b06bc 2662 if (likely(page == c->page)) {
ff12059e 2663 set_freepointer(s, object, c->freelist);
8a5ec0ba 2664
933393f5 2665 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2666 s->cpu_slab->freelist, s->cpu_slab->tid,
2667 c->freelist, tid,
2668 object, next_tid(tid)))) {
2669
2670 note_cmpxchg_failure("slab_free", s, tid);
2671 goto redo;
2672 }
84e554e6 2673 stat(s, FREE_FASTPATH);
894b8788 2674 } else
ff12059e 2675 __slab_free(s, page, x, addr);
894b8788 2676
894b8788
CL
2677}
2678
81819f0f
CL
2679void kmem_cache_free(struct kmem_cache *s, void *x)
2680{
b9ce5ef4
GC
2681 s = cache_from_obj(s, x);
2682 if (!s)
79576102 2683 return;
b9ce5ef4 2684 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2685 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2686}
2687EXPORT_SYMBOL(kmem_cache_free);
2688
81819f0f 2689/*
672bba3a
CL
2690 * Object placement in a slab is made very easy because we always start at
2691 * offset 0. If we tune the size of the object to the alignment then we can
2692 * get the required alignment by putting one properly sized object after
2693 * another.
81819f0f
CL
2694 *
2695 * Notice that the allocation order determines the sizes of the per cpu
2696 * caches. Each processor has always one slab available for allocations.
2697 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2698 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2699 * locking overhead.
81819f0f
CL
2700 */
2701
2702/*
2703 * Mininum / Maximum order of slab pages. This influences locking overhead
2704 * and slab fragmentation. A higher order reduces the number of partial slabs
2705 * and increases the number of allocations possible without having to
2706 * take the list_lock.
2707 */
2708static int slub_min_order;
114e9e89 2709static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2710static int slub_min_objects;
81819f0f 2711
81819f0f
CL
2712/*
2713 * Calculate the order of allocation given an slab object size.
2714 *
672bba3a
CL
2715 * The order of allocation has significant impact on performance and other
2716 * system components. Generally order 0 allocations should be preferred since
2717 * order 0 does not cause fragmentation in the page allocator. Larger objects
2718 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2719 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2720 * would be wasted.
2721 *
2722 * In order to reach satisfactory performance we must ensure that a minimum
2723 * number of objects is in one slab. Otherwise we may generate too much
2724 * activity on the partial lists which requires taking the list_lock. This is
2725 * less a concern for large slabs though which are rarely used.
81819f0f 2726 *
672bba3a
CL
2727 * slub_max_order specifies the order where we begin to stop considering the
2728 * number of objects in a slab as critical. If we reach slub_max_order then
2729 * we try to keep the page order as low as possible. So we accept more waste
2730 * of space in favor of a small page order.
81819f0f 2731 *
672bba3a
CL
2732 * Higher order allocations also allow the placement of more objects in a
2733 * slab and thereby reduce object handling overhead. If the user has
2734 * requested a higher mininum order then we start with that one instead of
2735 * the smallest order which will fit the object.
81819f0f 2736 */
5e6d444e 2737static inline int slab_order(int size, int min_objects,
ab9a0f19 2738 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2739{
2740 int order;
2741 int rem;
6300ea75 2742 int min_order = slub_min_order;
81819f0f 2743
ab9a0f19 2744 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2745 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2746
6300ea75 2747 for (order = max(min_order,
5e6d444e
CL
2748 fls(min_objects * size - 1) - PAGE_SHIFT);
2749 order <= max_order; order++) {
81819f0f 2750
5e6d444e 2751 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2752
ab9a0f19 2753 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2754 continue;
2755
ab9a0f19 2756 rem = (slab_size - reserved) % size;
81819f0f 2757
5e6d444e 2758 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2759 break;
2760
2761 }
672bba3a 2762
81819f0f
CL
2763 return order;
2764}
2765
ab9a0f19 2766static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2767{
2768 int order;
2769 int min_objects;
2770 int fraction;
e8120ff1 2771 int max_objects;
5e6d444e
CL
2772
2773 /*
2774 * Attempt to find best configuration for a slab. This
2775 * works by first attempting to generate a layout with
2776 * the best configuration and backing off gradually.
2777 *
2778 * First we reduce the acceptable waste in a slab. Then
2779 * we reduce the minimum objects required in a slab.
2780 */
2781 min_objects = slub_min_objects;
9b2cd506
CL
2782 if (!min_objects)
2783 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2784 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2785 min_objects = min(min_objects, max_objects);
2786
5e6d444e 2787 while (min_objects > 1) {
c124f5b5 2788 fraction = 16;
5e6d444e
CL
2789 while (fraction >= 4) {
2790 order = slab_order(size, min_objects,
ab9a0f19 2791 slub_max_order, fraction, reserved);
5e6d444e
CL
2792 if (order <= slub_max_order)
2793 return order;
2794 fraction /= 2;
2795 }
5086c389 2796 min_objects--;
5e6d444e
CL
2797 }
2798
2799 /*
2800 * We were unable to place multiple objects in a slab. Now
2801 * lets see if we can place a single object there.
2802 */
ab9a0f19 2803 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2804 if (order <= slub_max_order)
2805 return order;
2806
2807 /*
2808 * Doh this slab cannot be placed using slub_max_order.
2809 */
ab9a0f19 2810 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2811 if (order < MAX_ORDER)
5e6d444e
CL
2812 return order;
2813 return -ENOSYS;
2814}
2815
5595cffc 2816static void
4053497d 2817init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2818{
2819 n->nr_partial = 0;
81819f0f
CL
2820 spin_lock_init(&n->list_lock);
2821 INIT_LIST_HEAD(&n->partial);
8ab1372f 2822#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2823 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2824 atomic_long_set(&n->total_objects, 0);
643b1138 2825 INIT_LIST_HEAD(&n->full);
8ab1372f 2826#endif
81819f0f
CL
2827}
2828
55136592 2829static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2830{
6c182dc0 2831 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2832 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2833
8a5ec0ba 2834 /*
d4d84fef
CM
2835 * Must align to double word boundary for the double cmpxchg
2836 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2837 */
d4d84fef
CM
2838 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2839 2 * sizeof(void *));
8a5ec0ba
CL
2840
2841 if (!s->cpu_slab)
2842 return 0;
2843
2844 init_kmem_cache_cpus(s);
4c93c355 2845
8a5ec0ba 2846 return 1;
4c93c355 2847}
4c93c355 2848
51df1142
CL
2849static struct kmem_cache *kmem_cache_node;
2850
81819f0f
CL
2851/*
2852 * No kmalloc_node yet so do it by hand. We know that this is the first
2853 * slab on the node for this slabcache. There are no concurrent accesses
2854 * possible.
2855 *
721ae22a
ZYW
2856 * Note that this function only works on the kmem_cache_node
2857 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2858 * memory on a fresh node that has no slab structures yet.
81819f0f 2859 */
55136592 2860static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2861{
2862 struct page *page;
2863 struct kmem_cache_node *n;
2864
51df1142 2865 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2866
51df1142 2867 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2868
2869 BUG_ON(!page);
a2f92ee7 2870 if (page_to_nid(page) != node) {
f9f58285
FF
2871 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2872 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2873 }
2874
81819f0f
CL
2875 n = page->freelist;
2876 BUG_ON(!n);
51df1142 2877 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2878 page->inuse = 1;
8cb0a506 2879 page->frozen = 0;
51df1142 2880 kmem_cache_node->node[node] = n;
8ab1372f 2881#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2882 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2883 init_tracking(kmem_cache_node, n);
8ab1372f 2884#endif
4053497d 2885 init_kmem_cache_node(n);
51df1142 2886 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2887
67b6c900 2888 /*
1e4dd946
SR
2889 * No locks need to be taken here as it has just been
2890 * initialized and there is no concurrent access.
67b6c900 2891 */
1e4dd946 2892 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2893}
2894
2895static void free_kmem_cache_nodes(struct kmem_cache *s)
2896{
2897 int node;
fa45dc25 2898 struct kmem_cache_node *n;
81819f0f 2899
fa45dc25
CL
2900 for_each_kmem_cache_node(s, node, n) {
2901 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2902 s->node[node] = NULL;
2903 }
2904}
2905
55136592 2906static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2907{
2908 int node;
81819f0f 2909
f64dc58c 2910 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2911 struct kmem_cache_node *n;
2912
73367bd8 2913 if (slab_state == DOWN) {
55136592 2914 early_kmem_cache_node_alloc(node);
73367bd8
AD
2915 continue;
2916 }
51df1142 2917 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2918 GFP_KERNEL, node);
81819f0f 2919
73367bd8
AD
2920 if (!n) {
2921 free_kmem_cache_nodes(s);
2922 return 0;
81819f0f 2923 }
73367bd8 2924
81819f0f 2925 s->node[node] = n;
4053497d 2926 init_kmem_cache_node(n);
81819f0f
CL
2927 }
2928 return 1;
2929}
81819f0f 2930
c0bdb232 2931static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2932{
2933 if (min < MIN_PARTIAL)
2934 min = MIN_PARTIAL;
2935 else if (min > MAX_PARTIAL)
2936 min = MAX_PARTIAL;
2937 s->min_partial = min;
2938}
2939
81819f0f
CL
2940/*
2941 * calculate_sizes() determines the order and the distribution of data within
2942 * a slab object.
2943 */
06b285dc 2944static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2945{
2946 unsigned long flags = s->flags;
3b0efdfa 2947 unsigned long size = s->object_size;
834f3d11 2948 int order;
81819f0f 2949
d8b42bf5
CL
2950 /*
2951 * Round up object size to the next word boundary. We can only
2952 * place the free pointer at word boundaries and this determines
2953 * the possible location of the free pointer.
2954 */
2955 size = ALIGN(size, sizeof(void *));
2956
2957#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2958 /*
2959 * Determine if we can poison the object itself. If the user of
2960 * the slab may touch the object after free or before allocation
2961 * then we should never poison the object itself.
2962 */
2963 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2964 !s->ctor)
81819f0f
CL
2965 s->flags |= __OBJECT_POISON;
2966 else
2967 s->flags &= ~__OBJECT_POISON;
2968
81819f0f
CL
2969
2970 /*
672bba3a 2971 * If we are Redzoning then check if there is some space between the
81819f0f 2972 * end of the object and the free pointer. If not then add an
672bba3a 2973 * additional word to have some bytes to store Redzone information.
81819f0f 2974 */
3b0efdfa 2975 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2976 size += sizeof(void *);
41ecc55b 2977#endif
81819f0f
CL
2978
2979 /*
672bba3a
CL
2980 * With that we have determined the number of bytes in actual use
2981 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2982 */
2983 s->inuse = size;
2984
2985 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2986 s->ctor)) {
81819f0f
CL
2987 /*
2988 * Relocate free pointer after the object if it is not
2989 * permitted to overwrite the first word of the object on
2990 * kmem_cache_free.
2991 *
2992 * This is the case if we do RCU, have a constructor or
2993 * destructor or are poisoning the objects.
2994 */
2995 s->offset = size;
2996 size += sizeof(void *);
2997 }
2998
c12b3c62 2999#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3000 if (flags & SLAB_STORE_USER)
3001 /*
3002 * Need to store information about allocs and frees after
3003 * the object.
3004 */
3005 size += 2 * sizeof(struct track);
3006
be7b3fbc 3007 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3008 /*
3009 * Add some empty padding so that we can catch
3010 * overwrites from earlier objects rather than let
3011 * tracking information or the free pointer be
0211a9c8 3012 * corrupted if a user writes before the start
81819f0f
CL
3013 * of the object.
3014 */
3015 size += sizeof(void *);
41ecc55b 3016#endif
672bba3a 3017
81819f0f
CL
3018 /*
3019 * SLUB stores one object immediately after another beginning from
3020 * offset 0. In order to align the objects we have to simply size
3021 * each object to conform to the alignment.
3022 */
45906855 3023 size = ALIGN(size, s->align);
81819f0f 3024 s->size = size;
06b285dc
CL
3025 if (forced_order >= 0)
3026 order = forced_order;
3027 else
ab9a0f19 3028 order = calculate_order(size, s->reserved);
81819f0f 3029
834f3d11 3030 if (order < 0)
81819f0f
CL
3031 return 0;
3032
b7a49f0d 3033 s->allocflags = 0;
834f3d11 3034 if (order)
b7a49f0d
CL
3035 s->allocflags |= __GFP_COMP;
3036
3037 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3038 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3039
3040 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3041 s->allocflags |= __GFP_RECLAIMABLE;
3042
81819f0f
CL
3043 /*
3044 * Determine the number of objects per slab
3045 */
ab9a0f19
LJ
3046 s->oo = oo_make(order, size, s->reserved);
3047 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3048 if (oo_objects(s->oo) > oo_objects(s->max))
3049 s->max = s->oo;
81819f0f 3050
834f3d11 3051 return !!oo_objects(s->oo);
81819f0f
CL
3052}
3053
8a13a4cc 3054static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3055{
8a13a4cc 3056 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3057 s->reserved = 0;
81819f0f 3058
da9a638c
LJ
3059 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3060 s->reserved = sizeof(struct rcu_head);
81819f0f 3061
06b285dc 3062 if (!calculate_sizes(s, -1))
81819f0f 3063 goto error;
3de47213
DR
3064 if (disable_higher_order_debug) {
3065 /*
3066 * Disable debugging flags that store metadata if the min slab
3067 * order increased.
3068 */
3b0efdfa 3069 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3070 s->flags &= ~DEBUG_METADATA_FLAGS;
3071 s->offset = 0;
3072 if (!calculate_sizes(s, -1))
3073 goto error;
3074 }
3075 }
81819f0f 3076
2565409f
HC
3077#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3078 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3079 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3080 /* Enable fast mode */
3081 s->flags |= __CMPXCHG_DOUBLE;
3082#endif
3083
3b89d7d8
DR
3084 /*
3085 * The larger the object size is, the more pages we want on the partial
3086 * list to avoid pounding the page allocator excessively.
3087 */
49e22585
CL
3088 set_min_partial(s, ilog2(s->size) / 2);
3089
3090 /*
3091 * cpu_partial determined the maximum number of objects kept in the
3092 * per cpu partial lists of a processor.
3093 *
3094 * Per cpu partial lists mainly contain slabs that just have one
3095 * object freed. If they are used for allocation then they can be
3096 * filled up again with minimal effort. The slab will never hit the
3097 * per node partial lists and therefore no locking will be required.
3098 *
3099 * This setting also determines
3100 *
3101 * A) The number of objects from per cpu partial slabs dumped to the
3102 * per node list when we reach the limit.
9f264904 3103 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3104 * per node list when we run out of per cpu objects. We only fetch
3105 * 50% to keep some capacity around for frees.
49e22585 3106 */
345c905d 3107 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3108 s->cpu_partial = 0;
3109 else if (s->size >= PAGE_SIZE)
49e22585
CL
3110 s->cpu_partial = 2;
3111 else if (s->size >= 1024)
3112 s->cpu_partial = 6;
3113 else if (s->size >= 256)
3114 s->cpu_partial = 13;
3115 else
3116 s->cpu_partial = 30;
3117
81819f0f 3118#ifdef CONFIG_NUMA
e2cb96b7 3119 s->remote_node_defrag_ratio = 1000;
81819f0f 3120#endif
55136592 3121 if (!init_kmem_cache_nodes(s))
dfb4f096 3122 goto error;
81819f0f 3123
55136592 3124 if (alloc_kmem_cache_cpus(s))
278b1bb1 3125 return 0;
ff12059e 3126
4c93c355 3127 free_kmem_cache_nodes(s);
81819f0f
CL
3128error:
3129 if (flags & SLAB_PANIC)
3130 panic("Cannot create slab %s size=%lu realsize=%u "
3131 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3132 s->name, (unsigned long)s->size, s->size,
3133 oo_order(s->oo), s->offset, flags);
278b1bb1 3134 return -EINVAL;
81819f0f 3135}
81819f0f 3136
33b12c38
CL
3137static void list_slab_objects(struct kmem_cache *s, struct page *page,
3138 const char *text)
3139{
3140#ifdef CONFIG_SLUB_DEBUG
3141 void *addr = page_address(page);
3142 void *p;
a5dd5c11
NK
3143 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3144 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3145 if (!map)
3146 return;
945cf2b6 3147 slab_err(s, page, text, s->name);
33b12c38 3148 slab_lock(page);
33b12c38 3149
5f80b13a 3150 get_map(s, page, map);
33b12c38
CL
3151 for_each_object(p, s, addr, page->objects) {
3152
3153 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3154 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3155 print_tracking(s, p);
3156 }
3157 }
3158 slab_unlock(page);
bbd7d57b 3159 kfree(map);
33b12c38
CL
3160#endif
3161}
3162
81819f0f 3163/*
599870b1 3164 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3165 * This is called from kmem_cache_close(). We must be the last thread
3166 * using the cache and therefore we do not need to lock anymore.
81819f0f 3167 */
599870b1 3168static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3169{
81819f0f
CL
3170 struct page *page, *h;
3171
33b12c38 3172 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3173 if (!page->inuse) {
1e4dd946 3174 __remove_partial(n, page);
81819f0f 3175 discard_slab(s, page);
33b12c38
CL
3176 } else {
3177 list_slab_objects(s, page,
945cf2b6 3178 "Objects remaining in %s on kmem_cache_close()");
599870b1 3179 }
33b12c38 3180 }
81819f0f
CL
3181}
3182
3183/*
672bba3a 3184 * Release all resources used by a slab cache.
81819f0f 3185 */
0c710013 3186static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3187{
3188 int node;
fa45dc25 3189 struct kmem_cache_node *n;
81819f0f
CL
3190
3191 flush_all(s);
81819f0f 3192 /* Attempt to free all objects */
fa45dc25 3193 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3194 free_partial(s, n);
3195 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3196 return 1;
3197 }
945cf2b6 3198 free_percpu(s->cpu_slab);
81819f0f
CL
3199 free_kmem_cache_nodes(s);
3200 return 0;
3201}
3202
945cf2b6 3203int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3204{
41a21285 3205 return kmem_cache_close(s);
81819f0f 3206}
81819f0f
CL
3207
3208/********************************************************************
3209 * Kmalloc subsystem
3210 *******************************************************************/
3211
81819f0f
CL
3212static int __init setup_slub_min_order(char *str)
3213{
06428780 3214 get_option(&str, &slub_min_order);
81819f0f
CL
3215
3216 return 1;
3217}
3218
3219__setup("slub_min_order=", setup_slub_min_order);
3220
3221static int __init setup_slub_max_order(char *str)
3222{
06428780 3223 get_option(&str, &slub_max_order);
818cf590 3224 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3225
3226 return 1;
3227}
3228
3229__setup("slub_max_order=", setup_slub_max_order);
3230
3231static int __init setup_slub_min_objects(char *str)
3232{
06428780 3233 get_option(&str, &slub_min_objects);
81819f0f
CL
3234
3235 return 1;
3236}
3237
3238__setup("slub_min_objects=", setup_slub_min_objects);
3239
81819f0f
CL
3240void *__kmalloc(size_t size, gfp_t flags)
3241{
aadb4bc4 3242 struct kmem_cache *s;
5b882be4 3243 void *ret;
81819f0f 3244
95a05b42 3245 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3246 return kmalloc_large(size, flags);
aadb4bc4 3247
2c59dd65 3248 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3249
3250 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3251 return s;
3252
2b847c3c 3253 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3254
ca2b84cb 3255 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3256
3257 return ret;
81819f0f
CL
3258}
3259EXPORT_SYMBOL(__kmalloc);
3260
5d1f57e4 3261#ifdef CONFIG_NUMA
f619cfe1
CL
3262static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3263{
b1eeab67 3264 struct page *page;
e4f7c0b4 3265 void *ptr = NULL;
f619cfe1 3266
52383431
VD
3267 flags |= __GFP_COMP | __GFP_NOTRACK;
3268 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3269 if (page)
e4f7c0b4
CM
3270 ptr = page_address(page);
3271
d56791b3 3272 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3273 return ptr;
f619cfe1
CL
3274}
3275
81819f0f
CL
3276void *__kmalloc_node(size_t size, gfp_t flags, int node)
3277{
aadb4bc4 3278 struct kmem_cache *s;
5b882be4 3279 void *ret;
81819f0f 3280
95a05b42 3281 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3282 ret = kmalloc_large_node(size, flags, node);
3283
ca2b84cb
EGM
3284 trace_kmalloc_node(_RET_IP_, ret,
3285 size, PAGE_SIZE << get_order(size),
3286 flags, node);
5b882be4
EGM
3287
3288 return ret;
3289 }
aadb4bc4 3290
2c59dd65 3291 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3292
3293 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3294 return s;
3295
2b847c3c 3296 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3297
ca2b84cb 3298 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3299
3300 return ret;
81819f0f
CL
3301}
3302EXPORT_SYMBOL(__kmalloc_node);
3303#endif
3304
3305size_t ksize(const void *object)
3306{
272c1d21 3307 struct page *page;
81819f0f 3308
ef8b4520 3309 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3310 return 0;
3311
294a80a8 3312 page = virt_to_head_page(object);
294a80a8 3313
76994412
PE
3314 if (unlikely(!PageSlab(page))) {
3315 WARN_ON(!PageCompound(page));
294a80a8 3316 return PAGE_SIZE << compound_order(page);
76994412 3317 }
81819f0f 3318
1b4f59e3 3319 return slab_ksize(page->slab_cache);
81819f0f 3320}
b1aabecd 3321EXPORT_SYMBOL(ksize);
81819f0f
CL
3322
3323void kfree(const void *x)
3324{
81819f0f 3325 struct page *page;
5bb983b0 3326 void *object = (void *)x;
81819f0f 3327
2121db74
PE
3328 trace_kfree(_RET_IP_, x);
3329
2408c550 3330 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3331 return;
3332
b49af68f 3333 page = virt_to_head_page(x);
aadb4bc4 3334 if (unlikely(!PageSlab(page))) {
0937502a 3335 BUG_ON(!PageCompound(page));
d56791b3 3336 kfree_hook(x);
52383431 3337 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3338 return;
3339 }
1b4f59e3 3340 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3341}
3342EXPORT_SYMBOL(kfree);
3343
2086d26a 3344/*
672bba3a
CL
3345 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3346 * the remaining slabs by the number of items in use. The slabs with the
3347 * most items in use come first. New allocations will then fill those up
3348 * and thus they can be removed from the partial lists.
3349 *
3350 * The slabs with the least items are placed last. This results in them
3351 * being allocated from last increasing the chance that the last objects
3352 * are freed in them.
2086d26a 3353 */
03afc0e2 3354int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3355{
3356 int node;
3357 int i;
3358 struct kmem_cache_node *n;
3359 struct page *page;
3360 struct page *t;
205ab99d 3361 int objects = oo_objects(s->max);
2086d26a 3362 struct list_head *slabs_by_inuse =
834f3d11 3363 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3364 unsigned long flags;
3365
3366 if (!slabs_by_inuse)
3367 return -ENOMEM;
3368
3369 flush_all(s);
fa45dc25 3370 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3371 if (!n->nr_partial)
3372 continue;
3373
834f3d11 3374 for (i = 0; i < objects; i++)
2086d26a
CL
3375 INIT_LIST_HEAD(slabs_by_inuse + i);
3376
3377 spin_lock_irqsave(&n->list_lock, flags);
3378
3379 /*
672bba3a 3380 * Build lists indexed by the items in use in each slab.
2086d26a 3381 *
672bba3a
CL
3382 * Note that concurrent frees may occur while we hold the
3383 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3384 */
3385 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3386 list_move(&page->lru, slabs_by_inuse + page->inuse);
3387 if (!page->inuse)
3388 n->nr_partial--;
2086d26a
CL
3389 }
3390
2086d26a 3391 /*
672bba3a
CL
3392 * Rebuild the partial list with the slabs filled up most
3393 * first and the least used slabs at the end.
2086d26a 3394 */
69cb8e6b 3395 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3396 list_splice(slabs_by_inuse + i, n->partial.prev);
3397
2086d26a 3398 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3399
3400 /* Release empty slabs */
3401 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3402 discard_slab(s, page);
2086d26a
CL
3403 }
3404
3405 kfree(slabs_by_inuse);
3406 return 0;
3407}
2086d26a 3408
b9049e23
YG
3409static int slab_mem_going_offline_callback(void *arg)
3410{
3411 struct kmem_cache *s;
3412
18004c5d 3413 mutex_lock(&slab_mutex);
b9049e23 3414 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3415 __kmem_cache_shrink(s);
18004c5d 3416 mutex_unlock(&slab_mutex);
b9049e23
YG
3417
3418 return 0;
3419}
3420
3421static void slab_mem_offline_callback(void *arg)
3422{
3423 struct kmem_cache_node *n;
3424 struct kmem_cache *s;
3425 struct memory_notify *marg = arg;
3426 int offline_node;
3427
b9d5ab25 3428 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3429
3430 /*
3431 * If the node still has available memory. we need kmem_cache_node
3432 * for it yet.
3433 */
3434 if (offline_node < 0)
3435 return;
3436
18004c5d 3437 mutex_lock(&slab_mutex);
b9049e23
YG
3438 list_for_each_entry(s, &slab_caches, list) {
3439 n = get_node(s, offline_node);
3440 if (n) {
3441 /*
3442 * if n->nr_slabs > 0, slabs still exist on the node
3443 * that is going down. We were unable to free them,
c9404c9c 3444 * and offline_pages() function shouldn't call this
b9049e23
YG
3445 * callback. So, we must fail.
3446 */
0f389ec6 3447 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3448
3449 s->node[offline_node] = NULL;
8de66a0c 3450 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3451 }
3452 }
18004c5d 3453 mutex_unlock(&slab_mutex);
b9049e23
YG
3454}
3455
3456static int slab_mem_going_online_callback(void *arg)
3457{
3458 struct kmem_cache_node *n;
3459 struct kmem_cache *s;
3460 struct memory_notify *marg = arg;
b9d5ab25 3461 int nid = marg->status_change_nid_normal;
b9049e23
YG
3462 int ret = 0;
3463
3464 /*
3465 * If the node's memory is already available, then kmem_cache_node is
3466 * already created. Nothing to do.
3467 */
3468 if (nid < 0)
3469 return 0;
3470
3471 /*
0121c619 3472 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3473 * allocate a kmem_cache_node structure in order to bring the node
3474 * online.
3475 */
18004c5d 3476 mutex_lock(&slab_mutex);
b9049e23
YG
3477 list_for_each_entry(s, &slab_caches, list) {
3478 /*
3479 * XXX: kmem_cache_alloc_node will fallback to other nodes
3480 * since memory is not yet available from the node that
3481 * is brought up.
3482 */
8de66a0c 3483 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3484 if (!n) {
3485 ret = -ENOMEM;
3486 goto out;
3487 }
4053497d 3488 init_kmem_cache_node(n);
b9049e23
YG
3489 s->node[nid] = n;
3490 }
3491out:
18004c5d 3492 mutex_unlock(&slab_mutex);
b9049e23
YG
3493 return ret;
3494}
3495
3496static int slab_memory_callback(struct notifier_block *self,
3497 unsigned long action, void *arg)
3498{
3499 int ret = 0;
3500
3501 switch (action) {
3502 case MEM_GOING_ONLINE:
3503 ret = slab_mem_going_online_callback(arg);
3504 break;
3505 case MEM_GOING_OFFLINE:
3506 ret = slab_mem_going_offline_callback(arg);
3507 break;
3508 case MEM_OFFLINE:
3509 case MEM_CANCEL_ONLINE:
3510 slab_mem_offline_callback(arg);
3511 break;
3512 case MEM_ONLINE:
3513 case MEM_CANCEL_OFFLINE:
3514 break;
3515 }
dc19f9db
KH
3516 if (ret)
3517 ret = notifier_from_errno(ret);
3518 else
3519 ret = NOTIFY_OK;
b9049e23
YG
3520 return ret;
3521}
3522
3ac38faa
AM
3523static struct notifier_block slab_memory_callback_nb = {
3524 .notifier_call = slab_memory_callback,
3525 .priority = SLAB_CALLBACK_PRI,
3526};
b9049e23 3527
81819f0f
CL
3528/********************************************************************
3529 * Basic setup of slabs
3530 *******************************************************************/
3531
51df1142
CL
3532/*
3533 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3534 * the page allocator. Allocate them properly then fix up the pointers
3535 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3536 */
3537
dffb4d60 3538static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3539{
3540 int node;
dffb4d60 3541 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3542 struct kmem_cache_node *n;
51df1142 3543
dffb4d60 3544 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3545
7d557b3c
GC
3546 /*
3547 * This runs very early, and only the boot processor is supposed to be
3548 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3549 * IPIs around.
3550 */
3551 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3552 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3553 struct page *p;
3554
fa45dc25
CL
3555 list_for_each_entry(p, &n->partial, lru)
3556 p->slab_cache = s;
51df1142 3557
607bf324 3558#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3559 list_for_each_entry(p, &n->full, lru)
3560 p->slab_cache = s;
51df1142 3561#endif
51df1142 3562 }
dffb4d60
CL
3563 list_add(&s->list, &slab_caches);
3564 return s;
51df1142
CL
3565}
3566
81819f0f
CL
3567void __init kmem_cache_init(void)
3568{
dffb4d60
CL
3569 static __initdata struct kmem_cache boot_kmem_cache,
3570 boot_kmem_cache_node;
51df1142 3571
fc8d8620
SG
3572 if (debug_guardpage_minorder())
3573 slub_max_order = 0;
3574
dffb4d60
CL
3575 kmem_cache_node = &boot_kmem_cache_node;
3576 kmem_cache = &boot_kmem_cache;
51df1142 3577
dffb4d60
CL
3578 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3579 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3580
3ac38faa 3581 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3582
3583 /* Able to allocate the per node structures */
3584 slab_state = PARTIAL;
3585
dffb4d60
CL
3586 create_boot_cache(kmem_cache, "kmem_cache",
3587 offsetof(struct kmem_cache, node) +
3588 nr_node_ids * sizeof(struct kmem_cache_node *),
3589 SLAB_HWCACHE_ALIGN);
8a13a4cc 3590
dffb4d60 3591 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3592
51df1142
CL
3593 /*
3594 * Allocate kmem_cache_node properly from the kmem_cache slab.
3595 * kmem_cache_node is separately allocated so no need to
3596 * update any list pointers.
3597 */
dffb4d60 3598 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3599
3600 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3601 create_kmalloc_caches(0);
81819f0f
CL
3602
3603#ifdef CONFIG_SMP
3604 register_cpu_notifier(&slab_notifier);
9dfc6e68 3605#endif
81819f0f 3606
f9f58285 3607 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3608 cache_line_size(),
81819f0f
CL
3609 slub_min_order, slub_max_order, slub_min_objects,
3610 nr_cpu_ids, nr_node_ids);
3611}
3612
7e85ee0c
PE
3613void __init kmem_cache_init_late(void)
3614{
7e85ee0c
PE
3615}
3616
2633d7a0 3617struct kmem_cache *
a44cb944
VD
3618__kmem_cache_alias(const char *name, size_t size, size_t align,
3619 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3620{
3621 struct kmem_cache *s;
3622
a44cb944 3623 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3624 if (s) {
84d0ddd6
VD
3625 int i;
3626 struct kmem_cache *c;
3627
81819f0f 3628 s->refcount++;
84d0ddd6 3629
81819f0f
CL
3630 /*
3631 * Adjust the object sizes so that we clear
3632 * the complete object on kzalloc.
3633 */
3b0efdfa 3634 s->object_size = max(s->object_size, (int)size);
81819f0f 3635 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3636
84d0ddd6
VD
3637 for_each_memcg_cache_index(i) {
3638 c = cache_from_memcg_idx(s, i);
3639 if (!c)
3640 continue;
3641 c->object_size = s->object_size;
3642 c->inuse = max_t(int, c->inuse,
3643 ALIGN(size, sizeof(void *)));
3644 }
3645
7b8f3b66 3646 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3647 s->refcount--;
cbb79694 3648 s = NULL;
7b8f3b66 3649 }
a0e1d1be 3650 }
6446faa2 3651
cbb79694
CL
3652 return s;
3653}
84c1cf62 3654
8a13a4cc 3655int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3656{
aac3a166
PE
3657 int err;
3658
3659 err = kmem_cache_open(s, flags);
3660 if (err)
3661 return err;
20cea968 3662
45530c44
CL
3663 /* Mutex is not taken during early boot */
3664 if (slab_state <= UP)
3665 return 0;
3666
107dab5c 3667 memcg_propagate_slab_attrs(s);
aac3a166 3668 err = sysfs_slab_add(s);
aac3a166
PE
3669 if (err)
3670 kmem_cache_close(s);
20cea968 3671
aac3a166 3672 return err;
81819f0f 3673}
81819f0f 3674
81819f0f 3675#ifdef CONFIG_SMP
81819f0f 3676/*
672bba3a
CL
3677 * Use the cpu notifier to insure that the cpu slabs are flushed when
3678 * necessary.
81819f0f 3679 */
0db0628d 3680static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3681 unsigned long action, void *hcpu)
3682{
3683 long cpu = (long)hcpu;
5b95a4ac
CL
3684 struct kmem_cache *s;
3685 unsigned long flags;
81819f0f
CL
3686
3687 switch (action) {
3688 case CPU_UP_CANCELED:
8bb78442 3689 case CPU_UP_CANCELED_FROZEN:
81819f0f 3690 case CPU_DEAD:
8bb78442 3691 case CPU_DEAD_FROZEN:
18004c5d 3692 mutex_lock(&slab_mutex);
5b95a4ac
CL
3693 list_for_each_entry(s, &slab_caches, list) {
3694 local_irq_save(flags);
3695 __flush_cpu_slab(s, cpu);
3696 local_irq_restore(flags);
3697 }
18004c5d 3698 mutex_unlock(&slab_mutex);
81819f0f
CL
3699 break;
3700 default:
3701 break;
3702 }
3703 return NOTIFY_OK;
3704}
3705
0db0628d 3706static struct notifier_block slab_notifier = {
3adbefee 3707 .notifier_call = slab_cpuup_callback
06428780 3708};
81819f0f
CL
3709
3710#endif
3711
ce71e27c 3712void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3713{
aadb4bc4 3714 struct kmem_cache *s;
94b528d0 3715 void *ret;
aadb4bc4 3716
95a05b42 3717 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3718 return kmalloc_large(size, gfpflags);
3719
2c59dd65 3720 s = kmalloc_slab(size, gfpflags);
81819f0f 3721
2408c550 3722 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3723 return s;
81819f0f 3724
2b847c3c 3725 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3726
25985edc 3727 /* Honor the call site pointer we received. */
ca2b84cb 3728 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3729
3730 return ret;
81819f0f
CL
3731}
3732
5d1f57e4 3733#ifdef CONFIG_NUMA
81819f0f 3734void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3735 int node, unsigned long caller)
81819f0f 3736{
aadb4bc4 3737 struct kmem_cache *s;
94b528d0 3738 void *ret;
aadb4bc4 3739
95a05b42 3740 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3741 ret = kmalloc_large_node(size, gfpflags, node);
3742
3743 trace_kmalloc_node(caller, ret,
3744 size, PAGE_SIZE << get_order(size),
3745 gfpflags, node);
3746
3747 return ret;
3748 }
eada35ef 3749
2c59dd65 3750 s = kmalloc_slab(size, gfpflags);
81819f0f 3751
2408c550 3752 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3753 return s;
81819f0f 3754
2b847c3c 3755 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3756
25985edc 3757 /* Honor the call site pointer we received. */
ca2b84cb 3758 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3759
3760 return ret;
81819f0f 3761}
5d1f57e4 3762#endif
81819f0f 3763
ab4d5ed5 3764#ifdef CONFIG_SYSFS
205ab99d
CL
3765static int count_inuse(struct page *page)
3766{
3767 return page->inuse;
3768}
3769
3770static int count_total(struct page *page)
3771{
3772 return page->objects;
3773}
ab4d5ed5 3774#endif
205ab99d 3775
ab4d5ed5 3776#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3777static int validate_slab(struct kmem_cache *s, struct page *page,
3778 unsigned long *map)
53e15af0
CL
3779{
3780 void *p;
a973e9dd 3781 void *addr = page_address(page);
53e15af0
CL
3782
3783 if (!check_slab(s, page) ||
3784 !on_freelist(s, page, NULL))
3785 return 0;
3786
3787 /* Now we know that a valid freelist exists */
39b26464 3788 bitmap_zero(map, page->objects);
53e15af0 3789
5f80b13a
CL
3790 get_map(s, page, map);
3791 for_each_object(p, s, addr, page->objects) {
3792 if (test_bit(slab_index(p, s, addr), map))
3793 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3794 return 0;
53e15af0
CL
3795 }
3796
224a88be 3797 for_each_object(p, s, addr, page->objects)
7656c72b 3798 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3799 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3800 return 0;
3801 return 1;
3802}
3803
434e245d
CL
3804static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3805 unsigned long *map)
53e15af0 3806{
881db7fb
CL
3807 slab_lock(page);
3808 validate_slab(s, page, map);
3809 slab_unlock(page);
53e15af0
CL
3810}
3811
434e245d
CL
3812static int validate_slab_node(struct kmem_cache *s,
3813 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3814{
3815 unsigned long count = 0;
3816 struct page *page;
3817 unsigned long flags;
3818
3819 spin_lock_irqsave(&n->list_lock, flags);
3820
3821 list_for_each_entry(page, &n->partial, lru) {
434e245d 3822 validate_slab_slab(s, page, map);
53e15af0
CL
3823 count++;
3824 }
3825 if (count != n->nr_partial)
f9f58285
FF
3826 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3827 s->name, count, n->nr_partial);
53e15af0
CL
3828
3829 if (!(s->flags & SLAB_STORE_USER))
3830 goto out;
3831
3832 list_for_each_entry(page, &n->full, lru) {
434e245d 3833 validate_slab_slab(s, page, map);
53e15af0
CL
3834 count++;
3835 }
3836 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3837 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3838 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3839
3840out:
3841 spin_unlock_irqrestore(&n->list_lock, flags);
3842 return count;
3843}
3844
434e245d 3845static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3846{
3847 int node;
3848 unsigned long count = 0;
205ab99d 3849 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3850 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3851 struct kmem_cache_node *n;
434e245d
CL
3852
3853 if (!map)
3854 return -ENOMEM;
53e15af0
CL
3855
3856 flush_all(s);
fa45dc25 3857 for_each_kmem_cache_node(s, node, n)
434e245d 3858 count += validate_slab_node(s, n, map);
434e245d 3859 kfree(map);
53e15af0
CL
3860 return count;
3861}
88a420e4 3862/*
672bba3a 3863 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3864 * and freed.
3865 */
3866
3867struct location {
3868 unsigned long count;
ce71e27c 3869 unsigned long addr;
45edfa58
CL
3870 long long sum_time;
3871 long min_time;
3872 long max_time;
3873 long min_pid;
3874 long max_pid;
174596a0 3875 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3876 nodemask_t nodes;
88a420e4
CL
3877};
3878
3879struct loc_track {
3880 unsigned long max;
3881 unsigned long count;
3882 struct location *loc;
3883};
3884
3885static void free_loc_track(struct loc_track *t)
3886{
3887 if (t->max)
3888 free_pages((unsigned long)t->loc,
3889 get_order(sizeof(struct location) * t->max));
3890}
3891
68dff6a9 3892static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3893{
3894 struct location *l;
3895 int order;
3896
88a420e4
CL
3897 order = get_order(sizeof(struct location) * max);
3898
68dff6a9 3899 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3900 if (!l)
3901 return 0;
3902
3903 if (t->count) {
3904 memcpy(l, t->loc, sizeof(struct location) * t->count);
3905 free_loc_track(t);
3906 }
3907 t->max = max;
3908 t->loc = l;
3909 return 1;
3910}
3911
3912static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3913 const struct track *track)
88a420e4
CL
3914{
3915 long start, end, pos;
3916 struct location *l;
ce71e27c 3917 unsigned long caddr;
45edfa58 3918 unsigned long age = jiffies - track->when;
88a420e4
CL
3919
3920 start = -1;
3921 end = t->count;
3922
3923 for ( ; ; ) {
3924 pos = start + (end - start + 1) / 2;
3925
3926 /*
3927 * There is nothing at "end". If we end up there
3928 * we need to add something to before end.
3929 */
3930 if (pos == end)
3931 break;
3932
3933 caddr = t->loc[pos].addr;
45edfa58
CL
3934 if (track->addr == caddr) {
3935
3936 l = &t->loc[pos];
3937 l->count++;
3938 if (track->when) {
3939 l->sum_time += age;
3940 if (age < l->min_time)
3941 l->min_time = age;
3942 if (age > l->max_time)
3943 l->max_time = age;
3944
3945 if (track->pid < l->min_pid)
3946 l->min_pid = track->pid;
3947 if (track->pid > l->max_pid)
3948 l->max_pid = track->pid;
3949
174596a0
RR
3950 cpumask_set_cpu(track->cpu,
3951 to_cpumask(l->cpus));
45edfa58
CL
3952 }
3953 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3954 return 1;
3955 }
3956
45edfa58 3957 if (track->addr < caddr)
88a420e4
CL
3958 end = pos;
3959 else
3960 start = pos;
3961 }
3962
3963 /*
672bba3a 3964 * Not found. Insert new tracking element.
88a420e4 3965 */
68dff6a9 3966 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3967 return 0;
3968
3969 l = t->loc + pos;
3970 if (pos < t->count)
3971 memmove(l + 1, l,
3972 (t->count - pos) * sizeof(struct location));
3973 t->count++;
3974 l->count = 1;
45edfa58
CL
3975 l->addr = track->addr;
3976 l->sum_time = age;
3977 l->min_time = age;
3978 l->max_time = age;
3979 l->min_pid = track->pid;
3980 l->max_pid = track->pid;
174596a0
RR
3981 cpumask_clear(to_cpumask(l->cpus));
3982 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3983 nodes_clear(l->nodes);
3984 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3985 return 1;
3986}
3987
3988static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3989 struct page *page, enum track_item alloc,
a5dd5c11 3990 unsigned long *map)
88a420e4 3991{
a973e9dd 3992 void *addr = page_address(page);
88a420e4
CL
3993 void *p;
3994
39b26464 3995 bitmap_zero(map, page->objects);
5f80b13a 3996 get_map(s, page, map);
88a420e4 3997
224a88be 3998 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3999 if (!test_bit(slab_index(p, s, addr), map))
4000 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4001}
4002
4003static int list_locations(struct kmem_cache *s, char *buf,
4004 enum track_item alloc)
4005{
e374d483 4006 int len = 0;
88a420e4 4007 unsigned long i;
68dff6a9 4008 struct loc_track t = { 0, 0, NULL };
88a420e4 4009 int node;
bbd7d57b
ED
4010 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4011 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4012 struct kmem_cache_node *n;
88a420e4 4013
bbd7d57b
ED
4014 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4015 GFP_TEMPORARY)) {
4016 kfree(map);
68dff6a9 4017 return sprintf(buf, "Out of memory\n");
bbd7d57b 4018 }
88a420e4
CL
4019 /* Push back cpu slabs */
4020 flush_all(s);
4021
fa45dc25 4022 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4023 unsigned long flags;
4024 struct page *page;
4025
9e86943b 4026 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4027 continue;
4028
4029 spin_lock_irqsave(&n->list_lock, flags);
4030 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4031 process_slab(&t, s, page, alloc, map);
88a420e4 4032 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4033 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4034 spin_unlock_irqrestore(&n->list_lock, flags);
4035 }
4036
4037 for (i = 0; i < t.count; i++) {
45edfa58 4038 struct location *l = &t.loc[i];
88a420e4 4039
9c246247 4040 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4041 break;
e374d483 4042 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4043
4044 if (l->addr)
62c70bce 4045 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4046 else
e374d483 4047 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4048
4049 if (l->sum_time != l->min_time) {
e374d483 4050 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4051 l->min_time,
4052 (long)div_u64(l->sum_time, l->count),
4053 l->max_time);
45edfa58 4054 } else
e374d483 4055 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4056 l->min_time);
4057
4058 if (l->min_pid != l->max_pid)
e374d483 4059 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4060 l->min_pid, l->max_pid);
4061 else
e374d483 4062 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4063 l->min_pid);
4064
174596a0
RR
4065 if (num_online_cpus() > 1 &&
4066 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4067 len < PAGE_SIZE - 60) {
4068 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4069 len += cpulist_scnprintf(buf + len,
4070 PAGE_SIZE - len - 50,
174596a0 4071 to_cpumask(l->cpus));
45edfa58
CL
4072 }
4073
62bc62a8 4074 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4075 len < PAGE_SIZE - 60) {
4076 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4077 len += nodelist_scnprintf(buf + len,
4078 PAGE_SIZE - len - 50,
4079 l->nodes);
45edfa58
CL
4080 }
4081
e374d483 4082 len += sprintf(buf + len, "\n");
88a420e4
CL
4083 }
4084
4085 free_loc_track(&t);
bbd7d57b 4086 kfree(map);
88a420e4 4087 if (!t.count)
e374d483
HH
4088 len += sprintf(buf, "No data\n");
4089 return len;
88a420e4 4090}
ab4d5ed5 4091#endif
88a420e4 4092
a5a84755 4093#ifdef SLUB_RESILIENCY_TEST
c07b8183 4094static void __init resiliency_test(void)
a5a84755
CL
4095{
4096 u8 *p;
4097
95a05b42 4098 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4099
f9f58285
FF
4100 pr_err("SLUB resiliency testing\n");
4101 pr_err("-----------------------\n");
4102 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4103
4104 p = kzalloc(16, GFP_KERNEL);
4105 p[16] = 0x12;
f9f58285
FF
4106 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4107 p + 16);
a5a84755
CL
4108
4109 validate_slab_cache(kmalloc_caches[4]);
4110
4111 /* Hmmm... The next two are dangerous */
4112 p = kzalloc(32, GFP_KERNEL);
4113 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4114 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4115 p);
4116 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4117
4118 validate_slab_cache(kmalloc_caches[5]);
4119 p = kzalloc(64, GFP_KERNEL);
4120 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4121 *p = 0x56;
f9f58285
FF
4122 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4123 p);
4124 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4125 validate_slab_cache(kmalloc_caches[6]);
4126
f9f58285 4127 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4128 p = kzalloc(128, GFP_KERNEL);
4129 kfree(p);
4130 *p = 0x78;
f9f58285 4131 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4132 validate_slab_cache(kmalloc_caches[7]);
4133
4134 p = kzalloc(256, GFP_KERNEL);
4135 kfree(p);
4136 p[50] = 0x9a;
f9f58285 4137 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4138 validate_slab_cache(kmalloc_caches[8]);
4139
4140 p = kzalloc(512, GFP_KERNEL);
4141 kfree(p);
4142 p[512] = 0xab;
f9f58285 4143 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4144 validate_slab_cache(kmalloc_caches[9]);
4145}
4146#else
4147#ifdef CONFIG_SYSFS
4148static void resiliency_test(void) {};
4149#endif
4150#endif
4151
ab4d5ed5 4152#ifdef CONFIG_SYSFS
81819f0f 4153enum slab_stat_type {
205ab99d
CL
4154 SL_ALL, /* All slabs */
4155 SL_PARTIAL, /* Only partially allocated slabs */
4156 SL_CPU, /* Only slabs used for cpu caches */
4157 SL_OBJECTS, /* Determine allocated objects not slabs */
4158 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4159};
4160
205ab99d 4161#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4162#define SO_PARTIAL (1 << SL_PARTIAL)
4163#define SO_CPU (1 << SL_CPU)
4164#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4165#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4166
62e5c4b4
CG
4167static ssize_t show_slab_objects(struct kmem_cache *s,
4168 char *buf, unsigned long flags)
81819f0f
CL
4169{
4170 unsigned long total = 0;
81819f0f
CL
4171 int node;
4172 int x;
4173 unsigned long *nodes;
81819f0f 4174
e35e1a97 4175 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4176 if (!nodes)
4177 return -ENOMEM;
81819f0f 4178
205ab99d
CL
4179 if (flags & SO_CPU) {
4180 int cpu;
81819f0f 4181
205ab99d 4182 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4183 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4184 cpu);
ec3ab083 4185 int node;
49e22585 4186 struct page *page;
dfb4f096 4187
bc6697d8 4188 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4189 if (!page)
4190 continue;
205ab99d 4191
ec3ab083
CL
4192 node = page_to_nid(page);
4193 if (flags & SO_TOTAL)
4194 x = page->objects;
4195 else if (flags & SO_OBJECTS)
4196 x = page->inuse;
4197 else
4198 x = 1;
49e22585 4199
ec3ab083
CL
4200 total += x;
4201 nodes[node] += x;
4202
4203 page = ACCESS_ONCE(c->partial);
49e22585 4204 if (page) {
8afb1474
LZ
4205 node = page_to_nid(page);
4206 if (flags & SO_TOTAL)
4207 WARN_ON_ONCE(1);
4208 else if (flags & SO_OBJECTS)
4209 WARN_ON_ONCE(1);
4210 else
4211 x = page->pages;
bc6697d8
ED
4212 total += x;
4213 nodes[node] += x;
49e22585 4214 }
81819f0f
CL
4215 }
4216 }
4217
bfc8c901 4218 get_online_mems();
ab4d5ed5 4219#ifdef CONFIG_SLUB_DEBUG
205ab99d 4220 if (flags & SO_ALL) {
fa45dc25
CL
4221 struct kmem_cache_node *n;
4222
4223 for_each_kmem_cache_node(s, node, n) {
205ab99d 4224
d0e0ac97
CG
4225 if (flags & SO_TOTAL)
4226 x = atomic_long_read(&n->total_objects);
4227 else if (flags & SO_OBJECTS)
4228 x = atomic_long_read(&n->total_objects) -
4229 count_partial(n, count_free);
81819f0f 4230 else
205ab99d 4231 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4232 total += x;
4233 nodes[node] += x;
4234 }
4235
ab4d5ed5
CL
4236 } else
4237#endif
4238 if (flags & SO_PARTIAL) {
fa45dc25 4239 struct kmem_cache_node *n;
81819f0f 4240
fa45dc25 4241 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4242 if (flags & SO_TOTAL)
4243 x = count_partial(n, count_total);
4244 else if (flags & SO_OBJECTS)
4245 x = count_partial(n, count_inuse);
81819f0f 4246 else
205ab99d 4247 x = n->nr_partial;
81819f0f
CL
4248 total += x;
4249 nodes[node] += x;
4250 }
4251 }
81819f0f
CL
4252 x = sprintf(buf, "%lu", total);
4253#ifdef CONFIG_NUMA
fa45dc25 4254 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4255 if (nodes[node])
4256 x += sprintf(buf + x, " N%d=%lu",
4257 node, nodes[node]);
4258#endif
bfc8c901 4259 put_online_mems();
81819f0f
CL
4260 kfree(nodes);
4261 return x + sprintf(buf + x, "\n");
4262}
4263
ab4d5ed5 4264#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4265static int any_slab_objects(struct kmem_cache *s)
4266{
4267 int node;
fa45dc25 4268 struct kmem_cache_node *n;
81819f0f 4269
fa45dc25 4270 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4271 if (atomic_long_read(&n->total_objects))
81819f0f 4272 return 1;
fa45dc25 4273
81819f0f
CL
4274 return 0;
4275}
ab4d5ed5 4276#endif
81819f0f
CL
4277
4278#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4279#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4280
4281struct slab_attribute {
4282 struct attribute attr;
4283 ssize_t (*show)(struct kmem_cache *s, char *buf);
4284 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4285};
4286
4287#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4288 static struct slab_attribute _name##_attr = \
4289 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4290
4291#define SLAB_ATTR(_name) \
4292 static struct slab_attribute _name##_attr = \
ab067e99 4293 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4294
81819f0f
CL
4295static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4296{
4297 return sprintf(buf, "%d\n", s->size);
4298}
4299SLAB_ATTR_RO(slab_size);
4300
4301static ssize_t align_show(struct kmem_cache *s, char *buf)
4302{
4303 return sprintf(buf, "%d\n", s->align);
4304}
4305SLAB_ATTR_RO(align);
4306
4307static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4308{
3b0efdfa 4309 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4310}
4311SLAB_ATTR_RO(object_size);
4312
4313static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4314{
834f3d11 4315 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4316}
4317SLAB_ATTR_RO(objs_per_slab);
4318
06b285dc
CL
4319static ssize_t order_store(struct kmem_cache *s,
4320 const char *buf, size_t length)
4321{
0121c619
CL
4322 unsigned long order;
4323 int err;
4324
3dbb95f7 4325 err = kstrtoul(buf, 10, &order);
0121c619
CL
4326 if (err)
4327 return err;
06b285dc
CL
4328
4329 if (order > slub_max_order || order < slub_min_order)
4330 return -EINVAL;
4331
4332 calculate_sizes(s, order);
4333 return length;
4334}
4335
81819f0f
CL
4336static ssize_t order_show(struct kmem_cache *s, char *buf)
4337{
834f3d11 4338 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4339}
06b285dc 4340SLAB_ATTR(order);
81819f0f 4341
73d342b1
DR
4342static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4343{
4344 return sprintf(buf, "%lu\n", s->min_partial);
4345}
4346
4347static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4348 size_t length)
4349{
4350 unsigned long min;
4351 int err;
4352
3dbb95f7 4353 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4354 if (err)
4355 return err;
4356
c0bdb232 4357 set_min_partial(s, min);
73d342b1
DR
4358 return length;
4359}
4360SLAB_ATTR(min_partial);
4361
49e22585
CL
4362static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4363{
4364 return sprintf(buf, "%u\n", s->cpu_partial);
4365}
4366
4367static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4368 size_t length)
4369{
4370 unsigned long objects;
4371 int err;
4372
3dbb95f7 4373 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4374 if (err)
4375 return err;
345c905d 4376 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4377 return -EINVAL;
49e22585
CL
4378
4379 s->cpu_partial = objects;
4380 flush_all(s);
4381 return length;
4382}
4383SLAB_ATTR(cpu_partial);
4384
81819f0f
CL
4385static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4386{
62c70bce
JP
4387 if (!s->ctor)
4388 return 0;
4389 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4390}
4391SLAB_ATTR_RO(ctor);
4392
81819f0f
CL
4393static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4394{
4307c14f 4395 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4396}
4397SLAB_ATTR_RO(aliases);
4398
81819f0f
CL
4399static ssize_t partial_show(struct kmem_cache *s, char *buf)
4400{
d9acf4b7 4401 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4402}
4403SLAB_ATTR_RO(partial);
4404
4405static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4406{
d9acf4b7 4407 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4408}
4409SLAB_ATTR_RO(cpu_slabs);
4410
4411static ssize_t objects_show(struct kmem_cache *s, char *buf)
4412{
205ab99d 4413 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4414}
4415SLAB_ATTR_RO(objects);
4416
205ab99d
CL
4417static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4418{
4419 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4420}
4421SLAB_ATTR_RO(objects_partial);
4422
49e22585
CL
4423static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4424{
4425 int objects = 0;
4426 int pages = 0;
4427 int cpu;
4428 int len;
4429
4430 for_each_online_cpu(cpu) {
4431 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4432
4433 if (page) {
4434 pages += page->pages;
4435 objects += page->pobjects;
4436 }
4437 }
4438
4439 len = sprintf(buf, "%d(%d)", objects, pages);
4440
4441#ifdef CONFIG_SMP
4442 for_each_online_cpu(cpu) {
4443 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4444
4445 if (page && len < PAGE_SIZE - 20)
4446 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4447 page->pobjects, page->pages);
4448 }
4449#endif
4450 return len + sprintf(buf + len, "\n");
4451}
4452SLAB_ATTR_RO(slabs_cpu_partial);
4453
a5a84755
CL
4454static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4455{
4456 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4457}
4458
4459static ssize_t reclaim_account_store(struct kmem_cache *s,
4460 const char *buf, size_t length)
4461{
4462 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4463 if (buf[0] == '1')
4464 s->flags |= SLAB_RECLAIM_ACCOUNT;
4465 return length;
4466}
4467SLAB_ATTR(reclaim_account);
4468
4469static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4470{
4471 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4472}
4473SLAB_ATTR_RO(hwcache_align);
4474
4475#ifdef CONFIG_ZONE_DMA
4476static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4477{
4478 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4479}
4480SLAB_ATTR_RO(cache_dma);
4481#endif
4482
4483static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4484{
4485 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4486}
4487SLAB_ATTR_RO(destroy_by_rcu);
4488
ab9a0f19
LJ
4489static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4490{
4491 return sprintf(buf, "%d\n", s->reserved);
4492}
4493SLAB_ATTR_RO(reserved);
4494
ab4d5ed5 4495#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4496static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4497{
4498 return show_slab_objects(s, buf, SO_ALL);
4499}
4500SLAB_ATTR_RO(slabs);
4501
205ab99d
CL
4502static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4503{
4504 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4505}
4506SLAB_ATTR_RO(total_objects);
4507
81819f0f
CL
4508static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4509{
4510 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4511}
4512
4513static ssize_t sanity_checks_store(struct kmem_cache *s,
4514 const char *buf, size_t length)
4515{
4516 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4517 if (buf[0] == '1') {
4518 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4519 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4520 }
81819f0f
CL
4521 return length;
4522}
4523SLAB_ATTR(sanity_checks);
4524
4525static ssize_t trace_show(struct kmem_cache *s, char *buf)
4526{
4527 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4528}
4529
4530static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4531 size_t length)
4532{
c9e16131
CL
4533 /*
4534 * Tracing a merged cache is going to give confusing results
4535 * as well as cause other issues like converting a mergeable
4536 * cache into an umergeable one.
4537 */
4538 if (s->refcount > 1)
4539 return -EINVAL;
4540
81819f0f 4541 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4542 if (buf[0] == '1') {
4543 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4544 s->flags |= SLAB_TRACE;
b789ef51 4545 }
81819f0f
CL
4546 return length;
4547}
4548SLAB_ATTR(trace);
4549
81819f0f
CL
4550static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4553}
4554
4555static ssize_t red_zone_store(struct kmem_cache *s,
4556 const char *buf, size_t length)
4557{
4558 if (any_slab_objects(s))
4559 return -EBUSY;
4560
4561 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4562 if (buf[0] == '1') {
4563 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4564 s->flags |= SLAB_RED_ZONE;
b789ef51 4565 }
06b285dc 4566 calculate_sizes(s, -1);
81819f0f
CL
4567 return length;
4568}
4569SLAB_ATTR(red_zone);
4570
4571static ssize_t poison_show(struct kmem_cache *s, char *buf)
4572{
4573 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4574}
4575
4576static ssize_t poison_store(struct kmem_cache *s,
4577 const char *buf, size_t length)
4578{
4579 if (any_slab_objects(s))
4580 return -EBUSY;
4581
4582 s->flags &= ~SLAB_POISON;
b789ef51
CL
4583 if (buf[0] == '1') {
4584 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4585 s->flags |= SLAB_POISON;
b789ef51 4586 }
06b285dc 4587 calculate_sizes(s, -1);
81819f0f
CL
4588 return length;
4589}
4590SLAB_ATTR(poison);
4591
4592static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4593{
4594 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4595}
4596
4597static ssize_t store_user_store(struct kmem_cache *s,
4598 const char *buf, size_t length)
4599{
4600 if (any_slab_objects(s))
4601 return -EBUSY;
4602
4603 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4604 if (buf[0] == '1') {
4605 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4606 s->flags |= SLAB_STORE_USER;
b789ef51 4607 }
06b285dc 4608 calculate_sizes(s, -1);
81819f0f
CL
4609 return length;
4610}
4611SLAB_ATTR(store_user);
4612
53e15af0
CL
4613static ssize_t validate_show(struct kmem_cache *s, char *buf)
4614{
4615 return 0;
4616}
4617
4618static ssize_t validate_store(struct kmem_cache *s,
4619 const char *buf, size_t length)
4620{
434e245d
CL
4621 int ret = -EINVAL;
4622
4623 if (buf[0] == '1') {
4624 ret = validate_slab_cache(s);
4625 if (ret >= 0)
4626 ret = length;
4627 }
4628 return ret;
53e15af0
CL
4629}
4630SLAB_ATTR(validate);
a5a84755
CL
4631
4632static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4633{
4634 if (!(s->flags & SLAB_STORE_USER))
4635 return -ENOSYS;
4636 return list_locations(s, buf, TRACK_ALLOC);
4637}
4638SLAB_ATTR_RO(alloc_calls);
4639
4640static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4641{
4642 if (!(s->flags & SLAB_STORE_USER))
4643 return -ENOSYS;
4644 return list_locations(s, buf, TRACK_FREE);
4645}
4646SLAB_ATTR_RO(free_calls);
4647#endif /* CONFIG_SLUB_DEBUG */
4648
4649#ifdef CONFIG_FAILSLAB
4650static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4651{
4652 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4653}
4654
4655static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4656 size_t length)
4657{
c9e16131
CL
4658 if (s->refcount > 1)
4659 return -EINVAL;
4660
a5a84755
CL
4661 s->flags &= ~SLAB_FAILSLAB;
4662 if (buf[0] == '1')
4663 s->flags |= SLAB_FAILSLAB;
4664 return length;
4665}
4666SLAB_ATTR(failslab);
ab4d5ed5 4667#endif
53e15af0 4668
2086d26a
CL
4669static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4670{
4671 return 0;
4672}
4673
4674static ssize_t shrink_store(struct kmem_cache *s,
4675 const char *buf, size_t length)
4676{
4677 if (buf[0] == '1') {
4678 int rc = kmem_cache_shrink(s);
4679
4680 if (rc)
4681 return rc;
4682 } else
4683 return -EINVAL;
4684 return length;
4685}
4686SLAB_ATTR(shrink);
4687
81819f0f 4688#ifdef CONFIG_NUMA
9824601e 4689static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4690{
9824601e 4691 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4692}
4693
9824601e 4694static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4695 const char *buf, size_t length)
4696{
0121c619
CL
4697 unsigned long ratio;
4698 int err;
4699
3dbb95f7 4700 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4701 if (err)
4702 return err;
4703
e2cb96b7 4704 if (ratio <= 100)
0121c619 4705 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4706
81819f0f
CL
4707 return length;
4708}
9824601e 4709SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4710#endif
4711
8ff12cfc 4712#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4713static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4714{
4715 unsigned long sum = 0;
4716 int cpu;
4717 int len;
4718 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4719
4720 if (!data)
4721 return -ENOMEM;
4722
4723 for_each_online_cpu(cpu) {
9dfc6e68 4724 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4725
4726 data[cpu] = x;
4727 sum += x;
4728 }
4729
4730 len = sprintf(buf, "%lu", sum);
4731
50ef37b9 4732#ifdef CONFIG_SMP
8ff12cfc
CL
4733 for_each_online_cpu(cpu) {
4734 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4735 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4736 }
50ef37b9 4737#endif
8ff12cfc
CL
4738 kfree(data);
4739 return len + sprintf(buf + len, "\n");
4740}
4741
78eb00cc
DR
4742static void clear_stat(struct kmem_cache *s, enum stat_item si)
4743{
4744 int cpu;
4745
4746 for_each_online_cpu(cpu)
9dfc6e68 4747 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4748}
4749
8ff12cfc
CL
4750#define STAT_ATTR(si, text) \
4751static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4752{ \
4753 return show_stat(s, buf, si); \
4754} \
78eb00cc
DR
4755static ssize_t text##_store(struct kmem_cache *s, \
4756 const char *buf, size_t length) \
4757{ \
4758 if (buf[0] != '0') \
4759 return -EINVAL; \
4760 clear_stat(s, si); \
4761 return length; \
4762} \
4763SLAB_ATTR(text); \
8ff12cfc
CL
4764
4765STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4766STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4767STAT_ATTR(FREE_FASTPATH, free_fastpath);
4768STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4769STAT_ATTR(FREE_FROZEN, free_frozen);
4770STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4771STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4772STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4773STAT_ATTR(ALLOC_SLAB, alloc_slab);
4774STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4775STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4776STAT_ATTR(FREE_SLAB, free_slab);
4777STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4778STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4779STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4780STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4781STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4782STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4783STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4784STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4785STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4786STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4787STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4788STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4789STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4790STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4791#endif
4792
06428780 4793static struct attribute *slab_attrs[] = {
81819f0f
CL
4794 &slab_size_attr.attr,
4795 &object_size_attr.attr,
4796 &objs_per_slab_attr.attr,
4797 &order_attr.attr,
73d342b1 4798 &min_partial_attr.attr,
49e22585 4799 &cpu_partial_attr.attr,
81819f0f 4800 &objects_attr.attr,
205ab99d 4801 &objects_partial_attr.attr,
81819f0f
CL
4802 &partial_attr.attr,
4803 &cpu_slabs_attr.attr,
4804 &ctor_attr.attr,
81819f0f
CL
4805 &aliases_attr.attr,
4806 &align_attr.attr,
81819f0f
CL
4807 &hwcache_align_attr.attr,
4808 &reclaim_account_attr.attr,
4809 &destroy_by_rcu_attr.attr,
a5a84755 4810 &shrink_attr.attr,
ab9a0f19 4811 &reserved_attr.attr,
49e22585 4812 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4813#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4814 &total_objects_attr.attr,
4815 &slabs_attr.attr,
4816 &sanity_checks_attr.attr,
4817 &trace_attr.attr,
81819f0f
CL
4818 &red_zone_attr.attr,
4819 &poison_attr.attr,
4820 &store_user_attr.attr,
53e15af0 4821 &validate_attr.attr,
88a420e4
CL
4822 &alloc_calls_attr.attr,
4823 &free_calls_attr.attr,
ab4d5ed5 4824#endif
81819f0f
CL
4825#ifdef CONFIG_ZONE_DMA
4826 &cache_dma_attr.attr,
4827#endif
4828#ifdef CONFIG_NUMA
9824601e 4829 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4830#endif
4831#ifdef CONFIG_SLUB_STATS
4832 &alloc_fastpath_attr.attr,
4833 &alloc_slowpath_attr.attr,
4834 &free_fastpath_attr.attr,
4835 &free_slowpath_attr.attr,
4836 &free_frozen_attr.attr,
4837 &free_add_partial_attr.attr,
4838 &free_remove_partial_attr.attr,
4839 &alloc_from_partial_attr.attr,
4840 &alloc_slab_attr.attr,
4841 &alloc_refill_attr.attr,
e36a2652 4842 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4843 &free_slab_attr.attr,
4844 &cpuslab_flush_attr.attr,
4845 &deactivate_full_attr.attr,
4846 &deactivate_empty_attr.attr,
4847 &deactivate_to_head_attr.attr,
4848 &deactivate_to_tail_attr.attr,
4849 &deactivate_remote_frees_attr.attr,
03e404af 4850 &deactivate_bypass_attr.attr,
65c3376a 4851 &order_fallback_attr.attr,
b789ef51
CL
4852 &cmpxchg_double_fail_attr.attr,
4853 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4854 &cpu_partial_alloc_attr.attr,
4855 &cpu_partial_free_attr.attr,
8028dcea
AS
4856 &cpu_partial_node_attr.attr,
4857 &cpu_partial_drain_attr.attr,
81819f0f 4858#endif
4c13dd3b
DM
4859#ifdef CONFIG_FAILSLAB
4860 &failslab_attr.attr,
4861#endif
4862
81819f0f
CL
4863 NULL
4864};
4865
4866static struct attribute_group slab_attr_group = {
4867 .attrs = slab_attrs,
4868};
4869
4870static ssize_t slab_attr_show(struct kobject *kobj,
4871 struct attribute *attr,
4872 char *buf)
4873{
4874 struct slab_attribute *attribute;
4875 struct kmem_cache *s;
4876 int err;
4877
4878 attribute = to_slab_attr(attr);
4879 s = to_slab(kobj);
4880
4881 if (!attribute->show)
4882 return -EIO;
4883
4884 err = attribute->show(s, buf);
4885
4886 return err;
4887}
4888
4889static ssize_t slab_attr_store(struct kobject *kobj,
4890 struct attribute *attr,
4891 const char *buf, size_t len)
4892{
4893 struct slab_attribute *attribute;
4894 struct kmem_cache *s;
4895 int err;
4896
4897 attribute = to_slab_attr(attr);
4898 s = to_slab(kobj);
4899
4900 if (!attribute->store)
4901 return -EIO;
4902
4903 err = attribute->store(s, buf, len);
107dab5c
GC
4904#ifdef CONFIG_MEMCG_KMEM
4905 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4906 int i;
81819f0f 4907
107dab5c
GC
4908 mutex_lock(&slab_mutex);
4909 if (s->max_attr_size < len)
4910 s->max_attr_size = len;
4911
ebe945c2
GC
4912 /*
4913 * This is a best effort propagation, so this function's return
4914 * value will be determined by the parent cache only. This is
4915 * basically because not all attributes will have a well
4916 * defined semantics for rollbacks - most of the actions will
4917 * have permanent effects.
4918 *
4919 * Returning the error value of any of the children that fail
4920 * is not 100 % defined, in the sense that users seeing the
4921 * error code won't be able to know anything about the state of
4922 * the cache.
4923 *
4924 * Only returning the error code for the parent cache at least
4925 * has well defined semantics. The cache being written to
4926 * directly either failed or succeeded, in which case we loop
4927 * through the descendants with best-effort propagation.
4928 */
107dab5c 4929 for_each_memcg_cache_index(i) {
2ade4de8 4930 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
4931 if (c)
4932 attribute->store(c, buf, len);
4933 }
4934 mutex_unlock(&slab_mutex);
4935 }
4936#endif
81819f0f
CL
4937 return err;
4938}
4939
107dab5c
GC
4940static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4941{
4942#ifdef CONFIG_MEMCG_KMEM
4943 int i;
4944 char *buffer = NULL;
93030d83 4945 struct kmem_cache *root_cache;
107dab5c 4946
93030d83 4947 if (is_root_cache(s))
107dab5c
GC
4948 return;
4949
93030d83
VD
4950 root_cache = s->memcg_params->root_cache;
4951
107dab5c
GC
4952 /*
4953 * This mean this cache had no attribute written. Therefore, no point
4954 * in copying default values around
4955 */
93030d83 4956 if (!root_cache->max_attr_size)
107dab5c
GC
4957 return;
4958
4959 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4960 char mbuf[64];
4961 char *buf;
4962 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4963
4964 if (!attr || !attr->store || !attr->show)
4965 continue;
4966
4967 /*
4968 * It is really bad that we have to allocate here, so we will
4969 * do it only as a fallback. If we actually allocate, though,
4970 * we can just use the allocated buffer until the end.
4971 *
4972 * Most of the slub attributes will tend to be very small in
4973 * size, but sysfs allows buffers up to a page, so they can
4974 * theoretically happen.
4975 */
4976 if (buffer)
4977 buf = buffer;
93030d83 4978 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
4979 buf = mbuf;
4980 else {
4981 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4982 if (WARN_ON(!buffer))
4983 continue;
4984 buf = buffer;
4985 }
4986
93030d83 4987 attr->show(root_cache, buf);
107dab5c
GC
4988 attr->store(s, buf, strlen(buf));
4989 }
4990
4991 if (buffer)
4992 free_page((unsigned long)buffer);
4993#endif
4994}
4995
41a21285
CL
4996static void kmem_cache_release(struct kobject *k)
4997{
4998 slab_kmem_cache_release(to_slab(k));
4999}
5000
52cf25d0 5001static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5002 .show = slab_attr_show,
5003 .store = slab_attr_store,
5004};
5005
5006static struct kobj_type slab_ktype = {
5007 .sysfs_ops = &slab_sysfs_ops,
41a21285 5008 .release = kmem_cache_release,
81819f0f
CL
5009};
5010
5011static int uevent_filter(struct kset *kset, struct kobject *kobj)
5012{
5013 struct kobj_type *ktype = get_ktype(kobj);
5014
5015 if (ktype == &slab_ktype)
5016 return 1;
5017 return 0;
5018}
5019
9cd43611 5020static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5021 .filter = uevent_filter,
5022};
5023
27c3a314 5024static struct kset *slab_kset;
81819f0f 5025
9a41707b
VD
5026static inline struct kset *cache_kset(struct kmem_cache *s)
5027{
5028#ifdef CONFIG_MEMCG_KMEM
5029 if (!is_root_cache(s))
5030 return s->memcg_params->root_cache->memcg_kset;
5031#endif
5032 return slab_kset;
5033}
5034
81819f0f
CL
5035#define ID_STR_LENGTH 64
5036
5037/* Create a unique string id for a slab cache:
6446faa2
CL
5038 *
5039 * Format :[flags-]size
81819f0f
CL
5040 */
5041static char *create_unique_id(struct kmem_cache *s)
5042{
5043 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5044 char *p = name;
5045
5046 BUG_ON(!name);
5047
5048 *p++ = ':';
5049 /*
5050 * First flags affecting slabcache operations. We will only
5051 * get here for aliasable slabs so we do not need to support
5052 * too many flags. The flags here must cover all flags that
5053 * are matched during merging to guarantee that the id is
5054 * unique.
5055 */
5056 if (s->flags & SLAB_CACHE_DMA)
5057 *p++ = 'd';
5058 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5059 *p++ = 'a';
5060 if (s->flags & SLAB_DEBUG_FREE)
5061 *p++ = 'F';
5a896d9e
VN
5062 if (!(s->flags & SLAB_NOTRACK))
5063 *p++ = 't';
81819f0f
CL
5064 if (p != name + 1)
5065 *p++ = '-';
5066 p += sprintf(p, "%07d", s->size);
2633d7a0 5067
81819f0f
CL
5068 BUG_ON(p > name + ID_STR_LENGTH - 1);
5069 return name;
5070}
5071
5072static int sysfs_slab_add(struct kmem_cache *s)
5073{
5074 int err;
5075 const char *name;
45530c44 5076 int unmergeable = slab_unmergeable(s);
81819f0f 5077
81819f0f
CL
5078 if (unmergeable) {
5079 /*
5080 * Slabcache can never be merged so we can use the name proper.
5081 * This is typically the case for debug situations. In that
5082 * case we can catch duplicate names easily.
5083 */
27c3a314 5084 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5085 name = s->name;
5086 } else {
5087 /*
5088 * Create a unique name for the slab as a target
5089 * for the symlinks.
5090 */
5091 name = create_unique_id(s);
5092 }
5093
9a41707b 5094 s->kobj.kset = cache_kset(s);
26e4f205 5095 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5096 if (err)
5097 goto out_put_kobj;
81819f0f
CL
5098
5099 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5100 if (err)
5101 goto out_del_kobj;
9a41707b
VD
5102
5103#ifdef CONFIG_MEMCG_KMEM
5104 if (is_root_cache(s)) {
5105 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5106 if (!s->memcg_kset) {
54b6a731
DJ
5107 err = -ENOMEM;
5108 goto out_del_kobj;
9a41707b
VD
5109 }
5110 }
5111#endif
5112
81819f0f
CL
5113 kobject_uevent(&s->kobj, KOBJ_ADD);
5114 if (!unmergeable) {
5115 /* Setup first alias */
5116 sysfs_slab_alias(s, s->name);
81819f0f 5117 }
54b6a731
DJ
5118out:
5119 if (!unmergeable)
5120 kfree(name);
5121 return err;
5122out_del_kobj:
5123 kobject_del(&s->kobj);
5124out_put_kobj:
5125 kobject_put(&s->kobj);
5126 goto out;
81819f0f
CL
5127}
5128
41a21285 5129void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5130{
97d06609 5131 if (slab_state < FULL)
2bce6485
CL
5132 /*
5133 * Sysfs has not been setup yet so no need to remove the
5134 * cache from sysfs.
5135 */
5136 return;
5137
9a41707b
VD
5138#ifdef CONFIG_MEMCG_KMEM
5139 kset_unregister(s->memcg_kset);
5140#endif
81819f0f
CL
5141 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5142 kobject_del(&s->kobj);
151c602f 5143 kobject_put(&s->kobj);
81819f0f
CL
5144}
5145
5146/*
5147 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5148 * available lest we lose that information.
81819f0f
CL
5149 */
5150struct saved_alias {
5151 struct kmem_cache *s;
5152 const char *name;
5153 struct saved_alias *next;
5154};
5155
5af328a5 5156static struct saved_alias *alias_list;
81819f0f
CL
5157
5158static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5159{
5160 struct saved_alias *al;
5161
97d06609 5162 if (slab_state == FULL) {
81819f0f
CL
5163 /*
5164 * If we have a leftover link then remove it.
5165 */
27c3a314
GKH
5166 sysfs_remove_link(&slab_kset->kobj, name);
5167 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5168 }
5169
5170 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5171 if (!al)
5172 return -ENOMEM;
5173
5174 al->s = s;
5175 al->name = name;
5176 al->next = alias_list;
5177 alias_list = al;
5178 return 0;
5179}
5180
5181static int __init slab_sysfs_init(void)
5182{
5b95a4ac 5183 struct kmem_cache *s;
81819f0f
CL
5184 int err;
5185
18004c5d 5186 mutex_lock(&slab_mutex);
2bce6485 5187
0ff21e46 5188 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5189 if (!slab_kset) {
18004c5d 5190 mutex_unlock(&slab_mutex);
f9f58285 5191 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5192 return -ENOSYS;
5193 }
5194
97d06609 5195 slab_state = FULL;
26a7bd03 5196
5b95a4ac 5197 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5198 err = sysfs_slab_add(s);
5d540fb7 5199 if (err)
f9f58285
FF
5200 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5201 s->name);
26a7bd03 5202 }
81819f0f
CL
5203
5204 while (alias_list) {
5205 struct saved_alias *al = alias_list;
5206
5207 alias_list = alias_list->next;
5208 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5209 if (err)
f9f58285
FF
5210 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5211 al->name);
81819f0f
CL
5212 kfree(al);
5213 }
5214
18004c5d 5215 mutex_unlock(&slab_mutex);
81819f0f
CL
5216 resiliency_test();
5217 return 0;
5218}
5219
5220__initcall(slab_sysfs_init);
ab4d5ed5 5221#endif /* CONFIG_SYSFS */
57ed3eda
PE
5222
5223/*
5224 * The /proc/slabinfo ABI
5225 */
158a9624 5226#ifdef CONFIG_SLABINFO
0d7561c6 5227void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5228{
57ed3eda 5229 unsigned long nr_slabs = 0;
205ab99d
CL
5230 unsigned long nr_objs = 0;
5231 unsigned long nr_free = 0;
57ed3eda 5232 int node;
fa45dc25 5233 struct kmem_cache_node *n;
57ed3eda 5234
fa45dc25 5235 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5236 nr_slabs += node_nr_slabs(n);
5237 nr_objs += node_nr_objs(n);
205ab99d 5238 nr_free += count_partial(n, count_free);
57ed3eda
PE
5239 }
5240
0d7561c6
GC
5241 sinfo->active_objs = nr_objs - nr_free;
5242 sinfo->num_objs = nr_objs;
5243 sinfo->active_slabs = nr_slabs;
5244 sinfo->num_slabs = nr_slabs;
5245 sinfo->objects_per_slab = oo_objects(s->oo);
5246 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5247}
5248
0d7561c6 5249void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5250{
7b3c3a50
AD
5251}
5252
b7454ad3
GC
5253ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5254 size_t count, loff_t *ppos)
7b3c3a50 5255{
b7454ad3 5256 return -EIO;
7b3c3a50 5257}
158a9624 5258#endif /* CONFIG_SLABINFO */