]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
mm/slub.c: remove a redundant assignment in ___slab_alloc()
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
02cbc874
CL
197/*
198 * Tracking user of a slab.
199 */
d6543e39 200#define TRACK_ADDRS_COUNT 16
02cbc874 201struct track {
ce71e27c 202 unsigned long addr; /* Called from address */
d6543e39
BG
203#ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205#endif
02cbc874
CL
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209};
210
211enum track_item { TRACK_ALLOC, TRACK_FREE };
212
ab4d5ed5 213#ifdef CONFIG_SYSFS
81819f0f
CL
214static int sysfs_slab_add(struct kmem_cache *);
215static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 217static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 218#else
0c710013
CL
219static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 { return 0; }
107dab5c 222static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 223static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
224#endif
225
4fdccdfb 226static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
227{
228#ifdef CONFIG_SLUB_STATS
88da03a6
CL
229 /*
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
232 */
233 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
234#endif
235}
236
81819f0f
CL
237/********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
240
7656c72b
CL
241static inline void *get_freepointer(struct kmem_cache *s, void *object)
242{
243 return *(void **)(object + s->offset);
244}
245
0ad9500e
ED
246static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247{
248 prefetch(object + s->offset);
249}
250
1393d9a1
CL
251static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252{
253 void *p;
254
922d566c
JK
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s, object);
257
1393d9a1 258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
259 return p;
260}
261
7656c72b
CL
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be 268#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
271 __p += (__s)->size)
7656c72b 272
54266640 273#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
54266640 277
7656c72b
CL
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
ab9a0f19
LJ
284static inline int order_objects(int order, unsigned long size, int reserved)
285{
286 return ((PAGE_SIZE << order) - reserved) / size;
287}
288
834f3d11 289static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 290 unsigned long size, int reserved)
834f3d11
CL
291{
292 struct kmem_cache_order_objects x = {
ab9a0f19 293 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x >> OO_SHIFT;
834f3d11
CL
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x & OO_MASK;
834f3d11
CL
307}
308
881db7fb
CL
309/*
310 * Per slab locking using the pagelock
311 */
312static __always_inline void slab_lock(struct page *page)
313{
48c935ad 314 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
315 bit_spin_lock(PG_locked, &page->flags);
316}
317
318static __always_inline void slab_unlock(struct page *page)
319{
48c935ad 320 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
321 __bit_spin_unlock(PG_locked, &page->flags);
322}
323
a0320865
DH
324static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325{
326 struct page tmp;
327 tmp.counters = counters_new;
328 /*
329 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
332 * be careful and only assign to the fields we need.
333 */
334 page->frozen = tmp.frozen;
335 page->inuse = tmp.inuse;
336 page->objects = tmp.objects;
337}
338
1d07171c
CL
339/* Interrupts must be disabled (for the fallback code to work right) */
340static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 void *freelist_old, unsigned long counters_old,
342 void *freelist_new, unsigned long counters_new,
343 const char *n)
344{
345 VM_BUG_ON(!irqs_disabled());
2565409f
HC
346#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 348 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 349 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
350 freelist_old, counters_old,
351 freelist_new, counters_new))
6f6528a1 352 return true;
1d07171c
CL
353 } else
354#endif
355 {
356 slab_lock(page);
d0e0ac97
CG
357 if (page->freelist == freelist_old &&
358 page->counters == counters_old) {
1d07171c 359 page->freelist = freelist_new;
a0320865 360 set_page_slub_counters(page, counters_new);
1d07171c 361 slab_unlock(page);
6f6528a1 362 return true;
1d07171c
CL
363 }
364 slab_unlock(page);
365 }
366
367 cpu_relax();
368 stat(s, CMPXCHG_DOUBLE_FAIL);
369
370#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 371 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
372#endif
373
6f6528a1 374 return false;
1d07171c
CL
375}
376
b789ef51
CL
377static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 void *freelist_old, unsigned long counters_old,
379 void *freelist_new, unsigned long counters_new,
380 const char *n)
381{
2565409f
HC
382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 384 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 385 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
386 freelist_old, counters_old,
387 freelist_new, counters_new))
6f6528a1 388 return true;
b789ef51
CL
389 } else
390#endif
391 {
1d07171c
CL
392 unsigned long flags;
393
394 local_irq_save(flags);
881db7fb 395 slab_lock(page);
d0e0ac97
CG
396 if (page->freelist == freelist_old &&
397 page->counters == counters_old) {
b789ef51 398 page->freelist = freelist_new;
a0320865 399 set_page_slub_counters(page, counters_new);
881db7fb 400 slab_unlock(page);
1d07171c 401 local_irq_restore(flags);
6f6528a1 402 return true;
b789ef51 403 }
881db7fb 404 slab_unlock(page);
1d07171c 405 local_irq_restore(flags);
b789ef51
CL
406 }
407
408 cpu_relax();
409 stat(s, CMPXCHG_DOUBLE_FAIL);
410
411#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 412 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
413#endif
414
6f6528a1 415 return false;
b789ef51
CL
416}
417
41ecc55b 418#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
419/*
420 * Determine a map of object in use on a page.
421 *
881db7fb 422 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
423 * not vanish from under us.
424 */
425static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426{
427 void *p;
428 void *addr = page_address(page);
429
430 for (p = page->freelist; p; p = get_freepointer(s, p))
431 set_bit(slab_index(p, s, addr), map);
432}
433
d86bd1be
JK
434static inline int size_from_object(struct kmem_cache *s)
435{
436 if (s->flags & SLAB_RED_ZONE)
437 return s->size - s->red_left_pad;
438
439 return s->size;
440}
441
442static inline void *restore_red_left(struct kmem_cache *s, void *p)
443{
444 if (s->flags & SLAB_RED_ZONE)
445 p -= s->red_left_pad;
446
447 return p;
448}
449
41ecc55b
CL
450/*
451 * Debug settings:
452 */
89d3c87e 453#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
454static int slub_debug = DEBUG_DEFAULT_FLAGS;
455#else
41ecc55b 456static int slub_debug;
f0630fff 457#endif
41ecc55b
CL
458
459static char *slub_debug_slabs;
fa5ec8a1 460static int disable_higher_order_debug;
41ecc55b 461
a79316c6
AR
462/*
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
467 */
468static inline void metadata_access_enable(void)
469{
470 kasan_disable_current();
471}
472
473static inline void metadata_access_disable(void)
474{
475 kasan_enable_current();
476}
477
81819f0f
CL
478/*
479 * Object debugging
480 */
d86bd1be
JK
481
482/* Verify that a pointer has an address that is valid within a slab page */
483static inline int check_valid_pointer(struct kmem_cache *s,
484 struct page *page, void *object)
485{
486 void *base;
487
488 if (!object)
489 return 1;
490
491 base = page_address(page);
492 object = restore_red_left(s, object);
493 if (object < base || object >= base + page->objects * s->size ||
494 (object - base) % s->size) {
495 return 0;
496 }
497
498 return 1;
499}
500
aa2efd5e
DT
501static void print_section(char *level, char *text, u8 *addr,
502 unsigned int length)
81819f0f 503{
a79316c6 504 metadata_access_enable();
aa2efd5e 505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 506 length, 1);
a79316c6 507 metadata_access_disable();
81819f0f
CL
508}
509
81819f0f
CL
510static struct track *get_track(struct kmem_cache *s, void *object,
511 enum track_item alloc)
512{
513 struct track *p;
514
515 if (s->offset)
516 p = object + s->offset + sizeof(void *);
517 else
518 p = object + s->inuse;
519
520 return p + alloc;
521}
522
523static void set_track(struct kmem_cache *s, void *object,
ce71e27c 524 enum track_item alloc, unsigned long addr)
81819f0f 525{
1a00df4a 526 struct track *p = get_track(s, object, alloc);
81819f0f 527
81819f0f 528 if (addr) {
d6543e39
BG
529#ifdef CONFIG_STACKTRACE
530 struct stack_trace trace;
531 int i;
532
533 trace.nr_entries = 0;
534 trace.max_entries = TRACK_ADDRS_COUNT;
535 trace.entries = p->addrs;
536 trace.skip = 3;
a79316c6 537 metadata_access_enable();
d6543e39 538 save_stack_trace(&trace);
a79316c6 539 metadata_access_disable();
d6543e39
BG
540
541 /* See rant in lockdep.c */
542 if (trace.nr_entries != 0 &&
543 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 trace.nr_entries--;
545
546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 p->addrs[i] = 0;
548#endif
81819f0f
CL
549 p->addr = addr;
550 p->cpu = smp_processor_id();
88e4ccf2 551 p->pid = current->pid;
81819f0f
CL
552 p->when = jiffies;
553 } else
554 memset(p, 0, sizeof(struct track));
555}
556
81819f0f
CL
557static void init_tracking(struct kmem_cache *s, void *object)
558{
24922684
CL
559 if (!(s->flags & SLAB_STORE_USER))
560 return;
561
ce71e27c
EGM
562 set_track(s, object, TRACK_FREE, 0UL);
563 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
564}
565
566static void print_track(const char *s, struct track *t)
567{
568 if (!t->addr)
569 return;
570
f9f58285
FF
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
573#ifdef CONFIG_STACKTRACE
574 {
575 int i;
576 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 if (t->addrs[i])
f9f58285 578 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
579 else
580 break;
581 }
582#endif
24922684
CL
583}
584
585static void print_tracking(struct kmem_cache *s, void *object)
586{
587 if (!(s->flags & SLAB_STORE_USER))
588 return;
589
590 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 print_track("Freed", get_track(s, object, TRACK_FREE));
592}
593
594static void print_page_info(struct page *page)
595{
f9f58285 596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 597 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
598
599}
600
601static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602{
ecc42fbe 603 struct va_format vaf;
24922684 604 va_list args;
24922684
CL
605
606 va_start(args, fmt);
ecc42fbe
FF
607 vaf.fmt = fmt;
608 vaf.va = &args;
f9f58285 609 pr_err("=============================================================================\n");
ecc42fbe 610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 611 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 612
373d4d09 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 614 va_end(args);
81819f0f
CL
615}
616
24922684
CL
617static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618{
ecc42fbe 619 struct va_format vaf;
24922684 620 va_list args;
24922684
CL
621
622 va_start(args, fmt);
ecc42fbe
FF
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 626 va_end(args);
24922684
CL
627}
628
629static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
630{
631 unsigned int off; /* Offset of last byte */
a973e9dd 632 u8 *addr = page_address(page);
24922684
CL
633
634 print_tracking(s, p);
635
636 print_page_info(page);
637
f9f58285
FF
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p, p - addr, get_freepointer(s, p));
24922684 640
d86bd1be 641 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 s->red_left_pad);
d86bd1be 644 else if (p > addr + 16)
aa2efd5e 645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 646
aa2efd5e
DT
647 print_section(KERN_ERR, "Object ", p,
648 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 649 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 650 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 651 s->inuse - s->object_size);
81819f0f 652
81819f0f
CL
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
24922684 658 if (s->flags & SLAB_STORE_USER)
81819f0f 659 off += 2 * sizeof(struct track);
81819f0f 660
80a9201a
AP
661 off += kasan_metadata_size(s);
662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
665 print_section(KERN_ERR, "Padding ", p + off,
666 size_from_object(s) - off);
24922684
CL
667
668 dump_stack();
81819f0f
CL
669}
670
75c66def 671void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
672 u8 *object, char *reason)
673{
3dc50637 674 slab_bug(s, "%s", reason);
24922684 675 print_trailer(s, page, object);
81819f0f
CL
676}
677
d0e0ac97
CG
678static void slab_err(struct kmem_cache *s, struct page *page,
679 const char *fmt, ...)
81819f0f
CL
680{
681 va_list args;
682 char buf[100];
683
24922684
CL
684 va_start(args, fmt);
685 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 686 va_end(args);
3dc50637 687 slab_bug(s, "%s", buf);
24922684 688 print_page_info(page);
81819f0f
CL
689 dump_stack();
690}
691
f7cb1933 692static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
693{
694 u8 *p = object;
695
d86bd1be
JK
696 if (s->flags & SLAB_RED_ZONE)
697 memset(p - s->red_left_pad, val, s->red_left_pad);
698
81819f0f 699 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
700 memset(p, POISON_FREE, s->object_size - 1);
701 p[s->object_size - 1] = POISON_END;
81819f0f
CL
702 }
703
704 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 705 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
706}
707
24922684
CL
708static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 void *from, void *to)
710{
711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 memset(from, data, to - from);
713}
714
715static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 u8 *object, char *what,
06428780 717 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
718{
719 u8 *fault;
720 u8 *end;
721
a79316c6 722 metadata_access_enable();
79824820 723 fault = memchr_inv(start, value, bytes);
a79316c6 724 metadata_access_disable();
24922684
CL
725 if (!fault)
726 return 1;
727
728 end = start + bytes;
729 while (end > fault && end[-1] == value)
730 end--;
731
732 slab_bug(s, "%s overwritten", what);
f9f58285 733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
734 fault, end - 1, fault[0], value);
735 print_trailer(s, page, object);
736
737 restore_bytes(s, what, value, fault, end);
738 return 0;
81819f0f
CL
739}
740
81819f0f
CL
741/*
742 * Object layout:
743 *
744 * object address
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
672bba3a 748 *
81819f0f
CL
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * 0xa5 (POISON_END)
751 *
3b0efdfa 752 * object + s->object_size
81819f0f 753 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 754 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 755 * object_size == inuse.
672bba3a 756 *
81819f0f
CL
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
759 *
760 * object + s->inuse
672bba3a
CL
761 * Meta data starts here.
762 *
81819f0f
CL
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
672bba3a 765 * C. Padding to reach required alignment boundary or at mininum
6446faa2 766 * one word if debugging is on to be able to detect writes
672bba3a
CL
767 * before the word boundary.
768 *
769 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
770 *
771 * object + s->size
672bba3a 772 * Nothing is used beyond s->size.
81819f0f 773 *
3b0efdfa 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 775 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
776 * may be used with merged slabcaches.
777 */
778
81819f0f
CL
779static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780{
781 unsigned long off = s->inuse; /* The end of info */
782
783 if (s->offset)
784 /* Freepointer is placed after the object. */
785 off += sizeof(void *);
786
787 if (s->flags & SLAB_STORE_USER)
788 /* We also have user information there */
789 off += 2 * sizeof(struct track);
790
80a9201a
AP
791 off += kasan_metadata_size(s);
792
d86bd1be 793 if (size_from_object(s) == off)
81819f0f
CL
794 return 1;
795
24922684 796 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 797 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
798}
799
39b26464 800/* Check the pad bytes at the end of a slab page */
81819f0f
CL
801static int slab_pad_check(struct kmem_cache *s, struct page *page)
802{
24922684
CL
803 u8 *start;
804 u8 *fault;
805 u8 *end;
806 int length;
807 int remainder;
81819f0f
CL
808
809 if (!(s->flags & SLAB_POISON))
810 return 1;
811
a973e9dd 812 start = page_address(page);
ab9a0f19 813 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
814 end = start + length;
815 remainder = length % s->size;
81819f0f
CL
816 if (!remainder)
817 return 1;
818
a79316c6 819 metadata_access_enable();
79824820 820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 821 metadata_access_disable();
24922684
CL
822 if (!fault)
823 return 1;
824 while (end > fault && end[-1] == POISON_INUSE)
825 end--;
826
827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 828 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 829
8a3d271d 830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 831 return 0;
81819f0f
CL
832}
833
834static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 835 void *object, u8 val)
81819f0f
CL
836{
837 u8 *p = object;
3b0efdfa 838 u8 *endobject = object + s->object_size;
81819f0f
CL
839
840 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
841 if (!check_bytes_and_report(s, page, object, "Redzone",
842 object - s->red_left_pad, val, s->red_left_pad))
843 return 0;
844
24922684 845 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 846 endobject, val, s->inuse - s->object_size))
81819f0f 847 return 0;
81819f0f 848 } else {
3b0efdfa 849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 850 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
851 endobject, POISON_INUSE,
852 s->inuse - s->object_size);
3adbefee 853 }
81819f0f
CL
854 }
855
856 if (s->flags & SLAB_POISON) {
f7cb1933 857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 858 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 859 POISON_FREE, s->object_size - 1) ||
24922684 860 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 861 p + s->object_size - 1, POISON_END, 1)))
81819f0f 862 return 0;
81819f0f
CL
863 /*
864 * check_pad_bytes cleans up on its own.
865 */
866 check_pad_bytes(s, page, p);
867 }
868
f7cb1933 869 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
870 /*
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
873 */
874 return 1;
875
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 object_err(s, page, p, "Freepointer corrupt");
879 /*
9f6c708e 880 * No choice but to zap it and thus lose the remainder
81819f0f 881 * of the free objects in this slab. May cause
672bba3a 882 * another error because the object count is now wrong.
81819f0f 883 */
a973e9dd 884 set_freepointer(s, p, NULL);
81819f0f
CL
885 return 0;
886 }
887 return 1;
888}
889
890static int check_slab(struct kmem_cache *s, struct page *page)
891{
39b26464
CL
892 int maxobj;
893
81819f0f
CL
894 VM_BUG_ON(!irqs_disabled());
895
896 if (!PageSlab(page)) {
24922684 897 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
898 return 0;
899 }
39b26464 900
ab9a0f19 901 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
902 if (page->objects > maxobj) {
903 slab_err(s, page, "objects %u > max %u",
f6edde9c 904 page->objects, maxobj);
39b26464
CL
905 return 0;
906 }
907 if (page->inuse > page->objects) {
24922684 908 slab_err(s, page, "inuse %u > max %u",
f6edde9c 909 page->inuse, page->objects);
81819f0f
CL
910 return 0;
911 }
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s, page);
914 return 1;
915}
916
917/*
672bba3a
CL
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
920 */
921static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922{
923 int nr = 0;
881db7fb 924 void *fp;
81819f0f 925 void *object = NULL;
f6edde9c 926 int max_objects;
81819f0f 927
881db7fb 928 fp = page->freelist;
39b26464 929 while (fp && nr <= page->objects) {
81819f0f
CL
930 if (fp == search)
931 return 1;
932 if (!check_valid_pointer(s, page, fp)) {
933 if (object) {
934 object_err(s, page, object,
935 "Freechain corrupt");
a973e9dd 936 set_freepointer(s, object, NULL);
81819f0f 937 } else {
24922684 938 slab_err(s, page, "Freepointer corrupt");
a973e9dd 939 page->freelist = NULL;
39b26464 940 page->inuse = page->objects;
24922684 941 slab_fix(s, "Freelist cleared");
81819f0f
CL
942 return 0;
943 }
944 break;
945 }
946 object = fp;
947 fp = get_freepointer(s, object);
948 nr++;
949 }
950
ab9a0f19 951 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
952 if (max_objects > MAX_OBJS_PER_PAGE)
953 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
954
955 if (page->objects != max_objects) {
756a025f
JP
956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 page->objects, max_objects);
224a88be
CL
958 page->objects = max_objects;
959 slab_fix(s, "Number of objects adjusted.");
960 }
39b26464 961 if (page->inuse != page->objects - nr) {
756a025f
JP
962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 page->inuse, page->objects - nr);
39b26464 964 page->inuse = page->objects - nr;
24922684 965 slab_fix(s, "Object count adjusted.");
81819f0f
CL
966 }
967 return search == NULL;
968}
969
0121c619
CL
970static void trace(struct kmem_cache *s, struct page *page, void *object,
971 int alloc)
3ec09742
CL
972{
973 if (s->flags & SLAB_TRACE) {
f9f58285 974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
975 s->name,
976 alloc ? "alloc" : "free",
977 object, page->inuse,
978 page->freelist);
979
980 if (!alloc)
aa2efd5e 981 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 982 s->object_size);
3ec09742
CL
983
984 dump_stack();
985 }
986}
987
643b1138 988/*
672bba3a 989 * Tracking of fully allocated slabs for debugging purposes.
643b1138 990 */
5cc6eee8
CL
991static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
643b1138 993{
5cc6eee8
CL
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
255d0884 997 lockdep_assert_held(&n->list_lock);
643b1138 998 list_add(&page->lru, &n->full);
643b1138
CL
999}
1000
c65c1877 1001static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1002{
643b1138
CL
1003 if (!(s->flags & SLAB_STORE_USER))
1004 return;
1005
255d0884 1006 lockdep_assert_held(&n->list_lock);
643b1138 1007 list_del(&page->lru);
643b1138
CL
1008}
1009
0f389ec6
CL
1010/* Tracking of the number of slabs for debugging purposes */
1011static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016}
1017
26c02cf0
AB
1018static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019{
1020 return atomic_long_read(&n->nr_slabs);
1021}
1022
205ab99d 1023static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1024{
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
338b2642 1033 if (likely(n)) {
0f389ec6 1034 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1035 atomic_long_add(objects, &n->total_objects);
1036 }
0f389ec6 1037}
205ab99d 1038static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1039{
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
205ab99d 1043 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1044}
1045
1046/* Object debug checks for alloc/free paths */
3ec09742
CL
1047static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049{
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
f7cb1933 1053 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1054 init_tracking(s, object);
1055}
1056
becfda68 1057static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1058 struct page *page,
ce71e27c 1059 void *object, unsigned long addr)
81819f0f
CL
1060{
1061 if (!check_slab(s, page))
becfda68 1062 return 0;
81819f0f 1063
81819f0f
CL
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1066 return 0;
81819f0f
CL
1067 }
1068
f7cb1933 1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1070 return 0;
1071
1072 return 1;
1073}
1074
1075static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 struct page *page,
1077 void *object, unsigned long addr)
1078{
1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 if (!alloc_consistency_checks(s, page, object, addr))
1081 goto bad;
1082 }
81819f0f 1083
3ec09742
CL
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
f7cb1933 1088 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1089 return 1;
3ec09742 1090
81819f0f
CL
1091bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
672bba3a 1096 * as used avoids touching the remaining objects.
81819f0f 1097 */
24922684 1098 slab_fix(s, "Marking all objects used");
39b26464 1099 page->inuse = page->objects;
a973e9dd 1100 page->freelist = NULL;
81819f0f
CL
1101 }
1102 return 0;
1103}
1104
becfda68
LA
1105static inline int free_consistency_checks(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
81819f0f 1107{
81819f0f 1108 if (!check_valid_pointer(s, page, object)) {
70d71228 1109 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1110 return 0;
81819f0f
CL
1111 }
1112
1113 if (on_freelist(s, page, object)) {
24922684 1114 object_err(s, page, object, "Object already free");
becfda68 1115 return 0;
81819f0f
CL
1116 }
1117
f7cb1933 1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1119 return 0;
81819f0f 1120
1b4f59e3 1121 if (unlikely(s != page->slab_cache)) {
3adbefee 1122 if (!PageSlab(page)) {
756a025f
JP
1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 object);
1b4f59e3 1125 } else if (!page->slab_cache) {
f9f58285
FF
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object);
70d71228 1128 dump_stack();
06428780 1129 } else
24922684
CL
1130 object_err(s, page, object,
1131 "page slab pointer corrupt.");
becfda68
LA
1132 return 0;
1133 }
1134 return 1;
1135}
1136
1137/* Supports checking bulk free of a constructed freelist */
1138static noinline int free_debug_processing(
1139 struct kmem_cache *s, struct page *page,
1140 void *head, void *tail, int bulk_cnt,
1141 unsigned long addr)
1142{
1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 void *object = head;
1145 int cnt = 0;
1146 unsigned long uninitialized_var(flags);
1147 int ret = 0;
1148
1149 spin_lock_irqsave(&n->list_lock, flags);
1150 slab_lock(page);
1151
1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 if (!check_slab(s, page))
1154 goto out;
1155 }
1156
1157next_object:
1158 cnt++;
1159
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!free_consistency_checks(s, page, object, addr))
1162 goto out;
81819f0f 1163 }
3ec09742 1164
3ec09742
CL
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_FREE, addr);
1167 trace(s, page, object, 0);
81084651 1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1169 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1170
1171 /* Reached end of constructed freelist yet? */
1172 if (object != tail) {
1173 object = get_freepointer(s, object);
1174 goto next_object;
1175 }
804aa132
LA
1176 ret = 1;
1177
5c2e4bbb 1178out:
81084651
JDB
1179 if (cnt != bulk_cnt)
1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 bulk_cnt, cnt);
1182
881db7fb 1183 slab_unlock(page);
282acb43 1184 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1185 if (!ret)
1186 slab_fix(s, "Object at 0x%p not freed", object);
1187 return ret;
81819f0f
CL
1188}
1189
41ecc55b
CL
1190static int __init setup_slub_debug(char *str)
1191{
f0630fff
CL
1192 slub_debug = DEBUG_DEFAULT_FLAGS;
1193 if (*str++ != '=' || !*str)
1194 /*
1195 * No options specified. Switch on full debugging.
1196 */
1197 goto out;
1198
1199 if (*str == ',')
1200 /*
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1203 */
1204 goto check_slabs;
1205
1206 slub_debug = 0;
1207 if (*str == '-')
1208 /*
1209 * Switch off all debugging measures.
1210 */
1211 goto out;
1212
1213 /*
1214 * Determine which debug features should be switched on
1215 */
06428780 1216 for (; *str && *str != ','; str++) {
f0630fff
CL
1217 switch (tolower(*str)) {
1218 case 'f':
becfda68 1219 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1220 break;
1221 case 'z':
1222 slub_debug |= SLAB_RED_ZONE;
1223 break;
1224 case 'p':
1225 slub_debug |= SLAB_POISON;
1226 break;
1227 case 'u':
1228 slub_debug |= SLAB_STORE_USER;
1229 break;
1230 case 't':
1231 slub_debug |= SLAB_TRACE;
1232 break;
4c13dd3b
DM
1233 case 'a':
1234 slub_debug |= SLAB_FAILSLAB;
1235 break;
08303a73
CA
1236 case 'o':
1237 /*
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1240 */
1241 disable_higher_order_debug = 1;
1242 break;
f0630fff 1243 default:
f9f58285
FF
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1245 *str);
f0630fff 1246 }
41ecc55b
CL
1247 }
1248
f0630fff 1249check_slabs:
41ecc55b
CL
1250 if (*str == ',')
1251 slub_debug_slabs = str + 1;
f0630fff 1252out:
41ecc55b
CL
1253 return 1;
1254}
1255
1256__setup("slub_debug", setup_slub_debug);
1257
423c929c 1258unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1259 unsigned long flags, const char *name,
51cc5068 1260 void (*ctor)(void *))
41ecc55b
CL
1261{
1262 /*
e153362a 1263 * Enable debugging if selected on the kernel commandline.
41ecc55b 1264 */
c6f58d9b
CL
1265 if (slub_debug && (!slub_debug_slabs || (name &&
1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1267 flags |= slub_debug;
ba0268a8
CL
1268
1269 return flags;
41ecc55b 1270}
b4a64718 1271#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1272static inline void setup_object_debug(struct kmem_cache *s,
1273 struct page *page, void *object) {}
41ecc55b 1274
3ec09742 1275static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1276 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1277
282acb43 1278static inline int free_debug_processing(
81084651
JDB
1279 struct kmem_cache *s, struct page *page,
1280 void *head, void *tail, int bulk_cnt,
282acb43 1281 unsigned long addr) { return 0; }
41ecc55b 1282
41ecc55b
CL
1283static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 { return 1; }
1285static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1286 void *object, u8 val) { return 1; }
5cc6eee8
CL
1287static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
c65c1877
PZ
1289static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 struct page *page) {}
423c929c 1291unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1292 unsigned long flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
ba0268a8
CL
1294{
1295 return flags;
1296}
41ecc55b 1297#define slub_debug 0
0f389ec6 1298
fdaa45e9
IM
1299#define disable_higher_order_debug 0
1300
0f389ec6
CL
1301static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 { return 0; }
26c02cf0
AB
1303static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 { return 0; }
205ab99d
CL
1305static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 int objects) {}
7d550c56 1309
02e72cc6
AR
1310#endif /* CONFIG_SLUB_DEBUG */
1311
1312/*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
d56791b3
RB
1316static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317{
1318 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1319 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1320}
1321
1322static inline void kfree_hook(const void *x)
1323{
1324 kmemleak_free(x);
0316bec2 1325 kasan_kfree_large(x);
d56791b3
RB
1326}
1327
80a9201a 1328static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1329{
80a9201a
AP
1330 void *freeptr;
1331
d56791b3 1332 kmemleak_free_recursive(x, s->flags);
7d550c56 1333
02e72cc6
AR
1334 /*
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1338 */
1339#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 {
1341 unsigned long flags;
1342
1343 local_irq_save(flags);
1344 kmemcheck_slab_free(s, x, s->object_size);
1345 debug_check_no_locks_freed(x, s->object_size);
1346 local_irq_restore(flags);
1347 }
1348#endif
1349 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1351
80a9201a
AP
1352 freeptr = get_freepointer(s, x);
1353 /*
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1356 */
0316bec2 1357 kasan_slab_free(s, x);
80a9201a 1358 return freeptr;
02e72cc6 1359}
205ab99d 1360
81084651
JDB
1361static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 void *head, void *tail)
1363{
1364/*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1367 */
1368#if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1373
1374 void *object = head;
1375 void *tail_obj = tail ? : head;
80a9201a 1376 void *freeptr;
81084651
JDB
1377
1378 do {
80a9201a
AP
1379 freeptr = slab_free_hook(s, object);
1380 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1381#endif
1382}
1383
588f8ba9
TG
1384static void setup_object(struct kmem_cache *s, struct page *page,
1385 void *object)
1386{
1387 setup_object_debug(s, page, object);
b3cbd9bf 1388 kasan_init_slab_obj(s, object);
588f8ba9
TG
1389 if (unlikely(s->ctor)) {
1390 kasan_unpoison_object_data(s, object);
1391 s->ctor(object);
1392 kasan_poison_object_data(s, object);
1393 }
1394}
1395
81819f0f
CL
1396/*
1397 * Slab allocation and freeing
1398 */
5dfb4175
VD
1399static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1401{
5dfb4175 1402 struct page *page;
65c3376a
CL
1403 int order = oo_order(oo);
1404
b1eeab67
VN
1405 flags |= __GFP_NOTRACK;
1406
2154a336 1407 if (node == NUMA_NO_NODE)
5dfb4175 1408 page = alloc_pages(flags, order);
65c3376a 1409 else
96db800f 1410 page = __alloc_pages_node(node, flags, order);
5dfb4175 1411
f3ccb2c4
VD
1412 if (page && memcg_charge_slab(page, flags, order, s)) {
1413 __free_pages(page, order);
1414 page = NULL;
1415 }
5dfb4175
VD
1416
1417 return page;
65c3376a
CL
1418}
1419
210e7a43
TG
1420#ifdef CONFIG_SLAB_FREELIST_RANDOM
1421/* Pre-initialize the random sequence cache */
1422static int init_cache_random_seq(struct kmem_cache *s)
1423{
1424 int err;
1425 unsigned long i, count = oo_objects(s->oo);
1426
a810007a
SR
1427 /* Bailout if already initialised */
1428 if (s->random_seq)
1429 return 0;
1430
210e7a43
TG
1431 err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 if (err) {
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1434 s->name);
1435 return err;
1436 }
1437
1438 /* Transform to an offset on the set of pages */
1439 if (s->random_seq) {
1440 for (i = 0; i < count; i++)
1441 s->random_seq[i] *= s->size;
1442 }
1443 return 0;
1444}
1445
1446/* Initialize each random sequence freelist per cache */
1447static void __init init_freelist_randomization(void)
1448{
1449 struct kmem_cache *s;
1450
1451 mutex_lock(&slab_mutex);
1452
1453 list_for_each_entry(s, &slab_caches, list)
1454 init_cache_random_seq(s);
1455
1456 mutex_unlock(&slab_mutex);
1457}
1458
1459/* Get the next entry on the pre-computed freelist randomized */
1460static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 unsigned long *pos, void *start,
1462 unsigned long page_limit,
1463 unsigned long freelist_count)
1464{
1465 unsigned int idx;
1466
1467 /*
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1470 */
1471 do {
1472 idx = s->random_seq[*pos];
1473 *pos += 1;
1474 if (*pos >= freelist_count)
1475 *pos = 0;
1476 } while (unlikely(idx >= page_limit));
1477
1478 return (char *)start + idx;
1479}
1480
1481/* Shuffle the single linked freelist based on a random pre-computed sequence */
1482static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483{
1484 void *start;
1485 void *cur;
1486 void *next;
1487 unsigned long idx, pos, page_limit, freelist_count;
1488
1489 if (page->objects < 2 || !s->random_seq)
1490 return false;
1491
1492 freelist_count = oo_objects(s->oo);
1493 pos = get_random_int() % freelist_count;
1494
1495 page_limit = page->objects * s->size;
1496 start = fixup_red_left(s, page_address(page));
1497
1498 /* First entry is used as the base of the freelist */
1499 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 page->freelist = cur;
1502
1503 for (idx = 1; idx < page->objects; idx++) {
1504 setup_object(s, page, cur);
1505 next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 freelist_count);
1507 set_freepointer(s, cur, next);
1508 cur = next;
1509 }
1510 setup_object(s, page, cur);
1511 set_freepointer(s, cur, NULL);
1512
1513 return true;
1514}
1515#else
1516static inline int init_cache_random_seq(struct kmem_cache *s)
1517{
1518 return 0;
1519}
1520static inline void init_freelist_randomization(void) { }
1521static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522{
1523 return false;
1524}
1525#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
81819f0f
CL
1527static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528{
06428780 1529 struct page *page;
834f3d11 1530 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1531 gfp_t alloc_gfp;
588f8ba9
TG
1532 void *start, *p;
1533 int idx, order;
210e7a43 1534 bool shuffle;
81819f0f 1535
7e0528da
CL
1536 flags &= gfp_allowed_mask;
1537
d0164adc 1538 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1539 local_irq_enable();
1540
b7a49f0d 1541 flags |= s->allocflags;
e12ba74d 1542
ba52270d
PE
1543 /*
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1546 */
1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1550
5dfb4175 1551 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1552 if (unlikely(!page)) {
1553 oo = s->min;
80c3a998 1554 alloc_gfp = flags;
65c3376a
CL
1555 /*
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1558 */
5dfb4175 1559 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1560 if (unlikely(!page))
1561 goto out;
1562 stat(s, ORDER_FALLBACK);
65c3376a 1563 }
5a896d9e 1564
588f8ba9
TG
1565 if (kmemcheck_enabled &&
1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1567 int pages = 1 << oo_order(oo);
1568
80c3a998 1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1570
1571 /*
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1574 */
1575 if (s->ctor)
1576 kmemcheck_mark_uninitialized_pages(page, pages);
1577 else
1578 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1579 }
1580
834f3d11 1581 page->objects = oo_objects(oo);
81819f0f 1582
1f458cbf 1583 order = compound_order(page);
1b4f59e3 1584 page->slab_cache = s;
c03f94cc 1585 __SetPageSlab(page);
2f064f34 1586 if (page_is_pfmemalloc(page))
072bb0aa 1587 SetPageSlabPfmemalloc(page);
81819f0f
CL
1588
1589 start = page_address(page);
81819f0f
CL
1590
1591 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1592 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1593
0316bec2
AR
1594 kasan_poison_slab(page);
1595
210e7a43
TG
1596 shuffle = shuffle_freelist(s, page);
1597
1598 if (!shuffle) {
1599 for_each_object_idx(p, idx, s, start, page->objects) {
1600 setup_object(s, page, p);
1601 if (likely(idx < page->objects))
1602 set_freepointer(s, p, p + s->size);
1603 else
1604 set_freepointer(s, p, NULL);
1605 }
1606 page->freelist = fixup_red_left(s, start);
81819f0f 1607 }
81819f0f 1608
e6e82ea1 1609 page->inuse = page->objects;
8cb0a506 1610 page->frozen = 1;
588f8ba9 1611
81819f0f 1612out:
d0164adc 1613 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1614 local_irq_disable();
1615 if (!page)
1616 return NULL;
1617
1618 mod_zone_page_state(page_zone(page),
1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 1 << oo_order(oo));
1622
1623 inc_slabs_node(s, page_to_nid(page), page->objects);
1624
81819f0f
CL
1625 return page;
1626}
1627
588f8ba9
TG
1628static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629{
1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1632 flags &= ~GFP_SLAB_BUG_MASK;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1635 dump_stack();
588f8ba9
TG
1636 }
1637
1638 return allocate_slab(s,
1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640}
1641
81819f0f
CL
1642static void __free_slab(struct kmem_cache *s, struct page *page)
1643{
834f3d11
CL
1644 int order = compound_order(page);
1645 int pages = 1 << order;
81819f0f 1646
becfda68 1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1648 void *p;
1649
1650 slab_pad_check(s, page);
224a88be
CL
1651 for_each_object(p, s, page_address(page),
1652 page->objects)
f7cb1933 1653 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1654 }
1655
b1eeab67 1656 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1657
81819f0f
CL
1658 mod_zone_page_state(page_zone(page),
1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1661 -pages);
81819f0f 1662
072bb0aa 1663 __ClearPageSlabPfmemalloc(page);
49bd5221 1664 __ClearPageSlab(page);
1f458cbf 1665
22b751c3 1666 page_mapcount_reset(page);
1eb5ac64
NP
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1669 memcg_uncharge_slab(page, order, s);
1670 __free_pages(page, order);
81819f0f
CL
1671}
1672
da9a638c
LJ
1673#define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
81819f0f
CL
1676static void rcu_free_slab(struct rcu_head *h)
1677{
1678 struct page *page;
1679
da9a638c
LJ
1680 if (need_reserve_slab_rcu)
1681 page = virt_to_head_page(h);
1682 else
1683 page = container_of((struct list_head *)h, struct page, lru);
1684
1b4f59e3 1685 __free_slab(page->slab_cache, page);
81819f0f
CL
1686}
1687
1688static void free_slab(struct kmem_cache *s, struct page *page)
1689{
5f0d5a3a 1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1691 struct rcu_head *head;
1692
1693 if (need_reserve_slab_rcu) {
1694 int order = compound_order(page);
1695 int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697 VM_BUG_ON(s->reserved != sizeof(*head));
1698 head = page_address(page) + offset;
1699 } else {
bc4f610d 1700 head = &page->rcu_head;
da9a638c 1701 }
81819f0f
CL
1702
1703 call_rcu(head, rcu_free_slab);
1704 } else
1705 __free_slab(s, page);
1706}
1707
1708static void discard_slab(struct kmem_cache *s, struct page *page)
1709{
205ab99d 1710 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1711 free_slab(s, page);
1712}
1713
1714/*
5cc6eee8 1715 * Management of partially allocated slabs.
81819f0f 1716 */
1e4dd946
SR
1717static inline void
1718__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1719{
e95eed57 1720 n->nr_partial++;
136333d1 1721 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1722 list_add_tail(&page->lru, &n->partial);
1723 else
1724 list_add(&page->lru, &n->partial);
81819f0f
CL
1725}
1726
1e4dd946
SR
1727static inline void add_partial(struct kmem_cache_node *n,
1728 struct page *page, int tail)
62e346a8 1729{
c65c1877 1730 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1731 __add_partial(n, page, tail);
1732}
c65c1877 1733
1e4dd946
SR
1734static inline void remove_partial(struct kmem_cache_node *n,
1735 struct page *page)
1736{
1737 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1738 list_del(&page->lru);
1739 n->nr_partial--;
1e4dd946
SR
1740}
1741
81819f0f 1742/*
7ced3719
CL
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
81819f0f 1745 *
497b66f2 1746 * Returns a list of objects or NULL if it fails.
81819f0f 1747 */
497b66f2 1748static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1749 struct kmem_cache_node *n, struct page *page,
633b0764 1750 int mode, int *objects)
81819f0f 1751{
2cfb7455
CL
1752 void *freelist;
1753 unsigned long counters;
1754 struct page new;
1755
c65c1877
PZ
1756 lockdep_assert_held(&n->list_lock);
1757
2cfb7455
CL
1758 /*
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1762 */
7ced3719
CL
1763 freelist = page->freelist;
1764 counters = page->counters;
1765 new.counters = counters;
633b0764 1766 *objects = new.objects - new.inuse;
23910c50 1767 if (mode) {
7ced3719 1768 new.inuse = page->objects;
23910c50
PE
1769 new.freelist = NULL;
1770 } else {
1771 new.freelist = freelist;
1772 }
2cfb7455 1773
a0132ac0 1774 VM_BUG_ON(new.frozen);
7ced3719 1775 new.frozen = 1;
2cfb7455 1776
7ced3719 1777 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1778 freelist, counters,
02d7633f 1779 new.freelist, new.counters,
7ced3719 1780 "acquire_slab"))
7ced3719 1781 return NULL;
2cfb7455
CL
1782
1783 remove_partial(n, page);
7ced3719 1784 WARN_ON(!freelist);
49e22585 1785 return freelist;
81819f0f
CL
1786}
1787
633b0764 1788static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1789static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1790
81819f0f 1791/*
672bba3a 1792 * Try to allocate a partial slab from a specific node.
81819f0f 1793 */
8ba00bb6
JK
1794static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1796{
49e22585
CL
1797 struct page *page, *page2;
1798 void *object = NULL;
633b0764
JK
1799 int available = 0;
1800 int objects;
81819f0f
CL
1801
1802 /*
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1805 * partial slab and there is none available then get_partials()
1806 * will return NULL.
81819f0f
CL
1807 */
1808 if (!n || !n->nr_partial)
1809 return NULL;
1810
1811 spin_lock(&n->list_lock);
49e22585 1812 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1813 void *t;
49e22585 1814
8ba00bb6
JK
1815 if (!pfmemalloc_match(page, flags))
1816 continue;
1817
633b0764 1818 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1819 if (!t)
1820 break;
1821
633b0764 1822 available += objects;
12d79634 1823 if (!object) {
49e22585 1824 c->page = page;
49e22585 1825 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1826 object = t;
49e22585 1827 } else {
633b0764 1828 put_cpu_partial(s, page, 0);
8028dcea 1829 stat(s, CPU_PARTIAL_NODE);
49e22585 1830 }
345c905d
JK
1831 if (!kmem_cache_has_cpu_partial(s)
1832 || available > s->cpu_partial / 2)
49e22585
CL
1833 break;
1834
497b66f2 1835 }
81819f0f 1836 spin_unlock(&n->list_lock);
497b66f2 1837 return object;
81819f0f
CL
1838}
1839
1840/*
672bba3a 1841 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1842 */
de3ec035 1843static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1844 struct kmem_cache_cpu *c)
81819f0f
CL
1845{
1846#ifdef CONFIG_NUMA
1847 struct zonelist *zonelist;
dd1a239f 1848 struct zoneref *z;
54a6eb5c
MG
1849 struct zone *zone;
1850 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1851 void *object;
cc9a6c87 1852 unsigned int cpuset_mems_cookie;
81819f0f
CL
1853
1854 /*
672bba3a
CL
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1859 *
672bba3a
CL
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
81819f0f 1864 *
43efd3ea
LP
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1870 * with available objects.
81819f0f 1871 */
9824601e
CL
1872 if (!s->remote_node_defrag_ratio ||
1873 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1874 return NULL;
1875
cc9a6c87 1876 do {
d26914d1 1877 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1878 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 struct kmem_cache_node *n;
1881
1882 n = get_node(s, zone_to_nid(zone));
1883
dee2f8aa 1884 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1885 n->nr_partial > s->min_partial) {
8ba00bb6 1886 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1887 if (object) {
1888 /*
d26914d1
MG
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1893 * update
cc9a6c87 1894 */
cc9a6c87
MG
1895 return object;
1896 }
c0ff7453 1897 }
81819f0f 1898 }
d26914d1 1899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1900#endif
1901 return NULL;
1902}
1903
1904/*
1905 * Get a partial page, lock it and return it.
1906 */
497b66f2 1907static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1908 struct kmem_cache_cpu *c)
81819f0f 1909{
497b66f2 1910 void *object;
a561ce00
JK
1911 int searchnode = node;
1912
1913 if (node == NUMA_NO_NODE)
1914 searchnode = numa_mem_id();
1915 else if (!node_present_pages(node))
1916 searchnode = node_to_mem_node(node);
81819f0f 1917
8ba00bb6 1918 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1919 if (object || node != NUMA_NO_NODE)
1920 return object;
81819f0f 1921
acd19fd1 1922 return get_any_partial(s, flags, c);
81819f0f
CL
1923}
1924
8a5ec0ba
CL
1925#ifdef CONFIG_PREEMPT
1926/*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932#else
1933/*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937#define TID_STEP 1
1938#endif
1939
1940static inline unsigned long next_tid(unsigned long tid)
1941{
1942 return tid + TID_STEP;
1943}
1944
1945static inline unsigned int tid_to_cpu(unsigned long tid)
1946{
1947 return tid % TID_STEP;
1948}
1949
1950static inline unsigned long tid_to_event(unsigned long tid)
1951{
1952 return tid / TID_STEP;
1953}
1954
1955static inline unsigned int init_tid(int cpu)
1956{
1957 return cpu;
1958}
1959
1960static inline void note_cmpxchg_failure(const char *n,
1961 const struct kmem_cache *s, unsigned long tid)
1962{
1963#ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
f9f58285 1966 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1967
1968#ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1970 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1971 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 else
1973#endif
1974 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1976 tid_to_event(tid), tid_to_event(actual_tid));
1977 else
f9f58285 1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1979 actual_tid, tid, next_tid(tid));
1980#endif
4fdccdfb 1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1982}
1983
788e1aad 1984static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1985{
8a5ec0ba
CL
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1990}
2cfb7455 1991
81819f0f
CL
1992/*
1993 * Remove the cpu slab
1994 */
d0e0ac97
CG
1995static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996 void *freelist)
81819f0f 1997{
2cfb7455 1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 int lock = 0;
2001 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2002 void *nextfree;
136333d1 2003 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2004 struct page new;
2005 struct page old;
2006
2007 if (page->freelist) {
84e554e6 2008 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2009 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2010 }
2011
894b8788 2012 /*
2cfb7455
CL
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2015 * last one.
2016 *
2017 * There is no need to take the list->lock because the page
2018 * is still frozen.
2019 */
2020 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 void *prior;
2022 unsigned long counters;
2023
2024 do {
2025 prior = page->freelist;
2026 counters = page->counters;
2027 set_freepointer(s, freelist, prior);
2028 new.counters = counters;
2029 new.inuse--;
a0132ac0 2030 VM_BUG_ON(!new.frozen);
2cfb7455 2031
1d07171c 2032 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2033 prior, counters,
2034 freelist, new.counters,
2035 "drain percpu freelist"));
2036
2037 freelist = nextfree;
2038 }
2039
894b8788 2040 /*
2cfb7455
CL
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2043 * during unfreeze.
2044 *
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2048 *
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2052 * changed.
894b8788 2053 */
2cfb7455 2054redo:
894b8788 2055
2cfb7455
CL
2056 old.freelist = page->freelist;
2057 old.counters = page->counters;
a0132ac0 2058 VM_BUG_ON(!old.frozen);
7c2e132c 2059
2cfb7455
CL
2060 /* Determine target state of the slab */
2061 new.counters = old.counters;
2062 if (freelist) {
2063 new.inuse--;
2064 set_freepointer(s, freelist, old.freelist);
2065 new.freelist = freelist;
2066 } else
2067 new.freelist = old.freelist;
2068
2069 new.frozen = 0;
2070
8a5b20ae 2071 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2072 m = M_FREE;
2073 else if (new.freelist) {
2074 m = M_PARTIAL;
2075 if (!lock) {
2076 lock = 1;
2077 /*
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2080 * is frozen
2081 */
2082 spin_lock(&n->list_lock);
2083 }
2084 } else {
2085 m = M_FULL;
2086 if (kmem_cache_debug(s) && !lock) {
2087 lock = 1;
2088 /*
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2091 * any frozen slabs.
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 }
2096
2097 if (l != m) {
2098
2099 if (l == M_PARTIAL)
2100
2101 remove_partial(n, page);
2102
2103 else if (l == M_FULL)
894b8788 2104
c65c1877 2105 remove_full(s, n, page);
2cfb7455
CL
2106
2107 if (m == M_PARTIAL) {
2108
2109 add_partial(n, page, tail);
136333d1 2110 stat(s, tail);
2cfb7455
CL
2111
2112 } else if (m == M_FULL) {
894b8788 2113
2cfb7455
CL
2114 stat(s, DEACTIVATE_FULL);
2115 add_full(s, n, page);
2116
2117 }
2118 }
2119
2120 l = m;
1d07171c 2121 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2122 old.freelist, old.counters,
2123 new.freelist, new.counters,
2124 "unfreezing slab"))
2125 goto redo;
2126
2cfb7455
CL
2127 if (lock)
2128 spin_unlock(&n->list_lock);
2129
2130 if (m == M_FREE) {
2131 stat(s, DEACTIVATE_EMPTY);
2132 discard_slab(s, page);
2133 stat(s, FREE_SLAB);
894b8788 2134 }
81819f0f
CL
2135}
2136
d24ac77f
JK
2137/*
2138 * Unfreeze all the cpu partial slabs.
2139 *
59a09917
CL
2140 * This function must be called with interrupts disabled
2141 * for the cpu using c (or some other guarantee must be there
2142 * to guarantee no concurrent accesses).
d24ac77f 2143 */
59a09917
CL
2144static void unfreeze_partials(struct kmem_cache *s,
2145 struct kmem_cache_cpu *c)
49e22585 2146{
345c905d 2147#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2148 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2149 struct page *page, *discard_page = NULL;
49e22585
CL
2150
2151 while ((page = c->partial)) {
49e22585
CL
2152 struct page new;
2153 struct page old;
2154
2155 c->partial = page->next;
43d77867
JK
2156
2157 n2 = get_node(s, page_to_nid(page));
2158 if (n != n2) {
2159 if (n)
2160 spin_unlock(&n->list_lock);
2161
2162 n = n2;
2163 spin_lock(&n->list_lock);
2164 }
49e22585
CL
2165
2166 do {
2167
2168 old.freelist = page->freelist;
2169 old.counters = page->counters;
a0132ac0 2170 VM_BUG_ON(!old.frozen);
49e22585
CL
2171
2172 new.counters = old.counters;
2173 new.freelist = old.freelist;
2174
2175 new.frozen = 0;
2176
d24ac77f 2177 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2178 old.freelist, old.counters,
2179 new.freelist, new.counters,
2180 "unfreezing slab"));
2181
8a5b20ae 2182 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2183 page->next = discard_page;
2184 discard_page = page;
43d77867
JK
2185 } else {
2186 add_partial(n, page, DEACTIVATE_TO_TAIL);
2187 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2188 }
2189 }
2190
2191 if (n)
2192 spin_unlock(&n->list_lock);
9ada1934
SL
2193
2194 while (discard_page) {
2195 page = discard_page;
2196 discard_page = discard_page->next;
2197
2198 stat(s, DEACTIVATE_EMPTY);
2199 discard_slab(s, page);
2200 stat(s, FREE_SLAB);
2201 }
345c905d 2202#endif
49e22585
CL
2203}
2204
2205/*
2206 * Put a page that was just frozen (in __slab_free) into a partial page
2207 * slot if available. This is done without interrupts disabled and without
2208 * preemption disabled. The cmpxchg is racy and may put the partial page
2209 * onto a random cpus partial slot.
2210 *
2211 * If we did not find a slot then simply move all the partials to the
2212 * per node partial list.
2213 */
633b0764 2214static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2215{
345c905d 2216#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2217 struct page *oldpage;
2218 int pages;
2219 int pobjects;
2220
d6e0b7fa 2221 preempt_disable();
49e22585
CL
2222 do {
2223 pages = 0;
2224 pobjects = 0;
2225 oldpage = this_cpu_read(s->cpu_slab->partial);
2226
2227 if (oldpage) {
2228 pobjects = oldpage->pobjects;
2229 pages = oldpage->pages;
2230 if (drain && pobjects > s->cpu_partial) {
2231 unsigned long flags;
2232 /*
2233 * partial array is full. Move the existing
2234 * set to the per node partial list.
2235 */
2236 local_irq_save(flags);
59a09917 2237 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2238 local_irq_restore(flags);
e24fc410 2239 oldpage = NULL;
49e22585
CL
2240 pobjects = 0;
2241 pages = 0;
8028dcea 2242 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2243 }
2244 }
2245
2246 pages++;
2247 pobjects += page->objects - page->inuse;
2248
2249 page->pages = pages;
2250 page->pobjects = pobjects;
2251 page->next = oldpage;
2252
d0e0ac97
CG
2253 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2254 != oldpage);
d6e0b7fa
VD
2255 if (unlikely(!s->cpu_partial)) {
2256 unsigned long flags;
2257
2258 local_irq_save(flags);
2259 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2260 local_irq_restore(flags);
2261 }
2262 preempt_enable();
345c905d 2263#endif
49e22585
CL
2264}
2265
dfb4f096 2266static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2267{
84e554e6 2268 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2269 deactivate_slab(s, c->page, c->freelist);
2270
2271 c->tid = next_tid(c->tid);
2272 c->page = NULL;
2273 c->freelist = NULL;
81819f0f
CL
2274}
2275
2276/*
2277 * Flush cpu slab.
6446faa2 2278 *
81819f0f
CL
2279 * Called from IPI handler with interrupts disabled.
2280 */
0c710013 2281static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2282{
9dfc6e68 2283 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2284
49e22585
CL
2285 if (likely(c)) {
2286 if (c->page)
2287 flush_slab(s, c);
2288
59a09917 2289 unfreeze_partials(s, c);
49e22585 2290 }
81819f0f
CL
2291}
2292
2293static void flush_cpu_slab(void *d)
2294{
2295 struct kmem_cache *s = d;
81819f0f 2296
dfb4f096 2297 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2298}
2299
a8364d55
GBY
2300static bool has_cpu_slab(int cpu, void *info)
2301{
2302 struct kmem_cache *s = info;
2303 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2304
02e1a9cd 2305 return c->page || c->partial;
a8364d55
GBY
2306}
2307
81819f0f
CL
2308static void flush_all(struct kmem_cache *s)
2309{
a8364d55 2310 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2311}
2312
a96a87bf
SAS
2313/*
2314 * Use the cpu notifier to insure that the cpu slabs are flushed when
2315 * necessary.
2316 */
2317static int slub_cpu_dead(unsigned int cpu)
2318{
2319 struct kmem_cache *s;
2320 unsigned long flags;
2321
2322 mutex_lock(&slab_mutex);
2323 list_for_each_entry(s, &slab_caches, list) {
2324 local_irq_save(flags);
2325 __flush_cpu_slab(s, cpu);
2326 local_irq_restore(flags);
2327 }
2328 mutex_unlock(&slab_mutex);
2329 return 0;
2330}
2331
dfb4f096
CL
2332/*
2333 * Check if the objects in a per cpu structure fit numa
2334 * locality expectations.
2335 */
57d437d2 2336static inline int node_match(struct page *page, int node)
dfb4f096
CL
2337{
2338#ifdef CONFIG_NUMA
4d7868e6 2339 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2340 return 0;
2341#endif
2342 return 1;
2343}
2344
9a02d699 2345#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2346static int count_free(struct page *page)
2347{
2348 return page->objects - page->inuse;
2349}
2350
9a02d699
DR
2351static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2352{
2353 return atomic_long_read(&n->total_objects);
2354}
2355#endif /* CONFIG_SLUB_DEBUG */
2356
2357#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2358static unsigned long count_partial(struct kmem_cache_node *n,
2359 int (*get_count)(struct page *))
2360{
2361 unsigned long flags;
2362 unsigned long x = 0;
2363 struct page *page;
2364
2365 spin_lock_irqsave(&n->list_lock, flags);
2366 list_for_each_entry(page, &n->partial, lru)
2367 x += get_count(page);
2368 spin_unlock_irqrestore(&n->list_lock, flags);
2369 return x;
2370}
9a02d699 2371#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2372
781b2ba6
PE
2373static noinline void
2374slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2375{
9a02d699
DR
2376#ifdef CONFIG_SLUB_DEBUG
2377 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2378 DEFAULT_RATELIMIT_BURST);
781b2ba6 2379 int node;
fa45dc25 2380 struct kmem_cache_node *n;
781b2ba6 2381
9a02d699
DR
2382 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2383 return;
2384
5b3810e5
VB
2385 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2386 nid, gfpflags, &gfpflags);
f9f58285
FF
2387 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2388 s->name, s->object_size, s->size, oo_order(s->oo),
2389 oo_order(s->min));
781b2ba6 2390
3b0efdfa 2391 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2392 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2393 s->name);
fa5ec8a1 2394
fa45dc25 2395 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2396 unsigned long nr_slabs;
2397 unsigned long nr_objs;
2398 unsigned long nr_free;
2399
26c02cf0
AB
2400 nr_free = count_partial(n, count_free);
2401 nr_slabs = node_nr_slabs(n);
2402 nr_objs = node_nr_objs(n);
781b2ba6 2403
f9f58285 2404 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2405 node, nr_slabs, nr_objs, nr_free);
2406 }
9a02d699 2407#endif
781b2ba6
PE
2408}
2409
497b66f2
CL
2410static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2411 int node, struct kmem_cache_cpu **pc)
2412{
6faa6833 2413 void *freelist;
188fd063
CL
2414 struct kmem_cache_cpu *c = *pc;
2415 struct page *page;
497b66f2 2416
188fd063 2417 freelist = get_partial(s, flags, node, c);
497b66f2 2418
188fd063
CL
2419 if (freelist)
2420 return freelist;
2421
2422 page = new_slab(s, flags, node);
497b66f2 2423 if (page) {
7c8e0181 2424 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2425 if (c->page)
2426 flush_slab(s, c);
2427
2428 /*
2429 * No other reference to the page yet so we can
2430 * muck around with it freely without cmpxchg
2431 */
6faa6833 2432 freelist = page->freelist;
497b66f2
CL
2433 page->freelist = NULL;
2434
2435 stat(s, ALLOC_SLAB);
497b66f2
CL
2436 c->page = page;
2437 *pc = c;
2438 } else
6faa6833 2439 freelist = NULL;
497b66f2 2440
6faa6833 2441 return freelist;
497b66f2
CL
2442}
2443
072bb0aa
MG
2444static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2445{
2446 if (unlikely(PageSlabPfmemalloc(page)))
2447 return gfp_pfmemalloc_allowed(gfpflags);
2448
2449 return true;
2450}
2451
213eeb9f 2452/*
d0e0ac97
CG
2453 * Check the page->freelist of a page and either transfer the freelist to the
2454 * per cpu freelist or deactivate the page.
213eeb9f
CL
2455 *
2456 * The page is still frozen if the return value is not NULL.
2457 *
2458 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2459 *
2460 * This function must be called with interrupt disabled.
213eeb9f
CL
2461 */
2462static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2463{
2464 struct page new;
2465 unsigned long counters;
2466 void *freelist;
2467
2468 do {
2469 freelist = page->freelist;
2470 counters = page->counters;
6faa6833 2471
213eeb9f 2472 new.counters = counters;
a0132ac0 2473 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2474
2475 new.inuse = page->objects;
2476 new.frozen = freelist != NULL;
2477
d24ac77f 2478 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2479 freelist, counters,
2480 NULL, new.counters,
2481 "get_freelist"));
2482
2483 return freelist;
2484}
2485
81819f0f 2486/*
894b8788
CL
2487 * Slow path. The lockless freelist is empty or we need to perform
2488 * debugging duties.
2489 *
894b8788
CL
2490 * Processing is still very fast if new objects have been freed to the
2491 * regular freelist. In that case we simply take over the regular freelist
2492 * as the lockless freelist and zap the regular freelist.
81819f0f 2493 *
894b8788
CL
2494 * If that is not working then we fall back to the partial lists. We take the
2495 * first element of the freelist as the object to allocate now and move the
2496 * rest of the freelist to the lockless freelist.
81819f0f 2497 *
894b8788 2498 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2499 * we need to allocate a new slab. This is the slowest path since it involves
2500 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2501 *
2502 * Version of __slab_alloc to use when we know that interrupts are
2503 * already disabled (which is the case for bulk allocation).
81819f0f 2504 */
a380a3c7 2505static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2506 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2507{
6faa6833 2508 void *freelist;
f6e7def7 2509 struct page *page;
81819f0f 2510
f6e7def7
CL
2511 page = c->page;
2512 if (!page)
81819f0f 2513 goto new_slab;
49e22585 2514redo:
6faa6833 2515
57d437d2 2516 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2517 int searchnode = node;
2518
2519 if (node != NUMA_NO_NODE && !node_present_pages(node))
2520 searchnode = node_to_mem_node(node);
2521
2522 if (unlikely(!node_match(page, searchnode))) {
2523 stat(s, ALLOC_NODE_MISMATCH);
2524 deactivate_slab(s, page, c->freelist);
2525 c->page = NULL;
2526 c->freelist = NULL;
2527 goto new_slab;
2528 }
fc59c053 2529 }
6446faa2 2530
072bb0aa
MG
2531 /*
2532 * By rights, we should be searching for a slab page that was
2533 * PFMEMALLOC but right now, we are losing the pfmemalloc
2534 * information when the page leaves the per-cpu allocator
2535 */
2536 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2537 deactivate_slab(s, page, c->freelist);
2538 c->page = NULL;
2539 c->freelist = NULL;
2540 goto new_slab;
2541 }
2542
73736e03 2543 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2544 freelist = c->freelist;
2545 if (freelist)
73736e03 2546 goto load_freelist;
03e404af 2547
f6e7def7 2548 freelist = get_freelist(s, page);
6446faa2 2549
6faa6833 2550 if (!freelist) {
03e404af
CL
2551 c->page = NULL;
2552 stat(s, DEACTIVATE_BYPASS);
fc59c053 2553 goto new_slab;
03e404af 2554 }
6446faa2 2555
84e554e6 2556 stat(s, ALLOC_REFILL);
6446faa2 2557
894b8788 2558load_freelist:
507effea
CL
2559 /*
2560 * freelist is pointing to the list of objects to be used.
2561 * page is pointing to the page from which the objects are obtained.
2562 * That page must be frozen for per cpu allocations to work.
2563 */
a0132ac0 2564 VM_BUG_ON(!c->page->frozen);
6faa6833 2565 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2566 c->tid = next_tid(c->tid);
6faa6833 2567 return freelist;
81819f0f 2568
81819f0f 2569new_slab:
2cfb7455 2570
49e22585 2571 if (c->partial) {
f6e7def7
CL
2572 page = c->page = c->partial;
2573 c->partial = page->next;
49e22585 2574 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2575 goto redo;
81819f0f
CL
2576 }
2577
188fd063 2578 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2579
f4697436 2580 if (unlikely(!freelist)) {
9a02d699 2581 slab_out_of_memory(s, gfpflags, node);
f4697436 2582 return NULL;
81819f0f 2583 }
2cfb7455 2584
f6e7def7 2585 page = c->page;
5091b74a 2586 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2587 goto load_freelist;
2cfb7455 2588
497b66f2 2589 /* Only entered in the debug case */
d0e0ac97
CG
2590 if (kmem_cache_debug(s) &&
2591 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2592 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2593
f6e7def7 2594 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2595 c->page = NULL;
2596 c->freelist = NULL;
6faa6833 2597 return freelist;
894b8788
CL
2598}
2599
a380a3c7
CL
2600/*
2601 * Another one that disabled interrupt and compensates for possible
2602 * cpu changes by refetching the per cpu area pointer.
2603 */
2604static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2605 unsigned long addr, struct kmem_cache_cpu *c)
2606{
2607 void *p;
2608 unsigned long flags;
2609
2610 local_irq_save(flags);
2611#ifdef CONFIG_PREEMPT
2612 /*
2613 * We may have been preempted and rescheduled on a different
2614 * cpu before disabling interrupts. Need to reload cpu area
2615 * pointer.
2616 */
2617 c = this_cpu_ptr(s->cpu_slab);
2618#endif
2619
2620 p = ___slab_alloc(s, gfpflags, node, addr, c);
2621 local_irq_restore(flags);
2622 return p;
2623}
2624
894b8788
CL
2625/*
2626 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2627 * have the fastpath folded into their functions. So no function call
2628 * overhead for requests that can be satisfied on the fastpath.
2629 *
2630 * The fastpath works by first checking if the lockless freelist can be used.
2631 * If not then __slab_alloc is called for slow processing.
2632 *
2633 * Otherwise we can simply pick the next object from the lockless free list.
2634 */
2b847c3c 2635static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2636 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2637{
03ec0ed5 2638 void *object;
dfb4f096 2639 struct kmem_cache_cpu *c;
57d437d2 2640 struct page *page;
8a5ec0ba 2641 unsigned long tid;
1f84260c 2642
8135be5a
VD
2643 s = slab_pre_alloc_hook(s, gfpflags);
2644 if (!s)
773ff60e 2645 return NULL;
8a5ec0ba 2646redo:
8a5ec0ba
CL
2647 /*
2648 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2649 * enabled. We may switch back and forth between cpus while
2650 * reading from one cpu area. That does not matter as long
2651 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2652 *
9aabf810
JK
2653 * We should guarantee that tid and kmem_cache are retrieved on
2654 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2655 * to check if it is matched or not.
8a5ec0ba 2656 */
9aabf810
JK
2657 do {
2658 tid = this_cpu_read(s->cpu_slab->tid);
2659 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2660 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2661 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2662
2663 /*
2664 * Irqless object alloc/free algorithm used here depends on sequence
2665 * of fetching cpu_slab's data. tid should be fetched before anything
2666 * on c to guarantee that object and page associated with previous tid
2667 * won't be used with current tid. If we fetch tid first, object and
2668 * page could be one associated with next tid and our alloc/free
2669 * request will be failed. In this case, we will retry. So, no problem.
2670 */
2671 barrier();
8a5ec0ba 2672
8a5ec0ba
CL
2673 /*
2674 * The transaction ids are globally unique per cpu and per operation on
2675 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2676 * occurs on the right processor and that there was no operation on the
2677 * linked list in between.
2678 */
8a5ec0ba 2679
9dfc6e68 2680 object = c->freelist;
57d437d2 2681 page = c->page;
8eae1492 2682 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2683 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2684 stat(s, ALLOC_SLOWPATH);
2685 } else {
0ad9500e
ED
2686 void *next_object = get_freepointer_safe(s, object);
2687
8a5ec0ba 2688 /*
25985edc 2689 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2690 * operation and if we are on the right processor.
2691 *
d0e0ac97
CG
2692 * The cmpxchg does the following atomically (without lock
2693 * semantics!)
8a5ec0ba
CL
2694 * 1. Relocate first pointer to the current per cpu area.
2695 * 2. Verify that tid and freelist have not been changed
2696 * 3. If they were not changed replace tid and freelist
2697 *
d0e0ac97
CG
2698 * Since this is without lock semantics the protection is only
2699 * against code executing on this cpu *not* from access by
2700 * other cpus.
8a5ec0ba 2701 */
933393f5 2702 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2703 s->cpu_slab->freelist, s->cpu_slab->tid,
2704 object, tid,
0ad9500e 2705 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2706
2707 note_cmpxchg_failure("slab_alloc", s, tid);
2708 goto redo;
2709 }
0ad9500e 2710 prefetch_freepointer(s, next_object);
84e554e6 2711 stat(s, ALLOC_FASTPATH);
894b8788 2712 }
8a5ec0ba 2713
74e2134f 2714 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2715 memset(object, 0, s->object_size);
d07dbea4 2716
03ec0ed5 2717 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2718
894b8788 2719 return object;
81819f0f
CL
2720}
2721
2b847c3c
EG
2722static __always_inline void *slab_alloc(struct kmem_cache *s,
2723 gfp_t gfpflags, unsigned long addr)
2724{
2725 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2726}
2727
81819f0f
CL
2728void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2729{
2b847c3c 2730 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2731
d0e0ac97
CG
2732 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2733 s->size, gfpflags);
5b882be4
EGM
2734
2735 return ret;
81819f0f
CL
2736}
2737EXPORT_SYMBOL(kmem_cache_alloc);
2738
0f24f128 2739#ifdef CONFIG_TRACING
4a92379b
RK
2740void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2741{
2b847c3c 2742 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2743 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2744 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2745 return ret;
2746}
2747EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2748#endif
2749
81819f0f
CL
2750#ifdef CONFIG_NUMA
2751void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2752{
2b847c3c 2753 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2754
ca2b84cb 2755 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2756 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2757
2758 return ret;
81819f0f
CL
2759}
2760EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2761
0f24f128 2762#ifdef CONFIG_TRACING
4a92379b 2763void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2764 gfp_t gfpflags,
4a92379b 2765 int node, size_t size)
5b882be4 2766{
2b847c3c 2767 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2768
2769 trace_kmalloc_node(_RET_IP_, ret,
2770 size, s->size, gfpflags, node);
0316bec2 2771
505f5dcb 2772 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2773 return ret;
5b882be4 2774}
4a92379b 2775EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2776#endif
5d1f57e4 2777#endif
5b882be4 2778
81819f0f 2779/*
94e4d712 2780 * Slow path handling. This may still be called frequently since objects
894b8788 2781 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2782 *
894b8788
CL
2783 * So we still attempt to reduce cache line usage. Just take the slab
2784 * lock and free the item. If there is no additional partial page
2785 * handling required then we can return immediately.
81819f0f 2786 */
894b8788 2787static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2788 void *head, void *tail, int cnt,
2789 unsigned long addr)
2790
81819f0f
CL
2791{
2792 void *prior;
2cfb7455 2793 int was_frozen;
2cfb7455
CL
2794 struct page new;
2795 unsigned long counters;
2796 struct kmem_cache_node *n = NULL;
61728d1e 2797 unsigned long uninitialized_var(flags);
81819f0f 2798
8a5ec0ba 2799 stat(s, FREE_SLOWPATH);
81819f0f 2800
19c7ff9e 2801 if (kmem_cache_debug(s) &&
282acb43 2802 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2803 return;
6446faa2 2804
2cfb7455 2805 do {
837d678d
JK
2806 if (unlikely(n)) {
2807 spin_unlock_irqrestore(&n->list_lock, flags);
2808 n = NULL;
2809 }
2cfb7455
CL
2810 prior = page->freelist;
2811 counters = page->counters;
81084651 2812 set_freepointer(s, tail, prior);
2cfb7455
CL
2813 new.counters = counters;
2814 was_frozen = new.frozen;
81084651 2815 new.inuse -= cnt;
837d678d 2816 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2817
c65c1877 2818 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2819
2820 /*
d0e0ac97
CG
2821 * Slab was on no list before and will be
2822 * partially empty
2823 * We can defer the list move and instead
2824 * freeze it.
49e22585
CL
2825 */
2826 new.frozen = 1;
2827
c65c1877 2828 } else { /* Needs to be taken off a list */
49e22585 2829
b455def2 2830 n = get_node(s, page_to_nid(page));
49e22585
CL
2831 /*
2832 * Speculatively acquire the list_lock.
2833 * If the cmpxchg does not succeed then we may
2834 * drop the list_lock without any processing.
2835 *
2836 * Otherwise the list_lock will synchronize with
2837 * other processors updating the list of slabs.
2838 */
2839 spin_lock_irqsave(&n->list_lock, flags);
2840
2841 }
2cfb7455 2842 }
81819f0f 2843
2cfb7455
CL
2844 } while (!cmpxchg_double_slab(s, page,
2845 prior, counters,
81084651 2846 head, new.counters,
2cfb7455 2847 "__slab_free"));
81819f0f 2848
2cfb7455 2849 if (likely(!n)) {
49e22585
CL
2850
2851 /*
2852 * If we just froze the page then put it onto the
2853 * per cpu partial list.
2854 */
8028dcea 2855 if (new.frozen && !was_frozen) {
49e22585 2856 put_cpu_partial(s, page, 1);
8028dcea
AS
2857 stat(s, CPU_PARTIAL_FREE);
2858 }
49e22585 2859 /*
2cfb7455
CL
2860 * The list lock was not taken therefore no list
2861 * activity can be necessary.
2862 */
b455def2
L
2863 if (was_frozen)
2864 stat(s, FREE_FROZEN);
2865 return;
2866 }
81819f0f 2867
8a5b20ae 2868 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2869 goto slab_empty;
2870
81819f0f 2871 /*
837d678d
JK
2872 * Objects left in the slab. If it was not on the partial list before
2873 * then add it.
81819f0f 2874 */
345c905d
JK
2875 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2876 if (kmem_cache_debug(s))
c65c1877 2877 remove_full(s, n, page);
837d678d
JK
2878 add_partial(n, page, DEACTIVATE_TO_TAIL);
2879 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2880 }
80f08c19 2881 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2882 return;
2883
2884slab_empty:
a973e9dd 2885 if (prior) {
81819f0f 2886 /*
6fbabb20 2887 * Slab on the partial list.
81819f0f 2888 */
5cc6eee8 2889 remove_partial(n, page);
84e554e6 2890 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2891 } else {
6fbabb20 2892 /* Slab must be on the full list */
c65c1877
PZ
2893 remove_full(s, n, page);
2894 }
2cfb7455 2895
80f08c19 2896 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2897 stat(s, FREE_SLAB);
81819f0f 2898 discard_slab(s, page);
81819f0f
CL
2899}
2900
894b8788
CL
2901/*
2902 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2903 * can perform fastpath freeing without additional function calls.
2904 *
2905 * The fastpath is only possible if we are freeing to the current cpu slab
2906 * of this processor. This typically the case if we have just allocated
2907 * the item before.
2908 *
2909 * If fastpath is not possible then fall back to __slab_free where we deal
2910 * with all sorts of special processing.
81084651
JDB
2911 *
2912 * Bulk free of a freelist with several objects (all pointing to the
2913 * same page) possible by specifying head and tail ptr, plus objects
2914 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2915 */
80a9201a
AP
2916static __always_inline void do_slab_free(struct kmem_cache *s,
2917 struct page *page, void *head, void *tail,
2918 int cnt, unsigned long addr)
894b8788 2919{
81084651 2920 void *tail_obj = tail ? : head;
dfb4f096 2921 struct kmem_cache_cpu *c;
8a5ec0ba 2922 unsigned long tid;
8a5ec0ba
CL
2923redo:
2924 /*
2925 * Determine the currently cpus per cpu slab.
2926 * The cpu may change afterward. However that does not matter since
2927 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2928 * during the cmpxchg then the free will succeed.
8a5ec0ba 2929 */
9aabf810
JK
2930 do {
2931 tid = this_cpu_read(s->cpu_slab->tid);
2932 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2933 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2934 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2935
9aabf810
JK
2936 /* Same with comment on barrier() in slab_alloc_node() */
2937 barrier();
c016b0bd 2938
442b06bc 2939 if (likely(page == c->page)) {
81084651 2940 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2941
933393f5 2942 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2943 s->cpu_slab->freelist, s->cpu_slab->tid,
2944 c->freelist, tid,
81084651 2945 head, next_tid(tid)))) {
8a5ec0ba
CL
2946
2947 note_cmpxchg_failure("slab_free", s, tid);
2948 goto redo;
2949 }
84e554e6 2950 stat(s, FREE_FASTPATH);
894b8788 2951 } else
81084651 2952 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2953
894b8788
CL
2954}
2955
80a9201a
AP
2956static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2957 void *head, void *tail, int cnt,
2958 unsigned long addr)
2959{
2960 slab_free_freelist_hook(s, head, tail);
2961 /*
2962 * slab_free_freelist_hook() could have put the items into quarantine.
2963 * If so, no need to free them.
2964 */
5f0d5a3a 2965 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2966 return;
2967 do_slab_free(s, page, head, tail, cnt, addr);
2968}
2969
2970#ifdef CONFIG_KASAN
2971void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2972{
2973 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2974}
2975#endif
2976
81819f0f
CL
2977void kmem_cache_free(struct kmem_cache *s, void *x)
2978{
b9ce5ef4
GC
2979 s = cache_from_obj(s, x);
2980 if (!s)
79576102 2981 return;
81084651 2982 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2983 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2984}
2985EXPORT_SYMBOL(kmem_cache_free);
2986
d0ecd894 2987struct detached_freelist {
fbd02630 2988 struct page *page;
d0ecd894
JDB
2989 void *tail;
2990 void *freelist;
2991 int cnt;
376bf125 2992 struct kmem_cache *s;
d0ecd894 2993};
fbd02630 2994
d0ecd894
JDB
2995/*
2996 * This function progressively scans the array with free objects (with
2997 * a limited look ahead) and extract objects belonging to the same
2998 * page. It builds a detached freelist directly within the given
2999 * page/objects. This can happen without any need for
3000 * synchronization, because the objects are owned by running process.
3001 * The freelist is build up as a single linked list in the objects.
3002 * The idea is, that this detached freelist can then be bulk
3003 * transferred to the real freelist(s), but only requiring a single
3004 * synchronization primitive. Look ahead in the array is limited due
3005 * to performance reasons.
3006 */
376bf125
JDB
3007static inline
3008int build_detached_freelist(struct kmem_cache *s, size_t size,
3009 void **p, struct detached_freelist *df)
d0ecd894
JDB
3010{
3011 size_t first_skipped_index = 0;
3012 int lookahead = 3;
3013 void *object;
ca257195 3014 struct page *page;
fbd02630 3015
d0ecd894
JDB
3016 /* Always re-init detached_freelist */
3017 df->page = NULL;
fbd02630 3018
d0ecd894
JDB
3019 do {
3020 object = p[--size];
ca257195 3021 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3022 } while (!object && size);
3eed034d 3023
d0ecd894
JDB
3024 if (!object)
3025 return 0;
fbd02630 3026
ca257195
JDB
3027 page = virt_to_head_page(object);
3028 if (!s) {
3029 /* Handle kalloc'ed objects */
3030 if (unlikely(!PageSlab(page))) {
3031 BUG_ON(!PageCompound(page));
3032 kfree_hook(object);
4949148a 3033 __free_pages(page, compound_order(page));
ca257195
JDB
3034 p[size] = NULL; /* mark object processed */
3035 return size;
3036 }
3037 /* Derive kmem_cache from object */
3038 df->s = page->slab_cache;
3039 } else {
3040 df->s = cache_from_obj(s, object); /* Support for memcg */
3041 }
376bf125 3042
d0ecd894 3043 /* Start new detached freelist */
ca257195 3044 df->page = page;
376bf125 3045 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3046 df->tail = object;
3047 df->freelist = object;
3048 p[size] = NULL; /* mark object processed */
3049 df->cnt = 1;
3050
3051 while (size) {
3052 object = p[--size];
3053 if (!object)
3054 continue; /* Skip processed objects */
3055
3056 /* df->page is always set at this point */
3057 if (df->page == virt_to_head_page(object)) {
3058 /* Opportunity build freelist */
376bf125 3059 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3060 df->freelist = object;
3061 df->cnt++;
3062 p[size] = NULL; /* mark object processed */
3063
3064 continue;
fbd02630 3065 }
d0ecd894
JDB
3066
3067 /* Limit look ahead search */
3068 if (!--lookahead)
3069 break;
3070
3071 if (!first_skipped_index)
3072 first_skipped_index = size + 1;
fbd02630 3073 }
d0ecd894
JDB
3074
3075 return first_skipped_index;
3076}
3077
d0ecd894 3078/* Note that interrupts must be enabled when calling this function. */
376bf125 3079void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3080{
3081 if (WARN_ON(!size))
3082 return;
3083
3084 do {
3085 struct detached_freelist df;
3086
3087 size = build_detached_freelist(s, size, p, &df);
84582c8a 3088 if (!df.page)
d0ecd894
JDB
3089 continue;
3090
376bf125 3091 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3092 } while (likely(size));
484748f0
CL
3093}
3094EXPORT_SYMBOL(kmem_cache_free_bulk);
3095
994eb764 3096/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3097int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3098 void **p)
484748f0 3099{
994eb764
JDB
3100 struct kmem_cache_cpu *c;
3101 int i;
3102
03ec0ed5
JDB
3103 /* memcg and kmem_cache debug support */
3104 s = slab_pre_alloc_hook(s, flags);
3105 if (unlikely(!s))
3106 return false;
994eb764
JDB
3107 /*
3108 * Drain objects in the per cpu slab, while disabling local
3109 * IRQs, which protects against PREEMPT and interrupts
3110 * handlers invoking normal fastpath.
3111 */
3112 local_irq_disable();
3113 c = this_cpu_ptr(s->cpu_slab);
3114
3115 for (i = 0; i < size; i++) {
3116 void *object = c->freelist;
3117
ebe909e0 3118 if (unlikely(!object)) {
ebe909e0
JDB
3119 /*
3120 * Invoking slow path likely have side-effect
3121 * of re-populating per CPU c->freelist
3122 */
87098373 3123 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3124 _RET_IP_, c);
87098373
CL
3125 if (unlikely(!p[i]))
3126 goto error;
3127
ebe909e0
JDB
3128 c = this_cpu_ptr(s->cpu_slab);
3129 continue; /* goto for-loop */
3130 }
994eb764
JDB
3131 c->freelist = get_freepointer(s, object);
3132 p[i] = object;
3133 }
3134 c->tid = next_tid(c->tid);
3135 local_irq_enable();
3136
3137 /* Clear memory outside IRQ disabled fastpath loop */
3138 if (unlikely(flags & __GFP_ZERO)) {
3139 int j;
3140
3141 for (j = 0; j < i; j++)
3142 memset(p[j], 0, s->object_size);
3143 }
3144
03ec0ed5
JDB
3145 /* memcg and kmem_cache debug support */
3146 slab_post_alloc_hook(s, flags, size, p);
865762a8 3147 return i;
87098373 3148error:
87098373 3149 local_irq_enable();
03ec0ed5
JDB
3150 slab_post_alloc_hook(s, flags, i, p);
3151 __kmem_cache_free_bulk(s, i, p);
865762a8 3152 return 0;
484748f0
CL
3153}
3154EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3155
3156
81819f0f 3157/*
672bba3a
CL
3158 * Object placement in a slab is made very easy because we always start at
3159 * offset 0. If we tune the size of the object to the alignment then we can
3160 * get the required alignment by putting one properly sized object after
3161 * another.
81819f0f
CL
3162 *
3163 * Notice that the allocation order determines the sizes of the per cpu
3164 * caches. Each processor has always one slab available for allocations.
3165 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3166 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3167 * locking overhead.
81819f0f
CL
3168 */
3169
3170/*
3171 * Mininum / Maximum order of slab pages. This influences locking overhead
3172 * and slab fragmentation. A higher order reduces the number of partial slabs
3173 * and increases the number of allocations possible without having to
3174 * take the list_lock.
3175 */
3176static int slub_min_order;
114e9e89 3177static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3178static int slub_min_objects;
81819f0f 3179
81819f0f
CL
3180/*
3181 * Calculate the order of allocation given an slab object size.
3182 *
672bba3a
CL
3183 * The order of allocation has significant impact on performance and other
3184 * system components. Generally order 0 allocations should be preferred since
3185 * order 0 does not cause fragmentation in the page allocator. Larger objects
3186 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3187 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3188 * would be wasted.
3189 *
3190 * In order to reach satisfactory performance we must ensure that a minimum
3191 * number of objects is in one slab. Otherwise we may generate too much
3192 * activity on the partial lists which requires taking the list_lock. This is
3193 * less a concern for large slabs though which are rarely used.
81819f0f 3194 *
672bba3a
CL
3195 * slub_max_order specifies the order where we begin to stop considering the
3196 * number of objects in a slab as critical. If we reach slub_max_order then
3197 * we try to keep the page order as low as possible. So we accept more waste
3198 * of space in favor of a small page order.
81819f0f 3199 *
672bba3a
CL
3200 * Higher order allocations also allow the placement of more objects in a
3201 * slab and thereby reduce object handling overhead. If the user has
3202 * requested a higher mininum order then we start with that one instead of
3203 * the smallest order which will fit the object.
81819f0f 3204 */
5e6d444e 3205static inline int slab_order(int size, int min_objects,
ab9a0f19 3206 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3207{
3208 int order;
3209 int rem;
6300ea75 3210 int min_order = slub_min_order;
81819f0f 3211
ab9a0f19 3212 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3213 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3214
9f835703 3215 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3216 order <= max_order; order++) {
81819f0f 3217
5e6d444e 3218 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3219
ab9a0f19 3220 rem = (slab_size - reserved) % size;
81819f0f 3221
5e6d444e 3222 if (rem <= slab_size / fract_leftover)
81819f0f 3223 break;
81819f0f 3224 }
672bba3a 3225
81819f0f
CL
3226 return order;
3227}
3228
ab9a0f19 3229static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3230{
3231 int order;
3232 int min_objects;
3233 int fraction;
e8120ff1 3234 int max_objects;
5e6d444e
CL
3235
3236 /*
3237 * Attempt to find best configuration for a slab. This
3238 * works by first attempting to generate a layout with
3239 * the best configuration and backing off gradually.
3240 *
422ff4d7 3241 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3242 * we reduce the minimum objects required in a slab.
3243 */
3244 min_objects = slub_min_objects;
9b2cd506
CL
3245 if (!min_objects)
3246 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3247 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3248 min_objects = min(min_objects, max_objects);
3249
5e6d444e 3250 while (min_objects > 1) {
c124f5b5 3251 fraction = 16;
5e6d444e
CL
3252 while (fraction >= 4) {
3253 order = slab_order(size, min_objects,
ab9a0f19 3254 slub_max_order, fraction, reserved);
5e6d444e
CL
3255 if (order <= slub_max_order)
3256 return order;
3257 fraction /= 2;
3258 }
5086c389 3259 min_objects--;
5e6d444e
CL
3260 }
3261
3262 /*
3263 * We were unable to place multiple objects in a slab. Now
3264 * lets see if we can place a single object there.
3265 */
ab9a0f19 3266 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3267 if (order <= slub_max_order)
3268 return order;
3269
3270 /*
3271 * Doh this slab cannot be placed using slub_max_order.
3272 */
ab9a0f19 3273 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3274 if (order < MAX_ORDER)
5e6d444e
CL
3275 return order;
3276 return -ENOSYS;
3277}
3278
5595cffc 3279static void
4053497d 3280init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3281{
3282 n->nr_partial = 0;
81819f0f
CL
3283 spin_lock_init(&n->list_lock);
3284 INIT_LIST_HEAD(&n->partial);
8ab1372f 3285#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3286 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3287 atomic_long_set(&n->total_objects, 0);
643b1138 3288 INIT_LIST_HEAD(&n->full);
8ab1372f 3289#endif
81819f0f
CL
3290}
3291
55136592 3292static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3293{
6c182dc0 3294 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3295 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3296
8a5ec0ba 3297 /*
d4d84fef
CM
3298 * Must align to double word boundary for the double cmpxchg
3299 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3300 */
d4d84fef
CM
3301 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3302 2 * sizeof(void *));
8a5ec0ba
CL
3303
3304 if (!s->cpu_slab)
3305 return 0;
3306
3307 init_kmem_cache_cpus(s);
4c93c355 3308
8a5ec0ba 3309 return 1;
4c93c355 3310}
4c93c355 3311
51df1142
CL
3312static struct kmem_cache *kmem_cache_node;
3313
81819f0f
CL
3314/*
3315 * No kmalloc_node yet so do it by hand. We know that this is the first
3316 * slab on the node for this slabcache. There are no concurrent accesses
3317 * possible.
3318 *
721ae22a
ZYW
3319 * Note that this function only works on the kmem_cache_node
3320 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3321 * memory on a fresh node that has no slab structures yet.
81819f0f 3322 */
55136592 3323static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3324{
3325 struct page *page;
3326 struct kmem_cache_node *n;
3327
51df1142 3328 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3329
51df1142 3330 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3331
3332 BUG_ON(!page);
a2f92ee7 3333 if (page_to_nid(page) != node) {
f9f58285
FF
3334 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3335 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3336 }
3337
81819f0f
CL
3338 n = page->freelist;
3339 BUG_ON(!n);
51df1142 3340 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3341 page->inuse = 1;
8cb0a506 3342 page->frozen = 0;
51df1142 3343 kmem_cache_node->node[node] = n;
8ab1372f 3344#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3345 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3346 init_tracking(kmem_cache_node, n);
8ab1372f 3347#endif
505f5dcb
AP
3348 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3349 GFP_KERNEL);
4053497d 3350 init_kmem_cache_node(n);
51df1142 3351 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3352
67b6c900 3353 /*
1e4dd946
SR
3354 * No locks need to be taken here as it has just been
3355 * initialized and there is no concurrent access.
67b6c900 3356 */
1e4dd946 3357 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3358}
3359
3360static void free_kmem_cache_nodes(struct kmem_cache *s)
3361{
3362 int node;
fa45dc25 3363 struct kmem_cache_node *n;
81819f0f 3364
fa45dc25
CL
3365 for_each_kmem_cache_node(s, node, n) {
3366 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3367 s->node[node] = NULL;
3368 }
3369}
3370
52b4b950
DS
3371void __kmem_cache_release(struct kmem_cache *s)
3372{
210e7a43 3373 cache_random_seq_destroy(s);
52b4b950
DS
3374 free_percpu(s->cpu_slab);
3375 free_kmem_cache_nodes(s);
3376}
3377
55136592 3378static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3379{
3380 int node;
81819f0f 3381
f64dc58c 3382 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3383 struct kmem_cache_node *n;
3384
73367bd8 3385 if (slab_state == DOWN) {
55136592 3386 early_kmem_cache_node_alloc(node);
73367bd8
AD
3387 continue;
3388 }
51df1142 3389 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3390 GFP_KERNEL, node);
81819f0f 3391
73367bd8
AD
3392 if (!n) {
3393 free_kmem_cache_nodes(s);
3394 return 0;
81819f0f 3395 }
73367bd8 3396
81819f0f 3397 s->node[node] = n;
4053497d 3398 init_kmem_cache_node(n);
81819f0f
CL
3399 }
3400 return 1;
3401}
81819f0f 3402
c0bdb232 3403static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3404{
3405 if (min < MIN_PARTIAL)
3406 min = MIN_PARTIAL;
3407 else if (min > MAX_PARTIAL)
3408 min = MAX_PARTIAL;
3409 s->min_partial = min;
3410}
3411
81819f0f
CL
3412/*
3413 * calculate_sizes() determines the order and the distribution of data within
3414 * a slab object.
3415 */
06b285dc 3416static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3417{
3418 unsigned long flags = s->flags;
80a9201a 3419 size_t size = s->object_size;
834f3d11 3420 int order;
81819f0f 3421
d8b42bf5
CL
3422 /*
3423 * Round up object size to the next word boundary. We can only
3424 * place the free pointer at word boundaries and this determines
3425 * the possible location of the free pointer.
3426 */
3427 size = ALIGN(size, sizeof(void *));
3428
3429#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3430 /*
3431 * Determine if we can poison the object itself. If the user of
3432 * the slab may touch the object after free or before allocation
3433 * then we should never poison the object itself.
3434 */
5f0d5a3a 3435 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3436 !s->ctor)
81819f0f
CL
3437 s->flags |= __OBJECT_POISON;
3438 else
3439 s->flags &= ~__OBJECT_POISON;
3440
81819f0f
CL
3441
3442 /*
672bba3a 3443 * If we are Redzoning then check if there is some space between the
81819f0f 3444 * end of the object and the free pointer. If not then add an
672bba3a 3445 * additional word to have some bytes to store Redzone information.
81819f0f 3446 */
3b0efdfa 3447 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3448 size += sizeof(void *);
41ecc55b 3449#endif
81819f0f
CL
3450
3451 /*
672bba3a
CL
3452 * With that we have determined the number of bytes in actual use
3453 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3454 */
3455 s->inuse = size;
3456
5f0d5a3a 3457 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3458 s->ctor)) {
81819f0f
CL
3459 /*
3460 * Relocate free pointer after the object if it is not
3461 * permitted to overwrite the first word of the object on
3462 * kmem_cache_free.
3463 *
3464 * This is the case if we do RCU, have a constructor or
3465 * destructor or are poisoning the objects.
3466 */
3467 s->offset = size;
3468 size += sizeof(void *);
3469 }
3470
c12b3c62 3471#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3472 if (flags & SLAB_STORE_USER)
3473 /*
3474 * Need to store information about allocs and frees after
3475 * the object.
3476 */
3477 size += 2 * sizeof(struct track);
80a9201a 3478#endif
81819f0f 3479
80a9201a
AP
3480 kasan_cache_create(s, &size, &s->flags);
3481#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3482 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3483 /*
3484 * Add some empty padding so that we can catch
3485 * overwrites from earlier objects rather than let
3486 * tracking information or the free pointer be
0211a9c8 3487 * corrupted if a user writes before the start
81819f0f
CL
3488 * of the object.
3489 */
3490 size += sizeof(void *);
d86bd1be
JK
3491
3492 s->red_left_pad = sizeof(void *);
3493 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3494 size += s->red_left_pad;
3495 }
41ecc55b 3496#endif
672bba3a 3497
81819f0f
CL
3498 /*
3499 * SLUB stores one object immediately after another beginning from
3500 * offset 0. In order to align the objects we have to simply size
3501 * each object to conform to the alignment.
3502 */
45906855 3503 size = ALIGN(size, s->align);
81819f0f 3504 s->size = size;
06b285dc
CL
3505 if (forced_order >= 0)
3506 order = forced_order;
3507 else
ab9a0f19 3508 order = calculate_order(size, s->reserved);
81819f0f 3509
834f3d11 3510 if (order < 0)
81819f0f
CL
3511 return 0;
3512
b7a49f0d 3513 s->allocflags = 0;
834f3d11 3514 if (order)
b7a49f0d
CL
3515 s->allocflags |= __GFP_COMP;
3516
3517 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3518 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3519
3520 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3521 s->allocflags |= __GFP_RECLAIMABLE;
3522
81819f0f
CL
3523 /*
3524 * Determine the number of objects per slab
3525 */
ab9a0f19
LJ
3526 s->oo = oo_make(order, size, s->reserved);
3527 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3528 if (oo_objects(s->oo) > oo_objects(s->max))
3529 s->max = s->oo;
81819f0f 3530
834f3d11 3531 return !!oo_objects(s->oo);
81819f0f
CL
3532}
3533
8a13a4cc 3534static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3535{
8a13a4cc 3536 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3537 s->reserved = 0;
81819f0f 3538
5f0d5a3a 3539 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3540 s->reserved = sizeof(struct rcu_head);
81819f0f 3541
06b285dc 3542 if (!calculate_sizes(s, -1))
81819f0f 3543 goto error;
3de47213
DR
3544 if (disable_higher_order_debug) {
3545 /*
3546 * Disable debugging flags that store metadata if the min slab
3547 * order increased.
3548 */
3b0efdfa 3549 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3550 s->flags &= ~DEBUG_METADATA_FLAGS;
3551 s->offset = 0;
3552 if (!calculate_sizes(s, -1))
3553 goto error;
3554 }
3555 }
81819f0f 3556
2565409f
HC
3557#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3558 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3559 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3560 /* Enable fast mode */
3561 s->flags |= __CMPXCHG_DOUBLE;
3562#endif
3563
3b89d7d8
DR
3564 /*
3565 * The larger the object size is, the more pages we want on the partial
3566 * list to avoid pounding the page allocator excessively.
3567 */
49e22585
CL
3568 set_min_partial(s, ilog2(s->size) / 2);
3569
3570 /*
3571 * cpu_partial determined the maximum number of objects kept in the
3572 * per cpu partial lists of a processor.
3573 *
3574 * Per cpu partial lists mainly contain slabs that just have one
3575 * object freed. If they are used for allocation then they can be
3576 * filled up again with minimal effort. The slab will never hit the
3577 * per node partial lists and therefore no locking will be required.
3578 *
3579 * This setting also determines
3580 *
3581 * A) The number of objects from per cpu partial slabs dumped to the
3582 * per node list when we reach the limit.
9f264904 3583 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3584 * per node list when we run out of per cpu objects. We only fetch
3585 * 50% to keep some capacity around for frees.
49e22585 3586 */
345c905d 3587 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3588 s->cpu_partial = 0;
3589 else if (s->size >= PAGE_SIZE)
49e22585
CL
3590 s->cpu_partial = 2;
3591 else if (s->size >= 1024)
3592 s->cpu_partial = 6;
3593 else if (s->size >= 256)
3594 s->cpu_partial = 13;
3595 else
3596 s->cpu_partial = 30;
3597
81819f0f 3598#ifdef CONFIG_NUMA
e2cb96b7 3599 s->remote_node_defrag_ratio = 1000;
81819f0f 3600#endif
210e7a43
TG
3601
3602 /* Initialize the pre-computed randomized freelist if slab is up */
3603 if (slab_state >= UP) {
3604 if (init_cache_random_seq(s))
3605 goto error;
3606 }
3607
55136592 3608 if (!init_kmem_cache_nodes(s))
dfb4f096 3609 goto error;
81819f0f 3610
55136592 3611 if (alloc_kmem_cache_cpus(s))
278b1bb1 3612 return 0;
ff12059e 3613
4c93c355 3614 free_kmem_cache_nodes(s);
81819f0f
CL
3615error:
3616 if (flags & SLAB_PANIC)
756a025f
JP
3617 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3618 s->name, (unsigned long)s->size, s->size,
3619 oo_order(s->oo), s->offset, flags);
278b1bb1 3620 return -EINVAL;
81819f0f 3621}
81819f0f 3622
33b12c38
CL
3623static void list_slab_objects(struct kmem_cache *s, struct page *page,
3624 const char *text)
3625{
3626#ifdef CONFIG_SLUB_DEBUG
3627 void *addr = page_address(page);
3628 void *p;
a5dd5c11
NK
3629 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3630 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3631 if (!map)
3632 return;
945cf2b6 3633 slab_err(s, page, text, s->name);
33b12c38 3634 slab_lock(page);
33b12c38 3635
5f80b13a 3636 get_map(s, page, map);
33b12c38
CL
3637 for_each_object(p, s, addr, page->objects) {
3638
3639 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3640 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3641 print_tracking(s, p);
3642 }
3643 }
3644 slab_unlock(page);
bbd7d57b 3645 kfree(map);
33b12c38
CL
3646#endif
3647}
3648
81819f0f 3649/*
599870b1 3650 * Attempt to free all partial slabs on a node.
52b4b950
DS
3651 * This is called from __kmem_cache_shutdown(). We must take list_lock
3652 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3653 */
599870b1 3654static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3655{
60398923 3656 LIST_HEAD(discard);
81819f0f
CL
3657 struct page *page, *h;
3658
52b4b950
DS
3659 BUG_ON(irqs_disabled());
3660 spin_lock_irq(&n->list_lock);
33b12c38 3661 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3662 if (!page->inuse) {
52b4b950 3663 remove_partial(n, page);
60398923 3664 list_add(&page->lru, &discard);
33b12c38
CL
3665 } else {
3666 list_slab_objects(s, page,
52b4b950 3667 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3668 }
33b12c38 3669 }
52b4b950 3670 spin_unlock_irq(&n->list_lock);
60398923
CW
3671
3672 list_for_each_entry_safe(page, h, &discard, lru)
3673 discard_slab(s, page);
81819f0f
CL
3674}
3675
3676/*
672bba3a 3677 * Release all resources used by a slab cache.
81819f0f 3678 */
52b4b950 3679int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3680{
3681 int node;
fa45dc25 3682 struct kmem_cache_node *n;
81819f0f
CL
3683
3684 flush_all(s);
81819f0f 3685 /* Attempt to free all objects */
fa45dc25 3686 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3687 free_partial(s, n);
3688 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3689 return 1;
3690 }
bf5eb3de 3691 sysfs_slab_remove(s);
81819f0f
CL
3692 return 0;
3693}
3694
81819f0f
CL
3695/********************************************************************
3696 * Kmalloc subsystem
3697 *******************************************************************/
3698
81819f0f
CL
3699static int __init setup_slub_min_order(char *str)
3700{
06428780 3701 get_option(&str, &slub_min_order);
81819f0f
CL
3702
3703 return 1;
3704}
3705
3706__setup("slub_min_order=", setup_slub_min_order);
3707
3708static int __init setup_slub_max_order(char *str)
3709{
06428780 3710 get_option(&str, &slub_max_order);
818cf590 3711 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3712
3713 return 1;
3714}
3715
3716__setup("slub_max_order=", setup_slub_max_order);
3717
3718static int __init setup_slub_min_objects(char *str)
3719{
06428780 3720 get_option(&str, &slub_min_objects);
81819f0f
CL
3721
3722 return 1;
3723}
3724
3725__setup("slub_min_objects=", setup_slub_min_objects);
3726
81819f0f
CL
3727void *__kmalloc(size_t size, gfp_t flags)
3728{
aadb4bc4 3729 struct kmem_cache *s;
5b882be4 3730 void *ret;
81819f0f 3731
95a05b42 3732 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3733 return kmalloc_large(size, flags);
aadb4bc4 3734
2c59dd65 3735 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3736
3737 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3738 return s;
3739
2b847c3c 3740 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3741
ca2b84cb 3742 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3743
505f5dcb 3744 kasan_kmalloc(s, ret, size, flags);
0316bec2 3745
5b882be4 3746 return ret;
81819f0f
CL
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
5d1f57e4 3750#ifdef CONFIG_NUMA
f619cfe1
CL
3751static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3752{
b1eeab67 3753 struct page *page;
e4f7c0b4 3754 void *ptr = NULL;
f619cfe1 3755
52383431 3756 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3757 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3758 if (page)
e4f7c0b4
CM
3759 ptr = page_address(page);
3760
d56791b3 3761 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3762 return ptr;
f619cfe1
CL
3763}
3764
81819f0f
CL
3765void *__kmalloc_node(size_t size, gfp_t flags, int node)
3766{
aadb4bc4 3767 struct kmem_cache *s;
5b882be4 3768 void *ret;
81819f0f 3769
95a05b42 3770 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3771 ret = kmalloc_large_node(size, flags, node);
3772
ca2b84cb
EGM
3773 trace_kmalloc_node(_RET_IP_, ret,
3774 size, PAGE_SIZE << get_order(size),
3775 flags, node);
5b882be4
EGM
3776
3777 return ret;
3778 }
aadb4bc4 3779
2c59dd65 3780 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3781
3782 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3783 return s;
3784
2b847c3c 3785 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3786
ca2b84cb 3787 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3788
505f5dcb 3789 kasan_kmalloc(s, ret, size, flags);
0316bec2 3790
5b882be4 3791 return ret;
81819f0f
CL
3792}
3793EXPORT_SYMBOL(__kmalloc_node);
3794#endif
3795
ed18adc1
KC
3796#ifdef CONFIG_HARDENED_USERCOPY
3797/*
3798 * Rejects objects that are incorrectly sized.
3799 *
3800 * Returns NULL if check passes, otherwise const char * to name of cache
3801 * to indicate an error.
3802 */
3803const char *__check_heap_object(const void *ptr, unsigned long n,
3804 struct page *page)
3805{
3806 struct kmem_cache *s;
3807 unsigned long offset;
3808 size_t object_size;
3809
3810 /* Find object and usable object size. */
3811 s = page->slab_cache;
3812 object_size = slab_ksize(s);
3813
3814 /* Reject impossible pointers. */
3815 if (ptr < page_address(page))
3816 return s->name;
3817
3818 /* Find offset within object. */
3819 offset = (ptr - page_address(page)) % s->size;
3820
3821 /* Adjust for redzone and reject if within the redzone. */
3822 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3823 if (offset < s->red_left_pad)
3824 return s->name;
3825 offset -= s->red_left_pad;
3826 }
3827
3828 /* Allow address range falling entirely within object size. */
3829 if (offset <= object_size && n <= object_size - offset)
3830 return NULL;
3831
3832 return s->name;
3833}
3834#endif /* CONFIG_HARDENED_USERCOPY */
3835
0316bec2 3836static size_t __ksize(const void *object)
81819f0f 3837{
272c1d21 3838 struct page *page;
81819f0f 3839
ef8b4520 3840 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3841 return 0;
3842
294a80a8 3843 page = virt_to_head_page(object);
294a80a8 3844
76994412
PE
3845 if (unlikely(!PageSlab(page))) {
3846 WARN_ON(!PageCompound(page));
294a80a8 3847 return PAGE_SIZE << compound_order(page);
76994412 3848 }
81819f0f 3849
1b4f59e3 3850 return slab_ksize(page->slab_cache);
81819f0f 3851}
0316bec2
AR
3852
3853size_t ksize(const void *object)
3854{
3855 size_t size = __ksize(object);
3856 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3857 * so we need to unpoison this area.
3858 */
3859 kasan_unpoison_shadow(object, size);
0316bec2
AR
3860 return size;
3861}
b1aabecd 3862EXPORT_SYMBOL(ksize);
81819f0f
CL
3863
3864void kfree(const void *x)
3865{
81819f0f 3866 struct page *page;
5bb983b0 3867 void *object = (void *)x;
81819f0f 3868
2121db74
PE
3869 trace_kfree(_RET_IP_, x);
3870
2408c550 3871 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3872 return;
3873
b49af68f 3874 page = virt_to_head_page(x);
aadb4bc4 3875 if (unlikely(!PageSlab(page))) {
0937502a 3876 BUG_ON(!PageCompound(page));
d56791b3 3877 kfree_hook(x);
4949148a 3878 __free_pages(page, compound_order(page));
aadb4bc4
CL
3879 return;
3880 }
81084651 3881 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3882}
3883EXPORT_SYMBOL(kfree);
3884
832f37f5
VD
3885#define SHRINK_PROMOTE_MAX 32
3886
2086d26a 3887/*
832f37f5
VD
3888 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3889 * up most to the head of the partial lists. New allocations will then
3890 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3891 *
3892 * The slabs with the least items are placed last. This results in them
3893 * being allocated from last increasing the chance that the last objects
3894 * are freed in them.
2086d26a 3895 */
c9fc5864 3896int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3897{
3898 int node;
3899 int i;
3900 struct kmem_cache_node *n;
3901 struct page *page;
3902 struct page *t;
832f37f5
VD
3903 struct list_head discard;
3904 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3905 unsigned long flags;
ce3712d7 3906 int ret = 0;
2086d26a 3907
2086d26a 3908 flush_all(s);
fa45dc25 3909 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3910 INIT_LIST_HEAD(&discard);
3911 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3912 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3913
3914 spin_lock_irqsave(&n->list_lock, flags);
3915
3916 /*
832f37f5 3917 * Build lists of slabs to discard or promote.
2086d26a 3918 *
672bba3a
CL
3919 * Note that concurrent frees may occur while we hold the
3920 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3921 */
3922 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3923 int free = page->objects - page->inuse;
3924
3925 /* Do not reread page->inuse */
3926 barrier();
3927
3928 /* We do not keep full slabs on the list */
3929 BUG_ON(free <= 0);
3930
3931 if (free == page->objects) {
3932 list_move(&page->lru, &discard);
69cb8e6b 3933 n->nr_partial--;
832f37f5
VD
3934 } else if (free <= SHRINK_PROMOTE_MAX)
3935 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3936 }
3937
2086d26a 3938 /*
832f37f5
VD
3939 * Promote the slabs filled up most to the head of the
3940 * partial list.
2086d26a 3941 */
832f37f5
VD
3942 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3943 list_splice(promote + i, &n->partial);
2086d26a 3944
2086d26a 3945 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3946
3947 /* Release empty slabs */
832f37f5 3948 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3949 discard_slab(s, page);
ce3712d7
VD
3950
3951 if (slabs_node(s, node))
3952 ret = 1;
2086d26a
CL
3953 }
3954
ce3712d7 3955 return ret;
2086d26a 3956}
2086d26a 3957
c9fc5864 3958#ifdef CONFIG_MEMCG
01fb58bc
TH
3959static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3960{
50862ce7
TH
3961 /*
3962 * Called with all the locks held after a sched RCU grace period.
3963 * Even if @s becomes empty after shrinking, we can't know that @s
3964 * doesn't have allocations already in-flight and thus can't
3965 * destroy @s until the associated memcg is released.
3966 *
3967 * However, let's remove the sysfs files for empty caches here.
3968 * Each cache has a lot of interface files which aren't
3969 * particularly useful for empty draining caches; otherwise, we can
3970 * easily end up with millions of unnecessary sysfs files on
3971 * systems which have a lot of memory and transient cgroups.
3972 */
3973 if (!__kmem_cache_shrink(s))
3974 sysfs_slab_remove(s);
01fb58bc
TH
3975}
3976
c9fc5864
TH
3977void __kmemcg_cache_deactivate(struct kmem_cache *s)
3978{
3979 /*
3980 * Disable empty slabs caching. Used to avoid pinning offline
3981 * memory cgroups by kmem pages that can be freed.
3982 */
3983 s->cpu_partial = 0;
3984 s->min_partial = 0;
3985
3986 /*
3987 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 3988 * we have to make sure the change is visible before shrinking.
c9fc5864 3989 */
01fb58bc 3990 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
3991}
3992#endif
3993
b9049e23
YG
3994static int slab_mem_going_offline_callback(void *arg)
3995{
3996 struct kmem_cache *s;
3997
18004c5d 3998 mutex_lock(&slab_mutex);
b9049e23 3999 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4000 __kmem_cache_shrink(s);
18004c5d 4001 mutex_unlock(&slab_mutex);
b9049e23
YG
4002
4003 return 0;
4004}
4005
4006static void slab_mem_offline_callback(void *arg)
4007{
4008 struct kmem_cache_node *n;
4009 struct kmem_cache *s;
4010 struct memory_notify *marg = arg;
4011 int offline_node;
4012
b9d5ab25 4013 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4014
4015 /*
4016 * If the node still has available memory. we need kmem_cache_node
4017 * for it yet.
4018 */
4019 if (offline_node < 0)
4020 return;
4021
18004c5d 4022 mutex_lock(&slab_mutex);
b9049e23
YG
4023 list_for_each_entry(s, &slab_caches, list) {
4024 n = get_node(s, offline_node);
4025 if (n) {
4026 /*
4027 * if n->nr_slabs > 0, slabs still exist on the node
4028 * that is going down. We were unable to free them,
c9404c9c 4029 * and offline_pages() function shouldn't call this
b9049e23
YG
4030 * callback. So, we must fail.
4031 */
0f389ec6 4032 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4033
4034 s->node[offline_node] = NULL;
8de66a0c 4035 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4036 }
4037 }
18004c5d 4038 mutex_unlock(&slab_mutex);
b9049e23
YG
4039}
4040
4041static int slab_mem_going_online_callback(void *arg)
4042{
4043 struct kmem_cache_node *n;
4044 struct kmem_cache *s;
4045 struct memory_notify *marg = arg;
b9d5ab25 4046 int nid = marg->status_change_nid_normal;
b9049e23
YG
4047 int ret = 0;
4048
4049 /*
4050 * If the node's memory is already available, then kmem_cache_node is
4051 * already created. Nothing to do.
4052 */
4053 if (nid < 0)
4054 return 0;
4055
4056 /*
0121c619 4057 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4058 * allocate a kmem_cache_node structure in order to bring the node
4059 * online.
4060 */
18004c5d 4061 mutex_lock(&slab_mutex);
b9049e23
YG
4062 list_for_each_entry(s, &slab_caches, list) {
4063 /*
4064 * XXX: kmem_cache_alloc_node will fallback to other nodes
4065 * since memory is not yet available from the node that
4066 * is brought up.
4067 */
8de66a0c 4068 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4069 if (!n) {
4070 ret = -ENOMEM;
4071 goto out;
4072 }
4053497d 4073 init_kmem_cache_node(n);
b9049e23
YG
4074 s->node[nid] = n;
4075 }
4076out:
18004c5d 4077 mutex_unlock(&slab_mutex);
b9049e23
YG
4078 return ret;
4079}
4080
4081static int slab_memory_callback(struct notifier_block *self,
4082 unsigned long action, void *arg)
4083{
4084 int ret = 0;
4085
4086 switch (action) {
4087 case MEM_GOING_ONLINE:
4088 ret = slab_mem_going_online_callback(arg);
4089 break;
4090 case MEM_GOING_OFFLINE:
4091 ret = slab_mem_going_offline_callback(arg);
4092 break;
4093 case MEM_OFFLINE:
4094 case MEM_CANCEL_ONLINE:
4095 slab_mem_offline_callback(arg);
4096 break;
4097 case MEM_ONLINE:
4098 case MEM_CANCEL_OFFLINE:
4099 break;
4100 }
dc19f9db
KH
4101 if (ret)
4102 ret = notifier_from_errno(ret);
4103 else
4104 ret = NOTIFY_OK;
b9049e23
YG
4105 return ret;
4106}
4107
3ac38faa
AM
4108static struct notifier_block slab_memory_callback_nb = {
4109 .notifier_call = slab_memory_callback,
4110 .priority = SLAB_CALLBACK_PRI,
4111};
b9049e23 4112
81819f0f
CL
4113/********************************************************************
4114 * Basic setup of slabs
4115 *******************************************************************/
4116
51df1142
CL
4117/*
4118 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4119 * the page allocator. Allocate them properly then fix up the pointers
4120 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4121 */
4122
dffb4d60 4123static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4124{
4125 int node;
dffb4d60 4126 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4127 struct kmem_cache_node *n;
51df1142 4128
dffb4d60 4129 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4130
7d557b3c
GC
4131 /*
4132 * This runs very early, and only the boot processor is supposed to be
4133 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4134 * IPIs around.
4135 */
4136 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4137 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4138 struct page *p;
4139
fa45dc25
CL
4140 list_for_each_entry(p, &n->partial, lru)
4141 p->slab_cache = s;
51df1142 4142
607bf324 4143#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4144 list_for_each_entry(p, &n->full, lru)
4145 p->slab_cache = s;
51df1142 4146#endif
51df1142 4147 }
f7ce3190 4148 slab_init_memcg_params(s);
dffb4d60 4149 list_add(&s->list, &slab_caches);
510ded33 4150 memcg_link_cache(s);
dffb4d60 4151 return s;
51df1142
CL
4152}
4153
81819f0f
CL
4154void __init kmem_cache_init(void)
4155{
dffb4d60
CL
4156 static __initdata struct kmem_cache boot_kmem_cache,
4157 boot_kmem_cache_node;
51df1142 4158
fc8d8620
SG
4159 if (debug_guardpage_minorder())
4160 slub_max_order = 0;
4161
dffb4d60
CL
4162 kmem_cache_node = &boot_kmem_cache_node;
4163 kmem_cache = &boot_kmem_cache;
51df1142 4164
dffb4d60
CL
4165 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4166 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4167
3ac38faa 4168 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4169
4170 /* Able to allocate the per node structures */
4171 slab_state = PARTIAL;
4172
dffb4d60
CL
4173 create_boot_cache(kmem_cache, "kmem_cache",
4174 offsetof(struct kmem_cache, node) +
4175 nr_node_ids * sizeof(struct kmem_cache_node *),
4176 SLAB_HWCACHE_ALIGN);
8a13a4cc 4177
dffb4d60 4178 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4179
51df1142
CL
4180 /*
4181 * Allocate kmem_cache_node properly from the kmem_cache slab.
4182 * kmem_cache_node is separately allocated so no need to
4183 * update any list pointers.
4184 */
dffb4d60 4185 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4186
4187 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4188 setup_kmalloc_cache_index_table();
f97d5f63 4189 create_kmalloc_caches(0);
81819f0f 4190
210e7a43
TG
4191 /* Setup random freelists for each cache */
4192 init_freelist_randomization();
4193
a96a87bf
SAS
4194 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4195 slub_cpu_dead);
81819f0f 4196
f9f58285 4197 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4198 cache_line_size(),
81819f0f
CL
4199 slub_min_order, slub_max_order, slub_min_objects,
4200 nr_cpu_ids, nr_node_ids);
4201}
4202
7e85ee0c
PE
4203void __init kmem_cache_init_late(void)
4204{
7e85ee0c
PE
4205}
4206
2633d7a0 4207struct kmem_cache *
a44cb944
VD
4208__kmem_cache_alias(const char *name, size_t size, size_t align,
4209 unsigned long flags, void (*ctor)(void *))
81819f0f 4210{
426589f5 4211 struct kmem_cache *s, *c;
81819f0f 4212
a44cb944 4213 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4214 if (s) {
4215 s->refcount++;
84d0ddd6 4216
81819f0f
CL
4217 /*
4218 * Adjust the object sizes so that we clear
4219 * the complete object on kzalloc.
4220 */
3b0efdfa 4221 s->object_size = max(s->object_size, (int)size);
81819f0f 4222 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4223
426589f5 4224 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4225 c->object_size = s->object_size;
4226 c->inuse = max_t(int, c->inuse,
4227 ALIGN(size, sizeof(void *)));
4228 }
4229
7b8f3b66 4230 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4231 s->refcount--;
cbb79694 4232 s = NULL;
7b8f3b66 4233 }
a0e1d1be 4234 }
6446faa2 4235
cbb79694
CL
4236 return s;
4237}
84c1cf62 4238
8a13a4cc 4239int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4240{
aac3a166
PE
4241 int err;
4242
4243 err = kmem_cache_open(s, flags);
4244 if (err)
4245 return err;
20cea968 4246
45530c44
CL
4247 /* Mutex is not taken during early boot */
4248 if (slab_state <= UP)
4249 return 0;
4250
107dab5c 4251 memcg_propagate_slab_attrs(s);
aac3a166 4252 err = sysfs_slab_add(s);
aac3a166 4253 if (err)
52b4b950 4254 __kmem_cache_release(s);
20cea968 4255
aac3a166 4256 return err;
81819f0f 4257}
81819f0f 4258
ce71e27c 4259void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4260{
aadb4bc4 4261 struct kmem_cache *s;
94b528d0 4262 void *ret;
aadb4bc4 4263
95a05b42 4264 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4265 return kmalloc_large(size, gfpflags);
4266
2c59dd65 4267 s = kmalloc_slab(size, gfpflags);
81819f0f 4268
2408c550 4269 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4270 return s;
81819f0f 4271
2b847c3c 4272 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4273
25985edc 4274 /* Honor the call site pointer we received. */
ca2b84cb 4275 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4276
4277 return ret;
81819f0f
CL
4278}
4279
5d1f57e4 4280#ifdef CONFIG_NUMA
81819f0f 4281void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4282 int node, unsigned long caller)
81819f0f 4283{
aadb4bc4 4284 struct kmem_cache *s;
94b528d0 4285 void *ret;
aadb4bc4 4286
95a05b42 4287 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4288 ret = kmalloc_large_node(size, gfpflags, node);
4289
4290 trace_kmalloc_node(caller, ret,
4291 size, PAGE_SIZE << get_order(size),
4292 gfpflags, node);
4293
4294 return ret;
4295 }
eada35ef 4296
2c59dd65 4297 s = kmalloc_slab(size, gfpflags);
81819f0f 4298
2408c550 4299 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4300 return s;
81819f0f 4301
2b847c3c 4302 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4303
25985edc 4304 /* Honor the call site pointer we received. */
ca2b84cb 4305 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4306
4307 return ret;
81819f0f 4308}
5d1f57e4 4309#endif
81819f0f 4310
ab4d5ed5 4311#ifdef CONFIG_SYSFS
205ab99d
CL
4312static int count_inuse(struct page *page)
4313{
4314 return page->inuse;
4315}
4316
4317static int count_total(struct page *page)
4318{
4319 return page->objects;
4320}
ab4d5ed5 4321#endif
205ab99d 4322
ab4d5ed5 4323#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4324static int validate_slab(struct kmem_cache *s, struct page *page,
4325 unsigned long *map)
53e15af0
CL
4326{
4327 void *p;
a973e9dd 4328 void *addr = page_address(page);
53e15af0
CL
4329
4330 if (!check_slab(s, page) ||
4331 !on_freelist(s, page, NULL))
4332 return 0;
4333
4334 /* Now we know that a valid freelist exists */
39b26464 4335 bitmap_zero(map, page->objects);
53e15af0 4336
5f80b13a
CL
4337 get_map(s, page, map);
4338 for_each_object(p, s, addr, page->objects) {
4339 if (test_bit(slab_index(p, s, addr), map))
4340 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4341 return 0;
53e15af0
CL
4342 }
4343
224a88be 4344 for_each_object(p, s, addr, page->objects)
7656c72b 4345 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4346 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4347 return 0;
4348 return 1;
4349}
4350
434e245d
CL
4351static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4352 unsigned long *map)
53e15af0 4353{
881db7fb
CL
4354 slab_lock(page);
4355 validate_slab(s, page, map);
4356 slab_unlock(page);
53e15af0
CL
4357}
4358
434e245d
CL
4359static int validate_slab_node(struct kmem_cache *s,
4360 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4361{
4362 unsigned long count = 0;
4363 struct page *page;
4364 unsigned long flags;
4365
4366 spin_lock_irqsave(&n->list_lock, flags);
4367
4368 list_for_each_entry(page, &n->partial, lru) {
434e245d 4369 validate_slab_slab(s, page, map);
53e15af0
CL
4370 count++;
4371 }
4372 if (count != n->nr_partial)
f9f58285
FF
4373 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4374 s->name, count, n->nr_partial);
53e15af0
CL
4375
4376 if (!(s->flags & SLAB_STORE_USER))
4377 goto out;
4378
4379 list_for_each_entry(page, &n->full, lru) {
434e245d 4380 validate_slab_slab(s, page, map);
53e15af0
CL
4381 count++;
4382 }
4383 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4384 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4385 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4386
4387out:
4388 spin_unlock_irqrestore(&n->list_lock, flags);
4389 return count;
4390}
4391
434e245d 4392static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4393{
4394 int node;
4395 unsigned long count = 0;
205ab99d 4396 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4397 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4398 struct kmem_cache_node *n;
434e245d
CL
4399
4400 if (!map)
4401 return -ENOMEM;
53e15af0
CL
4402
4403 flush_all(s);
fa45dc25 4404 for_each_kmem_cache_node(s, node, n)
434e245d 4405 count += validate_slab_node(s, n, map);
434e245d 4406 kfree(map);
53e15af0
CL
4407 return count;
4408}
88a420e4 4409/*
672bba3a 4410 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4411 * and freed.
4412 */
4413
4414struct location {
4415 unsigned long count;
ce71e27c 4416 unsigned long addr;
45edfa58
CL
4417 long long sum_time;
4418 long min_time;
4419 long max_time;
4420 long min_pid;
4421 long max_pid;
174596a0 4422 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4423 nodemask_t nodes;
88a420e4
CL
4424};
4425
4426struct loc_track {
4427 unsigned long max;
4428 unsigned long count;
4429 struct location *loc;
4430};
4431
4432static void free_loc_track(struct loc_track *t)
4433{
4434 if (t->max)
4435 free_pages((unsigned long)t->loc,
4436 get_order(sizeof(struct location) * t->max));
4437}
4438
68dff6a9 4439static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4440{
4441 struct location *l;
4442 int order;
4443
88a420e4
CL
4444 order = get_order(sizeof(struct location) * max);
4445
68dff6a9 4446 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4447 if (!l)
4448 return 0;
4449
4450 if (t->count) {
4451 memcpy(l, t->loc, sizeof(struct location) * t->count);
4452 free_loc_track(t);
4453 }
4454 t->max = max;
4455 t->loc = l;
4456 return 1;
4457}
4458
4459static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4460 const struct track *track)
88a420e4
CL
4461{
4462 long start, end, pos;
4463 struct location *l;
ce71e27c 4464 unsigned long caddr;
45edfa58 4465 unsigned long age = jiffies - track->when;
88a420e4
CL
4466
4467 start = -1;
4468 end = t->count;
4469
4470 for ( ; ; ) {
4471 pos = start + (end - start + 1) / 2;
4472
4473 /*
4474 * There is nothing at "end". If we end up there
4475 * we need to add something to before end.
4476 */
4477 if (pos == end)
4478 break;
4479
4480 caddr = t->loc[pos].addr;
45edfa58
CL
4481 if (track->addr == caddr) {
4482
4483 l = &t->loc[pos];
4484 l->count++;
4485 if (track->when) {
4486 l->sum_time += age;
4487 if (age < l->min_time)
4488 l->min_time = age;
4489 if (age > l->max_time)
4490 l->max_time = age;
4491
4492 if (track->pid < l->min_pid)
4493 l->min_pid = track->pid;
4494 if (track->pid > l->max_pid)
4495 l->max_pid = track->pid;
4496
174596a0
RR
4497 cpumask_set_cpu(track->cpu,
4498 to_cpumask(l->cpus));
45edfa58
CL
4499 }
4500 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4501 return 1;
4502 }
4503
45edfa58 4504 if (track->addr < caddr)
88a420e4
CL
4505 end = pos;
4506 else
4507 start = pos;
4508 }
4509
4510 /*
672bba3a 4511 * Not found. Insert new tracking element.
88a420e4 4512 */
68dff6a9 4513 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4514 return 0;
4515
4516 l = t->loc + pos;
4517 if (pos < t->count)
4518 memmove(l + 1, l,
4519 (t->count - pos) * sizeof(struct location));
4520 t->count++;
4521 l->count = 1;
45edfa58
CL
4522 l->addr = track->addr;
4523 l->sum_time = age;
4524 l->min_time = age;
4525 l->max_time = age;
4526 l->min_pid = track->pid;
4527 l->max_pid = track->pid;
174596a0
RR
4528 cpumask_clear(to_cpumask(l->cpus));
4529 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4530 nodes_clear(l->nodes);
4531 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4532 return 1;
4533}
4534
4535static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4536 struct page *page, enum track_item alloc,
a5dd5c11 4537 unsigned long *map)
88a420e4 4538{
a973e9dd 4539 void *addr = page_address(page);
88a420e4
CL
4540 void *p;
4541
39b26464 4542 bitmap_zero(map, page->objects);
5f80b13a 4543 get_map(s, page, map);
88a420e4 4544
224a88be 4545 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4546 if (!test_bit(slab_index(p, s, addr), map))
4547 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4548}
4549
4550static int list_locations(struct kmem_cache *s, char *buf,
4551 enum track_item alloc)
4552{
e374d483 4553 int len = 0;
88a420e4 4554 unsigned long i;
68dff6a9 4555 struct loc_track t = { 0, 0, NULL };
88a420e4 4556 int node;
bbd7d57b
ED
4557 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4558 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4559 struct kmem_cache_node *n;
88a420e4 4560
bbd7d57b
ED
4561 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4562 GFP_TEMPORARY)) {
4563 kfree(map);
68dff6a9 4564 return sprintf(buf, "Out of memory\n");
bbd7d57b 4565 }
88a420e4
CL
4566 /* Push back cpu slabs */
4567 flush_all(s);
4568
fa45dc25 4569 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4570 unsigned long flags;
4571 struct page *page;
4572
9e86943b 4573 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4574 continue;
4575
4576 spin_lock_irqsave(&n->list_lock, flags);
4577 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4578 process_slab(&t, s, page, alloc, map);
88a420e4 4579 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4580 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4581 spin_unlock_irqrestore(&n->list_lock, flags);
4582 }
4583
4584 for (i = 0; i < t.count; i++) {
45edfa58 4585 struct location *l = &t.loc[i];
88a420e4 4586
9c246247 4587 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4588 break;
e374d483 4589 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4590
4591 if (l->addr)
62c70bce 4592 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4593 else
e374d483 4594 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4595
4596 if (l->sum_time != l->min_time) {
e374d483 4597 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4598 l->min_time,
4599 (long)div_u64(l->sum_time, l->count),
4600 l->max_time);
45edfa58 4601 } else
e374d483 4602 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4603 l->min_time);
4604
4605 if (l->min_pid != l->max_pid)
e374d483 4606 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4607 l->min_pid, l->max_pid);
4608 else
e374d483 4609 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4610 l->min_pid);
4611
174596a0
RR
4612 if (num_online_cpus() > 1 &&
4613 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4614 len < PAGE_SIZE - 60)
4615 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4616 " cpus=%*pbl",
4617 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4618
62bc62a8 4619 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4620 len < PAGE_SIZE - 60)
4621 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4622 " nodes=%*pbl",
4623 nodemask_pr_args(&l->nodes));
45edfa58 4624
e374d483 4625 len += sprintf(buf + len, "\n");
88a420e4
CL
4626 }
4627
4628 free_loc_track(&t);
bbd7d57b 4629 kfree(map);
88a420e4 4630 if (!t.count)
e374d483
HH
4631 len += sprintf(buf, "No data\n");
4632 return len;
88a420e4 4633}
ab4d5ed5 4634#endif
88a420e4 4635
a5a84755 4636#ifdef SLUB_RESILIENCY_TEST
c07b8183 4637static void __init resiliency_test(void)
a5a84755
CL
4638{
4639 u8 *p;
4640
95a05b42 4641 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4642
f9f58285
FF
4643 pr_err("SLUB resiliency testing\n");
4644 pr_err("-----------------------\n");
4645 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4646
4647 p = kzalloc(16, GFP_KERNEL);
4648 p[16] = 0x12;
f9f58285
FF
4649 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4650 p + 16);
a5a84755
CL
4651
4652 validate_slab_cache(kmalloc_caches[4]);
4653
4654 /* Hmmm... The next two are dangerous */
4655 p = kzalloc(32, GFP_KERNEL);
4656 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4657 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4658 p);
4659 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4660
4661 validate_slab_cache(kmalloc_caches[5]);
4662 p = kzalloc(64, GFP_KERNEL);
4663 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4664 *p = 0x56;
f9f58285
FF
4665 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4666 p);
4667 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4668 validate_slab_cache(kmalloc_caches[6]);
4669
f9f58285 4670 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4671 p = kzalloc(128, GFP_KERNEL);
4672 kfree(p);
4673 *p = 0x78;
f9f58285 4674 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4675 validate_slab_cache(kmalloc_caches[7]);
4676
4677 p = kzalloc(256, GFP_KERNEL);
4678 kfree(p);
4679 p[50] = 0x9a;
f9f58285 4680 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4681 validate_slab_cache(kmalloc_caches[8]);
4682
4683 p = kzalloc(512, GFP_KERNEL);
4684 kfree(p);
4685 p[512] = 0xab;
f9f58285 4686 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4687 validate_slab_cache(kmalloc_caches[9]);
4688}
4689#else
4690#ifdef CONFIG_SYSFS
4691static void resiliency_test(void) {};
4692#endif
4693#endif
4694
ab4d5ed5 4695#ifdef CONFIG_SYSFS
81819f0f 4696enum slab_stat_type {
205ab99d
CL
4697 SL_ALL, /* All slabs */
4698 SL_PARTIAL, /* Only partially allocated slabs */
4699 SL_CPU, /* Only slabs used for cpu caches */
4700 SL_OBJECTS, /* Determine allocated objects not slabs */
4701 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4702};
4703
205ab99d 4704#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4705#define SO_PARTIAL (1 << SL_PARTIAL)
4706#define SO_CPU (1 << SL_CPU)
4707#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4708#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4709
1663f26d
TH
4710#ifdef CONFIG_MEMCG
4711static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4712
4713static int __init setup_slub_memcg_sysfs(char *str)
4714{
4715 int v;
4716
4717 if (get_option(&str, &v) > 0)
4718 memcg_sysfs_enabled = v;
4719
4720 return 1;
4721}
4722
4723__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4724#endif
4725
62e5c4b4
CG
4726static ssize_t show_slab_objects(struct kmem_cache *s,
4727 char *buf, unsigned long flags)
81819f0f
CL
4728{
4729 unsigned long total = 0;
81819f0f
CL
4730 int node;
4731 int x;
4732 unsigned long *nodes;
81819f0f 4733
e35e1a97 4734 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4735 if (!nodes)
4736 return -ENOMEM;
81819f0f 4737
205ab99d
CL
4738 if (flags & SO_CPU) {
4739 int cpu;
81819f0f 4740
205ab99d 4741 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4742 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4743 cpu);
ec3ab083 4744 int node;
49e22585 4745 struct page *page;
dfb4f096 4746
4db0c3c2 4747 page = READ_ONCE(c->page);
ec3ab083
CL
4748 if (!page)
4749 continue;
205ab99d 4750
ec3ab083
CL
4751 node = page_to_nid(page);
4752 if (flags & SO_TOTAL)
4753 x = page->objects;
4754 else if (flags & SO_OBJECTS)
4755 x = page->inuse;
4756 else
4757 x = 1;
49e22585 4758
ec3ab083
CL
4759 total += x;
4760 nodes[node] += x;
4761
4db0c3c2 4762 page = READ_ONCE(c->partial);
49e22585 4763 if (page) {
8afb1474
LZ
4764 node = page_to_nid(page);
4765 if (flags & SO_TOTAL)
4766 WARN_ON_ONCE(1);
4767 else if (flags & SO_OBJECTS)
4768 WARN_ON_ONCE(1);
4769 else
4770 x = page->pages;
bc6697d8
ED
4771 total += x;
4772 nodes[node] += x;
49e22585 4773 }
81819f0f
CL
4774 }
4775 }
4776
bfc8c901 4777 get_online_mems();
ab4d5ed5 4778#ifdef CONFIG_SLUB_DEBUG
205ab99d 4779 if (flags & SO_ALL) {
fa45dc25
CL
4780 struct kmem_cache_node *n;
4781
4782 for_each_kmem_cache_node(s, node, n) {
205ab99d 4783
d0e0ac97
CG
4784 if (flags & SO_TOTAL)
4785 x = atomic_long_read(&n->total_objects);
4786 else if (flags & SO_OBJECTS)
4787 x = atomic_long_read(&n->total_objects) -
4788 count_partial(n, count_free);
81819f0f 4789 else
205ab99d 4790 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4791 total += x;
4792 nodes[node] += x;
4793 }
4794
ab4d5ed5
CL
4795 } else
4796#endif
4797 if (flags & SO_PARTIAL) {
fa45dc25 4798 struct kmem_cache_node *n;
81819f0f 4799
fa45dc25 4800 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4801 if (flags & SO_TOTAL)
4802 x = count_partial(n, count_total);
4803 else if (flags & SO_OBJECTS)
4804 x = count_partial(n, count_inuse);
81819f0f 4805 else
205ab99d 4806 x = n->nr_partial;
81819f0f
CL
4807 total += x;
4808 nodes[node] += x;
4809 }
4810 }
81819f0f
CL
4811 x = sprintf(buf, "%lu", total);
4812#ifdef CONFIG_NUMA
fa45dc25 4813 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4814 if (nodes[node])
4815 x += sprintf(buf + x, " N%d=%lu",
4816 node, nodes[node]);
4817#endif
bfc8c901 4818 put_online_mems();
81819f0f
CL
4819 kfree(nodes);
4820 return x + sprintf(buf + x, "\n");
4821}
4822
ab4d5ed5 4823#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4824static int any_slab_objects(struct kmem_cache *s)
4825{
4826 int node;
fa45dc25 4827 struct kmem_cache_node *n;
81819f0f 4828
fa45dc25 4829 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4830 if (atomic_long_read(&n->total_objects))
81819f0f 4831 return 1;
fa45dc25 4832
81819f0f
CL
4833 return 0;
4834}
ab4d5ed5 4835#endif
81819f0f
CL
4836
4837#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4838#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4839
4840struct slab_attribute {
4841 struct attribute attr;
4842 ssize_t (*show)(struct kmem_cache *s, char *buf);
4843 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4844};
4845
4846#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4847 static struct slab_attribute _name##_attr = \
4848 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4849
4850#define SLAB_ATTR(_name) \
4851 static struct slab_attribute _name##_attr = \
ab067e99 4852 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4853
81819f0f
CL
4854static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4855{
4856 return sprintf(buf, "%d\n", s->size);
4857}
4858SLAB_ATTR_RO(slab_size);
4859
4860static ssize_t align_show(struct kmem_cache *s, char *buf)
4861{
4862 return sprintf(buf, "%d\n", s->align);
4863}
4864SLAB_ATTR_RO(align);
4865
4866static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4867{
3b0efdfa 4868 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4869}
4870SLAB_ATTR_RO(object_size);
4871
4872static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4873{
834f3d11 4874 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4875}
4876SLAB_ATTR_RO(objs_per_slab);
4877
06b285dc
CL
4878static ssize_t order_store(struct kmem_cache *s,
4879 const char *buf, size_t length)
4880{
0121c619
CL
4881 unsigned long order;
4882 int err;
4883
3dbb95f7 4884 err = kstrtoul(buf, 10, &order);
0121c619
CL
4885 if (err)
4886 return err;
06b285dc
CL
4887
4888 if (order > slub_max_order || order < slub_min_order)
4889 return -EINVAL;
4890
4891 calculate_sizes(s, order);
4892 return length;
4893}
4894
81819f0f
CL
4895static ssize_t order_show(struct kmem_cache *s, char *buf)
4896{
834f3d11 4897 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4898}
06b285dc 4899SLAB_ATTR(order);
81819f0f 4900
73d342b1
DR
4901static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4902{
4903 return sprintf(buf, "%lu\n", s->min_partial);
4904}
4905
4906static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4907 size_t length)
4908{
4909 unsigned long min;
4910 int err;
4911
3dbb95f7 4912 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4913 if (err)
4914 return err;
4915
c0bdb232 4916 set_min_partial(s, min);
73d342b1
DR
4917 return length;
4918}
4919SLAB_ATTR(min_partial);
4920
49e22585
CL
4921static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4922{
4923 return sprintf(buf, "%u\n", s->cpu_partial);
4924}
4925
4926static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4927 size_t length)
4928{
4929 unsigned long objects;
4930 int err;
4931
3dbb95f7 4932 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4933 if (err)
4934 return err;
345c905d 4935 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4936 return -EINVAL;
49e22585
CL
4937
4938 s->cpu_partial = objects;
4939 flush_all(s);
4940 return length;
4941}
4942SLAB_ATTR(cpu_partial);
4943
81819f0f
CL
4944static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4945{
62c70bce
JP
4946 if (!s->ctor)
4947 return 0;
4948 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4949}
4950SLAB_ATTR_RO(ctor);
4951
81819f0f
CL
4952static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4953{
4307c14f 4954 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4955}
4956SLAB_ATTR_RO(aliases);
4957
81819f0f
CL
4958static ssize_t partial_show(struct kmem_cache *s, char *buf)
4959{
d9acf4b7 4960 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4961}
4962SLAB_ATTR_RO(partial);
4963
4964static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4965{
d9acf4b7 4966 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4967}
4968SLAB_ATTR_RO(cpu_slabs);
4969
4970static ssize_t objects_show(struct kmem_cache *s, char *buf)
4971{
205ab99d 4972 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4973}
4974SLAB_ATTR_RO(objects);
4975
205ab99d
CL
4976static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4977{
4978 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4979}
4980SLAB_ATTR_RO(objects_partial);
4981
49e22585
CL
4982static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4983{
4984 int objects = 0;
4985 int pages = 0;
4986 int cpu;
4987 int len;
4988
4989 for_each_online_cpu(cpu) {
4990 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4991
4992 if (page) {
4993 pages += page->pages;
4994 objects += page->pobjects;
4995 }
4996 }
4997
4998 len = sprintf(buf, "%d(%d)", objects, pages);
4999
5000#ifdef CONFIG_SMP
5001 for_each_online_cpu(cpu) {
5002 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
5003
5004 if (page && len < PAGE_SIZE - 20)
5005 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5006 page->pobjects, page->pages);
5007 }
5008#endif
5009 return len + sprintf(buf + len, "\n");
5010}
5011SLAB_ATTR_RO(slabs_cpu_partial);
5012
a5a84755
CL
5013static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5014{
5015 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5016}
5017
5018static ssize_t reclaim_account_store(struct kmem_cache *s,
5019 const char *buf, size_t length)
5020{
5021 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5022 if (buf[0] == '1')
5023 s->flags |= SLAB_RECLAIM_ACCOUNT;
5024 return length;
5025}
5026SLAB_ATTR(reclaim_account);
5027
5028static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5029{
5030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5031}
5032SLAB_ATTR_RO(hwcache_align);
5033
5034#ifdef CONFIG_ZONE_DMA
5035static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5036{
5037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5038}
5039SLAB_ATTR_RO(cache_dma);
5040#endif
5041
5042static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5043{
5f0d5a3a 5044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5045}
5046SLAB_ATTR_RO(destroy_by_rcu);
5047
ab9a0f19
LJ
5048static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5049{
5050 return sprintf(buf, "%d\n", s->reserved);
5051}
5052SLAB_ATTR_RO(reserved);
5053
ab4d5ed5 5054#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5055static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5056{
5057 return show_slab_objects(s, buf, SO_ALL);
5058}
5059SLAB_ATTR_RO(slabs);
5060
205ab99d
CL
5061static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5062{
5063 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5064}
5065SLAB_ATTR_RO(total_objects);
5066
81819f0f
CL
5067static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5068{
becfda68 5069 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5070}
5071
5072static ssize_t sanity_checks_store(struct kmem_cache *s,
5073 const char *buf, size_t length)
5074{
becfda68 5075 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5076 if (buf[0] == '1') {
5077 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5078 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5079 }
81819f0f
CL
5080 return length;
5081}
5082SLAB_ATTR(sanity_checks);
5083
5084static ssize_t trace_show(struct kmem_cache *s, char *buf)
5085{
5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5087}
5088
5089static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5090 size_t length)
5091{
c9e16131
CL
5092 /*
5093 * Tracing a merged cache is going to give confusing results
5094 * as well as cause other issues like converting a mergeable
5095 * cache into an umergeable one.
5096 */
5097 if (s->refcount > 1)
5098 return -EINVAL;
5099
81819f0f 5100 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5101 if (buf[0] == '1') {
5102 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5103 s->flags |= SLAB_TRACE;
b789ef51 5104 }
81819f0f
CL
5105 return length;
5106}
5107SLAB_ATTR(trace);
5108
81819f0f
CL
5109static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5110{
5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5112}
5113
5114static ssize_t red_zone_store(struct kmem_cache *s,
5115 const char *buf, size_t length)
5116{
5117 if (any_slab_objects(s))
5118 return -EBUSY;
5119
5120 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5121 if (buf[0] == '1') {
81819f0f 5122 s->flags |= SLAB_RED_ZONE;
b789ef51 5123 }
06b285dc 5124 calculate_sizes(s, -1);
81819f0f
CL
5125 return length;
5126}
5127SLAB_ATTR(red_zone);
5128
5129static ssize_t poison_show(struct kmem_cache *s, char *buf)
5130{
5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5132}
5133
5134static ssize_t poison_store(struct kmem_cache *s,
5135 const char *buf, size_t length)
5136{
5137 if (any_slab_objects(s))
5138 return -EBUSY;
5139
5140 s->flags &= ~SLAB_POISON;
b789ef51 5141 if (buf[0] == '1') {
81819f0f 5142 s->flags |= SLAB_POISON;
b789ef51 5143 }
06b285dc 5144 calculate_sizes(s, -1);
81819f0f
CL
5145 return length;
5146}
5147SLAB_ATTR(poison);
5148
5149static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5150{
5151 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5152}
5153
5154static ssize_t store_user_store(struct kmem_cache *s,
5155 const char *buf, size_t length)
5156{
5157 if (any_slab_objects(s))
5158 return -EBUSY;
5159
5160 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5161 if (buf[0] == '1') {
5162 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5163 s->flags |= SLAB_STORE_USER;
b789ef51 5164 }
06b285dc 5165 calculate_sizes(s, -1);
81819f0f
CL
5166 return length;
5167}
5168SLAB_ATTR(store_user);
5169
53e15af0
CL
5170static ssize_t validate_show(struct kmem_cache *s, char *buf)
5171{
5172 return 0;
5173}
5174
5175static ssize_t validate_store(struct kmem_cache *s,
5176 const char *buf, size_t length)
5177{
434e245d
CL
5178 int ret = -EINVAL;
5179
5180 if (buf[0] == '1') {
5181 ret = validate_slab_cache(s);
5182 if (ret >= 0)
5183 ret = length;
5184 }
5185 return ret;
53e15af0
CL
5186}
5187SLAB_ATTR(validate);
a5a84755
CL
5188
5189static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5190{
5191 if (!(s->flags & SLAB_STORE_USER))
5192 return -ENOSYS;
5193 return list_locations(s, buf, TRACK_ALLOC);
5194}
5195SLAB_ATTR_RO(alloc_calls);
5196
5197static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5198{
5199 if (!(s->flags & SLAB_STORE_USER))
5200 return -ENOSYS;
5201 return list_locations(s, buf, TRACK_FREE);
5202}
5203SLAB_ATTR_RO(free_calls);
5204#endif /* CONFIG_SLUB_DEBUG */
5205
5206#ifdef CONFIG_FAILSLAB
5207static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5208{
5209 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5210}
5211
5212static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5213 size_t length)
5214{
c9e16131
CL
5215 if (s->refcount > 1)
5216 return -EINVAL;
5217
a5a84755
CL
5218 s->flags &= ~SLAB_FAILSLAB;
5219 if (buf[0] == '1')
5220 s->flags |= SLAB_FAILSLAB;
5221 return length;
5222}
5223SLAB_ATTR(failslab);
ab4d5ed5 5224#endif
53e15af0 5225
2086d26a
CL
5226static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5227{
5228 return 0;
5229}
5230
5231static ssize_t shrink_store(struct kmem_cache *s,
5232 const char *buf, size_t length)
5233{
832f37f5
VD
5234 if (buf[0] == '1')
5235 kmem_cache_shrink(s);
5236 else
2086d26a
CL
5237 return -EINVAL;
5238 return length;
5239}
5240SLAB_ATTR(shrink);
5241
81819f0f 5242#ifdef CONFIG_NUMA
9824601e 5243static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5244{
9824601e 5245 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5246}
5247
9824601e 5248static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5249 const char *buf, size_t length)
5250{
0121c619
CL
5251 unsigned long ratio;
5252 int err;
5253
3dbb95f7 5254 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5255 if (err)
5256 return err;
5257
e2cb96b7 5258 if (ratio <= 100)
0121c619 5259 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5260
81819f0f
CL
5261 return length;
5262}
9824601e 5263SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5264#endif
5265
8ff12cfc 5266#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5267static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5268{
5269 unsigned long sum = 0;
5270 int cpu;
5271 int len;
5272 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5273
5274 if (!data)
5275 return -ENOMEM;
5276
5277 for_each_online_cpu(cpu) {
9dfc6e68 5278 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5279
5280 data[cpu] = x;
5281 sum += x;
5282 }
5283
5284 len = sprintf(buf, "%lu", sum);
5285
50ef37b9 5286#ifdef CONFIG_SMP
8ff12cfc
CL
5287 for_each_online_cpu(cpu) {
5288 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5289 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5290 }
50ef37b9 5291#endif
8ff12cfc
CL
5292 kfree(data);
5293 return len + sprintf(buf + len, "\n");
5294}
5295
78eb00cc
DR
5296static void clear_stat(struct kmem_cache *s, enum stat_item si)
5297{
5298 int cpu;
5299
5300 for_each_online_cpu(cpu)
9dfc6e68 5301 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5302}
5303
8ff12cfc
CL
5304#define STAT_ATTR(si, text) \
5305static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5306{ \
5307 return show_stat(s, buf, si); \
5308} \
78eb00cc
DR
5309static ssize_t text##_store(struct kmem_cache *s, \
5310 const char *buf, size_t length) \
5311{ \
5312 if (buf[0] != '0') \
5313 return -EINVAL; \
5314 clear_stat(s, si); \
5315 return length; \
5316} \
5317SLAB_ATTR(text); \
8ff12cfc
CL
5318
5319STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5320STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5321STAT_ATTR(FREE_FASTPATH, free_fastpath);
5322STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5323STAT_ATTR(FREE_FROZEN, free_frozen);
5324STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5325STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5326STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5327STAT_ATTR(ALLOC_SLAB, alloc_slab);
5328STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5329STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5330STAT_ATTR(FREE_SLAB, free_slab);
5331STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5332STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5333STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5334STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5335STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5336STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5337STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5338STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5339STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5340STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5341STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5342STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5343STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5344STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5345#endif
5346
06428780 5347static struct attribute *slab_attrs[] = {
81819f0f
CL
5348 &slab_size_attr.attr,
5349 &object_size_attr.attr,
5350 &objs_per_slab_attr.attr,
5351 &order_attr.attr,
73d342b1 5352 &min_partial_attr.attr,
49e22585 5353 &cpu_partial_attr.attr,
81819f0f 5354 &objects_attr.attr,
205ab99d 5355 &objects_partial_attr.attr,
81819f0f
CL
5356 &partial_attr.attr,
5357 &cpu_slabs_attr.attr,
5358 &ctor_attr.attr,
81819f0f
CL
5359 &aliases_attr.attr,
5360 &align_attr.attr,
81819f0f
CL
5361 &hwcache_align_attr.attr,
5362 &reclaim_account_attr.attr,
5363 &destroy_by_rcu_attr.attr,
a5a84755 5364 &shrink_attr.attr,
ab9a0f19 5365 &reserved_attr.attr,
49e22585 5366 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5367#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5368 &total_objects_attr.attr,
5369 &slabs_attr.attr,
5370 &sanity_checks_attr.attr,
5371 &trace_attr.attr,
81819f0f
CL
5372 &red_zone_attr.attr,
5373 &poison_attr.attr,
5374 &store_user_attr.attr,
53e15af0 5375 &validate_attr.attr,
88a420e4
CL
5376 &alloc_calls_attr.attr,
5377 &free_calls_attr.attr,
ab4d5ed5 5378#endif
81819f0f
CL
5379#ifdef CONFIG_ZONE_DMA
5380 &cache_dma_attr.attr,
5381#endif
5382#ifdef CONFIG_NUMA
9824601e 5383 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5384#endif
5385#ifdef CONFIG_SLUB_STATS
5386 &alloc_fastpath_attr.attr,
5387 &alloc_slowpath_attr.attr,
5388 &free_fastpath_attr.attr,
5389 &free_slowpath_attr.attr,
5390 &free_frozen_attr.attr,
5391 &free_add_partial_attr.attr,
5392 &free_remove_partial_attr.attr,
5393 &alloc_from_partial_attr.attr,
5394 &alloc_slab_attr.attr,
5395 &alloc_refill_attr.attr,
e36a2652 5396 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5397 &free_slab_attr.attr,
5398 &cpuslab_flush_attr.attr,
5399 &deactivate_full_attr.attr,
5400 &deactivate_empty_attr.attr,
5401 &deactivate_to_head_attr.attr,
5402 &deactivate_to_tail_attr.attr,
5403 &deactivate_remote_frees_attr.attr,
03e404af 5404 &deactivate_bypass_attr.attr,
65c3376a 5405 &order_fallback_attr.attr,
b789ef51
CL
5406 &cmpxchg_double_fail_attr.attr,
5407 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5408 &cpu_partial_alloc_attr.attr,
5409 &cpu_partial_free_attr.attr,
8028dcea
AS
5410 &cpu_partial_node_attr.attr,
5411 &cpu_partial_drain_attr.attr,
81819f0f 5412#endif
4c13dd3b
DM
5413#ifdef CONFIG_FAILSLAB
5414 &failslab_attr.attr,
5415#endif
5416
81819f0f
CL
5417 NULL
5418};
5419
5420static struct attribute_group slab_attr_group = {
5421 .attrs = slab_attrs,
5422};
5423
5424static ssize_t slab_attr_show(struct kobject *kobj,
5425 struct attribute *attr,
5426 char *buf)
5427{
5428 struct slab_attribute *attribute;
5429 struct kmem_cache *s;
5430 int err;
5431
5432 attribute = to_slab_attr(attr);
5433 s = to_slab(kobj);
5434
5435 if (!attribute->show)
5436 return -EIO;
5437
5438 err = attribute->show(s, buf);
5439
5440 return err;
5441}
5442
5443static ssize_t slab_attr_store(struct kobject *kobj,
5444 struct attribute *attr,
5445 const char *buf, size_t len)
5446{
5447 struct slab_attribute *attribute;
5448 struct kmem_cache *s;
5449 int err;
5450
5451 attribute = to_slab_attr(attr);
5452 s = to_slab(kobj);
5453
5454 if (!attribute->store)
5455 return -EIO;
5456
5457 err = attribute->store(s, buf, len);
127424c8 5458#ifdef CONFIG_MEMCG
107dab5c 5459 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5460 struct kmem_cache *c;
81819f0f 5461
107dab5c
GC
5462 mutex_lock(&slab_mutex);
5463 if (s->max_attr_size < len)
5464 s->max_attr_size = len;
5465
ebe945c2
GC
5466 /*
5467 * This is a best effort propagation, so this function's return
5468 * value will be determined by the parent cache only. This is
5469 * basically because not all attributes will have a well
5470 * defined semantics for rollbacks - most of the actions will
5471 * have permanent effects.
5472 *
5473 * Returning the error value of any of the children that fail
5474 * is not 100 % defined, in the sense that users seeing the
5475 * error code won't be able to know anything about the state of
5476 * the cache.
5477 *
5478 * Only returning the error code for the parent cache at least
5479 * has well defined semantics. The cache being written to
5480 * directly either failed or succeeded, in which case we loop
5481 * through the descendants with best-effort propagation.
5482 */
426589f5
VD
5483 for_each_memcg_cache(c, s)
5484 attribute->store(c, buf, len);
107dab5c
GC
5485 mutex_unlock(&slab_mutex);
5486 }
5487#endif
81819f0f
CL
5488 return err;
5489}
5490
107dab5c
GC
5491static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5492{
127424c8 5493#ifdef CONFIG_MEMCG
107dab5c
GC
5494 int i;
5495 char *buffer = NULL;
93030d83 5496 struct kmem_cache *root_cache;
107dab5c 5497
93030d83 5498 if (is_root_cache(s))
107dab5c
GC
5499 return;
5500
f7ce3190 5501 root_cache = s->memcg_params.root_cache;
93030d83 5502
107dab5c
GC
5503 /*
5504 * This mean this cache had no attribute written. Therefore, no point
5505 * in copying default values around
5506 */
93030d83 5507 if (!root_cache->max_attr_size)
107dab5c
GC
5508 return;
5509
5510 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5511 char mbuf[64];
5512 char *buf;
5513 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5514 ssize_t len;
107dab5c
GC
5515
5516 if (!attr || !attr->store || !attr->show)
5517 continue;
5518
5519 /*
5520 * It is really bad that we have to allocate here, so we will
5521 * do it only as a fallback. If we actually allocate, though,
5522 * we can just use the allocated buffer until the end.
5523 *
5524 * Most of the slub attributes will tend to be very small in
5525 * size, but sysfs allows buffers up to a page, so they can
5526 * theoretically happen.
5527 */
5528 if (buffer)
5529 buf = buffer;
93030d83 5530 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5531 buf = mbuf;
5532 else {
5533 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5534 if (WARN_ON(!buffer))
5535 continue;
5536 buf = buffer;
5537 }
5538
478fe303
TG
5539 len = attr->show(root_cache, buf);
5540 if (len > 0)
5541 attr->store(s, buf, len);
107dab5c
GC
5542 }
5543
5544 if (buffer)
5545 free_page((unsigned long)buffer);
5546#endif
5547}
5548
41a21285
CL
5549static void kmem_cache_release(struct kobject *k)
5550{
5551 slab_kmem_cache_release(to_slab(k));
5552}
5553
52cf25d0 5554static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5555 .show = slab_attr_show,
5556 .store = slab_attr_store,
5557};
5558
5559static struct kobj_type slab_ktype = {
5560 .sysfs_ops = &slab_sysfs_ops,
41a21285 5561 .release = kmem_cache_release,
81819f0f
CL
5562};
5563
5564static int uevent_filter(struct kset *kset, struct kobject *kobj)
5565{
5566 struct kobj_type *ktype = get_ktype(kobj);
5567
5568 if (ktype == &slab_ktype)
5569 return 1;
5570 return 0;
5571}
5572
9cd43611 5573static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5574 .filter = uevent_filter,
5575};
5576
27c3a314 5577static struct kset *slab_kset;
81819f0f 5578
9a41707b
VD
5579static inline struct kset *cache_kset(struct kmem_cache *s)
5580{
127424c8 5581#ifdef CONFIG_MEMCG
9a41707b 5582 if (!is_root_cache(s))
f7ce3190 5583 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5584#endif
5585 return slab_kset;
5586}
5587
81819f0f
CL
5588#define ID_STR_LENGTH 64
5589
5590/* Create a unique string id for a slab cache:
6446faa2
CL
5591 *
5592 * Format :[flags-]size
81819f0f
CL
5593 */
5594static char *create_unique_id(struct kmem_cache *s)
5595{
5596 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5597 char *p = name;
5598
5599 BUG_ON(!name);
5600
5601 *p++ = ':';
5602 /*
5603 * First flags affecting slabcache operations. We will only
5604 * get here for aliasable slabs so we do not need to support
5605 * too many flags. The flags here must cover all flags that
5606 * are matched during merging to guarantee that the id is
5607 * unique.
5608 */
5609 if (s->flags & SLAB_CACHE_DMA)
5610 *p++ = 'd';
5611 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5612 *p++ = 'a';
becfda68 5613 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5614 *p++ = 'F';
5a896d9e
VN
5615 if (!(s->flags & SLAB_NOTRACK))
5616 *p++ = 't';
230e9fc2
VD
5617 if (s->flags & SLAB_ACCOUNT)
5618 *p++ = 'A';
81819f0f
CL
5619 if (p != name + 1)
5620 *p++ = '-';
5621 p += sprintf(p, "%07d", s->size);
2633d7a0 5622
81819f0f
CL
5623 BUG_ON(p > name + ID_STR_LENGTH - 1);
5624 return name;
5625}
5626
3b7b3140
TH
5627static void sysfs_slab_remove_workfn(struct work_struct *work)
5628{
5629 struct kmem_cache *s =
5630 container_of(work, struct kmem_cache, kobj_remove_work);
5631
5632 if (!s->kobj.state_in_sysfs)
5633 /*
5634 * For a memcg cache, this may be called during
5635 * deactivation and again on shutdown. Remove only once.
5636 * A cache is never shut down before deactivation is
5637 * complete, so no need to worry about synchronization.
5638 */
5639 return;
5640
5641#ifdef CONFIG_MEMCG
5642 kset_unregister(s->memcg_kset);
5643#endif
5644 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5645 kobject_del(&s->kobj);
5646 kobject_put(&s->kobj);
5647}
5648
81819f0f
CL
5649static int sysfs_slab_add(struct kmem_cache *s)
5650{
5651 int err;
5652 const char *name;
1663f26d 5653 struct kset *kset = cache_kset(s);
45530c44 5654 int unmergeable = slab_unmergeable(s);
81819f0f 5655
3b7b3140
TH
5656 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5657
1663f26d
TH
5658 if (!kset) {
5659 kobject_init(&s->kobj, &slab_ktype);
5660 return 0;
5661 }
5662
81819f0f
CL
5663 if (unmergeable) {
5664 /*
5665 * Slabcache can never be merged so we can use the name proper.
5666 * This is typically the case for debug situations. In that
5667 * case we can catch duplicate names easily.
5668 */
27c3a314 5669 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5670 name = s->name;
5671 } else {
5672 /*
5673 * Create a unique name for the slab as a target
5674 * for the symlinks.
5675 */
5676 name = create_unique_id(s);
5677 }
5678
1663f26d 5679 s->kobj.kset = kset;
26e4f205 5680 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5681 if (err)
80da026a 5682 goto out;
81819f0f
CL
5683
5684 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5685 if (err)
5686 goto out_del_kobj;
9a41707b 5687
127424c8 5688#ifdef CONFIG_MEMCG
1663f26d 5689 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5690 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5691 if (!s->memcg_kset) {
54b6a731
DJ
5692 err = -ENOMEM;
5693 goto out_del_kobj;
9a41707b
VD
5694 }
5695 }
5696#endif
5697
81819f0f
CL
5698 kobject_uevent(&s->kobj, KOBJ_ADD);
5699 if (!unmergeable) {
5700 /* Setup first alias */
5701 sysfs_slab_alias(s, s->name);
81819f0f 5702 }
54b6a731
DJ
5703out:
5704 if (!unmergeable)
5705 kfree(name);
5706 return err;
5707out_del_kobj:
5708 kobject_del(&s->kobj);
54b6a731 5709 goto out;
81819f0f
CL
5710}
5711
bf5eb3de 5712static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5713{
97d06609 5714 if (slab_state < FULL)
2bce6485
CL
5715 /*
5716 * Sysfs has not been setup yet so no need to remove the
5717 * cache from sysfs.
5718 */
5719 return;
5720
3b7b3140
TH
5721 kobject_get(&s->kobj);
5722 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5723}
5724
5725void sysfs_slab_release(struct kmem_cache *s)
5726{
5727 if (slab_state >= FULL)
5728 kobject_put(&s->kobj);
81819f0f
CL
5729}
5730
5731/*
5732 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5733 * available lest we lose that information.
81819f0f
CL
5734 */
5735struct saved_alias {
5736 struct kmem_cache *s;
5737 const char *name;
5738 struct saved_alias *next;
5739};
5740
5af328a5 5741static struct saved_alias *alias_list;
81819f0f
CL
5742
5743static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5744{
5745 struct saved_alias *al;
5746
97d06609 5747 if (slab_state == FULL) {
81819f0f
CL
5748 /*
5749 * If we have a leftover link then remove it.
5750 */
27c3a314
GKH
5751 sysfs_remove_link(&slab_kset->kobj, name);
5752 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5753 }
5754
5755 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5756 if (!al)
5757 return -ENOMEM;
5758
5759 al->s = s;
5760 al->name = name;
5761 al->next = alias_list;
5762 alias_list = al;
5763 return 0;
5764}
5765
5766static int __init slab_sysfs_init(void)
5767{
5b95a4ac 5768 struct kmem_cache *s;
81819f0f
CL
5769 int err;
5770
18004c5d 5771 mutex_lock(&slab_mutex);
2bce6485 5772
0ff21e46 5773 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5774 if (!slab_kset) {
18004c5d 5775 mutex_unlock(&slab_mutex);
f9f58285 5776 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5777 return -ENOSYS;
5778 }
5779
97d06609 5780 slab_state = FULL;
26a7bd03 5781
5b95a4ac 5782 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5783 err = sysfs_slab_add(s);
5d540fb7 5784 if (err)
f9f58285
FF
5785 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5786 s->name);
26a7bd03 5787 }
81819f0f
CL
5788
5789 while (alias_list) {
5790 struct saved_alias *al = alias_list;
5791
5792 alias_list = alias_list->next;
5793 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5794 if (err)
f9f58285
FF
5795 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5796 al->name);
81819f0f
CL
5797 kfree(al);
5798 }
5799
18004c5d 5800 mutex_unlock(&slab_mutex);
81819f0f
CL
5801 resiliency_test();
5802 return 0;
5803}
5804
5805__initcall(slab_sysfs_init);
ab4d5ed5 5806#endif /* CONFIG_SYSFS */
57ed3eda
PE
5807
5808/*
5809 * The /proc/slabinfo ABI
5810 */
158a9624 5811#ifdef CONFIG_SLABINFO
0d7561c6 5812void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5813{
57ed3eda 5814 unsigned long nr_slabs = 0;
205ab99d
CL
5815 unsigned long nr_objs = 0;
5816 unsigned long nr_free = 0;
57ed3eda 5817 int node;
fa45dc25 5818 struct kmem_cache_node *n;
57ed3eda 5819
fa45dc25 5820 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5821 nr_slabs += node_nr_slabs(n);
5822 nr_objs += node_nr_objs(n);
205ab99d 5823 nr_free += count_partial(n, count_free);
57ed3eda
PE
5824 }
5825
0d7561c6
GC
5826 sinfo->active_objs = nr_objs - nr_free;
5827 sinfo->num_objs = nr_objs;
5828 sinfo->active_slabs = nr_slabs;
5829 sinfo->num_slabs = nr_slabs;
5830 sinfo->objects_per_slab = oo_objects(s->oo);
5831 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5832}
5833
0d7561c6 5834void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5835{
7b3c3a50
AD
5836}
5837
b7454ad3
GC
5838ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5839 size_t count, loff_t *ppos)
7b3c3a50 5840{
b7454ad3 5841 return -EIO;
7b3c3a50 5842}
158a9624 5843#endif /* CONFIG_SLABINFO */