]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
slab: change int to size_t for representing allocation size
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 214#else
0c710013
CL
215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
107dab5c 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
88da03a6
CL
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
6446faa2 236/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
237static inline int check_valid_pointer(struct kmem_cache *s,
238 struct page *page, const void *object)
239{
240 void *base;
241
a973e9dd 242 if (!object)
02cbc874
CL
243 return 1;
244
a973e9dd 245 base = page_address(page);
39b26464 246 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
247 (object - base) % s->size) {
248 return 0;
249 }
250
251 return 1;
252}
253
7656c72b
CL
254static inline void *get_freepointer(struct kmem_cache *s, void *object)
255{
256 return *(void **)(object + s->offset);
257}
258
0ad9500e
ED
259static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260{
261 prefetch(object + s->offset);
262}
263
1393d9a1
CL
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266 void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271 p = get_freepointer(s, object);
272#endif
273 return p;
274}
275
7656c72b
CL
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
7656c72b
CL
286/* Determine object index from a given position */
287static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288{
289 return (p - addr) / s->size;
290}
291
d71f606f
MK
292static inline size_t slab_ksize(const struct kmem_cache *s)
293{
294#ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 300 return s->object_size;
d71f606f
MK
301
302#endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314}
315
ab9a0f19
LJ
316static inline int order_objects(int order, unsigned long size, int reserved)
317{
318 return ((PAGE_SIZE << order) - reserved) / size;
319}
320
834f3d11 321static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 322 unsigned long size, int reserved)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
ab9a0f19 325 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
326 };
327
328 return x;
329}
330
331static inline int oo_order(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
336static inline int oo_objects(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
881db7fb
CL
341/*
342 * Per slab locking using the pagelock
343 */
344static __always_inline void slab_lock(struct page *page)
345{
346 bit_spin_lock(PG_locked, &page->flags);
347}
348
349static __always_inline void slab_unlock(struct page *page)
350{
351 __bit_spin_unlock(PG_locked, &page->flags);
352}
353
a0320865
DH
354static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
355{
356 struct page tmp;
357 tmp.counters = counters_new;
358 /*
359 * page->counters can cover frozen/inuse/objects as well
360 * as page->_count. If we assign to ->counters directly
361 * we run the risk of losing updates to page->_count, so
362 * be careful and only assign to the fields we need.
363 */
364 page->frozen = tmp.frozen;
365 page->inuse = tmp.inuse;
366 page->objects = tmp.objects;
367}
368
1d07171c
CL
369/* Interrupts must be disabled (for the fallback code to work right) */
370static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
371 void *freelist_old, unsigned long counters_old,
372 void *freelist_new, unsigned long counters_new,
373 const char *n)
374{
375 VM_BUG_ON(!irqs_disabled());
2565409f
HC
376#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
377 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 378 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 379 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
380 freelist_old, counters_old,
381 freelist_new, counters_new))
382 return 1;
383 } else
384#endif
385 {
386 slab_lock(page);
d0e0ac97
CG
387 if (page->freelist == freelist_old &&
388 page->counters == counters_old) {
1d07171c 389 page->freelist = freelist_new;
a0320865 390 set_page_slub_counters(page, counters_new);
1d07171c
CL
391 slab_unlock(page);
392 return 1;
393 }
394 slab_unlock(page);
395 }
396
397 cpu_relax();
398 stat(s, CMPXCHG_DOUBLE_FAIL);
399
400#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 401 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
402#endif
403
404 return 0;
405}
406
b789ef51
CL
407static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
408 void *freelist_old, unsigned long counters_old,
409 void *freelist_new, unsigned long counters_new,
410 const char *n)
411{
2565409f
HC
412#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
413 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 414 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 415 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
416 freelist_old, counters_old,
417 freelist_new, counters_new))
418 return 1;
419 } else
420#endif
421 {
1d07171c
CL
422 unsigned long flags;
423
424 local_irq_save(flags);
881db7fb 425 slab_lock(page);
d0e0ac97
CG
426 if (page->freelist == freelist_old &&
427 page->counters == counters_old) {
b789ef51 428 page->freelist = freelist_new;
a0320865 429 set_page_slub_counters(page, counters_new);
881db7fb 430 slab_unlock(page);
1d07171c 431 local_irq_restore(flags);
b789ef51
CL
432 return 1;
433 }
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 }
437
438 cpu_relax();
439 stat(s, CMPXCHG_DOUBLE_FAIL);
440
441#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 442 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
443#endif
444
445 return 0;
446}
447
41ecc55b 448#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
449/*
450 * Determine a map of object in use on a page.
451 *
881db7fb 452 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
453 * not vanish from under us.
454 */
455static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
456{
457 void *p;
458 void *addr = page_address(page);
459
460 for (p = page->freelist; p; p = get_freepointer(s, p))
461 set_bit(slab_index(p, s, addr), map);
462}
463
41ecc55b
CL
464/*
465 * Debug settings:
466 */
f0630fff
CL
467#ifdef CONFIG_SLUB_DEBUG_ON
468static int slub_debug = DEBUG_DEFAULT_FLAGS;
469#else
41ecc55b 470static int slub_debug;
f0630fff 471#endif
41ecc55b
CL
472
473static char *slub_debug_slabs;
fa5ec8a1 474static int disable_higher_order_debug;
41ecc55b 475
81819f0f
CL
476/*
477 * Object debugging
478 */
479static void print_section(char *text, u8 *addr, unsigned int length)
480{
ffc79d28
SAS
481 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
482 length, 1);
81819f0f
CL
483}
484
81819f0f
CL
485static struct track *get_track(struct kmem_cache *s, void *object,
486 enum track_item alloc)
487{
488 struct track *p;
489
490 if (s->offset)
491 p = object + s->offset + sizeof(void *);
492 else
493 p = object + s->inuse;
494
495 return p + alloc;
496}
497
498static void set_track(struct kmem_cache *s, void *object,
ce71e27c 499 enum track_item alloc, unsigned long addr)
81819f0f 500{
1a00df4a 501 struct track *p = get_track(s, object, alloc);
81819f0f 502
81819f0f 503 if (addr) {
d6543e39
BG
504#ifdef CONFIG_STACKTRACE
505 struct stack_trace trace;
506 int i;
507
508 trace.nr_entries = 0;
509 trace.max_entries = TRACK_ADDRS_COUNT;
510 trace.entries = p->addrs;
511 trace.skip = 3;
512 save_stack_trace(&trace);
513
514 /* See rant in lockdep.c */
515 if (trace.nr_entries != 0 &&
516 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
517 trace.nr_entries--;
518
519 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
520 p->addrs[i] = 0;
521#endif
81819f0f
CL
522 p->addr = addr;
523 p->cpu = smp_processor_id();
88e4ccf2 524 p->pid = current->pid;
81819f0f
CL
525 p->when = jiffies;
526 } else
527 memset(p, 0, sizeof(struct track));
528}
529
81819f0f
CL
530static void init_tracking(struct kmem_cache *s, void *object)
531{
24922684
CL
532 if (!(s->flags & SLAB_STORE_USER))
533 return;
534
ce71e27c
EGM
535 set_track(s, object, TRACK_FREE, 0UL);
536 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
537}
538
539static void print_track(const char *s, struct track *t)
540{
541 if (!t->addr)
542 return;
543
f9f58285
FF
544 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
545 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
546#ifdef CONFIG_STACKTRACE
547 {
548 int i;
549 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
550 if (t->addrs[i])
f9f58285 551 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
552 else
553 break;
554 }
555#endif
24922684
CL
556}
557
558static void print_tracking(struct kmem_cache *s, void *object)
559{
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
563 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
564 print_track("Freed", get_track(s, object, TRACK_FREE));
565}
566
567static void print_page_info(struct page *page)
568{
f9f58285 569 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 570 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
571
572}
573
574static void slab_bug(struct kmem_cache *s, char *fmt, ...)
575{
ecc42fbe 576 struct va_format vaf;
24922684 577 va_list args;
24922684
CL
578
579 va_start(args, fmt);
ecc42fbe
FF
580 vaf.fmt = fmt;
581 vaf.va = &args;
f9f58285 582 pr_err("=============================================================================\n");
ecc42fbe 583 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 584 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 585
373d4d09 586 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 587 va_end(args);
81819f0f
CL
588}
589
24922684
CL
590static void slab_fix(struct kmem_cache *s, char *fmt, ...)
591{
ecc42fbe 592 struct va_format vaf;
24922684 593 va_list args;
24922684
CL
594
595 va_start(args, fmt);
ecc42fbe
FF
596 vaf.fmt = fmt;
597 vaf.va = &args;
598 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 599 va_end(args);
24922684
CL
600}
601
602static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
603{
604 unsigned int off; /* Offset of last byte */
a973e9dd 605 u8 *addr = page_address(page);
24922684
CL
606
607 print_tracking(s, p);
608
609 print_page_info(page);
610
f9f58285
FF
611 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
612 p, p - addr, get_freepointer(s, p));
24922684
CL
613
614 if (p > addr + 16)
ffc79d28 615 print_section("Bytes b4 ", p - 16, 16);
81819f0f 616
3b0efdfa 617 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 618 PAGE_SIZE));
81819f0f 619 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
620 print_section("Redzone ", p + s->object_size,
621 s->inuse - s->object_size);
81819f0f 622
81819f0f
CL
623 if (s->offset)
624 off = s->offset + sizeof(void *);
625 else
626 off = s->inuse;
627
24922684 628 if (s->flags & SLAB_STORE_USER)
81819f0f 629 off += 2 * sizeof(struct track);
81819f0f
CL
630
631 if (off != s->size)
632 /* Beginning of the filler is the free pointer */
ffc79d28 633 print_section("Padding ", p + off, s->size - off);
24922684
CL
634
635 dump_stack();
81819f0f
CL
636}
637
638static void object_err(struct kmem_cache *s, struct page *page,
639 u8 *object, char *reason)
640{
3dc50637 641 slab_bug(s, "%s", reason);
24922684 642 print_trailer(s, page, object);
81819f0f
CL
643}
644
d0e0ac97
CG
645static void slab_err(struct kmem_cache *s, struct page *page,
646 const char *fmt, ...)
81819f0f
CL
647{
648 va_list args;
649 char buf[100];
650
24922684
CL
651 va_start(args, fmt);
652 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 653 va_end(args);
3dc50637 654 slab_bug(s, "%s", buf);
24922684 655 print_page_info(page);
81819f0f
CL
656 dump_stack();
657}
658
f7cb1933 659static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
660{
661 u8 *p = object;
662
663 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
664 memset(p, POISON_FREE, s->object_size - 1);
665 p[s->object_size - 1] = POISON_END;
81819f0f
CL
666 }
667
668 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 669 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
670}
671
24922684
CL
672static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
673 void *from, void *to)
674{
675 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
676 memset(from, data, to - from);
677}
678
679static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
680 u8 *object, char *what,
06428780 681 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
682{
683 u8 *fault;
684 u8 *end;
685
79824820 686 fault = memchr_inv(start, value, bytes);
24922684
CL
687 if (!fault)
688 return 1;
689
690 end = start + bytes;
691 while (end > fault && end[-1] == value)
692 end--;
693
694 slab_bug(s, "%s overwritten", what);
f9f58285 695 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
696 fault, end - 1, fault[0], value);
697 print_trailer(s, page, object);
698
699 restore_bytes(s, what, value, fault, end);
700 return 0;
81819f0f
CL
701}
702
81819f0f
CL
703/*
704 * Object layout:
705 *
706 * object address
707 * Bytes of the object to be managed.
708 * If the freepointer may overlay the object then the free
709 * pointer is the first word of the object.
672bba3a 710 *
81819f0f
CL
711 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
712 * 0xa5 (POISON_END)
713 *
3b0efdfa 714 * object + s->object_size
81819f0f 715 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 716 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 717 * object_size == inuse.
672bba3a 718 *
81819f0f
CL
719 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
720 * 0xcc (RED_ACTIVE) for objects in use.
721 *
722 * object + s->inuse
672bba3a
CL
723 * Meta data starts here.
724 *
81819f0f
CL
725 * A. Free pointer (if we cannot overwrite object on free)
726 * B. Tracking data for SLAB_STORE_USER
672bba3a 727 * C. Padding to reach required alignment boundary or at mininum
6446faa2 728 * one word if debugging is on to be able to detect writes
672bba3a
CL
729 * before the word boundary.
730 *
731 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
732 *
733 * object + s->size
672bba3a 734 * Nothing is used beyond s->size.
81819f0f 735 *
3b0efdfa 736 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 737 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
738 * may be used with merged slabcaches.
739 */
740
81819f0f
CL
741static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
742{
743 unsigned long off = s->inuse; /* The end of info */
744
745 if (s->offset)
746 /* Freepointer is placed after the object. */
747 off += sizeof(void *);
748
749 if (s->flags & SLAB_STORE_USER)
750 /* We also have user information there */
751 off += 2 * sizeof(struct track);
752
753 if (s->size == off)
754 return 1;
755
24922684
CL
756 return check_bytes_and_report(s, page, p, "Object padding",
757 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
758}
759
39b26464 760/* Check the pad bytes at the end of a slab page */
81819f0f
CL
761static int slab_pad_check(struct kmem_cache *s, struct page *page)
762{
24922684
CL
763 u8 *start;
764 u8 *fault;
765 u8 *end;
766 int length;
767 int remainder;
81819f0f
CL
768
769 if (!(s->flags & SLAB_POISON))
770 return 1;
771
a973e9dd 772 start = page_address(page);
ab9a0f19 773 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
774 end = start + length;
775 remainder = length % s->size;
81819f0f
CL
776 if (!remainder)
777 return 1;
778
79824820 779 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
780 if (!fault)
781 return 1;
782 while (end > fault && end[-1] == POISON_INUSE)
783 end--;
784
785 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 786 print_section("Padding ", end - remainder, remainder);
24922684 787
8a3d271d 788 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 789 return 0;
81819f0f
CL
790}
791
792static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 793 void *object, u8 val)
81819f0f
CL
794{
795 u8 *p = object;
3b0efdfa 796 u8 *endobject = object + s->object_size;
81819f0f
CL
797
798 if (s->flags & SLAB_RED_ZONE) {
24922684 799 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 800 endobject, val, s->inuse - s->object_size))
81819f0f 801 return 0;
81819f0f 802 } else {
3b0efdfa 803 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 804 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
805 endobject, POISON_INUSE,
806 s->inuse - s->object_size);
3adbefee 807 }
81819f0f
CL
808 }
809
810 if (s->flags & SLAB_POISON) {
f7cb1933 811 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 812 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 813 POISON_FREE, s->object_size - 1) ||
24922684 814 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 815 p + s->object_size - 1, POISON_END, 1)))
81819f0f 816 return 0;
81819f0f
CL
817 /*
818 * check_pad_bytes cleans up on its own.
819 */
820 check_pad_bytes(s, page, p);
821 }
822
f7cb1933 823 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
824 /*
825 * Object and freepointer overlap. Cannot check
826 * freepointer while object is allocated.
827 */
828 return 1;
829
830 /* Check free pointer validity */
831 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
832 object_err(s, page, p, "Freepointer corrupt");
833 /*
9f6c708e 834 * No choice but to zap it and thus lose the remainder
81819f0f 835 * of the free objects in this slab. May cause
672bba3a 836 * another error because the object count is now wrong.
81819f0f 837 */
a973e9dd 838 set_freepointer(s, p, NULL);
81819f0f
CL
839 return 0;
840 }
841 return 1;
842}
843
844static int check_slab(struct kmem_cache *s, struct page *page)
845{
39b26464
CL
846 int maxobj;
847
81819f0f
CL
848 VM_BUG_ON(!irqs_disabled());
849
850 if (!PageSlab(page)) {
24922684 851 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
852 return 0;
853 }
39b26464 854
ab9a0f19 855 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
856 if (page->objects > maxobj) {
857 slab_err(s, page, "objects %u > max %u",
858 s->name, page->objects, maxobj);
859 return 0;
860 }
861 if (page->inuse > page->objects) {
24922684 862 slab_err(s, page, "inuse %u > max %u",
39b26464 863 s->name, page->inuse, page->objects);
81819f0f
CL
864 return 0;
865 }
866 /* Slab_pad_check fixes things up after itself */
867 slab_pad_check(s, page);
868 return 1;
869}
870
871/*
672bba3a
CL
872 * Determine if a certain object on a page is on the freelist. Must hold the
873 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
874 */
875static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
876{
877 int nr = 0;
881db7fb 878 void *fp;
81819f0f 879 void *object = NULL;
224a88be 880 unsigned long max_objects;
81819f0f 881
881db7fb 882 fp = page->freelist;
39b26464 883 while (fp && nr <= page->objects) {
81819f0f
CL
884 if (fp == search)
885 return 1;
886 if (!check_valid_pointer(s, page, fp)) {
887 if (object) {
888 object_err(s, page, object,
889 "Freechain corrupt");
a973e9dd 890 set_freepointer(s, object, NULL);
81819f0f 891 } else {
24922684 892 slab_err(s, page, "Freepointer corrupt");
a973e9dd 893 page->freelist = NULL;
39b26464 894 page->inuse = page->objects;
24922684 895 slab_fix(s, "Freelist cleared");
81819f0f
CL
896 return 0;
897 }
898 break;
899 }
900 object = fp;
901 fp = get_freepointer(s, object);
902 nr++;
903 }
904
ab9a0f19 905 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
906 if (max_objects > MAX_OBJS_PER_PAGE)
907 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
908
909 if (page->objects != max_objects) {
910 slab_err(s, page, "Wrong number of objects. Found %d but "
911 "should be %d", page->objects, max_objects);
912 page->objects = max_objects;
913 slab_fix(s, "Number of objects adjusted.");
914 }
39b26464 915 if (page->inuse != page->objects - nr) {
70d71228 916 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
917 "counted were %d", page->inuse, page->objects - nr);
918 page->inuse = page->objects - nr;
24922684 919 slab_fix(s, "Object count adjusted.");
81819f0f
CL
920 }
921 return search == NULL;
922}
923
0121c619
CL
924static void trace(struct kmem_cache *s, struct page *page, void *object,
925 int alloc)
3ec09742
CL
926{
927 if (s->flags & SLAB_TRACE) {
f9f58285 928 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
929 s->name,
930 alloc ? "alloc" : "free",
931 object, page->inuse,
932 page->freelist);
933
934 if (!alloc)
d0e0ac97
CG
935 print_section("Object ", (void *)object,
936 s->object_size);
3ec09742
CL
937
938 dump_stack();
939 }
940}
941
643b1138 942/*
672bba3a 943 * Tracking of fully allocated slabs for debugging purposes.
643b1138 944 */
5cc6eee8
CL
945static void add_full(struct kmem_cache *s,
946 struct kmem_cache_node *n, struct page *page)
643b1138 947{
5cc6eee8
CL
948 if (!(s->flags & SLAB_STORE_USER))
949 return;
950
255d0884 951 lockdep_assert_held(&n->list_lock);
643b1138 952 list_add(&page->lru, &n->full);
643b1138
CL
953}
954
c65c1877 955static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 956{
643b1138
CL
957 if (!(s->flags & SLAB_STORE_USER))
958 return;
959
255d0884 960 lockdep_assert_held(&n->list_lock);
643b1138 961 list_del(&page->lru);
643b1138
CL
962}
963
0f389ec6
CL
964/* Tracking of the number of slabs for debugging purposes */
965static inline unsigned long slabs_node(struct kmem_cache *s, int node)
966{
967 struct kmem_cache_node *n = get_node(s, node);
968
969 return atomic_long_read(&n->nr_slabs);
970}
971
26c02cf0
AB
972static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
973{
974 return atomic_long_read(&n->nr_slabs);
975}
976
205ab99d 977static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
978{
979 struct kmem_cache_node *n = get_node(s, node);
980
981 /*
982 * May be called early in order to allocate a slab for the
983 * kmem_cache_node structure. Solve the chicken-egg
984 * dilemma by deferring the increment of the count during
985 * bootstrap (see early_kmem_cache_node_alloc).
986 */
338b2642 987 if (likely(n)) {
0f389ec6 988 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
989 atomic_long_add(objects, &n->total_objects);
990 }
0f389ec6 991}
205ab99d 992static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
993{
994 struct kmem_cache_node *n = get_node(s, node);
995
996 atomic_long_dec(&n->nr_slabs);
205ab99d 997 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
998}
999
1000/* Object debug checks for alloc/free paths */
3ec09742
CL
1001static void setup_object_debug(struct kmem_cache *s, struct page *page,
1002 void *object)
1003{
1004 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1005 return;
1006
f7cb1933 1007 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1008 init_tracking(s, object);
1009}
1010
d0e0ac97
CG
1011static noinline int alloc_debug_processing(struct kmem_cache *s,
1012 struct page *page,
ce71e27c 1013 void *object, unsigned long addr)
81819f0f
CL
1014{
1015 if (!check_slab(s, page))
1016 goto bad;
1017
81819f0f
CL
1018 if (!check_valid_pointer(s, page, object)) {
1019 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1020 goto bad;
81819f0f
CL
1021 }
1022
f7cb1933 1023 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1024 goto bad;
81819f0f 1025
3ec09742
CL
1026 /* Success perform special debug activities for allocs */
1027 if (s->flags & SLAB_STORE_USER)
1028 set_track(s, object, TRACK_ALLOC, addr);
1029 trace(s, page, object, 1);
f7cb1933 1030 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1031 return 1;
3ec09742 1032
81819f0f
CL
1033bad:
1034 if (PageSlab(page)) {
1035 /*
1036 * If this is a slab page then lets do the best we can
1037 * to avoid issues in the future. Marking all objects
672bba3a 1038 * as used avoids touching the remaining objects.
81819f0f 1039 */
24922684 1040 slab_fix(s, "Marking all objects used");
39b26464 1041 page->inuse = page->objects;
a973e9dd 1042 page->freelist = NULL;
81819f0f
CL
1043 }
1044 return 0;
1045}
1046
19c7ff9e
CL
1047static noinline struct kmem_cache_node *free_debug_processing(
1048 struct kmem_cache *s, struct page *page, void *object,
1049 unsigned long addr, unsigned long *flags)
81819f0f 1050{
19c7ff9e 1051 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1052
19c7ff9e 1053 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1054 slab_lock(page);
1055
81819f0f
CL
1056 if (!check_slab(s, page))
1057 goto fail;
1058
1059 if (!check_valid_pointer(s, page, object)) {
70d71228 1060 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1061 goto fail;
1062 }
1063
1064 if (on_freelist(s, page, object)) {
24922684 1065 object_err(s, page, object, "Object already free");
81819f0f
CL
1066 goto fail;
1067 }
1068
f7cb1933 1069 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1070 goto out;
81819f0f 1071
1b4f59e3 1072 if (unlikely(s != page->slab_cache)) {
3adbefee 1073 if (!PageSlab(page)) {
70d71228
CL
1074 slab_err(s, page, "Attempt to free object(0x%p) "
1075 "outside of slab", object);
1b4f59e3 1076 } else if (!page->slab_cache) {
f9f58285
FF
1077 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1078 object);
70d71228 1079 dump_stack();
06428780 1080 } else
24922684
CL
1081 object_err(s, page, object,
1082 "page slab pointer corrupt.");
81819f0f
CL
1083 goto fail;
1084 }
3ec09742 1085
3ec09742
CL
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_FREE, addr);
1088 trace(s, page, object, 0);
f7cb1933 1089 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1090out:
881db7fb 1091 slab_unlock(page);
19c7ff9e
CL
1092 /*
1093 * Keep node_lock to preserve integrity
1094 * until the object is actually freed
1095 */
1096 return n;
3ec09742 1097
81819f0f 1098fail:
19c7ff9e
CL
1099 slab_unlock(page);
1100 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1101 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1102 return NULL;
81819f0f
CL
1103}
1104
41ecc55b
CL
1105static int __init setup_slub_debug(char *str)
1106{
f0630fff
CL
1107 slub_debug = DEBUG_DEFAULT_FLAGS;
1108 if (*str++ != '=' || !*str)
1109 /*
1110 * No options specified. Switch on full debugging.
1111 */
1112 goto out;
1113
1114 if (*str == ',')
1115 /*
1116 * No options but restriction on slabs. This means full
1117 * debugging for slabs matching a pattern.
1118 */
1119 goto check_slabs;
1120
fa5ec8a1
DR
1121 if (tolower(*str) == 'o') {
1122 /*
1123 * Avoid enabling debugging on caches if its minimum order
1124 * would increase as a result.
1125 */
1126 disable_higher_order_debug = 1;
1127 goto out;
1128 }
1129
f0630fff
CL
1130 slub_debug = 0;
1131 if (*str == '-')
1132 /*
1133 * Switch off all debugging measures.
1134 */
1135 goto out;
1136
1137 /*
1138 * Determine which debug features should be switched on
1139 */
06428780 1140 for (; *str && *str != ','; str++) {
f0630fff
CL
1141 switch (tolower(*str)) {
1142 case 'f':
1143 slub_debug |= SLAB_DEBUG_FREE;
1144 break;
1145 case 'z':
1146 slub_debug |= SLAB_RED_ZONE;
1147 break;
1148 case 'p':
1149 slub_debug |= SLAB_POISON;
1150 break;
1151 case 'u':
1152 slub_debug |= SLAB_STORE_USER;
1153 break;
1154 case 't':
1155 slub_debug |= SLAB_TRACE;
1156 break;
4c13dd3b
DM
1157 case 'a':
1158 slub_debug |= SLAB_FAILSLAB;
1159 break;
f0630fff 1160 default:
f9f58285
FF
1161 pr_err("slub_debug option '%c' unknown. skipped\n",
1162 *str);
f0630fff 1163 }
41ecc55b
CL
1164 }
1165
f0630fff 1166check_slabs:
41ecc55b
CL
1167 if (*str == ',')
1168 slub_debug_slabs = str + 1;
f0630fff 1169out:
41ecc55b
CL
1170 return 1;
1171}
1172
1173__setup("slub_debug", setup_slub_debug);
1174
3b0efdfa 1175static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1176 unsigned long flags, const char *name,
51cc5068 1177 void (*ctor)(void *))
41ecc55b
CL
1178{
1179 /*
e153362a 1180 * Enable debugging if selected on the kernel commandline.
41ecc55b 1181 */
c6f58d9b
CL
1182 if (slub_debug && (!slub_debug_slabs || (name &&
1183 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1184 flags |= slub_debug;
ba0268a8
CL
1185
1186 return flags;
41ecc55b
CL
1187}
1188#else
3ec09742
CL
1189static inline void setup_object_debug(struct kmem_cache *s,
1190 struct page *page, void *object) {}
41ecc55b 1191
3ec09742 1192static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1193 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1194
19c7ff9e
CL
1195static inline struct kmem_cache_node *free_debug_processing(
1196 struct kmem_cache *s, struct page *page, void *object,
1197 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1198
41ecc55b
CL
1199static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1200 { return 1; }
1201static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1202 void *object, u8 val) { return 1; }
5cc6eee8
CL
1203static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1204 struct page *page) {}
c65c1877
PZ
1205static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1206 struct page *page) {}
3b0efdfa 1207static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1208 unsigned long flags, const char *name,
51cc5068 1209 void (*ctor)(void *))
ba0268a8
CL
1210{
1211 return flags;
1212}
41ecc55b 1213#define slub_debug 0
0f389ec6 1214
fdaa45e9
IM
1215#define disable_higher_order_debug 0
1216
0f389ec6
CL
1217static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1218 { return 0; }
26c02cf0
AB
1219static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1220 { return 0; }
205ab99d
CL
1221static inline void inc_slabs_node(struct kmem_cache *s, int node,
1222 int objects) {}
1223static inline void dec_slabs_node(struct kmem_cache *s, int node,
1224 int objects) {}
7d550c56 1225
02e72cc6
AR
1226#endif /* CONFIG_SLUB_DEBUG */
1227
1228/*
1229 * Hooks for other subsystems that check memory allocations. In a typical
1230 * production configuration these hooks all should produce no code at all.
1231 */
d56791b3
RB
1232static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1233{
1234 kmemleak_alloc(ptr, size, 1, flags);
1235}
1236
1237static inline void kfree_hook(const void *x)
1238{
1239 kmemleak_free(x);
1240}
1241
7d550c56 1242static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
02e72cc6
AR
1243{
1244 flags &= gfp_allowed_mask;
1245 lockdep_trace_alloc(flags);
1246 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1247
02e72cc6
AR
1248 return should_failslab(s->object_size, flags, s->flags);
1249}
1250
1251static inline void slab_post_alloc_hook(struct kmem_cache *s,
1252 gfp_t flags, void *object)
d56791b3 1253{
02e72cc6
AR
1254 flags &= gfp_allowed_mask;
1255 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1256 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
d56791b3 1257}
7d550c56 1258
d56791b3
RB
1259static inline void slab_free_hook(struct kmem_cache *s, void *x)
1260{
1261 kmemleak_free_recursive(x, s->flags);
7d550c56 1262
02e72cc6
AR
1263 /*
1264 * Trouble is that we may no longer disable interrupts in the fast path
1265 * So in order to make the debug calls that expect irqs to be
1266 * disabled we need to disable interrupts temporarily.
1267 */
1268#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1269 {
1270 unsigned long flags;
1271
1272 local_irq_save(flags);
1273 kmemcheck_slab_free(s, x, s->object_size);
1274 debug_check_no_locks_freed(x, s->object_size);
1275 local_irq_restore(flags);
1276 }
1277#endif
1278 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1279 debug_check_no_obj_freed(x, s->object_size);
1280}
205ab99d 1281
81819f0f
CL
1282/*
1283 * Slab allocation and freeing
1284 */
5dfb4175
VD
1285static inline struct page *alloc_slab_page(struct kmem_cache *s,
1286 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1287{
5dfb4175 1288 struct page *page;
65c3376a
CL
1289 int order = oo_order(oo);
1290
b1eeab67
VN
1291 flags |= __GFP_NOTRACK;
1292
5dfb4175
VD
1293 if (memcg_charge_slab(s, flags, order))
1294 return NULL;
1295
2154a336 1296 if (node == NUMA_NO_NODE)
5dfb4175 1297 page = alloc_pages(flags, order);
65c3376a 1298 else
5dfb4175
VD
1299 page = alloc_pages_exact_node(node, flags, order);
1300
1301 if (!page)
1302 memcg_uncharge_slab(s, order);
1303
1304 return page;
65c3376a
CL
1305}
1306
81819f0f
CL
1307static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1308{
06428780 1309 struct page *page;
834f3d11 1310 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1311 gfp_t alloc_gfp;
81819f0f 1312
7e0528da
CL
1313 flags &= gfp_allowed_mask;
1314
1315 if (flags & __GFP_WAIT)
1316 local_irq_enable();
1317
b7a49f0d 1318 flags |= s->allocflags;
e12ba74d 1319
ba52270d
PE
1320 /*
1321 * Let the initial higher-order allocation fail under memory pressure
1322 * so we fall-back to the minimum order allocation.
1323 */
1324 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1325
5dfb4175 1326 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1327 if (unlikely(!page)) {
1328 oo = s->min;
80c3a998 1329 alloc_gfp = flags;
65c3376a
CL
1330 /*
1331 * Allocation may have failed due to fragmentation.
1332 * Try a lower order alloc if possible
1333 */
5dfb4175 1334 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1335
7e0528da
CL
1336 if (page)
1337 stat(s, ORDER_FALLBACK);
65c3376a 1338 }
5a896d9e 1339
737b719e 1340 if (kmemcheck_enabled && page
5086c389 1341 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1342 int pages = 1 << oo_order(oo);
1343
80c3a998 1344 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1345
1346 /*
1347 * Objects from caches that have a constructor don't get
1348 * cleared when they're allocated, so we need to do it here.
1349 */
1350 if (s->ctor)
1351 kmemcheck_mark_uninitialized_pages(page, pages);
1352 else
1353 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1354 }
1355
737b719e
DR
1356 if (flags & __GFP_WAIT)
1357 local_irq_disable();
1358 if (!page)
1359 return NULL;
1360
834f3d11 1361 page->objects = oo_objects(oo);
81819f0f
CL
1362 mod_zone_page_state(page_zone(page),
1363 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1364 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1365 1 << oo_order(oo));
81819f0f
CL
1366
1367 return page;
1368}
1369
1370static void setup_object(struct kmem_cache *s, struct page *page,
1371 void *object)
1372{
3ec09742 1373 setup_object_debug(s, page, object);
4f104934 1374 if (unlikely(s->ctor))
51cc5068 1375 s->ctor(object);
81819f0f
CL
1376}
1377
1378static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1379{
1380 struct page *page;
81819f0f 1381 void *start;
81819f0f
CL
1382 void *last;
1383 void *p;
1f458cbf 1384 int order;
81819f0f 1385
6cb06229 1386 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1387
6cb06229
CL
1388 page = allocate_slab(s,
1389 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1390 if (!page)
1391 goto out;
1392
1f458cbf 1393 order = compound_order(page);
205ab99d 1394 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1395 page->slab_cache = s;
c03f94cc 1396 __SetPageSlab(page);
072bb0aa
MG
1397 if (page->pfmemalloc)
1398 SetPageSlabPfmemalloc(page);
81819f0f
CL
1399
1400 start = page_address(page);
81819f0f
CL
1401
1402 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1403 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1404
1405 last = start;
224a88be 1406 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1407 setup_object(s, page, last);
1408 set_freepointer(s, last, p);
1409 last = p;
1410 }
1411 setup_object(s, page, last);
a973e9dd 1412 set_freepointer(s, last, NULL);
81819f0f
CL
1413
1414 page->freelist = start;
e6e82ea1 1415 page->inuse = page->objects;
8cb0a506 1416 page->frozen = 1;
81819f0f 1417out:
81819f0f
CL
1418 return page;
1419}
1420
1421static void __free_slab(struct kmem_cache *s, struct page *page)
1422{
834f3d11
CL
1423 int order = compound_order(page);
1424 int pages = 1 << order;
81819f0f 1425
af537b0a 1426 if (kmem_cache_debug(s)) {
81819f0f
CL
1427 void *p;
1428
1429 slab_pad_check(s, page);
224a88be
CL
1430 for_each_object(p, s, page_address(page),
1431 page->objects)
f7cb1933 1432 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1433 }
1434
b1eeab67 1435 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1436
81819f0f
CL
1437 mod_zone_page_state(page_zone(page),
1438 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1439 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1440 -pages);
81819f0f 1441
072bb0aa 1442 __ClearPageSlabPfmemalloc(page);
49bd5221 1443 __ClearPageSlab(page);
1f458cbf 1444
22b751c3 1445 page_mapcount_reset(page);
1eb5ac64
NP
1446 if (current->reclaim_state)
1447 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1448 __free_pages(page, order);
1449 memcg_uncharge_slab(s, order);
81819f0f
CL
1450}
1451
da9a638c
LJ
1452#define need_reserve_slab_rcu \
1453 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1454
81819f0f
CL
1455static void rcu_free_slab(struct rcu_head *h)
1456{
1457 struct page *page;
1458
da9a638c
LJ
1459 if (need_reserve_slab_rcu)
1460 page = virt_to_head_page(h);
1461 else
1462 page = container_of((struct list_head *)h, struct page, lru);
1463
1b4f59e3 1464 __free_slab(page->slab_cache, page);
81819f0f
CL
1465}
1466
1467static void free_slab(struct kmem_cache *s, struct page *page)
1468{
1469 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1470 struct rcu_head *head;
1471
1472 if (need_reserve_slab_rcu) {
1473 int order = compound_order(page);
1474 int offset = (PAGE_SIZE << order) - s->reserved;
1475
1476 VM_BUG_ON(s->reserved != sizeof(*head));
1477 head = page_address(page) + offset;
1478 } else {
1479 /*
1480 * RCU free overloads the RCU head over the LRU
1481 */
1482 head = (void *)&page->lru;
1483 }
81819f0f
CL
1484
1485 call_rcu(head, rcu_free_slab);
1486 } else
1487 __free_slab(s, page);
1488}
1489
1490static void discard_slab(struct kmem_cache *s, struct page *page)
1491{
205ab99d 1492 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1493 free_slab(s, page);
1494}
1495
1496/*
5cc6eee8 1497 * Management of partially allocated slabs.
81819f0f 1498 */
1e4dd946
SR
1499static inline void
1500__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1501{
e95eed57 1502 n->nr_partial++;
136333d1 1503 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1504 list_add_tail(&page->lru, &n->partial);
1505 else
1506 list_add(&page->lru, &n->partial);
81819f0f
CL
1507}
1508
1e4dd946
SR
1509static inline void add_partial(struct kmem_cache_node *n,
1510 struct page *page, int tail)
62e346a8 1511{
c65c1877 1512 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1513 __add_partial(n, page, tail);
1514}
c65c1877 1515
1e4dd946
SR
1516static inline void
1517__remove_partial(struct kmem_cache_node *n, struct page *page)
1518{
62e346a8
CL
1519 list_del(&page->lru);
1520 n->nr_partial--;
1521}
1522
1e4dd946
SR
1523static inline void remove_partial(struct kmem_cache_node *n,
1524 struct page *page)
1525{
1526 lockdep_assert_held(&n->list_lock);
1527 __remove_partial(n, page);
1528}
1529
81819f0f 1530/*
7ced3719
CL
1531 * Remove slab from the partial list, freeze it and
1532 * return the pointer to the freelist.
81819f0f 1533 *
497b66f2 1534 * Returns a list of objects or NULL if it fails.
81819f0f 1535 */
497b66f2 1536static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1537 struct kmem_cache_node *n, struct page *page,
633b0764 1538 int mode, int *objects)
81819f0f 1539{
2cfb7455
CL
1540 void *freelist;
1541 unsigned long counters;
1542 struct page new;
1543
c65c1877
PZ
1544 lockdep_assert_held(&n->list_lock);
1545
2cfb7455
CL
1546 /*
1547 * Zap the freelist and set the frozen bit.
1548 * The old freelist is the list of objects for the
1549 * per cpu allocation list.
1550 */
7ced3719
CL
1551 freelist = page->freelist;
1552 counters = page->counters;
1553 new.counters = counters;
633b0764 1554 *objects = new.objects - new.inuse;
23910c50 1555 if (mode) {
7ced3719 1556 new.inuse = page->objects;
23910c50
PE
1557 new.freelist = NULL;
1558 } else {
1559 new.freelist = freelist;
1560 }
2cfb7455 1561
a0132ac0 1562 VM_BUG_ON(new.frozen);
7ced3719 1563 new.frozen = 1;
2cfb7455 1564
7ced3719 1565 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1566 freelist, counters,
02d7633f 1567 new.freelist, new.counters,
7ced3719 1568 "acquire_slab"))
7ced3719 1569 return NULL;
2cfb7455
CL
1570
1571 remove_partial(n, page);
7ced3719 1572 WARN_ON(!freelist);
49e22585 1573 return freelist;
81819f0f
CL
1574}
1575
633b0764 1576static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1577static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1578
81819f0f 1579/*
672bba3a 1580 * Try to allocate a partial slab from a specific node.
81819f0f 1581 */
8ba00bb6
JK
1582static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1583 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1584{
49e22585
CL
1585 struct page *page, *page2;
1586 void *object = NULL;
633b0764
JK
1587 int available = 0;
1588 int objects;
81819f0f
CL
1589
1590 /*
1591 * Racy check. If we mistakenly see no partial slabs then we
1592 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1593 * partial slab and there is none available then get_partials()
1594 * will return NULL.
81819f0f
CL
1595 */
1596 if (!n || !n->nr_partial)
1597 return NULL;
1598
1599 spin_lock(&n->list_lock);
49e22585 1600 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1601 void *t;
49e22585 1602
8ba00bb6
JK
1603 if (!pfmemalloc_match(page, flags))
1604 continue;
1605
633b0764 1606 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1607 if (!t)
1608 break;
1609
633b0764 1610 available += objects;
12d79634 1611 if (!object) {
49e22585 1612 c->page = page;
49e22585 1613 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1614 object = t;
49e22585 1615 } else {
633b0764 1616 put_cpu_partial(s, page, 0);
8028dcea 1617 stat(s, CPU_PARTIAL_NODE);
49e22585 1618 }
345c905d
JK
1619 if (!kmem_cache_has_cpu_partial(s)
1620 || available > s->cpu_partial / 2)
49e22585
CL
1621 break;
1622
497b66f2 1623 }
81819f0f 1624 spin_unlock(&n->list_lock);
497b66f2 1625 return object;
81819f0f
CL
1626}
1627
1628/*
672bba3a 1629 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1630 */
de3ec035 1631static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1632 struct kmem_cache_cpu *c)
81819f0f
CL
1633{
1634#ifdef CONFIG_NUMA
1635 struct zonelist *zonelist;
dd1a239f 1636 struct zoneref *z;
54a6eb5c
MG
1637 struct zone *zone;
1638 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1639 void *object;
cc9a6c87 1640 unsigned int cpuset_mems_cookie;
81819f0f
CL
1641
1642 /*
672bba3a
CL
1643 * The defrag ratio allows a configuration of the tradeoffs between
1644 * inter node defragmentation and node local allocations. A lower
1645 * defrag_ratio increases the tendency to do local allocations
1646 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1647 *
672bba3a
CL
1648 * If the defrag_ratio is set to 0 then kmalloc() always
1649 * returns node local objects. If the ratio is higher then kmalloc()
1650 * may return off node objects because partial slabs are obtained
1651 * from other nodes and filled up.
81819f0f 1652 *
6446faa2 1653 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1654 * defrag_ratio = 1000) then every (well almost) allocation will
1655 * first attempt to defrag slab caches on other nodes. This means
1656 * scanning over all nodes to look for partial slabs which may be
1657 * expensive if we do it every time we are trying to find a slab
1658 * with available objects.
81819f0f 1659 */
9824601e
CL
1660 if (!s->remote_node_defrag_ratio ||
1661 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1662 return NULL;
1663
cc9a6c87 1664 do {
d26914d1 1665 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1666 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1667 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1668 struct kmem_cache_node *n;
1669
1670 n = get_node(s, zone_to_nid(zone));
1671
1672 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1673 n->nr_partial > s->min_partial) {
8ba00bb6 1674 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1675 if (object) {
1676 /*
d26914d1
MG
1677 * Don't check read_mems_allowed_retry()
1678 * here - if mems_allowed was updated in
1679 * parallel, that was a harmless race
1680 * between allocation and the cpuset
1681 * update
cc9a6c87 1682 */
cc9a6c87
MG
1683 return object;
1684 }
c0ff7453 1685 }
81819f0f 1686 }
d26914d1 1687 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1688#endif
1689 return NULL;
1690}
1691
1692/*
1693 * Get a partial page, lock it and return it.
1694 */
497b66f2 1695static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1696 struct kmem_cache_cpu *c)
81819f0f 1697{
497b66f2 1698 void *object;
844e4d66 1699 int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
81819f0f 1700
8ba00bb6 1701 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1702 if (object || node != NUMA_NO_NODE)
1703 return object;
81819f0f 1704
acd19fd1 1705 return get_any_partial(s, flags, c);
81819f0f
CL
1706}
1707
8a5ec0ba
CL
1708#ifdef CONFIG_PREEMPT
1709/*
1710 * Calculate the next globally unique transaction for disambiguiation
1711 * during cmpxchg. The transactions start with the cpu number and are then
1712 * incremented by CONFIG_NR_CPUS.
1713 */
1714#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1715#else
1716/*
1717 * No preemption supported therefore also no need to check for
1718 * different cpus.
1719 */
1720#define TID_STEP 1
1721#endif
1722
1723static inline unsigned long next_tid(unsigned long tid)
1724{
1725 return tid + TID_STEP;
1726}
1727
1728static inline unsigned int tid_to_cpu(unsigned long tid)
1729{
1730 return tid % TID_STEP;
1731}
1732
1733static inline unsigned long tid_to_event(unsigned long tid)
1734{
1735 return tid / TID_STEP;
1736}
1737
1738static inline unsigned int init_tid(int cpu)
1739{
1740 return cpu;
1741}
1742
1743static inline void note_cmpxchg_failure(const char *n,
1744 const struct kmem_cache *s, unsigned long tid)
1745{
1746#ifdef SLUB_DEBUG_CMPXCHG
1747 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1748
f9f58285 1749 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1750
1751#ifdef CONFIG_PREEMPT
1752 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1753 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1754 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1755 else
1756#endif
1757 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1758 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1759 tid_to_event(tid), tid_to_event(actual_tid));
1760 else
f9f58285 1761 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1762 actual_tid, tid, next_tid(tid));
1763#endif
4fdccdfb 1764 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1765}
1766
788e1aad 1767static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1768{
8a5ec0ba
CL
1769 int cpu;
1770
1771 for_each_possible_cpu(cpu)
1772 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1773}
2cfb7455 1774
81819f0f
CL
1775/*
1776 * Remove the cpu slab
1777 */
d0e0ac97
CG
1778static void deactivate_slab(struct kmem_cache *s, struct page *page,
1779 void *freelist)
81819f0f 1780{
2cfb7455 1781 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1782 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1783 int lock = 0;
1784 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1785 void *nextfree;
136333d1 1786 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1787 struct page new;
1788 struct page old;
1789
1790 if (page->freelist) {
84e554e6 1791 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1792 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1793 }
1794
894b8788 1795 /*
2cfb7455
CL
1796 * Stage one: Free all available per cpu objects back
1797 * to the page freelist while it is still frozen. Leave the
1798 * last one.
1799 *
1800 * There is no need to take the list->lock because the page
1801 * is still frozen.
1802 */
1803 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1804 void *prior;
1805 unsigned long counters;
1806
1807 do {
1808 prior = page->freelist;
1809 counters = page->counters;
1810 set_freepointer(s, freelist, prior);
1811 new.counters = counters;
1812 new.inuse--;
a0132ac0 1813 VM_BUG_ON(!new.frozen);
2cfb7455 1814
1d07171c 1815 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1816 prior, counters,
1817 freelist, new.counters,
1818 "drain percpu freelist"));
1819
1820 freelist = nextfree;
1821 }
1822
894b8788 1823 /*
2cfb7455
CL
1824 * Stage two: Ensure that the page is unfrozen while the
1825 * list presence reflects the actual number of objects
1826 * during unfreeze.
1827 *
1828 * We setup the list membership and then perform a cmpxchg
1829 * with the count. If there is a mismatch then the page
1830 * is not unfrozen but the page is on the wrong list.
1831 *
1832 * Then we restart the process which may have to remove
1833 * the page from the list that we just put it on again
1834 * because the number of objects in the slab may have
1835 * changed.
894b8788 1836 */
2cfb7455 1837redo:
894b8788 1838
2cfb7455
CL
1839 old.freelist = page->freelist;
1840 old.counters = page->counters;
a0132ac0 1841 VM_BUG_ON(!old.frozen);
7c2e132c 1842
2cfb7455
CL
1843 /* Determine target state of the slab */
1844 new.counters = old.counters;
1845 if (freelist) {
1846 new.inuse--;
1847 set_freepointer(s, freelist, old.freelist);
1848 new.freelist = freelist;
1849 } else
1850 new.freelist = old.freelist;
1851
1852 new.frozen = 0;
1853
8a5b20ae 1854 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1855 m = M_FREE;
1856 else if (new.freelist) {
1857 m = M_PARTIAL;
1858 if (!lock) {
1859 lock = 1;
1860 /*
1861 * Taking the spinlock removes the possiblity
1862 * that acquire_slab() will see a slab page that
1863 * is frozen
1864 */
1865 spin_lock(&n->list_lock);
1866 }
1867 } else {
1868 m = M_FULL;
1869 if (kmem_cache_debug(s) && !lock) {
1870 lock = 1;
1871 /*
1872 * This also ensures that the scanning of full
1873 * slabs from diagnostic functions will not see
1874 * any frozen slabs.
1875 */
1876 spin_lock(&n->list_lock);
1877 }
1878 }
1879
1880 if (l != m) {
1881
1882 if (l == M_PARTIAL)
1883
1884 remove_partial(n, page);
1885
1886 else if (l == M_FULL)
894b8788 1887
c65c1877 1888 remove_full(s, n, page);
2cfb7455
CL
1889
1890 if (m == M_PARTIAL) {
1891
1892 add_partial(n, page, tail);
136333d1 1893 stat(s, tail);
2cfb7455
CL
1894
1895 } else if (m == M_FULL) {
894b8788 1896
2cfb7455
CL
1897 stat(s, DEACTIVATE_FULL);
1898 add_full(s, n, page);
1899
1900 }
1901 }
1902
1903 l = m;
1d07171c 1904 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1905 old.freelist, old.counters,
1906 new.freelist, new.counters,
1907 "unfreezing slab"))
1908 goto redo;
1909
2cfb7455
CL
1910 if (lock)
1911 spin_unlock(&n->list_lock);
1912
1913 if (m == M_FREE) {
1914 stat(s, DEACTIVATE_EMPTY);
1915 discard_slab(s, page);
1916 stat(s, FREE_SLAB);
894b8788 1917 }
81819f0f
CL
1918}
1919
d24ac77f
JK
1920/*
1921 * Unfreeze all the cpu partial slabs.
1922 *
59a09917
CL
1923 * This function must be called with interrupts disabled
1924 * for the cpu using c (or some other guarantee must be there
1925 * to guarantee no concurrent accesses).
d24ac77f 1926 */
59a09917
CL
1927static void unfreeze_partials(struct kmem_cache *s,
1928 struct kmem_cache_cpu *c)
49e22585 1929{
345c905d 1930#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1931 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1932 struct page *page, *discard_page = NULL;
49e22585
CL
1933
1934 while ((page = c->partial)) {
49e22585
CL
1935 struct page new;
1936 struct page old;
1937
1938 c->partial = page->next;
43d77867
JK
1939
1940 n2 = get_node(s, page_to_nid(page));
1941 if (n != n2) {
1942 if (n)
1943 spin_unlock(&n->list_lock);
1944
1945 n = n2;
1946 spin_lock(&n->list_lock);
1947 }
49e22585
CL
1948
1949 do {
1950
1951 old.freelist = page->freelist;
1952 old.counters = page->counters;
a0132ac0 1953 VM_BUG_ON(!old.frozen);
49e22585
CL
1954
1955 new.counters = old.counters;
1956 new.freelist = old.freelist;
1957
1958 new.frozen = 0;
1959
d24ac77f 1960 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1961 old.freelist, old.counters,
1962 new.freelist, new.counters,
1963 "unfreezing slab"));
1964
8a5b20ae 1965 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1966 page->next = discard_page;
1967 discard_page = page;
43d77867
JK
1968 } else {
1969 add_partial(n, page, DEACTIVATE_TO_TAIL);
1970 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1971 }
1972 }
1973
1974 if (n)
1975 spin_unlock(&n->list_lock);
9ada1934
SL
1976
1977 while (discard_page) {
1978 page = discard_page;
1979 discard_page = discard_page->next;
1980
1981 stat(s, DEACTIVATE_EMPTY);
1982 discard_slab(s, page);
1983 stat(s, FREE_SLAB);
1984 }
345c905d 1985#endif
49e22585
CL
1986}
1987
1988/*
1989 * Put a page that was just frozen (in __slab_free) into a partial page
1990 * slot if available. This is done without interrupts disabled and without
1991 * preemption disabled. The cmpxchg is racy and may put the partial page
1992 * onto a random cpus partial slot.
1993 *
1994 * If we did not find a slot then simply move all the partials to the
1995 * per node partial list.
1996 */
633b0764 1997static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 1998{
345c905d 1999#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2000 struct page *oldpage;
2001 int pages;
2002 int pobjects;
2003
2004 do {
2005 pages = 0;
2006 pobjects = 0;
2007 oldpage = this_cpu_read(s->cpu_slab->partial);
2008
2009 if (oldpage) {
2010 pobjects = oldpage->pobjects;
2011 pages = oldpage->pages;
2012 if (drain && pobjects > s->cpu_partial) {
2013 unsigned long flags;
2014 /*
2015 * partial array is full. Move the existing
2016 * set to the per node partial list.
2017 */
2018 local_irq_save(flags);
59a09917 2019 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2020 local_irq_restore(flags);
e24fc410 2021 oldpage = NULL;
49e22585
CL
2022 pobjects = 0;
2023 pages = 0;
8028dcea 2024 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2025 }
2026 }
2027
2028 pages++;
2029 pobjects += page->objects - page->inuse;
2030
2031 page->pages = pages;
2032 page->pobjects = pobjects;
2033 page->next = oldpage;
2034
d0e0ac97
CG
2035 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2036 != oldpage);
345c905d 2037#endif
49e22585
CL
2038}
2039
dfb4f096 2040static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2041{
84e554e6 2042 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2043 deactivate_slab(s, c->page, c->freelist);
2044
2045 c->tid = next_tid(c->tid);
2046 c->page = NULL;
2047 c->freelist = NULL;
81819f0f
CL
2048}
2049
2050/*
2051 * Flush cpu slab.
6446faa2 2052 *
81819f0f
CL
2053 * Called from IPI handler with interrupts disabled.
2054 */
0c710013 2055static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2056{
9dfc6e68 2057 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2058
49e22585
CL
2059 if (likely(c)) {
2060 if (c->page)
2061 flush_slab(s, c);
2062
59a09917 2063 unfreeze_partials(s, c);
49e22585 2064 }
81819f0f
CL
2065}
2066
2067static void flush_cpu_slab(void *d)
2068{
2069 struct kmem_cache *s = d;
81819f0f 2070
dfb4f096 2071 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2072}
2073
a8364d55
GBY
2074static bool has_cpu_slab(int cpu, void *info)
2075{
2076 struct kmem_cache *s = info;
2077 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2078
02e1a9cd 2079 return c->page || c->partial;
a8364d55
GBY
2080}
2081
81819f0f
CL
2082static void flush_all(struct kmem_cache *s)
2083{
a8364d55 2084 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2085}
2086
dfb4f096
CL
2087/*
2088 * Check if the objects in a per cpu structure fit numa
2089 * locality expectations.
2090 */
57d437d2 2091static inline int node_match(struct page *page, int node)
dfb4f096
CL
2092{
2093#ifdef CONFIG_NUMA
4d7868e6 2094 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2095 return 0;
2096#endif
2097 return 1;
2098}
2099
9a02d699 2100#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2101static int count_free(struct page *page)
2102{
2103 return page->objects - page->inuse;
2104}
2105
9a02d699
DR
2106static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2107{
2108 return atomic_long_read(&n->total_objects);
2109}
2110#endif /* CONFIG_SLUB_DEBUG */
2111
2112#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2113static unsigned long count_partial(struct kmem_cache_node *n,
2114 int (*get_count)(struct page *))
2115{
2116 unsigned long flags;
2117 unsigned long x = 0;
2118 struct page *page;
2119
2120 spin_lock_irqsave(&n->list_lock, flags);
2121 list_for_each_entry(page, &n->partial, lru)
2122 x += get_count(page);
2123 spin_unlock_irqrestore(&n->list_lock, flags);
2124 return x;
2125}
9a02d699 2126#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2127
781b2ba6
PE
2128static noinline void
2129slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2130{
9a02d699
DR
2131#ifdef CONFIG_SLUB_DEBUG
2132 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2133 DEFAULT_RATELIMIT_BURST);
781b2ba6 2134 int node;
fa45dc25 2135 struct kmem_cache_node *n;
781b2ba6 2136
9a02d699
DR
2137 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2138 return;
2139
f9f58285 2140 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2141 nid, gfpflags);
f9f58285
FF
2142 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2143 s->name, s->object_size, s->size, oo_order(s->oo),
2144 oo_order(s->min));
781b2ba6 2145
3b0efdfa 2146 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2147 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2148 s->name);
fa5ec8a1 2149
fa45dc25 2150 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2151 unsigned long nr_slabs;
2152 unsigned long nr_objs;
2153 unsigned long nr_free;
2154
26c02cf0
AB
2155 nr_free = count_partial(n, count_free);
2156 nr_slabs = node_nr_slabs(n);
2157 nr_objs = node_nr_objs(n);
781b2ba6 2158
f9f58285 2159 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2160 node, nr_slabs, nr_objs, nr_free);
2161 }
9a02d699 2162#endif
781b2ba6
PE
2163}
2164
497b66f2
CL
2165static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2166 int node, struct kmem_cache_cpu **pc)
2167{
6faa6833 2168 void *freelist;
188fd063
CL
2169 struct kmem_cache_cpu *c = *pc;
2170 struct page *page;
497b66f2 2171
188fd063 2172 freelist = get_partial(s, flags, node, c);
497b66f2 2173
188fd063
CL
2174 if (freelist)
2175 return freelist;
2176
2177 page = new_slab(s, flags, node);
497b66f2 2178 if (page) {
7c8e0181 2179 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2180 if (c->page)
2181 flush_slab(s, c);
2182
2183 /*
2184 * No other reference to the page yet so we can
2185 * muck around with it freely without cmpxchg
2186 */
6faa6833 2187 freelist = page->freelist;
497b66f2
CL
2188 page->freelist = NULL;
2189
2190 stat(s, ALLOC_SLAB);
497b66f2
CL
2191 c->page = page;
2192 *pc = c;
2193 } else
6faa6833 2194 freelist = NULL;
497b66f2 2195
6faa6833 2196 return freelist;
497b66f2
CL
2197}
2198
072bb0aa
MG
2199static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2200{
2201 if (unlikely(PageSlabPfmemalloc(page)))
2202 return gfp_pfmemalloc_allowed(gfpflags);
2203
2204 return true;
2205}
2206
213eeb9f 2207/*
d0e0ac97
CG
2208 * Check the page->freelist of a page and either transfer the freelist to the
2209 * per cpu freelist or deactivate the page.
213eeb9f
CL
2210 *
2211 * The page is still frozen if the return value is not NULL.
2212 *
2213 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2214 *
2215 * This function must be called with interrupt disabled.
213eeb9f
CL
2216 */
2217static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2218{
2219 struct page new;
2220 unsigned long counters;
2221 void *freelist;
2222
2223 do {
2224 freelist = page->freelist;
2225 counters = page->counters;
6faa6833 2226
213eeb9f 2227 new.counters = counters;
a0132ac0 2228 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2229
2230 new.inuse = page->objects;
2231 new.frozen = freelist != NULL;
2232
d24ac77f 2233 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2234 freelist, counters,
2235 NULL, new.counters,
2236 "get_freelist"));
2237
2238 return freelist;
2239}
2240
81819f0f 2241/*
894b8788
CL
2242 * Slow path. The lockless freelist is empty or we need to perform
2243 * debugging duties.
2244 *
894b8788
CL
2245 * Processing is still very fast if new objects have been freed to the
2246 * regular freelist. In that case we simply take over the regular freelist
2247 * as the lockless freelist and zap the regular freelist.
81819f0f 2248 *
894b8788
CL
2249 * If that is not working then we fall back to the partial lists. We take the
2250 * first element of the freelist as the object to allocate now and move the
2251 * rest of the freelist to the lockless freelist.
81819f0f 2252 *
894b8788 2253 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2254 * we need to allocate a new slab. This is the slowest path since it involves
2255 * a call to the page allocator and the setup of a new slab.
81819f0f 2256 */
ce71e27c
EGM
2257static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2258 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2259{
6faa6833 2260 void *freelist;
f6e7def7 2261 struct page *page;
8a5ec0ba
CL
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
2265#ifdef CONFIG_PREEMPT
2266 /*
2267 * We may have been preempted and rescheduled on a different
2268 * cpu before disabling interrupts. Need to reload cpu area
2269 * pointer.
2270 */
2271 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2272#endif
81819f0f 2273
f6e7def7
CL
2274 page = c->page;
2275 if (!page)
81819f0f 2276 goto new_slab;
49e22585 2277redo:
6faa6833 2278
57d437d2 2279 if (unlikely(!node_match(page, node))) {
e36a2652 2280 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2281 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2282 c->page = NULL;
2283 c->freelist = NULL;
fc59c053
CL
2284 goto new_slab;
2285 }
6446faa2 2286
072bb0aa
MG
2287 /*
2288 * By rights, we should be searching for a slab page that was
2289 * PFMEMALLOC but right now, we are losing the pfmemalloc
2290 * information when the page leaves the per-cpu allocator
2291 */
2292 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2293 deactivate_slab(s, page, c->freelist);
2294 c->page = NULL;
2295 c->freelist = NULL;
2296 goto new_slab;
2297 }
2298
73736e03 2299 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2300 freelist = c->freelist;
2301 if (freelist)
73736e03 2302 goto load_freelist;
03e404af 2303
f6e7def7 2304 freelist = get_freelist(s, page);
6446faa2 2305
6faa6833 2306 if (!freelist) {
03e404af
CL
2307 c->page = NULL;
2308 stat(s, DEACTIVATE_BYPASS);
fc59c053 2309 goto new_slab;
03e404af 2310 }
6446faa2 2311
84e554e6 2312 stat(s, ALLOC_REFILL);
6446faa2 2313
894b8788 2314load_freelist:
507effea
CL
2315 /*
2316 * freelist is pointing to the list of objects to be used.
2317 * page is pointing to the page from which the objects are obtained.
2318 * That page must be frozen for per cpu allocations to work.
2319 */
a0132ac0 2320 VM_BUG_ON(!c->page->frozen);
6faa6833 2321 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2322 c->tid = next_tid(c->tid);
2323 local_irq_restore(flags);
6faa6833 2324 return freelist;
81819f0f 2325
81819f0f 2326new_slab:
2cfb7455 2327
49e22585 2328 if (c->partial) {
f6e7def7
CL
2329 page = c->page = c->partial;
2330 c->partial = page->next;
49e22585
CL
2331 stat(s, CPU_PARTIAL_ALLOC);
2332 c->freelist = NULL;
2333 goto redo;
81819f0f
CL
2334 }
2335
188fd063 2336 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2337
f4697436 2338 if (unlikely(!freelist)) {
9a02d699 2339 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2340 local_irq_restore(flags);
2341 return NULL;
81819f0f 2342 }
2cfb7455 2343
f6e7def7 2344 page = c->page;
5091b74a 2345 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2346 goto load_freelist;
2cfb7455 2347
497b66f2 2348 /* Only entered in the debug case */
d0e0ac97
CG
2349 if (kmem_cache_debug(s) &&
2350 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2351 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2352
f6e7def7 2353 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2354 c->page = NULL;
2355 c->freelist = NULL;
a71ae47a 2356 local_irq_restore(flags);
6faa6833 2357 return freelist;
894b8788
CL
2358}
2359
2360/*
2361 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2362 * have the fastpath folded into their functions. So no function call
2363 * overhead for requests that can be satisfied on the fastpath.
2364 *
2365 * The fastpath works by first checking if the lockless freelist can be used.
2366 * If not then __slab_alloc is called for slow processing.
2367 *
2368 * Otherwise we can simply pick the next object from the lockless free list.
2369 */
2b847c3c 2370static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2371 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2372{
894b8788 2373 void **object;
dfb4f096 2374 struct kmem_cache_cpu *c;
57d437d2 2375 struct page *page;
8a5ec0ba 2376 unsigned long tid;
1f84260c 2377
c016b0bd 2378 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2379 return NULL;
1f84260c 2380
d79923fa 2381 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2382redo:
8a5ec0ba
CL
2383 /*
2384 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2385 * enabled. We may switch back and forth between cpus while
2386 * reading from one cpu area. That does not matter as long
2387 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2388 *
2389 * Preemption is disabled for the retrieval of the tid because that
2390 * must occur from the current processor. We cannot allow rescheduling
2391 * on a different processor between the determination of the pointer
2392 * and the retrieval of the tid.
8a5ec0ba 2393 */
7cccd80b 2394 preempt_disable();
7c8e0181 2395 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2396
8a5ec0ba
CL
2397 /*
2398 * The transaction ids are globally unique per cpu and per operation on
2399 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2400 * occurs on the right processor and that there was no operation on the
2401 * linked list in between.
2402 */
2403 tid = c->tid;
7cccd80b 2404 preempt_enable();
8a5ec0ba 2405
9dfc6e68 2406 object = c->freelist;
57d437d2 2407 page = c->page;
8eae1492 2408 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2409 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2410 stat(s, ALLOC_SLOWPATH);
2411 } else {
0ad9500e
ED
2412 void *next_object = get_freepointer_safe(s, object);
2413
8a5ec0ba 2414 /*
25985edc 2415 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2416 * operation and if we are on the right processor.
2417 *
d0e0ac97
CG
2418 * The cmpxchg does the following atomically (without lock
2419 * semantics!)
8a5ec0ba
CL
2420 * 1. Relocate first pointer to the current per cpu area.
2421 * 2. Verify that tid and freelist have not been changed
2422 * 3. If they were not changed replace tid and freelist
2423 *
d0e0ac97
CG
2424 * Since this is without lock semantics the protection is only
2425 * against code executing on this cpu *not* from access by
2426 * other cpus.
8a5ec0ba 2427 */
933393f5 2428 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2429 s->cpu_slab->freelist, s->cpu_slab->tid,
2430 object, tid,
0ad9500e 2431 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2432
2433 note_cmpxchg_failure("slab_alloc", s, tid);
2434 goto redo;
2435 }
0ad9500e 2436 prefetch_freepointer(s, next_object);
84e554e6 2437 stat(s, ALLOC_FASTPATH);
894b8788 2438 }
8a5ec0ba 2439
74e2134f 2440 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2441 memset(object, 0, s->object_size);
d07dbea4 2442
c016b0bd 2443 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2444
894b8788 2445 return object;
81819f0f
CL
2446}
2447
2b847c3c
EG
2448static __always_inline void *slab_alloc(struct kmem_cache *s,
2449 gfp_t gfpflags, unsigned long addr)
2450{
2451 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2452}
2453
81819f0f
CL
2454void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2455{
2b847c3c 2456 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2457
d0e0ac97
CG
2458 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2459 s->size, gfpflags);
5b882be4
EGM
2460
2461 return ret;
81819f0f
CL
2462}
2463EXPORT_SYMBOL(kmem_cache_alloc);
2464
0f24f128 2465#ifdef CONFIG_TRACING
4a92379b
RK
2466void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2467{
2b847c3c 2468 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2469 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2470 return ret;
2471}
2472EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2473#endif
2474
81819f0f
CL
2475#ifdef CONFIG_NUMA
2476void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2477{
2b847c3c 2478 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2479
ca2b84cb 2480 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2481 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2482
2483 return ret;
81819f0f
CL
2484}
2485EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2486
0f24f128 2487#ifdef CONFIG_TRACING
4a92379b 2488void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2489 gfp_t gfpflags,
4a92379b 2490 int node, size_t size)
5b882be4 2491{
2b847c3c 2492 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2493
2494 trace_kmalloc_node(_RET_IP_, ret,
2495 size, s->size, gfpflags, node);
2496 return ret;
5b882be4 2497}
4a92379b 2498EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2499#endif
5d1f57e4 2500#endif
5b882be4 2501
81819f0f 2502/*
894b8788
CL
2503 * Slow patch handling. This may still be called frequently since objects
2504 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2505 *
894b8788
CL
2506 * So we still attempt to reduce cache line usage. Just take the slab
2507 * lock and free the item. If there is no additional partial page
2508 * handling required then we can return immediately.
81819f0f 2509 */
894b8788 2510static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2511 void *x, unsigned long addr)
81819f0f
CL
2512{
2513 void *prior;
2514 void **object = (void *)x;
2cfb7455 2515 int was_frozen;
2cfb7455
CL
2516 struct page new;
2517 unsigned long counters;
2518 struct kmem_cache_node *n = NULL;
61728d1e 2519 unsigned long uninitialized_var(flags);
81819f0f 2520
8a5ec0ba 2521 stat(s, FREE_SLOWPATH);
81819f0f 2522
19c7ff9e
CL
2523 if (kmem_cache_debug(s) &&
2524 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2525 return;
6446faa2 2526
2cfb7455 2527 do {
837d678d
JK
2528 if (unlikely(n)) {
2529 spin_unlock_irqrestore(&n->list_lock, flags);
2530 n = NULL;
2531 }
2cfb7455
CL
2532 prior = page->freelist;
2533 counters = page->counters;
2534 set_freepointer(s, object, prior);
2535 new.counters = counters;
2536 was_frozen = new.frozen;
2537 new.inuse--;
837d678d 2538 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2539
c65c1877 2540 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2541
2542 /*
d0e0ac97
CG
2543 * Slab was on no list before and will be
2544 * partially empty
2545 * We can defer the list move and instead
2546 * freeze it.
49e22585
CL
2547 */
2548 new.frozen = 1;
2549
c65c1877 2550 } else { /* Needs to be taken off a list */
49e22585
CL
2551
2552 n = get_node(s, page_to_nid(page));
2553 /*
2554 * Speculatively acquire the list_lock.
2555 * If the cmpxchg does not succeed then we may
2556 * drop the list_lock without any processing.
2557 *
2558 * Otherwise the list_lock will synchronize with
2559 * other processors updating the list of slabs.
2560 */
2561 spin_lock_irqsave(&n->list_lock, flags);
2562
2563 }
2cfb7455 2564 }
81819f0f 2565
2cfb7455
CL
2566 } while (!cmpxchg_double_slab(s, page,
2567 prior, counters,
2568 object, new.counters,
2569 "__slab_free"));
81819f0f 2570
2cfb7455 2571 if (likely(!n)) {
49e22585
CL
2572
2573 /*
2574 * If we just froze the page then put it onto the
2575 * per cpu partial list.
2576 */
8028dcea 2577 if (new.frozen && !was_frozen) {
49e22585 2578 put_cpu_partial(s, page, 1);
8028dcea
AS
2579 stat(s, CPU_PARTIAL_FREE);
2580 }
49e22585 2581 /*
2cfb7455
CL
2582 * The list lock was not taken therefore no list
2583 * activity can be necessary.
2584 */
2585 if (was_frozen)
2586 stat(s, FREE_FROZEN);
80f08c19 2587 return;
2cfb7455 2588 }
81819f0f 2589
8a5b20ae 2590 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2591 goto slab_empty;
2592
81819f0f 2593 /*
837d678d
JK
2594 * Objects left in the slab. If it was not on the partial list before
2595 * then add it.
81819f0f 2596 */
345c905d
JK
2597 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2598 if (kmem_cache_debug(s))
c65c1877 2599 remove_full(s, n, page);
837d678d
JK
2600 add_partial(n, page, DEACTIVATE_TO_TAIL);
2601 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2602 }
80f08c19 2603 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2604 return;
2605
2606slab_empty:
a973e9dd 2607 if (prior) {
81819f0f 2608 /*
6fbabb20 2609 * Slab on the partial list.
81819f0f 2610 */
5cc6eee8 2611 remove_partial(n, page);
84e554e6 2612 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2613 } else {
6fbabb20 2614 /* Slab must be on the full list */
c65c1877
PZ
2615 remove_full(s, n, page);
2616 }
2cfb7455 2617
80f08c19 2618 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2619 stat(s, FREE_SLAB);
81819f0f 2620 discard_slab(s, page);
81819f0f
CL
2621}
2622
894b8788
CL
2623/*
2624 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2625 * can perform fastpath freeing without additional function calls.
2626 *
2627 * The fastpath is only possible if we are freeing to the current cpu slab
2628 * of this processor. This typically the case if we have just allocated
2629 * the item before.
2630 *
2631 * If fastpath is not possible then fall back to __slab_free where we deal
2632 * with all sorts of special processing.
2633 */
06428780 2634static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2635 struct page *page, void *x, unsigned long addr)
894b8788
CL
2636{
2637 void **object = (void *)x;
dfb4f096 2638 struct kmem_cache_cpu *c;
8a5ec0ba 2639 unsigned long tid;
1f84260c 2640
c016b0bd
CL
2641 slab_free_hook(s, x);
2642
8a5ec0ba
CL
2643redo:
2644 /*
2645 * Determine the currently cpus per cpu slab.
2646 * The cpu may change afterward. However that does not matter since
2647 * data is retrieved via this pointer. If we are on the same cpu
2648 * during the cmpxchg then the free will succedd.
2649 */
7cccd80b 2650 preempt_disable();
7c8e0181 2651 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2652
8a5ec0ba 2653 tid = c->tid;
7cccd80b 2654 preempt_enable();
c016b0bd 2655
442b06bc 2656 if (likely(page == c->page)) {
ff12059e 2657 set_freepointer(s, object, c->freelist);
8a5ec0ba 2658
933393f5 2659 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2660 s->cpu_slab->freelist, s->cpu_slab->tid,
2661 c->freelist, tid,
2662 object, next_tid(tid)))) {
2663
2664 note_cmpxchg_failure("slab_free", s, tid);
2665 goto redo;
2666 }
84e554e6 2667 stat(s, FREE_FASTPATH);
894b8788 2668 } else
ff12059e 2669 __slab_free(s, page, x, addr);
894b8788 2670
894b8788
CL
2671}
2672
81819f0f
CL
2673void kmem_cache_free(struct kmem_cache *s, void *x)
2674{
b9ce5ef4
GC
2675 s = cache_from_obj(s, x);
2676 if (!s)
79576102 2677 return;
b9ce5ef4 2678 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2679 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2680}
2681EXPORT_SYMBOL(kmem_cache_free);
2682
81819f0f 2683/*
672bba3a
CL
2684 * Object placement in a slab is made very easy because we always start at
2685 * offset 0. If we tune the size of the object to the alignment then we can
2686 * get the required alignment by putting one properly sized object after
2687 * another.
81819f0f
CL
2688 *
2689 * Notice that the allocation order determines the sizes of the per cpu
2690 * caches. Each processor has always one slab available for allocations.
2691 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2692 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2693 * locking overhead.
81819f0f
CL
2694 */
2695
2696/*
2697 * Mininum / Maximum order of slab pages. This influences locking overhead
2698 * and slab fragmentation. A higher order reduces the number of partial slabs
2699 * and increases the number of allocations possible without having to
2700 * take the list_lock.
2701 */
2702static int slub_min_order;
114e9e89 2703static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2704static int slub_min_objects;
81819f0f
CL
2705
2706/*
2707 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2708 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2709 */
2710static int slub_nomerge;
2711
81819f0f
CL
2712/*
2713 * Calculate the order of allocation given an slab object size.
2714 *
672bba3a
CL
2715 * The order of allocation has significant impact on performance and other
2716 * system components. Generally order 0 allocations should be preferred since
2717 * order 0 does not cause fragmentation in the page allocator. Larger objects
2718 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2719 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2720 * would be wasted.
2721 *
2722 * In order to reach satisfactory performance we must ensure that a minimum
2723 * number of objects is in one slab. Otherwise we may generate too much
2724 * activity on the partial lists which requires taking the list_lock. This is
2725 * less a concern for large slabs though which are rarely used.
81819f0f 2726 *
672bba3a
CL
2727 * slub_max_order specifies the order where we begin to stop considering the
2728 * number of objects in a slab as critical. If we reach slub_max_order then
2729 * we try to keep the page order as low as possible. So we accept more waste
2730 * of space in favor of a small page order.
81819f0f 2731 *
672bba3a
CL
2732 * Higher order allocations also allow the placement of more objects in a
2733 * slab and thereby reduce object handling overhead. If the user has
2734 * requested a higher mininum order then we start with that one instead of
2735 * the smallest order which will fit the object.
81819f0f 2736 */
5e6d444e 2737static inline int slab_order(int size, int min_objects,
ab9a0f19 2738 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2739{
2740 int order;
2741 int rem;
6300ea75 2742 int min_order = slub_min_order;
81819f0f 2743
ab9a0f19 2744 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2745 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2746
6300ea75 2747 for (order = max(min_order,
5e6d444e
CL
2748 fls(min_objects * size - 1) - PAGE_SHIFT);
2749 order <= max_order; order++) {
81819f0f 2750
5e6d444e 2751 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2752
ab9a0f19 2753 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2754 continue;
2755
ab9a0f19 2756 rem = (slab_size - reserved) % size;
81819f0f 2757
5e6d444e 2758 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2759 break;
2760
2761 }
672bba3a 2762
81819f0f
CL
2763 return order;
2764}
2765
ab9a0f19 2766static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2767{
2768 int order;
2769 int min_objects;
2770 int fraction;
e8120ff1 2771 int max_objects;
5e6d444e
CL
2772
2773 /*
2774 * Attempt to find best configuration for a slab. This
2775 * works by first attempting to generate a layout with
2776 * the best configuration and backing off gradually.
2777 *
2778 * First we reduce the acceptable waste in a slab. Then
2779 * we reduce the minimum objects required in a slab.
2780 */
2781 min_objects = slub_min_objects;
9b2cd506
CL
2782 if (!min_objects)
2783 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2784 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2785 min_objects = min(min_objects, max_objects);
2786
5e6d444e 2787 while (min_objects > 1) {
c124f5b5 2788 fraction = 16;
5e6d444e
CL
2789 while (fraction >= 4) {
2790 order = slab_order(size, min_objects,
ab9a0f19 2791 slub_max_order, fraction, reserved);
5e6d444e
CL
2792 if (order <= slub_max_order)
2793 return order;
2794 fraction /= 2;
2795 }
5086c389 2796 min_objects--;
5e6d444e
CL
2797 }
2798
2799 /*
2800 * We were unable to place multiple objects in a slab. Now
2801 * lets see if we can place a single object there.
2802 */
ab9a0f19 2803 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2804 if (order <= slub_max_order)
2805 return order;
2806
2807 /*
2808 * Doh this slab cannot be placed using slub_max_order.
2809 */
ab9a0f19 2810 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2811 if (order < MAX_ORDER)
5e6d444e
CL
2812 return order;
2813 return -ENOSYS;
2814}
2815
5595cffc 2816static void
4053497d 2817init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2818{
2819 n->nr_partial = 0;
81819f0f
CL
2820 spin_lock_init(&n->list_lock);
2821 INIT_LIST_HEAD(&n->partial);
8ab1372f 2822#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2823 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2824 atomic_long_set(&n->total_objects, 0);
643b1138 2825 INIT_LIST_HEAD(&n->full);
8ab1372f 2826#endif
81819f0f
CL
2827}
2828
55136592 2829static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2830{
6c182dc0 2831 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2832 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2833
8a5ec0ba 2834 /*
d4d84fef
CM
2835 * Must align to double word boundary for the double cmpxchg
2836 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2837 */
d4d84fef
CM
2838 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2839 2 * sizeof(void *));
8a5ec0ba
CL
2840
2841 if (!s->cpu_slab)
2842 return 0;
2843
2844 init_kmem_cache_cpus(s);
4c93c355 2845
8a5ec0ba 2846 return 1;
4c93c355 2847}
4c93c355 2848
51df1142
CL
2849static struct kmem_cache *kmem_cache_node;
2850
81819f0f
CL
2851/*
2852 * No kmalloc_node yet so do it by hand. We know that this is the first
2853 * slab on the node for this slabcache. There are no concurrent accesses
2854 * possible.
2855 *
721ae22a
ZYW
2856 * Note that this function only works on the kmem_cache_node
2857 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2858 * memory on a fresh node that has no slab structures yet.
81819f0f 2859 */
55136592 2860static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2861{
2862 struct page *page;
2863 struct kmem_cache_node *n;
2864
51df1142 2865 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2866
51df1142 2867 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2868
2869 BUG_ON(!page);
a2f92ee7 2870 if (page_to_nid(page) != node) {
f9f58285
FF
2871 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2872 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2873 }
2874
81819f0f
CL
2875 n = page->freelist;
2876 BUG_ON(!n);
51df1142 2877 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2878 page->inuse = 1;
8cb0a506 2879 page->frozen = 0;
51df1142 2880 kmem_cache_node->node[node] = n;
8ab1372f 2881#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2882 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2883 init_tracking(kmem_cache_node, n);
8ab1372f 2884#endif
4053497d 2885 init_kmem_cache_node(n);
51df1142 2886 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2887
67b6c900 2888 /*
1e4dd946
SR
2889 * No locks need to be taken here as it has just been
2890 * initialized and there is no concurrent access.
67b6c900 2891 */
1e4dd946 2892 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2893}
2894
2895static void free_kmem_cache_nodes(struct kmem_cache *s)
2896{
2897 int node;
fa45dc25 2898 struct kmem_cache_node *n;
81819f0f 2899
fa45dc25
CL
2900 for_each_kmem_cache_node(s, node, n) {
2901 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2902 s->node[node] = NULL;
2903 }
2904}
2905
55136592 2906static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2907{
2908 int node;
81819f0f 2909
f64dc58c 2910 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2911 struct kmem_cache_node *n;
2912
73367bd8 2913 if (slab_state == DOWN) {
55136592 2914 early_kmem_cache_node_alloc(node);
73367bd8
AD
2915 continue;
2916 }
51df1142 2917 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2918 GFP_KERNEL, node);
81819f0f 2919
73367bd8
AD
2920 if (!n) {
2921 free_kmem_cache_nodes(s);
2922 return 0;
81819f0f 2923 }
73367bd8 2924
81819f0f 2925 s->node[node] = n;
4053497d 2926 init_kmem_cache_node(n);
81819f0f
CL
2927 }
2928 return 1;
2929}
81819f0f 2930
c0bdb232 2931static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2932{
2933 if (min < MIN_PARTIAL)
2934 min = MIN_PARTIAL;
2935 else if (min > MAX_PARTIAL)
2936 min = MAX_PARTIAL;
2937 s->min_partial = min;
2938}
2939
81819f0f
CL
2940/*
2941 * calculate_sizes() determines the order and the distribution of data within
2942 * a slab object.
2943 */
06b285dc 2944static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2945{
2946 unsigned long flags = s->flags;
3b0efdfa 2947 unsigned long size = s->object_size;
834f3d11 2948 int order;
81819f0f 2949
d8b42bf5
CL
2950 /*
2951 * Round up object size to the next word boundary. We can only
2952 * place the free pointer at word boundaries and this determines
2953 * the possible location of the free pointer.
2954 */
2955 size = ALIGN(size, sizeof(void *));
2956
2957#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2958 /*
2959 * Determine if we can poison the object itself. If the user of
2960 * the slab may touch the object after free or before allocation
2961 * then we should never poison the object itself.
2962 */
2963 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2964 !s->ctor)
81819f0f
CL
2965 s->flags |= __OBJECT_POISON;
2966 else
2967 s->flags &= ~__OBJECT_POISON;
2968
81819f0f
CL
2969
2970 /*
672bba3a 2971 * If we are Redzoning then check if there is some space between the
81819f0f 2972 * end of the object and the free pointer. If not then add an
672bba3a 2973 * additional word to have some bytes to store Redzone information.
81819f0f 2974 */
3b0efdfa 2975 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2976 size += sizeof(void *);
41ecc55b 2977#endif
81819f0f
CL
2978
2979 /*
672bba3a
CL
2980 * With that we have determined the number of bytes in actual use
2981 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2982 */
2983 s->inuse = size;
2984
2985 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2986 s->ctor)) {
81819f0f
CL
2987 /*
2988 * Relocate free pointer after the object if it is not
2989 * permitted to overwrite the first word of the object on
2990 * kmem_cache_free.
2991 *
2992 * This is the case if we do RCU, have a constructor or
2993 * destructor or are poisoning the objects.
2994 */
2995 s->offset = size;
2996 size += sizeof(void *);
2997 }
2998
c12b3c62 2999#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3000 if (flags & SLAB_STORE_USER)
3001 /*
3002 * Need to store information about allocs and frees after
3003 * the object.
3004 */
3005 size += 2 * sizeof(struct track);
3006
be7b3fbc 3007 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3008 /*
3009 * Add some empty padding so that we can catch
3010 * overwrites from earlier objects rather than let
3011 * tracking information or the free pointer be
0211a9c8 3012 * corrupted if a user writes before the start
81819f0f
CL
3013 * of the object.
3014 */
3015 size += sizeof(void *);
41ecc55b 3016#endif
672bba3a 3017
81819f0f
CL
3018 /*
3019 * SLUB stores one object immediately after another beginning from
3020 * offset 0. In order to align the objects we have to simply size
3021 * each object to conform to the alignment.
3022 */
45906855 3023 size = ALIGN(size, s->align);
81819f0f 3024 s->size = size;
06b285dc
CL
3025 if (forced_order >= 0)
3026 order = forced_order;
3027 else
ab9a0f19 3028 order = calculate_order(size, s->reserved);
81819f0f 3029
834f3d11 3030 if (order < 0)
81819f0f
CL
3031 return 0;
3032
b7a49f0d 3033 s->allocflags = 0;
834f3d11 3034 if (order)
b7a49f0d
CL
3035 s->allocflags |= __GFP_COMP;
3036
3037 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3038 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3039
3040 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3041 s->allocflags |= __GFP_RECLAIMABLE;
3042
81819f0f
CL
3043 /*
3044 * Determine the number of objects per slab
3045 */
ab9a0f19
LJ
3046 s->oo = oo_make(order, size, s->reserved);
3047 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3048 if (oo_objects(s->oo) > oo_objects(s->max))
3049 s->max = s->oo;
81819f0f 3050
834f3d11 3051 return !!oo_objects(s->oo);
81819f0f
CL
3052}
3053
8a13a4cc 3054static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3055{
8a13a4cc 3056 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3057 s->reserved = 0;
81819f0f 3058
da9a638c
LJ
3059 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3060 s->reserved = sizeof(struct rcu_head);
81819f0f 3061
06b285dc 3062 if (!calculate_sizes(s, -1))
81819f0f 3063 goto error;
3de47213
DR
3064 if (disable_higher_order_debug) {
3065 /*
3066 * Disable debugging flags that store metadata if the min slab
3067 * order increased.
3068 */
3b0efdfa 3069 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3070 s->flags &= ~DEBUG_METADATA_FLAGS;
3071 s->offset = 0;
3072 if (!calculate_sizes(s, -1))
3073 goto error;
3074 }
3075 }
81819f0f 3076
2565409f
HC
3077#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3078 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3079 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3080 /* Enable fast mode */
3081 s->flags |= __CMPXCHG_DOUBLE;
3082#endif
3083
3b89d7d8
DR
3084 /*
3085 * The larger the object size is, the more pages we want on the partial
3086 * list to avoid pounding the page allocator excessively.
3087 */
49e22585
CL
3088 set_min_partial(s, ilog2(s->size) / 2);
3089
3090 /*
3091 * cpu_partial determined the maximum number of objects kept in the
3092 * per cpu partial lists of a processor.
3093 *
3094 * Per cpu partial lists mainly contain slabs that just have one
3095 * object freed. If they are used for allocation then they can be
3096 * filled up again with minimal effort. The slab will never hit the
3097 * per node partial lists and therefore no locking will be required.
3098 *
3099 * This setting also determines
3100 *
3101 * A) The number of objects from per cpu partial slabs dumped to the
3102 * per node list when we reach the limit.
9f264904 3103 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3104 * per node list when we run out of per cpu objects. We only fetch
3105 * 50% to keep some capacity around for frees.
49e22585 3106 */
345c905d 3107 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3108 s->cpu_partial = 0;
3109 else if (s->size >= PAGE_SIZE)
49e22585
CL
3110 s->cpu_partial = 2;
3111 else if (s->size >= 1024)
3112 s->cpu_partial = 6;
3113 else if (s->size >= 256)
3114 s->cpu_partial = 13;
3115 else
3116 s->cpu_partial = 30;
3117
81819f0f 3118#ifdef CONFIG_NUMA
e2cb96b7 3119 s->remote_node_defrag_ratio = 1000;
81819f0f 3120#endif
55136592 3121 if (!init_kmem_cache_nodes(s))
dfb4f096 3122 goto error;
81819f0f 3123
55136592 3124 if (alloc_kmem_cache_cpus(s))
278b1bb1 3125 return 0;
ff12059e 3126
4c93c355 3127 free_kmem_cache_nodes(s);
81819f0f
CL
3128error:
3129 if (flags & SLAB_PANIC)
3130 panic("Cannot create slab %s size=%lu realsize=%u "
3131 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3132 s->name, (unsigned long)s->size, s->size,
3133 oo_order(s->oo), s->offset, flags);
278b1bb1 3134 return -EINVAL;
81819f0f 3135}
81819f0f 3136
33b12c38
CL
3137static void list_slab_objects(struct kmem_cache *s, struct page *page,
3138 const char *text)
3139{
3140#ifdef CONFIG_SLUB_DEBUG
3141 void *addr = page_address(page);
3142 void *p;
a5dd5c11
NK
3143 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3144 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3145 if (!map)
3146 return;
945cf2b6 3147 slab_err(s, page, text, s->name);
33b12c38 3148 slab_lock(page);
33b12c38 3149
5f80b13a 3150 get_map(s, page, map);
33b12c38
CL
3151 for_each_object(p, s, addr, page->objects) {
3152
3153 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3154 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3155 print_tracking(s, p);
3156 }
3157 }
3158 slab_unlock(page);
bbd7d57b 3159 kfree(map);
33b12c38
CL
3160#endif
3161}
3162
81819f0f 3163/*
599870b1 3164 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3165 * This is called from kmem_cache_close(). We must be the last thread
3166 * using the cache and therefore we do not need to lock anymore.
81819f0f 3167 */
599870b1 3168static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3169{
81819f0f
CL
3170 struct page *page, *h;
3171
33b12c38 3172 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3173 if (!page->inuse) {
1e4dd946 3174 __remove_partial(n, page);
81819f0f 3175 discard_slab(s, page);
33b12c38
CL
3176 } else {
3177 list_slab_objects(s, page,
945cf2b6 3178 "Objects remaining in %s on kmem_cache_close()");
599870b1 3179 }
33b12c38 3180 }
81819f0f
CL
3181}
3182
3183/*
672bba3a 3184 * Release all resources used by a slab cache.
81819f0f 3185 */
0c710013 3186static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3187{
3188 int node;
fa45dc25 3189 struct kmem_cache_node *n;
81819f0f
CL
3190
3191 flush_all(s);
81819f0f 3192 /* Attempt to free all objects */
fa45dc25 3193 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3194 free_partial(s, n);
3195 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3196 return 1;
3197 }
945cf2b6 3198 free_percpu(s->cpu_slab);
81819f0f
CL
3199 free_kmem_cache_nodes(s);
3200 return 0;
3201}
3202
945cf2b6 3203int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3204{
41a21285 3205 return kmem_cache_close(s);
81819f0f 3206}
81819f0f
CL
3207
3208/********************************************************************
3209 * Kmalloc subsystem
3210 *******************************************************************/
3211
81819f0f
CL
3212static int __init setup_slub_min_order(char *str)
3213{
06428780 3214 get_option(&str, &slub_min_order);
81819f0f
CL
3215
3216 return 1;
3217}
3218
3219__setup("slub_min_order=", setup_slub_min_order);
3220
3221static int __init setup_slub_max_order(char *str)
3222{
06428780 3223 get_option(&str, &slub_max_order);
818cf590 3224 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3225
3226 return 1;
3227}
3228
3229__setup("slub_max_order=", setup_slub_max_order);
3230
3231static int __init setup_slub_min_objects(char *str)
3232{
06428780 3233 get_option(&str, &slub_min_objects);
81819f0f
CL
3234
3235 return 1;
3236}
3237
3238__setup("slub_min_objects=", setup_slub_min_objects);
3239
3240static int __init setup_slub_nomerge(char *str)
3241{
3242 slub_nomerge = 1;
3243 return 1;
3244}
3245
3246__setup("slub_nomerge", setup_slub_nomerge);
3247
81819f0f
CL
3248void *__kmalloc(size_t size, gfp_t flags)
3249{
aadb4bc4 3250 struct kmem_cache *s;
5b882be4 3251 void *ret;
81819f0f 3252
95a05b42 3253 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3254 return kmalloc_large(size, flags);
aadb4bc4 3255
2c59dd65 3256 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3257
3258 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3259 return s;
3260
2b847c3c 3261 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3262
ca2b84cb 3263 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3264
3265 return ret;
81819f0f
CL
3266}
3267EXPORT_SYMBOL(__kmalloc);
3268
5d1f57e4 3269#ifdef CONFIG_NUMA
f619cfe1
CL
3270static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3271{
b1eeab67 3272 struct page *page;
e4f7c0b4 3273 void *ptr = NULL;
f619cfe1 3274
52383431
VD
3275 flags |= __GFP_COMP | __GFP_NOTRACK;
3276 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3277 if (page)
e4f7c0b4
CM
3278 ptr = page_address(page);
3279
d56791b3 3280 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3281 return ptr;
f619cfe1
CL
3282}
3283
81819f0f
CL
3284void *__kmalloc_node(size_t size, gfp_t flags, int node)
3285{
aadb4bc4 3286 struct kmem_cache *s;
5b882be4 3287 void *ret;
81819f0f 3288
95a05b42 3289 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3290 ret = kmalloc_large_node(size, flags, node);
3291
ca2b84cb
EGM
3292 trace_kmalloc_node(_RET_IP_, ret,
3293 size, PAGE_SIZE << get_order(size),
3294 flags, node);
5b882be4
EGM
3295
3296 return ret;
3297 }
aadb4bc4 3298
2c59dd65 3299 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3300
3301 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3302 return s;
3303
2b847c3c 3304 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3305
ca2b84cb 3306 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3307
3308 return ret;
81819f0f
CL
3309}
3310EXPORT_SYMBOL(__kmalloc_node);
3311#endif
3312
3313size_t ksize(const void *object)
3314{
272c1d21 3315 struct page *page;
81819f0f 3316
ef8b4520 3317 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3318 return 0;
3319
294a80a8 3320 page = virt_to_head_page(object);
294a80a8 3321
76994412
PE
3322 if (unlikely(!PageSlab(page))) {
3323 WARN_ON(!PageCompound(page));
294a80a8 3324 return PAGE_SIZE << compound_order(page);
76994412 3325 }
81819f0f 3326
1b4f59e3 3327 return slab_ksize(page->slab_cache);
81819f0f 3328}
b1aabecd 3329EXPORT_SYMBOL(ksize);
81819f0f
CL
3330
3331void kfree(const void *x)
3332{
81819f0f 3333 struct page *page;
5bb983b0 3334 void *object = (void *)x;
81819f0f 3335
2121db74
PE
3336 trace_kfree(_RET_IP_, x);
3337
2408c550 3338 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3339 return;
3340
b49af68f 3341 page = virt_to_head_page(x);
aadb4bc4 3342 if (unlikely(!PageSlab(page))) {
0937502a 3343 BUG_ON(!PageCompound(page));
d56791b3 3344 kfree_hook(x);
52383431 3345 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3346 return;
3347 }
1b4f59e3 3348 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3349}
3350EXPORT_SYMBOL(kfree);
3351
2086d26a 3352/*
672bba3a
CL
3353 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3354 * the remaining slabs by the number of items in use. The slabs with the
3355 * most items in use come first. New allocations will then fill those up
3356 * and thus they can be removed from the partial lists.
3357 *
3358 * The slabs with the least items are placed last. This results in them
3359 * being allocated from last increasing the chance that the last objects
3360 * are freed in them.
2086d26a 3361 */
03afc0e2 3362int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3363{
3364 int node;
3365 int i;
3366 struct kmem_cache_node *n;
3367 struct page *page;
3368 struct page *t;
205ab99d 3369 int objects = oo_objects(s->max);
2086d26a 3370 struct list_head *slabs_by_inuse =
834f3d11 3371 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3372 unsigned long flags;
3373
3374 if (!slabs_by_inuse)
3375 return -ENOMEM;
3376
3377 flush_all(s);
fa45dc25 3378 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3379 if (!n->nr_partial)
3380 continue;
3381
834f3d11 3382 for (i = 0; i < objects; i++)
2086d26a
CL
3383 INIT_LIST_HEAD(slabs_by_inuse + i);
3384
3385 spin_lock_irqsave(&n->list_lock, flags);
3386
3387 /*
672bba3a 3388 * Build lists indexed by the items in use in each slab.
2086d26a 3389 *
672bba3a
CL
3390 * Note that concurrent frees may occur while we hold the
3391 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3392 */
3393 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3394 list_move(&page->lru, slabs_by_inuse + page->inuse);
3395 if (!page->inuse)
3396 n->nr_partial--;
2086d26a
CL
3397 }
3398
2086d26a 3399 /*
672bba3a
CL
3400 * Rebuild the partial list with the slabs filled up most
3401 * first and the least used slabs at the end.
2086d26a 3402 */
69cb8e6b 3403 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3404 list_splice(slabs_by_inuse + i, n->partial.prev);
3405
2086d26a 3406 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3407
3408 /* Release empty slabs */
3409 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3410 discard_slab(s, page);
2086d26a
CL
3411 }
3412
3413 kfree(slabs_by_inuse);
3414 return 0;
3415}
2086d26a 3416
b9049e23
YG
3417static int slab_mem_going_offline_callback(void *arg)
3418{
3419 struct kmem_cache *s;
3420
18004c5d 3421 mutex_lock(&slab_mutex);
b9049e23 3422 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3423 __kmem_cache_shrink(s);
18004c5d 3424 mutex_unlock(&slab_mutex);
b9049e23
YG
3425
3426 return 0;
3427}
3428
3429static void slab_mem_offline_callback(void *arg)
3430{
3431 struct kmem_cache_node *n;
3432 struct kmem_cache *s;
3433 struct memory_notify *marg = arg;
3434 int offline_node;
3435
b9d5ab25 3436 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3437
3438 /*
3439 * If the node still has available memory. we need kmem_cache_node
3440 * for it yet.
3441 */
3442 if (offline_node < 0)
3443 return;
3444
18004c5d 3445 mutex_lock(&slab_mutex);
b9049e23
YG
3446 list_for_each_entry(s, &slab_caches, list) {
3447 n = get_node(s, offline_node);
3448 if (n) {
3449 /*
3450 * if n->nr_slabs > 0, slabs still exist on the node
3451 * that is going down. We were unable to free them,
c9404c9c 3452 * and offline_pages() function shouldn't call this
b9049e23
YG
3453 * callback. So, we must fail.
3454 */
0f389ec6 3455 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3456
3457 s->node[offline_node] = NULL;
8de66a0c 3458 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3459 }
3460 }
18004c5d 3461 mutex_unlock(&slab_mutex);
b9049e23
YG
3462}
3463
3464static int slab_mem_going_online_callback(void *arg)
3465{
3466 struct kmem_cache_node *n;
3467 struct kmem_cache *s;
3468 struct memory_notify *marg = arg;
b9d5ab25 3469 int nid = marg->status_change_nid_normal;
b9049e23
YG
3470 int ret = 0;
3471
3472 /*
3473 * If the node's memory is already available, then kmem_cache_node is
3474 * already created. Nothing to do.
3475 */
3476 if (nid < 0)
3477 return 0;
3478
3479 /*
0121c619 3480 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3481 * allocate a kmem_cache_node structure in order to bring the node
3482 * online.
3483 */
18004c5d 3484 mutex_lock(&slab_mutex);
b9049e23
YG
3485 list_for_each_entry(s, &slab_caches, list) {
3486 /*
3487 * XXX: kmem_cache_alloc_node will fallback to other nodes
3488 * since memory is not yet available from the node that
3489 * is brought up.
3490 */
8de66a0c 3491 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3492 if (!n) {
3493 ret = -ENOMEM;
3494 goto out;
3495 }
4053497d 3496 init_kmem_cache_node(n);
b9049e23
YG
3497 s->node[nid] = n;
3498 }
3499out:
18004c5d 3500 mutex_unlock(&slab_mutex);
b9049e23
YG
3501 return ret;
3502}
3503
3504static int slab_memory_callback(struct notifier_block *self,
3505 unsigned long action, void *arg)
3506{
3507 int ret = 0;
3508
3509 switch (action) {
3510 case MEM_GOING_ONLINE:
3511 ret = slab_mem_going_online_callback(arg);
3512 break;
3513 case MEM_GOING_OFFLINE:
3514 ret = slab_mem_going_offline_callback(arg);
3515 break;
3516 case MEM_OFFLINE:
3517 case MEM_CANCEL_ONLINE:
3518 slab_mem_offline_callback(arg);
3519 break;
3520 case MEM_ONLINE:
3521 case MEM_CANCEL_OFFLINE:
3522 break;
3523 }
dc19f9db
KH
3524 if (ret)
3525 ret = notifier_from_errno(ret);
3526 else
3527 ret = NOTIFY_OK;
b9049e23
YG
3528 return ret;
3529}
3530
3ac38faa
AM
3531static struct notifier_block slab_memory_callback_nb = {
3532 .notifier_call = slab_memory_callback,
3533 .priority = SLAB_CALLBACK_PRI,
3534};
b9049e23 3535
81819f0f
CL
3536/********************************************************************
3537 * Basic setup of slabs
3538 *******************************************************************/
3539
51df1142
CL
3540/*
3541 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3542 * the page allocator. Allocate them properly then fix up the pointers
3543 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3544 */
3545
dffb4d60 3546static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3547{
3548 int node;
dffb4d60 3549 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3550 struct kmem_cache_node *n;
51df1142 3551
dffb4d60 3552 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3553
7d557b3c
GC
3554 /*
3555 * This runs very early, and only the boot processor is supposed to be
3556 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3557 * IPIs around.
3558 */
3559 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3560 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3561 struct page *p;
3562
fa45dc25
CL
3563 list_for_each_entry(p, &n->partial, lru)
3564 p->slab_cache = s;
51df1142 3565
607bf324 3566#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3567 list_for_each_entry(p, &n->full, lru)
3568 p->slab_cache = s;
51df1142 3569#endif
51df1142 3570 }
dffb4d60
CL
3571 list_add(&s->list, &slab_caches);
3572 return s;
51df1142
CL
3573}
3574
81819f0f
CL
3575void __init kmem_cache_init(void)
3576{
dffb4d60
CL
3577 static __initdata struct kmem_cache boot_kmem_cache,
3578 boot_kmem_cache_node;
51df1142 3579
fc8d8620
SG
3580 if (debug_guardpage_minorder())
3581 slub_max_order = 0;
3582
dffb4d60
CL
3583 kmem_cache_node = &boot_kmem_cache_node;
3584 kmem_cache = &boot_kmem_cache;
51df1142 3585
dffb4d60
CL
3586 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3587 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3588
3ac38faa 3589 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3590
3591 /* Able to allocate the per node structures */
3592 slab_state = PARTIAL;
3593
dffb4d60
CL
3594 create_boot_cache(kmem_cache, "kmem_cache",
3595 offsetof(struct kmem_cache, node) +
3596 nr_node_ids * sizeof(struct kmem_cache_node *),
3597 SLAB_HWCACHE_ALIGN);
8a13a4cc 3598
dffb4d60 3599 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3600
51df1142
CL
3601 /*
3602 * Allocate kmem_cache_node properly from the kmem_cache slab.
3603 * kmem_cache_node is separately allocated so no need to
3604 * update any list pointers.
3605 */
dffb4d60 3606 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3607
3608 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3609 create_kmalloc_caches(0);
81819f0f
CL
3610
3611#ifdef CONFIG_SMP
3612 register_cpu_notifier(&slab_notifier);
9dfc6e68 3613#endif
81819f0f 3614
f9f58285 3615 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3616 cache_line_size(),
81819f0f
CL
3617 slub_min_order, slub_max_order, slub_min_objects,
3618 nr_cpu_ids, nr_node_ids);
3619}
3620
7e85ee0c
PE
3621void __init kmem_cache_init_late(void)
3622{
7e85ee0c
PE
3623}
3624
81819f0f
CL
3625/*
3626 * Find a mergeable slab cache
3627 */
3628static int slab_unmergeable(struct kmem_cache *s)
3629{
3630 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3631 return 1;
3632
a44cb944
VD
3633 if (!is_root_cache(s))
3634 return 1;
3635
c59def9f 3636 if (s->ctor)
81819f0f
CL
3637 return 1;
3638
8ffa6875
CL
3639 /*
3640 * We may have set a slab to be unmergeable during bootstrap.
3641 */
3642 if (s->refcount < 0)
3643 return 1;
3644
81819f0f
CL
3645 return 0;
3646}
3647
a44cb944
VD
3648static struct kmem_cache *find_mergeable(size_t size, size_t align,
3649 unsigned long flags, const char *name, void (*ctor)(void *))
81819f0f 3650{
5b95a4ac 3651 struct kmem_cache *s;
81819f0f
CL
3652
3653 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3654 return NULL;
3655
c59def9f 3656 if (ctor)
81819f0f
CL
3657 return NULL;
3658
3659 size = ALIGN(size, sizeof(void *));
3660 align = calculate_alignment(flags, align, size);
3661 size = ALIGN(size, align);
ba0268a8 3662 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3663
5b95a4ac 3664 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3665 if (slab_unmergeable(s))
3666 continue;
3667
3668 if (size > s->size)
3669 continue;
3670
ba0268a8 3671 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
a44cb944 3672 continue;
81819f0f
CL
3673 /*
3674 * Check if alignment is compatible.
3675 * Courtesy of Adrian Drzewiecki
3676 */
06428780 3677 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3678 continue;
3679
3680 if (s->size - size >= sizeof(void *))
3681 continue;
3682
3683 return s;
3684 }
3685 return NULL;
3686}
3687
2633d7a0 3688struct kmem_cache *
a44cb944
VD
3689__kmem_cache_alias(const char *name, size_t size, size_t align,
3690 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3691{
3692 struct kmem_cache *s;
3693
a44cb944 3694 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3695 if (s) {
84d0ddd6
VD
3696 int i;
3697 struct kmem_cache *c;
3698
81819f0f 3699 s->refcount++;
84d0ddd6 3700
81819f0f
CL
3701 /*
3702 * Adjust the object sizes so that we clear
3703 * the complete object on kzalloc.
3704 */
3b0efdfa 3705 s->object_size = max(s->object_size, (int)size);
81819f0f 3706 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3707
84d0ddd6
VD
3708 for_each_memcg_cache_index(i) {
3709 c = cache_from_memcg_idx(s, i);
3710 if (!c)
3711 continue;
3712 c->object_size = s->object_size;
3713 c->inuse = max_t(int, c->inuse,
3714 ALIGN(size, sizeof(void *)));
3715 }
3716
7b8f3b66 3717 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3718 s->refcount--;
cbb79694 3719 s = NULL;
7b8f3b66 3720 }
a0e1d1be 3721 }
6446faa2 3722
cbb79694
CL
3723 return s;
3724}
84c1cf62 3725
8a13a4cc 3726int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3727{
aac3a166
PE
3728 int err;
3729
3730 err = kmem_cache_open(s, flags);
3731 if (err)
3732 return err;
20cea968 3733
45530c44
CL
3734 /* Mutex is not taken during early boot */
3735 if (slab_state <= UP)
3736 return 0;
3737
107dab5c 3738 memcg_propagate_slab_attrs(s);
aac3a166 3739 err = sysfs_slab_add(s);
aac3a166
PE
3740 if (err)
3741 kmem_cache_close(s);
20cea968 3742
aac3a166 3743 return err;
81819f0f 3744}
81819f0f 3745
81819f0f 3746#ifdef CONFIG_SMP
81819f0f 3747/*
672bba3a
CL
3748 * Use the cpu notifier to insure that the cpu slabs are flushed when
3749 * necessary.
81819f0f 3750 */
0db0628d 3751static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3752 unsigned long action, void *hcpu)
3753{
3754 long cpu = (long)hcpu;
5b95a4ac
CL
3755 struct kmem_cache *s;
3756 unsigned long flags;
81819f0f
CL
3757
3758 switch (action) {
3759 case CPU_UP_CANCELED:
8bb78442 3760 case CPU_UP_CANCELED_FROZEN:
81819f0f 3761 case CPU_DEAD:
8bb78442 3762 case CPU_DEAD_FROZEN:
18004c5d 3763 mutex_lock(&slab_mutex);
5b95a4ac
CL
3764 list_for_each_entry(s, &slab_caches, list) {
3765 local_irq_save(flags);
3766 __flush_cpu_slab(s, cpu);
3767 local_irq_restore(flags);
3768 }
18004c5d 3769 mutex_unlock(&slab_mutex);
81819f0f
CL
3770 break;
3771 default:
3772 break;
3773 }
3774 return NOTIFY_OK;
3775}
3776
0db0628d 3777static struct notifier_block slab_notifier = {
3adbefee 3778 .notifier_call = slab_cpuup_callback
06428780 3779};
81819f0f
CL
3780
3781#endif
3782
ce71e27c 3783void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3784{
aadb4bc4 3785 struct kmem_cache *s;
94b528d0 3786 void *ret;
aadb4bc4 3787
95a05b42 3788 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3789 return kmalloc_large(size, gfpflags);
3790
2c59dd65 3791 s = kmalloc_slab(size, gfpflags);
81819f0f 3792
2408c550 3793 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3794 return s;
81819f0f 3795
2b847c3c 3796 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3797
25985edc 3798 /* Honor the call site pointer we received. */
ca2b84cb 3799 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3800
3801 return ret;
81819f0f
CL
3802}
3803
5d1f57e4 3804#ifdef CONFIG_NUMA
81819f0f 3805void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3806 int node, unsigned long caller)
81819f0f 3807{
aadb4bc4 3808 struct kmem_cache *s;
94b528d0 3809 void *ret;
aadb4bc4 3810
95a05b42 3811 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3812 ret = kmalloc_large_node(size, gfpflags, node);
3813
3814 trace_kmalloc_node(caller, ret,
3815 size, PAGE_SIZE << get_order(size),
3816 gfpflags, node);
3817
3818 return ret;
3819 }
eada35ef 3820
2c59dd65 3821 s = kmalloc_slab(size, gfpflags);
81819f0f 3822
2408c550 3823 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3824 return s;
81819f0f 3825
2b847c3c 3826 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3827
25985edc 3828 /* Honor the call site pointer we received. */
ca2b84cb 3829 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3830
3831 return ret;
81819f0f 3832}
5d1f57e4 3833#endif
81819f0f 3834
ab4d5ed5 3835#ifdef CONFIG_SYSFS
205ab99d
CL
3836static int count_inuse(struct page *page)
3837{
3838 return page->inuse;
3839}
3840
3841static int count_total(struct page *page)
3842{
3843 return page->objects;
3844}
ab4d5ed5 3845#endif
205ab99d 3846
ab4d5ed5 3847#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3848static int validate_slab(struct kmem_cache *s, struct page *page,
3849 unsigned long *map)
53e15af0
CL
3850{
3851 void *p;
a973e9dd 3852 void *addr = page_address(page);
53e15af0
CL
3853
3854 if (!check_slab(s, page) ||
3855 !on_freelist(s, page, NULL))
3856 return 0;
3857
3858 /* Now we know that a valid freelist exists */
39b26464 3859 bitmap_zero(map, page->objects);
53e15af0 3860
5f80b13a
CL
3861 get_map(s, page, map);
3862 for_each_object(p, s, addr, page->objects) {
3863 if (test_bit(slab_index(p, s, addr), map))
3864 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3865 return 0;
53e15af0
CL
3866 }
3867
224a88be 3868 for_each_object(p, s, addr, page->objects)
7656c72b 3869 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3870 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3871 return 0;
3872 return 1;
3873}
3874
434e245d
CL
3875static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3876 unsigned long *map)
53e15af0 3877{
881db7fb
CL
3878 slab_lock(page);
3879 validate_slab(s, page, map);
3880 slab_unlock(page);
53e15af0
CL
3881}
3882
434e245d
CL
3883static int validate_slab_node(struct kmem_cache *s,
3884 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3885{
3886 unsigned long count = 0;
3887 struct page *page;
3888 unsigned long flags;
3889
3890 spin_lock_irqsave(&n->list_lock, flags);
3891
3892 list_for_each_entry(page, &n->partial, lru) {
434e245d 3893 validate_slab_slab(s, page, map);
53e15af0
CL
3894 count++;
3895 }
3896 if (count != n->nr_partial)
f9f58285
FF
3897 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3898 s->name, count, n->nr_partial);
53e15af0
CL
3899
3900 if (!(s->flags & SLAB_STORE_USER))
3901 goto out;
3902
3903 list_for_each_entry(page, &n->full, lru) {
434e245d 3904 validate_slab_slab(s, page, map);
53e15af0
CL
3905 count++;
3906 }
3907 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3908 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3909 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3910
3911out:
3912 spin_unlock_irqrestore(&n->list_lock, flags);
3913 return count;
3914}
3915
434e245d 3916static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3917{
3918 int node;
3919 unsigned long count = 0;
205ab99d 3920 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3921 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3922 struct kmem_cache_node *n;
434e245d
CL
3923
3924 if (!map)
3925 return -ENOMEM;
53e15af0
CL
3926
3927 flush_all(s);
fa45dc25 3928 for_each_kmem_cache_node(s, node, n)
434e245d 3929 count += validate_slab_node(s, n, map);
434e245d 3930 kfree(map);
53e15af0
CL
3931 return count;
3932}
88a420e4 3933/*
672bba3a 3934 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3935 * and freed.
3936 */
3937
3938struct location {
3939 unsigned long count;
ce71e27c 3940 unsigned long addr;
45edfa58
CL
3941 long long sum_time;
3942 long min_time;
3943 long max_time;
3944 long min_pid;
3945 long max_pid;
174596a0 3946 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3947 nodemask_t nodes;
88a420e4
CL
3948};
3949
3950struct loc_track {
3951 unsigned long max;
3952 unsigned long count;
3953 struct location *loc;
3954};
3955
3956static void free_loc_track(struct loc_track *t)
3957{
3958 if (t->max)
3959 free_pages((unsigned long)t->loc,
3960 get_order(sizeof(struct location) * t->max));
3961}
3962
68dff6a9 3963static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3964{
3965 struct location *l;
3966 int order;
3967
88a420e4
CL
3968 order = get_order(sizeof(struct location) * max);
3969
68dff6a9 3970 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3971 if (!l)
3972 return 0;
3973
3974 if (t->count) {
3975 memcpy(l, t->loc, sizeof(struct location) * t->count);
3976 free_loc_track(t);
3977 }
3978 t->max = max;
3979 t->loc = l;
3980 return 1;
3981}
3982
3983static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3984 const struct track *track)
88a420e4
CL
3985{
3986 long start, end, pos;
3987 struct location *l;
ce71e27c 3988 unsigned long caddr;
45edfa58 3989 unsigned long age = jiffies - track->when;
88a420e4
CL
3990
3991 start = -1;
3992 end = t->count;
3993
3994 for ( ; ; ) {
3995 pos = start + (end - start + 1) / 2;
3996
3997 /*
3998 * There is nothing at "end". If we end up there
3999 * we need to add something to before end.
4000 */
4001 if (pos == end)
4002 break;
4003
4004 caddr = t->loc[pos].addr;
45edfa58
CL
4005 if (track->addr == caddr) {
4006
4007 l = &t->loc[pos];
4008 l->count++;
4009 if (track->when) {
4010 l->sum_time += age;
4011 if (age < l->min_time)
4012 l->min_time = age;
4013 if (age > l->max_time)
4014 l->max_time = age;
4015
4016 if (track->pid < l->min_pid)
4017 l->min_pid = track->pid;
4018 if (track->pid > l->max_pid)
4019 l->max_pid = track->pid;
4020
174596a0
RR
4021 cpumask_set_cpu(track->cpu,
4022 to_cpumask(l->cpus));
45edfa58
CL
4023 }
4024 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4025 return 1;
4026 }
4027
45edfa58 4028 if (track->addr < caddr)
88a420e4
CL
4029 end = pos;
4030 else
4031 start = pos;
4032 }
4033
4034 /*
672bba3a 4035 * Not found. Insert new tracking element.
88a420e4 4036 */
68dff6a9 4037 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4038 return 0;
4039
4040 l = t->loc + pos;
4041 if (pos < t->count)
4042 memmove(l + 1, l,
4043 (t->count - pos) * sizeof(struct location));
4044 t->count++;
4045 l->count = 1;
45edfa58
CL
4046 l->addr = track->addr;
4047 l->sum_time = age;
4048 l->min_time = age;
4049 l->max_time = age;
4050 l->min_pid = track->pid;
4051 l->max_pid = track->pid;
174596a0
RR
4052 cpumask_clear(to_cpumask(l->cpus));
4053 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4054 nodes_clear(l->nodes);
4055 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4056 return 1;
4057}
4058
4059static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4060 struct page *page, enum track_item alloc,
a5dd5c11 4061 unsigned long *map)
88a420e4 4062{
a973e9dd 4063 void *addr = page_address(page);
88a420e4
CL
4064 void *p;
4065
39b26464 4066 bitmap_zero(map, page->objects);
5f80b13a 4067 get_map(s, page, map);
88a420e4 4068
224a88be 4069 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4070 if (!test_bit(slab_index(p, s, addr), map))
4071 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4072}
4073
4074static int list_locations(struct kmem_cache *s, char *buf,
4075 enum track_item alloc)
4076{
e374d483 4077 int len = 0;
88a420e4 4078 unsigned long i;
68dff6a9 4079 struct loc_track t = { 0, 0, NULL };
88a420e4 4080 int node;
bbd7d57b
ED
4081 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4082 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4083 struct kmem_cache_node *n;
88a420e4 4084
bbd7d57b
ED
4085 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4086 GFP_TEMPORARY)) {
4087 kfree(map);
68dff6a9 4088 return sprintf(buf, "Out of memory\n");
bbd7d57b 4089 }
88a420e4
CL
4090 /* Push back cpu slabs */
4091 flush_all(s);
4092
fa45dc25 4093 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4094 unsigned long flags;
4095 struct page *page;
4096
9e86943b 4097 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4098 continue;
4099
4100 spin_lock_irqsave(&n->list_lock, flags);
4101 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4102 process_slab(&t, s, page, alloc, map);
88a420e4 4103 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4104 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4105 spin_unlock_irqrestore(&n->list_lock, flags);
4106 }
4107
4108 for (i = 0; i < t.count; i++) {
45edfa58 4109 struct location *l = &t.loc[i];
88a420e4 4110
9c246247 4111 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4112 break;
e374d483 4113 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4114
4115 if (l->addr)
62c70bce 4116 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4117 else
e374d483 4118 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4119
4120 if (l->sum_time != l->min_time) {
e374d483 4121 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4122 l->min_time,
4123 (long)div_u64(l->sum_time, l->count),
4124 l->max_time);
45edfa58 4125 } else
e374d483 4126 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4127 l->min_time);
4128
4129 if (l->min_pid != l->max_pid)
e374d483 4130 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4131 l->min_pid, l->max_pid);
4132 else
e374d483 4133 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4134 l->min_pid);
4135
174596a0
RR
4136 if (num_online_cpus() > 1 &&
4137 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4138 len < PAGE_SIZE - 60) {
4139 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4140 len += cpulist_scnprintf(buf + len,
4141 PAGE_SIZE - len - 50,
174596a0 4142 to_cpumask(l->cpus));
45edfa58
CL
4143 }
4144
62bc62a8 4145 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4146 len < PAGE_SIZE - 60) {
4147 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4148 len += nodelist_scnprintf(buf + len,
4149 PAGE_SIZE - len - 50,
4150 l->nodes);
45edfa58
CL
4151 }
4152
e374d483 4153 len += sprintf(buf + len, "\n");
88a420e4
CL
4154 }
4155
4156 free_loc_track(&t);
bbd7d57b 4157 kfree(map);
88a420e4 4158 if (!t.count)
e374d483
HH
4159 len += sprintf(buf, "No data\n");
4160 return len;
88a420e4 4161}
ab4d5ed5 4162#endif
88a420e4 4163
a5a84755 4164#ifdef SLUB_RESILIENCY_TEST
c07b8183 4165static void __init resiliency_test(void)
a5a84755
CL
4166{
4167 u8 *p;
4168
95a05b42 4169 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4170
f9f58285
FF
4171 pr_err("SLUB resiliency testing\n");
4172 pr_err("-----------------------\n");
4173 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4174
4175 p = kzalloc(16, GFP_KERNEL);
4176 p[16] = 0x12;
f9f58285
FF
4177 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4178 p + 16);
a5a84755
CL
4179
4180 validate_slab_cache(kmalloc_caches[4]);
4181
4182 /* Hmmm... The next two are dangerous */
4183 p = kzalloc(32, GFP_KERNEL);
4184 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4185 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4186 p);
4187 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4188
4189 validate_slab_cache(kmalloc_caches[5]);
4190 p = kzalloc(64, GFP_KERNEL);
4191 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4192 *p = 0x56;
f9f58285
FF
4193 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4194 p);
4195 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4196 validate_slab_cache(kmalloc_caches[6]);
4197
f9f58285 4198 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4199 p = kzalloc(128, GFP_KERNEL);
4200 kfree(p);
4201 *p = 0x78;
f9f58285 4202 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4203 validate_slab_cache(kmalloc_caches[7]);
4204
4205 p = kzalloc(256, GFP_KERNEL);
4206 kfree(p);
4207 p[50] = 0x9a;
f9f58285 4208 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4209 validate_slab_cache(kmalloc_caches[8]);
4210
4211 p = kzalloc(512, GFP_KERNEL);
4212 kfree(p);
4213 p[512] = 0xab;
f9f58285 4214 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4215 validate_slab_cache(kmalloc_caches[9]);
4216}
4217#else
4218#ifdef CONFIG_SYSFS
4219static void resiliency_test(void) {};
4220#endif
4221#endif
4222
ab4d5ed5 4223#ifdef CONFIG_SYSFS
81819f0f 4224enum slab_stat_type {
205ab99d
CL
4225 SL_ALL, /* All slabs */
4226 SL_PARTIAL, /* Only partially allocated slabs */
4227 SL_CPU, /* Only slabs used for cpu caches */
4228 SL_OBJECTS, /* Determine allocated objects not slabs */
4229 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4230};
4231
205ab99d 4232#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4233#define SO_PARTIAL (1 << SL_PARTIAL)
4234#define SO_CPU (1 << SL_CPU)
4235#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4236#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4237
62e5c4b4
CG
4238static ssize_t show_slab_objects(struct kmem_cache *s,
4239 char *buf, unsigned long flags)
81819f0f
CL
4240{
4241 unsigned long total = 0;
81819f0f
CL
4242 int node;
4243 int x;
4244 unsigned long *nodes;
81819f0f 4245
e35e1a97 4246 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4247 if (!nodes)
4248 return -ENOMEM;
81819f0f 4249
205ab99d
CL
4250 if (flags & SO_CPU) {
4251 int cpu;
81819f0f 4252
205ab99d 4253 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4254 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4255 cpu);
ec3ab083 4256 int node;
49e22585 4257 struct page *page;
dfb4f096 4258
bc6697d8 4259 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4260 if (!page)
4261 continue;
205ab99d 4262
ec3ab083
CL
4263 node = page_to_nid(page);
4264 if (flags & SO_TOTAL)
4265 x = page->objects;
4266 else if (flags & SO_OBJECTS)
4267 x = page->inuse;
4268 else
4269 x = 1;
49e22585 4270
ec3ab083
CL
4271 total += x;
4272 nodes[node] += x;
4273
4274 page = ACCESS_ONCE(c->partial);
49e22585 4275 if (page) {
8afb1474
LZ
4276 node = page_to_nid(page);
4277 if (flags & SO_TOTAL)
4278 WARN_ON_ONCE(1);
4279 else if (flags & SO_OBJECTS)
4280 WARN_ON_ONCE(1);
4281 else
4282 x = page->pages;
bc6697d8
ED
4283 total += x;
4284 nodes[node] += x;
49e22585 4285 }
81819f0f
CL
4286 }
4287 }
4288
bfc8c901 4289 get_online_mems();
ab4d5ed5 4290#ifdef CONFIG_SLUB_DEBUG
205ab99d 4291 if (flags & SO_ALL) {
fa45dc25
CL
4292 struct kmem_cache_node *n;
4293
4294 for_each_kmem_cache_node(s, node, n) {
205ab99d 4295
d0e0ac97
CG
4296 if (flags & SO_TOTAL)
4297 x = atomic_long_read(&n->total_objects);
4298 else if (flags & SO_OBJECTS)
4299 x = atomic_long_read(&n->total_objects) -
4300 count_partial(n, count_free);
81819f0f 4301 else
205ab99d 4302 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4303 total += x;
4304 nodes[node] += x;
4305 }
4306
ab4d5ed5
CL
4307 } else
4308#endif
4309 if (flags & SO_PARTIAL) {
fa45dc25 4310 struct kmem_cache_node *n;
81819f0f 4311
fa45dc25 4312 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4313 if (flags & SO_TOTAL)
4314 x = count_partial(n, count_total);
4315 else if (flags & SO_OBJECTS)
4316 x = count_partial(n, count_inuse);
81819f0f 4317 else
205ab99d 4318 x = n->nr_partial;
81819f0f
CL
4319 total += x;
4320 nodes[node] += x;
4321 }
4322 }
81819f0f
CL
4323 x = sprintf(buf, "%lu", total);
4324#ifdef CONFIG_NUMA
fa45dc25 4325 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4326 if (nodes[node])
4327 x += sprintf(buf + x, " N%d=%lu",
4328 node, nodes[node]);
4329#endif
bfc8c901 4330 put_online_mems();
81819f0f
CL
4331 kfree(nodes);
4332 return x + sprintf(buf + x, "\n");
4333}
4334
ab4d5ed5 4335#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4336static int any_slab_objects(struct kmem_cache *s)
4337{
4338 int node;
fa45dc25 4339 struct kmem_cache_node *n;
81819f0f 4340
fa45dc25 4341 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4342 if (atomic_long_read(&n->total_objects))
81819f0f 4343 return 1;
fa45dc25 4344
81819f0f
CL
4345 return 0;
4346}
ab4d5ed5 4347#endif
81819f0f
CL
4348
4349#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4350#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4351
4352struct slab_attribute {
4353 struct attribute attr;
4354 ssize_t (*show)(struct kmem_cache *s, char *buf);
4355 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4356};
4357
4358#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4359 static struct slab_attribute _name##_attr = \
4360 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4361
4362#define SLAB_ATTR(_name) \
4363 static struct slab_attribute _name##_attr = \
ab067e99 4364 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4365
81819f0f
CL
4366static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4367{
4368 return sprintf(buf, "%d\n", s->size);
4369}
4370SLAB_ATTR_RO(slab_size);
4371
4372static ssize_t align_show(struct kmem_cache *s, char *buf)
4373{
4374 return sprintf(buf, "%d\n", s->align);
4375}
4376SLAB_ATTR_RO(align);
4377
4378static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4379{
3b0efdfa 4380 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4381}
4382SLAB_ATTR_RO(object_size);
4383
4384static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4385{
834f3d11 4386 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4387}
4388SLAB_ATTR_RO(objs_per_slab);
4389
06b285dc
CL
4390static ssize_t order_store(struct kmem_cache *s,
4391 const char *buf, size_t length)
4392{
0121c619
CL
4393 unsigned long order;
4394 int err;
4395
3dbb95f7 4396 err = kstrtoul(buf, 10, &order);
0121c619
CL
4397 if (err)
4398 return err;
06b285dc
CL
4399
4400 if (order > slub_max_order || order < slub_min_order)
4401 return -EINVAL;
4402
4403 calculate_sizes(s, order);
4404 return length;
4405}
4406
81819f0f
CL
4407static ssize_t order_show(struct kmem_cache *s, char *buf)
4408{
834f3d11 4409 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4410}
06b285dc 4411SLAB_ATTR(order);
81819f0f 4412
73d342b1
DR
4413static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4414{
4415 return sprintf(buf, "%lu\n", s->min_partial);
4416}
4417
4418static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4419 size_t length)
4420{
4421 unsigned long min;
4422 int err;
4423
3dbb95f7 4424 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4425 if (err)
4426 return err;
4427
c0bdb232 4428 set_min_partial(s, min);
73d342b1
DR
4429 return length;
4430}
4431SLAB_ATTR(min_partial);
4432
49e22585
CL
4433static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4434{
4435 return sprintf(buf, "%u\n", s->cpu_partial);
4436}
4437
4438static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4439 size_t length)
4440{
4441 unsigned long objects;
4442 int err;
4443
3dbb95f7 4444 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4445 if (err)
4446 return err;
345c905d 4447 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4448 return -EINVAL;
49e22585
CL
4449
4450 s->cpu_partial = objects;
4451 flush_all(s);
4452 return length;
4453}
4454SLAB_ATTR(cpu_partial);
4455
81819f0f
CL
4456static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4457{
62c70bce
JP
4458 if (!s->ctor)
4459 return 0;
4460 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4461}
4462SLAB_ATTR_RO(ctor);
4463
81819f0f
CL
4464static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4465{
4466 return sprintf(buf, "%d\n", s->refcount - 1);
4467}
4468SLAB_ATTR_RO(aliases);
4469
81819f0f
CL
4470static ssize_t partial_show(struct kmem_cache *s, char *buf)
4471{
d9acf4b7 4472 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4473}
4474SLAB_ATTR_RO(partial);
4475
4476static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4477{
d9acf4b7 4478 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4479}
4480SLAB_ATTR_RO(cpu_slabs);
4481
4482static ssize_t objects_show(struct kmem_cache *s, char *buf)
4483{
205ab99d 4484 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4485}
4486SLAB_ATTR_RO(objects);
4487
205ab99d
CL
4488static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4489{
4490 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4491}
4492SLAB_ATTR_RO(objects_partial);
4493
49e22585
CL
4494static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4495{
4496 int objects = 0;
4497 int pages = 0;
4498 int cpu;
4499 int len;
4500
4501 for_each_online_cpu(cpu) {
4502 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4503
4504 if (page) {
4505 pages += page->pages;
4506 objects += page->pobjects;
4507 }
4508 }
4509
4510 len = sprintf(buf, "%d(%d)", objects, pages);
4511
4512#ifdef CONFIG_SMP
4513 for_each_online_cpu(cpu) {
4514 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4515
4516 if (page && len < PAGE_SIZE - 20)
4517 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4518 page->pobjects, page->pages);
4519 }
4520#endif
4521 return len + sprintf(buf + len, "\n");
4522}
4523SLAB_ATTR_RO(slabs_cpu_partial);
4524
a5a84755
CL
4525static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4526{
4527 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4528}
4529
4530static ssize_t reclaim_account_store(struct kmem_cache *s,
4531 const char *buf, size_t length)
4532{
4533 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4534 if (buf[0] == '1')
4535 s->flags |= SLAB_RECLAIM_ACCOUNT;
4536 return length;
4537}
4538SLAB_ATTR(reclaim_account);
4539
4540static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4541{
4542 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4543}
4544SLAB_ATTR_RO(hwcache_align);
4545
4546#ifdef CONFIG_ZONE_DMA
4547static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4548{
4549 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4550}
4551SLAB_ATTR_RO(cache_dma);
4552#endif
4553
4554static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4555{
4556 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4557}
4558SLAB_ATTR_RO(destroy_by_rcu);
4559
ab9a0f19
LJ
4560static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4561{
4562 return sprintf(buf, "%d\n", s->reserved);
4563}
4564SLAB_ATTR_RO(reserved);
4565
ab4d5ed5 4566#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4567static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4568{
4569 return show_slab_objects(s, buf, SO_ALL);
4570}
4571SLAB_ATTR_RO(slabs);
4572
205ab99d
CL
4573static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4574{
4575 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4576}
4577SLAB_ATTR_RO(total_objects);
4578
81819f0f
CL
4579static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4580{
4581 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4582}
4583
4584static ssize_t sanity_checks_store(struct kmem_cache *s,
4585 const char *buf, size_t length)
4586{
4587 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4588 if (buf[0] == '1') {
4589 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4590 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4591 }
81819f0f
CL
4592 return length;
4593}
4594SLAB_ATTR(sanity_checks);
4595
4596static ssize_t trace_show(struct kmem_cache *s, char *buf)
4597{
4598 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4599}
4600
4601static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4602 size_t length)
4603{
4604 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4605 if (buf[0] == '1') {
4606 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4607 s->flags |= SLAB_TRACE;
b789ef51 4608 }
81819f0f
CL
4609 return length;
4610}
4611SLAB_ATTR(trace);
4612
81819f0f
CL
4613static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4614{
4615 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4616}
4617
4618static ssize_t red_zone_store(struct kmem_cache *s,
4619 const char *buf, size_t length)
4620{
4621 if (any_slab_objects(s))
4622 return -EBUSY;
4623
4624 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4625 if (buf[0] == '1') {
4626 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4627 s->flags |= SLAB_RED_ZONE;
b789ef51 4628 }
06b285dc 4629 calculate_sizes(s, -1);
81819f0f
CL
4630 return length;
4631}
4632SLAB_ATTR(red_zone);
4633
4634static ssize_t poison_show(struct kmem_cache *s, char *buf)
4635{
4636 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4637}
4638
4639static ssize_t poison_store(struct kmem_cache *s,
4640 const char *buf, size_t length)
4641{
4642 if (any_slab_objects(s))
4643 return -EBUSY;
4644
4645 s->flags &= ~SLAB_POISON;
b789ef51
CL
4646 if (buf[0] == '1') {
4647 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4648 s->flags |= SLAB_POISON;
b789ef51 4649 }
06b285dc 4650 calculate_sizes(s, -1);
81819f0f
CL
4651 return length;
4652}
4653SLAB_ATTR(poison);
4654
4655static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4656{
4657 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4658}
4659
4660static ssize_t store_user_store(struct kmem_cache *s,
4661 const char *buf, size_t length)
4662{
4663 if (any_slab_objects(s))
4664 return -EBUSY;
4665
4666 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4667 if (buf[0] == '1') {
4668 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4669 s->flags |= SLAB_STORE_USER;
b789ef51 4670 }
06b285dc 4671 calculate_sizes(s, -1);
81819f0f
CL
4672 return length;
4673}
4674SLAB_ATTR(store_user);
4675
53e15af0
CL
4676static ssize_t validate_show(struct kmem_cache *s, char *buf)
4677{
4678 return 0;
4679}
4680
4681static ssize_t validate_store(struct kmem_cache *s,
4682 const char *buf, size_t length)
4683{
434e245d
CL
4684 int ret = -EINVAL;
4685
4686 if (buf[0] == '1') {
4687 ret = validate_slab_cache(s);
4688 if (ret >= 0)
4689 ret = length;
4690 }
4691 return ret;
53e15af0
CL
4692}
4693SLAB_ATTR(validate);
a5a84755
CL
4694
4695static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4696{
4697 if (!(s->flags & SLAB_STORE_USER))
4698 return -ENOSYS;
4699 return list_locations(s, buf, TRACK_ALLOC);
4700}
4701SLAB_ATTR_RO(alloc_calls);
4702
4703static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4704{
4705 if (!(s->flags & SLAB_STORE_USER))
4706 return -ENOSYS;
4707 return list_locations(s, buf, TRACK_FREE);
4708}
4709SLAB_ATTR_RO(free_calls);
4710#endif /* CONFIG_SLUB_DEBUG */
4711
4712#ifdef CONFIG_FAILSLAB
4713static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4714{
4715 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4716}
4717
4718static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4719 size_t length)
4720{
4721 s->flags &= ~SLAB_FAILSLAB;
4722 if (buf[0] == '1')
4723 s->flags |= SLAB_FAILSLAB;
4724 return length;
4725}
4726SLAB_ATTR(failslab);
ab4d5ed5 4727#endif
53e15af0 4728
2086d26a
CL
4729static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4730{
4731 return 0;
4732}
4733
4734static ssize_t shrink_store(struct kmem_cache *s,
4735 const char *buf, size_t length)
4736{
4737 if (buf[0] == '1') {
4738 int rc = kmem_cache_shrink(s);
4739
4740 if (rc)
4741 return rc;
4742 } else
4743 return -EINVAL;
4744 return length;
4745}
4746SLAB_ATTR(shrink);
4747
81819f0f 4748#ifdef CONFIG_NUMA
9824601e 4749static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4750{
9824601e 4751 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4752}
4753
9824601e 4754static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4755 const char *buf, size_t length)
4756{
0121c619
CL
4757 unsigned long ratio;
4758 int err;
4759
3dbb95f7 4760 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4761 if (err)
4762 return err;
4763
e2cb96b7 4764 if (ratio <= 100)
0121c619 4765 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4766
81819f0f
CL
4767 return length;
4768}
9824601e 4769SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4770#endif
4771
8ff12cfc 4772#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4773static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4774{
4775 unsigned long sum = 0;
4776 int cpu;
4777 int len;
4778 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4779
4780 if (!data)
4781 return -ENOMEM;
4782
4783 for_each_online_cpu(cpu) {
9dfc6e68 4784 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4785
4786 data[cpu] = x;
4787 sum += x;
4788 }
4789
4790 len = sprintf(buf, "%lu", sum);
4791
50ef37b9 4792#ifdef CONFIG_SMP
8ff12cfc
CL
4793 for_each_online_cpu(cpu) {
4794 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4795 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4796 }
50ef37b9 4797#endif
8ff12cfc
CL
4798 kfree(data);
4799 return len + sprintf(buf + len, "\n");
4800}
4801
78eb00cc
DR
4802static void clear_stat(struct kmem_cache *s, enum stat_item si)
4803{
4804 int cpu;
4805
4806 for_each_online_cpu(cpu)
9dfc6e68 4807 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4808}
4809
8ff12cfc
CL
4810#define STAT_ATTR(si, text) \
4811static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4812{ \
4813 return show_stat(s, buf, si); \
4814} \
78eb00cc
DR
4815static ssize_t text##_store(struct kmem_cache *s, \
4816 const char *buf, size_t length) \
4817{ \
4818 if (buf[0] != '0') \
4819 return -EINVAL; \
4820 clear_stat(s, si); \
4821 return length; \
4822} \
4823SLAB_ATTR(text); \
8ff12cfc
CL
4824
4825STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4826STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4827STAT_ATTR(FREE_FASTPATH, free_fastpath);
4828STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4829STAT_ATTR(FREE_FROZEN, free_frozen);
4830STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4831STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4832STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4833STAT_ATTR(ALLOC_SLAB, alloc_slab);
4834STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4835STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4836STAT_ATTR(FREE_SLAB, free_slab);
4837STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4838STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4839STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4840STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4841STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4842STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4843STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4844STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4845STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4846STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4847STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4848STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4849STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4850STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4851#endif
4852
06428780 4853static struct attribute *slab_attrs[] = {
81819f0f
CL
4854 &slab_size_attr.attr,
4855 &object_size_attr.attr,
4856 &objs_per_slab_attr.attr,
4857 &order_attr.attr,
73d342b1 4858 &min_partial_attr.attr,
49e22585 4859 &cpu_partial_attr.attr,
81819f0f 4860 &objects_attr.attr,
205ab99d 4861 &objects_partial_attr.attr,
81819f0f
CL
4862 &partial_attr.attr,
4863 &cpu_slabs_attr.attr,
4864 &ctor_attr.attr,
81819f0f
CL
4865 &aliases_attr.attr,
4866 &align_attr.attr,
81819f0f
CL
4867 &hwcache_align_attr.attr,
4868 &reclaim_account_attr.attr,
4869 &destroy_by_rcu_attr.attr,
a5a84755 4870 &shrink_attr.attr,
ab9a0f19 4871 &reserved_attr.attr,
49e22585 4872 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4873#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4874 &total_objects_attr.attr,
4875 &slabs_attr.attr,
4876 &sanity_checks_attr.attr,
4877 &trace_attr.attr,
81819f0f
CL
4878 &red_zone_attr.attr,
4879 &poison_attr.attr,
4880 &store_user_attr.attr,
53e15af0 4881 &validate_attr.attr,
88a420e4
CL
4882 &alloc_calls_attr.attr,
4883 &free_calls_attr.attr,
ab4d5ed5 4884#endif
81819f0f
CL
4885#ifdef CONFIG_ZONE_DMA
4886 &cache_dma_attr.attr,
4887#endif
4888#ifdef CONFIG_NUMA
9824601e 4889 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4890#endif
4891#ifdef CONFIG_SLUB_STATS
4892 &alloc_fastpath_attr.attr,
4893 &alloc_slowpath_attr.attr,
4894 &free_fastpath_attr.attr,
4895 &free_slowpath_attr.attr,
4896 &free_frozen_attr.attr,
4897 &free_add_partial_attr.attr,
4898 &free_remove_partial_attr.attr,
4899 &alloc_from_partial_attr.attr,
4900 &alloc_slab_attr.attr,
4901 &alloc_refill_attr.attr,
e36a2652 4902 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4903 &free_slab_attr.attr,
4904 &cpuslab_flush_attr.attr,
4905 &deactivate_full_attr.attr,
4906 &deactivate_empty_attr.attr,
4907 &deactivate_to_head_attr.attr,
4908 &deactivate_to_tail_attr.attr,
4909 &deactivate_remote_frees_attr.attr,
03e404af 4910 &deactivate_bypass_attr.attr,
65c3376a 4911 &order_fallback_attr.attr,
b789ef51
CL
4912 &cmpxchg_double_fail_attr.attr,
4913 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4914 &cpu_partial_alloc_attr.attr,
4915 &cpu_partial_free_attr.attr,
8028dcea
AS
4916 &cpu_partial_node_attr.attr,
4917 &cpu_partial_drain_attr.attr,
81819f0f 4918#endif
4c13dd3b
DM
4919#ifdef CONFIG_FAILSLAB
4920 &failslab_attr.attr,
4921#endif
4922
81819f0f
CL
4923 NULL
4924};
4925
4926static struct attribute_group slab_attr_group = {
4927 .attrs = slab_attrs,
4928};
4929
4930static ssize_t slab_attr_show(struct kobject *kobj,
4931 struct attribute *attr,
4932 char *buf)
4933{
4934 struct slab_attribute *attribute;
4935 struct kmem_cache *s;
4936 int err;
4937
4938 attribute = to_slab_attr(attr);
4939 s = to_slab(kobj);
4940
4941 if (!attribute->show)
4942 return -EIO;
4943
4944 err = attribute->show(s, buf);
4945
4946 return err;
4947}
4948
4949static ssize_t slab_attr_store(struct kobject *kobj,
4950 struct attribute *attr,
4951 const char *buf, size_t len)
4952{
4953 struct slab_attribute *attribute;
4954 struct kmem_cache *s;
4955 int err;
4956
4957 attribute = to_slab_attr(attr);
4958 s = to_slab(kobj);
4959
4960 if (!attribute->store)
4961 return -EIO;
4962
4963 err = attribute->store(s, buf, len);
107dab5c
GC
4964#ifdef CONFIG_MEMCG_KMEM
4965 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4966 int i;
81819f0f 4967
107dab5c
GC
4968 mutex_lock(&slab_mutex);
4969 if (s->max_attr_size < len)
4970 s->max_attr_size = len;
4971
ebe945c2
GC
4972 /*
4973 * This is a best effort propagation, so this function's return
4974 * value will be determined by the parent cache only. This is
4975 * basically because not all attributes will have a well
4976 * defined semantics for rollbacks - most of the actions will
4977 * have permanent effects.
4978 *
4979 * Returning the error value of any of the children that fail
4980 * is not 100 % defined, in the sense that users seeing the
4981 * error code won't be able to know anything about the state of
4982 * the cache.
4983 *
4984 * Only returning the error code for the parent cache at least
4985 * has well defined semantics. The cache being written to
4986 * directly either failed or succeeded, in which case we loop
4987 * through the descendants with best-effort propagation.
4988 */
107dab5c 4989 for_each_memcg_cache_index(i) {
2ade4de8 4990 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
4991 if (c)
4992 attribute->store(c, buf, len);
4993 }
4994 mutex_unlock(&slab_mutex);
4995 }
4996#endif
81819f0f
CL
4997 return err;
4998}
4999
107dab5c
GC
5000static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5001{
5002#ifdef CONFIG_MEMCG_KMEM
5003 int i;
5004 char *buffer = NULL;
93030d83 5005 struct kmem_cache *root_cache;
107dab5c 5006
93030d83 5007 if (is_root_cache(s))
107dab5c
GC
5008 return;
5009
93030d83
VD
5010 root_cache = s->memcg_params->root_cache;
5011
107dab5c
GC
5012 /*
5013 * This mean this cache had no attribute written. Therefore, no point
5014 * in copying default values around
5015 */
93030d83 5016 if (!root_cache->max_attr_size)
107dab5c
GC
5017 return;
5018
5019 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5020 char mbuf[64];
5021 char *buf;
5022 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5023
5024 if (!attr || !attr->store || !attr->show)
5025 continue;
5026
5027 /*
5028 * It is really bad that we have to allocate here, so we will
5029 * do it only as a fallback. If we actually allocate, though,
5030 * we can just use the allocated buffer until the end.
5031 *
5032 * Most of the slub attributes will tend to be very small in
5033 * size, but sysfs allows buffers up to a page, so they can
5034 * theoretically happen.
5035 */
5036 if (buffer)
5037 buf = buffer;
93030d83 5038 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5039 buf = mbuf;
5040 else {
5041 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5042 if (WARN_ON(!buffer))
5043 continue;
5044 buf = buffer;
5045 }
5046
93030d83 5047 attr->show(root_cache, buf);
107dab5c
GC
5048 attr->store(s, buf, strlen(buf));
5049 }
5050
5051 if (buffer)
5052 free_page((unsigned long)buffer);
5053#endif
5054}
5055
41a21285
CL
5056static void kmem_cache_release(struct kobject *k)
5057{
5058 slab_kmem_cache_release(to_slab(k));
5059}
5060
52cf25d0 5061static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5062 .show = slab_attr_show,
5063 .store = slab_attr_store,
5064};
5065
5066static struct kobj_type slab_ktype = {
5067 .sysfs_ops = &slab_sysfs_ops,
41a21285 5068 .release = kmem_cache_release,
81819f0f
CL
5069};
5070
5071static int uevent_filter(struct kset *kset, struct kobject *kobj)
5072{
5073 struct kobj_type *ktype = get_ktype(kobj);
5074
5075 if (ktype == &slab_ktype)
5076 return 1;
5077 return 0;
5078}
5079
9cd43611 5080static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5081 .filter = uevent_filter,
5082};
5083
27c3a314 5084static struct kset *slab_kset;
81819f0f 5085
9a41707b
VD
5086static inline struct kset *cache_kset(struct kmem_cache *s)
5087{
5088#ifdef CONFIG_MEMCG_KMEM
5089 if (!is_root_cache(s))
5090 return s->memcg_params->root_cache->memcg_kset;
5091#endif
5092 return slab_kset;
5093}
5094
81819f0f
CL
5095#define ID_STR_LENGTH 64
5096
5097/* Create a unique string id for a slab cache:
6446faa2
CL
5098 *
5099 * Format :[flags-]size
81819f0f
CL
5100 */
5101static char *create_unique_id(struct kmem_cache *s)
5102{
5103 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5104 char *p = name;
5105
5106 BUG_ON(!name);
5107
5108 *p++ = ':';
5109 /*
5110 * First flags affecting slabcache operations. We will only
5111 * get here for aliasable slabs so we do not need to support
5112 * too many flags. The flags here must cover all flags that
5113 * are matched during merging to guarantee that the id is
5114 * unique.
5115 */
5116 if (s->flags & SLAB_CACHE_DMA)
5117 *p++ = 'd';
5118 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5119 *p++ = 'a';
5120 if (s->flags & SLAB_DEBUG_FREE)
5121 *p++ = 'F';
5a896d9e
VN
5122 if (!(s->flags & SLAB_NOTRACK))
5123 *p++ = 't';
81819f0f
CL
5124 if (p != name + 1)
5125 *p++ = '-';
5126 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5127
5128#ifdef CONFIG_MEMCG_KMEM
5129 if (!is_root_cache(s))
d0e0ac97
CG
5130 p += sprintf(p, "-%08d",
5131 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5132#endif
5133
81819f0f
CL
5134 BUG_ON(p > name + ID_STR_LENGTH - 1);
5135 return name;
5136}
5137
5138static int sysfs_slab_add(struct kmem_cache *s)
5139{
5140 int err;
5141 const char *name;
45530c44 5142 int unmergeable = slab_unmergeable(s);
81819f0f 5143
81819f0f
CL
5144 if (unmergeable) {
5145 /*
5146 * Slabcache can never be merged so we can use the name proper.
5147 * This is typically the case for debug situations. In that
5148 * case we can catch duplicate names easily.
5149 */
27c3a314 5150 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5151 name = s->name;
5152 } else {
5153 /*
5154 * Create a unique name for the slab as a target
5155 * for the symlinks.
5156 */
5157 name = create_unique_id(s);
5158 }
5159
9a41707b 5160 s->kobj.kset = cache_kset(s);
26e4f205 5161 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5162 if (err)
5163 goto out_put_kobj;
81819f0f
CL
5164
5165 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5166 if (err)
5167 goto out_del_kobj;
9a41707b
VD
5168
5169#ifdef CONFIG_MEMCG_KMEM
5170 if (is_root_cache(s)) {
5171 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5172 if (!s->memcg_kset) {
54b6a731
DJ
5173 err = -ENOMEM;
5174 goto out_del_kobj;
9a41707b
VD
5175 }
5176 }
5177#endif
5178
81819f0f
CL
5179 kobject_uevent(&s->kobj, KOBJ_ADD);
5180 if (!unmergeable) {
5181 /* Setup first alias */
5182 sysfs_slab_alias(s, s->name);
81819f0f 5183 }
54b6a731
DJ
5184out:
5185 if (!unmergeable)
5186 kfree(name);
5187 return err;
5188out_del_kobj:
5189 kobject_del(&s->kobj);
5190out_put_kobj:
5191 kobject_put(&s->kobj);
5192 goto out;
81819f0f
CL
5193}
5194
41a21285 5195void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5196{
97d06609 5197 if (slab_state < FULL)
2bce6485
CL
5198 /*
5199 * Sysfs has not been setup yet so no need to remove the
5200 * cache from sysfs.
5201 */
5202 return;
5203
9a41707b
VD
5204#ifdef CONFIG_MEMCG_KMEM
5205 kset_unregister(s->memcg_kset);
5206#endif
81819f0f
CL
5207 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5208 kobject_del(&s->kobj);
151c602f 5209 kobject_put(&s->kobj);
81819f0f
CL
5210}
5211
5212/*
5213 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5214 * available lest we lose that information.
81819f0f
CL
5215 */
5216struct saved_alias {
5217 struct kmem_cache *s;
5218 const char *name;
5219 struct saved_alias *next;
5220};
5221
5af328a5 5222static struct saved_alias *alias_list;
81819f0f
CL
5223
5224static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5225{
5226 struct saved_alias *al;
5227
97d06609 5228 if (slab_state == FULL) {
81819f0f
CL
5229 /*
5230 * If we have a leftover link then remove it.
5231 */
27c3a314
GKH
5232 sysfs_remove_link(&slab_kset->kobj, name);
5233 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5234 }
5235
5236 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5237 if (!al)
5238 return -ENOMEM;
5239
5240 al->s = s;
5241 al->name = name;
5242 al->next = alias_list;
5243 alias_list = al;
5244 return 0;
5245}
5246
5247static int __init slab_sysfs_init(void)
5248{
5b95a4ac 5249 struct kmem_cache *s;
81819f0f
CL
5250 int err;
5251
18004c5d 5252 mutex_lock(&slab_mutex);
2bce6485 5253
0ff21e46 5254 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5255 if (!slab_kset) {
18004c5d 5256 mutex_unlock(&slab_mutex);
f9f58285 5257 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5258 return -ENOSYS;
5259 }
5260
97d06609 5261 slab_state = FULL;
26a7bd03 5262
5b95a4ac 5263 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5264 err = sysfs_slab_add(s);
5d540fb7 5265 if (err)
f9f58285
FF
5266 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5267 s->name);
26a7bd03 5268 }
81819f0f
CL
5269
5270 while (alias_list) {
5271 struct saved_alias *al = alias_list;
5272
5273 alias_list = alias_list->next;
5274 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5275 if (err)
f9f58285
FF
5276 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5277 al->name);
81819f0f
CL
5278 kfree(al);
5279 }
5280
18004c5d 5281 mutex_unlock(&slab_mutex);
81819f0f
CL
5282 resiliency_test();
5283 return 0;
5284}
5285
5286__initcall(slab_sysfs_init);
ab4d5ed5 5287#endif /* CONFIG_SYSFS */
57ed3eda
PE
5288
5289/*
5290 * The /proc/slabinfo ABI
5291 */
158a9624 5292#ifdef CONFIG_SLABINFO
0d7561c6 5293void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5294{
57ed3eda 5295 unsigned long nr_slabs = 0;
205ab99d
CL
5296 unsigned long nr_objs = 0;
5297 unsigned long nr_free = 0;
57ed3eda 5298 int node;
fa45dc25 5299 struct kmem_cache_node *n;
57ed3eda 5300
fa45dc25 5301 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5302 nr_slabs += node_nr_slabs(n);
5303 nr_objs += node_nr_objs(n);
205ab99d 5304 nr_free += count_partial(n, count_free);
57ed3eda
PE
5305 }
5306
0d7561c6
GC
5307 sinfo->active_objs = nr_objs - nr_free;
5308 sinfo->num_objs = nr_objs;
5309 sinfo->active_slabs = nr_slabs;
5310 sinfo->num_slabs = nr_slabs;
5311 sinfo->objects_per_slab = oo_objects(s->oo);
5312 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5313}
5314
0d7561c6 5315void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5316{
7b3c3a50
AD
5317}
5318
b7454ad3
GC
5319ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5320 size_t count, loff_t *ppos)
7b3c3a50 5321{
b7454ad3 5322 return -EIO;
7b3c3a50 5323}
158a9624 5324#endif /* CONFIG_SLABINFO */