]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
SLUB: consolidate trace code
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
35e5d7ee
CL
90static inline int SlabDebug(struct page *page)
91{
92 return PageError(page);
93}
94
95static inline void SetSlabDebug(struct page *page)
96{
97 SetPageError(page);
98}
99
100static inline void ClearSlabDebug(struct page *page)
101{
102 ClearPageError(page);
103}
104
81819f0f
CL
105/*
106 * Issues still to be resolved:
107 *
108 * - The per cpu array is updated for each new slab and and is a remote
109 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
110 * enough frequent updates. There are 16 pointers in a cacheline, so at
111 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
112 *
113 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
114 *
81819f0f
CL
115 * - Variable sizing of the per node arrays
116 */
117
118/* Enable to test recovery from slab corruption on boot */
119#undef SLUB_RESILIENCY_TEST
120
121#if PAGE_SHIFT <= 12
122
123/*
124 * Small page size. Make sure that we do not fragment memory
125 */
126#define DEFAULT_MAX_ORDER 1
127#define DEFAULT_MIN_OBJECTS 4
128
129#else
130
131/*
132 * Large page machines are customarily able to handle larger
133 * page orders.
134 */
135#define DEFAULT_MAX_ORDER 2
136#define DEFAULT_MIN_OBJECTS 8
137
138#endif
139
2086d26a
CL
140/*
141 * Mininum number of partial slabs. These will be left on the partial
142 * lists even if they are empty. kmem_cache_shrink may reclaim them.
143 */
e95eed57
CL
144#define MIN_PARTIAL 2
145
2086d26a
CL
146/*
147 * Maximum number of desirable partial slabs.
148 * The existence of more partial slabs makes kmem_cache_shrink
149 * sort the partial list by the number of objects in the.
150 */
151#define MAX_PARTIAL 10
152
81819f0f
CL
153#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_STORE_USER)
672bba3a 155
81819f0f
CL
156/*
157 * Set of flags that will prevent slab merging
158 */
159#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
160 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA)
164
165#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 166#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
167#endif
168
169#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 170#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
171#endif
172
173/* Internal SLUB flags */
174#define __OBJECT_POISON 0x80000000 /* Poison object */
175
65c02d4c
CL
176/* Not all arches define cache_line_size */
177#ifndef cache_line_size
178#define cache_line_size() L1_CACHE_BYTES
179#endif
180
81819f0f
CL
181static int kmem_size = sizeof(struct kmem_cache);
182
183#ifdef CONFIG_SMP
184static struct notifier_block slab_notifier;
185#endif
186
187static enum {
188 DOWN, /* No slab functionality available */
189 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 190 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
191 SYSFS /* Sysfs up */
192} slab_state = DOWN;
193
194/* A list of all slab caches on the system */
195static DECLARE_RWSEM(slub_lock);
196LIST_HEAD(slab_caches);
197
198#ifdef CONFIG_SYSFS
199static int sysfs_slab_add(struct kmem_cache *);
200static int sysfs_slab_alias(struct kmem_cache *, const char *);
201static void sysfs_slab_remove(struct kmem_cache *);
202#else
203static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
205static void sysfs_slab_remove(struct kmem_cache *s) {}
206#endif
207
208/********************************************************************
209 * Core slab cache functions
210 *******************************************************************/
211
212int slab_is_available(void)
213{
214 return slab_state >= UP;
215}
216
217static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
218{
219#ifdef CONFIG_NUMA
220 return s->node[node];
221#else
222 return &s->local_node;
223#endif
224}
225
7656c72b
CL
226/*
227 * Slow version of get and set free pointer.
228 *
229 * This version requires touching the cache lines of kmem_cache which
230 * we avoid to do in the fast alloc free paths. There we obtain the offset
231 * from the page struct.
232 */
233static inline void *get_freepointer(struct kmem_cache *s, void *object)
234{
235 return *(void **)(object + s->offset);
236}
237
238static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
239{
240 *(void **)(object + s->offset) = fp;
241}
242
243/* Loop over all objects in a slab */
244#define for_each_object(__p, __s, __addr) \
245 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
246 __p += (__s)->size)
247
248/* Scan freelist */
249#define for_each_free_object(__p, __s, __free) \
250 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
251
252/* Determine object index from a given position */
253static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
254{
255 return (p - addr) / s->size;
256}
257
81819f0f
CL
258/*
259 * Object debugging
260 */
261static void print_section(char *text, u8 *addr, unsigned int length)
262{
263 int i, offset;
264 int newline = 1;
265 char ascii[17];
266
267 ascii[16] = 0;
268
269 for (i = 0; i < length; i++) {
270 if (newline) {
271 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
272 newline = 0;
273 }
274 printk(" %02x", addr[i]);
275 offset = i % 16;
276 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
277 if (offset == 15) {
278 printk(" %s\n",ascii);
279 newline = 1;
280 }
281 }
282 if (!newline) {
283 i %= 16;
284 while (i < 16) {
285 printk(" ");
286 ascii[i] = ' ';
287 i++;
288 }
289 printk(" %s\n", ascii);
290 }
291}
292
81819f0f
CL
293/*
294 * Tracking user of a slab.
295 */
296struct track {
297 void *addr; /* Called from address */
298 int cpu; /* Was running on cpu */
299 int pid; /* Pid context */
300 unsigned long when; /* When did the operation occur */
301};
302
303enum track_item { TRACK_ALLOC, TRACK_FREE };
304
305static struct track *get_track(struct kmem_cache *s, void *object,
306 enum track_item alloc)
307{
308 struct track *p;
309
310 if (s->offset)
311 p = object + s->offset + sizeof(void *);
312 else
313 p = object + s->inuse;
314
315 return p + alloc;
316}
317
318static void set_track(struct kmem_cache *s, void *object,
319 enum track_item alloc, void *addr)
320{
321 struct track *p;
322
323 if (s->offset)
324 p = object + s->offset + sizeof(void *);
325 else
326 p = object + s->inuse;
327
328 p += alloc;
329 if (addr) {
330 p->addr = addr;
331 p->cpu = smp_processor_id();
332 p->pid = current ? current->pid : -1;
333 p->when = jiffies;
334 } else
335 memset(p, 0, sizeof(struct track));
336}
337
81819f0f
CL
338static void init_tracking(struct kmem_cache *s, void *object)
339{
340 if (s->flags & SLAB_STORE_USER) {
341 set_track(s, object, TRACK_FREE, NULL);
342 set_track(s, object, TRACK_ALLOC, NULL);
343 }
344}
345
346static void print_track(const char *s, struct track *t)
347{
348 if (!t->addr)
349 return;
350
351 printk(KERN_ERR "%s: ", s);
352 __print_symbol("%s", (unsigned long)t->addr);
353 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
354}
355
356static void print_trailer(struct kmem_cache *s, u8 *p)
357{
358 unsigned int off; /* Offset of last byte */
359
360 if (s->flags & SLAB_RED_ZONE)
361 print_section("Redzone", p + s->objsize,
362 s->inuse - s->objsize);
363
364 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
365 p + s->offset,
366 get_freepointer(s, p));
367
368 if (s->offset)
369 off = s->offset + sizeof(void *);
370 else
371 off = s->inuse;
372
373 if (s->flags & SLAB_STORE_USER) {
374 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
375 print_track("Last free ", get_track(s, p, TRACK_FREE));
376 off += 2 * sizeof(struct track);
377 }
378
379 if (off != s->size)
380 /* Beginning of the filler is the free pointer */
381 print_section("Filler", p + off, s->size - off);
382}
383
384static void object_err(struct kmem_cache *s, struct page *page,
385 u8 *object, char *reason)
386{
387 u8 *addr = page_address(page);
388
389 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
390 s->name, reason, object, page);
391 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
392 object - addr, page->flags, page->inuse, page->freelist);
393 if (object > addr + 16)
394 print_section("Bytes b4", object - 16, 16);
395 print_section("Object", object, min(s->objsize, 128));
396 print_trailer(s, object);
397 dump_stack();
398}
399
400static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
401{
402 va_list args;
403 char buf[100];
404
405 va_start(args, reason);
406 vsnprintf(buf, sizeof(buf), reason, args);
407 va_end(args);
408 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
409 page);
410 dump_stack();
411}
412
413static void init_object(struct kmem_cache *s, void *object, int active)
414{
415 u8 *p = object;
416
417 if (s->flags & __OBJECT_POISON) {
418 memset(p, POISON_FREE, s->objsize - 1);
419 p[s->objsize -1] = POISON_END;
420 }
421
422 if (s->flags & SLAB_RED_ZONE)
423 memset(p + s->objsize,
424 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
425 s->inuse - s->objsize);
426}
427
428static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
429{
430 while (bytes) {
431 if (*start != (u8)value)
432 return 0;
433 start++;
434 bytes--;
435 }
436 return 1;
437}
438
abcd08a6
CL
439static inline int check_valid_pointer(struct kmem_cache *s,
440 struct page *page, const void *object)
81819f0f
CL
441{
442 void *base;
443
444 if (!object)
445 return 1;
446
447 base = page_address(page);
448 if (object < base || object >= base + s->objects * s->size ||
449 (object - base) % s->size) {
450 return 0;
451 }
452
453 return 1;
454}
455
456/*
457 * Object layout:
458 *
459 * object address
460 * Bytes of the object to be managed.
461 * If the freepointer may overlay the object then the free
462 * pointer is the first word of the object.
672bba3a 463 *
81819f0f
CL
464 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
465 * 0xa5 (POISON_END)
466 *
467 * object + s->objsize
468 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
469 * Padding is extended by another word if Redzoning is enabled and
470 * objsize == inuse.
471 *
81819f0f
CL
472 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
473 * 0xcc (RED_ACTIVE) for objects in use.
474 *
475 * object + s->inuse
672bba3a
CL
476 * Meta data starts here.
477 *
81819f0f
CL
478 * A. Free pointer (if we cannot overwrite object on free)
479 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
480 * C. Padding to reach required alignment boundary or at mininum
481 * one word if debuggin is on to be able to detect writes
482 * before the word boundary.
483 *
484 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
485 *
486 * object + s->size
672bba3a 487 * Nothing is used beyond s->size.
81819f0f 488 *
672bba3a
CL
489 * If slabcaches are merged then the objsize and inuse boundaries are mostly
490 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
491 * may be used with merged slabcaches.
492 */
493
494static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
495 void *from, void *to)
496{
70d71228 497 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
498 s->name, message, data, from, to - 1);
499 memset(from, data, to - from);
500}
501
502static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
503{
504 unsigned long off = s->inuse; /* The end of info */
505
506 if (s->offset)
507 /* Freepointer is placed after the object. */
508 off += sizeof(void *);
509
510 if (s->flags & SLAB_STORE_USER)
511 /* We also have user information there */
512 off += 2 * sizeof(struct track);
513
514 if (s->size == off)
515 return 1;
516
517 if (check_bytes(p + off, POISON_INUSE, s->size - off))
518 return 1;
519
520 object_err(s, page, p, "Object padding check fails");
521
522 /*
523 * Restore padding
524 */
525 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
526 return 0;
527}
528
529static int slab_pad_check(struct kmem_cache *s, struct page *page)
530{
531 u8 *p;
532 int length, remainder;
533
534 if (!(s->flags & SLAB_POISON))
535 return 1;
536
537 p = page_address(page);
538 length = s->objects * s->size;
539 remainder = (PAGE_SIZE << s->order) - length;
540 if (!remainder)
541 return 1;
542
543 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 544 slab_err(s, page, "Padding check failed");
81819f0f
CL
545 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
546 p + length + remainder);
547 return 0;
548 }
549 return 1;
550}
551
552static int check_object(struct kmem_cache *s, struct page *page,
553 void *object, int active)
554{
555 u8 *p = object;
556 u8 *endobject = object + s->objsize;
557
558 if (s->flags & SLAB_RED_ZONE) {
559 unsigned int red =
560 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
561
562 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
563 object_err(s, page, object,
564 active ? "Redzone Active" : "Redzone Inactive");
565 restore_bytes(s, "redzone", red,
566 endobject, object + s->inuse);
567 return 0;
568 }
569 } else {
570 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
571 !check_bytes(endobject, POISON_INUSE,
572 s->inuse - s->objsize)) {
573 object_err(s, page, p, "Alignment padding check fails");
574 /*
575 * Fix it so that there will not be another report.
576 *
577 * Hmmm... We may be corrupting an object that now expects
578 * to be longer than allowed.
579 */
580 restore_bytes(s, "alignment padding", POISON_INUSE,
581 endobject, object + s->inuse);
582 }
583 }
584
585 if (s->flags & SLAB_POISON) {
586 if (!active && (s->flags & __OBJECT_POISON) &&
587 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
588 p[s->objsize - 1] != POISON_END)) {
589
590 object_err(s, page, p, "Poison check failed");
591 restore_bytes(s, "Poison", POISON_FREE,
592 p, p + s->objsize -1);
593 restore_bytes(s, "Poison", POISON_END,
594 p + s->objsize - 1, p + s->objsize);
595 return 0;
596 }
597 /*
598 * check_pad_bytes cleans up on its own.
599 */
600 check_pad_bytes(s, page, p);
601 }
602
603 if (!s->offset && active)
604 /*
605 * Object and freepointer overlap. Cannot check
606 * freepointer while object is allocated.
607 */
608 return 1;
609
610 /* Check free pointer validity */
611 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
612 object_err(s, page, p, "Freepointer corrupt");
613 /*
614 * No choice but to zap it and thus loose the remainder
615 * of the free objects in this slab. May cause
672bba3a 616 * another error because the object count is now wrong.
81819f0f
CL
617 */
618 set_freepointer(s, p, NULL);
619 return 0;
620 }
621 return 1;
622}
623
624static int check_slab(struct kmem_cache *s, struct page *page)
625{
626 VM_BUG_ON(!irqs_disabled());
627
628 if (!PageSlab(page)) {
70d71228
CL
629 slab_err(s, page, "Not a valid slab page flags=%lx "
630 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
631 page_count(page));
632 return 0;
633 }
634 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
635 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
636 "mapping=0x%p count=%d",
81819f0f 637 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
638 page->flags,
639 page->mapping,
640 page_count(page));
81819f0f
CL
641 return 0;
642 }
643 if (page->inuse > s->objects) {
70d71228
CL
644 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
645 "mapping=0x%p count=%d",
646 s->name, page->inuse, s->objects, page->flags,
81819f0f 647 page->mapping, page_count(page));
81819f0f
CL
648 return 0;
649 }
650 /* Slab_pad_check fixes things up after itself */
651 slab_pad_check(s, page);
652 return 1;
653}
654
655/*
672bba3a
CL
656 * Determine if a certain object on a page is on the freelist. Must hold the
657 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
658 */
659static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
660{
661 int nr = 0;
662 void *fp = page->freelist;
663 void *object = NULL;
664
665 while (fp && nr <= s->objects) {
666 if (fp == search)
667 return 1;
668 if (!check_valid_pointer(s, page, fp)) {
669 if (object) {
670 object_err(s, page, object,
671 "Freechain corrupt");
672 set_freepointer(s, object, NULL);
673 break;
674 } else {
70d71228
CL
675 slab_err(s, page, "Freepointer 0x%p corrupt",
676 fp);
81819f0f
CL
677 page->freelist = NULL;
678 page->inuse = s->objects;
70d71228
CL
679 printk(KERN_ERR "@@@ SLUB %s: Freelist "
680 "cleared. Slab 0x%p\n",
681 s->name, page);
81819f0f
CL
682 return 0;
683 }
684 break;
685 }
686 object = fp;
687 fp = get_freepointer(s, object);
688 nr++;
689 }
690
691 if (page->inuse != s->objects - nr) {
70d71228
CL
692 slab_err(s, page, "Wrong object count. Counter is %d but "
693 "counted were %d", s, page, page->inuse,
694 s->objects - nr);
81819f0f 695 page->inuse = s->objects - nr;
70d71228
CL
696 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
697 "Slab @0x%p\n", s->name, page);
81819f0f
CL
698 }
699 return search == NULL;
700}
701
643b1138 702/*
672bba3a 703 * Tracking of fully allocated slabs for debugging purposes.
643b1138 704 */
e95eed57 705static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 706{
643b1138
CL
707 spin_lock(&n->list_lock);
708 list_add(&page->lru, &n->full);
709 spin_unlock(&n->list_lock);
710}
711
712static void remove_full(struct kmem_cache *s, struct page *page)
713{
714 struct kmem_cache_node *n;
715
716 if (!(s->flags & SLAB_STORE_USER))
717 return;
718
719 n = get_node(s, page_to_nid(page));
720
721 spin_lock(&n->list_lock);
722 list_del(&page->lru);
723 spin_unlock(&n->list_lock);
724}
725
81819f0f
CL
726static int alloc_object_checks(struct kmem_cache *s, struct page *page,
727 void *object)
728{
729 if (!check_slab(s, page))
730 goto bad;
731
732 if (object && !on_freelist(s, page, object)) {
70d71228
CL
733 slab_err(s, page, "Object 0x%p already allocated", object);
734 goto bad;
81819f0f
CL
735 }
736
737 if (!check_valid_pointer(s, page, object)) {
738 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 739 goto bad;
81819f0f
CL
740 }
741
742 if (!object)
743 return 1;
744
745 if (!check_object(s, page, object, 0))
746 goto bad;
81819f0f 747
81819f0f 748 return 1;
81819f0f
CL
749bad:
750 if (PageSlab(page)) {
751 /*
752 * If this is a slab page then lets do the best we can
753 * to avoid issues in the future. Marking all objects
672bba3a 754 * as used avoids touching the remaining objects.
81819f0f
CL
755 */
756 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
757 s->name, page);
758 page->inuse = s->objects;
759 page->freelist = NULL;
760 /* Fix up fields that may be corrupted */
761 page->offset = s->offset / sizeof(void *);
762 }
763 return 0;
764}
765
766static int free_object_checks(struct kmem_cache *s, struct page *page,
767 void *object)
768{
769 if (!check_slab(s, page))
770 goto fail;
771
772 if (!check_valid_pointer(s, page, object)) {
70d71228 773 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
774 goto fail;
775 }
776
777 if (on_freelist(s, page, object)) {
70d71228 778 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
779 goto fail;
780 }
781
782 if (!check_object(s, page, object, 1))
783 return 0;
784
785 if (unlikely(s != page->slab)) {
786 if (!PageSlab(page))
70d71228
CL
787 slab_err(s, page, "Attempt to free object(0x%p) "
788 "outside of slab", object);
81819f0f 789 else
70d71228 790 if (!page->slab) {
81819f0f 791 printk(KERN_ERR
70d71228 792 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 793 object);
70d71228
CL
794 dump_stack();
795 }
81819f0f 796 else
70d71228
CL
797 slab_err(s, page, "object at 0x%p belongs "
798 "to slab %s", object, page->slab->name);
81819f0f
CL
799 goto fail;
800 }
81819f0f
CL
801 return 1;
802fail:
81819f0f
CL
803 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
804 s->name, page, object);
805 return 0;
806}
807
636f0d7d
CL
808static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
809{
810 if (s->flags & SLAB_TRACE) {
811 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
812 s->name,
813 alloc ? "alloc" : "free",
814 object, page->inuse,
815 page->freelist);
816
817 if (!alloc)
818 print_section("Object", (void *)object, s->objsize);
819
820 dump_stack();
821 }
822}
823
81819f0f
CL
824/*
825 * Slab allocation and freeing
826 */
827static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
828{
829 struct page * page;
830 int pages = 1 << s->order;
831
832 if (s->order)
833 flags |= __GFP_COMP;
834
835 if (s->flags & SLAB_CACHE_DMA)
836 flags |= SLUB_DMA;
837
838 if (node == -1)
839 page = alloc_pages(flags, s->order);
840 else
841 page = alloc_pages_node(node, flags, s->order);
842
843 if (!page)
844 return NULL;
845
846 mod_zone_page_state(page_zone(page),
847 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
848 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
849 pages);
850
851 return page;
852}
853
854static void setup_object(struct kmem_cache *s, struct page *page,
855 void *object)
856{
35e5d7ee 857 if (SlabDebug(page)) {
81819f0f
CL
858 init_object(s, object, 0);
859 init_tracking(s, object);
860 }
861
4f104934
CL
862 if (unlikely(s->ctor))
863 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
81819f0f
CL
864}
865
866static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
867{
868 struct page *page;
869 struct kmem_cache_node *n;
870 void *start;
871 void *end;
872 void *last;
873 void *p;
874
81819f0f
CL
875 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
876
877 if (flags & __GFP_WAIT)
878 local_irq_enable();
879
880 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
881 if (!page)
882 goto out;
883
884 n = get_node(s, page_to_nid(page));
885 if (n)
886 atomic_long_inc(&n->nr_slabs);
887 page->offset = s->offset / sizeof(void *);
888 page->slab = s;
889 page->flags |= 1 << PG_slab;
890 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
891 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 892 SetSlabDebug(page);
81819f0f
CL
893
894 start = page_address(page);
895 end = start + s->objects * s->size;
896
897 if (unlikely(s->flags & SLAB_POISON))
898 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
899
900 last = start;
7656c72b 901 for_each_object(p, s, start) {
81819f0f
CL
902 setup_object(s, page, last);
903 set_freepointer(s, last, p);
904 last = p;
905 }
906 setup_object(s, page, last);
907 set_freepointer(s, last, NULL);
908
909 page->freelist = start;
910 page->inuse = 0;
911out:
912 if (flags & __GFP_WAIT)
913 local_irq_disable();
914 return page;
915}
916
917static void __free_slab(struct kmem_cache *s, struct page *page)
918{
919 int pages = 1 << s->order;
920
35e5d7ee 921 if (unlikely(SlabDebug(page) || s->dtor)) {
81819f0f
CL
922 void *p;
923
924 slab_pad_check(s, page);
7656c72b 925 for_each_object(p, s, page_address(page)) {
81819f0f
CL
926 if (s->dtor)
927 s->dtor(p, s, 0);
928 check_object(s, page, p, 0);
929 }
930 }
931
932 mod_zone_page_state(page_zone(page),
933 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
934 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
935 - pages);
936
937 page->mapping = NULL;
938 __free_pages(page, s->order);
939}
940
941static void rcu_free_slab(struct rcu_head *h)
942{
943 struct page *page;
944
945 page = container_of((struct list_head *)h, struct page, lru);
946 __free_slab(page->slab, page);
947}
948
949static void free_slab(struct kmem_cache *s, struct page *page)
950{
951 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
952 /*
953 * RCU free overloads the RCU head over the LRU
954 */
955 struct rcu_head *head = (void *)&page->lru;
956
957 call_rcu(head, rcu_free_slab);
958 } else
959 __free_slab(s, page);
960}
961
962static void discard_slab(struct kmem_cache *s, struct page *page)
963{
964 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
965
966 atomic_long_dec(&n->nr_slabs);
967 reset_page_mapcount(page);
35e5d7ee
CL
968 ClearSlabDebug(page);
969 __ClearPageSlab(page);
81819f0f
CL
970 free_slab(s, page);
971}
972
973/*
974 * Per slab locking using the pagelock
975 */
976static __always_inline void slab_lock(struct page *page)
977{
978 bit_spin_lock(PG_locked, &page->flags);
979}
980
981static __always_inline void slab_unlock(struct page *page)
982{
983 bit_spin_unlock(PG_locked, &page->flags);
984}
985
986static __always_inline int slab_trylock(struct page *page)
987{
988 int rc = 1;
989
990 rc = bit_spin_trylock(PG_locked, &page->flags);
991 return rc;
992}
993
994/*
995 * Management of partially allocated slabs
996 */
e95eed57 997static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 998{
e95eed57
CL
999 spin_lock(&n->list_lock);
1000 n->nr_partial++;
1001 list_add_tail(&page->lru, &n->partial);
1002 spin_unlock(&n->list_lock);
1003}
81819f0f 1004
e95eed57
CL
1005static void add_partial(struct kmem_cache_node *n, struct page *page)
1006{
81819f0f
CL
1007 spin_lock(&n->list_lock);
1008 n->nr_partial++;
1009 list_add(&page->lru, &n->partial);
1010 spin_unlock(&n->list_lock);
1011}
1012
1013static void remove_partial(struct kmem_cache *s,
1014 struct page *page)
1015{
1016 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1017
1018 spin_lock(&n->list_lock);
1019 list_del(&page->lru);
1020 n->nr_partial--;
1021 spin_unlock(&n->list_lock);
1022}
1023
1024/*
672bba3a 1025 * Lock slab and remove from the partial list.
81819f0f 1026 *
672bba3a 1027 * Must hold list_lock.
81819f0f
CL
1028 */
1029static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
1030{
1031 if (slab_trylock(page)) {
1032 list_del(&page->lru);
1033 n->nr_partial--;
1034 return 1;
1035 }
1036 return 0;
1037}
1038
1039/*
672bba3a 1040 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1041 */
1042static struct page *get_partial_node(struct kmem_cache_node *n)
1043{
1044 struct page *page;
1045
1046 /*
1047 * Racy check. If we mistakenly see no partial slabs then we
1048 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1049 * partial slab and there is none available then get_partials()
1050 * will return NULL.
81819f0f
CL
1051 */
1052 if (!n || !n->nr_partial)
1053 return NULL;
1054
1055 spin_lock(&n->list_lock);
1056 list_for_each_entry(page, &n->partial, lru)
1057 if (lock_and_del_slab(n, page))
1058 goto out;
1059 page = NULL;
1060out:
1061 spin_unlock(&n->list_lock);
1062 return page;
1063}
1064
1065/*
672bba3a 1066 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1067 */
1068static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1069{
1070#ifdef CONFIG_NUMA
1071 struct zonelist *zonelist;
1072 struct zone **z;
1073 struct page *page;
1074
1075 /*
672bba3a
CL
1076 * The defrag ratio allows a configuration of the tradeoffs between
1077 * inter node defragmentation and node local allocations. A lower
1078 * defrag_ratio increases the tendency to do local allocations
1079 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1080 *
672bba3a
CL
1081 * If the defrag_ratio is set to 0 then kmalloc() always
1082 * returns node local objects. If the ratio is higher then kmalloc()
1083 * may return off node objects because partial slabs are obtained
1084 * from other nodes and filled up.
81819f0f
CL
1085 *
1086 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1087 * defrag_ratio = 1000) then every (well almost) allocation will
1088 * first attempt to defrag slab caches on other nodes. This means
1089 * scanning over all nodes to look for partial slabs which may be
1090 * expensive if we do it every time we are trying to find a slab
1091 * with available objects.
81819f0f
CL
1092 */
1093 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1094 return NULL;
1095
1096 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1097 ->node_zonelists[gfp_zone(flags)];
1098 for (z = zonelist->zones; *z; z++) {
1099 struct kmem_cache_node *n;
1100
1101 n = get_node(s, zone_to_nid(*z));
1102
1103 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1104 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1105 page = get_partial_node(n);
1106 if (page)
1107 return page;
1108 }
1109 }
1110#endif
1111 return NULL;
1112}
1113
1114/*
1115 * Get a partial page, lock it and return it.
1116 */
1117static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1118{
1119 struct page *page;
1120 int searchnode = (node == -1) ? numa_node_id() : node;
1121
1122 page = get_partial_node(get_node(s, searchnode));
1123 if (page || (flags & __GFP_THISNODE))
1124 return page;
1125
1126 return get_any_partial(s, flags);
1127}
1128
1129/*
1130 * Move a page back to the lists.
1131 *
1132 * Must be called with the slab lock held.
1133 *
1134 * On exit the slab lock will have been dropped.
1135 */
1136static void putback_slab(struct kmem_cache *s, struct page *page)
1137{
e95eed57
CL
1138 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1139
81819f0f 1140 if (page->inuse) {
e95eed57 1141
81819f0f 1142 if (page->freelist)
e95eed57 1143 add_partial(n, page);
35e5d7ee 1144 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1145 add_full(n, page);
81819f0f 1146 slab_unlock(page);
e95eed57 1147
81819f0f 1148 } else {
e95eed57
CL
1149 if (n->nr_partial < MIN_PARTIAL) {
1150 /*
672bba3a
CL
1151 * Adding an empty slab to the partial slabs in order
1152 * to avoid page allocator overhead. This slab needs
1153 * to come after the other slabs with objects in
1154 * order to fill them up. That way the size of the
1155 * partial list stays small. kmem_cache_shrink can
1156 * reclaim empty slabs from the partial list.
e95eed57
CL
1157 */
1158 add_partial_tail(n, page);
1159 slab_unlock(page);
1160 } else {
1161 slab_unlock(page);
1162 discard_slab(s, page);
1163 }
81819f0f
CL
1164 }
1165}
1166
1167/*
1168 * Remove the cpu slab
1169 */
1170static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1171{
1172 s->cpu_slab[cpu] = NULL;
1173 ClearPageActive(page);
1174
1175 putback_slab(s, page);
1176}
1177
1178static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1179{
1180 slab_lock(page);
1181 deactivate_slab(s, page, cpu);
1182}
1183
1184/*
1185 * Flush cpu slab.
1186 * Called from IPI handler with interrupts disabled.
1187 */
1188static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1189{
1190 struct page *page = s->cpu_slab[cpu];
1191
1192 if (likely(page))
1193 flush_slab(s, page, cpu);
1194}
1195
1196static void flush_cpu_slab(void *d)
1197{
1198 struct kmem_cache *s = d;
1199 int cpu = smp_processor_id();
1200
1201 __flush_cpu_slab(s, cpu);
1202}
1203
1204static void flush_all(struct kmem_cache *s)
1205{
1206#ifdef CONFIG_SMP
1207 on_each_cpu(flush_cpu_slab, s, 1, 1);
1208#else
1209 unsigned long flags;
1210
1211 local_irq_save(flags);
1212 flush_cpu_slab(s);
1213 local_irq_restore(flags);
1214#endif
1215}
1216
1217/*
1218 * slab_alloc is optimized to only modify two cachelines on the fast path
1219 * (aside from the stack):
1220 *
1221 * 1. The page struct
1222 * 2. The first cacheline of the object to be allocated.
1223 *
672bba3a 1224 * The only other cache lines that are read (apart from code) is the
81819f0f
CL
1225 * per cpu array in the kmem_cache struct.
1226 *
1227 * Fastpath is not possible if we need to get a new slab or have
35e5d7ee 1228 * debugging enabled (which means all slabs are marked with SlabDebug)
81819f0f 1229 */
77c5e2d0
CL
1230static void *slab_alloc(struct kmem_cache *s,
1231 gfp_t gfpflags, int node, void *addr)
81819f0f
CL
1232{
1233 struct page *page;
1234 void **object;
1235 unsigned long flags;
1236 int cpu;
1237
1238 local_irq_save(flags);
1239 cpu = smp_processor_id();
1240 page = s->cpu_slab[cpu];
1241 if (!page)
1242 goto new_slab;
1243
1244 slab_lock(page);
1245 if (unlikely(node != -1 && page_to_nid(page) != node))
1246 goto another_slab;
1247redo:
1248 object = page->freelist;
1249 if (unlikely(!object))
1250 goto another_slab;
35e5d7ee 1251 if (unlikely(SlabDebug(page)))
81819f0f
CL
1252 goto debug;
1253
1254have_object:
1255 page->inuse++;
1256 page->freelist = object[page->offset];
1257 slab_unlock(page);
1258 local_irq_restore(flags);
1259 return object;
1260
1261another_slab:
1262 deactivate_slab(s, page, cpu);
1263
1264new_slab:
1265 page = get_partial(s, gfpflags, node);
1266 if (likely(page)) {
1267have_slab:
1268 s->cpu_slab[cpu] = page;
1269 SetPageActive(page);
1270 goto redo;
1271 }
1272
1273 page = new_slab(s, gfpflags, node);
1274 if (page) {
1275 cpu = smp_processor_id();
1276 if (s->cpu_slab[cpu]) {
1277 /*
672bba3a
CL
1278 * Someone else populated the cpu_slab while we
1279 * enabled interrupts, or we have gotten scheduled
1280 * on another cpu. The page may not be on the
1281 * requested node even if __GFP_THISNODE was
1282 * specified. So we need to recheck.
81819f0f
CL
1283 */
1284 if (node == -1 ||
1285 page_to_nid(s->cpu_slab[cpu]) == node) {
1286 /*
1287 * Current cpuslab is acceptable and we
1288 * want the current one since its cache hot
1289 */
1290 discard_slab(s, page);
1291 page = s->cpu_slab[cpu];
1292 slab_lock(page);
1293 goto redo;
1294 }
672bba3a 1295 /* New slab does not fit our expectations */
81819f0f
CL
1296 flush_slab(s, s->cpu_slab[cpu], cpu);
1297 }
1298 slab_lock(page);
1299 goto have_slab;
1300 }
1301 local_irq_restore(flags);
1302 return NULL;
1303debug:
1304 if (!alloc_object_checks(s, page, object))
1305 goto another_slab;
1306 if (s->flags & SLAB_STORE_USER)
77c5e2d0 1307 set_track(s, object, TRACK_ALLOC, addr);
636f0d7d 1308 trace(s, page, object, 1);
70d71228 1309 init_object(s, object, 1);
81819f0f
CL
1310 goto have_object;
1311}
1312
1313void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1314{
77c5e2d0 1315 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1316}
1317EXPORT_SYMBOL(kmem_cache_alloc);
1318
1319#ifdef CONFIG_NUMA
1320void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1321{
77c5e2d0 1322 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1323}
1324EXPORT_SYMBOL(kmem_cache_alloc_node);
1325#endif
1326
1327/*
1328 * The fastpath only writes the cacheline of the page struct and the first
1329 * cacheline of the object.
1330 *
672bba3a
CL
1331 * We read the cpu_slab cacheline to check if the slab is the per cpu
1332 * slab for this processor.
81819f0f 1333 */
77c5e2d0
CL
1334static void slab_free(struct kmem_cache *s, struct page *page,
1335 void *x, void *addr)
81819f0f
CL
1336{
1337 void *prior;
1338 void **object = (void *)x;
1339 unsigned long flags;
1340
1341 local_irq_save(flags);
1342 slab_lock(page);
1343
35e5d7ee 1344 if (unlikely(SlabDebug(page)))
81819f0f
CL
1345 goto debug;
1346checks_ok:
1347 prior = object[page->offset] = page->freelist;
1348 page->freelist = object;
1349 page->inuse--;
1350
1351 if (unlikely(PageActive(page)))
1352 /*
1353 * Cpu slabs are never on partial lists and are
1354 * never freed.
1355 */
1356 goto out_unlock;
1357
1358 if (unlikely(!page->inuse))
1359 goto slab_empty;
1360
1361 /*
1362 * Objects left in the slab. If it
1363 * was not on the partial list before
1364 * then add it.
1365 */
1366 if (unlikely(!prior))
e95eed57 1367 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1368
1369out_unlock:
1370 slab_unlock(page);
1371 local_irq_restore(flags);
1372 return;
1373
1374slab_empty:
1375 if (prior)
1376 /*
672bba3a 1377 * Slab still on the partial list.
81819f0f
CL
1378 */
1379 remove_partial(s, page);
1380
1381 slab_unlock(page);
1382 discard_slab(s, page);
1383 local_irq_restore(flags);
1384 return;
1385
1386debug:
77c5e2d0
CL
1387 if (!free_object_checks(s, page, x))
1388 goto out_unlock;
643b1138
CL
1389 if (!PageActive(page) && !page->freelist)
1390 remove_full(s, page);
77c5e2d0
CL
1391 if (s->flags & SLAB_STORE_USER)
1392 set_track(s, x, TRACK_FREE, addr);
636f0d7d 1393 trace(s, page, object, 0);
70d71228 1394 init_object(s, object, 0);
77c5e2d0 1395 goto checks_ok;
81819f0f
CL
1396}
1397
1398void kmem_cache_free(struct kmem_cache *s, void *x)
1399{
77c5e2d0 1400 struct page *page;
81819f0f 1401
b49af68f 1402 page = virt_to_head_page(x);
81819f0f 1403
77c5e2d0 1404 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1405}
1406EXPORT_SYMBOL(kmem_cache_free);
1407
1408/* Figure out on which slab object the object resides */
1409static struct page *get_object_page(const void *x)
1410{
b49af68f 1411 struct page *page = virt_to_head_page(x);
81819f0f
CL
1412
1413 if (!PageSlab(page))
1414 return NULL;
1415
1416 return page;
1417}
1418
1419/*
672bba3a
CL
1420 * Object placement in a slab is made very easy because we always start at
1421 * offset 0. If we tune the size of the object to the alignment then we can
1422 * get the required alignment by putting one properly sized object after
1423 * another.
81819f0f
CL
1424 *
1425 * Notice that the allocation order determines the sizes of the per cpu
1426 * caches. Each processor has always one slab available for allocations.
1427 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1428 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1429 * locking overhead.
81819f0f
CL
1430 */
1431
1432/*
1433 * Mininum / Maximum order of slab pages. This influences locking overhead
1434 * and slab fragmentation. A higher order reduces the number of partial slabs
1435 * and increases the number of allocations possible without having to
1436 * take the list_lock.
1437 */
1438static int slub_min_order;
1439static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1440static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1441
1442/*
1443 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1444 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1445 */
1446static int slub_nomerge;
1447
1448/*
1449 * Debug settings:
1450 */
1451static int slub_debug;
1452
1453static char *slub_debug_slabs;
1454
1455/*
1456 * Calculate the order of allocation given an slab object size.
1457 *
672bba3a
CL
1458 * The order of allocation has significant impact on performance and other
1459 * system components. Generally order 0 allocations should be preferred since
1460 * order 0 does not cause fragmentation in the page allocator. Larger objects
1461 * be problematic to put into order 0 slabs because there may be too much
1462 * unused space left. We go to a higher order if more than 1/8th of the slab
1463 * would be wasted.
1464 *
1465 * In order to reach satisfactory performance we must ensure that a minimum
1466 * number of objects is in one slab. Otherwise we may generate too much
1467 * activity on the partial lists which requires taking the list_lock. This is
1468 * less a concern for large slabs though which are rarely used.
81819f0f 1469 *
672bba3a
CL
1470 * slub_max_order specifies the order where we begin to stop considering the
1471 * number of objects in a slab as critical. If we reach slub_max_order then
1472 * we try to keep the page order as low as possible. So we accept more waste
1473 * of space in favor of a small page order.
81819f0f 1474 *
672bba3a
CL
1475 * Higher order allocations also allow the placement of more objects in a
1476 * slab and thereby reduce object handling overhead. If the user has
1477 * requested a higher mininum order then we start with that one instead of
1478 * the smallest order which will fit the object.
81819f0f
CL
1479 */
1480static int calculate_order(int size)
1481{
1482 int order;
1483 int rem;
1484
1485 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1486 order < MAX_ORDER; order++) {
1487 unsigned long slab_size = PAGE_SIZE << order;
1488
1489 if (slub_max_order > order &&
1490 slab_size < slub_min_objects * size)
1491 continue;
1492
1493 if (slab_size < size)
1494 continue;
1495
1496 rem = slab_size % size;
1497
672bba3a 1498 if (rem <= slab_size / 8)
81819f0f
CL
1499 break;
1500
1501 }
1502 if (order >= MAX_ORDER)
1503 return -E2BIG;
672bba3a 1504
81819f0f
CL
1505 return order;
1506}
1507
1508/*
672bba3a 1509 * Figure out what the alignment of the objects will be.
81819f0f
CL
1510 */
1511static unsigned long calculate_alignment(unsigned long flags,
1512 unsigned long align, unsigned long size)
1513{
1514 /*
1515 * If the user wants hardware cache aligned objects then
1516 * follow that suggestion if the object is sufficiently
1517 * large.
1518 *
1519 * The hardware cache alignment cannot override the
1520 * specified alignment though. If that is greater
1521 * then use it.
1522 */
5af60839 1523 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1524 size > cache_line_size() / 2)
1525 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1526
1527 if (align < ARCH_SLAB_MINALIGN)
1528 return ARCH_SLAB_MINALIGN;
1529
1530 return ALIGN(align, sizeof(void *));
1531}
1532
1533static void init_kmem_cache_node(struct kmem_cache_node *n)
1534{
1535 n->nr_partial = 0;
1536 atomic_long_set(&n->nr_slabs, 0);
1537 spin_lock_init(&n->list_lock);
1538 INIT_LIST_HEAD(&n->partial);
643b1138 1539 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1540}
1541
1542#ifdef CONFIG_NUMA
1543/*
1544 * No kmalloc_node yet so do it by hand. We know that this is the first
1545 * slab on the node for this slabcache. There are no concurrent accesses
1546 * possible.
1547 *
1548 * Note that this function only works on the kmalloc_node_cache
1549 * when allocating for the kmalloc_node_cache.
1550 */
1551static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1552 int node)
1553{
1554 struct page *page;
1555 struct kmem_cache_node *n;
1556
1557 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1558
1559 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1560 /* new_slab() disables interupts */
1561 local_irq_enable();
1562
1563 BUG_ON(!page);
1564 n = page->freelist;
1565 BUG_ON(!n);
1566 page->freelist = get_freepointer(kmalloc_caches, n);
1567 page->inuse++;
1568 kmalloc_caches->node[node] = n;
1569 init_object(kmalloc_caches, n, 1);
1570 init_kmem_cache_node(n);
1571 atomic_long_inc(&n->nr_slabs);
e95eed57 1572 add_partial(n, page);
81819f0f
CL
1573 return n;
1574}
1575
1576static void free_kmem_cache_nodes(struct kmem_cache *s)
1577{
1578 int node;
1579
1580 for_each_online_node(node) {
1581 struct kmem_cache_node *n = s->node[node];
1582 if (n && n != &s->local_node)
1583 kmem_cache_free(kmalloc_caches, n);
1584 s->node[node] = NULL;
1585 }
1586}
1587
1588static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1589{
1590 int node;
1591 int local_node;
1592
1593 if (slab_state >= UP)
1594 local_node = page_to_nid(virt_to_page(s));
1595 else
1596 local_node = 0;
1597
1598 for_each_online_node(node) {
1599 struct kmem_cache_node *n;
1600
1601 if (local_node == node)
1602 n = &s->local_node;
1603 else {
1604 if (slab_state == DOWN) {
1605 n = early_kmem_cache_node_alloc(gfpflags,
1606 node);
1607 continue;
1608 }
1609 n = kmem_cache_alloc_node(kmalloc_caches,
1610 gfpflags, node);
1611
1612 if (!n) {
1613 free_kmem_cache_nodes(s);
1614 return 0;
1615 }
1616
1617 }
1618 s->node[node] = n;
1619 init_kmem_cache_node(n);
1620 }
1621 return 1;
1622}
1623#else
1624static void free_kmem_cache_nodes(struct kmem_cache *s)
1625{
1626}
1627
1628static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1629{
1630 init_kmem_cache_node(&s->local_node);
1631 return 1;
1632}
1633#endif
1634
1635/*
1636 * calculate_sizes() determines the order and the distribution of data within
1637 * a slab object.
1638 */
1639static int calculate_sizes(struct kmem_cache *s)
1640{
1641 unsigned long flags = s->flags;
1642 unsigned long size = s->objsize;
1643 unsigned long align = s->align;
1644
1645 /*
1646 * Determine if we can poison the object itself. If the user of
1647 * the slab may touch the object after free or before allocation
1648 * then we should never poison the object itself.
1649 */
1650 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1651 !s->ctor && !s->dtor)
1652 s->flags |= __OBJECT_POISON;
1653 else
1654 s->flags &= ~__OBJECT_POISON;
1655
1656 /*
1657 * Round up object size to the next word boundary. We can only
1658 * place the free pointer at word boundaries and this determines
1659 * the possible location of the free pointer.
1660 */
1661 size = ALIGN(size, sizeof(void *));
1662
1663 /*
672bba3a 1664 * If we are Redzoning then check if there is some space between the
81819f0f 1665 * end of the object and the free pointer. If not then add an
672bba3a 1666 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1667 */
1668 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1669 size += sizeof(void *);
1670
1671 /*
672bba3a
CL
1672 * With that we have determined the number of bytes in actual use
1673 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1674 */
1675 s->inuse = size;
1676
1677 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1678 s->ctor || s->dtor)) {
1679 /*
1680 * Relocate free pointer after the object if it is not
1681 * permitted to overwrite the first word of the object on
1682 * kmem_cache_free.
1683 *
1684 * This is the case if we do RCU, have a constructor or
1685 * destructor or are poisoning the objects.
1686 */
1687 s->offset = size;
1688 size += sizeof(void *);
1689 }
1690
1691 if (flags & SLAB_STORE_USER)
1692 /*
1693 * Need to store information about allocs and frees after
1694 * the object.
1695 */
1696 size += 2 * sizeof(struct track);
1697
be7b3fbc 1698 if (flags & SLAB_RED_ZONE)
81819f0f
CL
1699 /*
1700 * Add some empty padding so that we can catch
1701 * overwrites from earlier objects rather than let
1702 * tracking information or the free pointer be
1703 * corrupted if an user writes before the start
1704 * of the object.
1705 */
1706 size += sizeof(void *);
672bba3a 1707
81819f0f
CL
1708 /*
1709 * Determine the alignment based on various parameters that the
65c02d4c
CL
1710 * user specified and the dynamic determination of cache line size
1711 * on bootup.
81819f0f
CL
1712 */
1713 align = calculate_alignment(flags, align, s->objsize);
1714
1715 /*
1716 * SLUB stores one object immediately after another beginning from
1717 * offset 0. In order to align the objects we have to simply size
1718 * each object to conform to the alignment.
1719 */
1720 size = ALIGN(size, align);
1721 s->size = size;
1722
1723 s->order = calculate_order(size);
1724 if (s->order < 0)
1725 return 0;
1726
1727 /*
1728 * Determine the number of objects per slab
1729 */
1730 s->objects = (PAGE_SIZE << s->order) / size;
1731
1732 /*
1733 * Verify that the number of objects is within permitted limits.
1734 * The page->inuse field is only 16 bit wide! So we cannot have
1735 * more than 64k objects per slab.
1736 */
1737 if (!s->objects || s->objects > 65535)
1738 return 0;
1739 return 1;
1740
1741}
1742
81819f0f
CL
1743static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1744 const char *name, size_t size,
1745 size_t align, unsigned long flags,
1746 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1747 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1748{
1749 memset(s, 0, kmem_size);
1750 s->name = name;
1751 s->ctor = ctor;
1752 s->dtor = dtor;
1753 s->objsize = size;
1754 s->flags = flags;
1755 s->align = align;
1756
81819f0f
CL
1757 /*
1758 * The page->offset field is only 16 bit wide. This is an offset
1759 * in units of words from the beginning of an object. If the slab
1760 * size is bigger then we cannot move the free pointer behind the
1761 * object anymore.
1762 *
1763 * On 32 bit platforms the limit is 256k. On 64bit platforms
1764 * the limit is 512k.
1765 *
1766 * Debugging or ctor/dtors may create a need to move the free
1767 * pointer. Fail if this happens.
1768 */
1769 if (s->size >= 65535 * sizeof(void *)) {
1770 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1771 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1772 BUG_ON(ctor || dtor);
1773 }
1774 else
1775 /*
1776 * Enable debugging if selected on the kernel commandline.
1777 */
1778 if (slub_debug && (!slub_debug_slabs ||
1779 strncmp(slub_debug_slabs, name,
1780 strlen(slub_debug_slabs)) == 0))
1781 s->flags |= slub_debug;
1782
1783 if (!calculate_sizes(s))
1784 goto error;
1785
1786 s->refcount = 1;
1787#ifdef CONFIG_NUMA
1788 s->defrag_ratio = 100;
1789#endif
1790
1791 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1792 return 1;
1793error:
1794 if (flags & SLAB_PANIC)
1795 panic("Cannot create slab %s size=%lu realsize=%u "
1796 "order=%u offset=%u flags=%lx\n",
1797 s->name, (unsigned long)size, s->size, s->order,
1798 s->offset, flags);
1799 return 0;
1800}
1801EXPORT_SYMBOL(kmem_cache_open);
1802
1803/*
1804 * Check if a given pointer is valid
1805 */
1806int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1807{
1808 struct page * page;
81819f0f
CL
1809
1810 page = get_object_page(object);
1811
1812 if (!page || s != page->slab)
1813 /* No slab or wrong slab */
1814 return 0;
1815
abcd08a6 1816 if (!check_valid_pointer(s, page, object))
81819f0f
CL
1817 return 0;
1818
1819 /*
1820 * We could also check if the object is on the slabs freelist.
1821 * But this would be too expensive and it seems that the main
1822 * purpose of kmem_ptr_valid is to check if the object belongs
1823 * to a certain slab.
1824 */
1825 return 1;
1826}
1827EXPORT_SYMBOL(kmem_ptr_validate);
1828
1829/*
1830 * Determine the size of a slab object
1831 */
1832unsigned int kmem_cache_size(struct kmem_cache *s)
1833{
1834 return s->objsize;
1835}
1836EXPORT_SYMBOL(kmem_cache_size);
1837
1838const char *kmem_cache_name(struct kmem_cache *s)
1839{
1840 return s->name;
1841}
1842EXPORT_SYMBOL(kmem_cache_name);
1843
1844/*
672bba3a
CL
1845 * Attempt to free all slabs on a node. Return the number of slabs we
1846 * were unable to free.
81819f0f
CL
1847 */
1848static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1849 struct list_head *list)
1850{
1851 int slabs_inuse = 0;
1852 unsigned long flags;
1853 struct page *page, *h;
1854
1855 spin_lock_irqsave(&n->list_lock, flags);
1856 list_for_each_entry_safe(page, h, list, lru)
1857 if (!page->inuse) {
1858 list_del(&page->lru);
1859 discard_slab(s, page);
1860 } else
1861 slabs_inuse++;
1862 spin_unlock_irqrestore(&n->list_lock, flags);
1863 return slabs_inuse;
1864}
1865
1866/*
672bba3a 1867 * Release all resources used by a slab cache.
81819f0f
CL
1868 */
1869static int kmem_cache_close(struct kmem_cache *s)
1870{
1871 int node;
1872
1873 flush_all(s);
1874
1875 /* Attempt to free all objects */
1876 for_each_online_node(node) {
1877 struct kmem_cache_node *n = get_node(s, node);
1878
2086d26a 1879 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
1880 if (atomic_long_read(&n->nr_slabs))
1881 return 1;
1882 }
1883 free_kmem_cache_nodes(s);
1884 return 0;
1885}
1886
1887/*
1888 * Close a cache and release the kmem_cache structure
1889 * (must be used for caches created using kmem_cache_create)
1890 */
1891void kmem_cache_destroy(struct kmem_cache *s)
1892{
1893 down_write(&slub_lock);
1894 s->refcount--;
1895 if (!s->refcount) {
1896 list_del(&s->list);
1897 if (kmem_cache_close(s))
1898 WARN_ON(1);
1899 sysfs_slab_remove(s);
1900 kfree(s);
1901 }
1902 up_write(&slub_lock);
1903}
1904EXPORT_SYMBOL(kmem_cache_destroy);
1905
1906/********************************************************************
1907 * Kmalloc subsystem
1908 *******************************************************************/
1909
1910struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1911EXPORT_SYMBOL(kmalloc_caches);
1912
1913#ifdef CONFIG_ZONE_DMA
1914static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1915#endif
1916
1917static int __init setup_slub_min_order(char *str)
1918{
1919 get_option (&str, &slub_min_order);
1920
1921 return 1;
1922}
1923
1924__setup("slub_min_order=", setup_slub_min_order);
1925
1926static int __init setup_slub_max_order(char *str)
1927{
1928 get_option (&str, &slub_max_order);
1929
1930 return 1;
1931}
1932
1933__setup("slub_max_order=", setup_slub_max_order);
1934
1935static int __init setup_slub_min_objects(char *str)
1936{
1937 get_option (&str, &slub_min_objects);
1938
1939 return 1;
1940}
1941
1942__setup("slub_min_objects=", setup_slub_min_objects);
1943
1944static int __init setup_slub_nomerge(char *str)
1945{
1946 slub_nomerge = 1;
1947 return 1;
1948}
1949
1950__setup("slub_nomerge", setup_slub_nomerge);
1951
1952static int __init setup_slub_debug(char *str)
1953{
1954 if (!str || *str != '=')
1955 slub_debug = DEBUG_DEFAULT_FLAGS;
1956 else {
1957 str++;
1958 if (*str == 0 || *str == ',')
1959 slub_debug = DEBUG_DEFAULT_FLAGS;
1960 else
1961 for( ;*str && *str != ','; str++)
1962 switch (*str) {
1963 case 'f' : case 'F' :
1964 slub_debug |= SLAB_DEBUG_FREE;
1965 break;
1966 case 'z' : case 'Z' :
1967 slub_debug |= SLAB_RED_ZONE;
1968 break;
1969 case 'p' : case 'P' :
1970 slub_debug |= SLAB_POISON;
1971 break;
1972 case 'u' : case 'U' :
1973 slub_debug |= SLAB_STORE_USER;
1974 break;
1975 case 't' : case 'T' :
1976 slub_debug |= SLAB_TRACE;
1977 break;
1978 default:
1979 printk(KERN_ERR "slub_debug option '%c' "
1980 "unknown. skipped\n",*str);
1981 }
1982 }
1983
1984 if (*str == ',')
1985 slub_debug_slabs = str + 1;
1986 return 1;
1987}
1988
1989__setup("slub_debug", setup_slub_debug);
1990
1991static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1992 const char *name, int size, gfp_t gfp_flags)
1993{
1994 unsigned int flags = 0;
1995
1996 if (gfp_flags & SLUB_DMA)
1997 flags = SLAB_CACHE_DMA;
1998
1999 down_write(&slub_lock);
2000 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2001 flags, NULL, NULL))
2002 goto panic;
2003
2004 list_add(&s->list, &slab_caches);
2005 up_write(&slub_lock);
2006 if (sysfs_slab_add(s))
2007 goto panic;
2008 return s;
2009
2010panic:
2011 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2012}
2013
2014static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2015{
2016 int index = kmalloc_index(size);
2017
614410d5 2018 if (!index)
81819f0f
CL
2019 return NULL;
2020
2021 /* Allocation too large? */
2022 BUG_ON(index < 0);
2023
2024#ifdef CONFIG_ZONE_DMA
2025 if ((flags & SLUB_DMA)) {
2026 struct kmem_cache *s;
2027 struct kmem_cache *x;
2028 char *text;
2029 size_t realsize;
2030
2031 s = kmalloc_caches_dma[index];
2032 if (s)
2033 return s;
2034
2035 /* Dynamically create dma cache */
2036 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2037 if (!x)
2038 panic("Unable to allocate memory for dma cache\n");
2039
2040 if (index <= KMALLOC_SHIFT_HIGH)
2041 realsize = 1 << index;
2042 else {
2043 if (index == 1)
2044 realsize = 96;
2045 else
2046 realsize = 192;
2047 }
2048
2049 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2050 (unsigned int)realsize);
2051 s = create_kmalloc_cache(x, text, realsize, flags);
2052 kmalloc_caches_dma[index] = s;
2053 return s;
2054 }
2055#endif
2056 return &kmalloc_caches[index];
2057}
2058
2059void *__kmalloc(size_t size, gfp_t flags)
2060{
2061 struct kmem_cache *s = get_slab(size, flags);
2062
2063 if (s)
77c5e2d0 2064 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2065 return NULL;
2066}
2067EXPORT_SYMBOL(__kmalloc);
2068
2069#ifdef CONFIG_NUMA
2070void *__kmalloc_node(size_t size, gfp_t flags, int node)
2071{
2072 struct kmem_cache *s = get_slab(size, flags);
2073
2074 if (s)
77c5e2d0 2075 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2076 return NULL;
2077}
2078EXPORT_SYMBOL(__kmalloc_node);
2079#endif
2080
2081size_t ksize(const void *object)
2082{
2083 struct page *page = get_object_page(object);
2084 struct kmem_cache *s;
2085
2086 BUG_ON(!page);
2087 s = page->slab;
2088 BUG_ON(!s);
2089
2090 /*
2091 * Debugging requires use of the padding between object
2092 * and whatever may come after it.
2093 */
2094 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2095 return s->objsize;
2096
2097 /*
2098 * If we have the need to store the freelist pointer
2099 * back there or track user information then we can
2100 * only use the space before that information.
2101 */
2102 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2103 return s->inuse;
2104
2105 /*
2106 * Else we can use all the padding etc for the allocation
2107 */
2108 return s->size;
2109}
2110EXPORT_SYMBOL(ksize);
2111
2112void kfree(const void *x)
2113{
2114 struct kmem_cache *s;
2115 struct page *page;
2116
2117 if (!x)
2118 return;
2119
b49af68f 2120 page = virt_to_head_page(x);
81819f0f
CL
2121 s = page->slab;
2122
77c5e2d0 2123 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2124}
2125EXPORT_SYMBOL(kfree);
2126
2086d26a 2127/*
672bba3a
CL
2128 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2129 * the remaining slabs by the number of items in use. The slabs with the
2130 * most items in use come first. New allocations will then fill those up
2131 * and thus they can be removed from the partial lists.
2132 *
2133 * The slabs with the least items are placed last. This results in them
2134 * being allocated from last increasing the chance that the last objects
2135 * are freed in them.
2086d26a
CL
2136 */
2137int kmem_cache_shrink(struct kmem_cache *s)
2138{
2139 int node;
2140 int i;
2141 struct kmem_cache_node *n;
2142 struct page *page;
2143 struct page *t;
2144 struct list_head *slabs_by_inuse =
2145 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2146 unsigned long flags;
2147
2148 if (!slabs_by_inuse)
2149 return -ENOMEM;
2150
2151 flush_all(s);
2152 for_each_online_node(node) {
2153 n = get_node(s, node);
2154
2155 if (!n->nr_partial)
2156 continue;
2157
2158 for (i = 0; i < s->objects; i++)
2159 INIT_LIST_HEAD(slabs_by_inuse + i);
2160
2161 spin_lock_irqsave(&n->list_lock, flags);
2162
2163 /*
672bba3a 2164 * Build lists indexed by the items in use in each slab.
2086d26a 2165 *
672bba3a
CL
2166 * Note that concurrent frees may occur while we hold the
2167 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2168 */
2169 list_for_each_entry_safe(page, t, &n->partial, lru) {
2170 if (!page->inuse && slab_trylock(page)) {
2171 /*
2172 * Must hold slab lock here because slab_free
2173 * may have freed the last object and be
2174 * waiting to release the slab.
2175 */
2176 list_del(&page->lru);
2177 n->nr_partial--;
2178 slab_unlock(page);
2179 discard_slab(s, page);
2180 } else {
2181 if (n->nr_partial > MAX_PARTIAL)
2182 list_move(&page->lru,
2183 slabs_by_inuse + page->inuse);
2184 }
2185 }
2186
2187 if (n->nr_partial <= MAX_PARTIAL)
2188 goto out;
2189
2190 /*
672bba3a
CL
2191 * Rebuild the partial list with the slabs filled up most
2192 * first and the least used slabs at the end.
2086d26a
CL
2193 */
2194 for (i = s->objects - 1; i >= 0; i--)
2195 list_splice(slabs_by_inuse + i, n->partial.prev);
2196
2197 out:
2198 spin_unlock_irqrestore(&n->list_lock, flags);
2199 }
2200
2201 kfree(slabs_by_inuse);
2202 return 0;
2203}
2204EXPORT_SYMBOL(kmem_cache_shrink);
2205
81819f0f
CL
2206/**
2207 * krealloc - reallocate memory. The contents will remain unchanged.
2208 *
2209 * @p: object to reallocate memory for.
2210 * @new_size: how many bytes of memory are required.
2211 * @flags: the type of memory to allocate.
2212 *
2213 * The contents of the object pointed to are preserved up to the
2214 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2215 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2216 * %NULL pointer, the object pointed to is freed.
2217 */
2218void *krealloc(const void *p, size_t new_size, gfp_t flags)
2219{
81819f0f 2220 void *ret;
1f99a283 2221 size_t ks;
81819f0f
CL
2222
2223 if (unlikely(!p))
2224 return kmalloc(new_size, flags);
2225
2226 if (unlikely(!new_size)) {
2227 kfree(p);
2228 return NULL;
2229 }
2230
1f99a283
CL
2231 ks = ksize(p);
2232 if (ks >= new_size)
81819f0f
CL
2233 return (void *)p;
2234
2235 ret = kmalloc(new_size, flags);
2236 if (ret) {
1f99a283 2237 memcpy(ret, p, min(new_size, ks));
81819f0f
CL
2238 kfree(p);
2239 }
2240 return ret;
2241}
2242EXPORT_SYMBOL(krealloc);
2243
2244/********************************************************************
2245 * Basic setup of slabs
2246 *******************************************************************/
2247
2248void __init kmem_cache_init(void)
2249{
2250 int i;
2251
2252#ifdef CONFIG_NUMA
2253 /*
2254 * Must first have the slab cache available for the allocations of the
672bba3a 2255 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2256 * kmem_cache_open for slab_state == DOWN.
2257 */
2258 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2259 sizeof(struct kmem_cache_node), GFP_KERNEL);
2260#endif
2261
2262 /* Able to allocate the per node structures */
2263 slab_state = PARTIAL;
2264
2265 /* Caches that are not of the two-to-the-power-of size */
2266 create_kmalloc_cache(&kmalloc_caches[1],
2267 "kmalloc-96", 96, GFP_KERNEL);
2268 create_kmalloc_cache(&kmalloc_caches[2],
2269 "kmalloc-192", 192, GFP_KERNEL);
2270
2271 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2272 create_kmalloc_cache(&kmalloc_caches[i],
2273 "kmalloc", 1 << i, GFP_KERNEL);
2274
2275 slab_state = UP;
2276
2277 /* Provide the correct kmalloc names now that the caches are up */
2278 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2279 kmalloc_caches[i]. name =
2280 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2281
2282#ifdef CONFIG_SMP
2283 register_cpu_notifier(&slab_notifier);
2284#endif
2285
2286 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2287 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2288 + nr_cpu_ids * sizeof(struct page *);
2289
2290 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2291 " Processors=%d, Nodes=%d\n",
65c02d4c 2292 KMALLOC_SHIFT_HIGH, cache_line_size(),
81819f0f
CL
2293 slub_min_order, slub_max_order, slub_min_objects,
2294 nr_cpu_ids, nr_node_ids);
2295}
2296
2297/*
2298 * Find a mergeable slab cache
2299 */
2300static int slab_unmergeable(struct kmem_cache *s)
2301{
2302 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2303 return 1;
2304
2305 if (s->ctor || s->dtor)
2306 return 1;
2307
2308 return 0;
2309}
2310
2311static struct kmem_cache *find_mergeable(size_t size,
2312 size_t align, unsigned long flags,
2313 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2314 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2315{
2316 struct list_head *h;
2317
2318 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2319 return NULL;
2320
2321 if (ctor || dtor)
2322 return NULL;
2323
2324 size = ALIGN(size, sizeof(void *));
2325 align = calculate_alignment(flags, align, size);
2326 size = ALIGN(size, align);
2327
2328 list_for_each(h, &slab_caches) {
2329 struct kmem_cache *s =
2330 container_of(h, struct kmem_cache, list);
2331
2332 if (slab_unmergeable(s))
2333 continue;
2334
2335 if (size > s->size)
2336 continue;
2337
2338 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2339 (s->flags & SLUB_MERGE_SAME))
2340 continue;
2341 /*
2342 * Check if alignment is compatible.
2343 * Courtesy of Adrian Drzewiecki
2344 */
2345 if ((s->size & ~(align -1)) != s->size)
2346 continue;
2347
2348 if (s->size - size >= sizeof(void *))
2349 continue;
2350
2351 return s;
2352 }
2353 return NULL;
2354}
2355
2356struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2357 size_t align, unsigned long flags,
2358 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2359 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2360{
2361 struct kmem_cache *s;
2362
2363 down_write(&slub_lock);
2364 s = find_mergeable(size, align, flags, dtor, ctor);
2365 if (s) {
2366 s->refcount++;
2367 /*
2368 * Adjust the object sizes so that we clear
2369 * the complete object on kzalloc.
2370 */
2371 s->objsize = max(s->objsize, (int)size);
2372 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2373 if (sysfs_slab_alias(s, name))
2374 goto err;
2375 } else {
2376 s = kmalloc(kmem_size, GFP_KERNEL);
2377 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2378 size, align, flags, ctor, dtor)) {
2379 if (sysfs_slab_add(s)) {
2380 kfree(s);
2381 goto err;
2382 }
2383 list_add(&s->list, &slab_caches);
2384 } else
2385 kfree(s);
2386 }
2387 up_write(&slub_lock);
2388 return s;
2389
2390err:
2391 up_write(&slub_lock);
2392 if (flags & SLAB_PANIC)
2393 panic("Cannot create slabcache %s\n", name);
2394 else
2395 s = NULL;
2396 return s;
2397}
2398EXPORT_SYMBOL(kmem_cache_create);
2399
2400void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2401{
2402 void *x;
2403
77c5e2d0 2404 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2405 if (x)
2406 memset(x, 0, s->objsize);
2407 return x;
2408}
2409EXPORT_SYMBOL(kmem_cache_zalloc);
2410
2411#ifdef CONFIG_SMP
2412static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2413{
2414 struct list_head *h;
2415
2416 down_read(&slub_lock);
2417 list_for_each(h, &slab_caches) {
2418 struct kmem_cache *s =
2419 container_of(h, struct kmem_cache, list);
2420
2421 func(s, cpu);
2422 }
2423 up_read(&slub_lock);
2424}
2425
2426/*
672bba3a
CL
2427 * Use the cpu notifier to insure that the cpu slabs are flushed when
2428 * necessary.
81819f0f
CL
2429 */
2430static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2431 unsigned long action, void *hcpu)
2432{
2433 long cpu = (long)hcpu;
2434
2435 switch (action) {
2436 case CPU_UP_CANCELED:
2437 case CPU_DEAD:
2438 for_all_slabs(__flush_cpu_slab, cpu);
2439 break;
2440 default:
2441 break;
2442 }
2443 return NOTIFY_OK;
2444}
2445
2446static struct notifier_block __cpuinitdata slab_notifier =
2447 { &slab_cpuup_callback, NULL, 0 };
2448
2449#endif
2450
81819f0f
CL
2451#ifdef CONFIG_NUMA
2452
2453/*****************************************************************
2454 * Generic reaper used to support the page allocator
2455 * (the cpu slabs are reaped by a per slab workqueue).
2456 *
2457 * Maybe move this to the page allocator?
2458 ****************************************************************/
2459
2460static DEFINE_PER_CPU(unsigned long, reap_node);
2461
2462static void init_reap_node(int cpu)
2463{
2464 int node;
2465
2466 node = next_node(cpu_to_node(cpu), node_online_map);
2467 if (node == MAX_NUMNODES)
2468 node = first_node(node_online_map);
2469
2470 __get_cpu_var(reap_node) = node;
2471}
2472
2473static void next_reap_node(void)
2474{
2475 int node = __get_cpu_var(reap_node);
2476
2477 /*
2478 * Also drain per cpu pages on remote zones
2479 */
2480 if (node != numa_node_id())
2481 drain_node_pages(node);
2482
2483 node = next_node(node, node_online_map);
2484 if (unlikely(node >= MAX_NUMNODES))
2485 node = first_node(node_online_map);
2486 __get_cpu_var(reap_node) = node;
2487}
2488#else
2489#define init_reap_node(cpu) do { } while (0)
2490#define next_reap_node(void) do { } while (0)
2491#endif
2492
2493#define REAPTIMEOUT_CPUC (2*HZ)
2494
2495#ifdef CONFIG_SMP
2496static DEFINE_PER_CPU(struct delayed_work, reap_work);
2497
2498static void cache_reap(struct work_struct *unused)
2499{
2500 next_reap_node();
2501 refresh_cpu_vm_stats(smp_processor_id());
2502 schedule_delayed_work(&__get_cpu_var(reap_work),
2503 REAPTIMEOUT_CPUC);
2504}
2505
2506static void __devinit start_cpu_timer(int cpu)
2507{
2508 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2509
2510 /*
2511 * When this gets called from do_initcalls via cpucache_init(),
2512 * init_workqueues() has already run, so keventd will be setup
2513 * at that time.
2514 */
2515 if (keventd_up() && reap_work->work.func == NULL) {
2516 init_reap_node(cpu);
2517 INIT_DELAYED_WORK(reap_work, cache_reap);
2518 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2519 }
2520}
2521
2522static int __init cpucache_init(void)
2523{
2524 int cpu;
2525
2526 /*
2527 * Register the timers that drain pcp pages and update vm statistics
2528 */
2529 for_each_online_cpu(cpu)
2530 start_cpu_timer(cpu);
2531 return 0;
2532}
2533__initcall(cpucache_init);
2534#endif
2535
81819f0f
CL
2536void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2537{
2538 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2539
2540 if (!s)
2541 return NULL;
2542
77c5e2d0 2543 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2544}
2545
2546void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2547 int node, void *caller)
2548{
2549 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2550
2551 if (!s)
2552 return NULL;
2553
77c5e2d0 2554 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2555}
2556
2557#ifdef CONFIG_SYSFS
2558
53e15af0
CL
2559static int validate_slab(struct kmem_cache *s, struct page *page)
2560{
2561 void *p;
2562 void *addr = page_address(page);
7656c72b 2563 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2564
2565 if (!check_slab(s, page) ||
2566 !on_freelist(s, page, NULL))
2567 return 0;
2568
2569 /* Now we know that a valid freelist exists */
2570 bitmap_zero(map, s->objects);
2571
7656c72b
CL
2572 for_each_free_object(p, s, page->freelist) {
2573 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2574 if (!check_object(s, page, p, 0))
2575 return 0;
2576 }
2577
7656c72b
CL
2578 for_each_object(p, s, addr)
2579 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2580 if (!check_object(s, page, p, 1))
2581 return 0;
2582 return 1;
2583}
2584
2585static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2586{
2587 if (slab_trylock(page)) {
2588 validate_slab(s, page);
2589 slab_unlock(page);
2590 } else
2591 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2592 s->name, page);
2593
2594 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2595 if (!SlabDebug(page))
2596 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2597 "on slab 0x%p\n", s->name, page);
2598 } else {
35e5d7ee
CL
2599 if (SlabDebug(page))
2600 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2601 "slab 0x%p\n", s->name, page);
2602 }
2603}
2604
2605static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2606{
2607 unsigned long count = 0;
2608 struct page *page;
2609 unsigned long flags;
2610
2611 spin_lock_irqsave(&n->list_lock, flags);
2612
2613 list_for_each_entry(page, &n->partial, lru) {
2614 validate_slab_slab(s, page);
2615 count++;
2616 }
2617 if (count != n->nr_partial)
2618 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2619 "counter=%ld\n", s->name, count, n->nr_partial);
2620
2621 if (!(s->flags & SLAB_STORE_USER))
2622 goto out;
2623
2624 list_for_each_entry(page, &n->full, lru) {
2625 validate_slab_slab(s, page);
2626 count++;
2627 }
2628 if (count != atomic_long_read(&n->nr_slabs))
2629 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2630 "counter=%ld\n", s->name, count,
2631 atomic_long_read(&n->nr_slabs));
2632
2633out:
2634 spin_unlock_irqrestore(&n->list_lock, flags);
2635 return count;
2636}
2637
2638static unsigned long validate_slab_cache(struct kmem_cache *s)
2639{
2640 int node;
2641 unsigned long count = 0;
2642
2643 flush_all(s);
2644 for_each_online_node(node) {
2645 struct kmem_cache_node *n = get_node(s, node);
2646
2647 count += validate_slab_node(s, n);
2648 }
2649 return count;
2650}
2651
b3459709
CL
2652#ifdef SLUB_RESILIENCY_TEST
2653static void resiliency_test(void)
2654{
2655 u8 *p;
2656
2657 printk(KERN_ERR "SLUB resiliency testing\n");
2658 printk(KERN_ERR "-----------------------\n");
2659 printk(KERN_ERR "A. Corruption after allocation\n");
2660
2661 p = kzalloc(16, GFP_KERNEL);
2662 p[16] = 0x12;
2663 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2664 " 0x12->0x%p\n\n", p + 16);
2665
2666 validate_slab_cache(kmalloc_caches + 4);
2667
2668 /* Hmmm... The next two are dangerous */
2669 p = kzalloc(32, GFP_KERNEL);
2670 p[32 + sizeof(void *)] = 0x34;
2671 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2672 " 0x34 -> -0x%p\n", p);
2673 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2674
2675 validate_slab_cache(kmalloc_caches + 5);
2676 p = kzalloc(64, GFP_KERNEL);
2677 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2678 *p = 0x56;
2679 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2680 p);
2681 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2682 validate_slab_cache(kmalloc_caches + 6);
2683
2684 printk(KERN_ERR "\nB. Corruption after free\n");
2685 p = kzalloc(128, GFP_KERNEL);
2686 kfree(p);
2687 *p = 0x78;
2688 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2689 validate_slab_cache(kmalloc_caches + 7);
2690
2691 p = kzalloc(256, GFP_KERNEL);
2692 kfree(p);
2693 p[50] = 0x9a;
2694 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2695 validate_slab_cache(kmalloc_caches + 8);
2696
2697 p = kzalloc(512, GFP_KERNEL);
2698 kfree(p);
2699 p[512] = 0xab;
2700 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2701 validate_slab_cache(kmalloc_caches + 9);
2702}
2703#else
2704static void resiliency_test(void) {};
2705#endif
2706
88a420e4 2707/*
672bba3a 2708 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2709 * and freed.
2710 */
2711
2712struct location {
2713 unsigned long count;
2714 void *addr;
2715};
2716
2717struct loc_track {
2718 unsigned long max;
2719 unsigned long count;
2720 struct location *loc;
2721};
2722
2723static void free_loc_track(struct loc_track *t)
2724{
2725 if (t->max)
2726 free_pages((unsigned long)t->loc,
2727 get_order(sizeof(struct location) * t->max));
2728}
2729
2730static int alloc_loc_track(struct loc_track *t, unsigned long max)
2731{
2732 struct location *l;
2733 int order;
2734
2735 if (!max)
2736 max = PAGE_SIZE / sizeof(struct location);
2737
2738 order = get_order(sizeof(struct location) * max);
2739
2740 l = (void *)__get_free_pages(GFP_KERNEL, order);
2741
2742 if (!l)
2743 return 0;
2744
2745 if (t->count) {
2746 memcpy(l, t->loc, sizeof(struct location) * t->count);
2747 free_loc_track(t);
2748 }
2749 t->max = max;
2750 t->loc = l;
2751 return 1;
2752}
2753
2754static int add_location(struct loc_track *t, struct kmem_cache *s,
2755 void *addr)
2756{
2757 long start, end, pos;
2758 struct location *l;
2759 void *caddr;
2760
2761 start = -1;
2762 end = t->count;
2763
2764 for ( ; ; ) {
2765 pos = start + (end - start + 1) / 2;
2766
2767 /*
2768 * There is nothing at "end". If we end up there
2769 * we need to add something to before end.
2770 */
2771 if (pos == end)
2772 break;
2773
2774 caddr = t->loc[pos].addr;
2775 if (addr == caddr) {
2776 t->loc[pos].count++;
2777 return 1;
2778 }
2779
2780 if (addr < caddr)
2781 end = pos;
2782 else
2783 start = pos;
2784 }
2785
2786 /*
672bba3a 2787 * Not found. Insert new tracking element.
88a420e4
CL
2788 */
2789 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2790 return 0;
2791
2792 l = t->loc + pos;
2793 if (pos < t->count)
2794 memmove(l + 1, l,
2795 (t->count - pos) * sizeof(struct location));
2796 t->count++;
2797 l->count = 1;
2798 l->addr = addr;
2799 return 1;
2800}
2801
2802static void process_slab(struct loc_track *t, struct kmem_cache *s,
2803 struct page *page, enum track_item alloc)
2804{
2805 void *addr = page_address(page);
7656c72b 2806 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
2807 void *p;
2808
2809 bitmap_zero(map, s->objects);
7656c72b
CL
2810 for_each_free_object(p, s, page->freelist)
2811 set_bit(slab_index(p, s, addr), map);
88a420e4 2812
7656c72b
CL
2813 for_each_object(p, s, addr)
2814 if (!test_bit(slab_index(p, s, addr), map)) {
88a420e4
CL
2815 void *addr = get_track(s, p, alloc)->addr;
2816
2817 add_location(t, s, addr);
2818 }
2819}
2820
2821static int list_locations(struct kmem_cache *s, char *buf,
2822 enum track_item alloc)
2823{
2824 int n = 0;
2825 unsigned long i;
2826 struct loc_track t;
2827 int node;
2828
2829 t.count = 0;
2830 t.max = 0;
2831
2832 /* Push back cpu slabs */
2833 flush_all(s);
2834
2835 for_each_online_node(node) {
2836 struct kmem_cache_node *n = get_node(s, node);
2837 unsigned long flags;
2838 struct page *page;
2839
2840 if (!atomic_read(&n->nr_slabs))
2841 continue;
2842
2843 spin_lock_irqsave(&n->list_lock, flags);
2844 list_for_each_entry(page, &n->partial, lru)
2845 process_slab(&t, s, page, alloc);
2846 list_for_each_entry(page, &n->full, lru)
2847 process_slab(&t, s, page, alloc);
2848 spin_unlock_irqrestore(&n->list_lock, flags);
2849 }
2850
2851 for (i = 0; i < t.count; i++) {
2852 void *addr = t.loc[i].addr;
2853
2854 if (n > PAGE_SIZE - 100)
2855 break;
2856 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2857 if (addr)
2858 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2859 else
2860 n += sprintf(buf + n, "<not-available>");
2861 n += sprintf(buf + n, "\n");
2862 }
2863
2864 free_loc_track(&t);
2865 if (!t.count)
2866 n += sprintf(buf, "No data\n");
2867 return n;
2868}
2869
81819f0f
CL
2870static unsigned long count_partial(struct kmem_cache_node *n)
2871{
2872 unsigned long flags;
2873 unsigned long x = 0;
2874 struct page *page;
2875
2876 spin_lock_irqsave(&n->list_lock, flags);
2877 list_for_each_entry(page, &n->partial, lru)
2878 x += page->inuse;
2879 spin_unlock_irqrestore(&n->list_lock, flags);
2880 return x;
2881}
2882
2883enum slab_stat_type {
2884 SL_FULL,
2885 SL_PARTIAL,
2886 SL_CPU,
2887 SL_OBJECTS
2888};
2889
2890#define SO_FULL (1 << SL_FULL)
2891#define SO_PARTIAL (1 << SL_PARTIAL)
2892#define SO_CPU (1 << SL_CPU)
2893#define SO_OBJECTS (1 << SL_OBJECTS)
2894
2895static unsigned long slab_objects(struct kmem_cache *s,
2896 char *buf, unsigned long flags)
2897{
2898 unsigned long total = 0;
2899 int cpu;
2900 int node;
2901 int x;
2902 unsigned long *nodes;
2903 unsigned long *per_cpu;
2904
2905 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2906 per_cpu = nodes + nr_node_ids;
2907
2908 for_each_possible_cpu(cpu) {
2909 struct page *page = s->cpu_slab[cpu];
2910 int node;
2911
2912 if (page) {
2913 node = page_to_nid(page);
2914 if (flags & SO_CPU) {
2915 int x = 0;
2916
2917 if (flags & SO_OBJECTS)
2918 x = page->inuse;
2919 else
2920 x = 1;
2921 total += x;
2922 nodes[node] += x;
2923 }
2924 per_cpu[node]++;
2925 }
2926 }
2927
2928 for_each_online_node(node) {
2929 struct kmem_cache_node *n = get_node(s, node);
2930
2931 if (flags & SO_PARTIAL) {
2932 if (flags & SO_OBJECTS)
2933 x = count_partial(n);
2934 else
2935 x = n->nr_partial;
2936 total += x;
2937 nodes[node] += x;
2938 }
2939
2940 if (flags & SO_FULL) {
2941 int full_slabs = atomic_read(&n->nr_slabs)
2942 - per_cpu[node]
2943 - n->nr_partial;
2944
2945 if (flags & SO_OBJECTS)
2946 x = full_slabs * s->objects;
2947 else
2948 x = full_slabs;
2949 total += x;
2950 nodes[node] += x;
2951 }
2952 }
2953
2954 x = sprintf(buf, "%lu", total);
2955#ifdef CONFIG_NUMA
2956 for_each_online_node(node)
2957 if (nodes[node])
2958 x += sprintf(buf + x, " N%d=%lu",
2959 node, nodes[node]);
2960#endif
2961 kfree(nodes);
2962 return x + sprintf(buf + x, "\n");
2963}
2964
2965static int any_slab_objects(struct kmem_cache *s)
2966{
2967 int node;
2968 int cpu;
2969
2970 for_each_possible_cpu(cpu)
2971 if (s->cpu_slab[cpu])
2972 return 1;
2973
2974 for_each_node(node) {
2975 struct kmem_cache_node *n = get_node(s, node);
2976
2977 if (n->nr_partial || atomic_read(&n->nr_slabs))
2978 return 1;
2979 }
2980 return 0;
2981}
2982
2983#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2984#define to_slab(n) container_of(n, struct kmem_cache, kobj);
2985
2986struct slab_attribute {
2987 struct attribute attr;
2988 ssize_t (*show)(struct kmem_cache *s, char *buf);
2989 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2990};
2991
2992#define SLAB_ATTR_RO(_name) \
2993 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2994
2995#define SLAB_ATTR(_name) \
2996 static struct slab_attribute _name##_attr = \
2997 __ATTR(_name, 0644, _name##_show, _name##_store)
2998
81819f0f
CL
2999static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3000{
3001 return sprintf(buf, "%d\n", s->size);
3002}
3003SLAB_ATTR_RO(slab_size);
3004
3005static ssize_t align_show(struct kmem_cache *s, char *buf)
3006{
3007 return sprintf(buf, "%d\n", s->align);
3008}
3009SLAB_ATTR_RO(align);
3010
3011static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3012{
3013 return sprintf(buf, "%d\n", s->objsize);
3014}
3015SLAB_ATTR_RO(object_size);
3016
3017static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3018{
3019 return sprintf(buf, "%d\n", s->objects);
3020}
3021SLAB_ATTR_RO(objs_per_slab);
3022
3023static ssize_t order_show(struct kmem_cache *s, char *buf)
3024{
3025 return sprintf(buf, "%d\n", s->order);
3026}
3027SLAB_ATTR_RO(order);
3028
3029static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3030{
3031 if (s->ctor) {
3032 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3033
3034 return n + sprintf(buf + n, "\n");
3035 }
3036 return 0;
3037}
3038SLAB_ATTR_RO(ctor);
3039
3040static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3041{
3042 if (s->dtor) {
3043 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3044
3045 return n + sprintf(buf + n, "\n");
3046 }
3047 return 0;
3048}
3049SLAB_ATTR_RO(dtor);
3050
3051static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3052{
3053 return sprintf(buf, "%d\n", s->refcount - 1);
3054}
3055SLAB_ATTR_RO(aliases);
3056
3057static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3058{
3059 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3060}
3061SLAB_ATTR_RO(slabs);
3062
3063static ssize_t partial_show(struct kmem_cache *s, char *buf)
3064{
3065 return slab_objects(s, buf, SO_PARTIAL);
3066}
3067SLAB_ATTR_RO(partial);
3068
3069static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3070{
3071 return slab_objects(s, buf, SO_CPU);
3072}
3073SLAB_ATTR_RO(cpu_slabs);
3074
3075static ssize_t objects_show(struct kmem_cache *s, char *buf)
3076{
3077 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3078}
3079SLAB_ATTR_RO(objects);
3080
3081static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3082{
3083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3084}
3085
3086static ssize_t sanity_checks_store(struct kmem_cache *s,
3087 const char *buf, size_t length)
3088{
3089 s->flags &= ~SLAB_DEBUG_FREE;
3090 if (buf[0] == '1')
3091 s->flags |= SLAB_DEBUG_FREE;
3092 return length;
3093}
3094SLAB_ATTR(sanity_checks);
3095
3096static ssize_t trace_show(struct kmem_cache *s, char *buf)
3097{
3098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3099}
3100
3101static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3102 size_t length)
3103{
3104 s->flags &= ~SLAB_TRACE;
3105 if (buf[0] == '1')
3106 s->flags |= SLAB_TRACE;
3107 return length;
3108}
3109SLAB_ATTR(trace);
3110
3111static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3112{
3113 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3114}
3115
3116static ssize_t reclaim_account_store(struct kmem_cache *s,
3117 const char *buf, size_t length)
3118{
3119 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3120 if (buf[0] == '1')
3121 s->flags |= SLAB_RECLAIM_ACCOUNT;
3122 return length;
3123}
3124SLAB_ATTR(reclaim_account);
3125
3126static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3127{
5af60839 3128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3129}
3130SLAB_ATTR_RO(hwcache_align);
3131
3132#ifdef CONFIG_ZONE_DMA
3133static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3134{
3135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3136}
3137SLAB_ATTR_RO(cache_dma);
3138#endif
3139
3140static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3141{
3142 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3143}
3144SLAB_ATTR_RO(destroy_by_rcu);
3145
3146static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3147{
3148 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3149}
3150
3151static ssize_t red_zone_store(struct kmem_cache *s,
3152 const char *buf, size_t length)
3153{
3154 if (any_slab_objects(s))
3155 return -EBUSY;
3156
3157 s->flags &= ~SLAB_RED_ZONE;
3158 if (buf[0] == '1')
3159 s->flags |= SLAB_RED_ZONE;
3160 calculate_sizes(s);
3161 return length;
3162}
3163SLAB_ATTR(red_zone);
3164
3165static ssize_t poison_show(struct kmem_cache *s, char *buf)
3166{
3167 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3168}
3169
3170static ssize_t poison_store(struct kmem_cache *s,
3171 const char *buf, size_t length)
3172{
3173 if (any_slab_objects(s))
3174 return -EBUSY;
3175
3176 s->flags &= ~SLAB_POISON;
3177 if (buf[0] == '1')
3178 s->flags |= SLAB_POISON;
3179 calculate_sizes(s);
3180 return length;
3181}
3182SLAB_ATTR(poison);
3183
3184static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3185{
3186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3187}
3188
3189static ssize_t store_user_store(struct kmem_cache *s,
3190 const char *buf, size_t length)
3191{
3192 if (any_slab_objects(s))
3193 return -EBUSY;
3194
3195 s->flags &= ~SLAB_STORE_USER;
3196 if (buf[0] == '1')
3197 s->flags |= SLAB_STORE_USER;
3198 calculate_sizes(s);
3199 return length;
3200}
3201SLAB_ATTR(store_user);
3202
53e15af0
CL
3203static ssize_t validate_show(struct kmem_cache *s, char *buf)
3204{
3205 return 0;
3206}
3207
3208static ssize_t validate_store(struct kmem_cache *s,
3209 const char *buf, size_t length)
3210{
3211 if (buf[0] == '1')
3212 validate_slab_cache(s);
3213 else
3214 return -EINVAL;
3215 return length;
3216}
3217SLAB_ATTR(validate);
3218
2086d26a
CL
3219static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3220{
3221 return 0;
3222}
3223
3224static ssize_t shrink_store(struct kmem_cache *s,
3225 const char *buf, size_t length)
3226{
3227 if (buf[0] == '1') {
3228 int rc = kmem_cache_shrink(s);
3229
3230 if (rc)
3231 return rc;
3232 } else
3233 return -EINVAL;
3234 return length;
3235}
3236SLAB_ATTR(shrink);
3237
88a420e4
CL
3238static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3239{
3240 if (!(s->flags & SLAB_STORE_USER))
3241 return -ENOSYS;
3242 return list_locations(s, buf, TRACK_ALLOC);
3243}
3244SLAB_ATTR_RO(alloc_calls);
3245
3246static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3247{
3248 if (!(s->flags & SLAB_STORE_USER))
3249 return -ENOSYS;
3250 return list_locations(s, buf, TRACK_FREE);
3251}
3252SLAB_ATTR_RO(free_calls);
3253
81819f0f
CL
3254#ifdef CONFIG_NUMA
3255static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3256{
3257 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3258}
3259
3260static ssize_t defrag_ratio_store(struct kmem_cache *s,
3261 const char *buf, size_t length)
3262{
3263 int n = simple_strtoul(buf, NULL, 10);
3264
3265 if (n < 100)
3266 s->defrag_ratio = n * 10;
3267 return length;
3268}
3269SLAB_ATTR(defrag_ratio);
3270#endif
3271
3272static struct attribute * slab_attrs[] = {
3273 &slab_size_attr.attr,
3274 &object_size_attr.attr,
3275 &objs_per_slab_attr.attr,
3276 &order_attr.attr,
3277 &objects_attr.attr,
3278 &slabs_attr.attr,
3279 &partial_attr.attr,
3280 &cpu_slabs_attr.attr,
3281 &ctor_attr.attr,
3282 &dtor_attr.attr,
3283 &aliases_attr.attr,
3284 &align_attr.attr,
3285 &sanity_checks_attr.attr,
3286 &trace_attr.attr,
3287 &hwcache_align_attr.attr,
3288 &reclaim_account_attr.attr,
3289 &destroy_by_rcu_attr.attr,
3290 &red_zone_attr.attr,
3291 &poison_attr.attr,
3292 &store_user_attr.attr,
53e15af0 3293 &validate_attr.attr,
2086d26a 3294 &shrink_attr.attr,
88a420e4
CL
3295 &alloc_calls_attr.attr,
3296 &free_calls_attr.attr,
81819f0f
CL
3297#ifdef CONFIG_ZONE_DMA
3298 &cache_dma_attr.attr,
3299#endif
3300#ifdef CONFIG_NUMA
3301 &defrag_ratio_attr.attr,
3302#endif
3303 NULL
3304};
3305
3306static struct attribute_group slab_attr_group = {
3307 .attrs = slab_attrs,
3308};
3309
3310static ssize_t slab_attr_show(struct kobject *kobj,
3311 struct attribute *attr,
3312 char *buf)
3313{
3314 struct slab_attribute *attribute;
3315 struct kmem_cache *s;
3316 int err;
3317
3318 attribute = to_slab_attr(attr);
3319 s = to_slab(kobj);
3320
3321 if (!attribute->show)
3322 return -EIO;
3323
3324 err = attribute->show(s, buf);
3325
3326 return err;
3327}
3328
3329static ssize_t slab_attr_store(struct kobject *kobj,
3330 struct attribute *attr,
3331 const char *buf, size_t len)
3332{
3333 struct slab_attribute *attribute;
3334 struct kmem_cache *s;
3335 int err;
3336
3337 attribute = to_slab_attr(attr);
3338 s = to_slab(kobj);
3339
3340 if (!attribute->store)
3341 return -EIO;
3342
3343 err = attribute->store(s, buf, len);
3344
3345 return err;
3346}
3347
3348static struct sysfs_ops slab_sysfs_ops = {
3349 .show = slab_attr_show,
3350 .store = slab_attr_store,
3351};
3352
3353static struct kobj_type slab_ktype = {
3354 .sysfs_ops = &slab_sysfs_ops,
3355};
3356
3357static int uevent_filter(struct kset *kset, struct kobject *kobj)
3358{
3359 struct kobj_type *ktype = get_ktype(kobj);
3360
3361 if (ktype == &slab_ktype)
3362 return 1;
3363 return 0;
3364}
3365
3366static struct kset_uevent_ops slab_uevent_ops = {
3367 .filter = uevent_filter,
3368};
3369
3370decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3371
3372#define ID_STR_LENGTH 64
3373
3374/* Create a unique string id for a slab cache:
3375 * format
3376 * :[flags-]size:[memory address of kmemcache]
3377 */
3378static char *create_unique_id(struct kmem_cache *s)
3379{
3380 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3381 char *p = name;
3382
3383 BUG_ON(!name);
3384
3385 *p++ = ':';
3386 /*
3387 * First flags affecting slabcache operations. We will only
3388 * get here for aliasable slabs so we do not need to support
3389 * too many flags. The flags here must cover all flags that
3390 * are matched during merging to guarantee that the id is
3391 * unique.
3392 */
3393 if (s->flags & SLAB_CACHE_DMA)
3394 *p++ = 'd';
3395 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3396 *p++ = 'a';
3397 if (s->flags & SLAB_DEBUG_FREE)
3398 *p++ = 'F';
3399 if (p != name + 1)
3400 *p++ = '-';
3401 p += sprintf(p, "%07d", s->size);
3402 BUG_ON(p > name + ID_STR_LENGTH - 1);
3403 return name;
3404}
3405
3406static int sysfs_slab_add(struct kmem_cache *s)
3407{
3408 int err;
3409 const char *name;
3410 int unmergeable;
3411
3412 if (slab_state < SYSFS)
3413 /* Defer until later */
3414 return 0;
3415
3416 unmergeable = slab_unmergeable(s);
3417 if (unmergeable) {
3418 /*
3419 * Slabcache can never be merged so we can use the name proper.
3420 * This is typically the case for debug situations. In that
3421 * case we can catch duplicate names easily.
3422 */
0f9008ef 3423 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3424 name = s->name;
3425 } else {
3426 /*
3427 * Create a unique name for the slab as a target
3428 * for the symlinks.
3429 */
3430 name = create_unique_id(s);
3431 }
3432
3433 kobj_set_kset_s(s, slab_subsys);
3434 kobject_set_name(&s->kobj, name);
3435 kobject_init(&s->kobj);
3436 err = kobject_add(&s->kobj);
3437 if (err)
3438 return err;
3439
3440 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3441 if (err)
3442 return err;
3443 kobject_uevent(&s->kobj, KOBJ_ADD);
3444 if (!unmergeable) {
3445 /* Setup first alias */
3446 sysfs_slab_alias(s, s->name);
3447 kfree(name);
3448 }
3449 return 0;
3450}
3451
3452static void sysfs_slab_remove(struct kmem_cache *s)
3453{
3454 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3455 kobject_del(&s->kobj);
3456}
3457
3458/*
3459 * Need to buffer aliases during bootup until sysfs becomes
3460 * available lest we loose that information.
3461 */
3462struct saved_alias {
3463 struct kmem_cache *s;
3464 const char *name;
3465 struct saved_alias *next;
3466};
3467
3468struct saved_alias *alias_list;
3469
3470static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3471{
3472 struct saved_alias *al;
3473
3474 if (slab_state == SYSFS) {
3475 /*
3476 * If we have a leftover link then remove it.
3477 */
0f9008ef
LT
3478 sysfs_remove_link(&slab_subsys.kobj, name);
3479 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3480 &s->kobj, name);
3481 }
3482
3483 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3484 if (!al)
3485 return -ENOMEM;
3486
3487 al->s = s;
3488 al->name = name;
3489 al->next = alias_list;
3490 alias_list = al;
3491 return 0;
3492}
3493
3494static int __init slab_sysfs_init(void)
3495{
26a7bd03 3496 struct list_head *h;
81819f0f
CL
3497 int err;
3498
3499 err = subsystem_register(&slab_subsys);
3500 if (err) {
3501 printk(KERN_ERR "Cannot register slab subsystem.\n");
3502 return -ENOSYS;
3503 }
3504
26a7bd03
CL
3505 slab_state = SYSFS;
3506
3507 list_for_each(h, &slab_caches) {
3508 struct kmem_cache *s =
3509 container_of(h, struct kmem_cache, list);
3510
3511 err = sysfs_slab_add(s);
3512 BUG_ON(err);
3513 }
81819f0f
CL
3514
3515 while (alias_list) {
3516 struct saved_alias *al = alias_list;
3517
3518 alias_list = alias_list->next;
3519 err = sysfs_slab_alias(al->s, al->name);
3520 BUG_ON(err);
3521 kfree(al);
3522 }
3523
3524 resiliency_test();
3525 return 0;
3526}
3527
3528__initcall(slab_sysfs_init);
81819f0f 3529#endif