]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
crash_core, vmcoreinfo: append 'SECTION_SIZE_BITS' to vmcoreinfo
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b89fb5ef 30#include <linux/kfence.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 55 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 56 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
881db7fb
CL
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
aed68148 97 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f 112 *
aed68148 113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
ca0cab65
VB
118#ifdef CONFIG_SLUB_DEBUG
119#ifdef CONFIG_SLUB_DEBUG_ON
120DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121#else
122DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123#endif
124#endif
125
59052e89
VB
126static inline bool kmem_cache_debug(struct kmem_cache *s)
127{
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 129}
5577bd8a 130
117d54df 131void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 132{
59052e89 133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
134 p += s->red_left_pad;
135
136 return p;
137}
138
345c905d
JK
139static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140{
141#ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143#else
144 return false;
145#endif
146}
147
81819f0f
CL
148/*
149 * Issues still to be resolved:
150 *
81819f0f
CL
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
81819f0f
CL
153 * - Variable sizing of the per node arrays
154 */
155
156/* Enable to test recovery from slab corruption on boot */
157#undef SLUB_RESILIENCY_TEST
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
d6543e39
BG
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
7e1fa93d
VB
239/*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245static nodemask_t slab_nodes;
246
81819f0f
CL
247/********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
2482ddec
KC
251/*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258{
259#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 260 /*
aa1ef4d7 261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
272#else
273 return ptr;
274#endif
275}
276
277/* Returns the freelist pointer recorded at location ptr_addr. */
278static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280{
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283}
284
7656c72b
CL
285static inline void *get_freepointer(struct kmem_cache *s, void *object)
286{
aa1ef4d7 287 object = kasan_reset_tag(object);
2482ddec 288 return freelist_dereference(s, object + s->offset);
7656c72b
CL
289}
290
0ad9500e
ED
291static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292{
0882ff91 293 prefetch(object + s->offset);
0ad9500e
ED
294}
295
1393d9a1
CL
296static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297{
2482ddec 298 unsigned long freepointer_addr;
1393d9a1
CL
299 void *p;
300
8e57f8ac 301 if (!debug_pagealloc_enabled_static())
922d566c
JK
302 return get_freepointer(s, object);
303
f70b0049 304 object = kasan_reset_tag(object);
2482ddec 305 freepointer_addr = (unsigned long)object + s->offset;
fe557319 306 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 307 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
308}
309
7656c72b
CL
310static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311{
2482ddec
KC
312 unsigned long freeptr_addr = (unsigned long)object + s->offset;
313
ce6fa91b
AP
314#ifdef CONFIG_SLAB_FREELIST_HARDENED
315 BUG_ON(object == fp); /* naive detection of double free or corruption */
316#endif
317
aa1ef4d7 318 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 319 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
320}
321
322/* Loop over all objects in a slab */
224a88be 323#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
324 for (__p = fixup_red_left(__s, __addr); \
325 __p < (__addr) + (__objects) * (__s)->size; \
326 __p += (__s)->size)
7656c72b 327
9736d2a9 328static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 329{
9736d2a9 330 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
331}
332
19af27af 333static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 334 unsigned int size)
834f3d11
CL
335{
336 struct kmem_cache_order_objects x = {
9736d2a9 337 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
338 };
339
340 return x;
341}
342
19af27af 343static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 344{
210b5c06 345 return x.x >> OO_SHIFT;
834f3d11
CL
346}
347
19af27af 348static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 349{
210b5c06 350 return x.x & OO_MASK;
834f3d11
CL
351}
352
881db7fb
CL
353/*
354 * Per slab locking using the pagelock
355 */
356static __always_inline void slab_lock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 bit_spin_lock(PG_locked, &page->flags);
360}
361
362static __always_inline void slab_unlock(struct page *page)
363{
48c935ad 364 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
379 freelist_old, counters_old,
380 freelist_new, counters_new))
6f6528a1 381 return true;
1d07171c
CL
382 } else
383#endif
384 {
385 slab_lock(page);
d0e0ac97
CG
386 if (page->freelist == freelist_old &&
387 page->counters == counters_old) {
1d07171c 388 page->freelist = freelist_new;
7d27a04b 389 page->counters = counters_new;
1d07171c 390 slab_unlock(page);
6f6528a1 391 return true;
1d07171c
CL
392 }
393 slab_unlock(page);
394 }
395
396 cpu_relax();
397 stat(s, CMPXCHG_DOUBLE_FAIL);
398
399#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 400 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
401#endif
402
6f6528a1 403 return false;
1d07171c
CL
404}
405
b789ef51
CL
406static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
407 void *freelist_old, unsigned long counters_old,
408 void *freelist_new, unsigned long counters_new,
409 const char *n)
410{
2565409f
HC
411#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
412 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 413 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 414 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
415 freelist_old, counters_old,
416 freelist_new, counters_new))
6f6528a1 417 return true;
b789ef51
CL
418 } else
419#endif
420 {
1d07171c
CL
421 unsigned long flags;
422
423 local_irq_save(flags);
881db7fb 424 slab_lock(page);
d0e0ac97
CG
425 if (page->freelist == freelist_old &&
426 page->counters == counters_old) {
b789ef51 427 page->freelist = freelist_new;
7d27a04b 428 page->counters = counters_new;
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
6f6528a1 431 return true;
b789ef51 432 }
881db7fb 433 slab_unlock(page);
1d07171c 434 local_irq_restore(flags);
b789ef51
CL
435 }
436
437 cpu_relax();
438 stat(s, CMPXCHG_DOUBLE_FAIL);
439
440#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 441 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
442#endif
443
6f6528a1 444 return false;
b789ef51
CL
445}
446
41ecc55b 447#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
448static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
449static DEFINE_SPINLOCK(object_map_lock);
450
5f80b13a
CL
451/*
452 * Determine a map of object in use on a page.
453 *
881db7fb 454 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
455 * not vanish from under us.
456 */
90e9f6a6 457static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 458 __acquires(&object_map_lock)
5f80b13a
CL
459{
460 void *p;
461 void *addr = page_address(page);
462
90e9f6a6
YZ
463 VM_BUG_ON(!irqs_disabled());
464
465 spin_lock(&object_map_lock);
466
467 bitmap_zero(object_map, page->objects);
468
5f80b13a 469 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 470 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
471
472 return object_map;
473}
474
81aba9e0 475static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
476{
477 VM_BUG_ON(map != object_map);
90e9f6a6 478 spin_unlock(&object_map_lock);
5f80b13a
CL
479}
480
870b1fbb 481static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
482{
483 if (s->flags & SLAB_RED_ZONE)
484 return s->size - s->red_left_pad;
485
486 return s->size;
487}
488
489static inline void *restore_red_left(struct kmem_cache *s, void *p)
490{
491 if (s->flags & SLAB_RED_ZONE)
492 p -= s->red_left_pad;
493
494 return p;
495}
496
41ecc55b
CL
497/*
498 * Debug settings:
499 */
89d3c87e 500#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 501static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 502#else
d50112ed 503static slab_flags_t slub_debug;
f0630fff 504#endif
41ecc55b 505
e17f1dfb 506static char *slub_debug_string;
fa5ec8a1 507static int disable_higher_order_debug;
41ecc55b 508
a79316c6
AR
509/*
510 * slub is about to manipulate internal object metadata. This memory lies
511 * outside the range of the allocated object, so accessing it would normally
512 * be reported by kasan as a bounds error. metadata_access_enable() is used
513 * to tell kasan that these accesses are OK.
514 */
515static inline void metadata_access_enable(void)
516{
517 kasan_disable_current();
518}
519
520static inline void metadata_access_disable(void)
521{
522 kasan_enable_current();
523}
524
81819f0f
CL
525/*
526 * Object debugging
527 */
d86bd1be
JK
528
529/* Verify that a pointer has an address that is valid within a slab page */
530static inline int check_valid_pointer(struct kmem_cache *s,
531 struct page *page, void *object)
532{
533 void *base;
534
535 if (!object)
536 return 1;
537
538 base = page_address(page);
338cfaad 539 object = kasan_reset_tag(object);
d86bd1be
JK
540 object = restore_red_left(s, object);
541 if (object < base || object >= base + page->objects * s->size ||
542 (object - base) % s->size) {
543 return 0;
544 }
545
546 return 1;
547}
548
aa2efd5e
DT
549static void print_section(char *level, char *text, u8 *addr,
550 unsigned int length)
81819f0f 551{
a79316c6 552 metadata_access_enable();
aa1ef4d7
AK
553 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
554 16, 1, addr, length, 1);
a79316c6 555 metadata_access_disable();
81819f0f
CL
556}
557
cbfc35a4
WL
558/*
559 * See comment in calculate_sizes().
560 */
561static inline bool freeptr_outside_object(struct kmem_cache *s)
562{
563 return s->offset >= s->inuse;
564}
565
566/*
567 * Return offset of the end of info block which is inuse + free pointer if
568 * not overlapping with object.
569 */
570static inline unsigned int get_info_end(struct kmem_cache *s)
571{
572 if (freeptr_outside_object(s))
573 return s->inuse + sizeof(void *);
574 else
575 return s->inuse;
576}
577
81819f0f
CL
578static struct track *get_track(struct kmem_cache *s, void *object,
579 enum track_item alloc)
580{
581 struct track *p;
582
cbfc35a4 583 p = object + get_info_end(s);
81819f0f 584
aa1ef4d7 585 return kasan_reset_tag(p + alloc);
81819f0f
CL
586}
587
588static void set_track(struct kmem_cache *s, void *object,
ce71e27c 589 enum track_item alloc, unsigned long addr)
81819f0f 590{
1a00df4a 591 struct track *p = get_track(s, object, alloc);
81819f0f 592
81819f0f 593 if (addr) {
d6543e39 594#ifdef CONFIG_STACKTRACE
79716799 595 unsigned int nr_entries;
d6543e39 596
a79316c6 597 metadata_access_enable();
aa1ef4d7
AK
598 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
599 TRACK_ADDRS_COUNT, 3);
a79316c6 600 metadata_access_disable();
d6543e39 601
79716799
TG
602 if (nr_entries < TRACK_ADDRS_COUNT)
603 p->addrs[nr_entries] = 0;
d6543e39 604#endif
81819f0f
CL
605 p->addr = addr;
606 p->cpu = smp_processor_id();
88e4ccf2 607 p->pid = current->pid;
81819f0f 608 p->when = jiffies;
b8ca7ff7 609 } else {
81819f0f 610 memset(p, 0, sizeof(struct track));
b8ca7ff7 611 }
81819f0f
CL
612}
613
81819f0f
CL
614static void init_tracking(struct kmem_cache *s, void *object)
615{
24922684
CL
616 if (!(s->flags & SLAB_STORE_USER))
617 return;
618
ce71e27c
EGM
619 set_track(s, object, TRACK_FREE, 0UL);
620 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
621}
622
86609d33 623static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
624{
625 if (!t->addr)
626 return;
627
96b94abc 628 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 629 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
630#ifdef CONFIG_STACKTRACE
631 {
632 int i;
633 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
634 if (t->addrs[i])
f9f58285 635 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
636 else
637 break;
638 }
639#endif
24922684
CL
640}
641
e42f174e 642void print_tracking(struct kmem_cache *s, void *object)
24922684 643{
86609d33 644 unsigned long pr_time = jiffies;
24922684
CL
645 if (!(s->flags & SLAB_STORE_USER))
646 return;
647
86609d33
CP
648 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
649 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
650}
651
652static void print_page_info(struct page *page)
653{
96b94abc 654 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
655 page, page->objects, page->inuse, page->freelist,
656 page->flags, &page->flags);
24922684
CL
657
658}
659
660static void slab_bug(struct kmem_cache *s, char *fmt, ...)
661{
ecc42fbe 662 struct va_format vaf;
24922684 663 va_list args;
24922684
CL
664
665 va_start(args, fmt);
ecc42fbe
FF
666 vaf.fmt = fmt;
667 vaf.va = &args;
f9f58285 668 pr_err("=============================================================================\n");
ecc42fbe 669 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 670 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 671
373d4d09 672 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 673 va_end(args);
81819f0f
CL
674}
675
24922684
CL
676static void slab_fix(struct kmem_cache *s, char *fmt, ...)
677{
ecc42fbe 678 struct va_format vaf;
24922684 679 va_list args;
24922684
CL
680
681 va_start(args, fmt);
ecc42fbe
FF
682 vaf.fmt = fmt;
683 vaf.va = &args;
684 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 685 va_end(args);
24922684
CL
686}
687
52f23478 688static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 689 void **freelist, void *nextfree)
52f23478
DZ
690{
691 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
692 !check_valid_pointer(s, page, nextfree) && freelist) {
693 object_err(s, page, *freelist, "Freechain corrupt");
694 *freelist = NULL;
52f23478
DZ
695 slab_fix(s, "Isolate corrupted freechain");
696 return true;
697 }
698
699 return false;
700}
701
24922684 702static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
703{
704 unsigned int off; /* Offset of last byte */
a973e9dd 705 u8 *addr = page_address(page);
24922684
CL
706
707 print_tracking(s, p);
708
709 print_page_info(page);
710
96b94abc 711 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 712 p, p - addr, get_freepointer(s, p));
24922684 713
d86bd1be 714 if (s->flags & SLAB_RED_ZONE)
8669dbab 715 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 716 s->red_left_pad);
d86bd1be 717 else if (p > addr + 16)
aa2efd5e 718 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 719
8669dbab 720 print_section(KERN_ERR, "Object ", p,
1b473f29 721 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 722 if (s->flags & SLAB_RED_ZONE)
8669dbab 723 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 724 s->inuse - s->object_size);
81819f0f 725
cbfc35a4 726 off = get_info_end(s);
81819f0f 727
24922684 728 if (s->flags & SLAB_STORE_USER)
81819f0f 729 off += 2 * sizeof(struct track);
81819f0f 730
80a9201a
AP
731 off += kasan_metadata_size(s);
732
d86bd1be 733 if (off != size_from_object(s))
81819f0f 734 /* Beginning of the filler is the free pointer */
8669dbab 735 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 736 size_from_object(s) - off);
24922684
CL
737
738 dump_stack();
81819f0f
CL
739}
740
75c66def 741void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
742 u8 *object, char *reason)
743{
3dc50637 744 slab_bug(s, "%s", reason);
24922684 745 print_trailer(s, page, object);
81819f0f
CL
746}
747
a38965bf 748static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 749 const char *fmt, ...)
81819f0f
CL
750{
751 va_list args;
752 char buf[100];
753
24922684
CL
754 va_start(args, fmt);
755 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 756 va_end(args);
3dc50637 757 slab_bug(s, "%s", buf);
24922684 758 print_page_info(page);
81819f0f
CL
759 dump_stack();
760}
761
f7cb1933 762static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 763{
aa1ef4d7 764 u8 *p = kasan_reset_tag(object);
81819f0f 765
d86bd1be
JK
766 if (s->flags & SLAB_RED_ZONE)
767 memset(p - s->red_left_pad, val, s->red_left_pad);
768
81819f0f 769 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
770 memset(p, POISON_FREE, s->object_size - 1);
771 p[s->object_size - 1] = POISON_END;
81819f0f
CL
772 }
773
774 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 775 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
776}
777
24922684
CL
778static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
779 void *from, void *to)
780{
781 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
782 memset(from, data, to - from);
783}
784
785static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
786 u8 *object, char *what,
06428780 787 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
788{
789 u8 *fault;
790 u8 *end;
e1b70dd1 791 u8 *addr = page_address(page);
24922684 792
a79316c6 793 metadata_access_enable();
aa1ef4d7 794 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 795 metadata_access_disable();
24922684
CL
796 if (!fault)
797 return 1;
798
799 end = start + bytes;
800 while (end > fault && end[-1] == value)
801 end--;
802
803 slab_bug(s, "%s overwritten", what);
96b94abc 804 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
805 fault, end - 1, fault - addr,
806 fault[0], value);
24922684
CL
807 print_trailer(s, page, object);
808
809 restore_bytes(s, what, value, fault, end);
810 return 0;
81819f0f
CL
811}
812
81819f0f
CL
813/*
814 * Object layout:
815 *
816 * object address
817 * Bytes of the object to be managed.
818 * If the freepointer may overlay the object then the free
cbfc35a4 819 * pointer is at the middle of the object.
672bba3a 820 *
81819f0f
CL
821 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
822 * 0xa5 (POISON_END)
823 *
3b0efdfa 824 * object + s->object_size
81819f0f 825 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 826 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 827 * object_size == inuse.
672bba3a 828 *
81819f0f
CL
829 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
830 * 0xcc (RED_ACTIVE) for objects in use.
831 *
832 * object + s->inuse
672bba3a
CL
833 * Meta data starts here.
834 *
81819f0f
CL
835 * A. Free pointer (if we cannot overwrite object on free)
836 * B. Tracking data for SLAB_STORE_USER
dc84207d 837 * C. Padding to reach required alignment boundary or at minimum
6446faa2 838 * one word if debugging is on to be able to detect writes
672bba3a
CL
839 * before the word boundary.
840 *
841 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
842 *
843 * object + s->size
672bba3a 844 * Nothing is used beyond s->size.
81819f0f 845 *
3b0efdfa 846 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 847 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
848 * may be used with merged slabcaches.
849 */
850
81819f0f
CL
851static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
852{
cbfc35a4 853 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
854
855 if (s->flags & SLAB_STORE_USER)
856 /* We also have user information there */
857 off += 2 * sizeof(struct track);
858
80a9201a
AP
859 off += kasan_metadata_size(s);
860
d86bd1be 861 if (size_from_object(s) == off)
81819f0f
CL
862 return 1;
863
24922684 864 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 865 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
866}
867
39b26464 868/* Check the pad bytes at the end of a slab page */
81819f0f
CL
869static int slab_pad_check(struct kmem_cache *s, struct page *page)
870{
24922684
CL
871 u8 *start;
872 u8 *fault;
873 u8 *end;
5d682681 874 u8 *pad;
24922684
CL
875 int length;
876 int remainder;
81819f0f
CL
877
878 if (!(s->flags & SLAB_POISON))
879 return 1;
880
a973e9dd 881 start = page_address(page);
a50b854e 882 length = page_size(page);
39b26464
CL
883 end = start + length;
884 remainder = length % s->size;
81819f0f
CL
885 if (!remainder)
886 return 1;
887
5d682681 888 pad = end - remainder;
a79316c6 889 metadata_access_enable();
aa1ef4d7 890 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 891 metadata_access_disable();
24922684
CL
892 if (!fault)
893 return 1;
894 while (end > fault && end[-1] == POISON_INUSE)
895 end--;
896
e1b70dd1
MC
897 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
898 fault, end - 1, fault - start);
5d682681 899 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 900
5d682681 901 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 902 return 0;
81819f0f
CL
903}
904
905static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 906 void *object, u8 val)
81819f0f
CL
907{
908 u8 *p = object;
3b0efdfa 909 u8 *endobject = object + s->object_size;
81819f0f
CL
910
911 if (s->flags & SLAB_RED_ZONE) {
8669dbab 912 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
913 object - s->red_left_pad, val, s->red_left_pad))
914 return 0;
915
8669dbab 916 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 917 endobject, val, s->inuse - s->object_size))
81819f0f 918 return 0;
81819f0f 919 } else {
3b0efdfa 920 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 921 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
922 endobject, POISON_INUSE,
923 s->inuse - s->object_size);
3adbefee 924 }
81819f0f
CL
925 }
926
927 if (s->flags & SLAB_POISON) {
f7cb1933 928 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 929 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 930 POISON_FREE, s->object_size - 1) ||
8669dbab 931 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 932 p + s->object_size - 1, POISON_END, 1)))
81819f0f 933 return 0;
81819f0f
CL
934 /*
935 * check_pad_bytes cleans up on its own.
936 */
937 check_pad_bytes(s, page, p);
938 }
939
cbfc35a4 940 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
941 /*
942 * Object and freepointer overlap. Cannot check
943 * freepointer while object is allocated.
944 */
945 return 1;
946
947 /* Check free pointer validity */
948 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
949 object_err(s, page, p, "Freepointer corrupt");
950 /*
9f6c708e 951 * No choice but to zap it and thus lose the remainder
81819f0f 952 * of the free objects in this slab. May cause
672bba3a 953 * another error because the object count is now wrong.
81819f0f 954 */
a973e9dd 955 set_freepointer(s, p, NULL);
81819f0f
CL
956 return 0;
957 }
958 return 1;
959}
960
961static int check_slab(struct kmem_cache *s, struct page *page)
962{
39b26464
CL
963 int maxobj;
964
81819f0f
CL
965 VM_BUG_ON(!irqs_disabled());
966
967 if (!PageSlab(page)) {
24922684 968 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
969 return 0;
970 }
39b26464 971
9736d2a9 972 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
973 if (page->objects > maxobj) {
974 slab_err(s, page, "objects %u > max %u",
f6edde9c 975 page->objects, maxobj);
39b26464
CL
976 return 0;
977 }
978 if (page->inuse > page->objects) {
24922684 979 slab_err(s, page, "inuse %u > max %u",
f6edde9c 980 page->inuse, page->objects);
81819f0f
CL
981 return 0;
982 }
983 /* Slab_pad_check fixes things up after itself */
984 slab_pad_check(s, page);
985 return 1;
986}
987
988/*
672bba3a
CL
989 * Determine if a certain object on a page is on the freelist. Must hold the
990 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
991 */
992static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
993{
994 int nr = 0;
881db7fb 995 void *fp;
81819f0f 996 void *object = NULL;
f6edde9c 997 int max_objects;
81819f0f 998
881db7fb 999 fp = page->freelist;
39b26464 1000 while (fp && nr <= page->objects) {
81819f0f
CL
1001 if (fp == search)
1002 return 1;
1003 if (!check_valid_pointer(s, page, fp)) {
1004 if (object) {
1005 object_err(s, page, object,
1006 "Freechain corrupt");
a973e9dd 1007 set_freepointer(s, object, NULL);
81819f0f 1008 } else {
24922684 1009 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1010 page->freelist = NULL;
39b26464 1011 page->inuse = page->objects;
24922684 1012 slab_fix(s, "Freelist cleared");
81819f0f
CL
1013 return 0;
1014 }
1015 break;
1016 }
1017 object = fp;
1018 fp = get_freepointer(s, object);
1019 nr++;
1020 }
1021
9736d2a9 1022 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1023 if (max_objects > MAX_OBJS_PER_PAGE)
1024 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1025
1026 if (page->objects != max_objects) {
756a025f
JP
1027 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1028 page->objects, max_objects);
224a88be
CL
1029 page->objects = max_objects;
1030 slab_fix(s, "Number of objects adjusted.");
1031 }
39b26464 1032 if (page->inuse != page->objects - nr) {
756a025f
JP
1033 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1034 page->inuse, page->objects - nr);
39b26464 1035 page->inuse = page->objects - nr;
24922684 1036 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1037 }
1038 return search == NULL;
1039}
1040
0121c619
CL
1041static void trace(struct kmem_cache *s, struct page *page, void *object,
1042 int alloc)
3ec09742
CL
1043{
1044 if (s->flags & SLAB_TRACE) {
f9f58285 1045 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1046 s->name,
1047 alloc ? "alloc" : "free",
1048 object, page->inuse,
1049 page->freelist);
1050
1051 if (!alloc)
aa2efd5e 1052 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1053 s->object_size);
3ec09742
CL
1054
1055 dump_stack();
1056 }
1057}
1058
643b1138 1059/*
672bba3a 1060 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1061 */
5cc6eee8
CL
1062static void add_full(struct kmem_cache *s,
1063 struct kmem_cache_node *n, struct page *page)
643b1138 1064{
5cc6eee8
CL
1065 if (!(s->flags & SLAB_STORE_USER))
1066 return;
1067
255d0884 1068 lockdep_assert_held(&n->list_lock);
916ac052 1069 list_add(&page->slab_list, &n->full);
643b1138
CL
1070}
1071
c65c1877 1072static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1073{
643b1138
CL
1074 if (!(s->flags & SLAB_STORE_USER))
1075 return;
1076
255d0884 1077 lockdep_assert_held(&n->list_lock);
916ac052 1078 list_del(&page->slab_list);
643b1138
CL
1079}
1080
0f389ec6
CL
1081/* Tracking of the number of slabs for debugging purposes */
1082static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083{
1084 struct kmem_cache_node *n = get_node(s, node);
1085
1086 return atomic_long_read(&n->nr_slabs);
1087}
1088
26c02cf0
AB
1089static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1090{
1091 return atomic_long_read(&n->nr_slabs);
1092}
1093
205ab99d 1094static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1095{
1096 struct kmem_cache_node *n = get_node(s, node);
1097
1098 /*
1099 * May be called early in order to allocate a slab for the
1100 * kmem_cache_node structure. Solve the chicken-egg
1101 * dilemma by deferring the increment of the count during
1102 * bootstrap (see early_kmem_cache_node_alloc).
1103 */
338b2642 1104 if (likely(n)) {
0f389ec6 1105 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1106 atomic_long_add(objects, &n->total_objects);
1107 }
0f389ec6 1108}
205ab99d 1109static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1110{
1111 struct kmem_cache_node *n = get_node(s, node);
1112
1113 atomic_long_dec(&n->nr_slabs);
205ab99d 1114 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1115}
1116
1117/* Object debug checks for alloc/free paths */
3ec09742
CL
1118static void setup_object_debug(struct kmem_cache *s, struct page *page,
1119 void *object)
1120{
8fc8d666 1121 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1122 return;
1123
f7cb1933 1124 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1125 init_tracking(s, object);
1126}
1127
a50b854e
MWO
1128static
1129void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1130{
8fc8d666 1131 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1132 return;
1133
1134 metadata_access_enable();
aa1ef4d7 1135 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1136 metadata_access_disable();
1137}
1138
becfda68 1139static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1140 struct page *page, void *object)
81819f0f
CL
1141{
1142 if (!check_slab(s, page))
becfda68 1143 return 0;
81819f0f 1144
81819f0f
CL
1145 if (!check_valid_pointer(s, page, object)) {
1146 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1147 return 0;
81819f0f
CL
1148 }
1149
f7cb1933 1150 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1151 return 0;
1152
1153 return 1;
1154}
1155
1156static noinline int alloc_debug_processing(struct kmem_cache *s,
1157 struct page *page,
1158 void *object, unsigned long addr)
1159{
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1161 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1162 goto bad;
1163 }
81819f0f 1164
3ec09742
CL
1165 /* Success perform special debug activities for allocs */
1166 if (s->flags & SLAB_STORE_USER)
1167 set_track(s, object, TRACK_ALLOC, addr);
1168 trace(s, page, object, 1);
f7cb1933 1169 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1170 return 1;
3ec09742 1171
81819f0f
CL
1172bad:
1173 if (PageSlab(page)) {
1174 /*
1175 * If this is a slab page then lets do the best we can
1176 * to avoid issues in the future. Marking all objects
672bba3a 1177 * as used avoids touching the remaining objects.
81819f0f 1178 */
24922684 1179 slab_fix(s, "Marking all objects used");
39b26464 1180 page->inuse = page->objects;
a973e9dd 1181 page->freelist = NULL;
81819f0f
CL
1182 }
1183 return 0;
1184}
1185
becfda68
LA
1186static inline int free_consistency_checks(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr)
81819f0f 1188{
81819f0f 1189 if (!check_valid_pointer(s, page, object)) {
70d71228 1190 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1191 return 0;
81819f0f
CL
1192 }
1193
1194 if (on_freelist(s, page, object)) {
24922684 1195 object_err(s, page, object, "Object already free");
becfda68 1196 return 0;
81819f0f
CL
1197 }
1198
f7cb1933 1199 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1200 return 0;
81819f0f 1201
1b4f59e3 1202 if (unlikely(s != page->slab_cache)) {
3adbefee 1203 if (!PageSlab(page)) {
756a025f
JP
1204 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1205 object);
1b4f59e3 1206 } else if (!page->slab_cache) {
f9f58285
FF
1207 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1208 object);
70d71228 1209 dump_stack();
06428780 1210 } else
24922684
CL
1211 object_err(s, page, object,
1212 "page slab pointer corrupt.");
becfda68
LA
1213 return 0;
1214 }
1215 return 1;
1216}
1217
1218/* Supports checking bulk free of a constructed freelist */
1219static noinline int free_debug_processing(
1220 struct kmem_cache *s, struct page *page,
1221 void *head, void *tail, int bulk_cnt,
1222 unsigned long addr)
1223{
1224 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1225 void *object = head;
1226 int cnt = 0;
3f649ab7 1227 unsigned long flags;
becfda68
LA
1228 int ret = 0;
1229
1230 spin_lock_irqsave(&n->list_lock, flags);
1231 slab_lock(page);
1232
1233 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1234 if (!check_slab(s, page))
1235 goto out;
1236 }
1237
1238next_object:
1239 cnt++;
1240
1241 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1242 if (!free_consistency_checks(s, page, object, addr))
1243 goto out;
81819f0f 1244 }
3ec09742 1245
3ec09742
CL
1246 if (s->flags & SLAB_STORE_USER)
1247 set_track(s, object, TRACK_FREE, addr);
1248 trace(s, page, object, 0);
81084651 1249 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1250 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1251
1252 /* Reached end of constructed freelist yet? */
1253 if (object != tail) {
1254 object = get_freepointer(s, object);
1255 goto next_object;
1256 }
804aa132
LA
1257 ret = 1;
1258
5c2e4bbb 1259out:
81084651
JDB
1260 if (cnt != bulk_cnt)
1261 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1262 bulk_cnt, cnt);
1263
881db7fb 1264 slab_unlock(page);
282acb43 1265 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1266 if (!ret)
1267 slab_fix(s, "Object at 0x%p not freed", object);
1268 return ret;
81819f0f
CL
1269}
1270
e17f1dfb
VB
1271/*
1272 * Parse a block of slub_debug options. Blocks are delimited by ';'
1273 *
1274 * @str: start of block
1275 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1276 * @slabs: return start of list of slabs, or NULL when there's no list
1277 * @init: assume this is initial parsing and not per-kmem-create parsing
1278 *
1279 * returns the start of next block if there's any, or NULL
1280 */
1281static char *
1282parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1283{
e17f1dfb 1284 bool higher_order_disable = false;
f0630fff 1285
e17f1dfb
VB
1286 /* Skip any completely empty blocks */
1287 while (*str && *str == ';')
1288 str++;
1289
1290 if (*str == ',') {
f0630fff
CL
1291 /*
1292 * No options but restriction on slabs. This means full
1293 * debugging for slabs matching a pattern.
1294 */
e17f1dfb 1295 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1296 goto check_slabs;
e17f1dfb
VB
1297 }
1298 *flags = 0;
f0630fff 1299
e17f1dfb
VB
1300 /* Determine which debug features should be switched on */
1301 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1302 switch (tolower(*str)) {
e17f1dfb
VB
1303 case '-':
1304 *flags = 0;
1305 break;
f0630fff 1306 case 'f':
e17f1dfb 1307 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1308 break;
1309 case 'z':
e17f1dfb 1310 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1311 break;
1312 case 'p':
e17f1dfb 1313 *flags |= SLAB_POISON;
f0630fff
CL
1314 break;
1315 case 'u':
e17f1dfb 1316 *flags |= SLAB_STORE_USER;
f0630fff
CL
1317 break;
1318 case 't':
e17f1dfb 1319 *flags |= SLAB_TRACE;
f0630fff 1320 break;
4c13dd3b 1321 case 'a':
e17f1dfb 1322 *flags |= SLAB_FAILSLAB;
4c13dd3b 1323 break;
08303a73
CA
1324 case 'o':
1325 /*
1326 * Avoid enabling debugging on caches if its minimum
1327 * order would increase as a result.
1328 */
e17f1dfb 1329 higher_order_disable = true;
08303a73 1330 break;
f0630fff 1331 default:
e17f1dfb
VB
1332 if (init)
1333 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1334 }
41ecc55b 1335 }
f0630fff 1336check_slabs:
41ecc55b 1337 if (*str == ',')
e17f1dfb
VB
1338 *slabs = ++str;
1339 else
1340 *slabs = NULL;
1341
1342 /* Skip over the slab list */
1343 while (*str && *str != ';')
1344 str++;
1345
1346 /* Skip any completely empty blocks */
1347 while (*str && *str == ';')
1348 str++;
1349
1350 if (init && higher_order_disable)
1351 disable_higher_order_debug = 1;
1352
1353 if (*str)
1354 return str;
1355 else
1356 return NULL;
1357}
1358
1359static int __init setup_slub_debug(char *str)
1360{
1361 slab_flags_t flags;
1362 char *saved_str;
1363 char *slab_list;
1364 bool global_slub_debug_changed = false;
1365 bool slab_list_specified = false;
1366
1367 slub_debug = DEBUG_DEFAULT_FLAGS;
1368 if (*str++ != '=' || !*str)
1369 /*
1370 * No options specified. Switch on full debugging.
1371 */
1372 goto out;
1373
1374 saved_str = str;
1375 while (str) {
1376 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1377
1378 if (!slab_list) {
1379 slub_debug = flags;
1380 global_slub_debug_changed = true;
1381 } else {
1382 slab_list_specified = true;
1383 }
1384 }
1385
1386 /*
1387 * For backwards compatibility, a single list of flags with list of
1388 * slabs means debugging is only enabled for those slabs, so the global
1389 * slub_debug should be 0. We can extended that to multiple lists as
1390 * long as there is no option specifying flags without a slab list.
1391 */
1392 if (slab_list_specified) {
1393 if (!global_slub_debug_changed)
1394 slub_debug = 0;
1395 slub_debug_string = saved_str;
1396 }
f0630fff 1397out:
ca0cab65
VB
1398 if (slub_debug != 0 || slub_debug_string)
1399 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1400 if ((static_branch_unlikely(&init_on_alloc) ||
1401 static_branch_unlikely(&init_on_free)) &&
1402 (slub_debug & SLAB_POISON))
1403 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1404 return 1;
1405}
1406
1407__setup("slub_debug", setup_slub_debug);
1408
c5fd3ca0
AT
1409/*
1410 * kmem_cache_flags - apply debugging options to the cache
1411 * @object_size: the size of an object without meta data
1412 * @flags: flags to set
1413 * @name: name of the cache
c5fd3ca0
AT
1414 *
1415 * Debug option(s) are applied to @flags. In addition to the debug
1416 * option(s), if a slab name (or multiple) is specified i.e.
1417 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1418 * then only the select slabs will receive the debug option(s).
1419 */
0293d1fd 1420slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1421 slab_flags_t flags, const char *name)
41ecc55b 1422{
c5fd3ca0
AT
1423 char *iter;
1424 size_t len;
e17f1dfb
VB
1425 char *next_block;
1426 slab_flags_t block_flags;
ca220593
JB
1427 slab_flags_t slub_debug_local = slub_debug;
1428
1429 /*
1430 * If the slab cache is for debugging (e.g. kmemleak) then
1431 * don't store user (stack trace) information by default,
1432 * but let the user enable it via the command line below.
1433 */
1434 if (flags & SLAB_NOLEAKTRACE)
1435 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1436
c5fd3ca0 1437 len = strlen(name);
e17f1dfb
VB
1438 next_block = slub_debug_string;
1439 /* Go through all blocks of debug options, see if any matches our slab's name */
1440 while (next_block) {
1441 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1442 if (!iter)
1443 continue;
1444 /* Found a block that has a slab list, search it */
1445 while (*iter) {
1446 char *end, *glob;
1447 size_t cmplen;
1448
1449 end = strchrnul(iter, ',');
1450 if (next_block && next_block < end)
1451 end = next_block - 1;
1452
1453 glob = strnchr(iter, end - iter, '*');
1454 if (glob)
1455 cmplen = glob - iter;
1456 else
1457 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1458
e17f1dfb
VB
1459 if (!strncmp(name, iter, cmplen)) {
1460 flags |= block_flags;
1461 return flags;
1462 }
c5fd3ca0 1463
e17f1dfb
VB
1464 if (!*end || *end == ';')
1465 break;
1466 iter = end + 1;
c5fd3ca0 1467 }
c5fd3ca0 1468 }
ba0268a8 1469
ca220593 1470 return flags | slub_debug_local;
41ecc55b 1471}
b4a64718 1472#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1473static inline void setup_object_debug(struct kmem_cache *s,
1474 struct page *page, void *object) {}
a50b854e
MWO
1475static inline
1476void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1477
3ec09742 1478static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1479 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1480
282acb43 1481static inline int free_debug_processing(
81084651
JDB
1482 struct kmem_cache *s, struct page *page,
1483 void *head, void *tail, int bulk_cnt,
282acb43 1484 unsigned long addr) { return 0; }
41ecc55b 1485
41ecc55b
CL
1486static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1487 { return 1; }
1488static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1489 void *object, u8 val) { return 1; }
5cc6eee8
CL
1490static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1491 struct page *page) {}
c65c1877
PZ
1492static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1493 struct page *page) {}
0293d1fd 1494slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1495 slab_flags_t flags, const char *name)
ba0268a8
CL
1496{
1497 return flags;
1498}
41ecc55b 1499#define slub_debug 0
0f389ec6 1500
fdaa45e9
IM
1501#define disable_higher_order_debug 0
1502
0f389ec6
CL
1503static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1504 { return 0; }
26c02cf0
AB
1505static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1506 { return 0; }
205ab99d
CL
1507static inline void inc_slabs_node(struct kmem_cache *s, int node,
1508 int objects) {}
1509static inline void dec_slabs_node(struct kmem_cache *s, int node,
1510 int objects) {}
7d550c56 1511
52f23478 1512static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1513 void **freelist, void *nextfree)
52f23478
DZ
1514{
1515 return false;
1516}
02e72cc6
AR
1517#endif /* CONFIG_SLUB_DEBUG */
1518
1519/*
1520 * Hooks for other subsystems that check memory allocations. In a typical
1521 * production configuration these hooks all should produce no code at all.
1522 */
0116523c 1523static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1524{
53128245 1525 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1526 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1527 kmemleak_alloc(ptr, size, 1, flags);
53128245 1528 return ptr;
d56791b3
RB
1529}
1530
ee3ce779 1531static __always_inline void kfree_hook(void *x)
d56791b3
RB
1532{
1533 kmemleak_free(x);
027b37b5 1534 kasan_kfree_large(x);
d56791b3
RB
1535}
1536
d57a964e
AK
1537static __always_inline bool slab_free_hook(struct kmem_cache *s,
1538 void *x, bool init)
d56791b3
RB
1539{
1540 kmemleak_free_recursive(x, s->flags);
7d550c56 1541
02e72cc6
AR
1542 /*
1543 * Trouble is that we may no longer disable interrupts in the fast path
1544 * So in order to make the debug calls that expect irqs to be
1545 * disabled we need to disable interrupts temporarily.
1546 */
4675ff05 1547#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1548 {
1549 unsigned long flags;
1550
1551 local_irq_save(flags);
02e72cc6
AR
1552 debug_check_no_locks_freed(x, s->object_size);
1553 local_irq_restore(flags);
1554 }
1555#endif
1556 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1557 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1558
cfbe1636
ME
1559 /* Use KCSAN to help debug racy use-after-free. */
1560 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1561 __kcsan_check_access(x, s->object_size,
1562 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1563
d57a964e
AK
1564 /*
1565 * As memory initialization might be integrated into KASAN,
1566 * kasan_slab_free and initialization memset's must be
1567 * kept together to avoid discrepancies in behavior.
1568 *
1569 * The initialization memset's clear the object and the metadata,
1570 * but don't touch the SLAB redzone.
1571 */
1572 if (init) {
1573 int rsize;
1574
1575 if (!kasan_has_integrated_init())
1576 memset(kasan_reset_tag(x), 0, s->object_size);
1577 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1578 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1579 s->size - s->inuse - rsize);
1580 }
1581 /* KASAN might put x into memory quarantine, delaying its reuse. */
1582 return kasan_slab_free(s, x, init);
02e72cc6 1583}
205ab99d 1584
c3895391
AK
1585static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1586 void **head, void **tail)
81084651 1587{
6471384a
AP
1588
1589 void *object;
1590 void *next = *head;
1591 void *old_tail = *tail ? *tail : *head;
6471384a 1592
b89fb5ef 1593 if (is_kfence_address(next)) {
d57a964e 1594 slab_free_hook(s, next, false);
b89fb5ef
AP
1595 return true;
1596 }
1597
aea4df4c
LA
1598 /* Head and tail of the reconstructed freelist */
1599 *head = NULL;
1600 *tail = NULL;
1b7e816f 1601
aea4df4c
LA
1602 do {
1603 object = next;
1604 next = get_freepointer(s, object);
1605
c3895391 1606 /* If object's reuse doesn't have to be delayed */
d57a964e 1607 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1608 /* Move object to the new freelist */
1609 set_freepointer(s, object, *head);
1610 *head = object;
1611 if (!*tail)
1612 *tail = object;
1613 }
1614 } while (object != old_tail);
1615
1616 if (*head == *tail)
1617 *tail = NULL;
1618
1619 return *head != NULL;
81084651
JDB
1620}
1621
4d176711 1622static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1623 void *object)
1624{
1625 setup_object_debug(s, page, object);
4d176711 1626 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1627 if (unlikely(s->ctor)) {
1628 kasan_unpoison_object_data(s, object);
1629 s->ctor(object);
1630 kasan_poison_object_data(s, object);
1631 }
4d176711 1632 return object;
588f8ba9
TG
1633}
1634
81819f0f
CL
1635/*
1636 * Slab allocation and freeing
1637 */
5dfb4175
VD
1638static inline struct page *alloc_slab_page(struct kmem_cache *s,
1639 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1640{
5dfb4175 1641 struct page *page;
19af27af 1642 unsigned int order = oo_order(oo);
65c3376a 1643
2154a336 1644 if (node == NUMA_NO_NODE)
5dfb4175 1645 page = alloc_pages(flags, order);
65c3376a 1646 else
96db800f 1647 page = __alloc_pages_node(node, flags, order);
5dfb4175 1648
5dfb4175 1649 return page;
65c3376a
CL
1650}
1651
210e7a43
TG
1652#ifdef CONFIG_SLAB_FREELIST_RANDOM
1653/* Pre-initialize the random sequence cache */
1654static int init_cache_random_seq(struct kmem_cache *s)
1655{
19af27af 1656 unsigned int count = oo_objects(s->oo);
210e7a43 1657 int err;
210e7a43 1658
a810007a
SR
1659 /* Bailout if already initialised */
1660 if (s->random_seq)
1661 return 0;
1662
210e7a43
TG
1663 err = cache_random_seq_create(s, count, GFP_KERNEL);
1664 if (err) {
1665 pr_err("SLUB: Unable to initialize free list for %s\n",
1666 s->name);
1667 return err;
1668 }
1669
1670 /* Transform to an offset on the set of pages */
1671 if (s->random_seq) {
19af27af
AD
1672 unsigned int i;
1673
210e7a43
TG
1674 for (i = 0; i < count; i++)
1675 s->random_seq[i] *= s->size;
1676 }
1677 return 0;
1678}
1679
1680/* Initialize each random sequence freelist per cache */
1681static void __init init_freelist_randomization(void)
1682{
1683 struct kmem_cache *s;
1684
1685 mutex_lock(&slab_mutex);
1686
1687 list_for_each_entry(s, &slab_caches, list)
1688 init_cache_random_seq(s);
1689
1690 mutex_unlock(&slab_mutex);
1691}
1692
1693/* Get the next entry on the pre-computed freelist randomized */
1694static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1695 unsigned long *pos, void *start,
1696 unsigned long page_limit,
1697 unsigned long freelist_count)
1698{
1699 unsigned int idx;
1700
1701 /*
1702 * If the target page allocation failed, the number of objects on the
1703 * page might be smaller than the usual size defined by the cache.
1704 */
1705 do {
1706 idx = s->random_seq[*pos];
1707 *pos += 1;
1708 if (*pos >= freelist_count)
1709 *pos = 0;
1710 } while (unlikely(idx >= page_limit));
1711
1712 return (char *)start + idx;
1713}
1714
1715/* Shuffle the single linked freelist based on a random pre-computed sequence */
1716static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1717{
1718 void *start;
1719 void *cur;
1720 void *next;
1721 unsigned long idx, pos, page_limit, freelist_count;
1722
1723 if (page->objects < 2 || !s->random_seq)
1724 return false;
1725
1726 freelist_count = oo_objects(s->oo);
1727 pos = get_random_int() % freelist_count;
1728
1729 page_limit = page->objects * s->size;
1730 start = fixup_red_left(s, page_address(page));
1731
1732 /* First entry is used as the base of the freelist */
1733 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1734 freelist_count);
4d176711 1735 cur = setup_object(s, page, cur);
210e7a43
TG
1736 page->freelist = cur;
1737
1738 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1739 next = next_freelist_entry(s, page, &pos, start, page_limit,
1740 freelist_count);
4d176711 1741 next = setup_object(s, page, next);
210e7a43
TG
1742 set_freepointer(s, cur, next);
1743 cur = next;
1744 }
210e7a43
TG
1745 set_freepointer(s, cur, NULL);
1746
1747 return true;
1748}
1749#else
1750static inline int init_cache_random_seq(struct kmem_cache *s)
1751{
1752 return 0;
1753}
1754static inline void init_freelist_randomization(void) { }
1755static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1756{
1757 return false;
1758}
1759#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1760
81819f0f
CL
1761static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1762{
06428780 1763 struct page *page;
834f3d11 1764 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1765 gfp_t alloc_gfp;
4d176711 1766 void *start, *p, *next;
a50b854e 1767 int idx;
210e7a43 1768 bool shuffle;
81819f0f 1769
7e0528da
CL
1770 flags &= gfp_allowed_mask;
1771
d0164adc 1772 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1773 local_irq_enable();
1774
b7a49f0d 1775 flags |= s->allocflags;
e12ba74d 1776
ba52270d
PE
1777 /*
1778 * Let the initial higher-order allocation fail under memory pressure
1779 * so we fall-back to the minimum order allocation.
1780 */
1781 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1782 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1783 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1784
5dfb4175 1785 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1786 if (unlikely(!page)) {
1787 oo = s->min;
80c3a998 1788 alloc_gfp = flags;
65c3376a
CL
1789 /*
1790 * Allocation may have failed due to fragmentation.
1791 * Try a lower order alloc if possible
1792 */
5dfb4175 1793 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1794 if (unlikely(!page))
1795 goto out;
1796 stat(s, ORDER_FALLBACK);
65c3376a 1797 }
5a896d9e 1798
834f3d11 1799 page->objects = oo_objects(oo);
81819f0f 1800
2e9bd483 1801 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1802
1b4f59e3 1803 page->slab_cache = s;
c03f94cc 1804 __SetPageSlab(page);
2f064f34 1805 if (page_is_pfmemalloc(page))
072bb0aa 1806 SetPageSlabPfmemalloc(page);
81819f0f 1807
a7101224 1808 kasan_poison_slab(page);
81819f0f 1809
a7101224 1810 start = page_address(page);
81819f0f 1811
a50b854e 1812 setup_page_debug(s, page, start);
0316bec2 1813
210e7a43
TG
1814 shuffle = shuffle_freelist(s, page);
1815
1816 if (!shuffle) {
4d176711
AK
1817 start = fixup_red_left(s, start);
1818 start = setup_object(s, page, start);
1819 page->freelist = start;
18e50661
AK
1820 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1821 next = p + s->size;
1822 next = setup_object(s, page, next);
1823 set_freepointer(s, p, next);
1824 p = next;
1825 }
1826 set_freepointer(s, p, NULL);
81819f0f 1827 }
81819f0f 1828
e6e82ea1 1829 page->inuse = page->objects;
8cb0a506 1830 page->frozen = 1;
588f8ba9 1831
81819f0f 1832out:
d0164adc 1833 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1834 local_irq_disable();
1835 if (!page)
1836 return NULL;
1837
588f8ba9
TG
1838 inc_slabs_node(s, page_to_nid(page), page->objects);
1839
81819f0f
CL
1840 return page;
1841}
1842
588f8ba9
TG
1843static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1844{
44405099
LL
1845 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1846 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1847
1848 return allocate_slab(s,
1849 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1850}
1851
81819f0f
CL
1852static void __free_slab(struct kmem_cache *s, struct page *page)
1853{
834f3d11
CL
1854 int order = compound_order(page);
1855 int pages = 1 << order;
81819f0f 1856
8fc8d666 1857 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1858 void *p;
1859
1860 slab_pad_check(s, page);
224a88be
CL
1861 for_each_object(p, s, page_address(page),
1862 page->objects)
f7cb1933 1863 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1864 }
1865
072bb0aa 1866 __ClearPageSlabPfmemalloc(page);
49bd5221 1867 __ClearPageSlab(page);
0c06dd75
VB
1868 /* In union with page->mapping where page allocator expects NULL */
1869 page->slab_cache = NULL;
1eb5ac64
NP
1870 if (current->reclaim_state)
1871 current->reclaim_state->reclaimed_slab += pages;
74d555be 1872 unaccount_slab_page(page, order, s);
27ee57c9 1873 __free_pages(page, order);
81819f0f
CL
1874}
1875
1876static void rcu_free_slab(struct rcu_head *h)
1877{
bf68c214 1878 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1879
1b4f59e3 1880 __free_slab(page->slab_cache, page);
81819f0f
CL
1881}
1882
1883static void free_slab(struct kmem_cache *s, struct page *page)
1884{
5f0d5a3a 1885 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1886 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1887 } else
1888 __free_slab(s, page);
1889}
1890
1891static void discard_slab(struct kmem_cache *s, struct page *page)
1892{
205ab99d 1893 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1894 free_slab(s, page);
1895}
1896
1897/*
5cc6eee8 1898 * Management of partially allocated slabs.
81819f0f 1899 */
1e4dd946
SR
1900static inline void
1901__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1902{
e95eed57 1903 n->nr_partial++;
136333d1 1904 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1905 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1906 else
916ac052 1907 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1908}
1909
1e4dd946
SR
1910static inline void add_partial(struct kmem_cache_node *n,
1911 struct page *page, int tail)
62e346a8 1912{
c65c1877 1913 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1914 __add_partial(n, page, tail);
1915}
c65c1877 1916
1e4dd946
SR
1917static inline void remove_partial(struct kmem_cache_node *n,
1918 struct page *page)
1919{
1920 lockdep_assert_held(&n->list_lock);
916ac052 1921 list_del(&page->slab_list);
52b4b950 1922 n->nr_partial--;
1e4dd946
SR
1923}
1924
81819f0f 1925/*
7ced3719
CL
1926 * Remove slab from the partial list, freeze it and
1927 * return the pointer to the freelist.
81819f0f 1928 *
497b66f2 1929 * Returns a list of objects or NULL if it fails.
81819f0f 1930 */
497b66f2 1931static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1932 struct kmem_cache_node *n, struct page *page,
633b0764 1933 int mode, int *objects)
81819f0f 1934{
2cfb7455
CL
1935 void *freelist;
1936 unsigned long counters;
1937 struct page new;
1938
c65c1877
PZ
1939 lockdep_assert_held(&n->list_lock);
1940
2cfb7455
CL
1941 /*
1942 * Zap the freelist and set the frozen bit.
1943 * The old freelist is the list of objects for the
1944 * per cpu allocation list.
1945 */
7ced3719
CL
1946 freelist = page->freelist;
1947 counters = page->counters;
1948 new.counters = counters;
633b0764 1949 *objects = new.objects - new.inuse;
23910c50 1950 if (mode) {
7ced3719 1951 new.inuse = page->objects;
23910c50
PE
1952 new.freelist = NULL;
1953 } else {
1954 new.freelist = freelist;
1955 }
2cfb7455 1956
a0132ac0 1957 VM_BUG_ON(new.frozen);
7ced3719 1958 new.frozen = 1;
2cfb7455 1959
7ced3719 1960 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1961 freelist, counters,
02d7633f 1962 new.freelist, new.counters,
7ced3719 1963 "acquire_slab"))
7ced3719 1964 return NULL;
2cfb7455
CL
1965
1966 remove_partial(n, page);
7ced3719 1967 WARN_ON(!freelist);
49e22585 1968 return freelist;
81819f0f
CL
1969}
1970
633b0764 1971static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1972static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1973
81819f0f 1974/*
672bba3a 1975 * Try to allocate a partial slab from a specific node.
81819f0f 1976 */
8ba00bb6
JK
1977static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1978 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1979{
49e22585
CL
1980 struct page *page, *page2;
1981 void *object = NULL;
e5d9998f 1982 unsigned int available = 0;
633b0764 1983 int objects;
81819f0f
CL
1984
1985 /*
1986 * Racy check. If we mistakenly see no partial slabs then we
1987 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1988 * partial slab and there is none available then get_partial()
672bba3a 1989 * will return NULL.
81819f0f
CL
1990 */
1991 if (!n || !n->nr_partial)
1992 return NULL;
1993
1994 spin_lock(&n->list_lock);
916ac052 1995 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1996 void *t;
49e22585 1997
8ba00bb6
JK
1998 if (!pfmemalloc_match(page, flags))
1999 continue;
2000
633b0764 2001 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2002 if (!t)
9b1ea29b 2003 break;
49e22585 2004
633b0764 2005 available += objects;
12d79634 2006 if (!object) {
49e22585 2007 c->page = page;
49e22585 2008 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2009 object = t;
49e22585 2010 } else {
633b0764 2011 put_cpu_partial(s, page, 0);
8028dcea 2012 stat(s, CPU_PARTIAL_NODE);
49e22585 2013 }
345c905d 2014 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2015 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2016 break;
2017
497b66f2 2018 }
81819f0f 2019 spin_unlock(&n->list_lock);
497b66f2 2020 return object;
81819f0f
CL
2021}
2022
2023/*
672bba3a 2024 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2025 */
de3ec035 2026static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2027 struct kmem_cache_cpu *c)
81819f0f
CL
2028{
2029#ifdef CONFIG_NUMA
2030 struct zonelist *zonelist;
dd1a239f 2031 struct zoneref *z;
54a6eb5c 2032 struct zone *zone;
97a225e6 2033 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2034 void *object;
cc9a6c87 2035 unsigned int cpuset_mems_cookie;
81819f0f
CL
2036
2037 /*
672bba3a
CL
2038 * The defrag ratio allows a configuration of the tradeoffs between
2039 * inter node defragmentation and node local allocations. A lower
2040 * defrag_ratio increases the tendency to do local allocations
2041 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2042 *
672bba3a
CL
2043 * If the defrag_ratio is set to 0 then kmalloc() always
2044 * returns node local objects. If the ratio is higher then kmalloc()
2045 * may return off node objects because partial slabs are obtained
2046 * from other nodes and filled up.
81819f0f 2047 *
43efd3ea
LP
2048 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2049 * (which makes defrag_ratio = 1000) then every (well almost)
2050 * allocation will first attempt to defrag slab caches on other nodes.
2051 * This means scanning over all nodes to look for partial slabs which
2052 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2053 * with available objects.
81819f0f 2054 */
9824601e
CL
2055 if (!s->remote_node_defrag_ratio ||
2056 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2057 return NULL;
2058
cc9a6c87 2059 do {
d26914d1 2060 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2061 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2062 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2063 struct kmem_cache_node *n;
2064
2065 n = get_node(s, zone_to_nid(zone));
2066
dee2f8aa 2067 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2068 n->nr_partial > s->min_partial) {
8ba00bb6 2069 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2070 if (object) {
2071 /*
d26914d1
MG
2072 * Don't check read_mems_allowed_retry()
2073 * here - if mems_allowed was updated in
2074 * parallel, that was a harmless race
2075 * between allocation and the cpuset
2076 * update
cc9a6c87 2077 */
cc9a6c87
MG
2078 return object;
2079 }
c0ff7453 2080 }
81819f0f 2081 }
d26914d1 2082 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2083#endif /* CONFIG_NUMA */
81819f0f
CL
2084 return NULL;
2085}
2086
2087/*
2088 * Get a partial page, lock it and return it.
2089 */
497b66f2 2090static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2091 struct kmem_cache_cpu *c)
81819f0f 2092{
497b66f2 2093 void *object;
a561ce00
JK
2094 int searchnode = node;
2095
2096 if (node == NUMA_NO_NODE)
2097 searchnode = numa_mem_id();
81819f0f 2098
8ba00bb6 2099 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2100 if (object || node != NUMA_NO_NODE)
2101 return object;
81819f0f 2102
acd19fd1 2103 return get_any_partial(s, flags, c);
81819f0f
CL
2104}
2105
923717cb 2106#ifdef CONFIG_PREEMPTION
8a5ec0ba 2107/*
0d645ed1 2108 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2109 * during cmpxchg. The transactions start with the cpu number and are then
2110 * incremented by CONFIG_NR_CPUS.
2111 */
2112#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2113#else
2114/*
2115 * No preemption supported therefore also no need to check for
2116 * different cpus.
2117 */
2118#define TID_STEP 1
2119#endif
2120
2121static inline unsigned long next_tid(unsigned long tid)
2122{
2123 return tid + TID_STEP;
2124}
2125
9d5f0be0 2126#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2127static inline unsigned int tid_to_cpu(unsigned long tid)
2128{
2129 return tid % TID_STEP;
2130}
2131
2132static inline unsigned long tid_to_event(unsigned long tid)
2133{
2134 return tid / TID_STEP;
2135}
9d5f0be0 2136#endif
8a5ec0ba
CL
2137
2138static inline unsigned int init_tid(int cpu)
2139{
2140 return cpu;
2141}
2142
2143static inline void note_cmpxchg_failure(const char *n,
2144 const struct kmem_cache *s, unsigned long tid)
2145{
2146#ifdef SLUB_DEBUG_CMPXCHG
2147 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2148
f9f58285 2149 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2150
923717cb 2151#ifdef CONFIG_PREEMPTION
8a5ec0ba 2152 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2153 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2154 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2155 else
2156#endif
2157 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2158 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2159 tid_to_event(tid), tid_to_event(actual_tid));
2160 else
f9f58285 2161 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2162 actual_tid, tid, next_tid(tid));
2163#endif
4fdccdfb 2164 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2165}
2166
788e1aad 2167static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2168{
8a5ec0ba
CL
2169 int cpu;
2170
2171 for_each_possible_cpu(cpu)
2172 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2173}
2cfb7455 2174
81819f0f
CL
2175/*
2176 * Remove the cpu slab
2177 */
d0e0ac97 2178static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2179 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2180{
2cfb7455 2181 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2182 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2183 int lock = 0, free_delta = 0;
2cfb7455 2184 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2185 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2186 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2187 struct page new;
2188 struct page old;
2189
2190 if (page->freelist) {
84e554e6 2191 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2192 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2193 }
2194
894b8788 2195 /*
d930ff03
VB
2196 * Stage one: Count the objects on cpu's freelist as free_delta and
2197 * remember the last object in freelist_tail for later splicing.
2cfb7455 2198 */
d930ff03
VB
2199 freelist_tail = NULL;
2200 freelist_iter = freelist;
2201 while (freelist_iter) {
2202 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2203
52f23478
DZ
2204 /*
2205 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2206 * 'freelist_iter' is already corrupted. So isolate all objects
2207 * starting at 'freelist_iter' by skipping them.
52f23478 2208 */
d930ff03 2209 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2210 break;
2211
d930ff03
VB
2212 freelist_tail = freelist_iter;
2213 free_delta++;
2cfb7455 2214
d930ff03 2215 freelist_iter = nextfree;
2cfb7455
CL
2216 }
2217
894b8788 2218 /*
d930ff03
VB
2219 * Stage two: Unfreeze the page while splicing the per-cpu
2220 * freelist to the head of page's freelist.
2221 *
2222 * Ensure that the page is unfrozen while the list presence
2223 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2224 *
2225 * We setup the list membership and then perform a cmpxchg
2226 * with the count. If there is a mismatch then the page
2227 * is not unfrozen but the page is on the wrong list.
2228 *
2229 * Then we restart the process which may have to remove
2230 * the page from the list that we just put it on again
2231 * because the number of objects in the slab may have
2232 * changed.
894b8788 2233 */
2cfb7455 2234redo:
894b8788 2235
d930ff03
VB
2236 old.freelist = READ_ONCE(page->freelist);
2237 old.counters = READ_ONCE(page->counters);
a0132ac0 2238 VM_BUG_ON(!old.frozen);
7c2e132c 2239
2cfb7455
CL
2240 /* Determine target state of the slab */
2241 new.counters = old.counters;
d930ff03
VB
2242 if (freelist_tail) {
2243 new.inuse -= free_delta;
2244 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2245 new.freelist = freelist;
2246 } else
2247 new.freelist = old.freelist;
2248
2249 new.frozen = 0;
2250
8a5b20ae 2251 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2252 m = M_FREE;
2253 else if (new.freelist) {
2254 m = M_PARTIAL;
2255 if (!lock) {
2256 lock = 1;
2257 /*
8bb4e7a2 2258 * Taking the spinlock removes the possibility
2cfb7455
CL
2259 * that acquire_slab() will see a slab page that
2260 * is frozen
2261 */
2262 spin_lock(&n->list_lock);
2263 }
2264 } else {
2265 m = M_FULL;
965c4848 2266 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2267 lock = 1;
2268 /*
2269 * This also ensures that the scanning of full
2270 * slabs from diagnostic functions will not see
2271 * any frozen slabs.
2272 */
2273 spin_lock(&n->list_lock);
2274 }
2275 }
2276
2277 if (l != m) {
2cfb7455 2278 if (l == M_PARTIAL)
2cfb7455 2279 remove_partial(n, page);
2cfb7455 2280 else if (l == M_FULL)
c65c1877 2281 remove_full(s, n, page);
2cfb7455 2282
88349a28 2283 if (m == M_PARTIAL)
2cfb7455 2284 add_partial(n, page, tail);
88349a28 2285 else if (m == M_FULL)
2cfb7455 2286 add_full(s, n, page);
2cfb7455
CL
2287 }
2288
2289 l = m;
1d07171c 2290 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2291 old.freelist, old.counters,
2292 new.freelist, new.counters,
2293 "unfreezing slab"))
2294 goto redo;
2295
2cfb7455
CL
2296 if (lock)
2297 spin_unlock(&n->list_lock);
2298
88349a28
WY
2299 if (m == M_PARTIAL)
2300 stat(s, tail);
2301 else if (m == M_FULL)
2302 stat(s, DEACTIVATE_FULL);
2303 else if (m == M_FREE) {
2cfb7455
CL
2304 stat(s, DEACTIVATE_EMPTY);
2305 discard_slab(s, page);
2306 stat(s, FREE_SLAB);
894b8788 2307 }
d4ff6d35
WY
2308
2309 c->page = NULL;
2310 c->freelist = NULL;
81819f0f
CL
2311}
2312
d24ac77f
JK
2313/*
2314 * Unfreeze all the cpu partial slabs.
2315 *
59a09917
CL
2316 * This function must be called with interrupts disabled
2317 * for the cpu using c (or some other guarantee must be there
2318 * to guarantee no concurrent accesses).
d24ac77f 2319 */
59a09917
CL
2320static void unfreeze_partials(struct kmem_cache *s,
2321 struct kmem_cache_cpu *c)
49e22585 2322{
345c905d 2323#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2324 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2325 struct page *page, *discard_page = NULL;
49e22585 2326
4c7ba22e 2327 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2328 struct page new;
2329 struct page old;
2330
4c7ba22e 2331 slub_set_percpu_partial(c, page);
43d77867
JK
2332
2333 n2 = get_node(s, page_to_nid(page));
2334 if (n != n2) {
2335 if (n)
2336 spin_unlock(&n->list_lock);
2337
2338 n = n2;
2339 spin_lock(&n->list_lock);
2340 }
49e22585
CL
2341
2342 do {
2343
2344 old.freelist = page->freelist;
2345 old.counters = page->counters;
a0132ac0 2346 VM_BUG_ON(!old.frozen);
49e22585
CL
2347
2348 new.counters = old.counters;
2349 new.freelist = old.freelist;
2350
2351 new.frozen = 0;
2352
d24ac77f 2353 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2354 old.freelist, old.counters,
2355 new.freelist, new.counters,
2356 "unfreezing slab"));
2357
8a5b20ae 2358 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2359 page->next = discard_page;
2360 discard_page = page;
43d77867
JK
2361 } else {
2362 add_partial(n, page, DEACTIVATE_TO_TAIL);
2363 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2364 }
2365 }
2366
2367 if (n)
2368 spin_unlock(&n->list_lock);
9ada1934
SL
2369
2370 while (discard_page) {
2371 page = discard_page;
2372 discard_page = discard_page->next;
2373
2374 stat(s, DEACTIVATE_EMPTY);
2375 discard_slab(s, page);
2376 stat(s, FREE_SLAB);
2377 }
6dfd1b65 2378#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2379}
2380
2381/*
9234bae9
WY
2382 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2383 * partial page slot if available.
49e22585
CL
2384 *
2385 * If we did not find a slot then simply move all the partials to the
2386 * per node partial list.
2387 */
633b0764 2388static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2389{
345c905d 2390#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2391 struct page *oldpage;
2392 int pages;
2393 int pobjects;
2394
d6e0b7fa 2395 preempt_disable();
49e22585
CL
2396 do {
2397 pages = 0;
2398 pobjects = 0;
2399 oldpage = this_cpu_read(s->cpu_slab->partial);
2400
2401 if (oldpage) {
2402 pobjects = oldpage->pobjects;
2403 pages = oldpage->pages;
bbd4e305 2404 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2405 unsigned long flags;
2406 /*
2407 * partial array is full. Move the existing
2408 * set to the per node partial list.
2409 */
2410 local_irq_save(flags);
59a09917 2411 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2412 local_irq_restore(flags);
e24fc410 2413 oldpage = NULL;
49e22585
CL
2414 pobjects = 0;
2415 pages = 0;
8028dcea 2416 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2417 }
2418 }
2419
2420 pages++;
2421 pobjects += page->objects - page->inuse;
2422
2423 page->pages = pages;
2424 page->pobjects = pobjects;
2425 page->next = oldpage;
2426
d0e0ac97
CG
2427 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2428 != oldpage);
bbd4e305 2429 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2430 unsigned long flags;
2431
2432 local_irq_save(flags);
2433 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2434 local_irq_restore(flags);
2435 }
2436 preempt_enable();
6dfd1b65 2437#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2438}
2439
dfb4f096 2440static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2441{
84e554e6 2442 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2443 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2444
2445 c->tid = next_tid(c->tid);
81819f0f
CL
2446}
2447
2448/*
2449 * Flush cpu slab.
6446faa2 2450 *
81819f0f
CL
2451 * Called from IPI handler with interrupts disabled.
2452 */
0c710013 2453static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2454{
9dfc6e68 2455 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2456
1265ef2d
WY
2457 if (c->page)
2458 flush_slab(s, c);
49e22585 2459
1265ef2d 2460 unfreeze_partials(s, c);
81819f0f
CL
2461}
2462
2463static void flush_cpu_slab(void *d)
2464{
2465 struct kmem_cache *s = d;
81819f0f 2466
dfb4f096 2467 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2468}
2469
a8364d55
GBY
2470static bool has_cpu_slab(int cpu, void *info)
2471{
2472 struct kmem_cache *s = info;
2473 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2474
a93cf07b 2475 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2476}
2477
81819f0f
CL
2478static void flush_all(struct kmem_cache *s)
2479{
cb923159 2480 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2481}
2482
a96a87bf
SAS
2483/*
2484 * Use the cpu notifier to insure that the cpu slabs are flushed when
2485 * necessary.
2486 */
2487static int slub_cpu_dead(unsigned int cpu)
2488{
2489 struct kmem_cache *s;
2490 unsigned long flags;
2491
2492 mutex_lock(&slab_mutex);
2493 list_for_each_entry(s, &slab_caches, list) {
2494 local_irq_save(flags);
2495 __flush_cpu_slab(s, cpu);
2496 local_irq_restore(flags);
2497 }
2498 mutex_unlock(&slab_mutex);
2499 return 0;
2500}
2501
dfb4f096
CL
2502/*
2503 * Check if the objects in a per cpu structure fit numa
2504 * locality expectations.
2505 */
57d437d2 2506static inline int node_match(struct page *page, int node)
dfb4f096
CL
2507{
2508#ifdef CONFIG_NUMA
6159d0f5 2509 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2510 return 0;
2511#endif
2512 return 1;
2513}
2514
9a02d699 2515#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2516static int count_free(struct page *page)
2517{
2518 return page->objects - page->inuse;
2519}
2520
9a02d699
DR
2521static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2522{
2523 return atomic_long_read(&n->total_objects);
2524}
2525#endif /* CONFIG_SLUB_DEBUG */
2526
2527#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2528static unsigned long count_partial(struct kmem_cache_node *n,
2529 int (*get_count)(struct page *))
2530{
2531 unsigned long flags;
2532 unsigned long x = 0;
2533 struct page *page;
2534
2535 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2536 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2537 x += get_count(page);
2538 spin_unlock_irqrestore(&n->list_lock, flags);
2539 return x;
2540}
9a02d699 2541#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2542
781b2ba6
PE
2543static noinline void
2544slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2545{
9a02d699
DR
2546#ifdef CONFIG_SLUB_DEBUG
2547 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2548 DEFAULT_RATELIMIT_BURST);
781b2ba6 2549 int node;
fa45dc25 2550 struct kmem_cache_node *n;
781b2ba6 2551
9a02d699
DR
2552 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2553 return;
2554
5b3810e5
VB
2555 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2556 nid, gfpflags, &gfpflags);
19af27af 2557 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2558 s->name, s->object_size, s->size, oo_order(s->oo),
2559 oo_order(s->min));
781b2ba6 2560
3b0efdfa 2561 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2562 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2563 s->name);
fa5ec8a1 2564
fa45dc25 2565 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2566 unsigned long nr_slabs;
2567 unsigned long nr_objs;
2568 unsigned long nr_free;
2569
26c02cf0
AB
2570 nr_free = count_partial(n, count_free);
2571 nr_slabs = node_nr_slabs(n);
2572 nr_objs = node_nr_objs(n);
781b2ba6 2573
f9f58285 2574 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2575 node, nr_slabs, nr_objs, nr_free);
2576 }
9a02d699 2577#endif
781b2ba6
PE
2578}
2579
497b66f2
CL
2580static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2581 int node, struct kmem_cache_cpu **pc)
2582{
6faa6833 2583 void *freelist;
188fd063
CL
2584 struct kmem_cache_cpu *c = *pc;
2585 struct page *page;
497b66f2 2586
128227e7
MW
2587 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2588
188fd063 2589 freelist = get_partial(s, flags, node, c);
497b66f2 2590
188fd063
CL
2591 if (freelist)
2592 return freelist;
2593
2594 page = new_slab(s, flags, node);
497b66f2 2595 if (page) {
7c8e0181 2596 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2597 if (c->page)
2598 flush_slab(s, c);
2599
2600 /*
2601 * No other reference to the page yet so we can
2602 * muck around with it freely without cmpxchg
2603 */
6faa6833 2604 freelist = page->freelist;
497b66f2
CL
2605 page->freelist = NULL;
2606
2607 stat(s, ALLOC_SLAB);
497b66f2
CL
2608 c->page = page;
2609 *pc = c;
edde82b6 2610 }
497b66f2 2611
6faa6833 2612 return freelist;
497b66f2
CL
2613}
2614
072bb0aa
MG
2615static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2616{
2617 if (unlikely(PageSlabPfmemalloc(page)))
2618 return gfp_pfmemalloc_allowed(gfpflags);
2619
2620 return true;
2621}
2622
213eeb9f 2623/*
d0e0ac97
CG
2624 * Check the page->freelist of a page and either transfer the freelist to the
2625 * per cpu freelist or deactivate the page.
213eeb9f
CL
2626 *
2627 * The page is still frozen if the return value is not NULL.
2628 *
2629 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2630 *
2631 * This function must be called with interrupt disabled.
213eeb9f
CL
2632 */
2633static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2634{
2635 struct page new;
2636 unsigned long counters;
2637 void *freelist;
2638
2639 do {
2640 freelist = page->freelist;
2641 counters = page->counters;
6faa6833 2642
213eeb9f 2643 new.counters = counters;
a0132ac0 2644 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2645
2646 new.inuse = page->objects;
2647 new.frozen = freelist != NULL;
2648
d24ac77f 2649 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2650 freelist, counters,
2651 NULL, new.counters,
2652 "get_freelist"));
2653
2654 return freelist;
2655}
2656
81819f0f 2657/*
894b8788
CL
2658 * Slow path. The lockless freelist is empty or we need to perform
2659 * debugging duties.
2660 *
894b8788
CL
2661 * Processing is still very fast if new objects have been freed to the
2662 * regular freelist. In that case we simply take over the regular freelist
2663 * as the lockless freelist and zap the regular freelist.
81819f0f 2664 *
894b8788
CL
2665 * If that is not working then we fall back to the partial lists. We take the
2666 * first element of the freelist as the object to allocate now and move the
2667 * rest of the freelist to the lockless freelist.
81819f0f 2668 *
894b8788 2669 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2670 * we need to allocate a new slab. This is the slowest path since it involves
2671 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2672 *
2673 * Version of __slab_alloc to use when we know that interrupts are
2674 * already disabled (which is the case for bulk allocation).
81819f0f 2675 */
a380a3c7 2676static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2677 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2678{
6faa6833 2679 void *freelist;
f6e7def7 2680 struct page *page;
81819f0f 2681
9f986d99
AW
2682 stat(s, ALLOC_SLOWPATH);
2683
f6e7def7 2684 page = c->page;
0715e6c5
VB
2685 if (!page) {
2686 /*
2687 * if the node is not online or has no normal memory, just
2688 * ignore the node constraint
2689 */
2690 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2691 !node_isset(node, slab_nodes)))
0715e6c5 2692 node = NUMA_NO_NODE;
81819f0f 2693 goto new_slab;
0715e6c5 2694 }
49e22585 2695redo:
6faa6833 2696
57d437d2 2697 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2698 /*
2699 * same as above but node_match() being false already
2700 * implies node != NUMA_NO_NODE
2701 */
7e1fa93d 2702 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2703 node = NUMA_NO_NODE;
2704 goto redo;
2705 } else {
a561ce00 2706 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2707 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2708 goto new_slab;
2709 }
fc59c053 2710 }
6446faa2 2711
072bb0aa
MG
2712 /*
2713 * By rights, we should be searching for a slab page that was
2714 * PFMEMALLOC but right now, we are losing the pfmemalloc
2715 * information when the page leaves the per-cpu allocator
2716 */
2717 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2718 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2719 goto new_slab;
2720 }
2721
73736e03 2722 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2723 freelist = c->freelist;
2724 if (freelist)
73736e03 2725 goto load_freelist;
03e404af 2726
f6e7def7 2727 freelist = get_freelist(s, page);
6446faa2 2728
6faa6833 2729 if (!freelist) {
03e404af
CL
2730 c->page = NULL;
2731 stat(s, DEACTIVATE_BYPASS);
fc59c053 2732 goto new_slab;
03e404af 2733 }
6446faa2 2734
84e554e6 2735 stat(s, ALLOC_REFILL);
6446faa2 2736
894b8788 2737load_freelist:
507effea
CL
2738 /*
2739 * freelist is pointing to the list of objects to be used.
2740 * page is pointing to the page from which the objects are obtained.
2741 * That page must be frozen for per cpu allocations to work.
2742 */
a0132ac0 2743 VM_BUG_ON(!c->page->frozen);
6faa6833 2744 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2745 c->tid = next_tid(c->tid);
6faa6833 2746 return freelist;
81819f0f 2747
81819f0f 2748new_slab:
2cfb7455 2749
a93cf07b
WY
2750 if (slub_percpu_partial(c)) {
2751 page = c->page = slub_percpu_partial(c);
2752 slub_set_percpu_partial(c, page);
49e22585 2753 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2754 goto redo;
81819f0f
CL
2755 }
2756
188fd063 2757 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2758
f4697436 2759 if (unlikely(!freelist)) {
9a02d699 2760 slab_out_of_memory(s, gfpflags, node);
f4697436 2761 return NULL;
81819f0f 2762 }
2cfb7455 2763
f6e7def7 2764 page = c->page;
5091b74a 2765 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2766 goto load_freelist;
2cfb7455 2767
497b66f2 2768 /* Only entered in the debug case */
d0e0ac97
CG
2769 if (kmem_cache_debug(s) &&
2770 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2771 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2772
d4ff6d35 2773 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2774 return freelist;
894b8788
CL
2775}
2776
a380a3c7
CL
2777/*
2778 * Another one that disabled interrupt and compensates for possible
2779 * cpu changes by refetching the per cpu area pointer.
2780 */
2781static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2782 unsigned long addr, struct kmem_cache_cpu *c)
2783{
2784 void *p;
2785 unsigned long flags;
2786
2787 local_irq_save(flags);
923717cb 2788#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2789 /*
2790 * We may have been preempted and rescheduled on a different
2791 * cpu before disabling interrupts. Need to reload cpu area
2792 * pointer.
2793 */
2794 c = this_cpu_ptr(s->cpu_slab);
2795#endif
2796
2797 p = ___slab_alloc(s, gfpflags, node, addr, c);
2798 local_irq_restore(flags);
2799 return p;
2800}
2801
0f181f9f
AP
2802/*
2803 * If the object has been wiped upon free, make sure it's fully initialized by
2804 * zeroing out freelist pointer.
2805 */
2806static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2807 void *obj)
2808{
2809 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2810 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2811 0, sizeof(void *));
0f181f9f
AP
2812}
2813
894b8788
CL
2814/*
2815 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2816 * have the fastpath folded into their functions. So no function call
2817 * overhead for requests that can be satisfied on the fastpath.
2818 *
2819 * The fastpath works by first checking if the lockless freelist can be used.
2820 * If not then __slab_alloc is called for slow processing.
2821 *
2822 * Otherwise we can simply pick the next object from the lockless free list.
2823 */
2b847c3c 2824static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2825 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2826{
03ec0ed5 2827 void *object;
dfb4f096 2828 struct kmem_cache_cpu *c;
57d437d2 2829 struct page *page;
8a5ec0ba 2830 unsigned long tid;
964d4bd3 2831 struct obj_cgroup *objcg = NULL;
da844b78 2832 bool init = false;
1f84260c 2833
964d4bd3 2834 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2835 if (!s)
773ff60e 2836 return NULL;
b89fb5ef
AP
2837
2838 object = kfence_alloc(s, orig_size, gfpflags);
2839 if (unlikely(object))
2840 goto out;
2841
8a5ec0ba 2842redo:
8a5ec0ba
CL
2843 /*
2844 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2845 * enabled. We may switch back and forth between cpus while
2846 * reading from one cpu area. That does not matter as long
2847 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2848 *
9aabf810 2849 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2850 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2851 * to check if it is matched or not.
8a5ec0ba 2852 */
9aabf810
JK
2853 do {
2854 tid = this_cpu_read(s->cpu_slab->tid);
2855 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2856 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2857 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2858
2859 /*
2860 * Irqless object alloc/free algorithm used here depends on sequence
2861 * of fetching cpu_slab's data. tid should be fetched before anything
2862 * on c to guarantee that object and page associated with previous tid
2863 * won't be used with current tid. If we fetch tid first, object and
2864 * page could be one associated with next tid and our alloc/free
2865 * request will be failed. In this case, we will retry. So, no problem.
2866 */
2867 barrier();
8a5ec0ba 2868
8a5ec0ba
CL
2869 /*
2870 * The transaction ids are globally unique per cpu and per operation on
2871 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2872 * occurs on the right processor and that there was no operation on the
2873 * linked list in between.
2874 */
8a5ec0ba 2875
9dfc6e68 2876 object = c->freelist;
57d437d2 2877 page = c->page;
22e4663e 2878 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2879 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2880 } else {
0ad9500e
ED
2881 void *next_object = get_freepointer_safe(s, object);
2882
8a5ec0ba 2883 /*
25985edc 2884 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2885 * operation and if we are on the right processor.
2886 *
d0e0ac97
CG
2887 * The cmpxchg does the following atomically (without lock
2888 * semantics!)
8a5ec0ba
CL
2889 * 1. Relocate first pointer to the current per cpu area.
2890 * 2. Verify that tid and freelist have not been changed
2891 * 3. If they were not changed replace tid and freelist
2892 *
d0e0ac97
CG
2893 * Since this is without lock semantics the protection is only
2894 * against code executing on this cpu *not* from access by
2895 * other cpus.
8a5ec0ba 2896 */
933393f5 2897 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2898 s->cpu_slab->freelist, s->cpu_slab->tid,
2899 object, tid,
0ad9500e 2900 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2901
2902 note_cmpxchg_failure("slab_alloc", s, tid);
2903 goto redo;
2904 }
0ad9500e 2905 prefetch_freepointer(s, next_object);
84e554e6 2906 stat(s, ALLOC_FASTPATH);
894b8788 2907 }
0f181f9f 2908
ce5716c6 2909 maybe_wipe_obj_freeptr(s, object);
da844b78 2910 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2911
b89fb5ef 2912out:
da844b78 2913 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2914
894b8788 2915 return object;
81819f0f
CL
2916}
2917
2b847c3c 2918static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2919 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2920{
b89fb5ef 2921 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2922}
2923
81819f0f
CL
2924void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2925{
b89fb5ef 2926 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2927
d0e0ac97
CG
2928 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2929 s->size, gfpflags);
5b882be4
EGM
2930
2931 return ret;
81819f0f
CL
2932}
2933EXPORT_SYMBOL(kmem_cache_alloc);
2934
0f24f128 2935#ifdef CONFIG_TRACING
4a92379b
RK
2936void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2937{
b89fb5ef 2938 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2939 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2940 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2941 return ret;
2942}
2943EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2944#endif
2945
81819f0f
CL
2946#ifdef CONFIG_NUMA
2947void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2948{
b89fb5ef 2949 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2950
ca2b84cb 2951 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2952 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2953
2954 return ret;
81819f0f
CL
2955}
2956EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2957
0f24f128 2958#ifdef CONFIG_TRACING
4a92379b 2959void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2960 gfp_t gfpflags,
4a92379b 2961 int node, size_t size)
5b882be4 2962{
b89fb5ef 2963 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
2964
2965 trace_kmalloc_node(_RET_IP_, ret,
2966 size, s->size, gfpflags, node);
0316bec2 2967
0116523c 2968 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2969 return ret;
5b882be4 2970}
4a92379b 2971EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2972#endif
6dfd1b65 2973#endif /* CONFIG_NUMA */
5b882be4 2974
81819f0f 2975/*
94e4d712 2976 * Slow path handling. This may still be called frequently since objects
894b8788 2977 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2978 *
894b8788
CL
2979 * So we still attempt to reduce cache line usage. Just take the slab
2980 * lock and free the item. If there is no additional partial page
2981 * handling required then we can return immediately.
81819f0f 2982 */
894b8788 2983static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2984 void *head, void *tail, int cnt,
2985 unsigned long addr)
2986
81819f0f
CL
2987{
2988 void *prior;
2cfb7455 2989 int was_frozen;
2cfb7455
CL
2990 struct page new;
2991 unsigned long counters;
2992 struct kmem_cache_node *n = NULL;
3f649ab7 2993 unsigned long flags;
81819f0f 2994
8a5ec0ba 2995 stat(s, FREE_SLOWPATH);
81819f0f 2996
b89fb5ef
AP
2997 if (kfence_free(head))
2998 return;
2999
19c7ff9e 3000 if (kmem_cache_debug(s) &&
282acb43 3001 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3002 return;
6446faa2 3003
2cfb7455 3004 do {
837d678d
JK
3005 if (unlikely(n)) {
3006 spin_unlock_irqrestore(&n->list_lock, flags);
3007 n = NULL;
3008 }
2cfb7455
CL
3009 prior = page->freelist;
3010 counters = page->counters;
81084651 3011 set_freepointer(s, tail, prior);
2cfb7455
CL
3012 new.counters = counters;
3013 was_frozen = new.frozen;
81084651 3014 new.inuse -= cnt;
837d678d 3015 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3016
c65c1877 3017 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3018
3019 /*
d0e0ac97
CG
3020 * Slab was on no list before and will be
3021 * partially empty
3022 * We can defer the list move and instead
3023 * freeze it.
49e22585
CL
3024 */
3025 new.frozen = 1;
3026
c65c1877 3027 } else { /* Needs to be taken off a list */
49e22585 3028
b455def2 3029 n = get_node(s, page_to_nid(page));
49e22585
CL
3030 /*
3031 * Speculatively acquire the list_lock.
3032 * If the cmpxchg does not succeed then we may
3033 * drop the list_lock without any processing.
3034 *
3035 * Otherwise the list_lock will synchronize with
3036 * other processors updating the list of slabs.
3037 */
3038 spin_lock_irqsave(&n->list_lock, flags);
3039
3040 }
2cfb7455 3041 }
81819f0f 3042
2cfb7455
CL
3043 } while (!cmpxchg_double_slab(s, page,
3044 prior, counters,
81084651 3045 head, new.counters,
2cfb7455 3046 "__slab_free"));
81819f0f 3047
2cfb7455 3048 if (likely(!n)) {
49e22585 3049
c270cf30
AW
3050 if (likely(was_frozen)) {
3051 /*
3052 * The list lock was not taken therefore no list
3053 * activity can be necessary.
3054 */
3055 stat(s, FREE_FROZEN);
3056 } else if (new.frozen) {
3057 /*
3058 * If we just froze the page then put it onto the
3059 * per cpu partial list.
3060 */
49e22585 3061 put_cpu_partial(s, page, 1);
8028dcea
AS
3062 stat(s, CPU_PARTIAL_FREE);
3063 }
c270cf30 3064
b455def2
L
3065 return;
3066 }
81819f0f 3067
8a5b20ae 3068 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3069 goto slab_empty;
3070
81819f0f 3071 /*
837d678d
JK
3072 * Objects left in the slab. If it was not on the partial list before
3073 * then add it.
81819f0f 3074 */
345c905d 3075 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3076 remove_full(s, n, page);
837d678d
JK
3077 add_partial(n, page, DEACTIVATE_TO_TAIL);
3078 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3079 }
80f08c19 3080 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3081 return;
3082
3083slab_empty:
a973e9dd 3084 if (prior) {
81819f0f 3085 /*
6fbabb20 3086 * Slab on the partial list.
81819f0f 3087 */
5cc6eee8 3088 remove_partial(n, page);
84e554e6 3089 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3090 } else {
6fbabb20 3091 /* Slab must be on the full list */
c65c1877
PZ
3092 remove_full(s, n, page);
3093 }
2cfb7455 3094
80f08c19 3095 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3096 stat(s, FREE_SLAB);
81819f0f 3097 discard_slab(s, page);
81819f0f
CL
3098}
3099
894b8788
CL
3100/*
3101 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3102 * can perform fastpath freeing without additional function calls.
3103 *
3104 * The fastpath is only possible if we are freeing to the current cpu slab
3105 * of this processor. This typically the case if we have just allocated
3106 * the item before.
3107 *
3108 * If fastpath is not possible then fall back to __slab_free where we deal
3109 * with all sorts of special processing.
81084651
JDB
3110 *
3111 * Bulk free of a freelist with several objects (all pointing to the
3112 * same page) possible by specifying head and tail ptr, plus objects
3113 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3114 */
80a9201a
AP
3115static __always_inline void do_slab_free(struct kmem_cache *s,
3116 struct page *page, void *head, void *tail,
3117 int cnt, unsigned long addr)
894b8788 3118{
81084651 3119 void *tail_obj = tail ? : head;
dfb4f096 3120 struct kmem_cache_cpu *c;
8a5ec0ba 3121 unsigned long tid;
964d4bd3 3122
d1b2cf6c 3123 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3124redo:
3125 /*
3126 * Determine the currently cpus per cpu slab.
3127 * The cpu may change afterward. However that does not matter since
3128 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3129 * during the cmpxchg then the free will succeed.
8a5ec0ba 3130 */
9aabf810
JK
3131 do {
3132 tid = this_cpu_read(s->cpu_slab->tid);
3133 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3134 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3135 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3136
9aabf810
JK
3137 /* Same with comment on barrier() in slab_alloc_node() */
3138 barrier();
c016b0bd 3139
442b06bc 3140 if (likely(page == c->page)) {
5076190d
LT
3141 void **freelist = READ_ONCE(c->freelist);
3142
3143 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3144
933393f5 3145 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3146 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3147 freelist, tid,
81084651 3148 head, next_tid(tid)))) {
8a5ec0ba
CL
3149
3150 note_cmpxchg_failure("slab_free", s, tid);
3151 goto redo;
3152 }
84e554e6 3153 stat(s, FREE_FASTPATH);
894b8788 3154 } else
81084651 3155 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3156
894b8788
CL
3157}
3158
80a9201a
AP
3159static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3160 void *head, void *tail, int cnt,
3161 unsigned long addr)
3162{
80a9201a 3163 /*
c3895391
AK
3164 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3165 * to remove objects, whose reuse must be delayed.
80a9201a 3166 */
c3895391
AK
3167 if (slab_free_freelist_hook(s, &head, &tail))
3168 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3169}
3170
2bd926b4 3171#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3172void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3173{
3174 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3175}
3176#endif
3177
81819f0f
CL
3178void kmem_cache_free(struct kmem_cache *s, void *x)
3179{
b9ce5ef4
GC
3180 s = cache_from_obj(s, x);
3181 if (!s)
79576102 3182 return;
81084651 3183 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3184 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3185}
3186EXPORT_SYMBOL(kmem_cache_free);
3187
d0ecd894 3188struct detached_freelist {
fbd02630 3189 struct page *page;
d0ecd894
JDB
3190 void *tail;
3191 void *freelist;
3192 int cnt;
376bf125 3193 struct kmem_cache *s;
d0ecd894 3194};
fbd02630 3195
d0ecd894
JDB
3196/*
3197 * This function progressively scans the array with free objects (with
3198 * a limited look ahead) and extract objects belonging to the same
3199 * page. It builds a detached freelist directly within the given
3200 * page/objects. This can happen without any need for
3201 * synchronization, because the objects are owned by running process.
3202 * The freelist is build up as a single linked list in the objects.
3203 * The idea is, that this detached freelist can then be bulk
3204 * transferred to the real freelist(s), but only requiring a single
3205 * synchronization primitive. Look ahead in the array is limited due
3206 * to performance reasons.
3207 */
376bf125
JDB
3208static inline
3209int build_detached_freelist(struct kmem_cache *s, size_t size,
3210 void **p, struct detached_freelist *df)
d0ecd894
JDB
3211{
3212 size_t first_skipped_index = 0;
3213 int lookahead = 3;
3214 void *object;
ca257195 3215 struct page *page;
fbd02630 3216
d0ecd894
JDB
3217 /* Always re-init detached_freelist */
3218 df->page = NULL;
fbd02630 3219
d0ecd894
JDB
3220 do {
3221 object = p[--size];
ca257195 3222 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3223 } while (!object && size);
3eed034d 3224
d0ecd894
JDB
3225 if (!object)
3226 return 0;
fbd02630 3227
ca257195
JDB
3228 page = virt_to_head_page(object);
3229 if (!s) {
3230 /* Handle kalloc'ed objects */
3231 if (unlikely(!PageSlab(page))) {
3232 BUG_ON(!PageCompound(page));
3233 kfree_hook(object);
4949148a 3234 __free_pages(page, compound_order(page));
ca257195
JDB
3235 p[size] = NULL; /* mark object processed */
3236 return size;
3237 }
3238 /* Derive kmem_cache from object */
3239 df->s = page->slab_cache;
3240 } else {
3241 df->s = cache_from_obj(s, object); /* Support for memcg */
3242 }
376bf125 3243
b89fb5ef 3244 if (is_kfence_address(object)) {
d57a964e 3245 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3246 __kfence_free(object);
3247 p[size] = NULL; /* mark object processed */
3248 return size;
3249 }
3250
d0ecd894 3251 /* Start new detached freelist */
ca257195 3252 df->page = page;
376bf125 3253 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3254 df->tail = object;
3255 df->freelist = object;
3256 p[size] = NULL; /* mark object processed */
3257 df->cnt = 1;
3258
3259 while (size) {
3260 object = p[--size];
3261 if (!object)
3262 continue; /* Skip processed objects */
3263
3264 /* df->page is always set at this point */
3265 if (df->page == virt_to_head_page(object)) {
3266 /* Opportunity build freelist */
376bf125 3267 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3268 df->freelist = object;
3269 df->cnt++;
3270 p[size] = NULL; /* mark object processed */
3271
3272 continue;
fbd02630 3273 }
d0ecd894
JDB
3274
3275 /* Limit look ahead search */
3276 if (!--lookahead)
3277 break;
3278
3279 if (!first_skipped_index)
3280 first_skipped_index = size + 1;
fbd02630 3281 }
d0ecd894
JDB
3282
3283 return first_skipped_index;
3284}
3285
d0ecd894 3286/* Note that interrupts must be enabled when calling this function. */
376bf125 3287void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3288{
3289 if (WARN_ON(!size))
3290 return;
3291
d1b2cf6c 3292 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3293 do {
3294 struct detached_freelist df;
3295
3296 size = build_detached_freelist(s, size, p, &df);
84582c8a 3297 if (!df.page)
d0ecd894
JDB
3298 continue;
3299
457c82c3 3300 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3301 } while (likely(size));
484748f0
CL
3302}
3303EXPORT_SYMBOL(kmem_cache_free_bulk);
3304
994eb764 3305/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3306int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3307 void **p)
484748f0 3308{
994eb764
JDB
3309 struct kmem_cache_cpu *c;
3310 int i;
964d4bd3 3311 struct obj_cgroup *objcg = NULL;
994eb764 3312
03ec0ed5 3313 /* memcg and kmem_cache debug support */
964d4bd3 3314 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3315 if (unlikely(!s))
3316 return false;
994eb764
JDB
3317 /*
3318 * Drain objects in the per cpu slab, while disabling local
3319 * IRQs, which protects against PREEMPT and interrupts
3320 * handlers invoking normal fastpath.
3321 */
3322 local_irq_disable();
3323 c = this_cpu_ptr(s->cpu_slab);
3324
3325 for (i = 0; i < size; i++) {
b89fb5ef 3326 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3327
b89fb5ef
AP
3328 if (unlikely(object)) {
3329 p[i] = object;
3330 continue;
3331 }
3332
3333 object = c->freelist;
ebe909e0 3334 if (unlikely(!object)) {
fd4d9c7d
JH
3335 /*
3336 * We may have removed an object from c->freelist using
3337 * the fastpath in the previous iteration; in that case,
3338 * c->tid has not been bumped yet.
3339 * Since ___slab_alloc() may reenable interrupts while
3340 * allocating memory, we should bump c->tid now.
3341 */
3342 c->tid = next_tid(c->tid);
3343
ebe909e0
JDB
3344 /*
3345 * Invoking slow path likely have side-effect
3346 * of re-populating per CPU c->freelist
3347 */
87098373 3348 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3349 _RET_IP_, c);
87098373
CL
3350 if (unlikely(!p[i]))
3351 goto error;
3352
ebe909e0 3353 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3354 maybe_wipe_obj_freeptr(s, p[i]);
3355
ebe909e0
JDB
3356 continue; /* goto for-loop */
3357 }
994eb764
JDB
3358 c->freelist = get_freepointer(s, object);
3359 p[i] = object;
0f181f9f 3360 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3361 }
3362 c->tid = next_tid(c->tid);
3363 local_irq_enable();
3364
da844b78
AK
3365 /*
3366 * memcg and kmem_cache debug support and memory initialization.
3367 * Done outside of the IRQ disabled fastpath loop.
3368 */
3369 slab_post_alloc_hook(s, objcg, flags, size, p,
3370 slab_want_init_on_alloc(flags, s));
865762a8 3371 return i;
87098373 3372error:
87098373 3373 local_irq_enable();
da844b78 3374 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3375 __kmem_cache_free_bulk(s, i, p);
865762a8 3376 return 0;
484748f0
CL
3377}
3378EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3379
3380
81819f0f 3381/*
672bba3a
CL
3382 * Object placement in a slab is made very easy because we always start at
3383 * offset 0. If we tune the size of the object to the alignment then we can
3384 * get the required alignment by putting one properly sized object after
3385 * another.
81819f0f
CL
3386 *
3387 * Notice that the allocation order determines the sizes of the per cpu
3388 * caches. Each processor has always one slab available for allocations.
3389 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3390 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3391 * locking overhead.
81819f0f
CL
3392 */
3393
3394/*
f0953a1b 3395 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3396 * and slab fragmentation. A higher order reduces the number of partial slabs
3397 * and increases the number of allocations possible without having to
3398 * take the list_lock.
3399 */
19af27af
AD
3400static unsigned int slub_min_order;
3401static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3402static unsigned int slub_min_objects;
81819f0f 3403
81819f0f
CL
3404/*
3405 * Calculate the order of allocation given an slab object size.
3406 *
672bba3a
CL
3407 * The order of allocation has significant impact on performance and other
3408 * system components. Generally order 0 allocations should be preferred since
3409 * order 0 does not cause fragmentation in the page allocator. Larger objects
3410 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3411 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3412 * would be wasted.
3413 *
3414 * In order to reach satisfactory performance we must ensure that a minimum
3415 * number of objects is in one slab. Otherwise we may generate too much
3416 * activity on the partial lists which requires taking the list_lock. This is
3417 * less a concern for large slabs though which are rarely used.
81819f0f 3418 *
672bba3a
CL
3419 * slub_max_order specifies the order where we begin to stop considering the
3420 * number of objects in a slab as critical. If we reach slub_max_order then
3421 * we try to keep the page order as low as possible. So we accept more waste
3422 * of space in favor of a small page order.
81819f0f 3423 *
672bba3a
CL
3424 * Higher order allocations also allow the placement of more objects in a
3425 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3426 * requested a higher minimum order then we start with that one instead of
672bba3a 3427 * the smallest order which will fit the object.
81819f0f 3428 */
19af27af
AD
3429static inline unsigned int slab_order(unsigned int size,
3430 unsigned int min_objects, unsigned int max_order,
9736d2a9 3431 unsigned int fract_leftover)
81819f0f 3432{
19af27af
AD
3433 unsigned int min_order = slub_min_order;
3434 unsigned int order;
81819f0f 3435
9736d2a9 3436 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3437 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3438
9736d2a9 3439 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3440 order <= max_order; order++) {
81819f0f 3441
19af27af
AD
3442 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3443 unsigned int rem;
81819f0f 3444
9736d2a9 3445 rem = slab_size % size;
81819f0f 3446
5e6d444e 3447 if (rem <= slab_size / fract_leftover)
81819f0f 3448 break;
81819f0f 3449 }
672bba3a 3450
81819f0f
CL
3451 return order;
3452}
3453
9736d2a9 3454static inline int calculate_order(unsigned int size)
5e6d444e 3455{
19af27af
AD
3456 unsigned int order;
3457 unsigned int min_objects;
3458 unsigned int max_objects;
3286222f 3459 unsigned int nr_cpus;
5e6d444e
CL
3460
3461 /*
3462 * Attempt to find best configuration for a slab. This
3463 * works by first attempting to generate a layout with
3464 * the best configuration and backing off gradually.
3465 *
422ff4d7 3466 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3467 * we reduce the minimum objects required in a slab.
3468 */
3469 min_objects = slub_min_objects;
3286222f
VB
3470 if (!min_objects) {
3471 /*
3472 * Some architectures will only update present cpus when
3473 * onlining them, so don't trust the number if it's just 1. But
3474 * we also don't want to use nr_cpu_ids always, as on some other
3475 * architectures, there can be many possible cpus, but never
3476 * onlined. Here we compromise between trying to avoid too high
3477 * order on systems that appear larger than they are, and too
3478 * low order on systems that appear smaller than they are.
3479 */
3480 nr_cpus = num_present_cpus();
3481 if (nr_cpus <= 1)
3482 nr_cpus = nr_cpu_ids;
3483 min_objects = 4 * (fls(nr_cpus) + 1);
3484 }
9736d2a9 3485 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3486 min_objects = min(min_objects, max_objects);
3487
5e6d444e 3488 while (min_objects > 1) {
19af27af
AD
3489 unsigned int fraction;
3490
c124f5b5 3491 fraction = 16;
5e6d444e
CL
3492 while (fraction >= 4) {
3493 order = slab_order(size, min_objects,
9736d2a9 3494 slub_max_order, fraction);
5e6d444e
CL
3495 if (order <= slub_max_order)
3496 return order;
3497 fraction /= 2;
3498 }
5086c389 3499 min_objects--;
5e6d444e
CL
3500 }
3501
3502 /*
3503 * We were unable to place multiple objects in a slab. Now
3504 * lets see if we can place a single object there.
3505 */
9736d2a9 3506 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3507 if (order <= slub_max_order)
3508 return order;
3509
3510 /*
3511 * Doh this slab cannot be placed using slub_max_order.
3512 */
9736d2a9 3513 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3514 if (order < MAX_ORDER)
5e6d444e
CL
3515 return order;
3516 return -ENOSYS;
3517}
3518
5595cffc 3519static void
4053497d 3520init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3521{
3522 n->nr_partial = 0;
81819f0f
CL
3523 spin_lock_init(&n->list_lock);
3524 INIT_LIST_HEAD(&n->partial);
8ab1372f 3525#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3526 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3527 atomic_long_set(&n->total_objects, 0);
643b1138 3528 INIT_LIST_HEAD(&n->full);
8ab1372f 3529#endif
81819f0f
CL
3530}
3531
55136592 3532static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3533{
6c182dc0 3534 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3535 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3536
8a5ec0ba 3537 /*
d4d84fef
CM
3538 * Must align to double word boundary for the double cmpxchg
3539 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3540 */
d4d84fef
CM
3541 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3542 2 * sizeof(void *));
8a5ec0ba
CL
3543
3544 if (!s->cpu_slab)
3545 return 0;
3546
3547 init_kmem_cache_cpus(s);
4c93c355 3548
8a5ec0ba 3549 return 1;
4c93c355 3550}
4c93c355 3551
51df1142
CL
3552static struct kmem_cache *kmem_cache_node;
3553
81819f0f
CL
3554/*
3555 * No kmalloc_node yet so do it by hand. We know that this is the first
3556 * slab on the node for this slabcache. There are no concurrent accesses
3557 * possible.
3558 *
721ae22a
ZYW
3559 * Note that this function only works on the kmem_cache_node
3560 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3561 * memory on a fresh node that has no slab structures yet.
81819f0f 3562 */
55136592 3563static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3564{
3565 struct page *page;
3566 struct kmem_cache_node *n;
3567
51df1142 3568 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3569
51df1142 3570 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3571
3572 BUG_ON(!page);
a2f92ee7 3573 if (page_to_nid(page) != node) {
f9f58285
FF
3574 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3575 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3576 }
3577
81819f0f
CL
3578 n = page->freelist;
3579 BUG_ON(!n);
8ab1372f 3580#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3581 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3582 init_tracking(kmem_cache_node, n);
8ab1372f 3583#endif
da844b78 3584 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3585 page->freelist = get_freepointer(kmem_cache_node, n);
3586 page->inuse = 1;
3587 page->frozen = 0;
3588 kmem_cache_node->node[node] = n;
4053497d 3589 init_kmem_cache_node(n);
51df1142 3590 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3591
67b6c900 3592 /*
1e4dd946
SR
3593 * No locks need to be taken here as it has just been
3594 * initialized and there is no concurrent access.
67b6c900 3595 */
1e4dd946 3596 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3597}
3598
3599static void free_kmem_cache_nodes(struct kmem_cache *s)
3600{
3601 int node;
fa45dc25 3602 struct kmem_cache_node *n;
81819f0f 3603
fa45dc25 3604 for_each_kmem_cache_node(s, node, n) {
81819f0f 3605 s->node[node] = NULL;
ea37df54 3606 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3607 }
3608}
3609
52b4b950
DS
3610void __kmem_cache_release(struct kmem_cache *s)
3611{
210e7a43 3612 cache_random_seq_destroy(s);
52b4b950
DS
3613 free_percpu(s->cpu_slab);
3614 free_kmem_cache_nodes(s);
3615}
3616
55136592 3617static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3618{
3619 int node;
81819f0f 3620
7e1fa93d 3621 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3622 struct kmem_cache_node *n;
3623
73367bd8 3624 if (slab_state == DOWN) {
55136592 3625 early_kmem_cache_node_alloc(node);
73367bd8
AD
3626 continue;
3627 }
51df1142 3628 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3629 GFP_KERNEL, node);
81819f0f 3630
73367bd8
AD
3631 if (!n) {
3632 free_kmem_cache_nodes(s);
3633 return 0;
81819f0f 3634 }
73367bd8 3635
4053497d 3636 init_kmem_cache_node(n);
ea37df54 3637 s->node[node] = n;
81819f0f
CL
3638 }
3639 return 1;
3640}
81819f0f 3641
c0bdb232 3642static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3643{
3644 if (min < MIN_PARTIAL)
3645 min = MIN_PARTIAL;
3646 else if (min > MAX_PARTIAL)
3647 min = MAX_PARTIAL;
3648 s->min_partial = min;
3649}
3650
e6d0e1dc
WY
3651static void set_cpu_partial(struct kmem_cache *s)
3652{
3653#ifdef CONFIG_SLUB_CPU_PARTIAL
3654 /*
3655 * cpu_partial determined the maximum number of objects kept in the
3656 * per cpu partial lists of a processor.
3657 *
3658 * Per cpu partial lists mainly contain slabs that just have one
3659 * object freed. If they are used for allocation then they can be
3660 * filled up again with minimal effort. The slab will never hit the
3661 * per node partial lists and therefore no locking will be required.
3662 *
3663 * This setting also determines
3664 *
3665 * A) The number of objects from per cpu partial slabs dumped to the
3666 * per node list when we reach the limit.
3667 * B) The number of objects in cpu partial slabs to extract from the
3668 * per node list when we run out of per cpu objects. We only fetch
3669 * 50% to keep some capacity around for frees.
3670 */
3671 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3672 slub_set_cpu_partial(s, 0);
e6d0e1dc 3673 else if (s->size >= PAGE_SIZE)
bbd4e305 3674 slub_set_cpu_partial(s, 2);
e6d0e1dc 3675 else if (s->size >= 1024)
bbd4e305 3676 slub_set_cpu_partial(s, 6);
e6d0e1dc 3677 else if (s->size >= 256)
bbd4e305 3678 slub_set_cpu_partial(s, 13);
e6d0e1dc 3679 else
bbd4e305 3680 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3681#endif
3682}
3683
81819f0f
CL
3684/*
3685 * calculate_sizes() determines the order and the distribution of data within
3686 * a slab object.
3687 */
06b285dc 3688static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3689{
d50112ed 3690 slab_flags_t flags = s->flags;
be4a7988 3691 unsigned int size = s->object_size;
19af27af 3692 unsigned int order;
81819f0f 3693
d8b42bf5
CL
3694 /*
3695 * Round up object size to the next word boundary. We can only
3696 * place the free pointer at word boundaries and this determines
3697 * the possible location of the free pointer.
3698 */
3699 size = ALIGN(size, sizeof(void *));
3700
3701#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3702 /*
3703 * Determine if we can poison the object itself. If the user of
3704 * the slab may touch the object after free or before allocation
3705 * then we should never poison the object itself.
3706 */
5f0d5a3a 3707 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3708 !s->ctor)
81819f0f
CL
3709 s->flags |= __OBJECT_POISON;
3710 else
3711 s->flags &= ~__OBJECT_POISON;
3712
81819f0f
CL
3713
3714 /*
672bba3a 3715 * If we are Redzoning then check if there is some space between the
81819f0f 3716 * end of the object and the free pointer. If not then add an
672bba3a 3717 * additional word to have some bytes to store Redzone information.
81819f0f 3718 */
3b0efdfa 3719 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3720 size += sizeof(void *);
41ecc55b 3721#endif
81819f0f
CL
3722
3723 /*
672bba3a 3724 * With that we have determined the number of bytes in actual use
e41a49fa 3725 * by the object and redzoning.
81819f0f
CL
3726 */
3727 s->inuse = size;
3728
74c1d3e0
KC
3729 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3730 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3731 s->ctor) {
81819f0f
CL
3732 /*
3733 * Relocate free pointer after the object if it is not
3734 * permitted to overwrite the first word of the object on
3735 * kmem_cache_free.
3736 *
3737 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3738 * destructor, are poisoning the objects, or are
3739 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3740 *
3741 * The assumption that s->offset >= s->inuse means free
3742 * pointer is outside of the object is used in the
3743 * freeptr_outside_object() function. If that is no
3744 * longer true, the function needs to be modified.
81819f0f
CL
3745 */
3746 s->offset = size;
3747 size += sizeof(void *);
e41a49fa 3748 } else {
3202fa62
KC
3749 /*
3750 * Store freelist pointer near middle of object to keep
3751 * it away from the edges of the object to avoid small
3752 * sized over/underflows from neighboring allocations.
3753 */
e41a49fa 3754 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3755 }
3756
c12b3c62 3757#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3758 if (flags & SLAB_STORE_USER)
3759 /*
3760 * Need to store information about allocs and frees after
3761 * the object.
3762 */
3763 size += 2 * sizeof(struct track);
80a9201a 3764#endif
81819f0f 3765
80a9201a
AP
3766 kasan_cache_create(s, &size, &s->flags);
3767#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3768 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3769 /*
3770 * Add some empty padding so that we can catch
3771 * overwrites from earlier objects rather than let
3772 * tracking information or the free pointer be
0211a9c8 3773 * corrupted if a user writes before the start
81819f0f
CL
3774 * of the object.
3775 */
3776 size += sizeof(void *);
d86bd1be
JK
3777
3778 s->red_left_pad = sizeof(void *);
3779 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3780 size += s->red_left_pad;
3781 }
41ecc55b 3782#endif
672bba3a 3783
81819f0f
CL
3784 /*
3785 * SLUB stores one object immediately after another beginning from
3786 * offset 0. In order to align the objects we have to simply size
3787 * each object to conform to the alignment.
3788 */
45906855 3789 size = ALIGN(size, s->align);
81819f0f 3790 s->size = size;
4138fdfc 3791 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3792 if (forced_order >= 0)
3793 order = forced_order;
3794 else
9736d2a9 3795 order = calculate_order(size);
81819f0f 3796
19af27af 3797 if ((int)order < 0)
81819f0f
CL
3798 return 0;
3799
b7a49f0d 3800 s->allocflags = 0;
834f3d11 3801 if (order)
b7a49f0d
CL
3802 s->allocflags |= __GFP_COMP;
3803
3804 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3805 s->allocflags |= GFP_DMA;
b7a49f0d 3806
6d6ea1e9
NB
3807 if (s->flags & SLAB_CACHE_DMA32)
3808 s->allocflags |= GFP_DMA32;
3809
b7a49f0d
CL
3810 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3811 s->allocflags |= __GFP_RECLAIMABLE;
3812
81819f0f
CL
3813 /*
3814 * Determine the number of objects per slab
3815 */
9736d2a9
MW
3816 s->oo = oo_make(order, size);
3817 s->min = oo_make(get_order(size), size);
205ab99d
CL
3818 if (oo_objects(s->oo) > oo_objects(s->max))
3819 s->max = s->oo;
81819f0f 3820
834f3d11 3821 return !!oo_objects(s->oo);
81819f0f
CL
3822}
3823
d50112ed 3824static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3825{
37540008 3826 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3827#ifdef CONFIG_SLAB_FREELIST_HARDENED
3828 s->random = get_random_long();
3829#endif
81819f0f 3830
06b285dc 3831 if (!calculate_sizes(s, -1))
81819f0f 3832 goto error;
3de47213
DR
3833 if (disable_higher_order_debug) {
3834 /*
3835 * Disable debugging flags that store metadata if the min slab
3836 * order increased.
3837 */
3b0efdfa 3838 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3839 s->flags &= ~DEBUG_METADATA_FLAGS;
3840 s->offset = 0;
3841 if (!calculate_sizes(s, -1))
3842 goto error;
3843 }
3844 }
81819f0f 3845
2565409f
HC
3846#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3847 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3848 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3849 /* Enable fast mode */
3850 s->flags |= __CMPXCHG_DOUBLE;
3851#endif
3852
3b89d7d8
DR
3853 /*
3854 * The larger the object size is, the more pages we want on the partial
3855 * list to avoid pounding the page allocator excessively.
3856 */
49e22585
CL
3857 set_min_partial(s, ilog2(s->size) / 2);
3858
e6d0e1dc 3859 set_cpu_partial(s);
49e22585 3860
81819f0f 3861#ifdef CONFIG_NUMA
e2cb96b7 3862 s->remote_node_defrag_ratio = 1000;
81819f0f 3863#endif
210e7a43
TG
3864
3865 /* Initialize the pre-computed randomized freelist if slab is up */
3866 if (slab_state >= UP) {
3867 if (init_cache_random_seq(s))
3868 goto error;
3869 }
3870
55136592 3871 if (!init_kmem_cache_nodes(s))
dfb4f096 3872 goto error;
81819f0f 3873
55136592 3874 if (alloc_kmem_cache_cpus(s))
278b1bb1 3875 return 0;
ff12059e 3876
4c93c355 3877 free_kmem_cache_nodes(s);
81819f0f 3878error:
278b1bb1 3879 return -EINVAL;
81819f0f 3880}
81819f0f 3881
33b12c38 3882static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3883 const char *text)
33b12c38
CL
3884{
3885#ifdef CONFIG_SLUB_DEBUG
3886 void *addr = page_address(page);
55860d96 3887 unsigned long *map;
33b12c38 3888 void *p;
aa456c7a 3889
945cf2b6 3890 slab_err(s, page, text, s->name);
33b12c38 3891 slab_lock(page);
33b12c38 3892
90e9f6a6 3893 map = get_map(s, page);
33b12c38
CL
3894 for_each_object(p, s, addr, page->objects) {
3895
4138fdfc 3896 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3897 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3898 print_tracking(s, p);
3899 }
3900 }
55860d96 3901 put_map(map);
33b12c38
CL
3902 slab_unlock(page);
3903#endif
3904}
3905
81819f0f 3906/*
599870b1 3907 * Attempt to free all partial slabs on a node.
52b4b950
DS
3908 * This is called from __kmem_cache_shutdown(). We must take list_lock
3909 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3910 */
599870b1 3911static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3912{
60398923 3913 LIST_HEAD(discard);
81819f0f
CL
3914 struct page *page, *h;
3915
52b4b950
DS
3916 BUG_ON(irqs_disabled());
3917 spin_lock_irq(&n->list_lock);
916ac052 3918 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3919 if (!page->inuse) {
52b4b950 3920 remove_partial(n, page);
916ac052 3921 list_add(&page->slab_list, &discard);
33b12c38
CL
3922 } else {
3923 list_slab_objects(s, page,
55860d96 3924 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3925 }
33b12c38 3926 }
52b4b950 3927 spin_unlock_irq(&n->list_lock);
60398923 3928
916ac052 3929 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3930 discard_slab(s, page);
81819f0f
CL
3931}
3932
f9e13c0a
SB
3933bool __kmem_cache_empty(struct kmem_cache *s)
3934{
3935 int node;
3936 struct kmem_cache_node *n;
3937
3938 for_each_kmem_cache_node(s, node, n)
3939 if (n->nr_partial || slabs_node(s, node))
3940 return false;
3941 return true;
3942}
3943
81819f0f 3944/*
672bba3a 3945 * Release all resources used by a slab cache.
81819f0f 3946 */
52b4b950 3947int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3948{
3949 int node;
fa45dc25 3950 struct kmem_cache_node *n;
81819f0f
CL
3951
3952 flush_all(s);
81819f0f 3953 /* Attempt to free all objects */
fa45dc25 3954 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3955 free_partial(s, n);
3956 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3957 return 1;
3958 }
81819f0f
CL
3959 return 0;
3960}
3961
5bb1bb35 3962#ifdef CONFIG_PRINTK
8e7f37f2
PM
3963void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3964{
3965 void *base;
3966 int __maybe_unused i;
3967 unsigned int objnr;
3968 void *objp;
3969 void *objp0;
3970 struct kmem_cache *s = page->slab_cache;
3971 struct track __maybe_unused *trackp;
3972
3973 kpp->kp_ptr = object;
3974 kpp->kp_page = page;
3975 kpp->kp_slab_cache = s;
3976 base = page_address(page);
3977 objp0 = kasan_reset_tag(object);
3978#ifdef CONFIG_SLUB_DEBUG
3979 objp = restore_red_left(s, objp0);
3980#else
3981 objp = objp0;
3982#endif
3983 objnr = obj_to_index(s, page, objp);
3984 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3985 objp = base + s->size * objnr;
3986 kpp->kp_objp = objp;
3987 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3988 !(s->flags & SLAB_STORE_USER))
3989 return;
3990#ifdef CONFIG_SLUB_DEBUG
3991 trackp = get_track(s, objp, TRACK_ALLOC);
3992 kpp->kp_ret = (void *)trackp->addr;
3993#ifdef CONFIG_STACKTRACE
3994 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3995 kpp->kp_stack[i] = (void *)trackp->addrs[i];
3996 if (!kpp->kp_stack[i])
3997 break;
3998 }
3999#endif
4000#endif
4001}
5bb1bb35 4002#endif
8e7f37f2 4003
81819f0f
CL
4004/********************************************************************
4005 * Kmalloc subsystem
4006 *******************************************************************/
4007
81819f0f
CL
4008static int __init setup_slub_min_order(char *str)
4009{
19af27af 4010 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4011
4012 return 1;
4013}
4014
4015__setup("slub_min_order=", setup_slub_min_order);
4016
4017static int __init setup_slub_max_order(char *str)
4018{
19af27af
AD
4019 get_option(&str, (int *)&slub_max_order);
4020 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4021
4022 return 1;
4023}
4024
4025__setup("slub_max_order=", setup_slub_max_order);
4026
4027static int __init setup_slub_min_objects(char *str)
4028{
19af27af 4029 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4030
4031 return 1;
4032}
4033
4034__setup("slub_min_objects=", setup_slub_min_objects);
4035
81819f0f
CL
4036void *__kmalloc(size_t size, gfp_t flags)
4037{
aadb4bc4 4038 struct kmem_cache *s;
5b882be4 4039 void *ret;
81819f0f 4040
95a05b42 4041 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4042 return kmalloc_large(size, flags);
aadb4bc4 4043
2c59dd65 4044 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4045
4046 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4047 return s;
4048
b89fb5ef 4049 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4050
ca2b84cb 4051 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4052
0116523c 4053 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4054
5b882be4 4055 return ret;
81819f0f
CL
4056}
4057EXPORT_SYMBOL(__kmalloc);
4058
5d1f57e4 4059#ifdef CONFIG_NUMA
f619cfe1
CL
4060static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4061{
b1eeab67 4062 struct page *page;
e4f7c0b4 4063 void *ptr = NULL;
6a486c0a 4064 unsigned int order = get_order(size);
f619cfe1 4065
75f296d9 4066 flags |= __GFP_COMP;
6a486c0a
VB
4067 page = alloc_pages_node(node, flags, order);
4068 if (page) {
e4f7c0b4 4069 ptr = page_address(page);
96403bfe
MS
4070 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4071 PAGE_SIZE << order);
6a486c0a 4072 }
e4f7c0b4 4073
0116523c 4074 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4075}
4076
81819f0f
CL
4077void *__kmalloc_node(size_t size, gfp_t flags, int node)
4078{
aadb4bc4 4079 struct kmem_cache *s;
5b882be4 4080 void *ret;
81819f0f 4081
95a05b42 4082 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4083 ret = kmalloc_large_node(size, flags, node);
4084
ca2b84cb
EGM
4085 trace_kmalloc_node(_RET_IP_, ret,
4086 size, PAGE_SIZE << get_order(size),
4087 flags, node);
5b882be4
EGM
4088
4089 return ret;
4090 }
aadb4bc4 4091
2c59dd65 4092 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4093
4094 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4095 return s;
4096
b89fb5ef 4097 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4098
ca2b84cb 4099 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4100
0116523c 4101 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4102
5b882be4 4103 return ret;
81819f0f
CL
4104}
4105EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4106#endif /* CONFIG_NUMA */
81819f0f 4107
ed18adc1
KC
4108#ifdef CONFIG_HARDENED_USERCOPY
4109/*
afcc90f8
KC
4110 * Rejects incorrectly sized objects and objects that are to be copied
4111 * to/from userspace but do not fall entirely within the containing slab
4112 * cache's usercopy region.
ed18adc1
KC
4113 *
4114 * Returns NULL if check passes, otherwise const char * to name of cache
4115 * to indicate an error.
4116 */
f4e6e289
KC
4117void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4118 bool to_user)
ed18adc1
KC
4119{
4120 struct kmem_cache *s;
44065b2e 4121 unsigned int offset;
ed18adc1 4122 size_t object_size;
b89fb5ef 4123 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4124
96fedce2
AK
4125 ptr = kasan_reset_tag(ptr);
4126
ed18adc1
KC
4127 /* Find object and usable object size. */
4128 s = page->slab_cache;
ed18adc1
KC
4129
4130 /* Reject impossible pointers. */
4131 if (ptr < page_address(page))
f4e6e289
KC
4132 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4133 to_user, 0, n);
ed18adc1
KC
4134
4135 /* Find offset within object. */
b89fb5ef
AP
4136 if (is_kfence)
4137 offset = ptr - kfence_object_start(ptr);
4138 else
4139 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4140
4141 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4142 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4143 if (offset < s->red_left_pad)
f4e6e289
KC
4144 usercopy_abort("SLUB object in left red zone",
4145 s->name, to_user, offset, n);
ed18adc1
KC
4146 offset -= s->red_left_pad;
4147 }
4148
afcc90f8
KC
4149 /* Allow address range falling entirely within usercopy region. */
4150 if (offset >= s->useroffset &&
4151 offset - s->useroffset <= s->usersize &&
4152 n <= s->useroffset - offset + s->usersize)
f4e6e289 4153 return;
ed18adc1 4154
afcc90f8
KC
4155 /*
4156 * If the copy is still within the allocated object, produce
4157 * a warning instead of rejecting the copy. This is intended
4158 * to be a temporary method to find any missing usercopy
4159 * whitelists.
4160 */
4161 object_size = slab_ksize(s);
2d891fbc
KC
4162 if (usercopy_fallback &&
4163 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4164 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4165 return;
4166 }
ed18adc1 4167
f4e6e289 4168 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4169}
4170#endif /* CONFIG_HARDENED_USERCOPY */
4171
10d1f8cb 4172size_t __ksize(const void *object)
81819f0f 4173{
272c1d21 4174 struct page *page;
81819f0f 4175
ef8b4520 4176 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4177 return 0;
4178
294a80a8 4179 page = virt_to_head_page(object);
294a80a8 4180
76994412
PE
4181 if (unlikely(!PageSlab(page))) {
4182 WARN_ON(!PageCompound(page));
a50b854e 4183 return page_size(page);
76994412 4184 }
81819f0f 4185
1b4f59e3 4186 return slab_ksize(page->slab_cache);
81819f0f 4187}
10d1f8cb 4188EXPORT_SYMBOL(__ksize);
81819f0f
CL
4189
4190void kfree(const void *x)
4191{
81819f0f 4192 struct page *page;
5bb983b0 4193 void *object = (void *)x;
81819f0f 4194
2121db74
PE
4195 trace_kfree(_RET_IP_, x);
4196
2408c550 4197 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4198 return;
4199
b49af68f 4200 page = virt_to_head_page(x);
aadb4bc4 4201 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4202 unsigned int order = compound_order(page);
4203
0937502a 4204 BUG_ON(!PageCompound(page));
47adccce 4205 kfree_hook(object);
96403bfe
MS
4206 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4207 -(PAGE_SIZE << order));
6a486c0a 4208 __free_pages(page, order);
aadb4bc4
CL
4209 return;
4210 }
81084651 4211 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4212}
4213EXPORT_SYMBOL(kfree);
4214
832f37f5
VD
4215#define SHRINK_PROMOTE_MAX 32
4216
2086d26a 4217/*
832f37f5
VD
4218 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4219 * up most to the head of the partial lists. New allocations will then
4220 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4221 *
4222 * The slabs with the least items are placed last. This results in them
4223 * being allocated from last increasing the chance that the last objects
4224 * are freed in them.
2086d26a 4225 */
c9fc5864 4226int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4227{
4228 int node;
4229 int i;
4230 struct kmem_cache_node *n;
4231 struct page *page;
4232 struct page *t;
832f37f5
VD
4233 struct list_head discard;
4234 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4235 unsigned long flags;
ce3712d7 4236 int ret = 0;
2086d26a 4237
2086d26a 4238 flush_all(s);
fa45dc25 4239 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4240 INIT_LIST_HEAD(&discard);
4241 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4242 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4243
4244 spin_lock_irqsave(&n->list_lock, flags);
4245
4246 /*
832f37f5 4247 * Build lists of slabs to discard or promote.
2086d26a 4248 *
672bba3a
CL
4249 * Note that concurrent frees may occur while we hold the
4250 * list_lock. page->inuse here is the upper limit.
2086d26a 4251 */
916ac052 4252 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4253 int free = page->objects - page->inuse;
4254
4255 /* Do not reread page->inuse */
4256 barrier();
4257
4258 /* We do not keep full slabs on the list */
4259 BUG_ON(free <= 0);
4260
4261 if (free == page->objects) {
916ac052 4262 list_move(&page->slab_list, &discard);
69cb8e6b 4263 n->nr_partial--;
832f37f5 4264 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4265 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4266 }
4267
2086d26a 4268 /*
832f37f5
VD
4269 * Promote the slabs filled up most to the head of the
4270 * partial list.
2086d26a 4271 */
832f37f5
VD
4272 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4273 list_splice(promote + i, &n->partial);
2086d26a 4274
2086d26a 4275 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4276
4277 /* Release empty slabs */
916ac052 4278 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4279 discard_slab(s, page);
ce3712d7
VD
4280
4281 if (slabs_node(s, node))
4282 ret = 1;
2086d26a
CL
4283 }
4284
ce3712d7 4285 return ret;
2086d26a 4286}
2086d26a 4287
b9049e23
YG
4288static int slab_mem_going_offline_callback(void *arg)
4289{
4290 struct kmem_cache *s;
4291
18004c5d 4292 mutex_lock(&slab_mutex);
b9049e23 4293 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4294 __kmem_cache_shrink(s);
18004c5d 4295 mutex_unlock(&slab_mutex);
b9049e23
YG
4296
4297 return 0;
4298}
4299
4300static void slab_mem_offline_callback(void *arg)
4301{
b9049e23
YG
4302 struct memory_notify *marg = arg;
4303 int offline_node;
4304
b9d5ab25 4305 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4306
4307 /*
4308 * If the node still has available memory. we need kmem_cache_node
4309 * for it yet.
4310 */
4311 if (offline_node < 0)
4312 return;
4313
18004c5d 4314 mutex_lock(&slab_mutex);
7e1fa93d 4315 node_clear(offline_node, slab_nodes);
666716fd
VB
4316 /*
4317 * We no longer free kmem_cache_node structures here, as it would be
4318 * racy with all get_node() users, and infeasible to protect them with
4319 * slab_mutex.
4320 */
18004c5d 4321 mutex_unlock(&slab_mutex);
b9049e23
YG
4322}
4323
4324static int slab_mem_going_online_callback(void *arg)
4325{
4326 struct kmem_cache_node *n;
4327 struct kmem_cache *s;
4328 struct memory_notify *marg = arg;
b9d5ab25 4329 int nid = marg->status_change_nid_normal;
b9049e23
YG
4330 int ret = 0;
4331
4332 /*
4333 * If the node's memory is already available, then kmem_cache_node is
4334 * already created. Nothing to do.
4335 */
4336 if (nid < 0)
4337 return 0;
4338
4339 /*
0121c619 4340 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4341 * allocate a kmem_cache_node structure in order to bring the node
4342 * online.
4343 */
18004c5d 4344 mutex_lock(&slab_mutex);
b9049e23 4345 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4346 /*
4347 * The structure may already exist if the node was previously
4348 * onlined and offlined.
4349 */
4350 if (get_node(s, nid))
4351 continue;
b9049e23
YG
4352 /*
4353 * XXX: kmem_cache_alloc_node will fallback to other nodes
4354 * since memory is not yet available from the node that
4355 * is brought up.
4356 */
8de66a0c 4357 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4358 if (!n) {
4359 ret = -ENOMEM;
4360 goto out;
4361 }
4053497d 4362 init_kmem_cache_node(n);
b9049e23
YG
4363 s->node[nid] = n;
4364 }
7e1fa93d
VB
4365 /*
4366 * Any cache created after this point will also have kmem_cache_node
4367 * initialized for the new node.
4368 */
4369 node_set(nid, slab_nodes);
b9049e23 4370out:
18004c5d 4371 mutex_unlock(&slab_mutex);
b9049e23
YG
4372 return ret;
4373}
4374
4375static int slab_memory_callback(struct notifier_block *self,
4376 unsigned long action, void *arg)
4377{
4378 int ret = 0;
4379
4380 switch (action) {
4381 case MEM_GOING_ONLINE:
4382 ret = slab_mem_going_online_callback(arg);
4383 break;
4384 case MEM_GOING_OFFLINE:
4385 ret = slab_mem_going_offline_callback(arg);
4386 break;
4387 case MEM_OFFLINE:
4388 case MEM_CANCEL_ONLINE:
4389 slab_mem_offline_callback(arg);
4390 break;
4391 case MEM_ONLINE:
4392 case MEM_CANCEL_OFFLINE:
4393 break;
4394 }
dc19f9db
KH
4395 if (ret)
4396 ret = notifier_from_errno(ret);
4397 else
4398 ret = NOTIFY_OK;
b9049e23
YG
4399 return ret;
4400}
4401
3ac38faa
AM
4402static struct notifier_block slab_memory_callback_nb = {
4403 .notifier_call = slab_memory_callback,
4404 .priority = SLAB_CALLBACK_PRI,
4405};
b9049e23 4406
81819f0f
CL
4407/********************************************************************
4408 * Basic setup of slabs
4409 *******************************************************************/
4410
51df1142
CL
4411/*
4412 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4413 * the page allocator. Allocate them properly then fix up the pointers
4414 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4415 */
4416
dffb4d60 4417static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4418{
4419 int node;
dffb4d60 4420 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4421 struct kmem_cache_node *n;
51df1142 4422
dffb4d60 4423 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4424
7d557b3c
GC
4425 /*
4426 * This runs very early, and only the boot processor is supposed to be
4427 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4428 * IPIs around.
4429 */
4430 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4431 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4432 struct page *p;
4433
916ac052 4434 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4435 p->slab_cache = s;
51df1142 4436
607bf324 4437#ifdef CONFIG_SLUB_DEBUG
916ac052 4438 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4439 p->slab_cache = s;
51df1142 4440#endif
51df1142 4441 }
dffb4d60
CL
4442 list_add(&s->list, &slab_caches);
4443 return s;
51df1142
CL
4444}
4445
81819f0f
CL
4446void __init kmem_cache_init(void)
4447{
dffb4d60
CL
4448 static __initdata struct kmem_cache boot_kmem_cache,
4449 boot_kmem_cache_node;
7e1fa93d 4450 int node;
51df1142 4451
fc8d8620
SG
4452 if (debug_guardpage_minorder())
4453 slub_max_order = 0;
4454
dffb4d60
CL
4455 kmem_cache_node = &boot_kmem_cache_node;
4456 kmem_cache = &boot_kmem_cache;
51df1142 4457
7e1fa93d
VB
4458 /*
4459 * Initialize the nodemask for which we will allocate per node
4460 * structures. Here we don't need taking slab_mutex yet.
4461 */
4462 for_each_node_state(node, N_NORMAL_MEMORY)
4463 node_set(node, slab_nodes);
4464
dffb4d60 4465 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4466 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4467
3ac38faa 4468 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4469
4470 /* Able to allocate the per node structures */
4471 slab_state = PARTIAL;
4472
dffb4d60
CL
4473 create_boot_cache(kmem_cache, "kmem_cache",
4474 offsetof(struct kmem_cache, node) +
4475 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4476 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4477
dffb4d60 4478 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4479 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4480
4481 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4482 setup_kmalloc_cache_index_table();
f97d5f63 4483 create_kmalloc_caches(0);
81819f0f 4484
210e7a43
TG
4485 /* Setup random freelists for each cache */
4486 init_freelist_randomization();
4487
a96a87bf
SAS
4488 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4489 slub_cpu_dead);
81819f0f 4490
b9726c26 4491 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4492 cache_line_size(),
81819f0f
CL
4493 slub_min_order, slub_max_order, slub_min_objects,
4494 nr_cpu_ids, nr_node_ids);
4495}
4496
7e85ee0c
PE
4497void __init kmem_cache_init_late(void)
4498{
7e85ee0c
PE
4499}
4500
2633d7a0 4501struct kmem_cache *
f4957d5b 4502__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4503 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4504{
10befea9 4505 struct kmem_cache *s;
81819f0f 4506
a44cb944 4507 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4508 if (s) {
4509 s->refcount++;
84d0ddd6 4510
81819f0f
CL
4511 /*
4512 * Adjust the object sizes so that we clear
4513 * the complete object on kzalloc.
4514 */
1b473f29 4515 s->object_size = max(s->object_size, size);
52ee6d74 4516 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4517
7b8f3b66 4518 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4519 s->refcount--;
cbb79694 4520 s = NULL;
7b8f3b66 4521 }
a0e1d1be 4522 }
6446faa2 4523
cbb79694
CL
4524 return s;
4525}
84c1cf62 4526
d50112ed 4527int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4528{
aac3a166
PE
4529 int err;
4530
4531 err = kmem_cache_open(s, flags);
4532 if (err)
4533 return err;
20cea968 4534
45530c44
CL
4535 /* Mutex is not taken during early boot */
4536 if (slab_state <= UP)
4537 return 0;
4538
aac3a166 4539 err = sysfs_slab_add(s);
aac3a166 4540 if (err)
52b4b950 4541 __kmem_cache_release(s);
20cea968 4542
aac3a166 4543 return err;
81819f0f 4544}
81819f0f 4545
ce71e27c 4546void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4547{
aadb4bc4 4548 struct kmem_cache *s;
94b528d0 4549 void *ret;
aadb4bc4 4550
95a05b42 4551 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4552 return kmalloc_large(size, gfpflags);
4553
2c59dd65 4554 s = kmalloc_slab(size, gfpflags);
81819f0f 4555
2408c550 4556 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4557 return s;
81819f0f 4558
b89fb5ef 4559 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4560
25985edc 4561 /* Honor the call site pointer we received. */
ca2b84cb 4562 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4563
4564 return ret;
81819f0f 4565}
fd7cb575 4566EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4567
5d1f57e4 4568#ifdef CONFIG_NUMA
81819f0f 4569void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4570 int node, unsigned long caller)
81819f0f 4571{
aadb4bc4 4572 struct kmem_cache *s;
94b528d0 4573 void *ret;
aadb4bc4 4574
95a05b42 4575 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4576 ret = kmalloc_large_node(size, gfpflags, node);
4577
4578 trace_kmalloc_node(caller, ret,
4579 size, PAGE_SIZE << get_order(size),
4580 gfpflags, node);
4581
4582 return ret;
4583 }
eada35ef 4584
2c59dd65 4585 s = kmalloc_slab(size, gfpflags);
81819f0f 4586
2408c550 4587 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4588 return s;
81819f0f 4589
b89fb5ef 4590 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4591
25985edc 4592 /* Honor the call site pointer we received. */
ca2b84cb 4593 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4594
4595 return ret;
81819f0f 4596}
fd7cb575 4597EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4598#endif
81819f0f 4599
ab4d5ed5 4600#ifdef CONFIG_SYSFS
205ab99d
CL
4601static int count_inuse(struct page *page)
4602{
4603 return page->inuse;
4604}
4605
4606static int count_total(struct page *page)
4607{
4608 return page->objects;
4609}
ab4d5ed5 4610#endif
205ab99d 4611
ab4d5ed5 4612#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4613static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4614{
4615 void *p;
a973e9dd 4616 void *addr = page_address(page);
90e9f6a6
YZ
4617 unsigned long *map;
4618
4619 slab_lock(page);
53e15af0 4620
dd98afd4 4621 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4622 goto unlock;
53e15af0
CL
4623
4624 /* Now we know that a valid freelist exists */
90e9f6a6 4625 map = get_map(s, page);
5f80b13a 4626 for_each_object(p, s, addr, page->objects) {
4138fdfc 4627 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4628 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4629
dd98afd4
YZ
4630 if (!check_object(s, page, p, val))
4631 break;
4632 }
90e9f6a6
YZ
4633 put_map(map);
4634unlock:
881db7fb 4635 slab_unlock(page);
53e15af0
CL
4636}
4637
434e245d 4638static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4639 struct kmem_cache_node *n)
53e15af0
CL
4640{
4641 unsigned long count = 0;
4642 struct page *page;
4643 unsigned long flags;
4644
4645 spin_lock_irqsave(&n->list_lock, flags);
4646
916ac052 4647 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4648 validate_slab(s, page);
53e15af0
CL
4649 count++;
4650 }
4651 if (count != n->nr_partial)
f9f58285
FF
4652 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4653 s->name, count, n->nr_partial);
53e15af0
CL
4654
4655 if (!(s->flags & SLAB_STORE_USER))
4656 goto out;
4657
916ac052 4658 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4659 validate_slab(s, page);
53e15af0
CL
4660 count++;
4661 }
4662 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4663 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4664 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4665
4666out:
4667 spin_unlock_irqrestore(&n->list_lock, flags);
4668 return count;
4669}
4670
434e245d 4671static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4672{
4673 int node;
4674 unsigned long count = 0;
fa45dc25 4675 struct kmem_cache_node *n;
53e15af0
CL
4676
4677 flush_all(s);
fa45dc25 4678 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4679 count += validate_slab_node(s, n);
4680
53e15af0
CL
4681 return count;
4682}
88a420e4 4683/*
672bba3a 4684 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4685 * and freed.
4686 */
4687
4688struct location {
4689 unsigned long count;
ce71e27c 4690 unsigned long addr;
45edfa58
CL
4691 long long sum_time;
4692 long min_time;
4693 long max_time;
4694 long min_pid;
4695 long max_pid;
174596a0 4696 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4697 nodemask_t nodes;
88a420e4
CL
4698};
4699
4700struct loc_track {
4701 unsigned long max;
4702 unsigned long count;
4703 struct location *loc;
4704};
4705
4706static void free_loc_track(struct loc_track *t)
4707{
4708 if (t->max)
4709 free_pages((unsigned long)t->loc,
4710 get_order(sizeof(struct location) * t->max));
4711}
4712
68dff6a9 4713static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4714{
4715 struct location *l;
4716 int order;
4717
88a420e4
CL
4718 order = get_order(sizeof(struct location) * max);
4719
68dff6a9 4720 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4721 if (!l)
4722 return 0;
4723
4724 if (t->count) {
4725 memcpy(l, t->loc, sizeof(struct location) * t->count);
4726 free_loc_track(t);
4727 }
4728 t->max = max;
4729 t->loc = l;
4730 return 1;
4731}
4732
4733static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4734 const struct track *track)
88a420e4
CL
4735{
4736 long start, end, pos;
4737 struct location *l;
ce71e27c 4738 unsigned long caddr;
45edfa58 4739 unsigned long age = jiffies - track->when;
88a420e4
CL
4740
4741 start = -1;
4742 end = t->count;
4743
4744 for ( ; ; ) {
4745 pos = start + (end - start + 1) / 2;
4746
4747 /*
4748 * There is nothing at "end". If we end up there
4749 * we need to add something to before end.
4750 */
4751 if (pos == end)
4752 break;
4753
4754 caddr = t->loc[pos].addr;
45edfa58
CL
4755 if (track->addr == caddr) {
4756
4757 l = &t->loc[pos];
4758 l->count++;
4759 if (track->when) {
4760 l->sum_time += age;
4761 if (age < l->min_time)
4762 l->min_time = age;
4763 if (age > l->max_time)
4764 l->max_time = age;
4765
4766 if (track->pid < l->min_pid)
4767 l->min_pid = track->pid;
4768 if (track->pid > l->max_pid)
4769 l->max_pid = track->pid;
4770
174596a0
RR
4771 cpumask_set_cpu(track->cpu,
4772 to_cpumask(l->cpus));
45edfa58
CL
4773 }
4774 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4775 return 1;
4776 }
4777
45edfa58 4778 if (track->addr < caddr)
88a420e4
CL
4779 end = pos;
4780 else
4781 start = pos;
4782 }
4783
4784 /*
672bba3a 4785 * Not found. Insert new tracking element.
88a420e4 4786 */
68dff6a9 4787 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4788 return 0;
4789
4790 l = t->loc + pos;
4791 if (pos < t->count)
4792 memmove(l + 1, l,
4793 (t->count - pos) * sizeof(struct location));
4794 t->count++;
4795 l->count = 1;
45edfa58
CL
4796 l->addr = track->addr;
4797 l->sum_time = age;
4798 l->min_time = age;
4799 l->max_time = age;
4800 l->min_pid = track->pid;
4801 l->max_pid = track->pid;
174596a0
RR
4802 cpumask_clear(to_cpumask(l->cpus));
4803 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4804 nodes_clear(l->nodes);
4805 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4806 return 1;
4807}
4808
4809static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4810 struct page *page, enum track_item alloc)
88a420e4 4811{
a973e9dd 4812 void *addr = page_address(page);
88a420e4 4813 void *p;
90e9f6a6 4814 unsigned long *map;
88a420e4 4815
90e9f6a6 4816 map = get_map(s, page);
224a88be 4817 for_each_object(p, s, addr, page->objects)
4138fdfc 4818 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4819 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4820 put_map(map);
88a420e4
CL
4821}
4822
4823static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4824 enum track_item alloc)
88a420e4 4825{
e374d483 4826 int len = 0;
88a420e4 4827 unsigned long i;
68dff6a9 4828 struct loc_track t = { 0, 0, NULL };
88a420e4 4829 int node;
fa45dc25 4830 struct kmem_cache_node *n;
88a420e4 4831
90e9f6a6
YZ
4832 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4833 GFP_KERNEL)) {
bf16d19a 4834 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4835 }
88a420e4
CL
4836 /* Push back cpu slabs */
4837 flush_all(s);
4838
fa45dc25 4839 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4840 unsigned long flags;
4841 struct page *page;
4842
9e86943b 4843 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4844 continue;
4845
4846 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4847 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4848 process_slab(&t, s, page, alloc);
916ac052 4849 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4850 process_slab(&t, s, page, alloc);
88a420e4
CL
4851 spin_unlock_irqrestore(&n->list_lock, flags);
4852 }
4853
4854 for (i = 0; i < t.count; i++) {
45edfa58 4855 struct location *l = &t.loc[i];
88a420e4 4856
bf16d19a 4857 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4858
4859 if (l->addr)
bf16d19a 4860 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4861 else
bf16d19a
JP
4862 len += sysfs_emit_at(buf, len, "<not-available>");
4863
4864 if (l->sum_time != l->min_time)
4865 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4866 l->min_time,
4867 (long)div_u64(l->sum_time,
4868 l->count),
4869 l->max_time);
4870 else
4871 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4872
4873 if (l->min_pid != l->max_pid)
bf16d19a
JP
4874 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4875 l->min_pid, l->max_pid);
45edfa58 4876 else
bf16d19a
JP
4877 len += sysfs_emit_at(buf, len, " pid=%ld",
4878 l->min_pid);
45edfa58 4879
174596a0 4880 if (num_online_cpus() > 1 &&
bf16d19a
JP
4881 !cpumask_empty(to_cpumask(l->cpus)))
4882 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4883 cpumask_pr_args(to_cpumask(l->cpus)));
4884
4885 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4886 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4887 nodemask_pr_args(&l->nodes));
4888
4889 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4890 }
4891
4892 free_loc_track(&t);
4893 if (!t.count)
bf16d19a
JP
4894 len += sysfs_emit_at(buf, len, "No data\n");
4895
e374d483 4896 return len;
88a420e4 4897}
6dfd1b65 4898#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4899
a5a84755 4900#ifdef SLUB_RESILIENCY_TEST
c07b8183 4901static void __init resiliency_test(void)
a5a84755
CL
4902{
4903 u8 *p;
cc252eae 4904 int type = KMALLOC_NORMAL;
a5a84755 4905
95a05b42 4906 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4907
f9f58285
FF
4908 pr_err("SLUB resiliency testing\n");
4909 pr_err("-----------------------\n");
4910 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4911
4912 p = kzalloc(16, GFP_KERNEL);
4913 p[16] = 0x12;
f9f58285
FF
4914 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4915 p + 16);
a5a84755 4916
cc252eae 4917 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4918
4919 /* Hmmm... The next two are dangerous */
4920 p = kzalloc(32, GFP_KERNEL);
4921 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4922 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4923 p);
4924 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4925
cc252eae 4926 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4927 p = kzalloc(64, GFP_KERNEL);
4928 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4929 *p = 0x56;
f9f58285
FF
4930 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4931 p);
4932 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4933 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4934
f9f58285 4935 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4936 p = kzalloc(128, GFP_KERNEL);
4937 kfree(p);
4938 *p = 0x78;
f9f58285 4939 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4940 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4941
4942 p = kzalloc(256, GFP_KERNEL);
4943 kfree(p);
4944 p[50] = 0x9a;
f9f58285 4945 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4946 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4947
4948 p = kzalloc(512, GFP_KERNEL);
4949 kfree(p);
4950 p[512] = 0xab;
f9f58285 4951 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4952 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4953}
4954#else
4955#ifdef CONFIG_SYSFS
4956static void resiliency_test(void) {};
4957#endif
6dfd1b65 4958#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4959
ab4d5ed5 4960#ifdef CONFIG_SYSFS
81819f0f 4961enum slab_stat_type {
205ab99d
CL
4962 SL_ALL, /* All slabs */
4963 SL_PARTIAL, /* Only partially allocated slabs */
4964 SL_CPU, /* Only slabs used for cpu caches */
4965 SL_OBJECTS, /* Determine allocated objects not slabs */
4966 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4967};
4968
205ab99d 4969#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4970#define SO_PARTIAL (1 << SL_PARTIAL)
4971#define SO_CPU (1 << SL_CPU)
4972#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4973#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4974
62e5c4b4 4975static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4976 char *buf, unsigned long flags)
81819f0f
CL
4977{
4978 unsigned long total = 0;
81819f0f
CL
4979 int node;
4980 int x;
4981 unsigned long *nodes;
bf16d19a 4982 int len = 0;
81819f0f 4983
6396bb22 4984 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4985 if (!nodes)
4986 return -ENOMEM;
81819f0f 4987
205ab99d
CL
4988 if (flags & SO_CPU) {
4989 int cpu;
81819f0f 4990
205ab99d 4991 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4992 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4993 cpu);
ec3ab083 4994 int node;
49e22585 4995 struct page *page;
dfb4f096 4996
4db0c3c2 4997 page = READ_ONCE(c->page);
ec3ab083
CL
4998 if (!page)
4999 continue;
205ab99d 5000
ec3ab083
CL
5001 node = page_to_nid(page);
5002 if (flags & SO_TOTAL)
5003 x = page->objects;
5004 else if (flags & SO_OBJECTS)
5005 x = page->inuse;
5006 else
5007 x = 1;
49e22585 5008
ec3ab083
CL
5009 total += x;
5010 nodes[node] += x;
5011
a93cf07b 5012 page = slub_percpu_partial_read_once(c);
49e22585 5013 if (page) {
8afb1474
LZ
5014 node = page_to_nid(page);
5015 if (flags & SO_TOTAL)
5016 WARN_ON_ONCE(1);
5017 else if (flags & SO_OBJECTS)
5018 WARN_ON_ONCE(1);
5019 else
5020 x = page->pages;
bc6697d8
ED
5021 total += x;
5022 nodes[node] += x;
49e22585 5023 }
81819f0f
CL
5024 }
5025 }
5026
e4f8e513
QC
5027 /*
5028 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5029 * already held which will conflict with an existing lock order:
5030 *
5031 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5032 *
5033 * We don't really need mem_hotplug_lock (to hold off
5034 * slab_mem_going_offline_callback) here because slab's memory hot
5035 * unplug code doesn't destroy the kmem_cache->node[] data.
5036 */
5037
ab4d5ed5 5038#ifdef CONFIG_SLUB_DEBUG
205ab99d 5039 if (flags & SO_ALL) {
fa45dc25
CL
5040 struct kmem_cache_node *n;
5041
5042 for_each_kmem_cache_node(s, node, n) {
205ab99d 5043
d0e0ac97
CG
5044 if (flags & SO_TOTAL)
5045 x = atomic_long_read(&n->total_objects);
5046 else if (flags & SO_OBJECTS)
5047 x = atomic_long_read(&n->total_objects) -
5048 count_partial(n, count_free);
81819f0f 5049 else
205ab99d 5050 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5051 total += x;
5052 nodes[node] += x;
5053 }
5054
ab4d5ed5
CL
5055 } else
5056#endif
5057 if (flags & SO_PARTIAL) {
fa45dc25 5058 struct kmem_cache_node *n;
81819f0f 5059
fa45dc25 5060 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5061 if (flags & SO_TOTAL)
5062 x = count_partial(n, count_total);
5063 else if (flags & SO_OBJECTS)
5064 x = count_partial(n, count_inuse);
81819f0f 5065 else
205ab99d 5066 x = n->nr_partial;
81819f0f
CL
5067 total += x;
5068 nodes[node] += x;
5069 }
5070 }
bf16d19a
JP
5071
5072 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5073#ifdef CONFIG_NUMA
bf16d19a 5074 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5075 if (nodes[node])
bf16d19a
JP
5076 len += sysfs_emit_at(buf, len, " N%d=%lu",
5077 node, nodes[node]);
5078 }
81819f0f 5079#endif
bf16d19a 5080 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5081 kfree(nodes);
bf16d19a
JP
5082
5083 return len;
81819f0f
CL
5084}
5085
81819f0f 5086#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5087#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5088
5089struct slab_attribute {
5090 struct attribute attr;
5091 ssize_t (*show)(struct kmem_cache *s, char *buf);
5092 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5093};
5094
5095#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5096 static struct slab_attribute _name##_attr = \
5097 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5098
5099#define SLAB_ATTR(_name) \
5100 static struct slab_attribute _name##_attr = \
ab067e99 5101 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5102
81819f0f
CL
5103static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5104{
bf16d19a 5105 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5106}
5107SLAB_ATTR_RO(slab_size);
5108
5109static ssize_t align_show(struct kmem_cache *s, char *buf)
5110{
bf16d19a 5111 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5112}
5113SLAB_ATTR_RO(align);
5114
5115static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5116{
bf16d19a 5117 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5118}
5119SLAB_ATTR_RO(object_size);
5120
5121static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5122{
bf16d19a 5123 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5124}
5125SLAB_ATTR_RO(objs_per_slab);
5126
5127static ssize_t order_show(struct kmem_cache *s, char *buf)
5128{
bf16d19a 5129 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5130}
32a6f409 5131SLAB_ATTR_RO(order);
81819f0f 5132
73d342b1
DR
5133static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5134{
bf16d19a 5135 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5136}
5137
5138static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5139 size_t length)
5140{
5141 unsigned long min;
5142 int err;
5143
3dbb95f7 5144 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5145 if (err)
5146 return err;
5147
c0bdb232 5148 set_min_partial(s, min);
73d342b1
DR
5149 return length;
5150}
5151SLAB_ATTR(min_partial);
5152
49e22585
CL
5153static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5154{
bf16d19a 5155 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5156}
5157
5158static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5159 size_t length)
5160{
e5d9998f 5161 unsigned int objects;
49e22585
CL
5162 int err;
5163
e5d9998f 5164 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5165 if (err)
5166 return err;
345c905d 5167 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5168 return -EINVAL;
49e22585 5169
e6d0e1dc 5170 slub_set_cpu_partial(s, objects);
49e22585
CL
5171 flush_all(s);
5172 return length;
5173}
5174SLAB_ATTR(cpu_partial);
5175
81819f0f
CL
5176static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5177{
62c70bce
JP
5178 if (!s->ctor)
5179 return 0;
bf16d19a 5180 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5181}
5182SLAB_ATTR_RO(ctor);
5183
81819f0f
CL
5184static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5185{
bf16d19a 5186 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5187}
5188SLAB_ATTR_RO(aliases);
5189
81819f0f
CL
5190static ssize_t partial_show(struct kmem_cache *s, char *buf)
5191{
d9acf4b7 5192 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5193}
5194SLAB_ATTR_RO(partial);
5195
5196static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5197{
d9acf4b7 5198 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5199}
5200SLAB_ATTR_RO(cpu_slabs);
5201
5202static ssize_t objects_show(struct kmem_cache *s, char *buf)
5203{
205ab99d 5204 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5205}
5206SLAB_ATTR_RO(objects);
5207
205ab99d
CL
5208static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5209{
5210 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5211}
5212SLAB_ATTR_RO(objects_partial);
5213
49e22585
CL
5214static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5215{
5216 int objects = 0;
5217 int pages = 0;
5218 int cpu;
bf16d19a 5219 int len = 0;
49e22585
CL
5220
5221 for_each_online_cpu(cpu) {
a93cf07b
WY
5222 struct page *page;
5223
5224 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5225
5226 if (page) {
5227 pages += page->pages;
5228 objects += page->pobjects;
5229 }
5230 }
5231
bf16d19a 5232 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5233
5234#ifdef CONFIG_SMP
5235 for_each_online_cpu(cpu) {
a93cf07b
WY
5236 struct page *page;
5237
5238 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5239 if (page)
5240 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5241 cpu, page->pobjects, page->pages);
49e22585
CL
5242 }
5243#endif
bf16d19a
JP
5244 len += sysfs_emit_at(buf, len, "\n");
5245
5246 return len;
49e22585
CL
5247}
5248SLAB_ATTR_RO(slabs_cpu_partial);
5249
a5a84755
CL
5250static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5251{
bf16d19a 5252 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5253}
8f58119a 5254SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5255
5256static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5257{
bf16d19a 5258 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5259}
5260SLAB_ATTR_RO(hwcache_align);
5261
5262#ifdef CONFIG_ZONE_DMA
5263static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5264{
bf16d19a 5265 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5266}
5267SLAB_ATTR_RO(cache_dma);
5268#endif
5269
8eb8284b
DW
5270static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5271{
bf16d19a 5272 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5273}
5274SLAB_ATTR_RO(usersize);
5275
a5a84755
CL
5276static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5277{
bf16d19a 5278 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5279}
5280SLAB_ATTR_RO(destroy_by_rcu);
5281
ab4d5ed5 5282#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5283static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5284{
5285 return show_slab_objects(s, buf, SO_ALL);
5286}
5287SLAB_ATTR_RO(slabs);
5288
205ab99d
CL
5289static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5290{
5291 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5292}
5293SLAB_ATTR_RO(total_objects);
5294
81819f0f
CL
5295static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5296{
bf16d19a 5297 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5298}
060807f8 5299SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5300
5301static ssize_t trace_show(struct kmem_cache *s, char *buf)
5302{
bf16d19a 5303 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5304}
060807f8 5305SLAB_ATTR_RO(trace);
81819f0f 5306
81819f0f
CL
5307static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5308{
bf16d19a 5309 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5310}
5311
ad38b5b1 5312SLAB_ATTR_RO(red_zone);
81819f0f
CL
5313
5314static ssize_t poison_show(struct kmem_cache *s, char *buf)
5315{
bf16d19a 5316 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5317}
5318
ad38b5b1 5319SLAB_ATTR_RO(poison);
81819f0f
CL
5320
5321static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5322{
bf16d19a 5323 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5324}
5325
ad38b5b1 5326SLAB_ATTR_RO(store_user);
81819f0f 5327
53e15af0
CL
5328static ssize_t validate_show(struct kmem_cache *s, char *buf)
5329{
5330 return 0;
5331}
5332
5333static ssize_t validate_store(struct kmem_cache *s,
5334 const char *buf, size_t length)
5335{
434e245d
CL
5336 int ret = -EINVAL;
5337
5338 if (buf[0] == '1') {
5339 ret = validate_slab_cache(s);
5340 if (ret >= 0)
5341 ret = length;
5342 }
5343 return ret;
53e15af0
CL
5344}
5345SLAB_ATTR(validate);
a5a84755
CL
5346
5347static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5348{
5349 if (!(s->flags & SLAB_STORE_USER))
5350 return -ENOSYS;
5351 return list_locations(s, buf, TRACK_ALLOC);
5352}
5353SLAB_ATTR_RO(alloc_calls);
5354
5355static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5356{
5357 if (!(s->flags & SLAB_STORE_USER))
5358 return -ENOSYS;
5359 return list_locations(s, buf, TRACK_FREE);
5360}
5361SLAB_ATTR_RO(free_calls);
5362#endif /* CONFIG_SLUB_DEBUG */
5363
5364#ifdef CONFIG_FAILSLAB
5365static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5366{
bf16d19a 5367 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5368}
060807f8 5369SLAB_ATTR_RO(failslab);
ab4d5ed5 5370#endif
53e15af0 5371
2086d26a
CL
5372static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5373{
5374 return 0;
5375}
5376
5377static ssize_t shrink_store(struct kmem_cache *s,
5378 const char *buf, size_t length)
5379{
832f37f5 5380 if (buf[0] == '1')
10befea9 5381 kmem_cache_shrink(s);
832f37f5 5382 else
2086d26a
CL
5383 return -EINVAL;
5384 return length;
5385}
5386SLAB_ATTR(shrink);
5387
81819f0f 5388#ifdef CONFIG_NUMA
9824601e 5389static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5390{
bf16d19a 5391 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5392}
5393
9824601e 5394static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5395 const char *buf, size_t length)
5396{
eb7235eb 5397 unsigned int ratio;
0121c619
CL
5398 int err;
5399
eb7235eb 5400 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5401 if (err)
5402 return err;
eb7235eb
AD
5403 if (ratio > 100)
5404 return -ERANGE;
0121c619 5405
eb7235eb 5406 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5407
81819f0f
CL
5408 return length;
5409}
9824601e 5410SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5411#endif
5412
8ff12cfc 5413#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5414static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5415{
5416 unsigned long sum = 0;
5417 int cpu;
bf16d19a 5418 int len = 0;
6da2ec56 5419 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5420
5421 if (!data)
5422 return -ENOMEM;
5423
5424 for_each_online_cpu(cpu) {
9dfc6e68 5425 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5426
5427 data[cpu] = x;
5428 sum += x;
5429 }
5430
bf16d19a 5431 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5432
50ef37b9 5433#ifdef CONFIG_SMP
8ff12cfc 5434 for_each_online_cpu(cpu) {
bf16d19a
JP
5435 if (data[cpu])
5436 len += sysfs_emit_at(buf, len, " C%d=%u",
5437 cpu, data[cpu]);
8ff12cfc 5438 }
50ef37b9 5439#endif
8ff12cfc 5440 kfree(data);
bf16d19a
JP
5441 len += sysfs_emit_at(buf, len, "\n");
5442
5443 return len;
8ff12cfc
CL
5444}
5445
78eb00cc
DR
5446static void clear_stat(struct kmem_cache *s, enum stat_item si)
5447{
5448 int cpu;
5449
5450 for_each_online_cpu(cpu)
9dfc6e68 5451 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5452}
5453
8ff12cfc
CL
5454#define STAT_ATTR(si, text) \
5455static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5456{ \
5457 return show_stat(s, buf, si); \
5458} \
78eb00cc
DR
5459static ssize_t text##_store(struct kmem_cache *s, \
5460 const char *buf, size_t length) \
5461{ \
5462 if (buf[0] != '0') \
5463 return -EINVAL; \
5464 clear_stat(s, si); \
5465 return length; \
5466} \
5467SLAB_ATTR(text); \
8ff12cfc
CL
5468
5469STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5470STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5471STAT_ATTR(FREE_FASTPATH, free_fastpath);
5472STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5473STAT_ATTR(FREE_FROZEN, free_frozen);
5474STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5475STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5476STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5477STAT_ATTR(ALLOC_SLAB, alloc_slab);
5478STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5479STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5480STAT_ATTR(FREE_SLAB, free_slab);
5481STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5482STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5483STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5484STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5485STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5486STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5487STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5488STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5489STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5490STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5491STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5492STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5493STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5494STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5495#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5496
06428780 5497static struct attribute *slab_attrs[] = {
81819f0f
CL
5498 &slab_size_attr.attr,
5499 &object_size_attr.attr,
5500 &objs_per_slab_attr.attr,
5501 &order_attr.attr,
73d342b1 5502 &min_partial_attr.attr,
49e22585 5503 &cpu_partial_attr.attr,
81819f0f 5504 &objects_attr.attr,
205ab99d 5505 &objects_partial_attr.attr,
81819f0f
CL
5506 &partial_attr.attr,
5507 &cpu_slabs_attr.attr,
5508 &ctor_attr.attr,
81819f0f
CL
5509 &aliases_attr.attr,
5510 &align_attr.attr,
81819f0f
CL
5511 &hwcache_align_attr.attr,
5512 &reclaim_account_attr.attr,
5513 &destroy_by_rcu_attr.attr,
a5a84755 5514 &shrink_attr.attr,
49e22585 5515 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5516#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5517 &total_objects_attr.attr,
5518 &slabs_attr.attr,
5519 &sanity_checks_attr.attr,
5520 &trace_attr.attr,
81819f0f
CL
5521 &red_zone_attr.attr,
5522 &poison_attr.attr,
5523 &store_user_attr.attr,
53e15af0 5524 &validate_attr.attr,
88a420e4
CL
5525 &alloc_calls_attr.attr,
5526 &free_calls_attr.attr,
ab4d5ed5 5527#endif
81819f0f
CL
5528#ifdef CONFIG_ZONE_DMA
5529 &cache_dma_attr.attr,
5530#endif
5531#ifdef CONFIG_NUMA
9824601e 5532 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5533#endif
5534#ifdef CONFIG_SLUB_STATS
5535 &alloc_fastpath_attr.attr,
5536 &alloc_slowpath_attr.attr,
5537 &free_fastpath_attr.attr,
5538 &free_slowpath_attr.attr,
5539 &free_frozen_attr.attr,
5540 &free_add_partial_attr.attr,
5541 &free_remove_partial_attr.attr,
5542 &alloc_from_partial_attr.attr,
5543 &alloc_slab_attr.attr,
5544 &alloc_refill_attr.attr,
e36a2652 5545 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5546 &free_slab_attr.attr,
5547 &cpuslab_flush_attr.attr,
5548 &deactivate_full_attr.attr,
5549 &deactivate_empty_attr.attr,
5550 &deactivate_to_head_attr.attr,
5551 &deactivate_to_tail_attr.attr,
5552 &deactivate_remote_frees_attr.attr,
03e404af 5553 &deactivate_bypass_attr.attr,
65c3376a 5554 &order_fallback_attr.attr,
b789ef51
CL
5555 &cmpxchg_double_fail_attr.attr,
5556 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5557 &cpu_partial_alloc_attr.attr,
5558 &cpu_partial_free_attr.attr,
8028dcea
AS
5559 &cpu_partial_node_attr.attr,
5560 &cpu_partial_drain_attr.attr,
81819f0f 5561#endif
4c13dd3b
DM
5562#ifdef CONFIG_FAILSLAB
5563 &failslab_attr.attr,
5564#endif
8eb8284b 5565 &usersize_attr.attr,
4c13dd3b 5566
81819f0f
CL
5567 NULL
5568};
5569
1fdaaa23 5570static const struct attribute_group slab_attr_group = {
81819f0f
CL
5571 .attrs = slab_attrs,
5572};
5573
5574static ssize_t slab_attr_show(struct kobject *kobj,
5575 struct attribute *attr,
5576 char *buf)
5577{
5578 struct slab_attribute *attribute;
5579 struct kmem_cache *s;
5580 int err;
5581
5582 attribute = to_slab_attr(attr);
5583 s = to_slab(kobj);
5584
5585 if (!attribute->show)
5586 return -EIO;
5587
5588 err = attribute->show(s, buf);
5589
5590 return err;
5591}
5592
5593static ssize_t slab_attr_store(struct kobject *kobj,
5594 struct attribute *attr,
5595 const char *buf, size_t len)
5596{
5597 struct slab_attribute *attribute;
5598 struct kmem_cache *s;
5599 int err;
5600
5601 attribute = to_slab_attr(attr);
5602 s = to_slab(kobj);
5603
5604 if (!attribute->store)
5605 return -EIO;
5606
5607 err = attribute->store(s, buf, len);
81819f0f
CL
5608 return err;
5609}
5610
41a21285
CL
5611static void kmem_cache_release(struct kobject *k)
5612{
5613 slab_kmem_cache_release(to_slab(k));
5614}
5615
52cf25d0 5616static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5617 .show = slab_attr_show,
5618 .store = slab_attr_store,
5619};
5620
5621static struct kobj_type slab_ktype = {
5622 .sysfs_ops = &slab_sysfs_ops,
41a21285 5623 .release = kmem_cache_release,
81819f0f
CL
5624};
5625
27c3a314 5626static struct kset *slab_kset;
81819f0f 5627
9a41707b
VD
5628static inline struct kset *cache_kset(struct kmem_cache *s)
5629{
9a41707b
VD
5630 return slab_kset;
5631}
5632
81819f0f
CL
5633#define ID_STR_LENGTH 64
5634
5635/* Create a unique string id for a slab cache:
6446faa2
CL
5636 *
5637 * Format :[flags-]size
81819f0f
CL
5638 */
5639static char *create_unique_id(struct kmem_cache *s)
5640{
5641 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5642 char *p = name;
5643
5644 BUG_ON(!name);
5645
5646 *p++ = ':';
5647 /*
5648 * First flags affecting slabcache operations. We will only
5649 * get here for aliasable slabs so we do not need to support
5650 * too many flags. The flags here must cover all flags that
5651 * are matched during merging to guarantee that the id is
5652 * unique.
5653 */
5654 if (s->flags & SLAB_CACHE_DMA)
5655 *p++ = 'd';
6d6ea1e9
NB
5656 if (s->flags & SLAB_CACHE_DMA32)
5657 *p++ = 'D';
81819f0f
CL
5658 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5659 *p++ = 'a';
becfda68 5660 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5661 *p++ = 'F';
230e9fc2
VD
5662 if (s->flags & SLAB_ACCOUNT)
5663 *p++ = 'A';
81819f0f
CL
5664 if (p != name + 1)
5665 *p++ = '-';
44065b2e 5666 p += sprintf(p, "%07u", s->size);
2633d7a0 5667
81819f0f
CL
5668 BUG_ON(p > name + ID_STR_LENGTH - 1);
5669 return name;
5670}
5671
5672static int sysfs_slab_add(struct kmem_cache *s)
5673{
5674 int err;
5675 const char *name;
1663f26d 5676 struct kset *kset = cache_kset(s);
45530c44 5677 int unmergeable = slab_unmergeable(s);
81819f0f 5678
1663f26d
TH
5679 if (!kset) {
5680 kobject_init(&s->kobj, &slab_ktype);
5681 return 0;
5682 }
5683
11066386
MC
5684 if (!unmergeable && disable_higher_order_debug &&
5685 (slub_debug & DEBUG_METADATA_FLAGS))
5686 unmergeable = 1;
5687
81819f0f
CL
5688 if (unmergeable) {
5689 /*
5690 * Slabcache can never be merged so we can use the name proper.
5691 * This is typically the case for debug situations. In that
5692 * case we can catch duplicate names easily.
5693 */
27c3a314 5694 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5695 name = s->name;
5696 } else {
5697 /*
5698 * Create a unique name for the slab as a target
5699 * for the symlinks.
5700 */
5701 name = create_unique_id(s);
5702 }
5703
1663f26d 5704 s->kobj.kset = kset;
26e4f205 5705 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5706 if (err)
80da026a 5707 goto out;
81819f0f
CL
5708
5709 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5710 if (err)
5711 goto out_del_kobj;
9a41707b 5712
81819f0f
CL
5713 if (!unmergeable) {
5714 /* Setup first alias */
5715 sysfs_slab_alias(s, s->name);
81819f0f 5716 }
54b6a731
DJ
5717out:
5718 if (!unmergeable)
5719 kfree(name);
5720 return err;
5721out_del_kobj:
5722 kobject_del(&s->kobj);
54b6a731 5723 goto out;
81819f0f
CL
5724}
5725
d50d82fa
MP
5726void sysfs_slab_unlink(struct kmem_cache *s)
5727{
5728 if (slab_state >= FULL)
5729 kobject_del(&s->kobj);
5730}
5731
bf5eb3de
TH
5732void sysfs_slab_release(struct kmem_cache *s)
5733{
5734 if (slab_state >= FULL)
5735 kobject_put(&s->kobj);
81819f0f
CL
5736}
5737
5738/*
5739 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5740 * available lest we lose that information.
81819f0f
CL
5741 */
5742struct saved_alias {
5743 struct kmem_cache *s;
5744 const char *name;
5745 struct saved_alias *next;
5746};
5747
5af328a5 5748static struct saved_alias *alias_list;
81819f0f
CL
5749
5750static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5751{
5752 struct saved_alias *al;
5753
97d06609 5754 if (slab_state == FULL) {
81819f0f
CL
5755 /*
5756 * If we have a leftover link then remove it.
5757 */
27c3a314
GKH
5758 sysfs_remove_link(&slab_kset->kobj, name);
5759 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5760 }
5761
5762 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5763 if (!al)
5764 return -ENOMEM;
5765
5766 al->s = s;
5767 al->name = name;
5768 al->next = alias_list;
5769 alias_list = al;
5770 return 0;
5771}
5772
5773static int __init slab_sysfs_init(void)
5774{
5b95a4ac 5775 struct kmem_cache *s;
81819f0f
CL
5776 int err;
5777
18004c5d 5778 mutex_lock(&slab_mutex);
2bce6485 5779
d7660ce5 5780 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5781 if (!slab_kset) {
18004c5d 5782 mutex_unlock(&slab_mutex);
f9f58285 5783 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5784 return -ENOSYS;
5785 }
5786
97d06609 5787 slab_state = FULL;
26a7bd03 5788
5b95a4ac 5789 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5790 err = sysfs_slab_add(s);
5d540fb7 5791 if (err)
f9f58285
FF
5792 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5793 s->name);
26a7bd03 5794 }
81819f0f
CL
5795
5796 while (alias_list) {
5797 struct saved_alias *al = alias_list;
5798
5799 alias_list = alias_list->next;
5800 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5801 if (err)
f9f58285
FF
5802 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5803 al->name);
81819f0f
CL
5804 kfree(al);
5805 }
5806
18004c5d 5807 mutex_unlock(&slab_mutex);
81819f0f
CL
5808 resiliency_test();
5809 return 0;
5810}
5811
5812__initcall(slab_sysfs_init);
ab4d5ed5 5813#endif /* CONFIG_SYSFS */
57ed3eda
PE
5814
5815/*
5816 * The /proc/slabinfo ABI
5817 */
5b365771 5818#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5819void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5820{
57ed3eda 5821 unsigned long nr_slabs = 0;
205ab99d
CL
5822 unsigned long nr_objs = 0;
5823 unsigned long nr_free = 0;
57ed3eda 5824 int node;
fa45dc25 5825 struct kmem_cache_node *n;
57ed3eda 5826
fa45dc25 5827 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5828 nr_slabs += node_nr_slabs(n);
5829 nr_objs += node_nr_objs(n);
205ab99d 5830 nr_free += count_partial(n, count_free);
57ed3eda
PE
5831 }
5832
0d7561c6
GC
5833 sinfo->active_objs = nr_objs - nr_free;
5834 sinfo->num_objs = nr_objs;
5835 sinfo->active_slabs = nr_slabs;
5836 sinfo->num_slabs = nr_slabs;
5837 sinfo->objects_per_slab = oo_objects(s->oo);
5838 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5839}
5840
0d7561c6 5841void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5842{
7b3c3a50
AD
5843}
5844
b7454ad3
GC
5845ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5846 size_t count, loff_t *ppos)
7b3c3a50 5847{
b7454ad3 5848 return -EIO;
7b3c3a50 5849}
5b365771 5850#endif /* CONFIG_SLUB_DEBUG */