]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
slub: Pass kmem_cache struct to lock and freeze slab
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
25985edc 67 * a partial slab. A new slab has no one operating on it and thus there is
81819f0f
CL
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
02cbc874
CL
200 int cpu; /* Was running on cpu */
201 int pid; /* Pid context */
202 unsigned long when; /* When did the operation occur */
203};
204
205enum track_item { TRACK_ALLOC, TRACK_FREE };
206
ab4d5ed5 207#ifdef CONFIG_SYSFS
81819f0f
CL
208static int sysfs_slab_add(struct kmem_cache *);
209static int sysfs_slab_alias(struct kmem_cache *, const char *);
210static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 211
81819f0f 212#else
0c710013
CL
213static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
214static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
215 { return 0; }
151c602f
CL
216static inline void sysfs_slab_remove(struct kmem_cache *s)
217{
84c1cf62 218 kfree(s->name);
151c602f
CL
219 kfree(s);
220}
8ff12cfc 221
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235int slab_is_available(void)
236{
237 return slab_state >= UP;
238}
239
240static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
241{
81819f0f 242 return s->node[node];
81819f0f
CL
243}
244
6446faa2 245/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
a973e9dd 251 if (!object)
02cbc874
CL
252 return 1;
253
a973e9dd 254 base = page_address(page);
39b26464 255 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265 return *(void **)(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->objsize;
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
b789ef51
CL
345static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
346 void *freelist_old, unsigned long counters_old,
347 void *freelist_new, unsigned long counters_new,
348 const char *n)
349{
350#ifdef CONFIG_CMPXCHG_DOUBLE
351 if (s->flags & __CMPXCHG_DOUBLE) {
352 if (cmpxchg_double(&page->freelist,
353 freelist_old, counters_old,
354 freelist_new, counters_new))
355 return 1;
356 } else
357#endif
358 {
359 if (page->freelist == freelist_old && page->counters == counters_old) {
360 page->freelist = freelist_new;
361 page->counters = counters_new;
362 return 1;
363 }
364 }
365
366 cpu_relax();
367 stat(s, CMPXCHG_DOUBLE_FAIL);
368
369#ifdef SLUB_DEBUG_CMPXCHG
370 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
371#endif
372
373 return 0;
374}
375
41ecc55b 376#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
377/*
378 * Determine a map of object in use on a page.
379 *
380 * Slab lock or node listlock must be held to guarantee that the page does
381 * not vanish from under us.
382 */
383static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
384{
385 void *p;
386 void *addr = page_address(page);
387
388 for (p = page->freelist; p; p = get_freepointer(s, p))
389 set_bit(slab_index(p, s, addr), map);
390}
391
41ecc55b
CL
392/*
393 * Debug settings:
394 */
f0630fff
CL
395#ifdef CONFIG_SLUB_DEBUG_ON
396static int slub_debug = DEBUG_DEFAULT_FLAGS;
397#else
41ecc55b 398static int slub_debug;
f0630fff 399#endif
41ecc55b
CL
400
401static char *slub_debug_slabs;
fa5ec8a1 402static int disable_higher_order_debug;
41ecc55b 403
81819f0f
CL
404/*
405 * Object debugging
406 */
407static void print_section(char *text, u8 *addr, unsigned int length)
408{
409 int i, offset;
410 int newline = 1;
411 char ascii[17];
412
413 ascii[16] = 0;
414
415 for (i = 0; i < length; i++) {
416 if (newline) {
24922684 417 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
418 newline = 0;
419 }
06428780 420 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
421 offset = i % 16;
422 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
423 if (offset == 15) {
06428780 424 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
425 newline = 1;
426 }
427 }
428 if (!newline) {
429 i %= 16;
430 while (i < 16) {
06428780 431 printk(KERN_CONT " ");
81819f0f
CL
432 ascii[i] = ' ';
433 i++;
434 }
06428780 435 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
436 }
437}
438
81819f0f
CL
439static struct track *get_track(struct kmem_cache *s, void *object,
440 enum track_item alloc)
441{
442 struct track *p;
443
444 if (s->offset)
445 p = object + s->offset + sizeof(void *);
446 else
447 p = object + s->inuse;
448
449 return p + alloc;
450}
451
452static void set_track(struct kmem_cache *s, void *object,
ce71e27c 453 enum track_item alloc, unsigned long addr)
81819f0f 454{
1a00df4a 455 struct track *p = get_track(s, object, alloc);
81819f0f 456
81819f0f
CL
457 if (addr) {
458 p->addr = addr;
459 p->cpu = smp_processor_id();
88e4ccf2 460 p->pid = current->pid;
81819f0f
CL
461 p->when = jiffies;
462 } else
463 memset(p, 0, sizeof(struct track));
464}
465
81819f0f
CL
466static void init_tracking(struct kmem_cache *s, void *object)
467{
24922684
CL
468 if (!(s->flags & SLAB_STORE_USER))
469 return;
470
ce71e27c
EGM
471 set_track(s, object, TRACK_FREE, 0UL);
472 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
473}
474
475static void print_track(const char *s, struct track *t)
476{
477 if (!t->addr)
478 return;
479
7daf705f 480 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 481 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
482}
483
484static void print_tracking(struct kmem_cache *s, void *object)
485{
486 if (!(s->flags & SLAB_STORE_USER))
487 return;
488
489 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
490 print_track("Freed", get_track(s, object, TRACK_FREE));
491}
492
493static void print_page_info(struct page *page)
494{
39b26464
CL
495 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
496 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
497
498}
499
500static void slab_bug(struct kmem_cache *s, char *fmt, ...)
501{
502 va_list args;
503 char buf[100];
504
505 va_start(args, fmt);
506 vsnprintf(buf, sizeof(buf), fmt, args);
507 va_end(args);
508 printk(KERN_ERR "========================================"
509 "=====================================\n");
510 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
511 printk(KERN_ERR "----------------------------------------"
512 "-------------------------------------\n\n");
81819f0f
CL
513}
514
24922684
CL
515static void slab_fix(struct kmem_cache *s, char *fmt, ...)
516{
517 va_list args;
518 char buf[100];
519
520 va_start(args, fmt);
521 vsnprintf(buf, sizeof(buf), fmt, args);
522 va_end(args);
523 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
524}
525
526static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
527{
528 unsigned int off; /* Offset of last byte */
a973e9dd 529 u8 *addr = page_address(page);
24922684
CL
530
531 print_tracking(s, p);
532
533 print_page_info(page);
534
535 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
536 p, p - addr, get_freepointer(s, p));
537
538 if (p > addr + 16)
539 print_section("Bytes b4", p - 16, 16);
540
0ebd652b 541 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
542
543 if (s->flags & SLAB_RED_ZONE)
544 print_section("Redzone", p + s->objsize,
545 s->inuse - s->objsize);
546
81819f0f
CL
547 if (s->offset)
548 off = s->offset + sizeof(void *);
549 else
550 off = s->inuse;
551
24922684 552 if (s->flags & SLAB_STORE_USER)
81819f0f 553 off += 2 * sizeof(struct track);
81819f0f
CL
554
555 if (off != s->size)
556 /* Beginning of the filler is the free pointer */
24922684
CL
557 print_section("Padding", p + off, s->size - off);
558
559 dump_stack();
81819f0f
CL
560}
561
562static void object_err(struct kmem_cache *s, struct page *page,
563 u8 *object, char *reason)
564{
3dc50637 565 slab_bug(s, "%s", reason);
24922684 566 print_trailer(s, page, object);
81819f0f
CL
567}
568
24922684 569static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
570{
571 va_list args;
572 char buf[100];
573
24922684
CL
574 va_start(args, fmt);
575 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 576 va_end(args);
3dc50637 577 slab_bug(s, "%s", buf);
24922684 578 print_page_info(page);
81819f0f
CL
579 dump_stack();
580}
581
f7cb1933 582static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
583{
584 u8 *p = object;
585
586 if (s->flags & __OBJECT_POISON) {
587 memset(p, POISON_FREE, s->objsize - 1);
06428780 588 p[s->objsize - 1] = POISON_END;
81819f0f
CL
589 }
590
591 if (s->flags & SLAB_RED_ZONE)
f7cb1933 592 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
593}
594
24922684 595static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
596{
597 while (bytes) {
598 if (*start != (u8)value)
24922684 599 return start;
81819f0f
CL
600 start++;
601 bytes--;
602 }
24922684
CL
603 return NULL;
604}
605
606static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
607 void *from, void *to)
608{
609 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
610 memset(from, data, to - from);
611}
612
613static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
614 u8 *object, char *what,
06428780 615 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
616{
617 u8 *fault;
618 u8 *end;
619
620 fault = check_bytes(start, value, bytes);
621 if (!fault)
622 return 1;
623
624 end = start + bytes;
625 while (end > fault && end[-1] == value)
626 end--;
627
628 slab_bug(s, "%s overwritten", what);
629 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
630 fault, end - 1, fault[0], value);
631 print_trailer(s, page, object);
632
633 restore_bytes(s, what, value, fault, end);
634 return 0;
81819f0f
CL
635}
636
81819f0f
CL
637/*
638 * Object layout:
639 *
640 * object address
641 * Bytes of the object to be managed.
642 * If the freepointer may overlay the object then the free
643 * pointer is the first word of the object.
672bba3a 644 *
81819f0f
CL
645 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
646 * 0xa5 (POISON_END)
647 *
648 * object + s->objsize
649 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
650 * Padding is extended by another word if Redzoning is enabled and
651 * objsize == inuse.
652 *
81819f0f
CL
653 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
654 * 0xcc (RED_ACTIVE) for objects in use.
655 *
656 * object + s->inuse
672bba3a
CL
657 * Meta data starts here.
658 *
81819f0f
CL
659 * A. Free pointer (if we cannot overwrite object on free)
660 * B. Tracking data for SLAB_STORE_USER
672bba3a 661 * C. Padding to reach required alignment boundary or at mininum
6446faa2 662 * one word if debugging is on to be able to detect writes
672bba3a
CL
663 * before the word boundary.
664 *
665 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
666 *
667 * object + s->size
672bba3a 668 * Nothing is used beyond s->size.
81819f0f 669 *
672bba3a
CL
670 * If slabcaches are merged then the objsize and inuse boundaries are mostly
671 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
672 * may be used with merged slabcaches.
673 */
674
81819f0f
CL
675static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
676{
677 unsigned long off = s->inuse; /* The end of info */
678
679 if (s->offset)
680 /* Freepointer is placed after the object. */
681 off += sizeof(void *);
682
683 if (s->flags & SLAB_STORE_USER)
684 /* We also have user information there */
685 off += 2 * sizeof(struct track);
686
687 if (s->size == off)
688 return 1;
689
24922684
CL
690 return check_bytes_and_report(s, page, p, "Object padding",
691 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
692}
693
39b26464 694/* Check the pad bytes at the end of a slab page */
81819f0f
CL
695static int slab_pad_check(struct kmem_cache *s, struct page *page)
696{
24922684
CL
697 u8 *start;
698 u8 *fault;
699 u8 *end;
700 int length;
701 int remainder;
81819f0f
CL
702
703 if (!(s->flags & SLAB_POISON))
704 return 1;
705
a973e9dd 706 start = page_address(page);
ab9a0f19 707 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
708 end = start + length;
709 remainder = length % s->size;
81819f0f
CL
710 if (!remainder)
711 return 1;
712
39b26464 713 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
714 if (!fault)
715 return 1;
716 while (end > fault && end[-1] == POISON_INUSE)
717 end--;
718
719 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 720 print_section("Padding", end - remainder, remainder);
24922684 721
8a3d271d 722 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 723 return 0;
81819f0f
CL
724}
725
726static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 727 void *object, u8 val)
81819f0f
CL
728{
729 u8 *p = object;
730 u8 *endobject = object + s->objsize;
731
732 if (s->flags & SLAB_RED_ZONE) {
24922684 733 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 734 endobject, val, s->inuse - s->objsize))
81819f0f 735 return 0;
81819f0f 736 } else {
3adbefee
IM
737 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
738 check_bytes_and_report(s, page, p, "Alignment padding",
739 endobject, POISON_INUSE, s->inuse - s->objsize);
740 }
81819f0f
CL
741 }
742
743 if (s->flags & SLAB_POISON) {
f7cb1933 744 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
745 (!check_bytes_and_report(s, page, p, "Poison", p,
746 POISON_FREE, s->objsize - 1) ||
747 !check_bytes_and_report(s, page, p, "Poison",
06428780 748 p + s->objsize - 1, POISON_END, 1)))
81819f0f 749 return 0;
81819f0f
CL
750 /*
751 * check_pad_bytes cleans up on its own.
752 */
753 check_pad_bytes(s, page, p);
754 }
755
f7cb1933 756 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
757 /*
758 * Object and freepointer overlap. Cannot check
759 * freepointer while object is allocated.
760 */
761 return 1;
762
763 /* Check free pointer validity */
764 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
765 object_err(s, page, p, "Freepointer corrupt");
766 /*
9f6c708e 767 * No choice but to zap it and thus lose the remainder
81819f0f 768 * of the free objects in this slab. May cause
672bba3a 769 * another error because the object count is now wrong.
81819f0f 770 */
a973e9dd 771 set_freepointer(s, p, NULL);
81819f0f
CL
772 return 0;
773 }
774 return 1;
775}
776
777static int check_slab(struct kmem_cache *s, struct page *page)
778{
39b26464
CL
779 int maxobj;
780
81819f0f
CL
781 VM_BUG_ON(!irqs_disabled());
782
783 if (!PageSlab(page)) {
24922684 784 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
785 return 0;
786 }
39b26464 787
ab9a0f19 788 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
789 if (page->objects > maxobj) {
790 slab_err(s, page, "objects %u > max %u",
791 s->name, page->objects, maxobj);
792 return 0;
793 }
794 if (page->inuse > page->objects) {
24922684 795 slab_err(s, page, "inuse %u > max %u",
39b26464 796 s->name, page->inuse, page->objects);
81819f0f
CL
797 return 0;
798 }
799 /* Slab_pad_check fixes things up after itself */
800 slab_pad_check(s, page);
801 return 1;
802}
803
804/*
672bba3a
CL
805 * Determine if a certain object on a page is on the freelist. Must hold the
806 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
807 */
808static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
809{
810 int nr = 0;
811 void *fp = page->freelist;
812 void *object = NULL;
224a88be 813 unsigned long max_objects;
81819f0f 814
39b26464 815 while (fp && nr <= page->objects) {
81819f0f
CL
816 if (fp == search)
817 return 1;
818 if (!check_valid_pointer(s, page, fp)) {
819 if (object) {
820 object_err(s, page, object,
821 "Freechain corrupt");
a973e9dd 822 set_freepointer(s, object, NULL);
81819f0f
CL
823 break;
824 } else {
24922684 825 slab_err(s, page, "Freepointer corrupt");
a973e9dd 826 page->freelist = NULL;
39b26464 827 page->inuse = page->objects;
24922684 828 slab_fix(s, "Freelist cleared");
81819f0f
CL
829 return 0;
830 }
831 break;
832 }
833 object = fp;
834 fp = get_freepointer(s, object);
835 nr++;
836 }
837
ab9a0f19 838 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
839 if (max_objects > MAX_OBJS_PER_PAGE)
840 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
841
842 if (page->objects != max_objects) {
843 slab_err(s, page, "Wrong number of objects. Found %d but "
844 "should be %d", page->objects, max_objects);
845 page->objects = max_objects;
846 slab_fix(s, "Number of objects adjusted.");
847 }
39b26464 848 if (page->inuse != page->objects - nr) {
70d71228 849 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
850 "counted were %d", page->inuse, page->objects - nr);
851 page->inuse = page->objects - nr;
24922684 852 slab_fix(s, "Object count adjusted.");
81819f0f
CL
853 }
854 return search == NULL;
855}
856
0121c619
CL
857static void trace(struct kmem_cache *s, struct page *page, void *object,
858 int alloc)
3ec09742
CL
859{
860 if (s->flags & SLAB_TRACE) {
861 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
862 s->name,
863 alloc ? "alloc" : "free",
864 object, page->inuse,
865 page->freelist);
866
867 if (!alloc)
868 print_section("Object", (void *)object, s->objsize);
869
870 dump_stack();
871 }
872}
873
c016b0bd
CL
874/*
875 * Hooks for other subsystems that check memory allocations. In a typical
876 * production configuration these hooks all should produce no code at all.
877 */
878static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
879{
c1d50836 880 flags &= gfp_allowed_mask;
c016b0bd
CL
881 lockdep_trace_alloc(flags);
882 might_sleep_if(flags & __GFP_WAIT);
883
884 return should_failslab(s->objsize, flags, s->flags);
885}
886
887static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
888{
c1d50836 889 flags &= gfp_allowed_mask;
b3d41885 890 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
891 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
892}
893
894static inline void slab_free_hook(struct kmem_cache *s, void *x)
895{
896 kmemleak_free_recursive(x, s->flags);
c016b0bd 897
d3f661d6
CL
898 /*
899 * Trouble is that we may no longer disable interupts in the fast path
900 * So in order to make the debug calls that expect irqs to be
901 * disabled we need to disable interrupts temporarily.
902 */
903#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
904 {
905 unsigned long flags;
906
907 local_irq_save(flags);
908 kmemcheck_slab_free(s, x, s->objsize);
909 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
910 local_irq_restore(flags);
911 }
912#endif
f9b615de
TG
913 if (!(s->flags & SLAB_DEBUG_OBJECTS))
914 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
915}
916
643b1138 917/*
672bba3a 918 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
919 *
920 * list_lock must be held.
643b1138 921 */
5cc6eee8
CL
922static void add_full(struct kmem_cache *s,
923 struct kmem_cache_node *n, struct page *page)
643b1138 924{
5cc6eee8
CL
925 if (!(s->flags & SLAB_STORE_USER))
926 return;
927
643b1138 928 list_add(&page->lru, &n->full);
643b1138
CL
929}
930
5cc6eee8
CL
931/*
932 * list_lock must be held.
933 */
643b1138
CL
934static void remove_full(struct kmem_cache *s, struct page *page)
935{
643b1138
CL
936 if (!(s->flags & SLAB_STORE_USER))
937 return;
938
643b1138 939 list_del(&page->lru);
643b1138
CL
940}
941
0f389ec6
CL
942/* Tracking of the number of slabs for debugging purposes */
943static inline unsigned long slabs_node(struct kmem_cache *s, int node)
944{
945 struct kmem_cache_node *n = get_node(s, node);
946
947 return atomic_long_read(&n->nr_slabs);
948}
949
26c02cf0
AB
950static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
951{
952 return atomic_long_read(&n->nr_slabs);
953}
954
205ab99d 955static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
956{
957 struct kmem_cache_node *n = get_node(s, node);
958
959 /*
960 * May be called early in order to allocate a slab for the
961 * kmem_cache_node structure. Solve the chicken-egg
962 * dilemma by deferring the increment of the count during
963 * bootstrap (see early_kmem_cache_node_alloc).
964 */
7340cc84 965 if (n) {
0f389ec6 966 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
967 atomic_long_add(objects, &n->total_objects);
968 }
0f389ec6 969}
205ab99d 970static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
971{
972 struct kmem_cache_node *n = get_node(s, node);
973
974 atomic_long_dec(&n->nr_slabs);
205ab99d 975 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
976}
977
978/* Object debug checks for alloc/free paths */
3ec09742
CL
979static void setup_object_debug(struct kmem_cache *s, struct page *page,
980 void *object)
981{
982 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
983 return;
984
f7cb1933 985 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
986 init_tracking(s, object);
987}
988
1537066c 989static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 990 void *object, unsigned long addr)
81819f0f
CL
991{
992 if (!check_slab(s, page))
993 goto bad;
994
d692ef6d 995 if (!on_freelist(s, page, object)) {
24922684 996 object_err(s, page, object, "Object already allocated");
70d71228 997 goto bad;
81819f0f
CL
998 }
999
1000 if (!check_valid_pointer(s, page, object)) {
1001 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1002 goto bad;
81819f0f
CL
1003 }
1004
f7cb1933 1005 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1006 goto bad;
81819f0f 1007
3ec09742
CL
1008 /* Success perform special debug activities for allocs */
1009 if (s->flags & SLAB_STORE_USER)
1010 set_track(s, object, TRACK_ALLOC, addr);
1011 trace(s, page, object, 1);
f7cb1933 1012 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1013 return 1;
3ec09742 1014
81819f0f
CL
1015bad:
1016 if (PageSlab(page)) {
1017 /*
1018 * If this is a slab page then lets do the best we can
1019 * to avoid issues in the future. Marking all objects
672bba3a 1020 * as used avoids touching the remaining objects.
81819f0f 1021 */
24922684 1022 slab_fix(s, "Marking all objects used");
39b26464 1023 page->inuse = page->objects;
a973e9dd 1024 page->freelist = NULL;
81819f0f
CL
1025 }
1026 return 0;
1027}
1028
1537066c
CL
1029static noinline int free_debug_processing(struct kmem_cache *s,
1030 struct page *page, void *object, unsigned long addr)
81819f0f
CL
1031{
1032 if (!check_slab(s, page))
1033 goto fail;
1034
1035 if (!check_valid_pointer(s, page, object)) {
70d71228 1036 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1037 goto fail;
1038 }
1039
1040 if (on_freelist(s, page, object)) {
24922684 1041 object_err(s, page, object, "Object already free");
81819f0f
CL
1042 goto fail;
1043 }
1044
f7cb1933 1045 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
1046 return 0;
1047
1048 if (unlikely(s != page->slab)) {
3adbefee 1049 if (!PageSlab(page)) {
70d71228
CL
1050 slab_err(s, page, "Attempt to free object(0x%p) "
1051 "outside of slab", object);
3adbefee 1052 } else if (!page->slab) {
81819f0f 1053 printk(KERN_ERR
70d71228 1054 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1055 object);
70d71228 1056 dump_stack();
06428780 1057 } else
24922684
CL
1058 object_err(s, page, object,
1059 "page slab pointer corrupt.");
81819f0f
CL
1060 goto fail;
1061 }
3ec09742
CL
1062
1063 /* Special debug activities for freeing objects */
5cc6eee8
CL
1064 if (!page->frozen && !page->freelist) {
1065 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1066
1067 spin_lock(&n->list_lock);
3ec09742 1068 remove_full(s, page);
5cc6eee8
CL
1069 spin_unlock(&n->list_lock);
1070 }
3ec09742
CL
1071 if (s->flags & SLAB_STORE_USER)
1072 set_track(s, object, TRACK_FREE, addr);
1073 trace(s, page, object, 0);
f7cb1933 1074 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1075 return 1;
3ec09742 1076
81819f0f 1077fail:
24922684 1078 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1079 return 0;
1080}
1081
41ecc55b
CL
1082static int __init setup_slub_debug(char *str)
1083{
f0630fff
CL
1084 slub_debug = DEBUG_DEFAULT_FLAGS;
1085 if (*str++ != '=' || !*str)
1086 /*
1087 * No options specified. Switch on full debugging.
1088 */
1089 goto out;
1090
1091 if (*str == ',')
1092 /*
1093 * No options but restriction on slabs. This means full
1094 * debugging for slabs matching a pattern.
1095 */
1096 goto check_slabs;
1097
fa5ec8a1
DR
1098 if (tolower(*str) == 'o') {
1099 /*
1100 * Avoid enabling debugging on caches if its minimum order
1101 * would increase as a result.
1102 */
1103 disable_higher_order_debug = 1;
1104 goto out;
1105 }
1106
f0630fff
CL
1107 slub_debug = 0;
1108 if (*str == '-')
1109 /*
1110 * Switch off all debugging measures.
1111 */
1112 goto out;
1113
1114 /*
1115 * Determine which debug features should be switched on
1116 */
06428780 1117 for (; *str && *str != ','; str++) {
f0630fff
CL
1118 switch (tolower(*str)) {
1119 case 'f':
1120 slub_debug |= SLAB_DEBUG_FREE;
1121 break;
1122 case 'z':
1123 slub_debug |= SLAB_RED_ZONE;
1124 break;
1125 case 'p':
1126 slub_debug |= SLAB_POISON;
1127 break;
1128 case 'u':
1129 slub_debug |= SLAB_STORE_USER;
1130 break;
1131 case 't':
1132 slub_debug |= SLAB_TRACE;
1133 break;
4c13dd3b
DM
1134 case 'a':
1135 slub_debug |= SLAB_FAILSLAB;
1136 break;
f0630fff
CL
1137 default:
1138 printk(KERN_ERR "slub_debug option '%c' "
06428780 1139 "unknown. skipped\n", *str);
f0630fff 1140 }
41ecc55b
CL
1141 }
1142
f0630fff 1143check_slabs:
41ecc55b
CL
1144 if (*str == ',')
1145 slub_debug_slabs = str + 1;
f0630fff 1146out:
41ecc55b
CL
1147 return 1;
1148}
1149
1150__setup("slub_debug", setup_slub_debug);
1151
ba0268a8
CL
1152static unsigned long kmem_cache_flags(unsigned long objsize,
1153 unsigned long flags, const char *name,
51cc5068 1154 void (*ctor)(void *))
41ecc55b
CL
1155{
1156 /*
e153362a 1157 * Enable debugging if selected on the kernel commandline.
41ecc55b 1158 */
e153362a 1159 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1160 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1161 flags |= slub_debug;
ba0268a8
CL
1162
1163 return flags;
41ecc55b
CL
1164}
1165#else
3ec09742
CL
1166static inline void setup_object_debug(struct kmem_cache *s,
1167 struct page *page, void *object) {}
41ecc55b 1168
3ec09742 1169static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1170 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1171
3ec09742 1172static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1173 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1174
41ecc55b
CL
1175static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1176 { return 1; }
1177static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1178 void *object, u8 val) { return 1; }
5cc6eee8
CL
1179static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1180 struct page *page) {}
ba0268a8
CL
1181static inline unsigned long kmem_cache_flags(unsigned long objsize,
1182 unsigned long flags, const char *name,
51cc5068 1183 void (*ctor)(void *))
ba0268a8
CL
1184{
1185 return flags;
1186}
41ecc55b 1187#define slub_debug 0
0f389ec6 1188
fdaa45e9
IM
1189#define disable_higher_order_debug 0
1190
0f389ec6
CL
1191static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1192 { return 0; }
26c02cf0
AB
1193static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1194 { return 0; }
205ab99d
CL
1195static inline void inc_slabs_node(struct kmem_cache *s, int node,
1196 int objects) {}
1197static inline void dec_slabs_node(struct kmem_cache *s, int node,
1198 int objects) {}
7d550c56
CL
1199
1200static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1201 { return 0; }
1202
1203static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1204 void *object) {}
1205
1206static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1207
ab4d5ed5 1208#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1209
81819f0f
CL
1210/*
1211 * Slab allocation and freeing
1212 */
65c3376a
CL
1213static inline struct page *alloc_slab_page(gfp_t flags, int node,
1214 struct kmem_cache_order_objects oo)
1215{
1216 int order = oo_order(oo);
1217
b1eeab67
VN
1218 flags |= __GFP_NOTRACK;
1219
2154a336 1220 if (node == NUMA_NO_NODE)
65c3376a
CL
1221 return alloc_pages(flags, order);
1222 else
6b65aaf3 1223 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1224}
1225
81819f0f
CL
1226static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1227{
06428780 1228 struct page *page;
834f3d11 1229 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1230 gfp_t alloc_gfp;
81819f0f 1231
7e0528da
CL
1232 flags &= gfp_allowed_mask;
1233
1234 if (flags & __GFP_WAIT)
1235 local_irq_enable();
1236
b7a49f0d 1237 flags |= s->allocflags;
e12ba74d 1238
ba52270d
PE
1239 /*
1240 * Let the initial higher-order allocation fail under memory pressure
1241 * so we fall-back to the minimum order allocation.
1242 */
1243 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1244
1245 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1246 if (unlikely(!page)) {
1247 oo = s->min;
1248 /*
1249 * Allocation may have failed due to fragmentation.
1250 * Try a lower order alloc if possible
1251 */
1252 page = alloc_slab_page(flags, node, oo);
81819f0f 1253
7e0528da
CL
1254 if (page)
1255 stat(s, ORDER_FALLBACK);
65c3376a 1256 }
5a896d9e 1257
7e0528da
CL
1258 if (flags & __GFP_WAIT)
1259 local_irq_disable();
1260
1261 if (!page)
1262 return NULL;
1263
5a896d9e 1264 if (kmemcheck_enabled
5086c389 1265 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1266 int pages = 1 << oo_order(oo);
1267
1268 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1269
1270 /*
1271 * Objects from caches that have a constructor don't get
1272 * cleared when they're allocated, so we need to do it here.
1273 */
1274 if (s->ctor)
1275 kmemcheck_mark_uninitialized_pages(page, pages);
1276 else
1277 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1278 }
1279
834f3d11 1280 page->objects = oo_objects(oo);
81819f0f
CL
1281 mod_zone_page_state(page_zone(page),
1282 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1283 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1284 1 << oo_order(oo));
81819f0f
CL
1285
1286 return page;
1287}
1288
1289static void setup_object(struct kmem_cache *s, struct page *page,
1290 void *object)
1291{
3ec09742 1292 setup_object_debug(s, page, object);
4f104934 1293 if (unlikely(s->ctor))
51cc5068 1294 s->ctor(object);
81819f0f
CL
1295}
1296
1297static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1298{
1299 struct page *page;
81819f0f 1300 void *start;
81819f0f
CL
1301 void *last;
1302 void *p;
1303
6cb06229 1304 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1305
6cb06229
CL
1306 page = allocate_slab(s,
1307 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1308 if (!page)
1309 goto out;
1310
205ab99d 1311 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1312 page->slab = s;
1313 page->flags |= 1 << PG_slab;
81819f0f
CL
1314
1315 start = page_address(page);
81819f0f
CL
1316
1317 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1318 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1319
1320 last = start;
224a88be 1321 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1322 setup_object(s, page, last);
1323 set_freepointer(s, last, p);
1324 last = p;
1325 }
1326 setup_object(s, page, last);
a973e9dd 1327 set_freepointer(s, last, NULL);
81819f0f
CL
1328
1329 page->freelist = start;
1330 page->inuse = 0;
8cb0a506 1331 page->frozen = 1;
81819f0f 1332out:
81819f0f
CL
1333 return page;
1334}
1335
1336static void __free_slab(struct kmem_cache *s, struct page *page)
1337{
834f3d11
CL
1338 int order = compound_order(page);
1339 int pages = 1 << order;
81819f0f 1340
af537b0a 1341 if (kmem_cache_debug(s)) {
81819f0f
CL
1342 void *p;
1343
1344 slab_pad_check(s, page);
224a88be
CL
1345 for_each_object(p, s, page_address(page),
1346 page->objects)
f7cb1933 1347 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1348 }
1349
b1eeab67 1350 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1351
81819f0f
CL
1352 mod_zone_page_state(page_zone(page),
1353 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1354 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1355 -pages);
81819f0f 1356
49bd5221
CL
1357 __ClearPageSlab(page);
1358 reset_page_mapcount(page);
1eb5ac64
NP
1359 if (current->reclaim_state)
1360 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1361 __free_pages(page, order);
81819f0f
CL
1362}
1363
da9a638c
LJ
1364#define need_reserve_slab_rcu \
1365 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1366
81819f0f
CL
1367static void rcu_free_slab(struct rcu_head *h)
1368{
1369 struct page *page;
1370
da9a638c
LJ
1371 if (need_reserve_slab_rcu)
1372 page = virt_to_head_page(h);
1373 else
1374 page = container_of((struct list_head *)h, struct page, lru);
1375
81819f0f
CL
1376 __free_slab(page->slab, page);
1377}
1378
1379static void free_slab(struct kmem_cache *s, struct page *page)
1380{
1381 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1382 struct rcu_head *head;
1383
1384 if (need_reserve_slab_rcu) {
1385 int order = compound_order(page);
1386 int offset = (PAGE_SIZE << order) - s->reserved;
1387
1388 VM_BUG_ON(s->reserved != sizeof(*head));
1389 head = page_address(page) + offset;
1390 } else {
1391 /*
1392 * RCU free overloads the RCU head over the LRU
1393 */
1394 head = (void *)&page->lru;
1395 }
81819f0f
CL
1396
1397 call_rcu(head, rcu_free_slab);
1398 } else
1399 __free_slab(s, page);
1400}
1401
1402static void discard_slab(struct kmem_cache *s, struct page *page)
1403{
205ab99d 1404 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1405 free_slab(s, page);
1406}
1407
1408/*
1409 * Per slab locking using the pagelock
1410 */
1411static __always_inline void slab_lock(struct page *page)
1412{
1413 bit_spin_lock(PG_locked, &page->flags);
1414}
1415
1416static __always_inline void slab_unlock(struct page *page)
1417{
a76d3546 1418 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1419}
1420
1421static __always_inline int slab_trylock(struct page *page)
1422{
1423 int rc = 1;
1424
1425 rc = bit_spin_trylock(PG_locked, &page->flags);
1426 return rc;
1427}
1428
1429/*
5cc6eee8
CL
1430 * Management of partially allocated slabs.
1431 *
1432 * list_lock must be held.
81819f0f 1433 */
5cc6eee8 1434static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1435 struct page *page, int tail)
81819f0f 1436{
e95eed57 1437 n->nr_partial++;
7c2e132c
CL
1438 if (tail)
1439 list_add_tail(&page->lru, &n->partial);
1440 else
1441 list_add(&page->lru, &n->partial);
81819f0f
CL
1442}
1443
5cc6eee8
CL
1444/*
1445 * list_lock must be held.
1446 */
1447static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1448 struct page *page)
1449{
1450 list_del(&page->lru);
1451 n->nr_partial--;
1452}
1453
81819f0f 1454/*
5cc6eee8
CL
1455 * Lock slab, remove from the partial list and put the object into the
1456 * per cpu freelist.
81819f0f 1457 *
672bba3a 1458 * Must hold list_lock.
81819f0f 1459 */
61728d1e
CL
1460static inline int lock_and_freeze_slab(struct kmem_cache *s,
1461 struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1462{
1463 if (slab_trylock(page)) {
5cc6eee8 1464 remove_partial(n, page);
81819f0f
CL
1465 return 1;
1466 }
1467 return 0;
1468}
1469
1470/*
672bba3a 1471 * Try to allocate a partial slab from a specific node.
81819f0f 1472 */
61728d1e
CL
1473static struct page *get_partial_node(struct kmem_cache *s,
1474 struct kmem_cache_node *n)
81819f0f
CL
1475{
1476 struct page *page;
1477
1478 /*
1479 * Racy check. If we mistakenly see no partial slabs then we
1480 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1481 * partial slab and there is none available then get_partials()
1482 * will return NULL.
81819f0f
CL
1483 */
1484 if (!n || !n->nr_partial)
1485 return NULL;
1486
1487 spin_lock(&n->list_lock);
1488 list_for_each_entry(page, &n->partial, lru)
61728d1e 1489 if (lock_and_freeze_slab(s, n, page))
81819f0f
CL
1490 goto out;
1491 page = NULL;
1492out:
1493 spin_unlock(&n->list_lock);
1494 return page;
1495}
1496
1497/*
672bba3a 1498 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1499 */
1500static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1501{
1502#ifdef CONFIG_NUMA
1503 struct zonelist *zonelist;
dd1a239f 1504 struct zoneref *z;
54a6eb5c
MG
1505 struct zone *zone;
1506 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1507 struct page *page;
1508
1509 /*
672bba3a
CL
1510 * The defrag ratio allows a configuration of the tradeoffs between
1511 * inter node defragmentation and node local allocations. A lower
1512 * defrag_ratio increases the tendency to do local allocations
1513 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1514 *
672bba3a
CL
1515 * If the defrag_ratio is set to 0 then kmalloc() always
1516 * returns node local objects. If the ratio is higher then kmalloc()
1517 * may return off node objects because partial slabs are obtained
1518 * from other nodes and filled up.
81819f0f 1519 *
6446faa2 1520 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1521 * defrag_ratio = 1000) then every (well almost) allocation will
1522 * first attempt to defrag slab caches on other nodes. This means
1523 * scanning over all nodes to look for partial slabs which may be
1524 * expensive if we do it every time we are trying to find a slab
1525 * with available objects.
81819f0f 1526 */
9824601e
CL
1527 if (!s->remote_node_defrag_ratio ||
1528 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1529 return NULL;
1530
c0ff7453 1531 get_mems_allowed();
0e88460d 1532 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1533 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1534 struct kmem_cache_node *n;
1535
54a6eb5c 1536 n = get_node(s, zone_to_nid(zone));
81819f0f 1537
54a6eb5c 1538 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1539 n->nr_partial > s->min_partial) {
61728d1e 1540 page = get_partial_node(s, n);
c0ff7453
MX
1541 if (page) {
1542 put_mems_allowed();
81819f0f 1543 return page;
c0ff7453 1544 }
81819f0f
CL
1545 }
1546 }
c0ff7453 1547 put_mems_allowed();
81819f0f
CL
1548#endif
1549 return NULL;
1550}
1551
1552/*
1553 * Get a partial page, lock it and return it.
1554 */
1555static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1556{
1557 struct page *page;
2154a336 1558 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1559
61728d1e 1560 page = get_partial_node(s, get_node(s, searchnode));
33de04ec 1561 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1562 return page;
1563
1564 return get_any_partial(s, flags);
1565}
1566
1567/*
1568 * Move a page back to the lists.
1569 *
1570 * Must be called with the slab lock held.
1571 *
1572 * On exit the slab lock will have been dropped.
1573 */
7c2e132c 1574static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1575 __releases(bitlock)
81819f0f 1576{
e95eed57
CL
1577 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1578
81819f0f 1579 if (page->inuse) {
e95eed57 1580
a973e9dd 1581 if (page->freelist) {
5cc6eee8 1582 spin_lock(&n->list_lock);
7c2e132c 1583 add_partial(n, page, tail);
5cc6eee8 1584 spin_unlock(&n->list_lock);
84e554e6 1585 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1586 } else {
84e554e6 1587 stat(s, DEACTIVATE_FULL);
5cc6eee8
CL
1588 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) {
1589 spin_lock(&n->list_lock);
1590 add_full(s, n, page);
1591 spin_unlock(&n->list_lock);
1592 }
8ff12cfc 1593 }
81819f0f
CL
1594 slab_unlock(page);
1595 } else {
84e554e6 1596 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1597 if (n->nr_partial < s->min_partial) {
e95eed57 1598 /*
672bba3a
CL
1599 * Adding an empty slab to the partial slabs in order
1600 * to avoid page allocator overhead. This slab needs
1601 * to come after the other slabs with objects in
6446faa2
CL
1602 * so that the others get filled first. That way the
1603 * size of the partial list stays small.
1604 *
0121c619
CL
1605 * kmem_cache_shrink can reclaim any empty slabs from
1606 * the partial list.
e95eed57 1607 */
5cc6eee8 1608 spin_lock(&n->list_lock);
7c2e132c 1609 add_partial(n, page, 1);
5cc6eee8 1610 spin_unlock(&n->list_lock);
e95eed57
CL
1611 slab_unlock(page);
1612 } else {
1613 slab_unlock(page);
84e554e6 1614 stat(s, FREE_SLAB);
e95eed57
CL
1615 discard_slab(s, page);
1616 }
81819f0f
CL
1617 }
1618}
1619
8a5ec0ba
CL
1620#ifdef CONFIG_PREEMPT
1621/*
1622 * Calculate the next globally unique transaction for disambiguiation
1623 * during cmpxchg. The transactions start with the cpu number and are then
1624 * incremented by CONFIG_NR_CPUS.
1625 */
1626#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1627#else
1628/*
1629 * No preemption supported therefore also no need to check for
1630 * different cpus.
1631 */
1632#define TID_STEP 1
1633#endif
1634
1635static inline unsigned long next_tid(unsigned long tid)
1636{
1637 return tid + TID_STEP;
1638}
1639
1640static inline unsigned int tid_to_cpu(unsigned long tid)
1641{
1642 return tid % TID_STEP;
1643}
1644
1645static inline unsigned long tid_to_event(unsigned long tid)
1646{
1647 return tid / TID_STEP;
1648}
1649
1650static inline unsigned int init_tid(int cpu)
1651{
1652 return cpu;
1653}
1654
1655static inline void note_cmpxchg_failure(const char *n,
1656 const struct kmem_cache *s, unsigned long tid)
1657{
1658#ifdef SLUB_DEBUG_CMPXCHG
1659 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1660
1661 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1662
1663#ifdef CONFIG_PREEMPT
1664 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1665 printk("due to cpu change %d -> %d\n",
1666 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1667 else
1668#endif
1669 if (tid_to_event(tid) != tid_to_event(actual_tid))
1670 printk("due to cpu running other code. Event %ld->%ld\n",
1671 tid_to_event(tid), tid_to_event(actual_tid));
1672 else
1673 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1674 actual_tid, tid, next_tid(tid));
1675#endif
4fdccdfb 1676 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1677}
1678
8a5ec0ba
CL
1679void init_kmem_cache_cpus(struct kmem_cache *s)
1680{
8a5ec0ba
CL
1681 int cpu;
1682
1683 for_each_possible_cpu(cpu)
1684 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1685}
81819f0f
CL
1686/*
1687 * Remove the cpu slab
1688 */
dfb4f096 1689static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1690 __releases(bitlock)
81819f0f 1691{
dfb4f096 1692 struct page *page = c->page;
7c2e132c 1693 int tail = 1;
8ff12cfc 1694
b773ad73 1695 if (page->freelist)
84e554e6 1696 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1697 /*
6446faa2 1698 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1699 * because both freelists are empty. So this is unlikely
1700 * to occur.
1701 */
a973e9dd 1702 while (unlikely(c->freelist)) {
894b8788
CL
1703 void **object;
1704
7c2e132c
CL
1705 tail = 0; /* Hot objects. Put the slab first */
1706
894b8788 1707 /* Retrieve object from cpu_freelist */
dfb4f096 1708 object = c->freelist;
ff12059e 1709 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1710
1711 /* And put onto the regular freelist */
ff12059e 1712 set_freepointer(s, object, page->freelist);
894b8788
CL
1713 page->freelist = object;
1714 page->inuse--;
1715 }
dfb4f096 1716 c->page = NULL;
8a5ec0ba 1717 c->tid = next_tid(c->tid);
8cb0a506 1718 page->frozen = 0;
7c2e132c 1719 unfreeze_slab(s, page, tail);
81819f0f
CL
1720}
1721
dfb4f096 1722static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1723{
84e554e6 1724 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1725 slab_lock(c->page);
1726 deactivate_slab(s, c);
81819f0f
CL
1727}
1728
1729/*
1730 * Flush cpu slab.
6446faa2 1731 *
81819f0f
CL
1732 * Called from IPI handler with interrupts disabled.
1733 */
0c710013 1734static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1735{
9dfc6e68 1736 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1737
dfb4f096
CL
1738 if (likely(c && c->page))
1739 flush_slab(s, c);
81819f0f
CL
1740}
1741
1742static void flush_cpu_slab(void *d)
1743{
1744 struct kmem_cache *s = d;
81819f0f 1745
dfb4f096 1746 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1747}
1748
1749static void flush_all(struct kmem_cache *s)
1750{
15c8b6c1 1751 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1752}
1753
dfb4f096
CL
1754/*
1755 * Check if the objects in a per cpu structure fit numa
1756 * locality expectations.
1757 */
1758static inline int node_match(struct kmem_cache_cpu *c, int node)
1759{
1760#ifdef CONFIG_NUMA
2154a336 1761 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1762 return 0;
1763#endif
1764 return 1;
1765}
1766
781b2ba6
PE
1767static int count_free(struct page *page)
1768{
1769 return page->objects - page->inuse;
1770}
1771
1772static unsigned long count_partial(struct kmem_cache_node *n,
1773 int (*get_count)(struct page *))
1774{
1775 unsigned long flags;
1776 unsigned long x = 0;
1777 struct page *page;
1778
1779 spin_lock_irqsave(&n->list_lock, flags);
1780 list_for_each_entry(page, &n->partial, lru)
1781 x += get_count(page);
1782 spin_unlock_irqrestore(&n->list_lock, flags);
1783 return x;
1784}
1785
26c02cf0
AB
1786static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1787{
1788#ifdef CONFIG_SLUB_DEBUG
1789 return atomic_long_read(&n->total_objects);
1790#else
1791 return 0;
1792#endif
1793}
1794
781b2ba6
PE
1795static noinline void
1796slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1797{
1798 int node;
1799
1800 printk(KERN_WARNING
1801 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1802 nid, gfpflags);
1803 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1804 "default order: %d, min order: %d\n", s->name, s->objsize,
1805 s->size, oo_order(s->oo), oo_order(s->min));
1806
fa5ec8a1
DR
1807 if (oo_order(s->min) > get_order(s->objsize))
1808 printk(KERN_WARNING " %s debugging increased min order, use "
1809 "slub_debug=O to disable.\n", s->name);
1810
781b2ba6
PE
1811 for_each_online_node(node) {
1812 struct kmem_cache_node *n = get_node(s, node);
1813 unsigned long nr_slabs;
1814 unsigned long nr_objs;
1815 unsigned long nr_free;
1816
1817 if (!n)
1818 continue;
1819
26c02cf0
AB
1820 nr_free = count_partial(n, count_free);
1821 nr_slabs = node_nr_slabs(n);
1822 nr_objs = node_nr_objs(n);
781b2ba6
PE
1823
1824 printk(KERN_WARNING
1825 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1826 node, nr_slabs, nr_objs, nr_free);
1827 }
1828}
1829
81819f0f 1830/*
894b8788
CL
1831 * Slow path. The lockless freelist is empty or we need to perform
1832 * debugging duties.
1833 *
1834 * Interrupts are disabled.
81819f0f 1835 *
894b8788
CL
1836 * Processing is still very fast if new objects have been freed to the
1837 * regular freelist. In that case we simply take over the regular freelist
1838 * as the lockless freelist and zap the regular freelist.
81819f0f 1839 *
894b8788
CL
1840 * If that is not working then we fall back to the partial lists. We take the
1841 * first element of the freelist as the object to allocate now and move the
1842 * rest of the freelist to the lockless freelist.
81819f0f 1843 *
894b8788 1844 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1845 * we need to allocate a new slab. This is the slowest path since it involves
1846 * a call to the page allocator and the setup of a new slab.
81819f0f 1847 */
ce71e27c
EGM
1848static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1849 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1850{
81819f0f 1851 void **object;
01ad8a7b 1852 struct page *page;
8a5ec0ba
CL
1853 unsigned long flags;
1854
1855 local_irq_save(flags);
1856#ifdef CONFIG_PREEMPT
1857 /*
1858 * We may have been preempted and rescheduled on a different
1859 * cpu before disabling interrupts. Need to reload cpu area
1860 * pointer.
1861 */
1862 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1863#endif
81819f0f 1864
e72e9c23
LT
1865 /* We handle __GFP_ZERO in the caller */
1866 gfpflags &= ~__GFP_ZERO;
1867
01ad8a7b
CL
1868 page = c->page;
1869 if (!page)
81819f0f
CL
1870 goto new_slab;
1871
01ad8a7b 1872 slab_lock(page);
dfb4f096 1873 if (unlikely(!node_match(c, node)))
81819f0f 1874 goto another_slab;
6446faa2 1875
84e554e6 1876 stat(s, ALLOC_REFILL);
6446faa2 1877
894b8788 1878load_freelist:
8cb0a506
CL
1879 VM_BUG_ON(!page->frozen);
1880
01ad8a7b 1881 object = page->freelist;
a973e9dd 1882 if (unlikely(!object))
81819f0f 1883 goto another_slab;
af537b0a 1884 if (kmem_cache_debug(s))
81819f0f
CL
1885 goto debug;
1886
ff12059e 1887 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1888 page->inuse = page->objects;
1889 page->freelist = NULL;
01ad8a7b 1890
01ad8a7b 1891 slab_unlock(page);
8a5ec0ba
CL
1892 c->tid = next_tid(c->tid);
1893 local_irq_restore(flags);
84e554e6 1894 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1895 return object;
1896
1897another_slab:
dfb4f096 1898 deactivate_slab(s, c);
81819f0f
CL
1899
1900new_slab:
01ad8a7b
CL
1901 page = get_partial(s, gfpflags, node);
1902 if (page) {
84e554e6 1903 stat(s, ALLOC_FROM_PARTIAL);
8cb0a506 1904 page->frozen = 1;
dc1fb7f4
CL
1905 c->node = page_to_nid(page);
1906 c->page = page;
894b8788 1907 goto load_freelist;
81819f0f
CL
1908 }
1909
01ad8a7b 1910 page = new_slab(s, gfpflags, node);
b811c202 1911
01ad8a7b 1912 if (page) {
9dfc6e68 1913 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1914 stat(s, ALLOC_SLAB);
05aa3450 1915 if (c->page)
dfb4f096 1916 flush_slab(s, c);
01ad8a7b
CL
1917
1918 slab_lock(page);
50d5c41c 1919 page->frozen = 1;
bd07d87f
DR
1920 c->node = page_to_nid(page);
1921 c->page = page;
4b6f0750 1922 goto load_freelist;
81819f0f 1923 }
95f85989
PE
1924 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1925 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1926 local_irq_restore(flags);
71c7a06f 1927 return NULL;
81819f0f 1928debug:
01ad8a7b 1929 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1930 goto another_slab;
894b8788 1931
01ad8a7b
CL
1932 page->inuse++;
1933 page->freelist = get_freepointer(s, object);
442b06bc
CL
1934 deactivate_slab(s, c);
1935 c->page = NULL;
15b7c514 1936 c->node = NUMA_NO_NODE;
a71ae47a
CL
1937 local_irq_restore(flags);
1938 return object;
894b8788
CL
1939}
1940
1941/*
1942 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1943 * have the fastpath folded into their functions. So no function call
1944 * overhead for requests that can be satisfied on the fastpath.
1945 *
1946 * The fastpath works by first checking if the lockless freelist can be used.
1947 * If not then __slab_alloc is called for slow processing.
1948 *
1949 * Otherwise we can simply pick the next object from the lockless free list.
1950 */
06428780 1951static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1952 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1953{
894b8788 1954 void **object;
dfb4f096 1955 struct kmem_cache_cpu *c;
8a5ec0ba 1956 unsigned long tid;
1f84260c 1957
c016b0bd 1958 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1959 return NULL;
1f84260c 1960
8a5ec0ba 1961redo:
8a5ec0ba
CL
1962
1963 /*
1964 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1965 * enabled. We may switch back and forth between cpus while
1966 * reading from one cpu area. That does not matter as long
1967 * as we end up on the original cpu again when doing the cmpxchg.
1968 */
9dfc6e68 1969 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1970
8a5ec0ba
CL
1971 /*
1972 * The transaction ids are globally unique per cpu and per operation on
1973 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1974 * occurs on the right processor and that there was no operation on the
1975 * linked list in between.
1976 */
1977 tid = c->tid;
1978 barrier();
8a5ec0ba 1979
9dfc6e68 1980 object = c->freelist;
9dfc6e68 1981 if (unlikely(!object || !node_match(c, node)))
894b8788 1982
dfb4f096 1983 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1984
1985 else {
8a5ec0ba 1986 /*
25985edc 1987 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
1988 * operation and if we are on the right processor.
1989 *
1990 * The cmpxchg does the following atomically (without lock semantics!)
1991 * 1. Relocate first pointer to the current per cpu area.
1992 * 2. Verify that tid and freelist have not been changed
1993 * 3. If they were not changed replace tid and freelist
1994 *
1995 * Since this is without lock semantics the protection is only against
1996 * code executing on this cpu *not* from access by other cpus.
1997 */
30106b8c 1998 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
1999 s->cpu_slab->freelist, s->cpu_slab->tid,
2000 object, tid,
1393d9a1 2001 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2002
2003 note_cmpxchg_failure("slab_alloc", s, tid);
2004 goto redo;
2005 }
84e554e6 2006 stat(s, ALLOC_FASTPATH);
894b8788 2007 }
8a5ec0ba 2008
74e2134f 2009 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2010 memset(object, 0, s->objsize);
d07dbea4 2011
c016b0bd 2012 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2013
894b8788 2014 return object;
81819f0f
CL
2015}
2016
2017void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2018{
2154a336 2019 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2020
ca2b84cb 2021 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2022
2023 return ret;
81819f0f
CL
2024}
2025EXPORT_SYMBOL(kmem_cache_alloc);
2026
0f24f128 2027#ifdef CONFIG_TRACING
4a92379b
RK
2028void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2029{
2030 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2031 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2032 return ret;
2033}
2034EXPORT_SYMBOL(kmem_cache_alloc_trace);
2035
2036void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2037{
4a92379b
RK
2038 void *ret = kmalloc_order(size, flags, order);
2039 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2040 return ret;
5b882be4 2041}
4a92379b 2042EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2043#endif
2044
81819f0f
CL
2045#ifdef CONFIG_NUMA
2046void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2047{
5b882be4
EGM
2048 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2049
ca2b84cb
EGM
2050 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2051 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2052
2053 return ret;
81819f0f
CL
2054}
2055EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2056
0f24f128 2057#ifdef CONFIG_TRACING
4a92379b 2058void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2059 gfp_t gfpflags,
4a92379b 2060 int node, size_t size)
5b882be4 2061{
4a92379b
RK
2062 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2063
2064 trace_kmalloc_node(_RET_IP_, ret,
2065 size, s->size, gfpflags, node);
2066 return ret;
5b882be4 2067}
4a92379b 2068EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2069#endif
5d1f57e4 2070#endif
5b882be4 2071
81819f0f 2072/*
894b8788
CL
2073 * Slow patch handling. This may still be called frequently since objects
2074 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2075 *
894b8788
CL
2076 * So we still attempt to reduce cache line usage. Just take the slab
2077 * lock and free the item. If there is no additional partial page
2078 * handling required then we can return immediately.
81819f0f 2079 */
894b8788 2080static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2081 void *x, unsigned long addr)
81819f0f
CL
2082{
2083 void *prior;
2084 void **object = (void *)x;
61728d1e 2085 unsigned long uninitialized_var(flags);
81819f0f 2086
8a5ec0ba 2087 local_irq_save(flags);
81819f0f 2088 slab_lock(page);
8a5ec0ba 2089 stat(s, FREE_SLOWPATH);
81819f0f 2090
8dc16c6c
CL
2091 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2092 goto out_unlock;
6446faa2 2093
ff12059e
CL
2094 prior = page->freelist;
2095 set_freepointer(s, object, prior);
81819f0f
CL
2096 page->freelist = object;
2097 page->inuse--;
2098
50d5c41c 2099 if (unlikely(page->frozen)) {
84e554e6 2100 stat(s, FREE_FROZEN);
81819f0f 2101 goto out_unlock;
8ff12cfc 2102 }
81819f0f
CL
2103
2104 if (unlikely(!page->inuse))
2105 goto slab_empty;
2106
2107 /*
6446faa2 2108 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2109 * then add it.
2110 */
a973e9dd 2111 if (unlikely(!prior)) {
5cc6eee8
CL
2112 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2113
2114 spin_lock(&n->list_lock);
7c2e132c 2115 add_partial(get_node(s, page_to_nid(page)), page, 1);
5cc6eee8 2116 spin_unlock(&n->list_lock);
84e554e6 2117 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2118 }
81819f0f
CL
2119
2120out_unlock:
2121 slab_unlock(page);
8a5ec0ba 2122 local_irq_restore(flags);
81819f0f
CL
2123 return;
2124
2125slab_empty:
a973e9dd 2126 if (prior) {
81819f0f 2127 /*
672bba3a 2128 * Slab still on the partial list.
81819f0f 2129 */
5cc6eee8
CL
2130 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2131
2132 spin_lock(&n->list_lock);
2133 remove_partial(n, page);
2134 spin_unlock(&n->list_lock);
84e554e6 2135 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2136 }
81819f0f 2137 slab_unlock(page);
8a5ec0ba 2138 local_irq_restore(flags);
84e554e6 2139 stat(s, FREE_SLAB);
81819f0f 2140 discard_slab(s, page);
81819f0f
CL
2141}
2142
894b8788
CL
2143/*
2144 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2145 * can perform fastpath freeing without additional function calls.
2146 *
2147 * The fastpath is only possible if we are freeing to the current cpu slab
2148 * of this processor. This typically the case if we have just allocated
2149 * the item before.
2150 *
2151 * If fastpath is not possible then fall back to __slab_free where we deal
2152 * with all sorts of special processing.
2153 */
06428780 2154static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2155 struct page *page, void *x, unsigned long addr)
894b8788
CL
2156{
2157 void **object = (void *)x;
dfb4f096 2158 struct kmem_cache_cpu *c;
8a5ec0ba 2159 unsigned long tid;
1f84260c 2160
c016b0bd
CL
2161 slab_free_hook(s, x);
2162
8a5ec0ba 2163redo:
a24c5a0e 2164
8a5ec0ba
CL
2165 /*
2166 * Determine the currently cpus per cpu slab.
2167 * The cpu may change afterward. However that does not matter since
2168 * data is retrieved via this pointer. If we are on the same cpu
2169 * during the cmpxchg then the free will succedd.
2170 */
9dfc6e68 2171 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2172
8a5ec0ba
CL
2173 tid = c->tid;
2174 barrier();
c016b0bd 2175
442b06bc 2176 if (likely(page == c->page)) {
ff12059e 2177 set_freepointer(s, object, c->freelist);
8a5ec0ba 2178
30106b8c 2179 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2180 s->cpu_slab->freelist, s->cpu_slab->tid,
2181 c->freelist, tid,
2182 object, next_tid(tid)))) {
2183
2184 note_cmpxchg_failure("slab_free", s, tid);
2185 goto redo;
2186 }
84e554e6 2187 stat(s, FREE_FASTPATH);
894b8788 2188 } else
ff12059e 2189 __slab_free(s, page, x, addr);
894b8788 2190
894b8788
CL
2191}
2192
81819f0f
CL
2193void kmem_cache_free(struct kmem_cache *s, void *x)
2194{
77c5e2d0 2195 struct page *page;
81819f0f 2196
b49af68f 2197 page = virt_to_head_page(x);
81819f0f 2198
ce71e27c 2199 slab_free(s, page, x, _RET_IP_);
5b882be4 2200
ca2b84cb 2201 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2202}
2203EXPORT_SYMBOL(kmem_cache_free);
2204
81819f0f 2205/*
672bba3a
CL
2206 * Object placement in a slab is made very easy because we always start at
2207 * offset 0. If we tune the size of the object to the alignment then we can
2208 * get the required alignment by putting one properly sized object after
2209 * another.
81819f0f
CL
2210 *
2211 * Notice that the allocation order determines the sizes of the per cpu
2212 * caches. Each processor has always one slab available for allocations.
2213 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2214 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2215 * locking overhead.
81819f0f
CL
2216 */
2217
2218/*
2219 * Mininum / Maximum order of slab pages. This influences locking overhead
2220 * and slab fragmentation. A higher order reduces the number of partial slabs
2221 * and increases the number of allocations possible without having to
2222 * take the list_lock.
2223 */
2224static int slub_min_order;
114e9e89 2225static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2226static int slub_min_objects;
81819f0f
CL
2227
2228/*
2229 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2230 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2231 */
2232static int slub_nomerge;
2233
81819f0f
CL
2234/*
2235 * Calculate the order of allocation given an slab object size.
2236 *
672bba3a
CL
2237 * The order of allocation has significant impact on performance and other
2238 * system components. Generally order 0 allocations should be preferred since
2239 * order 0 does not cause fragmentation in the page allocator. Larger objects
2240 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2241 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2242 * would be wasted.
2243 *
2244 * In order to reach satisfactory performance we must ensure that a minimum
2245 * number of objects is in one slab. Otherwise we may generate too much
2246 * activity on the partial lists which requires taking the list_lock. This is
2247 * less a concern for large slabs though which are rarely used.
81819f0f 2248 *
672bba3a
CL
2249 * slub_max_order specifies the order where we begin to stop considering the
2250 * number of objects in a slab as critical. If we reach slub_max_order then
2251 * we try to keep the page order as low as possible. So we accept more waste
2252 * of space in favor of a small page order.
81819f0f 2253 *
672bba3a
CL
2254 * Higher order allocations also allow the placement of more objects in a
2255 * slab and thereby reduce object handling overhead. If the user has
2256 * requested a higher mininum order then we start with that one instead of
2257 * the smallest order which will fit the object.
81819f0f 2258 */
5e6d444e 2259static inline int slab_order(int size, int min_objects,
ab9a0f19 2260 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2261{
2262 int order;
2263 int rem;
6300ea75 2264 int min_order = slub_min_order;
81819f0f 2265
ab9a0f19 2266 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2267 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2268
6300ea75 2269 for (order = max(min_order,
5e6d444e
CL
2270 fls(min_objects * size - 1) - PAGE_SHIFT);
2271 order <= max_order; order++) {
81819f0f 2272
5e6d444e 2273 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2274
ab9a0f19 2275 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2276 continue;
2277
ab9a0f19 2278 rem = (slab_size - reserved) % size;
81819f0f 2279
5e6d444e 2280 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2281 break;
2282
2283 }
672bba3a 2284
81819f0f
CL
2285 return order;
2286}
2287
ab9a0f19 2288static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2289{
2290 int order;
2291 int min_objects;
2292 int fraction;
e8120ff1 2293 int max_objects;
5e6d444e
CL
2294
2295 /*
2296 * Attempt to find best configuration for a slab. This
2297 * works by first attempting to generate a layout with
2298 * the best configuration and backing off gradually.
2299 *
2300 * First we reduce the acceptable waste in a slab. Then
2301 * we reduce the minimum objects required in a slab.
2302 */
2303 min_objects = slub_min_objects;
9b2cd506
CL
2304 if (!min_objects)
2305 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2306 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2307 min_objects = min(min_objects, max_objects);
2308
5e6d444e 2309 while (min_objects > 1) {
c124f5b5 2310 fraction = 16;
5e6d444e
CL
2311 while (fraction >= 4) {
2312 order = slab_order(size, min_objects,
ab9a0f19 2313 slub_max_order, fraction, reserved);
5e6d444e
CL
2314 if (order <= slub_max_order)
2315 return order;
2316 fraction /= 2;
2317 }
5086c389 2318 min_objects--;
5e6d444e
CL
2319 }
2320
2321 /*
2322 * We were unable to place multiple objects in a slab. Now
2323 * lets see if we can place a single object there.
2324 */
ab9a0f19 2325 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2326 if (order <= slub_max_order)
2327 return order;
2328
2329 /*
2330 * Doh this slab cannot be placed using slub_max_order.
2331 */
ab9a0f19 2332 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2333 if (order < MAX_ORDER)
5e6d444e
CL
2334 return order;
2335 return -ENOSYS;
2336}
2337
81819f0f 2338/*
672bba3a 2339 * Figure out what the alignment of the objects will be.
81819f0f
CL
2340 */
2341static unsigned long calculate_alignment(unsigned long flags,
2342 unsigned long align, unsigned long size)
2343{
2344 /*
6446faa2
CL
2345 * If the user wants hardware cache aligned objects then follow that
2346 * suggestion if the object is sufficiently large.
81819f0f 2347 *
6446faa2
CL
2348 * The hardware cache alignment cannot override the specified
2349 * alignment though. If that is greater then use it.
81819f0f 2350 */
b6210386
NP
2351 if (flags & SLAB_HWCACHE_ALIGN) {
2352 unsigned long ralign = cache_line_size();
2353 while (size <= ralign / 2)
2354 ralign /= 2;
2355 align = max(align, ralign);
2356 }
81819f0f
CL
2357
2358 if (align < ARCH_SLAB_MINALIGN)
b6210386 2359 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2360
2361 return ALIGN(align, sizeof(void *));
2362}
2363
5595cffc
PE
2364static void
2365init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2366{
2367 n->nr_partial = 0;
81819f0f
CL
2368 spin_lock_init(&n->list_lock);
2369 INIT_LIST_HEAD(&n->partial);
8ab1372f 2370#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2371 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2372 atomic_long_set(&n->total_objects, 0);
643b1138 2373 INIT_LIST_HEAD(&n->full);
8ab1372f 2374#endif
81819f0f
CL
2375}
2376
55136592 2377static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2378{
6c182dc0
CL
2379 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2380 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2381
8a5ec0ba 2382 /*
d4d84fef
CM
2383 * Must align to double word boundary for the double cmpxchg
2384 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2385 */
d4d84fef
CM
2386 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2387 2 * sizeof(void *));
8a5ec0ba
CL
2388
2389 if (!s->cpu_slab)
2390 return 0;
2391
2392 init_kmem_cache_cpus(s);
4c93c355 2393
8a5ec0ba 2394 return 1;
4c93c355 2395}
4c93c355 2396
51df1142
CL
2397static struct kmem_cache *kmem_cache_node;
2398
81819f0f
CL
2399/*
2400 * No kmalloc_node yet so do it by hand. We know that this is the first
2401 * slab on the node for this slabcache. There are no concurrent accesses
2402 * possible.
2403 *
2404 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2405 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2406 * memory on a fresh node that has no slab structures yet.
81819f0f 2407 */
55136592 2408static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2409{
2410 struct page *page;
2411 struct kmem_cache_node *n;
2412
51df1142 2413 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2414
51df1142 2415 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2416
2417 BUG_ON(!page);
a2f92ee7
CL
2418 if (page_to_nid(page) != node) {
2419 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2420 "node %d\n", node);
2421 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2422 "in order to be able to continue\n");
2423 }
2424
81819f0f
CL
2425 n = page->freelist;
2426 BUG_ON(!n);
51df1142 2427 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2428 page->inuse++;
8cb0a506 2429 page->frozen = 0;
51df1142 2430 kmem_cache_node->node[node] = n;
8ab1372f 2431#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2432 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2433 init_tracking(kmem_cache_node, n);
8ab1372f 2434#endif
51df1142
CL
2435 init_kmem_cache_node(n, kmem_cache_node);
2436 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2437
7c2e132c 2438 add_partial(n, page, 0);
81819f0f
CL
2439}
2440
2441static void free_kmem_cache_nodes(struct kmem_cache *s)
2442{
2443 int node;
2444
f64dc58c 2445 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2446 struct kmem_cache_node *n = s->node[node];
51df1142 2447
73367bd8 2448 if (n)
51df1142
CL
2449 kmem_cache_free(kmem_cache_node, n);
2450
81819f0f
CL
2451 s->node[node] = NULL;
2452 }
2453}
2454
55136592 2455static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2456{
2457 int node;
81819f0f 2458
f64dc58c 2459 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2460 struct kmem_cache_node *n;
2461
73367bd8 2462 if (slab_state == DOWN) {
55136592 2463 early_kmem_cache_node_alloc(node);
73367bd8
AD
2464 continue;
2465 }
51df1142 2466 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2467 GFP_KERNEL, node);
81819f0f 2468
73367bd8
AD
2469 if (!n) {
2470 free_kmem_cache_nodes(s);
2471 return 0;
81819f0f 2472 }
73367bd8 2473
81819f0f 2474 s->node[node] = n;
5595cffc 2475 init_kmem_cache_node(n, s);
81819f0f
CL
2476 }
2477 return 1;
2478}
81819f0f 2479
c0bdb232 2480static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2481{
2482 if (min < MIN_PARTIAL)
2483 min = MIN_PARTIAL;
2484 else if (min > MAX_PARTIAL)
2485 min = MAX_PARTIAL;
2486 s->min_partial = min;
2487}
2488
81819f0f
CL
2489/*
2490 * calculate_sizes() determines the order and the distribution of data within
2491 * a slab object.
2492 */
06b285dc 2493static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2494{
2495 unsigned long flags = s->flags;
2496 unsigned long size = s->objsize;
2497 unsigned long align = s->align;
834f3d11 2498 int order;
81819f0f 2499
d8b42bf5
CL
2500 /*
2501 * Round up object size to the next word boundary. We can only
2502 * place the free pointer at word boundaries and this determines
2503 * the possible location of the free pointer.
2504 */
2505 size = ALIGN(size, sizeof(void *));
2506
2507#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2508 /*
2509 * Determine if we can poison the object itself. If the user of
2510 * the slab may touch the object after free or before allocation
2511 * then we should never poison the object itself.
2512 */
2513 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2514 !s->ctor)
81819f0f
CL
2515 s->flags |= __OBJECT_POISON;
2516 else
2517 s->flags &= ~__OBJECT_POISON;
2518
81819f0f
CL
2519
2520 /*
672bba3a 2521 * If we are Redzoning then check if there is some space between the
81819f0f 2522 * end of the object and the free pointer. If not then add an
672bba3a 2523 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2524 */
2525 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2526 size += sizeof(void *);
41ecc55b 2527#endif
81819f0f
CL
2528
2529 /*
672bba3a
CL
2530 * With that we have determined the number of bytes in actual use
2531 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2532 */
2533 s->inuse = size;
2534
2535 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2536 s->ctor)) {
81819f0f
CL
2537 /*
2538 * Relocate free pointer after the object if it is not
2539 * permitted to overwrite the first word of the object on
2540 * kmem_cache_free.
2541 *
2542 * This is the case if we do RCU, have a constructor or
2543 * destructor or are poisoning the objects.
2544 */
2545 s->offset = size;
2546 size += sizeof(void *);
2547 }
2548
c12b3c62 2549#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2550 if (flags & SLAB_STORE_USER)
2551 /*
2552 * Need to store information about allocs and frees after
2553 * the object.
2554 */
2555 size += 2 * sizeof(struct track);
2556
be7b3fbc 2557 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2558 /*
2559 * Add some empty padding so that we can catch
2560 * overwrites from earlier objects rather than let
2561 * tracking information or the free pointer be
0211a9c8 2562 * corrupted if a user writes before the start
81819f0f
CL
2563 * of the object.
2564 */
2565 size += sizeof(void *);
41ecc55b 2566#endif
672bba3a 2567
81819f0f
CL
2568 /*
2569 * Determine the alignment based on various parameters that the
65c02d4c
CL
2570 * user specified and the dynamic determination of cache line size
2571 * on bootup.
81819f0f
CL
2572 */
2573 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2574 s->align = align;
81819f0f
CL
2575
2576 /*
2577 * SLUB stores one object immediately after another beginning from
2578 * offset 0. In order to align the objects we have to simply size
2579 * each object to conform to the alignment.
2580 */
2581 size = ALIGN(size, align);
2582 s->size = size;
06b285dc
CL
2583 if (forced_order >= 0)
2584 order = forced_order;
2585 else
ab9a0f19 2586 order = calculate_order(size, s->reserved);
81819f0f 2587
834f3d11 2588 if (order < 0)
81819f0f
CL
2589 return 0;
2590
b7a49f0d 2591 s->allocflags = 0;
834f3d11 2592 if (order)
b7a49f0d
CL
2593 s->allocflags |= __GFP_COMP;
2594
2595 if (s->flags & SLAB_CACHE_DMA)
2596 s->allocflags |= SLUB_DMA;
2597
2598 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2599 s->allocflags |= __GFP_RECLAIMABLE;
2600
81819f0f
CL
2601 /*
2602 * Determine the number of objects per slab
2603 */
ab9a0f19
LJ
2604 s->oo = oo_make(order, size, s->reserved);
2605 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2606 if (oo_objects(s->oo) > oo_objects(s->max))
2607 s->max = s->oo;
81819f0f 2608
834f3d11 2609 return !!oo_objects(s->oo);
81819f0f
CL
2610
2611}
2612
55136592 2613static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2614 const char *name, size_t size,
2615 size_t align, unsigned long flags,
51cc5068 2616 void (*ctor)(void *))
81819f0f
CL
2617{
2618 memset(s, 0, kmem_size);
2619 s->name = name;
2620 s->ctor = ctor;
81819f0f 2621 s->objsize = size;
81819f0f 2622 s->align = align;
ba0268a8 2623 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2624 s->reserved = 0;
81819f0f 2625
da9a638c
LJ
2626 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2627 s->reserved = sizeof(struct rcu_head);
81819f0f 2628
06b285dc 2629 if (!calculate_sizes(s, -1))
81819f0f 2630 goto error;
3de47213
DR
2631 if (disable_higher_order_debug) {
2632 /*
2633 * Disable debugging flags that store metadata if the min slab
2634 * order increased.
2635 */
2636 if (get_order(s->size) > get_order(s->objsize)) {
2637 s->flags &= ~DEBUG_METADATA_FLAGS;
2638 s->offset = 0;
2639 if (!calculate_sizes(s, -1))
2640 goto error;
2641 }
2642 }
81819f0f 2643
b789ef51
CL
2644#ifdef CONFIG_CMPXCHG_DOUBLE
2645 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2646 /* Enable fast mode */
2647 s->flags |= __CMPXCHG_DOUBLE;
2648#endif
2649
3b89d7d8
DR
2650 /*
2651 * The larger the object size is, the more pages we want on the partial
2652 * list to avoid pounding the page allocator excessively.
2653 */
c0bdb232 2654 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2655 s->refcount = 1;
2656#ifdef CONFIG_NUMA
e2cb96b7 2657 s->remote_node_defrag_ratio = 1000;
81819f0f 2658#endif
55136592 2659 if (!init_kmem_cache_nodes(s))
dfb4f096 2660 goto error;
81819f0f 2661
55136592 2662 if (alloc_kmem_cache_cpus(s))
81819f0f 2663 return 1;
ff12059e 2664
4c93c355 2665 free_kmem_cache_nodes(s);
81819f0f
CL
2666error:
2667 if (flags & SLAB_PANIC)
2668 panic("Cannot create slab %s size=%lu realsize=%u "
2669 "order=%u offset=%u flags=%lx\n",
834f3d11 2670 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2671 s->offset, flags);
2672 return 0;
2673}
81819f0f 2674
81819f0f
CL
2675/*
2676 * Determine the size of a slab object
2677 */
2678unsigned int kmem_cache_size(struct kmem_cache *s)
2679{
2680 return s->objsize;
2681}
2682EXPORT_SYMBOL(kmem_cache_size);
2683
33b12c38
CL
2684static void list_slab_objects(struct kmem_cache *s, struct page *page,
2685 const char *text)
2686{
2687#ifdef CONFIG_SLUB_DEBUG
2688 void *addr = page_address(page);
2689 void *p;
a5dd5c11
NK
2690 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2691 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2692 if (!map)
2693 return;
33b12c38
CL
2694 slab_err(s, page, "%s", text);
2695 slab_lock(page);
33b12c38 2696
5f80b13a 2697 get_map(s, page, map);
33b12c38
CL
2698 for_each_object(p, s, addr, page->objects) {
2699
2700 if (!test_bit(slab_index(p, s, addr), map)) {
2701 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2702 p, p - addr);
2703 print_tracking(s, p);
2704 }
2705 }
2706 slab_unlock(page);
bbd7d57b 2707 kfree(map);
33b12c38
CL
2708#endif
2709}
2710
81819f0f 2711/*
599870b1 2712 * Attempt to free all partial slabs on a node.
81819f0f 2713 */
599870b1 2714static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2715{
81819f0f
CL
2716 unsigned long flags;
2717 struct page *page, *h;
2718
2719 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2720 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2721 if (!page->inuse) {
5cc6eee8 2722 remove_partial(n, page);
81819f0f 2723 discard_slab(s, page);
33b12c38
CL
2724 } else {
2725 list_slab_objects(s, page,
2726 "Objects remaining on kmem_cache_close()");
599870b1 2727 }
33b12c38 2728 }
81819f0f 2729 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2730}
2731
2732/*
672bba3a 2733 * Release all resources used by a slab cache.
81819f0f 2734 */
0c710013 2735static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2736{
2737 int node;
2738
2739 flush_all(s);
9dfc6e68 2740 free_percpu(s->cpu_slab);
81819f0f 2741 /* Attempt to free all objects */
f64dc58c 2742 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2743 struct kmem_cache_node *n = get_node(s, node);
2744
599870b1
CL
2745 free_partial(s, n);
2746 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2747 return 1;
2748 }
2749 free_kmem_cache_nodes(s);
2750 return 0;
2751}
2752
2753/*
2754 * Close a cache and release the kmem_cache structure
2755 * (must be used for caches created using kmem_cache_create)
2756 */
2757void kmem_cache_destroy(struct kmem_cache *s)
2758{
2759 down_write(&slub_lock);
2760 s->refcount--;
2761 if (!s->refcount) {
2762 list_del(&s->list);
d629d819
PE
2763 if (kmem_cache_close(s)) {
2764 printk(KERN_ERR "SLUB %s: %s called for cache that "
2765 "still has objects.\n", s->name, __func__);
2766 dump_stack();
2767 }
d76b1590
ED
2768 if (s->flags & SLAB_DESTROY_BY_RCU)
2769 rcu_barrier();
81819f0f 2770 sysfs_slab_remove(s);
2bce6485
CL
2771 }
2772 up_write(&slub_lock);
81819f0f
CL
2773}
2774EXPORT_SYMBOL(kmem_cache_destroy);
2775
2776/********************************************************************
2777 * Kmalloc subsystem
2778 *******************************************************************/
2779
51df1142 2780struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2781EXPORT_SYMBOL(kmalloc_caches);
2782
51df1142
CL
2783static struct kmem_cache *kmem_cache;
2784
55136592 2785#ifdef CONFIG_ZONE_DMA
51df1142 2786static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2787#endif
2788
81819f0f
CL
2789static int __init setup_slub_min_order(char *str)
2790{
06428780 2791 get_option(&str, &slub_min_order);
81819f0f
CL
2792
2793 return 1;
2794}
2795
2796__setup("slub_min_order=", setup_slub_min_order);
2797
2798static int __init setup_slub_max_order(char *str)
2799{
06428780 2800 get_option(&str, &slub_max_order);
818cf590 2801 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2802
2803 return 1;
2804}
2805
2806__setup("slub_max_order=", setup_slub_max_order);
2807
2808static int __init setup_slub_min_objects(char *str)
2809{
06428780 2810 get_option(&str, &slub_min_objects);
81819f0f
CL
2811
2812 return 1;
2813}
2814
2815__setup("slub_min_objects=", setup_slub_min_objects);
2816
2817static int __init setup_slub_nomerge(char *str)
2818{
2819 slub_nomerge = 1;
2820 return 1;
2821}
2822
2823__setup("slub_nomerge", setup_slub_nomerge);
2824
51df1142
CL
2825static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2826 int size, unsigned int flags)
81819f0f 2827{
51df1142
CL
2828 struct kmem_cache *s;
2829
2830 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2831
83b519e8
PE
2832 /*
2833 * This function is called with IRQs disabled during early-boot on
2834 * single CPU so there's no need to take slub_lock here.
2835 */
55136592 2836 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2837 flags, NULL))
81819f0f
CL
2838 goto panic;
2839
2840 list_add(&s->list, &slab_caches);
51df1142 2841 return s;
81819f0f
CL
2842
2843panic:
2844 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2845 return NULL;
81819f0f
CL
2846}
2847
f1b26339
CL
2848/*
2849 * Conversion table for small slabs sizes / 8 to the index in the
2850 * kmalloc array. This is necessary for slabs < 192 since we have non power
2851 * of two cache sizes there. The size of larger slabs can be determined using
2852 * fls.
2853 */
2854static s8 size_index[24] = {
2855 3, /* 8 */
2856 4, /* 16 */
2857 5, /* 24 */
2858 5, /* 32 */
2859 6, /* 40 */
2860 6, /* 48 */
2861 6, /* 56 */
2862 6, /* 64 */
2863 1, /* 72 */
2864 1, /* 80 */
2865 1, /* 88 */
2866 1, /* 96 */
2867 7, /* 104 */
2868 7, /* 112 */
2869 7, /* 120 */
2870 7, /* 128 */
2871 2, /* 136 */
2872 2, /* 144 */
2873 2, /* 152 */
2874 2, /* 160 */
2875 2, /* 168 */
2876 2, /* 176 */
2877 2, /* 184 */
2878 2 /* 192 */
2879};
2880
acdfcd04
AK
2881static inline int size_index_elem(size_t bytes)
2882{
2883 return (bytes - 1) / 8;
2884}
2885
81819f0f
CL
2886static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2887{
f1b26339 2888 int index;
81819f0f 2889
f1b26339
CL
2890 if (size <= 192) {
2891 if (!size)
2892 return ZERO_SIZE_PTR;
81819f0f 2893
acdfcd04 2894 index = size_index[size_index_elem(size)];
aadb4bc4 2895 } else
f1b26339 2896 index = fls(size - 1);
81819f0f
CL
2897
2898#ifdef CONFIG_ZONE_DMA
f1b26339 2899 if (unlikely((flags & SLUB_DMA)))
51df1142 2900 return kmalloc_dma_caches[index];
f1b26339 2901
81819f0f 2902#endif
51df1142 2903 return kmalloc_caches[index];
81819f0f
CL
2904}
2905
2906void *__kmalloc(size_t size, gfp_t flags)
2907{
aadb4bc4 2908 struct kmem_cache *s;
5b882be4 2909 void *ret;
81819f0f 2910
ffadd4d0 2911 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2912 return kmalloc_large(size, flags);
aadb4bc4
CL
2913
2914 s = get_slab(size, flags);
2915
2916 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2917 return s;
2918
2154a336 2919 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2920
ca2b84cb 2921 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2922
2923 return ret;
81819f0f
CL
2924}
2925EXPORT_SYMBOL(__kmalloc);
2926
5d1f57e4 2927#ifdef CONFIG_NUMA
f619cfe1
CL
2928static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2929{
b1eeab67 2930 struct page *page;
e4f7c0b4 2931 void *ptr = NULL;
f619cfe1 2932
b1eeab67
VN
2933 flags |= __GFP_COMP | __GFP_NOTRACK;
2934 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2935 if (page)
e4f7c0b4
CM
2936 ptr = page_address(page);
2937
2938 kmemleak_alloc(ptr, size, 1, flags);
2939 return ptr;
f619cfe1
CL
2940}
2941
81819f0f
CL
2942void *__kmalloc_node(size_t size, gfp_t flags, int node)
2943{
aadb4bc4 2944 struct kmem_cache *s;
5b882be4 2945 void *ret;
81819f0f 2946
057685cf 2947 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2948 ret = kmalloc_large_node(size, flags, node);
2949
ca2b84cb
EGM
2950 trace_kmalloc_node(_RET_IP_, ret,
2951 size, PAGE_SIZE << get_order(size),
2952 flags, node);
5b882be4
EGM
2953
2954 return ret;
2955 }
aadb4bc4
CL
2956
2957 s = get_slab(size, flags);
2958
2959 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2960 return s;
2961
5b882be4
EGM
2962 ret = slab_alloc(s, flags, node, _RET_IP_);
2963
ca2b84cb 2964 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2965
2966 return ret;
81819f0f
CL
2967}
2968EXPORT_SYMBOL(__kmalloc_node);
2969#endif
2970
2971size_t ksize(const void *object)
2972{
272c1d21 2973 struct page *page;
81819f0f 2974
ef8b4520 2975 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2976 return 0;
2977
294a80a8 2978 page = virt_to_head_page(object);
294a80a8 2979
76994412
PE
2980 if (unlikely(!PageSlab(page))) {
2981 WARN_ON(!PageCompound(page));
294a80a8 2982 return PAGE_SIZE << compound_order(page);
76994412 2983 }
81819f0f 2984
b3d41885 2985 return slab_ksize(page->slab);
81819f0f 2986}
b1aabecd 2987EXPORT_SYMBOL(ksize);
81819f0f
CL
2988
2989void kfree(const void *x)
2990{
81819f0f 2991 struct page *page;
5bb983b0 2992 void *object = (void *)x;
81819f0f 2993
2121db74
PE
2994 trace_kfree(_RET_IP_, x);
2995
2408c550 2996 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2997 return;
2998
b49af68f 2999 page = virt_to_head_page(x);
aadb4bc4 3000 if (unlikely(!PageSlab(page))) {
0937502a 3001 BUG_ON(!PageCompound(page));
e4f7c0b4 3002 kmemleak_free(x);
aadb4bc4
CL
3003 put_page(page);
3004 return;
3005 }
ce71e27c 3006 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3007}
3008EXPORT_SYMBOL(kfree);
3009
2086d26a 3010/*
672bba3a
CL
3011 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3012 * the remaining slabs by the number of items in use. The slabs with the
3013 * most items in use come first. New allocations will then fill those up
3014 * and thus they can be removed from the partial lists.
3015 *
3016 * The slabs with the least items are placed last. This results in them
3017 * being allocated from last increasing the chance that the last objects
3018 * are freed in them.
2086d26a
CL
3019 */
3020int kmem_cache_shrink(struct kmem_cache *s)
3021{
3022 int node;
3023 int i;
3024 struct kmem_cache_node *n;
3025 struct page *page;
3026 struct page *t;
205ab99d 3027 int objects = oo_objects(s->max);
2086d26a 3028 struct list_head *slabs_by_inuse =
834f3d11 3029 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3030 unsigned long flags;
3031
3032 if (!slabs_by_inuse)
3033 return -ENOMEM;
3034
3035 flush_all(s);
f64dc58c 3036 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3037 n = get_node(s, node);
3038
3039 if (!n->nr_partial)
3040 continue;
3041
834f3d11 3042 for (i = 0; i < objects; i++)
2086d26a
CL
3043 INIT_LIST_HEAD(slabs_by_inuse + i);
3044
3045 spin_lock_irqsave(&n->list_lock, flags);
3046
3047 /*
672bba3a 3048 * Build lists indexed by the items in use in each slab.
2086d26a 3049 *
672bba3a
CL
3050 * Note that concurrent frees may occur while we hold the
3051 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3052 */
3053 list_for_each_entry_safe(page, t, &n->partial, lru) {
3054 if (!page->inuse && slab_trylock(page)) {
3055 /*
3056 * Must hold slab lock here because slab_free
3057 * may have freed the last object and be
3058 * waiting to release the slab.
3059 */
5cc6eee8 3060 remove_partial(n, page);
2086d26a
CL
3061 slab_unlock(page);
3062 discard_slab(s, page);
3063 } else {
fcda3d89
CL
3064 list_move(&page->lru,
3065 slabs_by_inuse + page->inuse);
2086d26a
CL
3066 }
3067 }
3068
2086d26a 3069 /*
672bba3a
CL
3070 * Rebuild the partial list with the slabs filled up most
3071 * first and the least used slabs at the end.
2086d26a 3072 */
834f3d11 3073 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3074 list_splice(slabs_by_inuse + i, n->partial.prev);
3075
2086d26a
CL
3076 spin_unlock_irqrestore(&n->list_lock, flags);
3077 }
3078
3079 kfree(slabs_by_inuse);
3080 return 0;
3081}
3082EXPORT_SYMBOL(kmem_cache_shrink);
3083
92a5bbc1 3084#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3085static int slab_mem_going_offline_callback(void *arg)
3086{
3087 struct kmem_cache *s;
3088
3089 down_read(&slub_lock);
3090 list_for_each_entry(s, &slab_caches, list)
3091 kmem_cache_shrink(s);
3092 up_read(&slub_lock);
3093
3094 return 0;
3095}
3096
3097static void slab_mem_offline_callback(void *arg)
3098{
3099 struct kmem_cache_node *n;
3100 struct kmem_cache *s;
3101 struct memory_notify *marg = arg;
3102 int offline_node;
3103
3104 offline_node = marg->status_change_nid;
3105
3106 /*
3107 * If the node still has available memory. we need kmem_cache_node
3108 * for it yet.
3109 */
3110 if (offline_node < 0)
3111 return;
3112
3113 down_read(&slub_lock);
3114 list_for_each_entry(s, &slab_caches, list) {
3115 n = get_node(s, offline_node);
3116 if (n) {
3117 /*
3118 * if n->nr_slabs > 0, slabs still exist on the node
3119 * that is going down. We were unable to free them,
c9404c9c 3120 * and offline_pages() function shouldn't call this
b9049e23
YG
3121 * callback. So, we must fail.
3122 */
0f389ec6 3123 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3124
3125 s->node[offline_node] = NULL;
8de66a0c 3126 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3127 }
3128 }
3129 up_read(&slub_lock);
3130}
3131
3132static int slab_mem_going_online_callback(void *arg)
3133{
3134 struct kmem_cache_node *n;
3135 struct kmem_cache *s;
3136 struct memory_notify *marg = arg;
3137 int nid = marg->status_change_nid;
3138 int ret = 0;
3139
3140 /*
3141 * If the node's memory is already available, then kmem_cache_node is
3142 * already created. Nothing to do.
3143 */
3144 if (nid < 0)
3145 return 0;
3146
3147 /*
0121c619 3148 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3149 * allocate a kmem_cache_node structure in order to bring the node
3150 * online.
3151 */
3152 down_read(&slub_lock);
3153 list_for_each_entry(s, &slab_caches, list) {
3154 /*
3155 * XXX: kmem_cache_alloc_node will fallback to other nodes
3156 * since memory is not yet available from the node that
3157 * is brought up.
3158 */
8de66a0c 3159 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3160 if (!n) {
3161 ret = -ENOMEM;
3162 goto out;
3163 }
5595cffc 3164 init_kmem_cache_node(n, s);
b9049e23
YG
3165 s->node[nid] = n;
3166 }
3167out:
3168 up_read(&slub_lock);
3169 return ret;
3170}
3171
3172static int slab_memory_callback(struct notifier_block *self,
3173 unsigned long action, void *arg)
3174{
3175 int ret = 0;
3176
3177 switch (action) {
3178 case MEM_GOING_ONLINE:
3179 ret = slab_mem_going_online_callback(arg);
3180 break;
3181 case MEM_GOING_OFFLINE:
3182 ret = slab_mem_going_offline_callback(arg);
3183 break;
3184 case MEM_OFFLINE:
3185 case MEM_CANCEL_ONLINE:
3186 slab_mem_offline_callback(arg);
3187 break;
3188 case MEM_ONLINE:
3189 case MEM_CANCEL_OFFLINE:
3190 break;
3191 }
dc19f9db
KH
3192 if (ret)
3193 ret = notifier_from_errno(ret);
3194 else
3195 ret = NOTIFY_OK;
b9049e23
YG
3196 return ret;
3197}
3198
3199#endif /* CONFIG_MEMORY_HOTPLUG */
3200
81819f0f
CL
3201/********************************************************************
3202 * Basic setup of slabs
3203 *******************************************************************/
3204
51df1142
CL
3205/*
3206 * Used for early kmem_cache structures that were allocated using
3207 * the page allocator
3208 */
3209
3210static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3211{
3212 int node;
3213
3214 list_add(&s->list, &slab_caches);
3215 s->refcount = -1;
3216
3217 for_each_node_state(node, N_NORMAL_MEMORY) {
3218 struct kmem_cache_node *n = get_node(s, node);
3219 struct page *p;
3220
3221 if (n) {
3222 list_for_each_entry(p, &n->partial, lru)
3223 p->slab = s;
3224
607bf324 3225#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3226 list_for_each_entry(p, &n->full, lru)
3227 p->slab = s;
3228#endif
3229 }
3230 }
3231}
3232
81819f0f
CL
3233void __init kmem_cache_init(void)
3234{
3235 int i;
4b356be0 3236 int caches = 0;
51df1142
CL
3237 struct kmem_cache *temp_kmem_cache;
3238 int order;
51df1142
CL
3239 struct kmem_cache *temp_kmem_cache_node;
3240 unsigned long kmalloc_size;
3241
3242 kmem_size = offsetof(struct kmem_cache, node) +
3243 nr_node_ids * sizeof(struct kmem_cache_node *);
3244
3245 /* Allocate two kmem_caches from the page allocator */
3246 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3247 order = get_order(2 * kmalloc_size);
3248 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3249
81819f0f
CL
3250 /*
3251 * Must first have the slab cache available for the allocations of the
672bba3a 3252 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3253 * kmem_cache_open for slab_state == DOWN.
3254 */
51df1142
CL
3255 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3256
3257 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3258 sizeof(struct kmem_cache_node),
3259 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3260
0c40ba4f 3261 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3262
3263 /* Able to allocate the per node structures */
3264 slab_state = PARTIAL;
3265
51df1142
CL
3266 temp_kmem_cache = kmem_cache;
3267 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3268 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3269 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3270 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3271
51df1142
CL
3272 /*
3273 * Allocate kmem_cache_node properly from the kmem_cache slab.
3274 * kmem_cache_node is separately allocated so no need to
3275 * update any list pointers.
3276 */
3277 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3278
51df1142
CL
3279 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3280 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3281
3282 kmem_cache_bootstrap_fixup(kmem_cache_node);
3283
3284 caches++;
51df1142
CL
3285 kmem_cache_bootstrap_fixup(kmem_cache);
3286 caches++;
3287 /* Free temporary boot structure */
3288 free_pages((unsigned long)temp_kmem_cache, order);
3289
3290 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3291
3292 /*
3293 * Patch up the size_index table if we have strange large alignment
3294 * requirements for the kmalloc array. This is only the case for
6446faa2 3295 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3296 *
3297 * Largest permitted alignment is 256 bytes due to the way we
3298 * handle the index determination for the smaller caches.
3299 *
3300 * Make sure that nothing crazy happens if someone starts tinkering
3301 * around with ARCH_KMALLOC_MINALIGN
3302 */
3303 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3304 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3305
acdfcd04
AK
3306 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3307 int elem = size_index_elem(i);
3308 if (elem >= ARRAY_SIZE(size_index))
3309 break;
3310 size_index[elem] = KMALLOC_SHIFT_LOW;
3311 }
f1b26339 3312
acdfcd04
AK
3313 if (KMALLOC_MIN_SIZE == 64) {
3314 /*
3315 * The 96 byte size cache is not used if the alignment
3316 * is 64 byte.
3317 */
3318 for (i = 64 + 8; i <= 96; i += 8)
3319 size_index[size_index_elem(i)] = 7;
3320 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3321 /*
3322 * The 192 byte sized cache is not used if the alignment
3323 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3324 * instead.
3325 */
3326 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3327 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3328 }
3329
51df1142
CL
3330 /* Caches that are not of the two-to-the-power-of size */
3331 if (KMALLOC_MIN_SIZE <= 32) {
3332 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3333 caches++;
3334 }
3335
3336 if (KMALLOC_MIN_SIZE <= 64) {
3337 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3338 caches++;
3339 }
3340
3341 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3342 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3343 caches++;
3344 }
3345
81819f0f
CL
3346 slab_state = UP;
3347
3348 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3349 if (KMALLOC_MIN_SIZE <= 32) {
3350 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3351 BUG_ON(!kmalloc_caches[1]->name);
3352 }
3353
3354 if (KMALLOC_MIN_SIZE <= 64) {
3355 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3356 BUG_ON(!kmalloc_caches[2]->name);
3357 }
3358
d7278bd7
CL
3359 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3360 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3361
3362 BUG_ON(!s);
51df1142 3363 kmalloc_caches[i]->name = s;
d7278bd7 3364 }
81819f0f
CL
3365
3366#ifdef CONFIG_SMP
3367 register_cpu_notifier(&slab_notifier);
9dfc6e68 3368#endif
81819f0f 3369
55136592 3370#ifdef CONFIG_ZONE_DMA
51df1142
CL
3371 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3372 struct kmem_cache *s = kmalloc_caches[i];
55136592 3373
51df1142 3374 if (s && s->size) {
55136592
CL
3375 char *name = kasprintf(GFP_NOWAIT,
3376 "dma-kmalloc-%d", s->objsize);
3377
3378 BUG_ON(!name);
51df1142
CL
3379 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3380 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3381 }
3382 }
3383#endif
3adbefee
IM
3384 printk(KERN_INFO
3385 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3386 " CPUs=%d, Nodes=%d\n",
3387 caches, cache_line_size(),
81819f0f
CL
3388 slub_min_order, slub_max_order, slub_min_objects,
3389 nr_cpu_ids, nr_node_ids);
3390}
3391
7e85ee0c
PE
3392void __init kmem_cache_init_late(void)
3393{
7e85ee0c
PE
3394}
3395
81819f0f
CL
3396/*
3397 * Find a mergeable slab cache
3398 */
3399static int slab_unmergeable(struct kmem_cache *s)
3400{
3401 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3402 return 1;
3403
c59def9f 3404 if (s->ctor)
81819f0f
CL
3405 return 1;
3406
8ffa6875
CL
3407 /*
3408 * We may have set a slab to be unmergeable during bootstrap.
3409 */
3410 if (s->refcount < 0)
3411 return 1;
3412
81819f0f
CL
3413 return 0;
3414}
3415
3416static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3417 size_t align, unsigned long flags, const char *name,
51cc5068 3418 void (*ctor)(void *))
81819f0f 3419{
5b95a4ac 3420 struct kmem_cache *s;
81819f0f
CL
3421
3422 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3423 return NULL;
3424
c59def9f 3425 if (ctor)
81819f0f
CL
3426 return NULL;
3427
3428 size = ALIGN(size, sizeof(void *));
3429 align = calculate_alignment(flags, align, size);
3430 size = ALIGN(size, align);
ba0268a8 3431 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3432
5b95a4ac 3433 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3434 if (slab_unmergeable(s))
3435 continue;
3436
3437 if (size > s->size)
3438 continue;
3439
ba0268a8 3440 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3441 continue;
3442 /*
3443 * Check if alignment is compatible.
3444 * Courtesy of Adrian Drzewiecki
3445 */
06428780 3446 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3447 continue;
3448
3449 if (s->size - size >= sizeof(void *))
3450 continue;
3451
3452 return s;
3453 }
3454 return NULL;
3455}
3456
3457struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3458 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3459{
3460 struct kmem_cache *s;
84c1cf62 3461 char *n;
81819f0f 3462
fe1ff49d
BH
3463 if (WARN_ON(!name))
3464 return NULL;
3465
81819f0f 3466 down_write(&slub_lock);
ba0268a8 3467 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3468 if (s) {
3469 s->refcount++;
3470 /*
3471 * Adjust the object sizes so that we clear
3472 * the complete object on kzalloc.
3473 */
3474 s->objsize = max(s->objsize, (int)size);
3475 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3476
7b8f3b66 3477 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3478 s->refcount--;
81819f0f 3479 goto err;
7b8f3b66 3480 }
2bce6485 3481 up_write(&slub_lock);
a0e1d1be
CL
3482 return s;
3483 }
6446faa2 3484
84c1cf62
PE
3485 n = kstrdup(name, GFP_KERNEL);
3486 if (!n)
3487 goto err;
3488
a0e1d1be
CL
3489 s = kmalloc(kmem_size, GFP_KERNEL);
3490 if (s) {
84c1cf62 3491 if (kmem_cache_open(s, n,
c59def9f 3492 size, align, flags, ctor)) {
81819f0f 3493 list_add(&s->list, &slab_caches);
7b8f3b66 3494 if (sysfs_slab_add(s)) {
7b8f3b66 3495 list_del(&s->list);
84c1cf62 3496 kfree(n);
7b8f3b66 3497 kfree(s);
a0e1d1be 3498 goto err;
7b8f3b66 3499 }
2bce6485 3500 up_write(&slub_lock);
a0e1d1be
CL
3501 return s;
3502 }
84c1cf62 3503 kfree(n);
a0e1d1be 3504 kfree(s);
81819f0f 3505 }
68cee4f1 3506err:
81819f0f 3507 up_write(&slub_lock);
81819f0f 3508
81819f0f
CL
3509 if (flags & SLAB_PANIC)
3510 panic("Cannot create slabcache %s\n", name);
3511 else
3512 s = NULL;
3513 return s;
3514}
3515EXPORT_SYMBOL(kmem_cache_create);
3516
81819f0f 3517#ifdef CONFIG_SMP
81819f0f 3518/*
672bba3a
CL
3519 * Use the cpu notifier to insure that the cpu slabs are flushed when
3520 * necessary.
81819f0f
CL
3521 */
3522static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3523 unsigned long action, void *hcpu)
3524{
3525 long cpu = (long)hcpu;
5b95a4ac
CL
3526 struct kmem_cache *s;
3527 unsigned long flags;
81819f0f
CL
3528
3529 switch (action) {
3530 case CPU_UP_CANCELED:
8bb78442 3531 case CPU_UP_CANCELED_FROZEN:
81819f0f 3532 case CPU_DEAD:
8bb78442 3533 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3534 down_read(&slub_lock);
3535 list_for_each_entry(s, &slab_caches, list) {
3536 local_irq_save(flags);
3537 __flush_cpu_slab(s, cpu);
3538 local_irq_restore(flags);
3539 }
3540 up_read(&slub_lock);
81819f0f
CL
3541 break;
3542 default:
3543 break;
3544 }
3545 return NOTIFY_OK;
3546}
3547
06428780 3548static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3549 .notifier_call = slab_cpuup_callback
06428780 3550};
81819f0f
CL
3551
3552#endif
3553
ce71e27c 3554void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3555{
aadb4bc4 3556 struct kmem_cache *s;
94b528d0 3557 void *ret;
aadb4bc4 3558
ffadd4d0 3559 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3560 return kmalloc_large(size, gfpflags);
3561
aadb4bc4 3562 s = get_slab(size, gfpflags);
81819f0f 3563
2408c550 3564 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3565 return s;
81819f0f 3566
2154a336 3567 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3568
25985edc 3569 /* Honor the call site pointer we received. */
ca2b84cb 3570 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3571
3572 return ret;
81819f0f
CL
3573}
3574
5d1f57e4 3575#ifdef CONFIG_NUMA
81819f0f 3576void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3577 int node, unsigned long caller)
81819f0f 3578{
aadb4bc4 3579 struct kmem_cache *s;
94b528d0 3580 void *ret;
aadb4bc4 3581
d3e14aa3
XF
3582 if (unlikely(size > SLUB_MAX_SIZE)) {
3583 ret = kmalloc_large_node(size, gfpflags, node);
3584
3585 trace_kmalloc_node(caller, ret,
3586 size, PAGE_SIZE << get_order(size),
3587 gfpflags, node);
3588
3589 return ret;
3590 }
eada35ef 3591
aadb4bc4 3592 s = get_slab(size, gfpflags);
81819f0f 3593
2408c550 3594 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3595 return s;
81819f0f 3596
94b528d0
EGM
3597 ret = slab_alloc(s, gfpflags, node, caller);
3598
25985edc 3599 /* Honor the call site pointer we received. */
ca2b84cb 3600 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3601
3602 return ret;
81819f0f 3603}
5d1f57e4 3604#endif
81819f0f 3605
ab4d5ed5 3606#ifdef CONFIG_SYSFS
205ab99d
CL
3607static int count_inuse(struct page *page)
3608{
3609 return page->inuse;
3610}
3611
3612static int count_total(struct page *page)
3613{
3614 return page->objects;
3615}
ab4d5ed5 3616#endif
205ab99d 3617
ab4d5ed5 3618#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3619static int validate_slab(struct kmem_cache *s, struct page *page,
3620 unsigned long *map)
53e15af0
CL
3621{
3622 void *p;
a973e9dd 3623 void *addr = page_address(page);
53e15af0
CL
3624
3625 if (!check_slab(s, page) ||
3626 !on_freelist(s, page, NULL))
3627 return 0;
3628
3629 /* Now we know that a valid freelist exists */
39b26464 3630 bitmap_zero(map, page->objects);
53e15af0 3631
5f80b13a
CL
3632 get_map(s, page, map);
3633 for_each_object(p, s, addr, page->objects) {
3634 if (test_bit(slab_index(p, s, addr), map))
3635 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3636 return 0;
53e15af0
CL
3637 }
3638
224a88be 3639 for_each_object(p, s, addr, page->objects)
7656c72b 3640 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3641 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3642 return 0;
3643 return 1;
3644}
3645
434e245d
CL
3646static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3647 unsigned long *map)
53e15af0
CL
3648{
3649 if (slab_trylock(page)) {
434e245d 3650 validate_slab(s, page, map);
53e15af0
CL
3651 slab_unlock(page);
3652 } else
3653 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3654 s->name, page);
53e15af0
CL
3655}
3656
434e245d
CL
3657static int validate_slab_node(struct kmem_cache *s,
3658 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3659{
3660 unsigned long count = 0;
3661 struct page *page;
3662 unsigned long flags;
3663
3664 spin_lock_irqsave(&n->list_lock, flags);
3665
3666 list_for_each_entry(page, &n->partial, lru) {
434e245d 3667 validate_slab_slab(s, page, map);
53e15af0
CL
3668 count++;
3669 }
3670 if (count != n->nr_partial)
3671 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3672 "counter=%ld\n", s->name, count, n->nr_partial);
3673
3674 if (!(s->flags & SLAB_STORE_USER))
3675 goto out;
3676
3677 list_for_each_entry(page, &n->full, lru) {
434e245d 3678 validate_slab_slab(s, page, map);
53e15af0
CL
3679 count++;
3680 }
3681 if (count != atomic_long_read(&n->nr_slabs))
3682 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3683 "counter=%ld\n", s->name, count,
3684 atomic_long_read(&n->nr_slabs));
3685
3686out:
3687 spin_unlock_irqrestore(&n->list_lock, flags);
3688 return count;
3689}
3690
434e245d 3691static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3692{
3693 int node;
3694 unsigned long count = 0;
205ab99d 3695 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3696 sizeof(unsigned long), GFP_KERNEL);
3697
3698 if (!map)
3699 return -ENOMEM;
53e15af0
CL
3700
3701 flush_all(s);
f64dc58c 3702 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3703 struct kmem_cache_node *n = get_node(s, node);
3704
434e245d 3705 count += validate_slab_node(s, n, map);
53e15af0 3706 }
434e245d 3707 kfree(map);
53e15af0
CL
3708 return count;
3709}
88a420e4 3710/*
672bba3a 3711 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3712 * and freed.
3713 */
3714
3715struct location {
3716 unsigned long count;
ce71e27c 3717 unsigned long addr;
45edfa58
CL
3718 long long sum_time;
3719 long min_time;
3720 long max_time;
3721 long min_pid;
3722 long max_pid;
174596a0 3723 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3724 nodemask_t nodes;
88a420e4
CL
3725};
3726
3727struct loc_track {
3728 unsigned long max;
3729 unsigned long count;
3730 struct location *loc;
3731};
3732
3733static void free_loc_track(struct loc_track *t)
3734{
3735 if (t->max)
3736 free_pages((unsigned long)t->loc,
3737 get_order(sizeof(struct location) * t->max));
3738}
3739
68dff6a9 3740static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3741{
3742 struct location *l;
3743 int order;
3744
88a420e4
CL
3745 order = get_order(sizeof(struct location) * max);
3746
68dff6a9 3747 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3748 if (!l)
3749 return 0;
3750
3751 if (t->count) {
3752 memcpy(l, t->loc, sizeof(struct location) * t->count);
3753 free_loc_track(t);
3754 }
3755 t->max = max;
3756 t->loc = l;
3757 return 1;
3758}
3759
3760static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3761 const struct track *track)
88a420e4
CL
3762{
3763 long start, end, pos;
3764 struct location *l;
ce71e27c 3765 unsigned long caddr;
45edfa58 3766 unsigned long age = jiffies - track->when;
88a420e4
CL
3767
3768 start = -1;
3769 end = t->count;
3770
3771 for ( ; ; ) {
3772 pos = start + (end - start + 1) / 2;
3773
3774 /*
3775 * There is nothing at "end". If we end up there
3776 * we need to add something to before end.
3777 */
3778 if (pos == end)
3779 break;
3780
3781 caddr = t->loc[pos].addr;
45edfa58
CL
3782 if (track->addr == caddr) {
3783
3784 l = &t->loc[pos];
3785 l->count++;
3786 if (track->when) {
3787 l->sum_time += age;
3788 if (age < l->min_time)
3789 l->min_time = age;
3790 if (age > l->max_time)
3791 l->max_time = age;
3792
3793 if (track->pid < l->min_pid)
3794 l->min_pid = track->pid;
3795 if (track->pid > l->max_pid)
3796 l->max_pid = track->pid;
3797
174596a0
RR
3798 cpumask_set_cpu(track->cpu,
3799 to_cpumask(l->cpus));
45edfa58
CL
3800 }
3801 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3802 return 1;
3803 }
3804
45edfa58 3805 if (track->addr < caddr)
88a420e4
CL
3806 end = pos;
3807 else
3808 start = pos;
3809 }
3810
3811 /*
672bba3a 3812 * Not found. Insert new tracking element.
88a420e4 3813 */
68dff6a9 3814 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3815 return 0;
3816
3817 l = t->loc + pos;
3818 if (pos < t->count)
3819 memmove(l + 1, l,
3820 (t->count - pos) * sizeof(struct location));
3821 t->count++;
3822 l->count = 1;
45edfa58
CL
3823 l->addr = track->addr;
3824 l->sum_time = age;
3825 l->min_time = age;
3826 l->max_time = age;
3827 l->min_pid = track->pid;
3828 l->max_pid = track->pid;
174596a0
RR
3829 cpumask_clear(to_cpumask(l->cpus));
3830 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3831 nodes_clear(l->nodes);
3832 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3833 return 1;
3834}
3835
3836static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3837 struct page *page, enum track_item alloc,
a5dd5c11 3838 unsigned long *map)
88a420e4 3839{
a973e9dd 3840 void *addr = page_address(page);
88a420e4
CL
3841 void *p;
3842
39b26464 3843 bitmap_zero(map, page->objects);
5f80b13a 3844 get_map(s, page, map);
88a420e4 3845
224a88be 3846 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3847 if (!test_bit(slab_index(p, s, addr), map))
3848 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3849}
3850
3851static int list_locations(struct kmem_cache *s, char *buf,
3852 enum track_item alloc)
3853{
e374d483 3854 int len = 0;
88a420e4 3855 unsigned long i;
68dff6a9 3856 struct loc_track t = { 0, 0, NULL };
88a420e4 3857 int node;
bbd7d57b
ED
3858 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3859 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3860
bbd7d57b
ED
3861 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3862 GFP_TEMPORARY)) {
3863 kfree(map);
68dff6a9 3864 return sprintf(buf, "Out of memory\n");
bbd7d57b 3865 }
88a420e4
CL
3866 /* Push back cpu slabs */
3867 flush_all(s);
3868
f64dc58c 3869 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3870 struct kmem_cache_node *n = get_node(s, node);
3871 unsigned long flags;
3872 struct page *page;
3873
9e86943b 3874 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3875 continue;
3876
3877 spin_lock_irqsave(&n->list_lock, flags);
3878 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3879 process_slab(&t, s, page, alloc, map);
88a420e4 3880 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3881 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3882 spin_unlock_irqrestore(&n->list_lock, flags);
3883 }
3884
3885 for (i = 0; i < t.count; i++) {
45edfa58 3886 struct location *l = &t.loc[i];
88a420e4 3887
9c246247 3888 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3889 break;
e374d483 3890 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3891
3892 if (l->addr)
62c70bce 3893 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3894 else
e374d483 3895 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3896
3897 if (l->sum_time != l->min_time) {
e374d483 3898 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3899 l->min_time,
3900 (long)div_u64(l->sum_time, l->count),
3901 l->max_time);
45edfa58 3902 } else
e374d483 3903 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3904 l->min_time);
3905
3906 if (l->min_pid != l->max_pid)
e374d483 3907 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3908 l->min_pid, l->max_pid);
3909 else
e374d483 3910 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3911 l->min_pid);
3912
174596a0
RR
3913 if (num_online_cpus() > 1 &&
3914 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3915 len < PAGE_SIZE - 60) {
3916 len += sprintf(buf + len, " cpus=");
3917 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3918 to_cpumask(l->cpus));
45edfa58
CL
3919 }
3920
62bc62a8 3921 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3922 len < PAGE_SIZE - 60) {
3923 len += sprintf(buf + len, " nodes=");
3924 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3925 l->nodes);
3926 }
3927
e374d483 3928 len += sprintf(buf + len, "\n");
88a420e4
CL
3929 }
3930
3931 free_loc_track(&t);
bbd7d57b 3932 kfree(map);
88a420e4 3933 if (!t.count)
e374d483
HH
3934 len += sprintf(buf, "No data\n");
3935 return len;
88a420e4 3936}
ab4d5ed5 3937#endif
88a420e4 3938
a5a84755
CL
3939#ifdef SLUB_RESILIENCY_TEST
3940static void resiliency_test(void)
3941{
3942 u8 *p;
3943
3944 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3945
3946 printk(KERN_ERR "SLUB resiliency testing\n");
3947 printk(KERN_ERR "-----------------------\n");
3948 printk(KERN_ERR "A. Corruption after allocation\n");
3949
3950 p = kzalloc(16, GFP_KERNEL);
3951 p[16] = 0x12;
3952 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3953 " 0x12->0x%p\n\n", p + 16);
3954
3955 validate_slab_cache(kmalloc_caches[4]);
3956
3957 /* Hmmm... The next two are dangerous */
3958 p = kzalloc(32, GFP_KERNEL);
3959 p[32 + sizeof(void *)] = 0x34;
3960 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3961 " 0x34 -> -0x%p\n", p);
3962 printk(KERN_ERR
3963 "If allocated object is overwritten then not detectable\n\n");
3964
3965 validate_slab_cache(kmalloc_caches[5]);
3966 p = kzalloc(64, GFP_KERNEL);
3967 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3968 *p = 0x56;
3969 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3970 p);
3971 printk(KERN_ERR
3972 "If allocated object is overwritten then not detectable\n\n");
3973 validate_slab_cache(kmalloc_caches[6]);
3974
3975 printk(KERN_ERR "\nB. Corruption after free\n");
3976 p = kzalloc(128, GFP_KERNEL);
3977 kfree(p);
3978 *p = 0x78;
3979 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3980 validate_slab_cache(kmalloc_caches[7]);
3981
3982 p = kzalloc(256, GFP_KERNEL);
3983 kfree(p);
3984 p[50] = 0x9a;
3985 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3986 p);
3987 validate_slab_cache(kmalloc_caches[8]);
3988
3989 p = kzalloc(512, GFP_KERNEL);
3990 kfree(p);
3991 p[512] = 0xab;
3992 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3993 validate_slab_cache(kmalloc_caches[9]);
3994}
3995#else
3996#ifdef CONFIG_SYSFS
3997static void resiliency_test(void) {};
3998#endif
3999#endif
4000
ab4d5ed5 4001#ifdef CONFIG_SYSFS
81819f0f 4002enum slab_stat_type {
205ab99d
CL
4003 SL_ALL, /* All slabs */
4004 SL_PARTIAL, /* Only partially allocated slabs */
4005 SL_CPU, /* Only slabs used for cpu caches */
4006 SL_OBJECTS, /* Determine allocated objects not slabs */
4007 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4008};
4009
205ab99d 4010#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4011#define SO_PARTIAL (1 << SL_PARTIAL)
4012#define SO_CPU (1 << SL_CPU)
4013#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4014#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4015
62e5c4b4
CG
4016static ssize_t show_slab_objects(struct kmem_cache *s,
4017 char *buf, unsigned long flags)
81819f0f
CL
4018{
4019 unsigned long total = 0;
81819f0f
CL
4020 int node;
4021 int x;
4022 unsigned long *nodes;
4023 unsigned long *per_cpu;
4024
4025 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4026 if (!nodes)
4027 return -ENOMEM;
81819f0f
CL
4028 per_cpu = nodes + nr_node_ids;
4029
205ab99d
CL
4030 if (flags & SO_CPU) {
4031 int cpu;
81819f0f 4032
205ab99d 4033 for_each_possible_cpu(cpu) {
9dfc6e68 4034 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4035
205ab99d
CL
4036 if (!c || c->node < 0)
4037 continue;
4038
4039 if (c->page) {
4040 if (flags & SO_TOTAL)
4041 x = c->page->objects;
4042 else if (flags & SO_OBJECTS)
4043 x = c->page->inuse;
81819f0f
CL
4044 else
4045 x = 1;
205ab99d 4046
81819f0f 4047 total += x;
205ab99d 4048 nodes[c->node] += x;
81819f0f 4049 }
205ab99d 4050 per_cpu[c->node]++;
81819f0f
CL
4051 }
4052 }
4053
04d94879 4054 lock_memory_hotplug();
ab4d5ed5 4055#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4056 if (flags & SO_ALL) {
4057 for_each_node_state(node, N_NORMAL_MEMORY) {
4058 struct kmem_cache_node *n = get_node(s, node);
4059
4060 if (flags & SO_TOTAL)
4061 x = atomic_long_read(&n->total_objects);
4062 else if (flags & SO_OBJECTS)
4063 x = atomic_long_read(&n->total_objects) -
4064 count_partial(n, count_free);
81819f0f 4065
81819f0f 4066 else
205ab99d 4067 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4068 total += x;
4069 nodes[node] += x;
4070 }
4071
ab4d5ed5
CL
4072 } else
4073#endif
4074 if (flags & SO_PARTIAL) {
205ab99d
CL
4075 for_each_node_state(node, N_NORMAL_MEMORY) {
4076 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4077
205ab99d
CL
4078 if (flags & SO_TOTAL)
4079 x = count_partial(n, count_total);
4080 else if (flags & SO_OBJECTS)
4081 x = count_partial(n, count_inuse);
81819f0f 4082 else
205ab99d 4083 x = n->nr_partial;
81819f0f
CL
4084 total += x;
4085 nodes[node] += x;
4086 }
4087 }
81819f0f
CL
4088 x = sprintf(buf, "%lu", total);
4089#ifdef CONFIG_NUMA
f64dc58c 4090 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4091 if (nodes[node])
4092 x += sprintf(buf + x, " N%d=%lu",
4093 node, nodes[node]);
4094#endif
04d94879 4095 unlock_memory_hotplug();
81819f0f
CL
4096 kfree(nodes);
4097 return x + sprintf(buf + x, "\n");
4098}
4099
ab4d5ed5 4100#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4101static int any_slab_objects(struct kmem_cache *s)
4102{
4103 int node;
81819f0f 4104
dfb4f096 4105 for_each_online_node(node) {
81819f0f
CL
4106 struct kmem_cache_node *n = get_node(s, node);
4107
dfb4f096
CL
4108 if (!n)
4109 continue;
4110
4ea33e2d 4111 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4112 return 1;
4113 }
4114 return 0;
4115}
ab4d5ed5 4116#endif
81819f0f
CL
4117
4118#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4119#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4120
4121struct slab_attribute {
4122 struct attribute attr;
4123 ssize_t (*show)(struct kmem_cache *s, char *buf);
4124 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4125};
4126
4127#define SLAB_ATTR_RO(_name) \
4128 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4129
4130#define SLAB_ATTR(_name) \
4131 static struct slab_attribute _name##_attr = \
4132 __ATTR(_name, 0644, _name##_show, _name##_store)
4133
81819f0f
CL
4134static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4135{
4136 return sprintf(buf, "%d\n", s->size);
4137}
4138SLAB_ATTR_RO(slab_size);
4139
4140static ssize_t align_show(struct kmem_cache *s, char *buf)
4141{
4142 return sprintf(buf, "%d\n", s->align);
4143}
4144SLAB_ATTR_RO(align);
4145
4146static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4147{
4148 return sprintf(buf, "%d\n", s->objsize);
4149}
4150SLAB_ATTR_RO(object_size);
4151
4152static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4153{
834f3d11 4154 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4155}
4156SLAB_ATTR_RO(objs_per_slab);
4157
06b285dc
CL
4158static ssize_t order_store(struct kmem_cache *s,
4159 const char *buf, size_t length)
4160{
0121c619
CL
4161 unsigned long order;
4162 int err;
4163
4164 err = strict_strtoul(buf, 10, &order);
4165 if (err)
4166 return err;
06b285dc
CL
4167
4168 if (order > slub_max_order || order < slub_min_order)
4169 return -EINVAL;
4170
4171 calculate_sizes(s, order);
4172 return length;
4173}
4174
81819f0f
CL
4175static ssize_t order_show(struct kmem_cache *s, char *buf)
4176{
834f3d11 4177 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4178}
06b285dc 4179SLAB_ATTR(order);
81819f0f 4180
73d342b1
DR
4181static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4182{
4183 return sprintf(buf, "%lu\n", s->min_partial);
4184}
4185
4186static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4187 size_t length)
4188{
4189 unsigned long min;
4190 int err;
4191
4192 err = strict_strtoul(buf, 10, &min);
4193 if (err)
4194 return err;
4195
c0bdb232 4196 set_min_partial(s, min);
73d342b1
DR
4197 return length;
4198}
4199SLAB_ATTR(min_partial);
4200
81819f0f
CL
4201static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4202{
62c70bce
JP
4203 if (!s->ctor)
4204 return 0;
4205 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4206}
4207SLAB_ATTR_RO(ctor);
4208
81819f0f
CL
4209static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4210{
4211 return sprintf(buf, "%d\n", s->refcount - 1);
4212}
4213SLAB_ATTR_RO(aliases);
4214
81819f0f
CL
4215static ssize_t partial_show(struct kmem_cache *s, char *buf)
4216{
d9acf4b7 4217 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4218}
4219SLAB_ATTR_RO(partial);
4220
4221static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4222{
d9acf4b7 4223 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4224}
4225SLAB_ATTR_RO(cpu_slabs);
4226
4227static ssize_t objects_show(struct kmem_cache *s, char *buf)
4228{
205ab99d 4229 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4230}
4231SLAB_ATTR_RO(objects);
4232
205ab99d
CL
4233static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4234{
4235 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4236}
4237SLAB_ATTR_RO(objects_partial);
4238
a5a84755
CL
4239static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4240{
4241 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4242}
4243
4244static ssize_t reclaim_account_store(struct kmem_cache *s,
4245 const char *buf, size_t length)
4246{
4247 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4248 if (buf[0] == '1')
4249 s->flags |= SLAB_RECLAIM_ACCOUNT;
4250 return length;
4251}
4252SLAB_ATTR(reclaim_account);
4253
4254static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4255{
4256 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4257}
4258SLAB_ATTR_RO(hwcache_align);
4259
4260#ifdef CONFIG_ZONE_DMA
4261static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4262{
4263 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4264}
4265SLAB_ATTR_RO(cache_dma);
4266#endif
4267
4268static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4269{
4270 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4271}
4272SLAB_ATTR_RO(destroy_by_rcu);
4273
ab9a0f19
LJ
4274static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4275{
4276 return sprintf(buf, "%d\n", s->reserved);
4277}
4278SLAB_ATTR_RO(reserved);
4279
ab4d5ed5 4280#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4281static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4282{
4283 return show_slab_objects(s, buf, SO_ALL);
4284}
4285SLAB_ATTR_RO(slabs);
4286
205ab99d
CL
4287static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4288{
4289 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4290}
4291SLAB_ATTR_RO(total_objects);
4292
81819f0f
CL
4293static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4294{
4295 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4296}
4297
4298static ssize_t sanity_checks_store(struct kmem_cache *s,
4299 const char *buf, size_t length)
4300{
4301 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4302 if (buf[0] == '1') {
4303 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4304 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4305 }
81819f0f
CL
4306 return length;
4307}
4308SLAB_ATTR(sanity_checks);
4309
4310static ssize_t trace_show(struct kmem_cache *s, char *buf)
4311{
4312 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4313}
4314
4315static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4316 size_t length)
4317{
4318 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4319 if (buf[0] == '1') {
4320 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4321 s->flags |= SLAB_TRACE;
b789ef51 4322 }
81819f0f
CL
4323 return length;
4324}
4325SLAB_ATTR(trace);
4326
81819f0f
CL
4327static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4328{
4329 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4330}
4331
4332static ssize_t red_zone_store(struct kmem_cache *s,
4333 const char *buf, size_t length)
4334{
4335 if (any_slab_objects(s))
4336 return -EBUSY;
4337
4338 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4339 if (buf[0] == '1') {
4340 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4341 s->flags |= SLAB_RED_ZONE;
b789ef51 4342 }
06b285dc 4343 calculate_sizes(s, -1);
81819f0f
CL
4344 return length;
4345}
4346SLAB_ATTR(red_zone);
4347
4348static ssize_t poison_show(struct kmem_cache *s, char *buf)
4349{
4350 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4351}
4352
4353static ssize_t poison_store(struct kmem_cache *s,
4354 const char *buf, size_t length)
4355{
4356 if (any_slab_objects(s))
4357 return -EBUSY;
4358
4359 s->flags &= ~SLAB_POISON;
b789ef51
CL
4360 if (buf[0] == '1') {
4361 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4362 s->flags |= SLAB_POISON;
b789ef51 4363 }
06b285dc 4364 calculate_sizes(s, -1);
81819f0f
CL
4365 return length;
4366}
4367SLAB_ATTR(poison);
4368
4369static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4370{
4371 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4372}
4373
4374static ssize_t store_user_store(struct kmem_cache *s,
4375 const char *buf, size_t length)
4376{
4377 if (any_slab_objects(s))
4378 return -EBUSY;
4379
4380 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4381 if (buf[0] == '1') {
4382 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4383 s->flags |= SLAB_STORE_USER;
b789ef51 4384 }
06b285dc 4385 calculate_sizes(s, -1);
81819f0f
CL
4386 return length;
4387}
4388SLAB_ATTR(store_user);
4389
53e15af0
CL
4390static ssize_t validate_show(struct kmem_cache *s, char *buf)
4391{
4392 return 0;
4393}
4394
4395static ssize_t validate_store(struct kmem_cache *s,
4396 const char *buf, size_t length)
4397{
434e245d
CL
4398 int ret = -EINVAL;
4399
4400 if (buf[0] == '1') {
4401 ret = validate_slab_cache(s);
4402 if (ret >= 0)
4403 ret = length;
4404 }
4405 return ret;
53e15af0
CL
4406}
4407SLAB_ATTR(validate);
a5a84755
CL
4408
4409static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4410{
4411 if (!(s->flags & SLAB_STORE_USER))
4412 return -ENOSYS;
4413 return list_locations(s, buf, TRACK_ALLOC);
4414}
4415SLAB_ATTR_RO(alloc_calls);
4416
4417static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4418{
4419 if (!(s->flags & SLAB_STORE_USER))
4420 return -ENOSYS;
4421 return list_locations(s, buf, TRACK_FREE);
4422}
4423SLAB_ATTR_RO(free_calls);
4424#endif /* CONFIG_SLUB_DEBUG */
4425
4426#ifdef CONFIG_FAILSLAB
4427static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4428{
4429 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4430}
4431
4432static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4433 size_t length)
4434{
4435 s->flags &= ~SLAB_FAILSLAB;
4436 if (buf[0] == '1')
4437 s->flags |= SLAB_FAILSLAB;
4438 return length;
4439}
4440SLAB_ATTR(failslab);
ab4d5ed5 4441#endif
53e15af0 4442
2086d26a
CL
4443static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4444{
4445 return 0;
4446}
4447
4448static ssize_t shrink_store(struct kmem_cache *s,
4449 const char *buf, size_t length)
4450{
4451 if (buf[0] == '1') {
4452 int rc = kmem_cache_shrink(s);
4453
4454 if (rc)
4455 return rc;
4456 } else
4457 return -EINVAL;
4458 return length;
4459}
4460SLAB_ATTR(shrink);
4461
81819f0f 4462#ifdef CONFIG_NUMA
9824601e 4463static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4464{
9824601e 4465 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4466}
4467
9824601e 4468static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4469 const char *buf, size_t length)
4470{
0121c619
CL
4471 unsigned long ratio;
4472 int err;
4473
4474 err = strict_strtoul(buf, 10, &ratio);
4475 if (err)
4476 return err;
4477
e2cb96b7 4478 if (ratio <= 100)
0121c619 4479 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4480
81819f0f
CL
4481 return length;
4482}
9824601e 4483SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4484#endif
4485
8ff12cfc 4486#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4487static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4488{
4489 unsigned long sum = 0;
4490 int cpu;
4491 int len;
4492 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4493
4494 if (!data)
4495 return -ENOMEM;
4496
4497 for_each_online_cpu(cpu) {
9dfc6e68 4498 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4499
4500 data[cpu] = x;
4501 sum += x;
4502 }
4503
4504 len = sprintf(buf, "%lu", sum);
4505
50ef37b9 4506#ifdef CONFIG_SMP
8ff12cfc
CL
4507 for_each_online_cpu(cpu) {
4508 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4509 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4510 }
50ef37b9 4511#endif
8ff12cfc
CL
4512 kfree(data);
4513 return len + sprintf(buf + len, "\n");
4514}
4515
78eb00cc
DR
4516static void clear_stat(struct kmem_cache *s, enum stat_item si)
4517{
4518 int cpu;
4519
4520 for_each_online_cpu(cpu)
9dfc6e68 4521 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4522}
4523
8ff12cfc
CL
4524#define STAT_ATTR(si, text) \
4525static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4526{ \
4527 return show_stat(s, buf, si); \
4528} \
78eb00cc
DR
4529static ssize_t text##_store(struct kmem_cache *s, \
4530 const char *buf, size_t length) \
4531{ \
4532 if (buf[0] != '0') \
4533 return -EINVAL; \
4534 clear_stat(s, si); \
4535 return length; \
4536} \
4537SLAB_ATTR(text); \
8ff12cfc
CL
4538
4539STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4540STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4541STAT_ATTR(FREE_FASTPATH, free_fastpath);
4542STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4543STAT_ATTR(FREE_FROZEN, free_frozen);
4544STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4545STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4546STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4547STAT_ATTR(ALLOC_SLAB, alloc_slab);
4548STAT_ATTR(ALLOC_REFILL, alloc_refill);
4549STAT_ATTR(FREE_SLAB, free_slab);
4550STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4551STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4552STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4553STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4554STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4555STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4556STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4557STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4558STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4559#endif
4560
06428780 4561static struct attribute *slab_attrs[] = {
81819f0f
CL
4562 &slab_size_attr.attr,
4563 &object_size_attr.attr,
4564 &objs_per_slab_attr.attr,
4565 &order_attr.attr,
73d342b1 4566 &min_partial_attr.attr,
81819f0f 4567 &objects_attr.attr,
205ab99d 4568 &objects_partial_attr.attr,
81819f0f
CL
4569 &partial_attr.attr,
4570 &cpu_slabs_attr.attr,
4571 &ctor_attr.attr,
81819f0f
CL
4572 &aliases_attr.attr,
4573 &align_attr.attr,
81819f0f
CL
4574 &hwcache_align_attr.attr,
4575 &reclaim_account_attr.attr,
4576 &destroy_by_rcu_attr.attr,
a5a84755 4577 &shrink_attr.attr,
ab9a0f19 4578 &reserved_attr.attr,
ab4d5ed5 4579#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4580 &total_objects_attr.attr,
4581 &slabs_attr.attr,
4582 &sanity_checks_attr.attr,
4583 &trace_attr.attr,
81819f0f
CL
4584 &red_zone_attr.attr,
4585 &poison_attr.attr,
4586 &store_user_attr.attr,
53e15af0 4587 &validate_attr.attr,
88a420e4
CL
4588 &alloc_calls_attr.attr,
4589 &free_calls_attr.attr,
ab4d5ed5 4590#endif
81819f0f
CL
4591#ifdef CONFIG_ZONE_DMA
4592 &cache_dma_attr.attr,
4593#endif
4594#ifdef CONFIG_NUMA
9824601e 4595 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4596#endif
4597#ifdef CONFIG_SLUB_STATS
4598 &alloc_fastpath_attr.attr,
4599 &alloc_slowpath_attr.attr,
4600 &free_fastpath_attr.attr,
4601 &free_slowpath_attr.attr,
4602 &free_frozen_attr.attr,
4603 &free_add_partial_attr.attr,
4604 &free_remove_partial_attr.attr,
4605 &alloc_from_partial_attr.attr,
4606 &alloc_slab_attr.attr,
4607 &alloc_refill_attr.attr,
4608 &free_slab_attr.attr,
4609 &cpuslab_flush_attr.attr,
4610 &deactivate_full_attr.attr,
4611 &deactivate_empty_attr.attr,
4612 &deactivate_to_head_attr.attr,
4613 &deactivate_to_tail_attr.attr,
4614 &deactivate_remote_frees_attr.attr,
65c3376a 4615 &order_fallback_attr.attr,
b789ef51
CL
4616 &cmpxchg_double_fail_attr.attr,
4617 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4618#endif
4c13dd3b
DM
4619#ifdef CONFIG_FAILSLAB
4620 &failslab_attr.attr,
4621#endif
4622
81819f0f
CL
4623 NULL
4624};
4625
4626static struct attribute_group slab_attr_group = {
4627 .attrs = slab_attrs,
4628};
4629
4630static ssize_t slab_attr_show(struct kobject *kobj,
4631 struct attribute *attr,
4632 char *buf)
4633{
4634 struct slab_attribute *attribute;
4635 struct kmem_cache *s;
4636 int err;
4637
4638 attribute = to_slab_attr(attr);
4639 s = to_slab(kobj);
4640
4641 if (!attribute->show)
4642 return -EIO;
4643
4644 err = attribute->show(s, buf);
4645
4646 return err;
4647}
4648
4649static ssize_t slab_attr_store(struct kobject *kobj,
4650 struct attribute *attr,
4651 const char *buf, size_t len)
4652{
4653 struct slab_attribute *attribute;
4654 struct kmem_cache *s;
4655 int err;
4656
4657 attribute = to_slab_attr(attr);
4658 s = to_slab(kobj);
4659
4660 if (!attribute->store)
4661 return -EIO;
4662
4663 err = attribute->store(s, buf, len);
4664
4665 return err;
4666}
4667
151c602f
CL
4668static void kmem_cache_release(struct kobject *kobj)
4669{
4670 struct kmem_cache *s = to_slab(kobj);
4671
84c1cf62 4672 kfree(s->name);
151c602f
CL
4673 kfree(s);
4674}
4675
52cf25d0 4676static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4677 .show = slab_attr_show,
4678 .store = slab_attr_store,
4679};
4680
4681static struct kobj_type slab_ktype = {
4682 .sysfs_ops = &slab_sysfs_ops,
151c602f 4683 .release = kmem_cache_release
81819f0f
CL
4684};
4685
4686static int uevent_filter(struct kset *kset, struct kobject *kobj)
4687{
4688 struct kobj_type *ktype = get_ktype(kobj);
4689
4690 if (ktype == &slab_ktype)
4691 return 1;
4692 return 0;
4693}
4694
9cd43611 4695static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4696 .filter = uevent_filter,
4697};
4698
27c3a314 4699static struct kset *slab_kset;
81819f0f
CL
4700
4701#define ID_STR_LENGTH 64
4702
4703/* Create a unique string id for a slab cache:
6446faa2
CL
4704 *
4705 * Format :[flags-]size
81819f0f
CL
4706 */
4707static char *create_unique_id(struct kmem_cache *s)
4708{
4709 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4710 char *p = name;
4711
4712 BUG_ON(!name);
4713
4714 *p++ = ':';
4715 /*
4716 * First flags affecting slabcache operations. We will only
4717 * get here for aliasable slabs so we do not need to support
4718 * too many flags. The flags here must cover all flags that
4719 * are matched during merging to guarantee that the id is
4720 * unique.
4721 */
4722 if (s->flags & SLAB_CACHE_DMA)
4723 *p++ = 'd';
4724 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4725 *p++ = 'a';
4726 if (s->flags & SLAB_DEBUG_FREE)
4727 *p++ = 'F';
5a896d9e
VN
4728 if (!(s->flags & SLAB_NOTRACK))
4729 *p++ = 't';
81819f0f
CL
4730 if (p != name + 1)
4731 *p++ = '-';
4732 p += sprintf(p, "%07d", s->size);
4733 BUG_ON(p > name + ID_STR_LENGTH - 1);
4734 return name;
4735}
4736
4737static int sysfs_slab_add(struct kmem_cache *s)
4738{
4739 int err;
4740 const char *name;
4741 int unmergeable;
4742
4743 if (slab_state < SYSFS)
4744 /* Defer until later */
4745 return 0;
4746
4747 unmergeable = slab_unmergeable(s);
4748 if (unmergeable) {
4749 /*
4750 * Slabcache can never be merged so we can use the name proper.
4751 * This is typically the case for debug situations. In that
4752 * case we can catch duplicate names easily.
4753 */
27c3a314 4754 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4755 name = s->name;
4756 } else {
4757 /*
4758 * Create a unique name for the slab as a target
4759 * for the symlinks.
4760 */
4761 name = create_unique_id(s);
4762 }
4763
27c3a314 4764 s->kobj.kset = slab_kset;
1eada11c
GKH
4765 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4766 if (err) {
4767 kobject_put(&s->kobj);
81819f0f 4768 return err;
1eada11c 4769 }
81819f0f
CL
4770
4771 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4772 if (err) {
4773 kobject_del(&s->kobj);
4774 kobject_put(&s->kobj);
81819f0f 4775 return err;
5788d8ad 4776 }
81819f0f
CL
4777 kobject_uevent(&s->kobj, KOBJ_ADD);
4778 if (!unmergeable) {
4779 /* Setup first alias */
4780 sysfs_slab_alias(s, s->name);
4781 kfree(name);
4782 }
4783 return 0;
4784}
4785
4786static void sysfs_slab_remove(struct kmem_cache *s)
4787{
2bce6485
CL
4788 if (slab_state < SYSFS)
4789 /*
4790 * Sysfs has not been setup yet so no need to remove the
4791 * cache from sysfs.
4792 */
4793 return;
4794
81819f0f
CL
4795 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4796 kobject_del(&s->kobj);
151c602f 4797 kobject_put(&s->kobj);
81819f0f
CL
4798}
4799
4800/*
4801 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4802 * available lest we lose that information.
81819f0f
CL
4803 */
4804struct saved_alias {
4805 struct kmem_cache *s;
4806 const char *name;
4807 struct saved_alias *next;
4808};
4809
5af328a5 4810static struct saved_alias *alias_list;
81819f0f
CL
4811
4812static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4813{
4814 struct saved_alias *al;
4815
4816 if (slab_state == SYSFS) {
4817 /*
4818 * If we have a leftover link then remove it.
4819 */
27c3a314
GKH
4820 sysfs_remove_link(&slab_kset->kobj, name);
4821 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4822 }
4823
4824 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4825 if (!al)
4826 return -ENOMEM;
4827
4828 al->s = s;
4829 al->name = name;
4830 al->next = alias_list;
4831 alias_list = al;
4832 return 0;
4833}
4834
4835static int __init slab_sysfs_init(void)
4836{
5b95a4ac 4837 struct kmem_cache *s;
81819f0f
CL
4838 int err;
4839
2bce6485
CL
4840 down_write(&slub_lock);
4841
0ff21e46 4842 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4843 if (!slab_kset) {
2bce6485 4844 up_write(&slub_lock);
81819f0f
CL
4845 printk(KERN_ERR "Cannot register slab subsystem.\n");
4846 return -ENOSYS;
4847 }
4848
26a7bd03
CL
4849 slab_state = SYSFS;
4850
5b95a4ac 4851 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4852 err = sysfs_slab_add(s);
5d540fb7
CL
4853 if (err)
4854 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4855 " to sysfs\n", s->name);
26a7bd03 4856 }
81819f0f
CL
4857
4858 while (alias_list) {
4859 struct saved_alias *al = alias_list;
4860
4861 alias_list = alias_list->next;
4862 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4863 if (err)
4864 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4865 " %s to sysfs\n", s->name);
81819f0f
CL
4866 kfree(al);
4867 }
4868
2bce6485 4869 up_write(&slub_lock);
81819f0f
CL
4870 resiliency_test();
4871 return 0;
4872}
4873
4874__initcall(slab_sysfs_init);
ab4d5ed5 4875#endif /* CONFIG_SYSFS */
57ed3eda
PE
4876
4877/*
4878 * The /proc/slabinfo ABI
4879 */
158a9624 4880#ifdef CONFIG_SLABINFO
57ed3eda
PE
4881static void print_slabinfo_header(struct seq_file *m)
4882{
4883 seq_puts(m, "slabinfo - version: 2.1\n");
4884 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4885 "<objperslab> <pagesperslab>");
4886 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4887 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4888 seq_putc(m, '\n');
4889}
4890
4891static void *s_start(struct seq_file *m, loff_t *pos)
4892{
4893 loff_t n = *pos;
4894
4895 down_read(&slub_lock);
4896 if (!n)
4897 print_slabinfo_header(m);
4898
4899 return seq_list_start(&slab_caches, *pos);
4900}
4901
4902static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4903{
4904 return seq_list_next(p, &slab_caches, pos);
4905}
4906
4907static void s_stop(struct seq_file *m, void *p)
4908{
4909 up_read(&slub_lock);
4910}
4911
4912static int s_show(struct seq_file *m, void *p)
4913{
4914 unsigned long nr_partials = 0;
4915 unsigned long nr_slabs = 0;
4916 unsigned long nr_inuse = 0;
205ab99d
CL
4917 unsigned long nr_objs = 0;
4918 unsigned long nr_free = 0;
57ed3eda
PE
4919 struct kmem_cache *s;
4920 int node;
4921
4922 s = list_entry(p, struct kmem_cache, list);
4923
4924 for_each_online_node(node) {
4925 struct kmem_cache_node *n = get_node(s, node);
4926
4927 if (!n)
4928 continue;
4929
4930 nr_partials += n->nr_partial;
4931 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4932 nr_objs += atomic_long_read(&n->total_objects);
4933 nr_free += count_partial(n, count_free);
57ed3eda
PE
4934 }
4935
205ab99d 4936 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4937
4938 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4939 nr_objs, s->size, oo_objects(s->oo),
4940 (1 << oo_order(s->oo)));
57ed3eda
PE
4941 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4942 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4943 0UL);
4944 seq_putc(m, '\n');
4945 return 0;
4946}
4947
7b3c3a50 4948static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4949 .start = s_start,
4950 .next = s_next,
4951 .stop = s_stop,
4952 .show = s_show,
4953};
4954
7b3c3a50
AD
4955static int slabinfo_open(struct inode *inode, struct file *file)
4956{
4957 return seq_open(file, &slabinfo_op);
4958}
4959
4960static const struct file_operations proc_slabinfo_operations = {
4961 .open = slabinfo_open,
4962 .read = seq_read,
4963 .llseek = seq_lseek,
4964 .release = seq_release,
4965};
4966
4967static int __init slab_proc_init(void)
4968{
cf5d1131 4969 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4970 return 0;
4971}
4972module_init(slab_proc_init);
158a9624 4973#endif /* CONFIG_SLABINFO */