]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm/kasan: get rid of ->alloc_size in struct kasan_alloc_meta
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
c146a2b9 127inline void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
81819f0f
CL
197#ifdef CONFIG_SMP
198static struct notifier_block slab_notifier;
199#endif
200
02cbc874
CL
201/*
202 * Tracking user of a slab.
203 */
d6543e39 204#define TRACK_ADDRS_COUNT 16
02cbc874 205struct track {
ce71e27c 206 unsigned long addr; /* Called from address */
d6543e39
BG
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
02cbc874
CL
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
ab4d5ed5 217#ifdef CONFIG_SYSFS
81819f0f
CL
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
7656c72b
CL
243static inline void *get_freepointer(struct kmem_cache *s, void *object)
244{
245 return *(void **)(object + s->offset);
246}
247
0ad9500e
ED
248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249{
250 prefetch(object + s->offset);
251}
252
1393d9a1
CL
253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254{
255 void *p;
256
922d566c
JK
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s, object);
259
1393d9a1 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
261 return p;
262}
263
7656c72b
CL
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be 270#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
273 __p += (__s)->size)
7656c72b 274
54266640 275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
54266640 279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
ab9a0f19
LJ
286static inline int order_objects(int order, unsigned long size, int reserved)
287{
288 return ((PAGE_SIZE << order) - reserved) / size;
289}
290
834f3d11 291static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 292 unsigned long size, int reserved)
834f3d11
CL
293{
294 struct kmem_cache_order_objects x = {
ab9a0f19 295 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
296 };
297
298 return x;
299}
300
301static inline int oo_order(struct kmem_cache_order_objects x)
302{
210b5c06 303 return x.x >> OO_SHIFT;
834f3d11
CL
304}
305
306static inline int oo_objects(struct kmem_cache_order_objects x)
307{
210b5c06 308 return x.x & OO_MASK;
834f3d11
CL
309}
310
881db7fb
CL
311/*
312 * Per slab locking using the pagelock
313 */
314static __always_inline void slab_lock(struct page *page)
315{
48c935ad 316 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
317 bit_spin_lock(PG_locked, &page->flags);
318}
319
320static __always_inline void slab_unlock(struct page *page)
321{
48c935ad 322 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
323 __bit_spin_unlock(PG_locked, &page->flags);
324}
325
a0320865
DH
326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327{
328 struct page tmp;
329 tmp.counters = counters_new;
330 /*
331 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
332 * as page->_refcount. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
334 * be careful and only assign to the fields we need.
335 */
336 page->frozen = tmp.frozen;
337 page->inuse = tmp.inuse;
338 page->objects = tmp.objects;
339}
340
1d07171c
CL
341/* Interrupts must be disabled (for the fallback code to work right) */
342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 void *freelist_old, unsigned long counters_old,
344 void *freelist_new, unsigned long counters_new,
345 const char *n)
346{
347 VM_BUG_ON(!irqs_disabled());
2565409f
HC
348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 350 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 351 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
352 freelist_old, counters_old,
353 freelist_new, counters_new))
6f6528a1 354 return true;
1d07171c
CL
355 } else
356#endif
357 {
358 slab_lock(page);
d0e0ac97
CG
359 if (page->freelist == freelist_old &&
360 page->counters == counters_old) {
1d07171c 361 page->freelist = freelist_new;
a0320865 362 set_page_slub_counters(page, counters_new);
1d07171c 363 slab_unlock(page);
6f6528a1 364 return true;
1d07171c
CL
365 }
366 slab_unlock(page);
367 }
368
369 cpu_relax();
370 stat(s, CMPXCHG_DOUBLE_FAIL);
371
372#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 373 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
374#endif
375
6f6528a1 376 return false;
1d07171c
CL
377}
378
b789ef51
CL
379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 void *freelist_old, unsigned long counters_old,
381 void *freelist_new, unsigned long counters_new,
382 const char *n)
383{
2565409f
HC
384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 386 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 387 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
388 freelist_old, counters_old,
389 freelist_new, counters_new))
6f6528a1 390 return true;
b789ef51
CL
391 } else
392#endif
393 {
1d07171c
CL
394 unsigned long flags;
395
396 local_irq_save(flags);
881db7fb 397 slab_lock(page);
d0e0ac97
CG
398 if (page->freelist == freelist_old &&
399 page->counters == counters_old) {
b789ef51 400 page->freelist = freelist_new;
a0320865 401 set_page_slub_counters(page, counters_new);
881db7fb 402 slab_unlock(page);
1d07171c 403 local_irq_restore(flags);
6f6528a1 404 return true;
b789ef51 405 }
881db7fb 406 slab_unlock(page);
1d07171c 407 local_irq_restore(flags);
b789ef51
CL
408 }
409
410 cpu_relax();
411 stat(s, CMPXCHG_DOUBLE_FAIL);
412
413#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 414 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
415#endif
416
6f6528a1 417 return false;
b789ef51
CL
418}
419
41ecc55b 420#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
421/*
422 * Determine a map of object in use on a page.
423 *
881db7fb 424 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
425 * not vanish from under us.
426 */
427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428{
429 void *p;
430 void *addr = page_address(page);
431
432 for (p = page->freelist; p; p = get_freepointer(s, p))
433 set_bit(slab_index(p, s, addr), map);
434}
435
d86bd1be
JK
436static inline int size_from_object(struct kmem_cache *s)
437{
438 if (s->flags & SLAB_RED_ZONE)
439 return s->size - s->red_left_pad;
440
441 return s->size;
442}
443
444static inline void *restore_red_left(struct kmem_cache *s, void *p)
445{
446 if (s->flags & SLAB_RED_ZONE)
447 p -= s->red_left_pad;
448
449 return p;
450}
451
41ecc55b
CL
452/*
453 * Debug settings:
454 */
89d3c87e 455#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
456static int slub_debug = DEBUG_DEFAULT_FLAGS;
457#else
41ecc55b 458static int slub_debug;
f0630fff 459#endif
41ecc55b
CL
460
461static char *slub_debug_slabs;
fa5ec8a1 462static int disable_higher_order_debug;
41ecc55b 463
a79316c6
AR
464/*
465 * slub is about to manipulate internal object metadata. This memory lies
466 * outside the range of the allocated object, so accessing it would normally
467 * be reported by kasan as a bounds error. metadata_access_enable() is used
468 * to tell kasan that these accesses are OK.
469 */
470static inline void metadata_access_enable(void)
471{
472 kasan_disable_current();
473}
474
475static inline void metadata_access_disable(void)
476{
477 kasan_enable_current();
478}
479
81819f0f
CL
480/*
481 * Object debugging
482 */
d86bd1be
JK
483
484/* Verify that a pointer has an address that is valid within a slab page */
485static inline int check_valid_pointer(struct kmem_cache *s,
486 struct page *page, void *object)
487{
488 void *base;
489
490 if (!object)
491 return 1;
492
493 base = page_address(page);
494 object = restore_red_left(s, object);
495 if (object < base || object >= base + page->objects * s->size ||
496 (object - base) % s->size) {
497 return 0;
498 }
499
500 return 1;
501}
502
81819f0f
CL
503static void print_section(char *text, u8 *addr, unsigned int length)
504{
a79316c6 505 metadata_access_enable();
ffc79d28
SAS
506 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
507 length, 1);
a79316c6 508 metadata_access_disable();
81819f0f
CL
509}
510
81819f0f
CL
511static struct track *get_track(struct kmem_cache *s, void *object,
512 enum track_item alloc)
513{
514 struct track *p;
515
516 if (s->offset)
517 p = object + s->offset + sizeof(void *);
518 else
519 p = object + s->inuse;
520
521 return p + alloc;
522}
523
524static void set_track(struct kmem_cache *s, void *object,
ce71e27c 525 enum track_item alloc, unsigned long addr)
81819f0f 526{
1a00df4a 527 struct track *p = get_track(s, object, alloc);
81819f0f 528
81819f0f 529 if (addr) {
d6543e39
BG
530#ifdef CONFIG_STACKTRACE
531 struct stack_trace trace;
532 int i;
533
534 trace.nr_entries = 0;
535 trace.max_entries = TRACK_ADDRS_COUNT;
536 trace.entries = p->addrs;
537 trace.skip = 3;
a79316c6 538 metadata_access_enable();
d6543e39 539 save_stack_trace(&trace);
a79316c6 540 metadata_access_disable();
d6543e39
BG
541
542 /* See rant in lockdep.c */
543 if (trace.nr_entries != 0 &&
544 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
545 trace.nr_entries--;
546
547 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 p->addrs[i] = 0;
549#endif
81819f0f
CL
550 p->addr = addr;
551 p->cpu = smp_processor_id();
88e4ccf2 552 p->pid = current->pid;
81819f0f
CL
553 p->when = jiffies;
554 } else
555 memset(p, 0, sizeof(struct track));
556}
557
81819f0f
CL
558static void init_tracking(struct kmem_cache *s, void *object)
559{
24922684
CL
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
ce71e27c
EGM
563 set_track(s, object, TRACK_FREE, 0UL);
564 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
565}
566
567static void print_track(const char *s, struct track *t)
568{
569 if (!t->addr)
570 return;
571
f9f58285
FF
572 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
573 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
574#ifdef CONFIG_STACKTRACE
575 {
576 int i;
577 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
578 if (t->addrs[i])
f9f58285 579 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
580 else
581 break;
582 }
583#endif
24922684
CL
584}
585
586static void print_tracking(struct kmem_cache *s, void *object)
587{
588 if (!(s->flags & SLAB_STORE_USER))
589 return;
590
591 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
592 print_track("Freed", get_track(s, object, TRACK_FREE));
593}
594
595static void print_page_info(struct page *page)
596{
f9f58285 597 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 598 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
599
600}
601
602static void slab_bug(struct kmem_cache *s, char *fmt, ...)
603{
ecc42fbe 604 struct va_format vaf;
24922684 605 va_list args;
24922684
CL
606
607 va_start(args, fmt);
ecc42fbe
FF
608 vaf.fmt = fmt;
609 vaf.va = &args;
f9f58285 610 pr_err("=============================================================================\n");
ecc42fbe 611 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 612 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 613
373d4d09 614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 615 va_end(args);
81819f0f
CL
616}
617
24922684
CL
618static void slab_fix(struct kmem_cache *s, char *fmt, ...)
619{
ecc42fbe 620 struct va_format vaf;
24922684 621 va_list args;
24922684
CL
622
623 va_start(args, fmt);
ecc42fbe
FF
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 627 va_end(args);
24922684
CL
628}
629
630static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
631{
632 unsigned int off; /* Offset of last byte */
a973e9dd 633 u8 *addr = page_address(page);
24922684
CL
634
635 print_tracking(s, p);
636
637 print_page_info(page);
638
f9f58285
FF
639 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
640 p, p - addr, get_freepointer(s, p));
24922684 641
d86bd1be
JK
642 if (s->flags & SLAB_RED_ZONE)
643 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
644 else if (p > addr + 16)
ffc79d28 645 print_section("Bytes b4 ", p - 16, 16);
81819f0f 646
3b0efdfa 647 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 648 PAGE_SIZE));
81819f0f 649 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
650 print_section("Redzone ", p + s->object_size,
651 s->inuse - s->object_size);
81819f0f 652
81819f0f
CL
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
24922684 658 if (s->flags & SLAB_STORE_USER)
81819f0f 659 off += 2 * sizeof(struct track);
81819f0f 660
80a9201a
AP
661 off += kasan_metadata_size(s);
662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
d86bd1be 665 print_section("Padding ", p + off, size_from_object(s) - off);
24922684
CL
666
667 dump_stack();
81819f0f
CL
668}
669
75c66def 670void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
671 u8 *object, char *reason)
672{
3dc50637 673 slab_bug(s, "%s", reason);
24922684 674 print_trailer(s, page, object);
81819f0f
CL
675}
676
d0e0ac97
CG
677static void slab_err(struct kmem_cache *s, struct page *page,
678 const char *fmt, ...)
81819f0f
CL
679{
680 va_list args;
681 char buf[100];
682
24922684
CL
683 va_start(args, fmt);
684 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 685 va_end(args);
3dc50637 686 slab_bug(s, "%s", buf);
24922684 687 print_page_info(page);
81819f0f
CL
688 dump_stack();
689}
690
f7cb1933 691static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
692{
693 u8 *p = object;
694
d86bd1be
JK
695 if (s->flags & SLAB_RED_ZONE)
696 memset(p - s->red_left_pad, val, s->red_left_pad);
697
81819f0f 698 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
699 memset(p, POISON_FREE, s->object_size - 1);
700 p[s->object_size - 1] = POISON_END;
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 704 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
705}
706
24922684
CL
707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 void *from, void *to)
709{
710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 memset(from, data, to - from);
712}
713
714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 u8 *object, char *what,
06428780 716 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
717{
718 u8 *fault;
719 u8 *end;
720
a79316c6 721 metadata_access_enable();
79824820 722 fault = memchr_inv(start, value, bytes);
a79316c6 723 metadata_access_disable();
24922684
CL
724 if (!fault)
725 return 1;
726
727 end = start + bytes;
728 while (end > fault && end[-1] == value)
729 end--;
730
731 slab_bug(s, "%s overwritten", what);
f9f58285 732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
733 fault, end - 1, fault[0], value);
734 print_trailer(s, page, object);
735
736 restore_bytes(s, what, value, fault, end);
737 return 0;
81819f0f
CL
738}
739
81819f0f
CL
740/*
741 * Object layout:
742 *
743 * object address
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
672bba3a 747 *
81819f0f
CL
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
749 * 0xa5 (POISON_END)
750 *
3b0efdfa 751 * object + s->object_size
81819f0f 752 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 753 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 754 * object_size == inuse.
672bba3a 755 *
81819f0f
CL
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
758 *
759 * object + s->inuse
672bba3a
CL
760 * Meta data starts here.
761 *
81819f0f
CL
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
672bba3a 764 * C. Padding to reach required alignment boundary or at mininum
6446faa2 765 * one word if debugging is on to be able to detect writes
672bba3a
CL
766 * before the word boundary.
767 *
768 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
769 *
770 * object + s->size
672bba3a 771 * Nothing is used beyond s->size.
81819f0f 772 *
3b0efdfa 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 774 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
775 * may be used with merged slabcaches.
776 */
777
81819f0f
CL
778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779{
780 unsigned long off = s->inuse; /* The end of info */
781
782 if (s->offset)
783 /* Freepointer is placed after the object. */
784 off += sizeof(void *);
785
786 if (s->flags & SLAB_STORE_USER)
787 /* We also have user information there */
788 off += 2 * sizeof(struct track);
789
80a9201a
AP
790 off += kasan_metadata_size(s);
791
d86bd1be 792 if (size_from_object(s) == off)
81819f0f
CL
793 return 1;
794
24922684 795 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 796 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
797}
798
39b26464 799/* Check the pad bytes at the end of a slab page */
81819f0f
CL
800static int slab_pad_check(struct kmem_cache *s, struct page *page)
801{
24922684
CL
802 u8 *start;
803 u8 *fault;
804 u8 *end;
805 int length;
806 int remainder;
81819f0f
CL
807
808 if (!(s->flags & SLAB_POISON))
809 return 1;
810
a973e9dd 811 start = page_address(page);
ab9a0f19 812 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
813 end = start + length;
814 remainder = length % s->size;
81819f0f
CL
815 if (!remainder)
816 return 1;
817
a79316c6 818 metadata_access_enable();
79824820 819 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 820 metadata_access_disable();
24922684
CL
821 if (!fault)
822 return 1;
823 while (end > fault && end[-1] == POISON_INUSE)
824 end--;
825
826 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 827 print_section("Padding ", end - remainder, remainder);
24922684 828
8a3d271d 829 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 830 return 0;
81819f0f
CL
831}
832
833static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 834 void *object, u8 val)
81819f0f
CL
835{
836 u8 *p = object;
3b0efdfa 837 u8 *endobject = object + s->object_size;
81819f0f
CL
838
839 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
840 if (!check_bytes_and_report(s, page, object, "Redzone",
841 object - s->red_left_pad, val, s->red_left_pad))
842 return 0;
843
24922684 844 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 845 endobject, val, s->inuse - s->object_size))
81819f0f 846 return 0;
81819f0f 847 } else {
3b0efdfa 848 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 849 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
850 endobject, POISON_INUSE,
851 s->inuse - s->object_size);
3adbefee 852 }
81819f0f
CL
853 }
854
855 if (s->flags & SLAB_POISON) {
f7cb1933 856 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 857 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 858 POISON_FREE, s->object_size - 1) ||
24922684 859 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 860 p + s->object_size - 1, POISON_END, 1)))
81819f0f 861 return 0;
81819f0f
CL
862 /*
863 * check_pad_bytes cleans up on its own.
864 */
865 check_pad_bytes(s, page, p);
866 }
867
f7cb1933 868 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
869 /*
870 * Object and freepointer overlap. Cannot check
871 * freepointer while object is allocated.
872 */
873 return 1;
874
875 /* Check free pointer validity */
876 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
877 object_err(s, page, p, "Freepointer corrupt");
878 /*
9f6c708e 879 * No choice but to zap it and thus lose the remainder
81819f0f 880 * of the free objects in this slab. May cause
672bba3a 881 * another error because the object count is now wrong.
81819f0f 882 */
a973e9dd 883 set_freepointer(s, p, NULL);
81819f0f
CL
884 return 0;
885 }
886 return 1;
887}
888
889static int check_slab(struct kmem_cache *s, struct page *page)
890{
39b26464
CL
891 int maxobj;
892
81819f0f
CL
893 VM_BUG_ON(!irqs_disabled());
894
895 if (!PageSlab(page)) {
24922684 896 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
897 return 0;
898 }
39b26464 899
ab9a0f19 900 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
901 if (page->objects > maxobj) {
902 slab_err(s, page, "objects %u > max %u",
f6edde9c 903 page->objects, maxobj);
39b26464
CL
904 return 0;
905 }
906 if (page->inuse > page->objects) {
24922684 907 slab_err(s, page, "inuse %u > max %u",
f6edde9c 908 page->inuse, page->objects);
81819f0f
CL
909 return 0;
910 }
911 /* Slab_pad_check fixes things up after itself */
912 slab_pad_check(s, page);
913 return 1;
914}
915
916/*
672bba3a
CL
917 * Determine if a certain object on a page is on the freelist. Must hold the
918 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
919 */
920static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
921{
922 int nr = 0;
881db7fb 923 void *fp;
81819f0f 924 void *object = NULL;
f6edde9c 925 int max_objects;
81819f0f 926
881db7fb 927 fp = page->freelist;
39b26464 928 while (fp && nr <= page->objects) {
81819f0f
CL
929 if (fp == search)
930 return 1;
931 if (!check_valid_pointer(s, page, fp)) {
932 if (object) {
933 object_err(s, page, object,
934 "Freechain corrupt");
a973e9dd 935 set_freepointer(s, object, NULL);
81819f0f 936 } else {
24922684 937 slab_err(s, page, "Freepointer corrupt");
a973e9dd 938 page->freelist = NULL;
39b26464 939 page->inuse = page->objects;
24922684 940 slab_fix(s, "Freelist cleared");
81819f0f
CL
941 return 0;
942 }
943 break;
944 }
945 object = fp;
946 fp = get_freepointer(s, object);
947 nr++;
948 }
949
ab9a0f19 950 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
951 if (max_objects > MAX_OBJS_PER_PAGE)
952 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
953
954 if (page->objects != max_objects) {
756a025f
JP
955 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
956 page->objects, max_objects);
224a88be
CL
957 page->objects = max_objects;
958 slab_fix(s, "Number of objects adjusted.");
959 }
39b26464 960 if (page->inuse != page->objects - nr) {
756a025f
JP
961 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
962 page->inuse, page->objects - nr);
39b26464 963 page->inuse = page->objects - nr;
24922684 964 slab_fix(s, "Object count adjusted.");
81819f0f
CL
965 }
966 return search == NULL;
967}
968
0121c619
CL
969static void trace(struct kmem_cache *s, struct page *page, void *object,
970 int alloc)
3ec09742
CL
971{
972 if (s->flags & SLAB_TRACE) {
f9f58285 973 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
974 s->name,
975 alloc ? "alloc" : "free",
976 object, page->inuse,
977 page->freelist);
978
979 if (!alloc)
d0e0ac97
CG
980 print_section("Object ", (void *)object,
981 s->object_size);
3ec09742
CL
982
983 dump_stack();
984 }
985}
986
643b1138 987/*
672bba3a 988 * Tracking of fully allocated slabs for debugging purposes.
643b1138 989 */
5cc6eee8
CL
990static void add_full(struct kmem_cache *s,
991 struct kmem_cache_node *n, struct page *page)
643b1138 992{
5cc6eee8
CL
993 if (!(s->flags & SLAB_STORE_USER))
994 return;
995
255d0884 996 lockdep_assert_held(&n->list_lock);
643b1138 997 list_add(&page->lru, &n->full);
643b1138
CL
998}
999
c65c1877 1000static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1001{
643b1138
CL
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
255d0884 1005 lockdep_assert_held(&n->list_lock);
643b1138 1006 list_del(&page->lru);
643b1138
CL
1007}
1008
0f389ec6
CL
1009/* Tracking of the number of slabs for debugging purposes */
1010static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011{
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 return atomic_long_read(&n->nr_slabs);
1015}
1016
26c02cf0
AB
1017static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018{
1019 return atomic_long_read(&n->nr_slabs);
1020}
1021
205ab99d 1022static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1023{
1024 struct kmem_cache_node *n = get_node(s, node);
1025
1026 /*
1027 * May be called early in order to allocate a slab for the
1028 * kmem_cache_node structure. Solve the chicken-egg
1029 * dilemma by deferring the increment of the count during
1030 * bootstrap (see early_kmem_cache_node_alloc).
1031 */
338b2642 1032 if (likely(n)) {
0f389ec6 1033 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1034 atomic_long_add(objects, &n->total_objects);
1035 }
0f389ec6 1036}
205ab99d 1037static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1038{
1039 struct kmem_cache_node *n = get_node(s, node);
1040
1041 atomic_long_dec(&n->nr_slabs);
205ab99d 1042 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1043}
1044
1045/* Object debug checks for alloc/free paths */
3ec09742
CL
1046static void setup_object_debug(struct kmem_cache *s, struct page *page,
1047 void *object)
1048{
1049 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1050 return;
1051
f7cb1933 1052 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1053 init_tracking(s, object);
1054}
1055
becfda68 1056static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1057 struct page *page,
ce71e27c 1058 void *object, unsigned long addr)
81819f0f
CL
1059{
1060 if (!check_slab(s, page))
becfda68 1061 return 0;
81819f0f 1062
81819f0f
CL
1063 if (!check_valid_pointer(s, page, object)) {
1064 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1065 return 0;
81819f0f
CL
1066 }
1067
f7cb1933 1068 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1069 return 0;
1070
1071 return 1;
1072}
1073
1074static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 struct page *page,
1076 void *object, unsigned long addr)
1077{
1078 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1079 if (!alloc_consistency_checks(s, page, object, addr))
1080 goto bad;
1081 }
81819f0f 1082
3ec09742
CL
1083 /* Success perform special debug activities for allocs */
1084 if (s->flags & SLAB_STORE_USER)
1085 set_track(s, object, TRACK_ALLOC, addr);
1086 trace(s, page, object, 1);
f7cb1933 1087 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1088 return 1;
3ec09742 1089
81819f0f
CL
1090bad:
1091 if (PageSlab(page)) {
1092 /*
1093 * If this is a slab page then lets do the best we can
1094 * to avoid issues in the future. Marking all objects
672bba3a 1095 * as used avoids touching the remaining objects.
81819f0f 1096 */
24922684 1097 slab_fix(s, "Marking all objects used");
39b26464 1098 page->inuse = page->objects;
a973e9dd 1099 page->freelist = NULL;
81819f0f
CL
1100 }
1101 return 0;
1102}
1103
becfda68
LA
1104static inline int free_consistency_checks(struct kmem_cache *s,
1105 struct page *page, void *object, unsigned long addr)
81819f0f 1106{
81819f0f 1107 if (!check_valid_pointer(s, page, object)) {
70d71228 1108 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1109 return 0;
81819f0f
CL
1110 }
1111
1112 if (on_freelist(s, page, object)) {
24922684 1113 object_err(s, page, object, "Object already free");
becfda68 1114 return 0;
81819f0f
CL
1115 }
1116
f7cb1933 1117 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1118 return 0;
81819f0f 1119
1b4f59e3 1120 if (unlikely(s != page->slab_cache)) {
3adbefee 1121 if (!PageSlab(page)) {
756a025f
JP
1122 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 object);
1b4f59e3 1124 } else if (!page->slab_cache) {
f9f58285
FF
1125 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1126 object);
70d71228 1127 dump_stack();
06428780 1128 } else
24922684
CL
1129 object_err(s, page, object,
1130 "page slab pointer corrupt.");
becfda68
LA
1131 return 0;
1132 }
1133 return 1;
1134}
1135
1136/* Supports checking bulk free of a constructed freelist */
1137static noinline int free_debug_processing(
1138 struct kmem_cache *s, struct page *page,
1139 void *head, void *tail, int bulk_cnt,
1140 unsigned long addr)
1141{
1142 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1143 void *object = head;
1144 int cnt = 0;
1145 unsigned long uninitialized_var(flags);
1146 int ret = 0;
1147
1148 spin_lock_irqsave(&n->list_lock, flags);
1149 slab_lock(page);
1150
1151 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1152 if (!check_slab(s, page))
1153 goto out;
1154 }
1155
1156next_object:
1157 cnt++;
1158
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 if (!free_consistency_checks(s, page, object, addr))
1161 goto out;
81819f0f 1162 }
3ec09742 1163
3ec09742
CL
1164 if (s->flags & SLAB_STORE_USER)
1165 set_track(s, object, TRACK_FREE, addr);
1166 trace(s, page, object, 0);
81084651 1167 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1168 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1169
1170 /* Reached end of constructed freelist yet? */
1171 if (object != tail) {
1172 object = get_freepointer(s, object);
1173 goto next_object;
1174 }
804aa132
LA
1175 ret = 1;
1176
5c2e4bbb 1177out:
81084651
JDB
1178 if (cnt != bulk_cnt)
1179 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1180 bulk_cnt, cnt);
1181
881db7fb 1182 slab_unlock(page);
282acb43 1183 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1184 if (!ret)
1185 slab_fix(s, "Object at 0x%p not freed", object);
1186 return ret;
81819f0f
CL
1187}
1188
41ecc55b
CL
1189static int __init setup_slub_debug(char *str)
1190{
f0630fff
CL
1191 slub_debug = DEBUG_DEFAULT_FLAGS;
1192 if (*str++ != '=' || !*str)
1193 /*
1194 * No options specified. Switch on full debugging.
1195 */
1196 goto out;
1197
1198 if (*str == ',')
1199 /*
1200 * No options but restriction on slabs. This means full
1201 * debugging for slabs matching a pattern.
1202 */
1203 goto check_slabs;
1204
1205 slub_debug = 0;
1206 if (*str == '-')
1207 /*
1208 * Switch off all debugging measures.
1209 */
1210 goto out;
1211
1212 /*
1213 * Determine which debug features should be switched on
1214 */
06428780 1215 for (; *str && *str != ','; str++) {
f0630fff
CL
1216 switch (tolower(*str)) {
1217 case 'f':
becfda68 1218 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1219 break;
1220 case 'z':
1221 slub_debug |= SLAB_RED_ZONE;
1222 break;
1223 case 'p':
1224 slub_debug |= SLAB_POISON;
1225 break;
1226 case 'u':
1227 slub_debug |= SLAB_STORE_USER;
1228 break;
1229 case 't':
1230 slub_debug |= SLAB_TRACE;
1231 break;
4c13dd3b
DM
1232 case 'a':
1233 slub_debug |= SLAB_FAILSLAB;
1234 break;
08303a73
CA
1235 case 'o':
1236 /*
1237 * Avoid enabling debugging on caches if its minimum
1238 * order would increase as a result.
1239 */
1240 disable_higher_order_debug = 1;
1241 break;
f0630fff 1242 default:
f9f58285
FF
1243 pr_err("slub_debug option '%c' unknown. skipped\n",
1244 *str);
f0630fff 1245 }
41ecc55b
CL
1246 }
1247
f0630fff 1248check_slabs:
41ecc55b
CL
1249 if (*str == ',')
1250 slub_debug_slabs = str + 1;
f0630fff 1251out:
41ecc55b
CL
1252 return 1;
1253}
1254
1255__setup("slub_debug", setup_slub_debug);
1256
423c929c 1257unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1258 unsigned long flags, const char *name,
51cc5068 1259 void (*ctor)(void *))
41ecc55b
CL
1260{
1261 /*
e153362a 1262 * Enable debugging if selected on the kernel commandline.
41ecc55b 1263 */
c6f58d9b
CL
1264 if (slub_debug && (!slub_debug_slabs || (name &&
1265 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1266 flags |= slub_debug;
ba0268a8
CL
1267
1268 return flags;
41ecc55b 1269}
b4a64718 1270#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1271static inline void setup_object_debug(struct kmem_cache *s,
1272 struct page *page, void *object) {}
41ecc55b 1273
3ec09742 1274static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1275 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1276
282acb43 1277static inline int free_debug_processing(
81084651
JDB
1278 struct kmem_cache *s, struct page *page,
1279 void *head, void *tail, int bulk_cnt,
282acb43 1280 unsigned long addr) { return 0; }
41ecc55b 1281
41ecc55b
CL
1282static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 { return 1; }
1284static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1285 void *object, u8 val) { return 1; }
5cc6eee8
CL
1286static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 struct page *page) {}
c65c1877
PZ
1288static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1289 struct page *page) {}
423c929c 1290unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1291 unsigned long flags, const char *name,
51cc5068 1292 void (*ctor)(void *))
ba0268a8
CL
1293{
1294 return flags;
1295}
41ecc55b 1296#define slub_debug 0
0f389ec6 1297
fdaa45e9
IM
1298#define disable_higher_order_debug 0
1299
0f389ec6
CL
1300static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 { return 0; }
26c02cf0
AB
1302static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 { return 0; }
205ab99d
CL
1304static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 int objects) {}
1306static inline void dec_slabs_node(struct kmem_cache *s, int node,
1307 int objects) {}
7d550c56 1308
02e72cc6
AR
1309#endif /* CONFIG_SLUB_DEBUG */
1310
1311/*
1312 * Hooks for other subsystems that check memory allocations. In a typical
1313 * production configuration these hooks all should produce no code at all.
1314 */
d56791b3
RB
1315static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316{
1317 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1318 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1319}
1320
1321static inline void kfree_hook(const void *x)
1322{
1323 kmemleak_free(x);
0316bec2 1324 kasan_kfree_large(x);
d56791b3
RB
1325}
1326
80a9201a 1327static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1328{
80a9201a
AP
1329 void *freeptr;
1330
d56791b3 1331 kmemleak_free_recursive(x, s->flags);
7d550c56 1332
02e72cc6
AR
1333 /*
1334 * Trouble is that we may no longer disable interrupts in the fast path
1335 * So in order to make the debug calls that expect irqs to be
1336 * disabled we need to disable interrupts temporarily.
1337 */
1338#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 {
1340 unsigned long flags;
1341
1342 local_irq_save(flags);
1343 kmemcheck_slab_free(s, x, s->object_size);
1344 debug_check_no_locks_freed(x, s->object_size);
1345 local_irq_restore(flags);
1346 }
1347#endif
1348 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1349 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1350
80a9201a
AP
1351 freeptr = get_freepointer(s, x);
1352 /*
1353 * kasan_slab_free() may put x into memory quarantine, delaying its
1354 * reuse. In this case the object's freelist pointer is changed.
1355 */
0316bec2 1356 kasan_slab_free(s, x);
80a9201a 1357 return freeptr;
02e72cc6 1358}
205ab99d 1359
81084651
JDB
1360static inline void slab_free_freelist_hook(struct kmem_cache *s,
1361 void *head, void *tail)
1362{
1363/*
1364 * Compiler cannot detect this function can be removed if slab_free_hook()
1365 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 */
1367#if defined(CONFIG_KMEMCHECK) || \
1368 defined(CONFIG_LOCKDEP) || \
1369 defined(CONFIG_DEBUG_KMEMLEAK) || \
1370 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1371 defined(CONFIG_KASAN)
1372
1373 void *object = head;
1374 void *tail_obj = tail ? : head;
80a9201a 1375 void *freeptr;
81084651
JDB
1376
1377 do {
80a9201a
AP
1378 freeptr = slab_free_hook(s, object);
1379 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1380#endif
1381}
1382
588f8ba9
TG
1383static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385{
1386 setup_object_debug(s, page, object);
1387 if (unlikely(s->ctor)) {
1388 kasan_unpoison_object_data(s, object);
1389 s->ctor(object);
1390 kasan_poison_object_data(s, object);
1391 }
1392}
1393
81819f0f
CL
1394/*
1395 * Slab allocation and freeing
1396 */
5dfb4175
VD
1397static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1399{
5dfb4175 1400 struct page *page;
65c3376a
CL
1401 int order = oo_order(oo);
1402
b1eeab67
VN
1403 flags |= __GFP_NOTRACK;
1404
2154a336 1405 if (node == NUMA_NO_NODE)
5dfb4175 1406 page = alloc_pages(flags, order);
65c3376a 1407 else
96db800f 1408 page = __alloc_pages_node(node, flags, order);
5dfb4175 1409
f3ccb2c4
VD
1410 if (page && memcg_charge_slab(page, flags, order, s)) {
1411 __free_pages(page, order);
1412 page = NULL;
1413 }
5dfb4175
VD
1414
1415 return page;
65c3376a
CL
1416}
1417
210e7a43
TG
1418#ifdef CONFIG_SLAB_FREELIST_RANDOM
1419/* Pre-initialize the random sequence cache */
1420static int init_cache_random_seq(struct kmem_cache *s)
1421{
1422 int err;
1423 unsigned long i, count = oo_objects(s->oo);
1424
1425 err = cache_random_seq_create(s, count, GFP_KERNEL);
1426 if (err) {
1427 pr_err("SLUB: Unable to initialize free list for %s\n",
1428 s->name);
1429 return err;
1430 }
1431
1432 /* Transform to an offset on the set of pages */
1433 if (s->random_seq) {
1434 for (i = 0; i < count; i++)
1435 s->random_seq[i] *= s->size;
1436 }
1437 return 0;
1438}
1439
1440/* Initialize each random sequence freelist per cache */
1441static void __init init_freelist_randomization(void)
1442{
1443 struct kmem_cache *s;
1444
1445 mutex_lock(&slab_mutex);
1446
1447 list_for_each_entry(s, &slab_caches, list)
1448 init_cache_random_seq(s);
1449
1450 mutex_unlock(&slab_mutex);
1451}
1452
1453/* Get the next entry on the pre-computed freelist randomized */
1454static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1455 unsigned long *pos, void *start,
1456 unsigned long page_limit,
1457 unsigned long freelist_count)
1458{
1459 unsigned int idx;
1460
1461 /*
1462 * If the target page allocation failed, the number of objects on the
1463 * page might be smaller than the usual size defined by the cache.
1464 */
1465 do {
1466 idx = s->random_seq[*pos];
1467 *pos += 1;
1468 if (*pos >= freelist_count)
1469 *pos = 0;
1470 } while (unlikely(idx >= page_limit));
1471
1472 return (char *)start + idx;
1473}
1474
1475/* Shuffle the single linked freelist based on a random pre-computed sequence */
1476static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1477{
1478 void *start;
1479 void *cur;
1480 void *next;
1481 unsigned long idx, pos, page_limit, freelist_count;
1482
1483 if (page->objects < 2 || !s->random_seq)
1484 return false;
1485
1486 freelist_count = oo_objects(s->oo);
1487 pos = get_random_int() % freelist_count;
1488
1489 page_limit = page->objects * s->size;
1490 start = fixup_red_left(s, page_address(page));
1491
1492 /* First entry is used as the base of the freelist */
1493 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1494 freelist_count);
1495 page->freelist = cur;
1496
1497 for (idx = 1; idx < page->objects; idx++) {
1498 setup_object(s, page, cur);
1499 next = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 set_freepointer(s, cur, next);
1502 cur = next;
1503 }
1504 setup_object(s, page, cur);
1505 set_freepointer(s, cur, NULL);
1506
1507 return true;
1508}
1509#else
1510static inline int init_cache_random_seq(struct kmem_cache *s)
1511{
1512 return 0;
1513}
1514static inline void init_freelist_randomization(void) { }
1515static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516{
1517 return false;
1518}
1519#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1520
81819f0f
CL
1521static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1522{
06428780 1523 struct page *page;
834f3d11 1524 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1525 gfp_t alloc_gfp;
588f8ba9
TG
1526 void *start, *p;
1527 int idx, order;
210e7a43 1528 bool shuffle;
81819f0f 1529
7e0528da
CL
1530 flags &= gfp_allowed_mask;
1531
d0164adc 1532 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1533 local_irq_enable();
1534
b7a49f0d 1535 flags |= s->allocflags;
e12ba74d 1536
ba52270d
PE
1537 /*
1538 * Let the initial higher-order allocation fail under memory pressure
1539 * so we fall-back to the minimum order allocation.
1540 */
1541 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1542 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1543 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1544
5dfb4175 1545 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1546 if (unlikely(!page)) {
1547 oo = s->min;
80c3a998 1548 alloc_gfp = flags;
65c3376a
CL
1549 /*
1550 * Allocation may have failed due to fragmentation.
1551 * Try a lower order alloc if possible
1552 */
5dfb4175 1553 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1554 if (unlikely(!page))
1555 goto out;
1556 stat(s, ORDER_FALLBACK);
65c3376a 1557 }
5a896d9e 1558
588f8ba9
TG
1559 if (kmemcheck_enabled &&
1560 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1561 int pages = 1 << oo_order(oo);
1562
80c3a998 1563 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1564
1565 /*
1566 * Objects from caches that have a constructor don't get
1567 * cleared when they're allocated, so we need to do it here.
1568 */
1569 if (s->ctor)
1570 kmemcheck_mark_uninitialized_pages(page, pages);
1571 else
1572 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1573 }
1574
834f3d11 1575 page->objects = oo_objects(oo);
81819f0f 1576
1f458cbf 1577 order = compound_order(page);
1b4f59e3 1578 page->slab_cache = s;
c03f94cc 1579 __SetPageSlab(page);
2f064f34 1580 if (page_is_pfmemalloc(page))
072bb0aa 1581 SetPageSlabPfmemalloc(page);
81819f0f
CL
1582
1583 start = page_address(page);
81819f0f
CL
1584
1585 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1586 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1587
0316bec2
AR
1588 kasan_poison_slab(page);
1589
210e7a43
TG
1590 shuffle = shuffle_freelist(s, page);
1591
1592 if (!shuffle) {
1593 for_each_object_idx(p, idx, s, start, page->objects) {
1594 setup_object(s, page, p);
1595 if (likely(idx < page->objects))
1596 set_freepointer(s, p, p + s->size);
1597 else
1598 set_freepointer(s, p, NULL);
1599 }
1600 page->freelist = fixup_red_left(s, start);
81819f0f 1601 }
81819f0f 1602
e6e82ea1 1603 page->inuse = page->objects;
8cb0a506 1604 page->frozen = 1;
588f8ba9 1605
81819f0f 1606out:
d0164adc 1607 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1608 local_irq_disable();
1609 if (!page)
1610 return NULL;
1611
1612 mod_zone_page_state(page_zone(page),
1613 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1614 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1615 1 << oo_order(oo));
1616
1617 inc_slabs_node(s, page_to_nid(page), page->objects);
1618
81819f0f
CL
1619 return page;
1620}
1621
588f8ba9
TG
1622static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1623{
1624 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1625 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1626 flags &= ~GFP_SLAB_BUG_MASK;
1627 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1628 invalid_mask, &invalid_mask, flags, &flags);
588f8ba9
TG
1629 }
1630
1631 return allocate_slab(s,
1632 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1633}
1634
81819f0f
CL
1635static void __free_slab(struct kmem_cache *s, struct page *page)
1636{
834f3d11
CL
1637 int order = compound_order(page);
1638 int pages = 1 << order;
81819f0f 1639
becfda68 1640 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1641 void *p;
1642
1643 slab_pad_check(s, page);
224a88be
CL
1644 for_each_object(p, s, page_address(page),
1645 page->objects)
f7cb1933 1646 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1647 }
1648
b1eeab67 1649 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1650
81819f0f
CL
1651 mod_zone_page_state(page_zone(page),
1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1654 -pages);
81819f0f 1655
072bb0aa 1656 __ClearPageSlabPfmemalloc(page);
49bd5221 1657 __ClearPageSlab(page);
1f458cbf 1658
22b751c3 1659 page_mapcount_reset(page);
1eb5ac64
NP
1660 if (current->reclaim_state)
1661 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1662 memcg_uncharge_slab(page, order, s);
1663 __free_pages(page, order);
81819f0f
CL
1664}
1665
da9a638c
LJ
1666#define need_reserve_slab_rcu \
1667 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1668
81819f0f
CL
1669static void rcu_free_slab(struct rcu_head *h)
1670{
1671 struct page *page;
1672
da9a638c
LJ
1673 if (need_reserve_slab_rcu)
1674 page = virt_to_head_page(h);
1675 else
1676 page = container_of((struct list_head *)h, struct page, lru);
1677
1b4f59e3 1678 __free_slab(page->slab_cache, page);
81819f0f
CL
1679}
1680
1681static void free_slab(struct kmem_cache *s, struct page *page)
1682{
1683 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1684 struct rcu_head *head;
1685
1686 if (need_reserve_slab_rcu) {
1687 int order = compound_order(page);
1688 int offset = (PAGE_SIZE << order) - s->reserved;
1689
1690 VM_BUG_ON(s->reserved != sizeof(*head));
1691 head = page_address(page) + offset;
1692 } else {
bc4f610d 1693 head = &page->rcu_head;
da9a638c 1694 }
81819f0f
CL
1695
1696 call_rcu(head, rcu_free_slab);
1697 } else
1698 __free_slab(s, page);
1699}
1700
1701static void discard_slab(struct kmem_cache *s, struct page *page)
1702{
205ab99d 1703 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1704 free_slab(s, page);
1705}
1706
1707/*
5cc6eee8 1708 * Management of partially allocated slabs.
81819f0f 1709 */
1e4dd946
SR
1710static inline void
1711__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1712{
e95eed57 1713 n->nr_partial++;
136333d1 1714 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1715 list_add_tail(&page->lru, &n->partial);
1716 else
1717 list_add(&page->lru, &n->partial);
81819f0f
CL
1718}
1719
1e4dd946
SR
1720static inline void add_partial(struct kmem_cache_node *n,
1721 struct page *page, int tail)
62e346a8 1722{
c65c1877 1723 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1724 __add_partial(n, page, tail);
1725}
c65c1877 1726
1e4dd946
SR
1727static inline void remove_partial(struct kmem_cache_node *n,
1728 struct page *page)
1729{
1730 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1731 list_del(&page->lru);
1732 n->nr_partial--;
1e4dd946
SR
1733}
1734
81819f0f 1735/*
7ced3719
CL
1736 * Remove slab from the partial list, freeze it and
1737 * return the pointer to the freelist.
81819f0f 1738 *
497b66f2 1739 * Returns a list of objects or NULL if it fails.
81819f0f 1740 */
497b66f2 1741static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1742 struct kmem_cache_node *n, struct page *page,
633b0764 1743 int mode, int *objects)
81819f0f 1744{
2cfb7455
CL
1745 void *freelist;
1746 unsigned long counters;
1747 struct page new;
1748
c65c1877
PZ
1749 lockdep_assert_held(&n->list_lock);
1750
2cfb7455
CL
1751 /*
1752 * Zap the freelist and set the frozen bit.
1753 * The old freelist is the list of objects for the
1754 * per cpu allocation list.
1755 */
7ced3719
CL
1756 freelist = page->freelist;
1757 counters = page->counters;
1758 new.counters = counters;
633b0764 1759 *objects = new.objects - new.inuse;
23910c50 1760 if (mode) {
7ced3719 1761 new.inuse = page->objects;
23910c50
PE
1762 new.freelist = NULL;
1763 } else {
1764 new.freelist = freelist;
1765 }
2cfb7455 1766
a0132ac0 1767 VM_BUG_ON(new.frozen);
7ced3719 1768 new.frozen = 1;
2cfb7455 1769
7ced3719 1770 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1771 freelist, counters,
02d7633f 1772 new.freelist, new.counters,
7ced3719 1773 "acquire_slab"))
7ced3719 1774 return NULL;
2cfb7455
CL
1775
1776 remove_partial(n, page);
7ced3719 1777 WARN_ON(!freelist);
49e22585 1778 return freelist;
81819f0f
CL
1779}
1780
633b0764 1781static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1782static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1783
81819f0f 1784/*
672bba3a 1785 * Try to allocate a partial slab from a specific node.
81819f0f 1786 */
8ba00bb6
JK
1787static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1788 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1789{
49e22585
CL
1790 struct page *page, *page2;
1791 void *object = NULL;
633b0764
JK
1792 int available = 0;
1793 int objects;
81819f0f
CL
1794
1795 /*
1796 * Racy check. If we mistakenly see no partial slabs then we
1797 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1798 * partial slab and there is none available then get_partials()
1799 * will return NULL.
81819f0f
CL
1800 */
1801 if (!n || !n->nr_partial)
1802 return NULL;
1803
1804 spin_lock(&n->list_lock);
49e22585 1805 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1806 void *t;
49e22585 1807
8ba00bb6
JK
1808 if (!pfmemalloc_match(page, flags))
1809 continue;
1810
633b0764 1811 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1812 if (!t)
1813 break;
1814
633b0764 1815 available += objects;
12d79634 1816 if (!object) {
49e22585 1817 c->page = page;
49e22585 1818 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1819 object = t;
49e22585 1820 } else {
633b0764 1821 put_cpu_partial(s, page, 0);
8028dcea 1822 stat(s, CPU_PARTIAL_NODE);
49e22585 1823 }
345c905d
JK
1824 if (!kmem_cache_has_cpu_partial(s)
1825 || available > s->cpu_partial / 2)
49e22585
CL
1826 break;
1827
497b66f2 1828 }
81819f0f 1829 spin_unlock(&n->list_lock);
497b66f2 1830 return object;
81819f0f
CL
1831}
1832
1833/*
672bba3a 1834 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1835 */
de3ec035 1836static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1837 struct kmem_cache_cpu *c)
81819f0f
CL
1838{
1839#ifdef CONFIG_NUMA
1840 struct zonelist *zonelist;
dd1a239f 1841 struct zoneref *z;
54a6eb5c
MG
1842 struct zone *zone;
1843 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1844 void *object;
cc9a6c87 1845 unsigned int cpuset_mems_cookie;
81819f0f
CL
1846
1847 /*
672bba3a
CL
1848 * The defrag ratio allows a configuration of the tradeoffs between
1849 * inter node defragmentation and node local allocations. A lower
1850 * defrag_ratio increases the tendency to do local allocations
1851 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1852 *
672bba3a
CL
1853 * If the defrag_ratio is set to 0 then kmalloc() always
1854 * returns node local objects. If the ratio is higher then kmalloc()
1855 * may return off node objects because partial slabs are obtained
1856 * from other nodes and filled up.
81819f0f 1857 *
43efd3ea
LP
1858 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1859 * (which makes defrag_ratio = 1000) then every (well almost)
1860 * allocation will first attempt to defrag slab caches on other nodes.
1861 * This means scanning over all nodes to look for partial slabs which
1862 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1863 * with available objects.
81819f0f 1864 */
9824601e
CL
1865 if (!s->remote_node_defrag_ratio ||
1866 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1867 return NULL;
1868
cc9a6c87 1869 do {
d26914d1 1870 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1871 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1872 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1873 struct kmem_cache_node *n;
1874
1875 n = get_node(s, zone_to_nid(zone));
1876
dee2f8aa 1877 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1878 n->nr_partial > s->min_partial) {
8ba00bb6 1879 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1880 if (object) {
1881 /*
d26914d1
MG
1882 * Don't check read_mems_allowed_retry()
1883 * here - if mems_allowed was updated in
1884 * parallel, that was a harmless race
1885 * between allocation and the cpuset
1886 * update
cc9a6c87 1887 */
cc9a6c87
MG
1888 return object;
1889 }
c0ff7453 1890 }
81819f0f 1891 }
d26914d1 1892 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1893#endif
1894 return NULL;
1895}
1896
1897/*
1898 * Get a partial page, lock it and return it.
1899 */
497b66f2 1900static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1901 struct kmem_cache_cpu *c)
81819f0f 1902{
497b66f2 1903 void *object;
a561ce00
JK
1904 int searchnode = node;
1905
1906 if (node == NUMA_NO_NODE)
1907 searchnode = numa_mem_id();
1908 else if (!node_present_pages(node))
1909 searchnode = node_to_mem_node(node);
81819f0f 1910
8ba00bb6 1911 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1912 if (object || node != NUMA_NO_NODE)
1913 return object;
81819f0f 1914
acd19fd1 1915 return get_any_partial(s, flags, c);
81819f0f
CL
1916}
1917
8a5ec0ba
CL
1918#ifdef CONFIG_PREEMPT
1919/*
1920 * Calculate the next globally unique transaction for disambiguiation
1921 * during cmpxchg. The transactions start with the cpu number and are then
1922 * incremented by CONFIG_NR_CPUS.
1923 */
1924#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1925#else
1926/*
1927 * No preemption supported therefore also no need to check for
1928 * different cpus.
1929 */
1930#define TID_STEP 1
1931#endif
1932
1933static inline unsigned long next_tid(unsigned long tid)
1934{
1935 return tid + TID_STEP;
1936}
1937
1938static inline unsigned int tid_to_cpu(unsigned long tid)
1939{
1940 return tid % TID_STEP;
1941}
1942
1943static inline unsigned long tid_to_event(unsigned long tid)
1944{
1945 return tid / TID_STEP;
1946}
1947
1948static inline unsigned int init_tid(int cpu)
1949{
1950 return cpu;
1951}
1952
1953static inline void note_cmpxchg_failure(const char *n,
1954 const struct kmem_cache *s, unsigned long tid)
1955{
1956#ifdef SLUB_DEBUG_CMPXCHG
1957 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1958
f9f58285 1959 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1960
1961#ifdef CONFIG_PREEMPT
1962 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1963 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1964 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1965 else
1966#endif
1967 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1968 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1969 tid_to_event(tid), tid_to_event(actual_tid));
1970 else
f9f58285 1971 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1972 actual_tid, tid, next_tid(tid));
1973#endif
4fdccdfb 1974 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1975}
1976
788e1aad 1977static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1978{
8a5ec0ba
CL
1979 int cpu;
1980
1981 for_each_possible_cpu(cpu)
1982 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1983}
2cfb7455 1984
81819f0f
CL
1985/*
1986 * Remove the cpu slab
1987 */
d0e0ac97
CG
1988static void deactivate_slab(struct kmem_cache *s, struct page *page,
1989 void *freelist)
81819f0f 1990{
2cfb7455 1991 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1992 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1993 int lock = 0;
1994 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1995 void *nextfree;
136333d1 1996 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1997 struct page new;
1998 struct page old;
1999
2000 if (page->freelist) {
84e554e6 2001 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2002 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2003 }
2004
894b8788 2005 /*
2cfb7455
CL
2006 * Stage one: Free all available per cpu objects back
2007 * to the page freelist while it is still frozen. Leave the
2008 * last one.
2009 *
2010 * There is no need to take the list->lock because the page
2011 * is still frozen.
2012 */
2013 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2014 void *prior;
2015 unsigned long counters;
2016
2017 do {
2018 prior = page->freelist;
2019 counters = page->counters;
2020 set_freepointer(s, freelist, prior);
2021 new.counters = counters;
2022 new.inuse--;
a0132ac0 2023 VM_BUG_ON(!new.frozen);
2cfb7455 2024
1d07171c 2025 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2026 prior, counters,
2027 freelist, new.counters,
2028 "drain percpu freelist"));
2029
2030 freelist = nextfree;
2031 }
2032
894b8788 2033 /*
2cfb7455
CL
2034 * Stage two: Ensure that the page is unfrozen while the
2035 * list presence reflects the actual number of objects
2036 * during unfreeze.
2037 *
2038 * We setup the list membership and then perform a cmpxchg
2039 * with the count. If there is a mismatch then the page
2040 * is not unfrozen but the page is on the wrong list.
2041 *
2042 * Then we restart the process which may have to remove
2043 * the page from the list that we just put it on again
2044 * because the number of objects in the slab may have
2045 * changed.
894b8788 2046 */
2cfb7455 2047redo:
894b8788 2048
2cfb7455
CL
2049 old.freelist = page->freelist;
2050 old.counters = page->counters;
a0132ac0 2051 VM_BUG_ON(!old.frozen);
7c2e132c 2052
2cfb7455
CL
2053 /* Determine target state of the slab */
2054 new.counters = old.counters;
2055 if (freelist) {
2056 new.inuse--;
2057 set_freepointer(s, freelist, old.freelist);
2058 new.freelist = freelist;
2059 } else
2060 new.freelist = old.freelist;
2061
2062 new.frozen = 0;
2063
8a5b20ae 2064 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2065 m = M_FREE;
2066 else if (new.freelist) {
2067 m = M_PARTIAL;
2068 if (!lock) {
2069 lock = 1;
2070 /*
2071 * Taking the spinlock removes the possiblity
2072 * that acquire_slab() will see a slab page that
2073 * is frozen
2074 */
2075 spin_lock(&n->list_lock);
2076 }
2077 } else {
2078 m = M_FULL;
2079 if (kmem_cache_debug(s) && !lock) {
2080 lock = 1;
2081 /*
2082 * This also ensures that the scanning of full
2083 * slabs from diagnostic functions will not see
2084 * any frozen slabs.
2085 */
2086 spin_lock(&n->list_lock);
2087 }
2088 }
2089
2090 if (l != m) {
2091
2092 if (l == M_PARTIAL)
2093
2094 remove_partial(n, page);
2095
2096 else if (l == M_FULL)
894b8788 2097
c65c1877 2098 remove_full(s, n, page);
2cfb7455
CL
2099
2100 if (m == M_PARTIAL) {
2101
2102 add_partial(n, page, tail);
136333d1 2103 stat(s, tail);
2cfb7455
CL
2104
2105 } else if (m == M_FULL) {
894b8788 2106
2cfb7455
CL
2107 stat(s, DEACTIVATE_FULL);
2108 add_full(s, n, page);
2109
2110 }
2111 }
2112
2113 l = m;
1d07171c 2114 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2115 old.freelist, old.counters,
2116 new.freelist, new.counters,
2117 "unfreezing slab"))
2118 goto redo;
2119
2cfb7455
CL
2120 if (lock)
2121 spin_unlock(&n->list_lock);
2122
2123 if (m == M_FREE) {
2124 stat(s, DEACTIVATE_EMPTY);
2125 discard_slab(s, page);
2126 stat(s, FREE_SLAB);
894b8788 2127 }
81819f0f
CL
2128}
2129
d24ac77f
JK
2130/*
2131 * Unfreeze all the cpu partial slabs.
2132 *
59a09917
CL
2133 * This function must be called with interrupts disabled
2134 * for the cpu using c (or some other guarantee must be there
2135 * to guarantee no concurrent accesses).
d24ac77f 2136 */
59a09917
CL
2137static void unfreeze_partials(struct kmem_cache *s,
2138 struct kmem_cache_cpu *c)
49e22585 2139{
345c905d 2140#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2141 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2142 struct page *page, *discard_page = NULL;
49e22585
CL
2143
2144 while ((page = c->partial)) {
49e22585
CL
2145 struct page new;
2146 struct page old;
2147
2148 c->partial = page->next;
43d77867
JK
2149
2150 n2 = get_node(s, page_to_nid(page));
2151 if (n != n2) {
2152 if (n)
2153 spin_unlock(&n->list_lock);
2154
2155 n = n2;
2156 spin_lock(&n->list_lock);
2157 }
49e22585
CL
2158
2159 do {
2160
2161 old.freelist = page->freelist;
2162 old.counters = page->counters;
a0132ac0 2163 VM_BUG_ON(!old.frozen);
49e22585
CL
2164
2165 new.counters = old.counters;
2166 new.freelist = old.freelist;
2167
2168 new.frozen = 0;
2169
d24ac77f 2170 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2171 old.freelist, old.counters,
2172 new.freelist, new.counters,
2173 "unfreezing slab"));
2174
8a5b20ae 2175 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2176 page->next = discard_page;
2177 discard_page = page;
43d77867
JK
2178 } else {
2179 add_partial(n, page, DEACTIVATE_TO_TAIL);
2180 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2181 }
2182 }
2183
2184 if (n)
2185 spin_unlock(&n->list_lock);
9ada1934
SL
2186
2187 while (discard_page) {
2188 page = discard_page;
2189 discard_page = discard_page->next;
2190
2191 stat(s, DEACTIVATE_EMPTY);
2192 discard_slab(s, page);
2193 stat(s, FREE_SLAB);
2194 }
345c905d 2195#endif
49e22585
CL
2196}
2197
2198/*
2199 * Put a page that was just frozen (in __slab_free) into a partial page
2200 * slot if available. This is done without interrupts disabled and without
2201 * preemption disabled. The cmpxchg is racy and may put the partial page
2202 * onto a random cpus partial slot.
2203 *
2204 * If we did not find a slot then simply move all the partials to the
2205 * per node partial list.
2206 */
633b0764 2207static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2208{
345c905d 2209#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2210 struct page *oldpage;
2211 int pages;
2212 int pobjects;
2213
d6e0b7fa 2214 preempt_disable();
49e22585
CL
2215 do {
2216 pages = 0;
2217 pobjects = 0;
2218 oldpage = this_cpu_read(s->cpu_slab->partial);
2219
2220 if (oldpage) {
2221 pobjects = oldpage->pobjects;
2222 pages = oldpage->pages;
2223 if (drain && pobjects > s->cpu_partial) {
2224 unsigned long flags;
2225 /*
2226 * partial array is full. Move the existing
2227 * set to the per node partial list.
2228 */
2229 local_irq_save(flags);
59a09917 2230 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2231 local_irq_restore(flags);
e24fc410 2232 oldpage = NULL;
49e22585
CL
2233 pobjects = 0;
2234 pages = 0;
8028dcea 2235 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2236 }
2237 }
2238
2239 pages++;
2240 pobjects += page->objects - page->inuse;
2241
2242 page->pages = pages;
2243 page->pobjects = pobjects;
2244 page->next = oldpage;
2245
d0e0ac97
CG
2246 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2247 != oldpage);
d6e0b7fa
VD
2248 if (unlikely(!s->cpu_partial)) {
2249 unsigned long flags;
2250
2251 local_irq_save(flags);
2252 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2253 local_irq_restore(flags);
2254 }
2255 preempt_enable();
345c905d 2256#endif
49e22585
CL
2257}
2258
dfb4f096 2259static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2260{
84e554e6 2261 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2262 deactivate_slab(s, c->page, c->freelist);
2263
2264 c->tid = next_tid(c->tid);
2265 c->page = NULL;
2266 c->freelist = NULL;
81819f0f
CL
2267}
2268
2269/*
2270 * Flush cpu slab.
6446faa2 2271 *
81819f0f
CL
2272 * Called from IPI handler with interrupts disabled.
2273 */
0c710013 2274static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2275{
9dfc6e68 2276 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2277
49e22585
CL
2278 if (likely(c)) {
2279 if (c->page)
2280 flush_slab(s, c);
2281
59a09917 2282 unfreeze_partials(s, c);
49e22585 2283 }
81819f0f
CL
2284}
2285
2286static void flush_cpu_slab(void *d)
2287{
2288 struct kmem_cache *s = d;
81819f0f 2289
dfb4f096 2290 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2291}
2292
a8364d55
GBY
2293static bool has_cpu_slab(int cpu, void *info)
2294{
2295 struct kmem_cache *s = info;
2296 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2297
02e1a9cd 2298 return c->page || c->partial;
a8364d55
GBY
2299}
2300
81819f0f
CL
2301static void flush_all(struct kmem_cache *s)
2302{
a8364d55 2303 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2304}
2305
dfb4f096
CL
2306/*
2307 * Check if the objects in a per cpu structure fit numa
2308 * locality expectations.
2309 */
57d437d2 2310static inline int node_match(struct page *page, int node)
dfb4f096
CL
2311{
2312#ifdef CONFIG_NUMA
4d7868e6 2313 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2314 return 0;
2315#endif
2316 return 1;
2317}
2318
9a02d699 2319#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2320static int count_free(struct page *page)
2321{
2322 return page->objects - page->inuse;
2323}
2324
9a02d699
DR
2325static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2326{
2327 return atomic_long_read(&n->total_objects);
2328}
2329#endif /* CONFIG_SLUB_DEBUG */
2330
2331#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2332static unsigned long count_partial(struct kmem_cache_node *n,
2333 int (*get_count)(struct page *))
2334{
2335 unsigned long flags;
2336 unsigned long x = 0;
2337 struct page *page;
2338
2339 spin_lock_irqsave(&n->list_lock, flags);
2340 list_for_each_entry(page, &n->partial, lru)
2341 x += get_count(page);
2342 spin_unlock_irqrestore(&n->list_lock, flags);
2343 return x;
2344}
9a02d699 2345#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2346
781b2ba6
PE
2347static noinline void
2348slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2349{
9a02d699
DR
2350#ifdef CONFIG_SLUB_DEBUG
2351 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2352 DEFAULT_RATELIMIT_BURST);
781b2ba6 2353 int node;
fa45dc25 2354 struct kmem_cache_node *n;
781b2ba6 2355
9a02d699
DR
2356 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2357 return;
2358
5b3810e5
VB
2359 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2360 nid, gfpflags, &gfpflags);
f9f58285
FF
2361 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2362 s->name, s->object_size, s->size, oo_order(s->oo),
2363 oo_order(s->min));
781b2ba6 2364
3b0efdfa 2365 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2366 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2367 s->name);
fa5ec8a1 2368
fa45dc25 2369 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2370 unsigned long nr_slabs;
2371 unsigned long nr_objs;
2372 unsigned long nr_free;
2373
26c02cf0
AB
2374 nr_free = count_partial(n, count_free);
2375 nr_slabs = node_nr_slabs(n);
2376 nr_objs = node_nr_objs(n);
781b2ba6 2377
f9f58285 2378 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2379 node, nr_slabs, nr_objs, nr_free);
2380 }
9a02d699 2381#endif
781b2ba6
PE
2382}
2383
497b66f2
CL
2384static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2385 int node, struct kmem_cache_cpu **pc)
2386{
6faa6833 2387 void *freelist;
188fd063
CL
2388 struct kmem_cache_cpu *c = *pc;
2389 struct page *page;
497b66f2 2390
188fd063 2391 freelist = get_partial(s, flags, node, c);
497b66f2 2392
188fd063
CL
2393 if (freelist)
2394 return freelist;
2395
2396 page = new_slab(s, flags, node);
497b66f2 2397 if (page) {
7c8e0181 2398 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2399 if (c->page)
2400 flush_slab(s, c);
2401
2402 /*
2403 * No other reference to the page yet so we can
2404 * muck around with it freely without cmpxchg
2405 */
6faa6833 2406 freelist = page->freelist;
497b66f2
CL
2407 page->freelist = NULL;
2408
2409 stat(s, ALLOC_SLAB);
497b66f2
CL
2410 c->page = page;
2411 *pc = c;
2412 } else
6faa6833 2413 freelist = NULL;
497b66f2 2414
6faa6833 2415 return freelist;
497b66f2
CL
2416}
2417
072bb0aa
MG
2418static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2419{
2420 if (unlikely(PageSlabPfmemalloc(page)))
2421 return gfp_pfmemalloc_allowed(gfpflags);
2422
2423 return true;
2424}
2425
213eeb9f 2426/*
d0e0ac97
CG
2427 * Check the page->freelist of a page and either transfer the freelist to the
2428 * per cpu freelist or deactivate the page.
213eeb9f
CL
2429 *
2430 * The page is still frozen if the return value is not NULL.
2431 *
2432 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2433 *
2434 * This function must be called with interrupt disabled.
213eeb9f
CL
2435 */
2436static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2437{
2438 struct page new;
2439 unsigned long counters;
2440 void *freelist;
2441
2442 do {
2443 freelist = page->freelist;
2444 counters = page->counters;
6faa6833 2445
213eeb9f 2446 new.counters = counters;
a0132ac0 2447 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2448
2449 new.inuse = page->objects;
2450 new.frozen = freelist != NULL;
2451
d24ac77f 2452 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2453 freelist, counters,
2454 NULL, new.counters,
2455 "get_freelist"));
2456
2457 return freelist;
2458}
2459
81819f0f 2460/*
894b8788
CL
2461 * Slow path. The lockless freelist is empty or we need to perform
2462 * debugging duties.
2463 *
894b8788
CL
2464 * Processing is still very fast if new objects have been freed to the
2465 * regular freelist. In that case we simply take over the regular freelist
2466 * as the lockless freelist and zap the regular freelist.
81819f0f 2467 *
894b8788
CL
2468 * If that is not working then we fall back to the partial lists. We take the
2469 * first element of the freelist as the object to allocate now and move the
2470 * rest of the freelist to the lockless freelist.
81819f0f 2471 *
894b8788 2472 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2473 * we need to allocate a new slab. This is the slowest path since it involves
2474 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2475 *
2476 * Version of __slab_alloc to use when we know that interrupts are
2477 * already disabled (which is the case for bulk allocation).
81819f0f 2478 */
a380a3c7 2479static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2480 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2481{
6faa6833 2482 void *freelist;
f6e7def7 2483 struct page *page;
81819f0f 2484
f6e7def7
CL
2485 page = c->page;
2486 if (!page)
81819f0f 2487 goto new_slab;
49e22585 2488redo:
6faa6833 2489
57d437d2 2490 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2491 int searchnode = node;
2492
2493 if (node != NUMA_NO_NODE && !node_present_pages(node))
2494 searchnode = node_to_mem_node(node);
2495
2496 if (unlikely(!node_match(page, searchnode))) {
2497 stat(s, ALLOC_NODE_MISMATCH);
2498 deactivate_slab(s, page, c->freelist);
2499 c->page = NULL;
2500 c->freelist = NULL;
2501 goto new_slab;
2502 }
fc59c053 2503 }
6446faa2 2504
072bb0aa
MG
2505 /*
2506 * By rights, we should be searching for a slab page that was
2507 * PFMEMALLOC but right now, we are losing the pfmemalloc
2508 * information when the page leaves the per-cpu allocator
2509 */
2510 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2511 deactivate_slab(s, page, c->freelist);
2512 c->page = NULL;
2513 c->freelist = NULL;
2514 goto new_slab;
2515 }
2516
73736e03 2517 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2518 freelist = c->freelist;
2519 if (freelist)
73736e03 2520 goto load_freelist;
03e404af 2521
f6e7def7 2522 freelist = get_freelist(s, page);
6446faa2 2523
6faa6833 2524 if (!freelist) {
03e404af
CL
2525 c->page = NULL;
2526 stat(s, DEACTIVATE_BYPASS);
fc59c053 2527 goto new_slab;
03e404af 2528 }
6446faa2 2529
84e554e6 2530 stat(s, ALLOC_REFILL);
6446faa2 2531
894b8788 2532load_freelist:
507effea
CL
2533 /*
2534 * freelist is pointing to the list of objects to be used.
2535 * page is pointing to the page from which the objects are obtained.
2536 * That page must be frozen for per cpu allocations to work.
2537 */
a0132ac0 2538 VM_BUG_ON(!c->page->frozen);
6faa6833 2539 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2540 c->tid = next_tid(c->tid);
6faa6833 2541 return freelist;
81819f0f 2542
81819f0f 2543new_slab:
2cfb7455 2544
49e22585 2545 if (c->partial) {
f6e7def7
CL
2546 page = c->page = c->partial;
2547 c->partial = page->next;
49e22585
CL
2548 stat(s, CPU_PARTIAL_ALLOC);
2549 c->freelist = NULL;
2550 goto redo;
81819f0f
CL
2551 }
2552
188fd063 2553 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2554
f4697436 2555 if (unlikely(!freelist)) {
9a02d699 2556 slab_out_of_memory(s, gfpflags, node);
f4697436 2557 return NULL;
81819f0f 2558 }
2cfb7455 2559
f6e7def7 2560 page = c->page;
5091b74a 2561 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2562 goto load_freelist;
2cfb7455 2563
497b66f2 2564 /* Only entered in the debug case */
d0e0ac97
CG
2565 if (kmem_cache_debug(s) &&
2566 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2567 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2568
f6e7def7 2569 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2570 c->page = NULL;
2571 c->freelist = NULL;
6faa6833 2572 return freelist;
894b8788
CL
2573}
2574
a380a3c7
CL
2575/*
2576 * Another one that disabled interrupt and compensates for possible
2577 * cpu changes by refetching the per cpu area pointer.
2578 */
2579static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2580 unsigned long addr, struct kmem_cache_cpu *c)
2581{
2582 void *p;
2583 unsigned long flags;
2584
2585 local_irq_save(flags);
2586#ifdef CONFIG_PREEMPT
2587 /*
2588 * We may have been preempted and rescheduled on a different
2589 * cpu before disabling interrupts. Need to reload cpu area
2590 * pointer.
2591 */
2592 c = this_cpu_ptr(s->cpu_slab);
2593#endif
2594
2595 p = ___slab_alloc(s, gfpflags, node, addr, c);
2596 local_irq_restore(flags);
2597 return p;
2598}
2599
894b8788
CL
2600/*
2601 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2602 * have the fastpath folded into their functions. So no function call
2603 * overhead for requests that can be satisfied on the fastpath.
2604 *
2605 * The fastpath works by first checking if the lockless freelist can be used.
2606 * If not then __slab_alloc is called for slow processing.
2607 *
2608 * Otherwise we can simply pick the next object from the lockless free list.
2609 */
2b847c3c 2610static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2611 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2612{
03ec0ed5 2613 void *object;
dfb4f096 2614 struct kmem_cache_cpu *c;
57d437d2 2615 struct page *page;
8a5ec0ba 2616 unsigned long tid;
1f84260c 2617
8135be5a
VD
2618 s = slab_pre_alloc_hook(s, gfpflags);
2619 if (!s)
773ff60e 2620 return NULL;
8a5ec0ba 2621redo:
8a5ec0ba
CL
2622 /*
2623 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2624 * enabled. We may switch back and forth between cpus while
2625 * reading from one cpu area. That does not matter as long
2626 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2627 *
9aabf810
JK
2628 * We should guarantee that tid and kmem_cache are retrieved on
2629 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2630 * to check if it is matched or not.
8a5ec0ba 2631 */
9aabf810
JK
2632 do {
2633 tid = this_cpu_read(s->cpu_slab->tid);
2634 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2635 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2636 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2637
2638 /*
2639 * Irqless object alloc/free algorithm used here depends on sequence
2640 * of fetching cpu_slab's data. tid should be fetched before anything
2641 * on c to guarantee that object and page associated with previous tid
2642 * won't be used with current tid. If we fetch tid first, object and
2643 * page could be one associated with next tid and our alloc/free
2644 * request will be failed. In this case, we will retry. So, no problem.
2645 */
2646 barrier();
8a5ec0ba 2647
8a5ec0ba
CL
2648 /*
2649 * The transaction ids are globally unique per cpu and per operation on
2650 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2651 * occurs on the right processor and that there was no operation on the
2652 * linked list in between.
2653 */
8a5ec0ba 2654
9dfc6e68 2655 object = c->freelist;
57d437d2 2656 page = c->page;
8eae1492 2657 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2658 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2659 stat(s, ALLOC_SLOWPATH);
2660 } else {
0ad9500e
ED
2661 void *next_object = get_freepointer_safe(s, object);
2662
8a5ec0ba 2663 /*
25985edc 2664 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2665 * operation and if we are on the right processor.
2666 *
d0e0ac97
CG
2667 * The cmpxchg does the following atomically (without lock
2668 * semantics!)
8a5ec0ba
CL
2669 * 1. Relocate first pointer to the current per cpu area.
2670 * 2. Verify that tid and freelist have not been changed
2671 * 3. If they were not changed replace tid and freelist
2672 *
d0e0ac97
CG
2673 * Since this is without lock semantics the protection is only
2674 * against code executing on this cpu *not* from access by
2675 * other cpus.
8a5ec0ba 2676 */
933393f5 2677 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2678 s->cpu_slab->freelist, s->cpu_slab->tid,
2679 object, tid,
0ad9500e 2680 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2681
2682 note_cmpxchg_failure("slab_alloc", s, tid);
2683 goto redo;
2684 }
0ad9500e 2685 prefetch_freepointer(s, next_object);
84e554e6 2686 stat(s, ALLOC_FASTPATH);
894b8788 2687 }
8a5ec0ba 2688
74e2134f 2689 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2690 memset(object, 0, s->object_size);
d07dbea4 2691
03ec0ed5 2692 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2693
894b8788 2694 return object;
81819f0f
CL
2695}
2696
2b847c3c
EG
2697static __always_inline void *slab_alloc(struct kmem_cache *s,
2698 gfp_t gfpflags, unsigned long addr)
2699{
2700 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2701}
2702
81819f0f
CL
2703void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2704{
2b847c3c 2705 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2706
d0e0ac97
CG
2707 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2708 s->size, gfpflags);
5b882be4
EGM
2709
2710 return ret;
81819f0f
CL
2711}
2712EXPORT_SYMBOL(kmem_cache_alloc);
2713
0f24f128 2714#ifdef CONFIG_TRACING
4a92379b
RK
2715void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2716{
2b847c3c 2717 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2718 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2719 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2720 return ret;
2721}
2722EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2723#endif
2724
81819f0f
CL
2725#ifdef CONFIG_NUMA
2726void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2727{
2b847c3c 2728 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2729
ca2b84cb 2730 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2731 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2732
2733 return ret;
81819f0f
CL
2734}
2735EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2736
0f24f128 2737#ifdef CONFIG_TRACING
4a92379b 2738void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2739 gfp_t gfpflags,
4a92379b 2740 int node, size_t size)
5b882be4 2741{
2b847c3c 2742 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2743
2744 trace_kmalloc_node(_RET_IP_, ret,
2745 size, s->size, gfpflags, node);
0316bec2 2746
505f5dcb 2747 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2748 return ret;
5b882be4 2749}
4a92379b 2750EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2751#endif
5d1f57e4 2752#endif
5b882be4 2753
81819f0f 2754/*
94e4d712 2755 * Slow path handling. This may still be called frequently since objects
894b8788 2756 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2757 *
894b8788
CL
2758 * So we still attempt to reduce cache line usage. Just take the slab
2759 * lock and free the item. If there is no additional partial page
2760 * handling required then we can return immediately.
81819f0f 2761 */
894b8788 2762static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2763 void *head, void *tail, int cnt,
2764 unsigned long addr)
2765
81819f0f
CL
2766{
2767 void *prior;
2cfb7455 2768 int was_frozen;
2cfb7455
CL
2769 struct page new;
2770 unsigned long counters;
2771 struct kmem_cache_node *n = NULL;
61728d1e 2772 unsigned long uninitialized_var(flags);
81819f0f 2773
8a5ec0ba 2774 stat(s, FREE_SLOWPATH);
81819f0f 2775
19c7ff9e 2776 if (kmem_cache_debug(s) &&
282acb43 2777 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2778 return;
6446faa2 2779
2cfb7455 2780 do {
837d678d
JK
2781 if (unlikely(n)) {
2782 spin_unlock_irqrestore(&n->list_lock, flags);
2783 n = NULL;
2784 }
2cfb7455
CL
2785 prior = page->freelist;
2786 counters = page->counters;
81084651 2787 set_freepointer(s, tail, prior);
2cfb7455
CL
2788 new.counters = counters;
2789 was_frozen = new.frozen;
81084651 2790 new.inuse -= cnt;
837d678d 2791 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2792
c65c1877 2793 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2794
2795 /*
d0e0ac97
CG
2796 * Slab was on no list before and will be
2797 * partially empty
2798 * We can defer the list move and instead
2799 * freeze it.
49e22585
CL
2800 */
2801 new.frozen = 1;
2802
c65c1877 2803 } else { /* Needs to be taken off a list */
49e22585 2804
b455def2 2805 n = get_node(s, page_to_nid(page));
49e22585
CL
2806 /*
2807 * Speculatively acquire the list_lock.
2808 * If the cmpxchg does not succeed then we may
2809 * drop the list_lock without any processing.
2810 *
2811 * Otherwise the list_lock will synchronize with
2812 * other processors updating the list of slabs.
2813 */
2814 spin_lock_irqsave(&n->list_lock, flags);
2815
2816 }
2cfb7455 2817 }
81819f0f 2818
2cfb7455
CL
2819 } while (!cmpxchg_double_slab(s, page,
2820 prior, counters,
81084651 2821 head, new.counters,
2cfb7455 2822 "__slab_free"));
81819f0f 2823
2cfb7455 2824 if (likely(!n)) {
49e22585
CL
2825
2826 /*
2827 * If we just froze the page then put it onto the
2828 * per cpu partial list.
2829 */
8028dcea 2830 if (new.frozen && !was_frozen) {
49e22585 2831 put_cpu_partial(s, page, 1);
8028dcea
AS
2832 stat(s, CPU_PARTIAL_FREE);
2833 }
49e22585 2834 /*
2cfb7455
CL
2835 * The list lock was not taken therefore no list
2836 * activity can be necessary.
2837 */
b455def2
L
2838 if (was_frozen)
2839 stat(s, FREE_FROZEN);
2840 return;
2841 }
81819f0f 2842
8a5b20ae 2843 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2844 goto slab_empty;
2845
81819f0f 2846 /*
837d678d
JK
2847 * Objects left in the slab. If it was not on the partial list before
2848 * then add it.
81819f0f 2849 */
345c905d
JK
2850 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2851 if (kmem_cache_debug(s))
c65c1877 2852 remove_full(s, n, page);
837d678d
JK
2853 add_partial(n, page, DEACTIVATE_TO_TAIL);
2854 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2855 }
80f08c19 2856 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2857 return;
2858
2859slab_empty:
a973e9dd 2860 if (prior) {
81819f0f 2861 /*
6fbabb20 2862 * Slab on the partial list.
81819f0f 2863 */
5cc6eee8 2864 remove_partial(n, page);
84e554e6 2865 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2866 } else {
6fbabb20 2867 /* Slab must be on the full list */
c65c1877
PZ
2868 remove_full(s, n, page);
2869 }
2cfb7455 2870
80f08c19 2871 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2872 stat(s, FREE_SLAB);
81819f0f 2873 discard_slab(s, page);
81819f0f
CL
2874}
2875
894b8788
CL
2876/*
2877 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2878 * can perform fastpath freeing without additional function calls.
2879 *
2880 * The fastpath is only possible if we are freeing to the current cpu slab
2881 * of this processor. This typically the case if we have just allocated
2882 * the item before.
2883 *
2884 * If fastpath is not possible then fall back to __slab_free where we deal
2885 * with all sorts of special processing.
81084651
JDB
2886 *
2887 * Bulk free of a freelist with several objects (all pointing to the
2888 * same page) possible by specifying head and tail ptr, plus objects
2889 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2890 */
80a9201a
AP
2891static __always_inline void do_slab_free(struct kmem_cache *s,
2892 struct page *page, void *head, void *tail,
2893 int cnt, unsigned long addr)
894b8788 2894{
81084651 2895 void *tail_obj = tail ? : head;
dfb4f096 2896 struct kmem_cache_cpu *c;
8a5ec0ba 2897 unsigned long tid;
8a5ec0ba
CL
2898redo:
2899 /*
2900 * Determine the currently cpus per cpu slab.
2901 * The cpu may change afterward. However that does not matter since
2902 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2903 * during the cmpxchg then the free will succeed.
8a5ec0ba 2904 */
9aabf810
JK
2905 do {
2906 tid = this_cpu_read(s->cpu_slab->tid);
2907 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2908 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2909 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2910
9aabf810
JK
2911 /* Same with comment on barrier() in slab_alloc_node() */
2912 barrier();
c016b0bd 2913
442b06bc 2914 if (likely(page == c->page)) {
81084651 2915 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2916
933393f5 2917 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2918 s->cpu_slab->freelist, s->cpu_slab->tid,
2919 c->freelist, tid,
81084651 2920 head, next_tid(tid)))) {
8a5ec0ba
CL
2921
2922 note_cmpxchg_failure("slab_free", s, tid);
2923 goto redo;
2924 }
84e554e6 2925 stat(s, FREE_FASTPATH);
894b8788 2926 } else
81084651 2927 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2928
894b8788
CL
2929}
2930
80a9201a
AP
2931static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2932 void *head, void *tail, int cnt,
2933 unsigned long addr)
2934{
2935 slab_free_freelist_hook(s, head, tail);
2936 /*
2937 * slab_free_freelist_hook() could have put the items into quarantine.
2938 * If so, no need to free them.
2939 */
2940 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2941 return;
2942 do_slab_free(s, page, head, tail, cnt, addr);
2943}
2944
2945#ifdef CONFIG_KASAN
2946void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2947{
2948 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2949}
2950#endif
2951
81819f0f
CL
2952void kmem_cache_free(struct kmem_cache *s, void *x)
2953{
b9ce5ef4
GC
2954 s = cache_from_obj(s, x);
2955 if (!s)
79576102 2956 return;
81084651 2957 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2958 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2959}
2960EXPORT_SYMBOL(kmem_cache_free);
2961
d0ecd894 2962struct detached_freelist {
fbd02630 2963 struct page *page;
d0ecd894
JDB
2964 void *tail;
2965 void *freelist;
2966 int cnt;
376bf125 2967 struct kmem_cache *s;
d0ecd894 2968};
fbd02630 2969
d0ecd894
JDB
2970/*
2971 * This function progressively scans the array with free objects (with
2972 * a limited look ahead) and extract objects belonging to the same
2973 * page. It builds a detached freelist directly within the given
2974 * page/objects. This can happen without any need for
2975 * synchronization, because the objects are owned by running process.
2976 * The freelist is build up as a single linked list in the objects.
2977 * The idea is, that this detached freelist can then be bulk
2978 * transferred to the real freelist(s), but only requiring a single
2979 * synchronization primitive. Look ahead in the array is limited due
2980 * to performance reasons.
2981 */
376bf125
JDB
2982static inline
2983int build_detached_freelist(struct kmem_cache *s, size_t size,
2984 void **p, struct detached_freelist *df)
d0ecd894
JDB
2985{
2986 size_t first_skipped_index = 0;
2987 int lookahead = 3;
2988 void *object;
ca257195 2989 struct page *page;
fbd02630 2990
d0ecd894
JDB
2991 /* Always re-init detached_freelist */
2992 df->page = NULL;
fbd02630 2993
d0ecd894
JDB
2994 do {
2995 object = p[--size];
ca257195 2996 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2997 } while (!object && size);
3eed034d 2998
d0ecd894
JDB
2999 if (!object)
3000 return 0;
fbd02630 3001
ca257195
JDB
3002 page = virt_to_head_page(object);
3003 if (!s) {
3004 /* Handle kalloc'ed objects */
3005 if (unlikely(!PageSlab(page))) {
3006 BUG_ON(!PageCompound(page));
3007 kfree_hook(object);
4949148a 3008 __free_pages(page, compound_order(page));
ca257195
JDB
3009 p[size] = NULL; /* mark object processed */
3010 return size;
3011 }
3012 /* Derive kmem_cache from object */
3013 df->s = page->slab_cache;
3014 } else {
3015 df->s = cache_from_obj(s, object); /* Support for memcg */
3016 }
376bf125 3017
d0ecd894 3018 /* Start new detached freelist */
ca257195 3019 df->page = page;
376bf125 3020 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3021 df->tail = object;
3022 df->freelist = object;
3023 p[size] = NULL; /* mark object processed */
3024 df->cnt = 1;
3025
3026 while (size) {
3027 object = p[--size];
3028 if (!object)
3029 continue; /* Skip processed objects */
3030
3031 /* df->page is always set at this point */
3032 if (df->page == virt_to_head_page(object)) {
3033 /* Opportunity build freelist */
376bf125 3034 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3035 df->freelist = object;
3036 df->cnt++;
3037 p[size] = NULL; /* mark object processed */
3038
3039 continue;
fbd02630 3040 }
d0ecd894
JDB
3041
3042 /* Limit look ahead search */
3043 if (!--lookahead)
3044 break;
3045
3046 if (!first_skipped_index)
3047 first_skipped_index = size + 1;
fbd02630 3048 }
d0ecd894
JDB
3049
3050 return first_skipped_index;
3051}
3052
d0ecd894 3053/* Note that interrupts must be enabled when calling this function. */
376bf125 3054void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3055{
3056 if (WARN_ON(!size))
3057 return;
3058
3059 do {
3060 struct detached_freelist df;
3061
3062 size = build_detached_freelist(s, size, p, &df);
3063 if (unlikely(!df.page))
3064 continue;
3065
376bf125 3066 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3067 } while (likely(size));
484748f0
CL
3068}
3069EXPORT_SYMBOL(kmem_cache_free_bulk);
3070
994eb764 3071/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3072int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3073 void **p)
484748f0 3074{
994eb764
JDB
3075 struct kmem_cache_cpu *c;
3076 int i;
3077
03ec0ed5
JDB
3078 /* memcg and kmem_cache debug support */
3079 s = slab_pre_alloc_hook(s, flags);
3080 if (unlikely(!s))
3081 return false;
994eb764
JDB
3082 /*
3083 * Drain objects in the per cpu slab, while disabling local
3084 * IRQs, which protects against PREEMPT and interrupts
3085 * handlers invoking normal fastpath.
3086 */
3087 local_irq_disable();
3088 c = this_cpu_ptr(s->cpu_slab);
3089
3090 for (i = 0; i < size; i++) {
3091 void *object = c->freelist;
3092
ebe909e0 3093 if (unlikely(!object)) {
ebe909e0
JDB
3094 /*
3095 * Invoking slow path likely have side-effect
3096 * of re-populating per CPU c->freelist
3097 */
87098373 3098 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3099 _RET_IP_, c);
87098373
CL
3100 if (unlikely(!p[i]))
3101 goto error;
3102
ebe909e0
JDB
3103 c = this_cpu_ptr(s->cpu_slab);
3104 continue; /* goto for-loop */
3105 }
994eb764
JDB
3106 c->freelist = get_freepointer(s, object);
3107 p[i] = object;
3108 }
3109 c->tid = next_tid(c->tid);
3110 local_irq_enable();
3111
3112 /* Clear memory outside IRQ disabled fastpath loop */
3113 if (unlikely(flags & __GFP_ZERO)) {
3114 int j;
3115
3116 for (j = 0; j < i; j++)
3117 memset(p[j], 0, s->object_size);
3118 }
3119
03ec0ed5
JDB
3120 /* memcg and kmem_cache debug support */
3121 slab_post_alloc_hook(s, flags, size, p);
865762a8 3122 return i;
87098373 3123error:
87098373 3124 local_irq_enable();
03ec0ed5
JDB
3125 slab_post_alloc_hook(s, flags, i, p);
3126 __kmem_cache_free_bulk(s, i, p);
865762a8 3127 return 0;
484748f0
CL
3128}
3129EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3130
3131
81819f0f 3132/*
672bba3a
CL
3133 * Object placement in a slab is made very easy because we always start at
3134 * offset 0. If we tune the size of the object to the alignment then we can
3135 * get the required alignment by putting one properly sized object after
3136 * another.
81819f0f
CL
3137 *
3138 * Notice that the allocation order determines the sizes of the per cpu
3139 * caches. Each processor has always one slab available for allocations.
3140 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3141 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3142 * locking overhead.
81819f0f
CL
3143 */
3144
3145/*
3146 * Mininum / Maximum order of slab pages. This influences locking overhead
3147 * and slab fragmentation. A higher order reduces the number of partial slabs
3148 * and increases the number of allocations possible without having to
3149 * take the list_lock.
3150 */
3151static int slub_min_order;
114e9e89 3152static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3153static int slub_min_objects;
81819f0f 3154
81819f0f
CL
3155/*
3156 * Calculate the order of allocation given an slab object size.
3157 *
672bba3a
CL
3158 * The order of allocation has significant impact on performance and other
3159 * system components. Generally order 0 allocations should be preferred since
3160 * order 0 does not cause fragmentation in the page allocator. Larger objects
3161 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3162 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3163 * would be wasted.
3164 *
3165 * In order to reach satisfactory performance we must ensure that a minimum
3166 * number of objects is in one slab. Otherwise we may generate too much
3167 * activity on the partial lists which requires taking the list_lock. This is
3168 * less a concern for large slabs though which are rarely used.
81819f0f 3169 *
672bba3a
CL
3170 * slub_max_order specifies the order where we begin to stop considering the
3171 * number of objects in a slab as critical. If we reach slub_max_order then
3172 * we try to keep the page order as low as possible. So we accept more waste
3173 * of space in favor of a small page order.
81819f0f 3174 *
672bba3a
CL
3175 * Higher order allocations also allow the placement of more objects in a
3176 * slab and thereby reduce object handling overhead. If the user has
3177 * requested a higher mininum order then we start with that one instead of
3178 * the smallest order which will fit the object.
81819f0f 3179 */
5e6d444e 3180static inline int slab_order(int size, int min_objects,
ab9a0f19 3181 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3182{
3183 int order;
3184 int rem;
6300ea75 3185 int min_order = slub_min_order;
81819f0f 3186
ab9a0f19 3187 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3188 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3189
9f835703 3190 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3191 order <= max_order; order++) {
81819f0f 3192
5e6d444e 3193 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3194
ab9a0f19 3195 rem = (slab_size - reserved) % size;
81819f0f 3196
5e6d444e 3197 if (rem <= slab_size / fract_leftover)
81819f0f 3198 break;
81819f0f 3199 }
672bba3a 3200
81819f0f
CL
3201 return order;
3202}
3203
ab9a0f19 3204static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3205{
3206 int order;
3207 int min_objects;
3208 int fraction;
e8120ff1 3209 int max_objects;
5e6d444e
CL
3210
3211 /*
3212 * Attempt to find best configuration for a slab. This
3213 * works by first attempting to generate a layout with
3214 * the best configuration and backing off gradually.
3215 *
422ff4d7 3216 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3217 * we reduce the minimum objects required in a slab.
3218 */
3219 min_objects = slub_min_objects;
9b2cd506
CL
3220 if (!min_objects)
3221 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3222 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3223 min_objects = min(min_objects, max_objects);
3224
5e6d444e 3225 while (min_objects > 1) {
c124f5b5 3226 fraction = 16;
5e6d444e
CL
3227 while (fraction >= 4) {
3228 order = slab_order(size, min_objects,
ab9a0f19 3229 slub_max_order, fraction, reserved);
5e6d444e
CL
3230 if (order <= slub_max_order)
3231 return order;
3232 fraction /= 2;
3233 }
5086c389 3234 min_objects--;
5e6d444e
CL
3235 }
3236
3237 /*
3238 * We were unable to place multiple objects in a slab. Now
3239 * lets see if we can place a single object there.
3240 */
ab9a0f19 3241 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3242 if (order <= slub_max_order)
3243 return order;
3244
3245 /*
3246 * Doh this slab cannot be placed using slub_max_order.
3247 */
ab9a0f19 3248 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3249 if (order < MAX_ORDER)
5e6d444e
CL
3250 return order;
3251 return -ENOSYS;
3252}
3253
5595cffc 3254static void
4053497d 3255init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3256{
3257 n->nr_partial = 0;
81819f0f
CL
3258 spin_lock_init(&n->list_lock);
3259 INIT_LIST_HEAD(&n->partial);
8ab1372f 3260#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3261 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3262 atomic_long_set(&n->total_objects, 0);
643b1138 3263 INIT_LIST_HEAD(&n->full);
8ab1372f 3264#endif
81819f0f
CL
3265}
3266
55136592 3267static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3268{
6c182dc0 3269 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3270 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3271
8a5ec0ba 3272 /*
d4d84fef
CM
3273 * Must align to double word boundary for the double cmpxchg
3274 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3275 */
d4d84fef
CM
3276 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3277 2 * sizeof(void *));
8a5ec0ba
CL
3278
3279 if (!s->cpu_slab)
3280 return 0;
3281
3282 init_kmem_cache_cpus(s);
4c93c355 3283
8a5ec0ba 3284 return 1;
4c93c355 3285}
4c93c355 3286
51df1142
CL
3287static struct kmem_cache *kmem_cache_node;
3288
81819f0f
CL
3289/*
3290 * No kmalloc_node yet so do it by hand. We know that this is the first
3291 * slab on the node for this slabcache. There are no concurrent accesses
3292 * possible.
3293 *
721ae22a
ZYW
3294 * Note that this function only works on the kmem_cache_node
3295 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3296 * memory on a fresh node that has no slab structures yet.
81819f0f 3297 */
55136592 3298static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3299{
3300 struct page *page;
3301 struct kmem_cache_node *n;
3302
51df1142 3303 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3304
51df1142 3305 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3306
3307 BUG_ON(!page);
a2f92ee7 3308 if (page_to_nid(page) != node) {
f9f58285
FF
3309 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3310 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3311 }
3312
81819f0f
CL
3313 n = page->freelist;
3314 BUG_ON(!n);
51df1142 3315 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3316 page->inuse = 1;
8cb0a506 3317 page->frozen = 0;
51df1142 3318 kmem_cache_node->node[node] = n;
8ab1372f 3319#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3320 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3321 init_tracking(kmem_cache_node, n);
8ab1372f 3322#endif
505f5dcb
AP
3323 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3324 GFP_KERNEL);
4053497d 3325 init_kmem_cache_node(n);
51df1142 3326 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3327
67b6c900 3328 /*
1e4dd946
SR
3329 * No locks need to be taken here as it has just been
3330 * initialized and there is no concurrent access.
67b6c900 3331 */
1e4dd946 3332 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3333}
3334
3335static void free_kmem_cache_nodes(struct kmem_cache *s)
3336{
3337 int node;
fa45dc25 3338 struct kmem_cache_node *n;
81819f0f 3339
fa45dc25
CL
3340 for_each_kmem_cache_node(s, node, n) {
3341 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3342 s->node[node] = NULL;
3343 }
3344}
3345
52b4b950
DS
3346void __kmem_cache_release(struct kmem_cache *s)
3347{
210e7a43 3348 cache_random_seq_destroy(s);
52b4b950
DS
3349 free_percpu(s->cpu_slab);
3350 free_kmem_cache_nodes(s);
3351}
3352
55136592 3353static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3354{
3355 int node;
81819f0f 3356
f64dc58c 3357 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3358 struct kmem_cache_node *n;
3359
73367bd8 3360 if (slab_state == DOWN) {
55136592 3361 early_kmem_cache_node_alloc(node);
73367bd8
AD
3362 continue;
3363 }
51df1142 3364 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3365 GFP_KERNEL, node);
81819f0f 3366
73367bd8
AD
3367 if (!n) {
3368 free_kmem_cache_nodes(s);
3369 return 0;
81819f0f 3370 }
73367bd8 3371
81819f0f 3372 s->node[node] = n;
4053497d 3373 init_kmem_cache_node(n);
81819f0f
CL
3374 }
3375 return 1;
3376}
81819f0f 3377
c0bdb232 3378static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3379{
3380 if (min < MIN_PARTIAL)
3381 min = MIN_PARTIAL;
3382 else if (min > MAX_PARTIAL)
3383 min = MAX_PARTIAL;
3384 s->min_partial = min;
3385}
3386
81819f0f
CL
3387/*
3388 * calculate_sizes() determines the order and the distribution of data within
3389 * a slab object.
3390 */
06b285dc 3391static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3392{
3393 unsigned long flags = s->flags;
80a9201a 3394 size_t size = s->object_size;
834f3d11 3395 int order;
81819f0f 3396
d8b42bf5
CL
3397 /*
3398 * Round up object size to the next word boundary. We can only
3399 * place the free pointer at word boundaries and this determines
3400 * the possible location of the free pointer.
3401 */
3402 size = ALIGN(size, sizeof(void *));
3403
3404#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3405 /*
3406 * Determine if we can poison the object itself. If the user of
3407 * the slab may touch the object after free or before allocation
3408 * then we should never poison the object itself.
3409 */
3410 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3411 !s->ctor)
81819f0f
CL
3412 s->flags |= __OBJECT_POISON;
3413 else
3414 s->flags &= ~__OBJECT_POISON;
3415
81819f0f
CL
3416
3417 /*
672bba3a 3418 * If we are Redzoning then check if there is some space between the
81819f0f 3419 * end of the object and the free pointer. If not then add an
672bba3a 3420 * additional word to have some bytes to store Redzone information.
81819f0f 3421 */
3b0efdfa 3422 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3423 size += sizeof(void *);
41ecc55b 3424#endif
81819f0f
CL
3425
3426 /*
672bba3a
CL
3427 * With that we have determined the number of bytes in actual use
3428 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3429 */
3430 s->inuse = size;
3431
3432 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3433 s->ctor)) {
81819f0f
CL
3434 /*
3435 * Relocate free pointer after the object if it is not
3436 * permitted to overwrite the first word of the object on
3437 * kmem_cache_free.
3438 *
3439 * This is the case if we do RCU, have a constructor or
3440 * destructor or are poisoning the objects.
3441 */
3442 s->offset = size;
3443 size += sizeof(void *);
3444 }
3445
c12b3c62 3446#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3447 if (flags & SLAB_STORE_USER)
3448 /*
3449 * Need to store information about allocs and frees after
3450 * the object.
3451 */
3452 size += 2 * sizeof(struct track);
80a9201a 3453#endif
81819f0f 3454
80a9201a
AP
3455 kasan_cache_create(s, &size, &s->flags);
3456#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3457 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3458 /*
3459 * Add some empty padding so that we can catch
3460 * overwrites from earlier objects rather than let
3461 * tracking information or the free pointer be
0211a9c8 3462 * corrupted if a user writes before the start
81819f0f
CL
3463 * of the object.
3464 */
3465 size += sizeof(void *);
d86bd1be
JK
3466
3467 s->red_left_pad = sizeof(void *);
3468 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3469 size += s->red_left_pad;
3470 }
41ecc55b 3471#endif
672bba3a 3472
81819f0f
CL
3473 /*
3474 * SLUB stores one object immediately after another beginning from
3475 * offset 0. In order to align the objects we have to simply size
3476 * each object to conform to the alignment.
3477 */
45906855 3478 size = ALIGN(size, s->align);
81819f0f 3479 s->size = size;
06b285dc
CL
3480 if (forced_order >= 0)
3481 order = forced_order;
3482 else
ab9a0f19 3483 order = calculate_order(size, s->reserved);
81819f0f 3484
834f3d11 3485 if (order < 0)
81819f0f
CL
3486 return 0;
3487
b7a49f0d 3488 s->allocflags = 0;
834f3d11 3489 if (order)
b7a49f0d
CL
3490 s->allocflags |= __GFP_COMP;
3491
3492 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3493 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3494
3495 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3496 s->allocflags |= __GFP_RECLAIMABLE;
3497
81819f0f
CL
3498 /*
3499 * Determine the number of objects per slab
3500 */
ab9a0f19
LJ
3501 s->oo = oo_make(order, size, s->reserved);
3502 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3503 if (oo_objects(s->oo) > oo_objects(s->max))
3504 s->max = s->oo;
81819f0f 3505
834f3d11 3506 return !!oo_objects(s->oo);
81819f0f
CL
3507}
3508
8a13a4cc 3509static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3510{
8a13a4cc 3511 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3512 s->reserved = 0;
81819f0f 3513
da9a638c
LJ
3514 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3515 s->reserved = sizeof(struct rcu_head);
81819f0f 3516
06b285dc 3517 if (!calculate_sizes(s, -1))
81819f0f 3518 goto error;
3de47213
DR
3519 if (disable_higher_order_debug) {
3520 /*
3521 * Disable debugging flags that store metadata if the min slab
3522 * order increased.
3523 */
3b0efdfa 3524 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3525 s->flags &= ~DEBUG_METADATA_FLAGS;
3526 s->offset = 0;
3527 if (!calculate_sizes(s, -1))
3528 goto error;
3529 }
3530 }
81819f0f 3531
2565409f
HC
3532#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3533 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3534 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3535 /* Enable fast mode */
3536 s->flags |= __CMPXCHG_DOUBLE;
3537#endif
3538
3b89d7d8
DR
3539 /*
3540 * The larger the object size is, the more pages we want on the partial
3541 * list to avoid pounding the page allocator excessively.
3542 */
49e22585
CL
3543 set_min_partial(s, ilog2(s->size) / 2);
3544
3545 /*
3546 * cpu_partial determined the maximum number of objects kept in the
3547 * per cpu partial lists of a processor.
3548 *
3549 * Per cpu partial lists mainly contain slabs that just have one
3550 * object freed. If they are used for allocation then they can be
3551 * filled up again with minimal effort. The slab will never hit the
3552 * per node partial lists and therefore no locking will be required.
3553 *
3554 * This setting also determines
3555 *
3556 * A) The number of objects from per cpu partial slabs dumped to the
3557 * per node list when we reach the limit.
9f264904 3558 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3559 * per node list when we run out of per cpu objects. We only fetch
3560 * 50% to keep some capacity around for frees.
49e22585 3561 */
345c905d 3562 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3563 s->cpu_partial = 0;
3564 else if (s->size >= PAGE_SIZE)
49e22585
CL
3565 s->cpu_partial = 2;
3566 else if (s->size >= 1024)
3567 s->cpu_partial = 6;
3568 else if (s->size >= 256)
3569 s->cpu_partial = 13;
3570 else
3571 s->cpu_partial = 30;
3572
81819f0f 3573#ifdef CONFIG_NUMA
e2cb96b7 3574 s->remote_node_defrag_ratio = 1000;
81819f0f 3575#endif
210e7a43
TG
3576
3577 /* Initialize the pre-computed randomized freelist if slab is up */
3578 if (slab_state >= UP) {
3579 if (init_cache_random_seq(s))
3580 goto error;
3581 }
3582
55136592 3583 if (!init_kmem_cache_nodes(s))
dfb4f096 3584 goto error;
81819f0f 3585
55136592 3586 if (alloc_kmem_cache_cpus(s))
278b1bb1 3587 return 0;
ff12059e 3588
4c93c355 3589 free_kmem_cache_nodes(s);
81819f0f
CL
3590error:
3591 if (flags & SLAB_PANIC)
756a025f
JP
3592 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3593 s->name, (unsigned long)s->size, s->size,
3594 oo_order(s->oo), s->offset, flags);
278b1bb1 3595 return -EINVAL;
81819f0f 3596}
81819f0f 3597
33b12c38
CL
3598static void list_slab_objects(struct kmem_cache *s, struct page *page,
3599 const char *text)
3600{
3601#ifdef CONFIG_SLUB_DEBUG
3602 void *addr = page_address(page);
3603 void *p;
a5dd5c11
NK
3604 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3605 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3606 if (!map)
3607 return;
945cf2b6 3608 slab_err(s, page, text, s->name);
33b12c38 3609 slab_lock(page);
33b12c38 3610
5f80b13a 3611 get_map(s, page, map);
33b12c38
CL
3612 for_each_object(p, s, addr, page->objects) {
3613
3614 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3615 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3616 print_tracking(s, p);
3617 }
3618 }
3619 slab_unlock(page);
bbd7d57b 3620 kfree(map);
33b12c38
CL
3621#endif
3622}
3623
81819f0f 3624/*
599870b1 3625 * Attempt to free all partial slabs on a node.
52b4b950
DS
3626 * This is called from __kmem_cache_shutdown(). We must take list_lock
3627 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3628 */
599870b1 3629static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3630{
81819f0f
CL
3631 struct page *page, *h;
3632
52b4b950
DS
3633 BUG_ON(irqs_disabled());
3634 spin_lock_irq(&n->list_lock);
33b12c38 3635 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3636 if (!page->inuse) {
52b4b950 3637 remove_partial(n, page);
81819f0f 3638 discard_slab(s, page);
33b12c38
CL
3639 } else {
3640 list_slab_objects(s, page,
52b4b950 3641 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3642 }
33b12c38 3643 }
52b4b950 3644 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3645}
3646
3647/*
672bba3a 3648 * Release all resources used by a slab cache.
81819f0f 3649 */
52b4b950 3650int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3651{
3652 int node;
fa45dc25 3653 struct kmem_cache_node *n;
81819f0f
CL
3654
3655 flush_all(s);
81819f0f 3656 /* Attempt to free all objects */
fa45dc25 3657 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3658 free_partial(s, n);
3659 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3660 return 1;
3661 }
81819f0f
CL
3662 return 0;
3663}
3664
81819f0f
CL
3665/********************************************************************
3666 * Kmalloc subsystem
3667 *******************************************************************/
3668
81819f0f
CL
3669static int __init setup_slub_min_order(char *str)
3670{
06428780 3671 get_option(&str, &slub_min_order);
81819f0f
CL
3672
3673 return 1;
3674}
3675
3676__setup("slub_min_order=", setup_slub_min_order);
3677
3678static int __init setup_slub_max_order(char *str)
3679{
06428780 3680 get_option(&str, &slub_max_order);
818cf590 3681 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3682
3683 return 1;
3684}
3685
3686__setup("slub_max_order=", setup_slub_max_order);
3687
3688static int __init setup_slub_min_objects(char *str)
3689{
06428780 3690 get_option(&str, &slub_min_objects);
81819f0f
CL
3691
3692 return 1;
3693}
3694
3695__setup("slub_min_objects=", setup_slub_min_objects);
3696
81819f0f
CL
3697void *__kmalloc(size_t size, gfp_t flags)
3698{
aadb4bc4 3699 struct kmem_cache *s;
5b882be4 3700 void *ret;
81819f0f 3701
95a05b42 3702 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3703 return kmalloc_large(size, flags);
aadb4bc4 3704
2c59dd65 3705 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3706
3707 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3708 return s;
3709
2b847c3c 3710 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3711
ca2b84cb 3712 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3713
505f5dcb 3714 kasan_kmalloc(s, ret, size, flags);
0316bec2 3715
5b882be4 3716 return ret;
81819f0f
CL
3717}
3718EXPORT_SYMBOL(__kmalloc);
3719
5d1f57e4 3720#ifdef CONFIG_NUMA
f619cfe1
CL
3721static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3722{
b1eeab67 3723 struct page *page;
e4f7c0b4 3724 void *ptr = NULL;
f619cfe1 3725
52383431 3726 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3727 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3728 if (page)
e4f7c0b4
CM
3729 ptr = page_address(page);
3730
d56791b3 3731 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3732 return ptr;
f619cfe1
CL
3733}
3734
81819f0f
CL
3735void *__kmalloc_node(size_t size, gfp_t flags, int node)
3736{
aadb4bc4 3737 struct kmem_cache *s;
5b882be4 3738 void *ret;
81819f0f 3739
95a05b42 3740 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3741 ret = kmalloc_large_node(size, flags, node);
3742
ca2b84cb
EGM
3743 trace_kmalloc_node(_RET_IP_, ret,
3744 size, PAGE_SIZE << get_order(size),
3745 flags, node);
5b882be4
EGM
3746
3747 return ret;
3748 }
aadb4bc4 3749
2c59dd65 3750 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3751
3752 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3753 return s;
3754
2b847c3c 3755 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3756
ca2b84cb 3757 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3758
505f5dcb 3759 kasan_kmalloc(s, ret, size, flags);
0316bec2 3760
5b882be4 3761 return ret;
81819f0f
CL
3762}
3763EXPORT_SYMBOL(__kmalloc_node);
3764#endif
3765
0316bec2 3766static size_t __ksize(const void *object)
81819f0f 3767{
272c1d21 3768 struct page *page;
81819f0f 3769
ef8b4520 3770 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3771 return 0;
3772
294a80a8 3773 page = virt_to_head_page(object);
294a80a8 3774
76994412
PE
3775 if (unlikely(!PageSlab(page))) {
3776 WARN_ON(!PageCompound(page));
294a80a8 3777 return PAGE_SIZE << compound_order(page);
76994412 3778 }
81819f0f 3779
1b4f59e3 3780 return slab_ksize(page->slab_cache);
81819f0f 3781}
0316bec2
AR
3782
3783size_t ksize(const void *object)
3784{
3785 size_t size = __ksize(object);
3786 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3787 * so we need to unpoison this area.
3788 */
3789 kasan_unpoison_shadow(object, size);
0316bec2
AR
3790 return size;
3791}
b1aabecd 3792EXPORT_SYMBOL(ksize);
81819f0f
CL
3793
3794void kfree(const void *x)
3795{
81819f0f 3796 struct page *page;
5bb983b0 3797 void *object = (void *)x;
81819f0f 3798
2121db74
PE
3799 trace_kfree(_RET_IP_, x);
3800
2408c550 3801 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3802 return;
3803
b49af68f 3804 page = virt_to_head_page(x);
aadb4bc4 3805 if (unlikely(!PageSlab(page))) {
0937502a 3806 BUG_ON(!PageCompound(page));
d56791b3 3807 kfree_hook(x);
4949148a 3808 __free_pages(page, compound_order(page));
aadb4bc4
CL
3809 return;
3810 }
81084651 3811 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3812}
3813EXPORT_SYMBOL(kfree);
3814
832f37f5
VD
3815#define SHRINK_PROMOTE_MAX 32
3816
2086d26a 3817/*
832f37f5
VD
3818 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3819 * up most to the head of the partial lists. New allocations will then
3820 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3821 *
3822 * The slabs with the least items are placed last. This results in them
3823 * being allocated from last increasing the chance that the last objects
3824 * are freed in them.
2086d26a 3825 */
d6e0b7fa 3826int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3827{
3828 int node;
3829 int i;
3830 struct kmem_cache_node *n;
3831 struct page *page;
3832 struct page *t;
832f37f5
VD
3833 struct list_head discard;
3834 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3835 unsigned long flags;
ce3712d7 3836 int ret = 0;
2086d26a 3837
d6e0b7fa
VD
3838 if (deactivate) {
3839 /*
3840 * Disable empty slabs caching. Used to avoid pinning offline
3841 * memory cgroups by kmem pages that can be freed.
3842 */
3843 s->cpu_partial = 0;
3844 s->min_partial = 0;
3845
3846 /*
3847 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3848 * so we have to make sure the change is visible.
3849 */
81ae6d03 3850 synchronize_sched();
d6e0b7fa
VD
3851 }
3852
2086d26a 3853 flush_all(s);
fa45dc25 3854 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3855 INIT_LIST_HEAD(&discard);
3856 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3857 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3858
3859 spin_lock_irqsave(&n->list_lock, flags);
3860
3861 /*
832f37f5 3862 * Build lists of slabs to discard or promote.
2086d26a 3863 *
672bba3a
CL
3864 * Note that concurrent frees may occur while we hold the
3865 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3866 */
3867 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3868 int free = page->objects - page->inuse;
3869
3870 /* Do not reread page->inuse */
3871 barrier();
3872
3873 /* We do not keep full slabs on the list */
3874 BUG_ON(free <= 0);
3875
3876 if (free == page->objects) {
3877 list_move(&page->lru, &discard);
69cb8e6b 3878 n->nr_partial--;
832f37f5
VD
3879 } else if (free <= SHRINK_PROMOTE_MAX)
3880 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3881 }
3882
2086d26a 3883 /*
832f37f5
VD
3884 * Promote the slabs filled up most to the head of the
3885 * partial list.
2086d26a 3886 */
832f37f5
VD
3887 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3888 list_splice(promote + i, &n->partial);
2086d26a 3889
2086d26a 3890 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3891
3892 /* Release empty slabs */
832f37f5 3893 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3894 discard_slab(s, page);
ce3712d7
VD
3895
3896 if (slabs_node(s, node))
3897 ret = 1;
2086d26a
CL
3898 }
3899
ce3712d7 3900 return ret;
2086d26a 3901}
2086d26a 3902
b9049e23
YG
3903static int slab_mem_going_offline_callback(void *arg)
3904{
3905 struct kmem_cache *s;
3906
18004c5d 3907 mutex_lock(&slab_mutex);
b9049e23 3908 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3909 __kmem_cache_shrink(s, false);
18004c5d 3910 mutex_unlock(&slab_mutex);
b9049e23
YG
3911
3912 return 0;
3913}
3914
3915static void slab_mem_offline_callback(void *arg)
3916{
3917 struct kmem_cache_node *n;
3918 struct kmem_cache *s;
3919 struct memory_notify *marg = arg;
3920 int offline_node;
3921
b9d5ab25 3922 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3923
3924 /*
3925 * If the node still has available memory. we need kmem_cache_node
3926 * for it yet.
3927 */
3928 if (offline_node < 0)
3929 return;
3930
18004c5d 3931 mutex_lock(&slab_mutex);
b9049e23
YG
3932 list_for_each_entry(s, &slab_caches, list) {
3933 n = get_node(s, offline_node);
3934 if (n) {
3935 /*
3936 * if n->nr_slabs > 0, slabs still exist on the node
3937 * that is going down. We were unable to free them,
c9404c9c 3938 * and offline_pages() function shouldn't call this
b9049e23
YG
3939 * callback. So, we must fail.
3940 */
0f389ec6 3941 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3942
3943 s->node[offline_node] = NULL;
8de66a0c 3944 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3945 }
3946 }
18004c5d 3947 mutex_unlock(&slab_mutex);
b9049e23
YG
3948}
3949
3950static int slab_mem_going_online_callback(void *arg)
3951{
3952 struct kmem_cache_node *n;
3953 struct kmem_cache *s;
3954 struct memory_notify *marg = arg;
b9d5ab25 3955 int nid = marg->status_change_nid_normal;
b9049e23
YG
3956 int ret = 0;
3957
3958 /*
3959 * If the node's memory is already available, then kmem_cache_node is
3960 * already created. Nothing to do.
3961 */
3962 if (nid < 0)
3963 return 0;
3964
3965 /*
0121c619 3966 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3967 * allocate a kmem_cache_node structure in order to bring the node
3968 * online.
3969 */
18004c5d 3970 mutex_lock(&slab_mutex);
b9049e23
YG
3971 list_for_each_entry(s, &slab_caches, list) {
3972 /*
3973 * XXX: kmem_cache_alloc_node will fallback to other nodes
3974 * since memory is not yet available from the node that
3975 * is brought up.
3976 */
8de66a0c 3977 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3978 if (!n) {
3979 ret = -ENOMEM;
3980 goto out;
3981 }
4053497d 3982 init_kmem_cache_node(n);
b9049e23
YG
3983 s->node[nid] = n;
3984 }
3985out:
18004c5d 3986 mutex_unlock(&slab_mutex);
b9049e23
YG
3987 return ret;
3988}
3989
3990static int slab_memory_callback(struct notifier_block *self,
3991 unsigned long action, void *arg)
3992{
3993 int ret = 0;
3994
3995 switch (action) {
3996 case MEM_GOING_ONLINE:
3997 ret = slab_mem_going_online_callback(arg);
3998 break;
3999 case MEM_GOING_OFFLINE:
4000 ret = slab_mem_going_offline_callback(arg);
4001 break;
4002 case MEM_OFFLINE:
4003 case MEM_CANCEL_ONLINE:
4004 slab_mem_offline_callback(arg);
4005 break;
4006 case MEM_ONLINE:
4007 case MEM_CANCEL_OFFLINE:
4008 break;
4009 }
dc19f9db
KH
4010 if (ret)
4011 ret = notifier_from_errno(ret);
4012 else
4013 ret = NOTIFY_OK;
b9049e23
YG
4014 return ret;
4015}
4016
3ac38faa
AM
4017static struct notifier_block slab_memory_callback_nb = {
4018 .notifier_call = slab_memory_callback,
4019 .priority = SLAB_CALLBACK_PRI,
4020};
b9049e23 4021
81819f0f
CL
4022/********************************************************************
4023 * Basic setup of slabs
4024 *******************************************************************/
4025
51df1142
CL
4026/*
4027 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4028 * the page allocator. Allocate them properly then fix up the pointers
4029 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4030 */
4031
dffb4d60 4032static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4033{
4034 int node;
dffb4d60 4035 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4036 struct kmem_cache_node *n;
51df1142 4037
dffb4d60 4038 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4039
7d557b3c
GC
4040 /*
4041 * This runs very early, and only the boot processor is supposed to be
4042 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4043 * IPIs around.
4044 */
4045 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4046 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4047 struct page *p;
4048
fa45dc25
CL
4049 list_for_each_entry(p, &n->partial, lru)
4050 p->slab_cache = s;
51df1142 4051
607bf324 4052#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4053 list_for_each_entry(p, &n->full, lru)
4054 p->slab_cache = s;
51df1142 4055#endif
51df1142 4056 }
f7ce3190 4057 slab_init_memcg_params(s);
dffb4d60
CL
4058 list_add(&s->list, &slab_caches);
4059 return s;
51df1142
CL
4060}
4061
81819f0f
CL
4062void __init kmem_cache_init(void)
4063{
dffb4d60
CL
4064 static __initdata struct kmem_cache boot_kmem_cache,
4065 boot_kmem_cache_node;
51df1142 4066
fc8d8620
SG
4067 if (debug_guardpage_minorder())
4068 slub_max_order = 0;
4069
dffb4d60
CL
4070 kmem_cache_node = &boot_kmem_cache_node;
4071 kmem_cache = &boot_kmem_cache;
51df1142 4072
dffb4d60
CL
4073 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4074 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4075
3ac38faa 4076 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4077
4078 /* Able to allocate the per node structures */
4079 slab_state = PARTIAL;
4080
dffb4d60
CL
4081 create_boot_cache(kmem_cache, "kmem_cache",
4082 offsetof(struct kmem_cache, node) +
4083 nr_node_ids * sizeof(struct kmem_cache_node *),
4084 SLAB_HWCACHE_ALIGN);
8a13a4cc 4085
dffb4d60 4086 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4087
51df1142
CL
4088 /*
4089 * Allocate kmem_cache_node properly from the kmem_cache slab.
4090 * kmem_cache_node is separately allocated so no need to
4091 * update any list pointers.
4092 */
dffb4d60 4093 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4094
4095 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4096 setup_kmalloc_cache_index_table();
f97d5f63 4097 create_kmalloc_caches(0);
81819f0f 4098
210e7a43
TG
4099 /* Setup random freelists for each cache */
4100 init_freelist_randomization();
4101
81819f0f
CL
4102#ifdef CONFIG_SMP
4103 register_cpu_notifier(&slab_notifier);
9dfc6e68 4104#endif
81819f0f 4105
f9f58285 4106 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4107 cache_line_size(),
81819f0f
CL
4108 slub_min_order, slub_max_order, slub_min_objects,
4109 nr_cpu_ids, nr_node_ids);
4110}
4111
7e85ee0c
PE
4112void __init kmem_cache_init_late(void)
4113{
7e85ee0c
PE
4114}
4115
2633d7a0 4116struct kmem_cache *
a44cb944
VD
4117__kmem_cache_alias(const char *name, size_t size, size_t align,
4118 unsigned long flags, void (*ctor)(void *))
81819f0f 4119{
426589f5 4120 struct kmem_cache *s, *c;
81819f0f 4121
a44cb944 4122 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4123 if (s) {
4124 s->refcount++;
84d0ddd6 4125
81819f0f
CL
4126 /*
4127 * Adjust the object sizes so that we clear
4128 * the complete object on kzalloc.
4129 */
3b0efdfa 4130 s->object_size = max(s->object_size, (int)size);
81819f0f 4131 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4132
426589f5 4133 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4134 c->object_size = s->object_size;
4135 c->inuse = max_t(int, c->inuse,
4136 ALIGN(size, sizeof(void *)));
4137 }
4138
7b8f3b66 4139 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4140 s->refcount--;
cbb79694 4141 s = NULL;
7b8f3b66 4142 }
a0e1d1be 4143 }
6446faa2 4144
cbb79694
CL
4145 return s;
4146}
84c1cf62 4147
8a13a4cc 4148int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4149{
aac3a166
PE
4150 int err;
4151
4152 err = kmem_cache_open(s, flags);
4153 if (err)
4154 return err;
20cea968 4155
45530c44
CL
4156 /* Mutex is not taken during early boot */
4157 if (slab_state <= UP)
4158 return 0;
4159
107dab5c 4160 memcg_propagate_slab_attrs(s);
aac3a166 4161 err = sysfs_slab_add(s);
aac3a166 4162 if (err)
52b4b950 4163 __kmem_cache_release(s);
20cea968 4164
aac3a166 4165 return err;
81819f0f 4166}
81819f0f 4167
81819f0f 4168#ifdef CONFIG_SMP
81819f0f 4169/*
672bba3a
CL
4170 * Use the cpu notifier to insure that the cpu slabs are flushed when
4171 * necessary.
81819f0f 4172 */
0db0628d 4173static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
4174 unsigned long action, void *hcpu)
4175{
4176 long cpu = (long)hcpu;
5b95a4ac
CL
4177 struct kmem_cache *s;
4178 unsigned long flags;
81819f0f
CL
4179
4180 switch (action) {
4181 case CPU_UP_CANCELED:
8bb78442 4182 case CPU_UP_CANCELED_FROZEN:
81819f0f 4183 case CPU_DEAD:
8bb78442 4184 case CPU_DEAD_FROZEN:
18004c5d 4185 mutex_lock(&slab_mutex);
5b95a4ac
CL
4186 list_for_each_entry(s, &slab_caches, list) {
4187 local_irq_save(flags);
4188 __flush_cpu_slab(s, cpu);
4189 local_irq_restore(flags);
4190 }
18004c5d 4191 mutex_unlock(&slab_mutex);
81819f0f
CL
4192 break;
4193 default:
4194 break;
4195 }
4196 return NOTIFY_OK;
4197}
4198
0db0628d 4199static struct notifier_block slab_notifier = {
3adbefee 4200 .notifier_call = slab_cpuup_callback
06428780 4201};
81819f0f
CL
4202
4203#endif
4204
ce71e27c 4205void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4206{
aadb4bc4 4207 struct kmem_cache *s;
94b528d0 4208 void *ret;
aadb4bc4 4209
95a05b42 4210 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4211 return kmalloc_large(size, gfpflags);
4212
2c59dd65 4213 s = kmalloc_slab(size, gfpflags);
81819f0f 4214
2408c550 4215 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4216 return s;
81819f0f 4217
2b847c3c 4218 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4219
25985edc 4220 /* Honor the call site pointer we received. */
ca2b84cb 4221 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4222
4223 return ret;
81819f0f
CL
4224}
4225
5d1f57e4 4226#ifdef CONFIG_NUMA
81819f0f 4227void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4228 int node, unsigned long caller)
81819f0f 4229{
aadb4bc4 4230 struct kmem_cache *s;
94b528d0 4231 void *ret;
aadb4bc4 4232
95a05b42 4233 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4234 ret = kmalloc_large_node(size, gfpflags, node);
4235
4236 trace_kmalloc_node(caller, ret,
4237 size, PAGE_SIZE << get_order(size),
4238 gfpflags, node);
4239
4240 return ret;
4241 }
eada35ef 4242
2c59dd65 4243 s = kmalloc_slab(size, gfpflags);
81819f0f 4244
2408c550 4245 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4246 return s;
81819f0f 4247
2b847c3c 4248 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4249
25985edc 4250 /* Honor the call site pointer we received. */
ca2b84cb 4251 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4252
4253 return ret;
81819f0f 4254}
5d1f57e4 4255#endif
81819f0f 4256
ab4d5ed5 4257#ifdef CONFIG_SYSFS
205ab99d
CL
4258static int count_inuse(struct page *page)
4259{
4260 return page->inuse;
4261}
4262
4263static int count_total(struct page *page)
4264{
4265 return page->objects;
4266}
ab4d5ed5 4267#endif
205ab99d 4268
ab4d5ed5 4269#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4270static int validate_slab(struct kmem_cache *s, struct page *page,
4271 unsigned long *map)
53e15af0
CL
4272{
4273 void *p;
a973e9dd 4274 void *addr = page_address(page);
53e15af0
CL
4275
4276 if (!check_slab(s, page) ||
4277 !on_freelist(s, page, NULL))
4278 return 0;
4279
4280 /* Now we know that a valid freelist exists */
39b26464 4281 bitmap_zero(map, page->objects);
53e15af0 4282
5f80b13a
CL
4283 get_map(s, page, map);
4284 for_each_object(p, s, addr, page->objects) {
4285 if (test_bit(slab_index(p, s, addr), map))
4286 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4287 return 0;
53e15af0
CL
4288 }
4289
224a88be 4290 for_each_object(p, s, addr, page->objects)
7656c72b 4291 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4292 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4293 return 0;
4294 return 1;
4295}
4296
434e245d
CL
4297static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4298 unsigned long *map)
53e15af0 4299{
881db7fb
CL
4300 slab_lock(page);
4301 validate_slab(s, page, map);
4302 slab_unlock(page);
53e15af0
CL
4303}
4304
434e245d
CL
4305static int validate_slab_node(struct kmem_cache *s,
4306 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4307{
4308 unsigned long count = 0;
4309 struct page *page;
4310 unsigned long flags;
4311
4312 spin_lock_irqsave(&n->list_lock, flags);
4313
4314 list_for_each_entry(page, &n->partial, lru) {
434e245d 4315 validate_slab_slab(s, page, map);
53e15af0
CL
4316 count++;
4317 }
4318 if (count != n->nr_partial)
f9f58285
FF
4319 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4320 s->name, count, n->nr_partial);
53e15af0
CL
4321
4322 if (!(s->flags & SLAB_STORE_USER))
4323 goto out;
4324
4325 list_for_each_entry(page, &n->full, lru) {
434e245d 4326 validate_slab_slab(s, page, map);
53e15af0
CL
4327 count++;
4328 }
4329 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4330 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4331 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4332
4333out:
4334 spin_unlock_irqrestore(&n->list_lock, flags);
4335 return count;
4336}
4337
434e245d 4338static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4339{
4340 int node;
4341 unsigned long count = 0;
205ab99d 4342 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4343 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4344 struct kmem_cache_node *n;
434e245d
CL
4345
4346 if (!map)
4347 return -ENOMEM;
53e15af0
CL
4348
4349 flush_all(s);
fa45dc25 4350 for_each_kmem_cache_node(s, node, n)
434e245d 4351 count += validate_slab_node(s, n, map);
434e245d 4352 kfree(map);
53e15af0
CL
4353 return count;
4354}
88a420e4 4355/*
672bba3a 4356 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4357 * and freed.
4358 */
4359
4360struct location {
4361 unsigned long count;
ce71e27c 4362 unsigned long addr;
45edfa58
CL
4363 long long sum_time;
4364 long min_time;
4365 long max_time;
4366 long min_pid;
4367 long max_pid;
174596a0 4368 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4369 nodemask_t nodes;
88a420e4
CL
4370};
4371
4372struct loc_track {
4373 unsigned long max;
4374 unsigned long count;
4375 struct location *loc;
4376};
4377
4378static void free_loc_track(struct loc_track *t)
4379{
4380 if (t->max)
4381 free_pages((unsigned long)t->loc,
4382 get_order(sizeof(struct location) * t->max));
4383}
4384
68dff6a9 4385static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4386{
4387 struct location *l;
4388 int order;
4389
88a420e4
CL
4390 order = get_order(sizeof(struct location) * max);
4391
68dff6a9 4392 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4393 if (!l)
4394 return 0;
4395
4396 if (t->count) {
4397 memcpy(l, t->loc, sizeof(struct location) * t->count);
4398 free_loc_track(t);
4399 }
4400 t->max = max;
4401 t->loc = l;
4402 return 1;
4403}
4404
4405static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4406 const struct track *track)
88a420e4
CL
4407{
4408 long start, end, pos;
4409 struct location *l;
ce71e27c 4410 unsigned long caddr;
45edfa58 4411 unsigned long age = jiffies - track->when;
88a420e4
CL
4412
4413 start = -1;
4414 end = t->count;
4415
4416 for ( ; ; ) {
4417 pos = start + (end - start + 1) / 2;
4418
4419 /*
4420 * There is nothing at "end". If we end up there
4421 * we need to add something to before end.
4422 */
4423 if (pos == end)
4424 break;
4425
4426 caddr = t->loc[pos].addr;
45edfa58
CL
4427 if (track->addr == caddr) {
4428
4429 l = &t->loc[pos];
4430 l->count++;
4431 if (track->when) {
4432 l->sum_time += age;
4433 if (age < l->min_time)
4434 l->min_time = age;
4435 if (age > l->max_time)
4436 l->max_time = age;
4437
4438 if (track->pid < l->min_pid)
4439 l->min_pid = track->pid;
4440 if (track->pid > l->max_pid)
4441 l->max_pid = track->pid;
4442
174596a0
RR
4443 cpumask_set_cpu(track->cpu,
4444 to_cpumask(l->cpus));
45edfa58
CL
4445 }
4446 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4447 return 1;
4448 }
4449
45edfa58 4450 if (track->addr < caddr)
88a420e4
CL
4451 end = pos;
4452 else
4453 start = pos;
4454 }
4455
4456 /*
672bba3a 4457 * Not found. Insert new tracking element.
88a420e4 4458 */
68dff6a9 4459 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4460 return 0;
4461
4462 l = t->loc + pos;
4463 if (pos < t->count)
4464 memmove(l + 1, l,
4465 (t->count - pos) * sizeof(struct location));
4466 t->count++;
4467 l->count = 1;
45edfa58
CL
4468 l->addr = track->addr;
4469 l->sum_time = age;
4470 l->min_time = age;
4471 l->max_time = age;
4472 l->min_pid = track->pid;
4473 l->max_pid = track->pid;
174596a0
RR
4474 cpumask_clear(to_cpumask(l->cpus));
4475 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4476 nodes_clear(l->nodes);
4477 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4478 return 1;
4479}
4480
4481static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4482 struct page *page, enum track_item alloc,
a5dd5c11 4483 unsigned long *map)
88a420e4 4484{
a973e9dd 4485 void *addr = page_address(page);
88a420e4
CL
4486 void *p;
4487
39b26464 4488 bitmap_zero(map, page->objects);
5f80b13a 4489 get_map(s, page, map);
88a420e4 4490
224a88be 4491 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4492 if (!test_bit(slab_index(p, s, addr), map))
4493 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4494}
4495
4496static int list_locations(struct kmem_cache *s, char *buf,
4497 enum track_item alloc)
4498{
e374d483 4499 int len = 0;
88a420e4 4500 unsigned long i;
68dff6a9 4501 struct loc_track t = { 0, 0, NULL };
88a420e4 4502 int node;
bbd7d57b
ED
4503 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4504 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4505 struct kmem_cache_node *n;
88a420e4 4506
bbd7d57b
ED
4507 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4508 GFP_TEMPORARY)) {
4509 kfree(map);
68dff6a9 4510 return sprintf(buf, "Out of memory\n");
bbd7d57b 4511 }
88a420e4
CL
4512 /* Push back cpu slabs */
4513 flush_all(s);
4514
fa45dc25 4515 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4516 unsigned long flags;
4517 struct page *page;
4518
9e86943b 4519 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4520 continue;
4521
4522 spin_lock_irqsave(&n->list_lock, flags);
4523 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4524 process_slab(&t, s, page, alloc, map);
88a420e4 4525 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4526 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4527 spin_unlock_irqrestore(&n->list_lock, flags);
4528 }
4529
4530 for (i = 0; i < t.count; i++) {
45edfa58 4531 struct location *l = &t.loc[i];
88a420e4 4532
9c246247 4533 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4534 break;
e374d483 4535 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4536
4537 if (l->addr)
62c70bce 4538 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4539 else
e374d483 4540 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4541
4542 if (l->sum_time != l->min_time) {
e374d483 4543 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4544 l->min_time,
4545 (long)div_u64(l->sum_time, l->count),
4546 l->max_time);
45edfa58 4547 } else
e374d483 4548 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4549 l->min_time);
4550
4551 if (l->min_pid != l->max_pid)
e374d483 4552 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4553 l->min_pid, l->max_pid);
4554 else
e374d483 4555 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4556 l->min_pid);
4557
174596a0
RR
4558 if (num_online_cpus() > 1 &&
4559 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4560 len < PAGE_SIZE - 60)
4561 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4562 " cpus=%*pbl",
4563 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4564
62bc62a8 4565 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4566 len < PAGE_SIZE - 60)
4567 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4568 " nodes=%*pbl",
4569 nodemask_pr_args(&l->nodes));
45edfa58 4570
e374d483 4571 len += sprintf(buf + len, "\n");
88a420e4
CL
4572 }
4573
4574 free_loc_track(&t);
bbd7d57b 4575 kfree(map);
88a420e4 4576 if (!t.count)
e374d483
HH
4577 len += sprintf(buf, "No data\n");
4578 return len;
88a420e4 4579}
ab4d5ed5 4580#endif
88a420e4 4581
a5a84755 4582#ifdef SLUB_RESILIENCY_TEST
c07b8183 4583static void __init resiliency_test(void)
a5a84755
CL
4584{
4585 u8 *p;
4586
95a05b42 4587 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4588
f9f58285
FF
4589 pr_err("SLUB resiliency testing\n");
4590 pr_err("-----------------------\n");
4591 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4592
4593 p = kzalloc(16, GFP_KERNEL);
4594 p[16] = 0x12;
f9f58285
FF
4595 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4596 p + 16);
a5a84755
CL
4597
4598 validate_slab_cache(kmalloc_caches[4]);
4599
4600 /* Hmmm... The next two are dangerous */
4601 p = kzalloc(32, GFP_KERNEL);
4602 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4603 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4604 p);
4605 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4606
4607 validate_slab_cache(kmalloc_caches[5]);
4608 p = kzalloc(64, GFP_KERNEL);
4609 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4610 *p = 0x56;
f9f58285
FF
4611 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4612 p);
4613 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4614 validate_slab_cache(kmalloc_caches[6]);
4615
f9f58285 4616 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4617 p = kzalloc(128, GFP_KERNEL);
4618 kfree(p);
4619 *p = 0x78;
f9f58285 4620 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4621 validate_slab_cache(kmalloc_caches[7]);
4622
4623 p = kzalloc(256, GFP_KERNEL);
4624 kfree(p);
4625 p[50] = 0x9a;
f9f58285 4626 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4627 validate_slab_cache(kmalloc_caches[8]);
4628
4629 p = kzalloc(512, GFP_KERNEL);
4630 kfree(p);
4631 p[512] = 0xab;
f9f58285 4632 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4633 validate_slab_cache(kmalloc_caches[9]);
4634}
4635#else
4636#ifdef CONFIG_SYSFS
4637static void resiliency_test(void) {};
4638#endif
4639#endif
4640
ab4d5ed5 4641#ifdef CONFIG_SYSFS
81819f0f 4642enum slab_stat_type {
205ab99d
CL
4643 SL_ALL, /* All slabs */
4644 SL_PARTIAL, /* Only partially allocated slabs */
4645 SL_CPU, /* Only slabs used for cpu caches */
4646 SL_OBJECTS, /* Determine allocated objects not slabs */
4647 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4648};
4649
205ab99d 4650#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4651#define SO_PARTIAL (1 << SL_PARTIAL)
4652#define SO_CPU (1 << SL_CPU)
4653#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4654#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4655
62e5c4b4
CG
4656static ssize_t show_slab_objects(struct kmem_cache *s,
4657 char *buf, unsigned long flags)
81819f0f
CL
4658{
4659 unsigned long total = 0;
81819f0f
CL
4660 int node;
4661 int x;
4662 unsigned long *nodes;
81819f0f 4663
e35e1a97 4664 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4665 if (!nodes)
4666 return -ENOMEM;
81819f0f 4667
205ab99d
CL
4668 if (flags & SO_CPU) {
4669 int cpu;
81819f0f 4670
205ab99d 4671 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4672 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4673 cpu);
ec3ab083 4674 int node;
49e22585 4675 struct page *page;
dfb4f096 4676
4db0c3c2 4677 page = READ_ONCE(c->page);
ec3ab083
CL
4678 if (!page)
4679 continue;
205ab99d 4680
ec3ab083
CL
4681 node = page_to_nid(page);
4682 if (flags & SO_TOTAL)
4683 x = page->objects;
4684 else if (flags & SO_OBJECTS)
4685 x = page->inuse;
4686 else
4687 x = 1;
49e22585 4688
ec3ab083
CL
4689 total += x;
4690 nodes[node] += x;
4691
4db0c3c2 4692 page = READ_ONCE(c->partial);
49e22585 4693 if (page) {
8afb1474
LZ
4694 node = page_to_nid(page);
4695 if (flags & SO_TOTAL)
4696 WARN_ON_ONCE(1);
4697 else if (flags & SO_OBJECTS)
4698 WARN_ON_ONCE(1);
4699 else
4700 x = page->pages;
bc6697d8
ED
4701 total += x;
4702 nodes[node] += x;
49e22585 4703 }
81819f0f
CL
4704 }
4705 }
4706
bfc8c901 4707 get_online_mems();
ab4d5ed5 4708#ifdef CONFIG_SLUB_DEBUG
205ab99d 4709 if (flags & SO_ALL) {
fa45dc25
CL
4710 struct kmem_cache_node *n;
4711
4712 for_each_kmem_cache_node(s, node, n) {
205ab99d 4713
d0e0ac97
CG
4714 if (flags & SO_TOTAL)
4715 x = atomic_long_read(&n->total_objects);
4716 else if (flags & SO_OBJECTS)
4717 x = atomic_long_read(&n->total_objects) -
4718 count_partial(n, count_free);
81819f0f 4719 else
205ab99d 4720 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4721 total += x;
4722 nodes[node] += x;
4723 }
4724
ab4d5ed5
CL
4725 } else
4726#endif
4727 if (flags & SO_PARTIAL) {
fa45dc25 4728 struct kmem_cache_node *n;
81819f0f 4729
fa45dc25 4730 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4731 if (flags & SO_TOTAL)
4732 x = count_partial(n, count_total);
4733 else if (flags & SO_OBJECTS)
4734 x = count_partial(n, count_inuse);
81819f0f 4735 else
205ab99d 4736 x = n->nr_partial;
81819f0f
CL
4737 total += x;
4738 nodes[node] += x;
4739 }
4740 }
81819f0f
CL
4741 x = sprintf(buf, "%lu", total);
4742#ifdef CONFIG_NUMA
fa45dc25 4743 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4744 if (nodes[node])
4745 x += sprintf(buf + x, " N%d=%lu",
4746 node, nodes[node]);
4747#endif
bfc8c901 4748 put_online_mems();
81819f0f
CL
4749 kfree(nodes);
4750 return x + sprintf(buf + x, "\n");
4751}
4752
ab4d5ed5 4753#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4754static int any_slab_objects(struct kmem_cache *s)
4755{
4756 int node;
fa45dc25 4757 struct kmem_cache_node *n;
81819f0f 4758
fa45dc25 4759 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4760 if (atomic_long_read(&n->total_objects))
81819f0f 4761 return 1;
fa45dc25 4762
81819f0f
CL
4763 return 0;
4764}
ab4d5ed5 4765#endif
81819f0f
CL
4766
4767#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4768#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4769
4770struct slab_attribute {
4771 struct attribute attr;
4772 ssize_t (*show)(struct kmem_cache *s, char *buf);
4773 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4774};
4775
4776#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4777 static struct slab_attribute _name##_attr = \
4778 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4779
4780#define SLAB_ATTR(_name) \
4781 static struct slab_attribute _name##_attr = \
ab067e99 4782 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4783
81819f0f
CL
4784static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4785{
4786 return sprintf(buf, "%d\n", s->size);
4787}
4788SLAB_ATTR_RO(slab_size);
4789
4790static ssize_t align_show(struct kmem_cache *s, char *buf)
4791{
4792 return sprintf(buf, "%d\n", s->align);
4793}
4794SLAB_ATTR_RO(align);
4795
4796static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4797{
3b0efdfa 4798 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4799}
4800SLAB_ATTR_RO(object_size);
4801
4802static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4803{
834f3d11 4804 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4805}
4806SLAB_ATTR_RO(objs_per_slab);
4807
06b285dc
CL
4808static ssize_t order_store(struct kmem_cache *s,
4809 const char *buf, size_t length)
4810{
0121c619
CL
4811 unsigned long order;
4812 int err;
4813
3dbb95f7 4814 err = kstrtoul(buf, 10, &order);
0121c619
CL
4815 if (err)
4816 return err;
06b285dc
CL
4817
4818 if (order > slub_max_order || order < slub_min_order)
4819 return -EINVAL;
4820
4821 calculate_sizes(s, order);
4822 return length;
4823}
4824
81819f0f
CL
4825static ssize_t order_show(struct kmem_cache *s, char *buf)
4826{
834f3d11 4827 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4828}
06b285dc 4829SLAB_ATTR(order);
81819f0f 4830
73d342b1
DR
4831static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4832{
4833 return sprintf(buf, "%lu\n", s->min_partial);
4834}
4835
4836static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4837 size_t length)
4838{
4839 unsigned long min;
4840 int err;
4841
3dbb95f7 4842 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4843 if (err)
4844 return err;
4845
c0bdb232 4846 set_min_partial(s, min);
73d342b1
DR
4847 return length;
4848}
4849SLAB_ATTR(min_partial);
4850
49e22585
CL
4851static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4852{
4853 return sprintf(buf, "%u\n", s->cpu_partial);
4854}
4855
4856static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4857 size_t length)
4858{
4859 unsigned long objects;
4860 int err;
4861
3dbb95f7 4862 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4863 if (err)
4864 return err;
345c905d 4865 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4866 return -EINVAL;
49e22585
CL
4867
4868 s->cpu_partial = objects;
4869 flush_all(s);
4870 return length;
4871}
4872SLAB_ATTR(cpu_partial);
4873
81819f0f
CL
4874static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4875{
62c70bce
JP
4876 if (!s->ctor)
4877 return 0;
4878 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4879}
4880SLAB_ATTR_RO(ctor);
4881
81819f0f
CL
4882static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4883{
4307c14f 4884 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4885}
4886SLAB_ATTR_RO(aliases);
4887
81819f0f
CL
4888static ssize_t partial_show(struct kmem_cache *s, char *buf)
4889{
d9acf4b7 4890 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4891}
4892SLAB_ATTR_RO(partial);
4893
4894static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4895{
d9acf4b7 4896 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4897}
4898SLAB_ATTR_RO(cpu_slabs);
4899
4900static ssize_t objects_show(struct kmem_cache *s, char *buf)
4901{
205ab99d 4902 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4903}
4904SLAB_ATTR_RO(objects);
4905
205ab99d
CL
4906static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4907{
4908 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4909}
4910SLAB_ATTR_RO(objects_partial);
4911
49e22585
CL
4912static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4913{
4914 int objects = 0;
4915 int pages = 0;
4916 int cpu;
4917 int len;
4918
4919 for_each_online_cpu(cpu) {
4920 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4921
4922 if (page) {
4923 pages += page->pages;
4924 objects += page->pobjects;
4925 }
4926 }
4927
4928 len = sprintf(buf, "%d(%d)", objects, pages);
4929
4930#ifdef CONFIG_SMP
4931 for_each_online_cpu(cpu) {
4932 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4933
4934 if (page && len < PAGE_SIZE - 20)
4935 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4936 page->pobjects, page->pages);
4937 }
4938#endif
4939 return len + sprintf(buf + len, "\n");
4940}
4941SLAB_ATTR_RO(slabs_cpu_partial);
4942
a5a84755
CL
4943static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4944{
4945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4946}
4947
4948static ssize_t reclaim_account_store(struct kmem_cache *s,
4949 const char *buf, size_t length)
4950{
4951 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4952 if (buf[0] == '1')
4953 s->flags |= SLAB_RECLAIM_ACCOUNT;
4954 return length;
4955}
4956SLAB_ATTR(reclaim_account);
4957
4958static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4959{
4960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4961}
4962SLAB_ATTR_RO(hwcache_align);
4963
4964#ifdef CONFIG_ZONE_DMA
4965static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4966{
4967 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4968}
4969SLAB_ATTR_RO(cache_dma);
4970#endif
4971
4972static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4973{
4974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4975}
4976SLAB_ATTR_RO(destroy_by_rcu);
4977
ab9a0f19
LJ
4978static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4979{
4980 return sprintf(buf, "%d\n", s->reserved);
4981}
4982SLAB_ATTR_RO(reserved);
4983
ab4d5ed5 4984#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4985static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4986{
4987 return show_slab_objects(s, buf, SO_ALL);
4988}
4989SLAB_ATTR_RO(slabs);
4990
205ab99d
CL
4991static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4992{
4993 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4994}
4995SLAB_ATTR_RO(total_objects);
4996
81819f0f
CL
4997static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4998{
becfda68 4999 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5000}
5001
5002static ssize_t sanity_checks_store(struct kmem_cache *s,
5003 const char *buf, size_t length)
5004{
becfda68 5005 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5006 if (buf[0] == '1') {
5007 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5008 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5009 }
81819f0f
CL
5010 return length;
5011}
5012SLAB_ATTR(sanity_checks);
5013
5014static ssize_t trace_show(struct kmem_cache *s, char *buf)
5015{
5016 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5017}
5018
5019static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5020 size_t length)
5021{
c9e16131
CL
5022 /*
5023 * Tracing a merged cache is going to give confusing results
5024 * as well as cause other issues like converting a mergeable
5025 * cache into an umergeable one.
5026 */
5027 if (s->refcount > 1)
5028 return -EINVAL;
5029
81819f0f 5030 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5031 if (buf[0] == '1') {
5032 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5033 s->flags |= SLAB_TRACE;
b789ef51 5034 }
81819f0f
CL
5035 return length;
5036}
5037SLAB_ATTR(trace);
5038
81819f0f
CL
5039static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5040{
5041 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5042}
5043
5044static ssize_t red_zone_store(struct kmem_cache *s,
5045 const char *buf, size_t length)
5046{
5047 if (any_slab_objects(s))
5048 return -EBUSY;
5049
5050 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5051 if (buf[0] == '1') {
81819f0f 5052 s->flags |= SLAB_RED_ZONE;
b789ef51 5053 }
06b285dc 5054 calculate_sizes(s, -1);
81819f0f
CL
5055 return length;
5056}
5057SLAB_ATTR(red_zone);
5058
5059static ssize_t poison_show(struct kmem_cache *s, char *buf)
5060{
5061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5062}
5063
5064static ssize_t poison_store(struct kmem_cache *s,
5065 const char *buf, size_t length)
5066{
5067 if (any_slab_objects(s))
5068 return -EBUSY;
5069
5070 s->flags &= ~SLAB_POISON;
b789ef51 5071 if (buf[0] == '1') {
81819f0f 5072 s->flags |= SLAB_POISON;
b789ef51 5073 }
06b285dc 5074 calculate_sizes(s, -1);
81819f0f
CL
5075 return length;
5076}
5077SLAB_ATTR(poison);
5078
5079static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5080{
5081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5082}
5083
5084static ssize_t store_user_store(struct kmem_cache *s,
5085 const char *buf, size_t length)
5086{
5087 if (any_slab_objects(s))
5088 return -EBUSY;
5089
5090 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5091 if (buf[0] == '1') {
5092 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5093 s->flags |= SLAB_STORE_USER;
b789ef51 5094 }
06b285dc 5095 calculate_sizes(s, -1);
81819f0f
CL
5096 return length;
5097}
5098SLAB_ATTR(store_user);
5099
53e15af0
CL
5100static ssize_t validate_show(struct kmem_cache *s, char *buf)
5101{
5102 return 0;
5103}
5104
5105static ssize_t validate_store(struct kmem_cache *s,
5106 const char *buf, size_t length)
5107{
434e245d
CL
5108 int ret = -EINVAL;
5109
5110 if (buf[0] == '1') {
5111 ret = validate_slab_cache(s);
5112 if (ret >= 0)
5113 ret = length;
5114 }
5115 return ret;
53e15af0
CL
5116}
5117SLAB_ATTR(validate);
a5a84755
CL
5118
5119static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5120{
5121 if (!(s->flags & SLAB_STORE_USER))
5122 return -ENOSYS;
5123 return list_locations(s, buf, TRACK_ALLOC);
5124}
5125SLAB_ATTR_RO(alloc_calls);
5126
5127static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5128{
5129 if (!(s->flags & SLAB_STORE_USER))
5130 return -ENOSYS;
5131 return list_locations(s, buf, TRACK_FREE);
5132}
5133SLAB_ATTR_RO(free_calls);
5134#endif /* CONFIG_SLUB_DEBUG */
5135
5136#ifdef CONFIG_FAILSLAB
5137static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5138{
5139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5140}
5141
5142static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5143 size_t length)
5144{
c9e16131
CL
5145 if (s->refcount > 1)
5146 return -EINVAL;
5147
a5a84755
CL
5148 s->flags &= ~SLAB_FAILSLAB;
5149 if (buf[0] == '1')
5150 s->flags |= SLAB_FAILSLAB;
5151 return length;
5152}
5153SLAB_ATTR(failslab);
ab4d5ed5 5154#endif
53e15af0 5155
2086d26a
CL
5156static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5157{
5158 return 0;
5159}
5160
5161static ssize_t shrink_store(struct kmem_cache *s,
5162 const char *buf, size_t length)
5163{
832f37f5
VD
5164 if (buf[0] == '1')
5165 kmem_cache_shrink(s);
5166 else
2086d26a
CL
5167 return -EINVAL;
5168 return length;
5169}
5170SLAB_ATTR(shrink);
5171
81819f0f 5172#ifdef CONFIG_NUMA
9824601e 5173static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5174{
9824601e 5175 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5176}
5177
9824601e 5178static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5179 const char *buf, size_t length)
5180{
0121c619
CL
5181 unsigned long ratio;
5182 int err;
5183
3dbb95f7 5184 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5185 if (err)
5186 return err;
5187
e2cb96b7 5188 if (ratio <= 100)
0121c619 5189 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5190
81819f0f
CL
5191 return length;
5192}
9824601e 5193SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5194#endif
5195
8ff12cfc 5196#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5197static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5198{
5199 unsigned long sum = 0;
5200 int cpu;
5201 int len;
5202 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5203
5204 if (!data)
5205 return -ENOMEM;
5206
5207 for_each_online_cpu(cpu) {
9dfc6e68 5208 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5209
5210 data[cpu] = x;
5211 sum += x;
5212 }
5213
5214 len = sprintf(buf, "%lu", sum);
5215
50ef37b9 5216#ifdef CONFIG_SMP
8ff12cfc
CL
5217 for_each_online_cpu(cpu) {
5218 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5219 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5220 }
50ef37b9 5221#endif
8ff12cfc
CL
5222 kfree(data);
5223 return len + sprintf(buf + len, "\n");
5224}
5225
78eb00cc
DR
5226static void clear_stat(struct kmem_cache *s, enum stat_item si)
5227{
5228 int cpu;
5229
5230 for_each_online_cpu(cpu)
9dfc6e68 5231 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5232}
5233
8ff12cfc
CL
5234#define STAT_ATTR(si, text) \
5235static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5236{ \
5237 return show_stat(s, buf, si); \
5238} \
78eb00cc
DR
5239static ssize_t text##_store(struct kmem_cache *s, \
5240 const char *buf, size_t length) \
5241{ \
5242 if (buf[0] != '0') \
5243 return -EINVAL; \
5244 clear_stat(s, si); \
5245 return length; \
5246} \
5247SLAB_ATTR(text); \
8ff12cfc
CL
5248
5249STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5250STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5251STAT_ATTR(FREE_FASTPATH, free_fastpath);
5252STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5253STAT_ATTR(FREE_FROZEN, free_frozen);
5254STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5255STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5256STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5257STAT_ATTR(ALLOC_SLAB, alloc_slab);
5258STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5259STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5260STAT_ATTR(FREE_SLAB, free_slab);
5261STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5262STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5263STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5264STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5265STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5266STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5267STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5268STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5269STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5270STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5271STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5272STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5273STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5274STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5275#endif
5276
06428780 5277static struct attribute *slab_attrs[] = {
81819f0f
CL
5278 &slab_size_attr.attr,
5279 &object_size_attr.attr,
5280 &objs_per_slab_attr.attr,
5281 &order_attr.attr,
73d342b1 5282 &min_partial_attr.attr,
49e22585 5283 &cpu_partial_attr.attr,
81819f0f 5284 &objects_attr.attr,
205ab99d 5285 &objects_partial_attr.attr,
81819f0f
CL
5286 &partial_attr.attr,
5287 &cpu_slabs_attr.attr,
5288 &ctor_attr.attr,
81819f0f
CL
5289 &aliases_attr.attr,
5290 &align_attr.attr,
81819f0f
CL
5291 &hwcache_align_attr.attr,
5292 &reclaim_account_attr.attr,
5293 &destroy_by_rcu_attr.attr,
a5a84755 5294 &shrink_attr.attr,
ab9a0f19 5295 &reserved_attr.attr,
49e22585 5296 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5297#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5298 &total_objects_attr.attr,
5299 &slabs_attr.attr,
5300 &sanity_checks_attr.attr,
5301 &trace_attr.attr,
81819f0f
CL
5302 &red_zone_attr.attr,
5303 &poison_attr.attr,
5304 &store_user_attr.attr,
53e15af0 5305 &validate_attr.attr,
88a420e4
CL
5306 &alloc_calls_attr.attr,
5307 &free_calls_attr.attr,
ab4d5ed5 5308#endif
81819f0f
CL
5309#ifdef CONFIG_ZONE_DMA
5310 &cache_dma_attr.attr,
5311#endif
5312#ifdef CONFIG_NUMA
9824601e 5313 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5314#endif
5315#ifdef CONFIG_SLUB_STATS
5316 &alloc_fastpath_attr.attr,
5317 &alloc_slowpath_attr.attr,
5318 &free_fastpath_attr.attr,
5319 &free_slowpath_attr.attr,
5320 &free_frozen_attr.attr,
5321 &free_add_partial_attr.attr,
5322 &free_remove_partial_attr.attr,
5323 &alloc_from_partial_attr.attr,
5324 &alloc_slab_attr.attr,
5325 &alloc_refill_attr.attr,
e36a2652 5326 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5327 &free_slab_attr.attr,
5328 &cpuslab_flush_attr.attr,
5329 &deactivate_full_attr.attr,
5330 &deactivate_empty_attr.attr,
5331 &deactivate_to_head_attr.attr,
5332 &deactivate_to_tail_attr.attr,
5333 &deactivate_remote_frees_attr.attr,
03e404af 5334 &deactivate_bypass_attr.attr,
65c3376a 5335 &order_fallback_attr.attr,
b789ef51
CL
5336 &cmpxchg_double_fail_attr.attr,
5337 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5338 &cpu_partial_alloc_attr.attr,
5339 &cpu_partial_free_attr.attr,
8028dcea
AS
5340 &cpu_partial_node_attr.attr,
5341 &cpu_partial_drain_attr.attr,
81819f0f 5342#endif
4c13dd3b
DM
5343#ifdef CONFIG_FAILSLAB
5344 &failslab_attr.attr,
5345#endif
5346
81819f0f
CL
5347 NULL
5348};
5349
5350static struct attribute_group slab_attr_group = {
5351 .attrs = slab_attrs,
5352};
5353
5354static ssize_t slab_attr_show(struct kobject *kobj,
5355 struct attribute *attr,
5356 char *buf)
5357{
5358 struct slab_attribute *attribute;
5359 struct kmem_cache *s;
5360 int err;
5361
5362 attribute = to_slab_attr(attr);
5363 s = to_slab(kobj);
5364
5365 if (!attribute->show)
5366 return -EIO;
5367
5368 err = attribute->show(s, buf);
5369
5370 return err;
5371}
5372
5373static ssize_t slab_attr_store(struct kobject *kobj,
5374 struct attribute *attr,
5375 const char *buf, size_t len)
5376{
5377 struct slab_attribute *attribute;
5378 struct kmem_cache *s;
5379 int err;
5380
5381 attribute = to_slab_attr(attr);
5382 s = to_slab(kobj);
5383
5384 if (!attribute->store)
5385 return -EIO;
5386
5387 err = attribute->store(s, buf, len);
127424c8 5388#ifdef CONFIG_MEMCG
107dab5c 5389 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5390 struct kmem_cache *c;
81819f0f 5391
107dab5c
GC
5392 mutex_lock(&slab_mutex);
5393 if (s->max_attr_size < len)
5394 s->max_attr_size = len;
5395
ebe945c2
GC
5396 /*
5397 * This is a best effort propagation, so this function's return
5398 * value will be determined by the parent cache only. This is
5399 * basically because not all attributes will have a well
5400 * defined semantics for rollbacks - most of the actions will
5401 * have permanent effects.
5402 *
5403 * Returning the error value of any of the children that fail
5404 * is not 100 % defined, in the sense that users seeing the
5405 * error code won't be able to know anything about the state of
5406 * the cache.
5407 *
5408 * Only returning the error code for the parent cache at least
5409 * has well defined semantics. The cache being written to
5410 * directly either failed or succeeded, in which case we loop
5411 * through the descendants with best-effort propagation.
5412 */
426589f5
VD
5413 for_each_memcg_cache(c, s)
5414 attribute->store(c, buf, len);
107dab5c
GC
5415 mutex_unlock(&slab_mutex);
5416 }
5417#endif
81819f0f
CL
5418 return err;
5419}
5420
107dab5c
GC
5421static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5422{
127424c8 5423#ifdef CONFIG_MEMCG
107dab5c
GC
5424 int i;
5425 char *buffer = NULL;
93030d83 5426 struct kmem_cache *root_cache;
107dab5c 5427
93030d83 5428 if (is_root_cache(s))
107dab5c
GC
5429 return;
5430
f7ce3190 5431 root_cache = s->memcg_params.root_cache;
93030d83 5432
107dab5c
GC
5433 /*
5434 * This mean this cache had no attribute written. Therefore, no point
5435 * in copying default values around
5436 */
93030d83 5437 if (!root_cache->max_attr_size)
107dab5c
GC
5438 return;
5439
5440 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5441 char mbuf[64];
5442 char *buf;
5443 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5444
5445 if (!attr || !attr->store || !attr->show)
5446 continue;
5447
5448 /*
5449 * It is really bad that we have to allocate here, so we will
5450 * do it only as a fallback. If we actually allocate, though,
5451 * we can just use the allocated buffer until the end.
5452 *
5453 * Most of the slub attributes will tend to be very small in
5454 * size, but sysfs allows buffers up to a page, so they can
5455 * theoretically happen.
5456 */
5457 if (buffer)
5458 buf = buffer;
93030d83 5459 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5460 buf = mbuf;
5461 else {
5462 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5463 if (WARN_ON(!buffer))
5464 continue;
5465 buf = buffer;
5466 }
5467
93030d83 5468 attr->show(root_cache, buf);
107dab5c
GC
5469 attr->store(s, buf, strlen(buf));
5470 }
5471
5472 if (buffer)
5473 free_page((unsigned long)buffer);
5474#endif
5475}
5476
41a21285
CL
5477static void kmem_cache_release(struct kobject *k)
5478{
5479 slab_kmem_cache_release(to_slab(k));
5480}
5481
52cf25d0 5482static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5483 .show = slab_attr_show,
5484 .store = slab_attr_store,
5485};
5486
5487static struct kobj_type slab_ktype = {
5488 .sysfs_ops = &slab_sysfs_ops,
41a21285 5489 .release = kmem_cache_release,
81819f0f
CL
5490};
5491
5492static int uevent_filter(struct kset *kset, struct kobject *kobj)
5493{
5494 struct kobj_type *ktype = get_ktype(kobj);
5495
5496 if (ktype == &slab_ktype)
5497 return 1;
5498 return 0;
5499}
5500
9cd43611 5501static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5502 .filter = uevent_filter,
5503};
5504
27c3a314 5505static struct kset *slab_kset;
81819f0f 5506
9a41707b
VD
5507static inline struct kset *cache_kset(struct kmem_cache *s)
5508{
127424c8 5509#ifdef CONFIG_MEMCG
9a41707b 5510 if (!is_root_cache(s))
f7ce3190 5511 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5512#endif
5513 return slab_kset;
5514}
5515
81819f0f
CL
5516#define ID_STR_LENGTH 64
5517
5518/* Create a unique string id for a slab cache:
6446faa2
CL
5519 *
5520 * Format :[flags-]size
81819f0f
CL
5521 */
5522static char *create_unique_id(struct kmem_cache *s)
5523{
5524 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5525 char *p = name;
5526
5527 BUG_ON(!name);
5528
5529 *p++ = ':';
5530 /*
5531 * First flags affecting slabcache operations. We will only
5532 * get here for aliasable slabs so we do not need to support
5533 * too many flags. The flags here must cover all flags that
5534 * are matched during merging to guarantee that the id is
5535 * unique.
5536 */
5537 if (s->flags & SLAB_CACHE_DMA)
5538 *p++ = 'd';
5539 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5540 *p++ = 'a';
becfda68 5541 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5542 *p++ = 'F';
5a896d9e
VN
5543 if (!(s->flags & SLAB_NOTRACK))
5544 *p++ = 't';
230e9fc2
VD
5545 if (s->flags & SLAB_ACCOUNT)
5546 *p++ = 'A';
81819f0f
CL
5547 if (p != name + 1)
5548 *p++ = '-';
5549 p += sprintf(p, "%07d", s->size);
2633d7a0 5550
81819f0f
CL
5551 BUG_ON(p > name + ID_STR_LENGTH - 1);
5552 return name;
5553}
5554
5555static int sysfs_slab_add(struct kmem_cache *s)
5556{
5557 int err;
5558 const char *name;
45530c44 5559 int unmergeable = slab_unmergeable(s);
81819f0f 5560
81819f0f
CL
5561 if (unmergeable) {
5562 /*
5563 * Slabcache can never be merged so we can use the name proper.
5564 * This is typically the case for debug situations. In that
5565 * case we can catch duplicate names easily.
5566 */
27c3a314 5567 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5568 name = s->name;
5569 } else {
5570 /*
5571 * Create a unique name for the slab as a target
5572 * for the symlinks.
5573 */
5574 name = create_unique_id(s);
5575 }
5576
9a41707b 5577 s->kobj.kset = cache_kset(s);
26e4f205 5578 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5579 if (err)
80da026a 5580 goto out;
81819f0f
CL
5581
5582 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5583 if (err)
5584 goto out_del_kobj;
9a41707b 5585
127424c8 5586#ifdef CONFIG_MEMCG
9a41707b
VD
5587 if (is_root_cache(s)) {
5588 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5589 if (!s->memcg_kset) {
54b6a731
DJ
5590 err = -ENOMEM;
5591 goto out_del_kobj;
9a41707b
VD
5592 }
5593 }
5594#endif
5595
81819f0f
CL
5596 kobject_uevent(&s->kobj, KOBJ_ADD);
5597 if (!unmergeable) {
5598 /* Setup first alias */
5599 sysfs_slab_alias(s, s->name);
81819f0f 5600 }
54b6a731
DJ
5601out:
5602 if (!unmergeable)
5603 kfree(name);
5604 return err;
5605out_del_kobj:
5606 kobject_del(&s->kobj);
54b6a731 5607 goto out;
81819f0f
CL
5608}
5609
41a21285 5610void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5611{
97d06609 5612 if (slab_state < FULL)
2bce6485
CL
5613 /*
5614 * Sysfs has not been setup yet so no need to remove the
5615 * cache from sysfs.
5616 */
5617 return;
5618
127424c8 5619#ifdef CONFIG_MEMCG
9a41707b
VD
5620 kset_unregister(s->memcg_kset);
5621#endif
81819f0f
CL
5622 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5623 kobject_del(&s->kobj);
151c602f 5624 kobject_put(&s->kobj);
81819f0f
CL
5625}
5626
5627/*
5628 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5629 * available lest we lose that information.
81819f0f
CL
5630 */
5631struct saved_alias {
5632 struct kmem_cache *s;
5633 const char *name;
5634 struct saved_alias *next;
5635};
5636
5af328a5 5637static struct saved_alias *alias_list;
81819f0f
CL
5638
5639static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5640{
5641 struct saved_alias *al;
5642
97d06609 5643 if (slab_state == FULL) {
81819f0f
CL
5644 /*
5645 * If we have a leftover link then remove it.
5646 */
27c3a314
GKH
5647 sysfs_remove_link(&slab_kset->kobj, name);
5648 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5649 }
5650
5651 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5652 if (!al)
5653 return -ENOMEM;
5654
5655 al->s = s;
5656 al->name = name;
5657 al->next = alias_list;
5658 alias_list = al;
5659 return 0;
5660}
5661
5662static int __init slab_sysfs_init(void)
5663{
5b95a4ac 5664 struct kmem_cache *s;
81819f0f
CL
5665 int err;
5666
18004c5d 5667 mutex_lock(&slab_mutex);
2bce6485 5668
0ff21e46 5669 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5670 if (!slab_kset) {
18004c5d 5671 mutex_unlock(&slab_mutex);
f9f58285 5672 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5673 return -ENOSYS;
5674 }
5675
97d06609 5676 slab_state = FULL;
26a7bd03 5677
5b95a4ac 5678 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5679 err = sysfs_slab_add(s);
5d540fb7 5680 if (err)
f9f58285
FF
5681 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5682 s->name);
26a7bd03 5683 }
81819f0f
CL
5684
5685 while (alias_list) {
5686 struct saved_alias *al = alias_list;
5687
5688 alias_list = alias_list->next;
5689 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5690 if (err)
f9f58285
FF
5691 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5692 al->name);
81819f0f
CL
5693 kfree(al);
5694 }
5695
18004c5d 5696 mutex_unlock(&slab_mutex);
81819f0f
CL
5697 resiliency_test();
5698 return 0;
5699}
5700
5701__initcall(slab_sysfs_init);
ab4d5ed5 5702#endif /* CONFIG_SYSFS */
57ed3eda
PE
5703
5704/*
5705 * The /proc/slabinfo ABI
5706 */
158a9624 5707#ifdef CONFIG_SLABINFO
0d7561c6 5708void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5709{
57ed3eda 5710 unsigned long nr_slabs = 0;
205ab99d
CL
5711 unsigned long nr_objs = 0;
5712 unsigned long nr_free = 0;
57ed3eda 5713 int node;
fa45dc25 5714 struct kmem_cache_node *n;
57ed3eda 5715
fa45dc25 5716 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5717 nr_slabs += node_nr_slabs(n);
5718 nr_objs += node_nr_objs(n);
205ab99d 5719 nr_free += count_partial(n, count_free);
57ed3eda
PE
5720 }
5721
0d7561c6
GC
5722 sinfo->active_objs = nr_objs - nr_free;
5723 sinfo->num_objs = nr_objs;
5724 sinfo->active_slabs = nr_slabs;
5725 sinfo->num_slabs = nr_slabs;
5726 sinfo->objects_per_slab = oo_objects(s->oo);
5727 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5728}
5729
0d7561c6 5730void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5731{
7b3c3a50
AD
5732}
5733
b7454ad3
GC
5734ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5735 size_t count, loff_t *ppos)
7b3c3a50 5736{
b7454ad3 5737 return -EIO;
7b3c3a50 5738}
158a9624 5739#endif /* CONFIG_SLABINFO */