]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm/debug-pagealloc.c: use plain __ratelimit() instead of printk_ratelimit()
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
ffc79d28
SAS
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
81819f0f
CL
472}
473
81819f0f
CL
474static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476{
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485}
486
487static void set_track(struct kmem_cache *s, void *object,
ce71e27c 488 enum track_item alloc, unsigned long addr)
81819f0f 489{
1a00df4a 490 struct track *p = get_track(s, object, alloc);
81819f0f 491
81819f0f 492 if (addr) {
d6543e39
BG
493#ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510#endif
81819f0f
CL
511 p->addr = addr;
512 p->cpu = smp_processor_id();
88e4ccf2 513 p->pid = current->pid;
81819f0f
CL
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517}
518
81819f0f
CL
519static void init_tracking(struct kmem_cache *s, void *object)
520{
24922684
CL
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
ce71e27c
EGM
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
526}
527
528static void print_track(const char *s, struct track *t)
529{
530 if (!t->addr)
531 return;
532
7daf705f 533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
535#ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544#endif
24922684
CL
545}
546
547static void print_tracking(struct kmem_cache *s, void *object)
548{
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554}
555
556static void print_page_info(struct page *page)
557{
39b26464
CL
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
560
561}
562
563static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564{
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
81819f0f
CL
576}
577
24922684
CL
578static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579{
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587}
588
589static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
590{
591 unsigned int off; /* Offset of last byte */
a973e9dd 592 u8 *addr = page_address(page);
24922684
CL
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
ffc79d28 602 print_section("Bytes b4 ", p - 16, 16);
81819f0f 603
ffc79d28
SAS
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
81819f0f 606 if (s->flags & SLAB_RED_ZONE)
ffc79d28 607 print_section("Redzone ", p + s->objsize,
81819f0f
CL
608 s->inuse - s->objsize);
609
81819f0f
CL
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
24922684 615 if (s->flags & SLAB_STORE_USER)
81819f0f 616 off += 2 * sizeof(struct track);
81819f0f
CL
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
ffc79d28 620 print_section("Padding ", p + off, s->size - off);
24922684
CL
621
622 dump_stack();
81819f0f
CL
623}
624
625static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627{
3dc50637 628 slab_bug(s, "%s", reason);
24922684 629 print_trailer(s, page, object);
81819f0f
CL
630}
631
24922684 632static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
633{
634 va_list args;
635 char buf[100];
636
24922684
CL
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 639 va_end(args);
3dc50637 640 slab_bug(s, "%s", buf);
24922684 641 print_page_info(page);
81819f0f
CL
642 dump_stack();
643}
644
f7cb1933 645static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
646{
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
06428780 651 p[s->objsize - 1] = POISON_END;
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
f7cb1933 655 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
656}
657
c4089f98 658static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
659{
660 while (bytes) {
c4089f98 661 if (*start != value)
24922684 662 return start;
81819f0f
CL
663 start++;
664 bytes--;
665 }
24922684
CL
666 return NULL;
667}
668
c4089f98
MS
669static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
670{
671 u64 value64;
672 unsigned int words, prefix;
673
674 if (bytes <= 16)
675 return check_bytes8(start, value, bytes);
676
677 value64 = value | value << 8 | value << 16 | value << 24;
ef62fb32 678 value64 = (value64 & 0xffffffff) | value64 << 32;
c4089f98
MS
679 prefix = 8 - ((unsigned long)start) % 8;
680
681 if (prefix) {
682 u8 *r = check_bytes8(start, value, prefix);
683 if (r)
684 return r;
685 start += prefix;
686 bytes -= prefix;
687 }
688
689 words = bytes / 8;
690
691 while (words) {
692 if (*(u64 *)start != value64)
693 return check_bytes8(start, value, 8);
694 start += 8;
695 words--;
696 }
697
698 return check_bytes8(start, value, bytes % 8);
699}
700
24922684
CL
701static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
702 void *from, void *to)
703{
704 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
705 memset(from, data, to - from);
706}
707
708static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
709 u8 *object, char *what,
06428780 710 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
711{
712 u8 *fault;
713 u8 *end;
714
715 fault = check_bytes(start, value, bytes);
716 if (!fault)
717 return 1;
718
719 end = start + bytes;
720 while (end > fault && end[-1] == value)
721 end--;
722
723 slab_bug(s, "%s overwritten", what);
724 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
725 fault, end - 1, fault[0], value);
726 print_trailer(s, page, object);
727
728 restore_bytes(s, what, value, fault, end);
729 return 0;
81819f0f
CL
730}
731
81819f0f
CL
732/*
733 * Object layout:
734 *
735 * object address
736 * Bytes of the object to be managed.
737 * If the freepointer may overlay the object then the free
738 * pointer is the first word of the object.
672bba3a 739 *
81819f0f
CL
740 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
741 * 0xa5 (POISON_END)
742 *
743 * object + s->objsize
744 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
745 * Padding is extended by another word if Redzoning is enabled and
746 * objsize == inuse.
747 *
81819f0f
CL
748 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
749 * 0xcc (RED_ACTIVE) for objects in use.
750 *
751 * object + s->inuse
672bba3a
CL
752 * Meta data starts here.
753 *
81819f0f
CL
754 * A. Free pointer (if we cannot overwrite object on free)
755 * B. Tracking data for SLAB_STORE_USER
672bba3a 756 * C. Padding to reach required alignment boundary or at mininum
6446faa2 757 * one word if debugging is on to be able to detect writes
672bba3a
CL
758 * before the word boundary.
759 *
760 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
761 *
762 * object + s->size
672bba3a 763 * Nothing is used beyond s->size.
81819f0f 764 *
672bba3a
CL
765 * If slabcaches are merged then the objsize and inuse boundaries are mostly
766 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
767 * may be used with merged slabcaches.
768 */
769
81819f0f
CL
770static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
771{
772 unsigned long off = s->inuse; /* The end of info */
773
774 if (s->offset)
775 /* Freepointer is placed after the object. */
776 off += sizeof(void *);
777
778 if (s->flags & SLAB_STORE_USER)
779 /* We also have user information there */
780 off += 2 * sizeof(struct track);
781
782 if (s->size == off)
783 return 1;
784
24922684
CL
785 return check_bytes_and_report(s, page, p, "Object padding",
786 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
787}
788
39b26464 789/* Check the pad bytes at the end of a slab page */
81819f0f
CL
790static int slab_pad_check(struct kmem_cache *s, struct page *page)
791{
24922684
CL
792 u8 *start;
793 u8 *fault;
794 u8 *end;
795 int length;
796 int remainder;
81819f0f
CL
797
798 if (!(s->flags & SLAB_POISON))
799 return 1;
800
a973e9dd 801 start = page_address(page);
ab9a0f19 802 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
803 end = start + length;
804 remainder = length % s->size;
81819f0f
CL
805 if (!remainder)
806 return 1;
807
39b26464 808 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
809 if (!fault)
810 return 1;
811 while (end > fault && end[-1] == POISON_INUSE)
812 end--;
813
814 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 815 print_section("Padding ", end - remainder, remainder);
24922684 816
8a3d271d 817 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 818 return 0;
81819f0f
CL
819}
820
821static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 822 void *object, u8 val)
81819f0f
CL
823{
824 u8 *p = object;
825 u8 *endobject = object + s->objsize;
826
827 if (s->flags & SLAB_RED_ZONE) {
24922684 828 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 829 endobject, val, s->inuse - s->objsize))
81819f0f 830 return 0;
81819f0f 831 } else {
3adbefee
IM
832 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
833 check_bytes_and_report(s, page, p, "Alignment padding",
834 endobject, POISON_INUSE, s->inuse - s->objsize);
835 }
81819f0f
CL
836 }
837
838 if (s->flags & SLAB_POISON) {
f7cb1933 839 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
840 (!check_bytes_and_report(s, page, p, "Poison", p,
841 POISON_FREE, s->objsize - 1) ||
842 !check_bytes_and_report(s, page, p, "Poison",
06428780 843 p + s->objsize - 1, POISON_END, 1)))
81819f0f 844 return 0;
81819f0f
CL
845 /*
846 * check_pad_bytes cleans up on its own.
847 */
848 check_pad_bytes(s, page, p);
849 }
850
f7cb1933 851 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
852 /*
853 * Object and freepointer overlap. Cannot check
854 * freepointer while object is allocated.
855 */
856 return 1;
857
858 /* Check free pointer validity */
859 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
860 object_err(s, page, p, "Freepointer corrupt");
861 /*
9f6c708e 862 * No choice but to zap it and thus lose the remainder
81819f0f 863 * of the free objects in this slab. May cause
672bba3a 864 * another error because the object count is now wrong.
81819f0f 865 */
a973e9dd 866 set_freepointer(s, p, NULL);
81819f0f
CL
867 return 0;
868 }
869 return 1;
870}
871
872static int check_slab(struct kmem_cache *s, struct page *page)
873{
39b26464
CL
874 int maxobj;
875
81819f0f
CL
876 VM_BUG_ON(!irqs_disabled());
877
878 if (!PageSlab(page)) {
24922684 879 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
880 return 0;
881 }
39b26464 882
ab9a0f19 883 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
884 if (page->objects > maxobj) {
885 slab_err(s, page, "objects %u > max %u",
886 s->name, page->objects, maxobj);
887 return 0;
888 }
889 if (page->inuse > page->objects) {
24922684 890 slab_err(s, page, "inuse %u > max %u",
39b26464 891 s->name, page->inuse, page->objects);
81819f0f
CL
892 return 0;
893 }
894 /* Slab_pad_check fixes things up after itself */
895 slab_pad_check(s, page);
896 return 1;
897}
898
899/*
672bba3a
CL
900 * Determine if a certain object on a page is on the freelist. Must hold the
901 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
902 */
903static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
904{
905 int nr = 0;
881db7fb 906 void *fp;
81819f0f 907 void *object = NULL;
224a88be 908 unsigned long max_objects;
81819f0f 909
881db7fb 910 fp = page->freelist;
39b26464 911 while (fp && nr <= page->objects) {
81819f0f
CL
912 if (fp == search)
913 return 1;
914 if (!check_valid_pointer(s, page, fp)) {
915 if (object) {
916 object_err(s, page, object,
917 "Freechain corrupt");
a973e9dd 918 set_freepointer(s, object, NULL);
81819f0f
CL
919 break;
920 } else {
24922684 921 slab_err(s, page, "Freepointer corrupt");
a973e9dd 922 page->freelist = NULL;
39b26464 923 page->inuse = page->objects;
24922684 924 slab_fix(s, "Freelist cleared");
81819f0f
CL
925 return 0;
926 }
927 break;
928 }
929 object = fp;
930 fp = get_freepointer(s, object);
931 nr++;
932 }
933
ab9a0f19 934 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
935 if (max_objects > MAX_OBJS_PER_PAGE)
936 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
937
938 if (page->objects != max_objects) {
939 slab_err(s, page, "Wrong number of objects. Found %d but "
940 "should be %d", page->objects, max_objects);
941 page->objects = max_objects;
942 slab_fix(s, "Number of objects adjusted.");
943 }
39b26464 944 if (page->inuse != page->objects - nr) {
70d71228 945 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
946 "counted were %d", page->inuse, page->objects - nr);
947 page->inuse = page->objects - nr;
24922684 948 slab_fix(s, "Object count adjusted.");
81819f0f
CL
949 }
950 return search == NULL;
951}
952
0121c619
CL
953static void trace(struct kmem_cache *s, struct page *page, void *object,
954 int alloc)
3ec09742
CL
955{
956 if (s->flags & SLAB_TRACE) {
957 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
958 s->name,
959 alloc ? "alloc" : "free",
960 object, page->inuse,
961 page->freelist);
962
963 if (!alloc)
ffc79d28 964 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
965
966 dump_stack();
967 }
968}
969
c016b0bd
CL
970/*
971 * Hooks for other subsystems that check memory allocations. In a typical
972 * production configuration these hooks all should produce no code at all.
973 */
974static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
975{
c1d50836 976 flags &= gfp_allowed_mask;
c016b0bd
CL
977 lockdep_trace_alloc(flags);
978 might_sleep_if(flags & __GFP_WAIT);
979
980 return should_failslab(s->objsize, flags, s->flags);
981}
982
983static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
984{
c1d50836 985 flags &= gfp_allowed_mask;
b3d41885 986 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
987 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
988}
989
990static inline void slab_free_hook(struct kmem_cache *s, void *x)
991{
992 kmemleak_free_recursive(x, s->flags);
c016b0bd 993
d3f661d6
CL
994 /*
995 * Trouble is that we may no longer disable interupts in the fast path
996 * So in order to make the debug calls that expect irqs to be
997 * disabled we need to disable interrupts temporarily.
998 */
999#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1000 {
1001 unsigned long flags;
1002
1003 local_irq_save(flags);
1004 kmemcheck_slab_free(s, x, s->objsize);
1005 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
1006 local_irq_restore(flags);
1007 }
1008#endif
f9b615de
TG
1009 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1010 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
1011}
1012
643b1138 1013/*
672bba3a 1014 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
1015 *
1016 * list_lock must be held.
643b1138 1017 */
5cc6eee8
CL
1018static void add_full(struct kmem_cache *s,
1019 struct kmem_cache_node *n, struct page *page)
643b1138 1020{
5cc6eee8
CL
1021 if (!(s->flags & SLAB_STORE_USER))
1022 return;
1023
643b1138 1024 list_add(&page->lru, &n->full);
643b1138
CL
1025}
1026
5cc6eee8
CL
1027/*
1028 * list_lock must be held.
1029 */
643b1138
CL
1030static void remove_full(struct kmem_cache *s, struct page *page)
1031{
643b1138
CL
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
643b1138 1035 list_del(&page->lru);
643b1138
CL
1036}
1037
0f389ec6
CL
1038/* Tracking of the number of slabs for debugging purposes */
1039static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040{
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 return atomic_long_read(&n->nr_slabs);
1044}
1045
26c02cf0
AB
1046static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047{
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
205ab99d 1051static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 /*
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1060 */
7340cc84 1061 if (n) {
0f389ec6 1062 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1063 atomic_long_add(objects, &n->total_objects);
1064 }
0f389ec6 1065}
205ab99d 1066static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1067{
1068 struct kmem_cache_node *n = get_node(s, node);
1069
1070 atomic_long_dec(&n->nr_slabs);
205ab99d 1071 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1072}
1073
1074/* Object debug checks for alloc/free paths */
3ec09742
CL
1075static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 void *object)
1077{
1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 return;
1080
f7cb1933 1081 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1082 init_tracking(s, object);
1083}
1084
1537066c 1085static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1086 void *object, unsigned long addr)
81819f0f
CL
1087{
1088 if (!check_slab(s, page))
1089 goto bad;
1090
81819f0f
CL
1091 if (!check_valid_pointer(s, page, object)) {
1092 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1093 goto bad;
81819f0f
CL
1094 }
1095
f7cb1933 1096 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1097 goto bad;
81819f0f 1098
3ec09742
CL
1099 /* Success perform special debug activities for allocs */
1100 if (s->flags & SLAB_STORE_USER)
1101 set_track(s, object, TRACK_ALLOC, addr);
1102 trace(s, page, object, 1);
f7cb1933 1103 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1104 return 1;
3ec09742 1105
81819f0f
CL
1106bad:
1107 if (PageSlab(page)) {
1108 /*
1109 * If this is a slab page then lets do the best we can
1110 * to avoid issues in the future. Marking all objects
672bba3a 1111 * as used avoids touching the remaining objects.
81819f0f 1112 */
24922684 1113 slab_fix(s, "Marking all objects used");
39b26464 1114 page->inuse = page->objects;
a973e9dd 1115 page->freelist = NULL;
81819f0f
CL
1116 }
1117 return 0;
1118}
1119
1537066c
CL
1120static noinline int free_debug_processing(struct kmem_cache *s,
1121 struct page *page, void *object, unsigned long addr)
81819f0f 1122{
5c2e4bbb
CL
1123 unsigned long flags;
1124 int rc = 0;
1125
1126 local_irq_save(flags);
881db7fb
CL
1127 slab_lock(page);
1128
81819f0f
CL
1129 if (!check_slab(s, page))
1130 goto fail;
1131
1132 if (!check_valid_pointer(s, page, object)) {
70d71228 1133 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1134 goto fail;
1135 }
1136
1137 if (on_freelist(s, page, object)) {
24922684 1138 object_err(s, page, object, "Object already free");
81819f0f
CL
1139 goto fail;
1140 }
1141
f7cb1933 1142 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1143 goto out;
81819f0f
CL
1144
1145 if (unlikely(s != page->slab)) {
3adbefee 1146 if (!PageSlab(page)) {
70d71228
CL
1147 slab_err(s, page, "Attempt to free object(0x%p) "
1148 "outside of slab", object);
3adbefee 1149 } else if (!page->slab) {
81819f0f 1150 printk(KERN_ERR
70d71228 1151 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1152 object);
70d71228 1153 dump_stack();
06428780 1154 } else
24922684
CL
1155 object_err(s, page, object,
1156 "page slab pointer corrupt.");
81819f0f
CL
1157 goto fail;
1158 }
3ec09742 1159
3ec09742
CL
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_FREE, addr);
1162 trace(s, page, object, 0);
f7cb1933 1163 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1164 rc = 1;
1165out:
881db7fb 1166 slab_unlock(page);
5c2e4bbb
CL
1167 local_irq_restore(flags);
1168 return rc;
3ec09742 1169
81819f0f 1170fail:
24922684 1171 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1172 goto out;
81819f0f
CL
1173}
1174
41ecc55b
CL
1175static int __init setup_slub_debug(char *str)
1176{
f0630fff
CL
1177 slub_debug = DEBUG_DEFAULT_FLAGS;
1178 if (*str++ != '=' || !*str)
1179 /*
1180 * No options specified. Switch on full debugging.
1181 */
1182 goto out;
1183
1184 if (*str == ',')
1185 /*
1186 * No options but restriction on slabs. This means full
1187 * debugging for slabs matching a pattern.
1188 */
1189 goto check_slabs;
1190
fa5ec8a1
DR
1191 if (tolower(*str) == 'o') {
1192 /*
1193 * Avoid enabling debugging on caches if its minimum order
1194 * would increase as a result.
1195 */
1196 disable_higher_order_debug = 1;
1197 goto out;
1198 }
1199
f0630fff
CL
1200 slub_debug = 0;
1201 if (*str == '-')
1202 /*
1203 * Switch off all debugging measures.
1204 */
1205 goto out;
1206
1207 /*
1208 * Determine which debug features should be switched on
1209 */
06428780 1210 for (; *str && *str != ','; str++) {
f0630fff
CL
1211 switch (tolower(*str)) {
1212 case 'f':
1213 slub_debug |= SLAB_DEBUG_FREE;
1214 break;
1215 case 'z':
1216 slub_debug |= SLAB_RED_ZONE;
1217 break;
1218 case 'p':
1219 slub_debug |= SLAB_POISON;
1220 break;
1221 case 'u':
1222 slub_debug |= SLAB_STORE_USER;
1223 break;
1224 case 't':
1225 slub_debug |= SLAB_TRACE;
1226 break;
4c13dd3b
DM
1227 case 'a':
1228 slub_debug |= SLAB_FAILSLAB;
1229 break;
f0630fff
CL
1230 default:
1231 printk(KERN_ERR "slub_debug option '%c' "
06428780 1232 "unknown. skipped\n", *str);
f0630fff 1233 }
41ecc55b
CL
1234 }
1235
f0630fff 1236check_slabs:
41ecc55b
CL
1237 if (*str == ',')
1238 slub_debug_slabs = str + 1;
f0630fff 1239out:
41ecc55b
CL
1240 return 1;
1241}
1242
1243__setup("slub_debug", setup_slub_debug);
1244
ba0268a8
CL
1245static unsigned long kmem_cache_flags(unsigned long objsize,
1246 unsigned long flags, const char *name,
51cc5068 1247 void (*ctor)(void *))
41ecc55b
CL
1248{
1249 /*
e153362a 1250 * Enable debugging if selected on the kernel commandline.
41ecc55b 1251 */
e153362a 1252 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1253 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1254 flags |= slub_debug;
ba0268a8
CL
1255
1256 return flags;
41ecc55b
CL
1257}
1258#else
3ec09742
CL
1259static inline void setup_object_debug(struct kmem_cache *s,
1260 struct page *page, void *object) {}
41ecc55b 1261
3ec09742 1262static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1263 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1264
3ec09742 1265static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1266 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1267
41ecc55b
CL
1268static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1269 { return 1; }
1270static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1271 void *object, u8 val) { return 1; }
5cc6eee8
CL
1272static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1273 struct page *page) {}
2cfb7455 1274static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1275static inline unsigned long kmem_cache_flags(unsigned long objsize,
1276 unsigned long flags, const char *name,
51cc5068 1277 void (*ctor)(void *))
ba0268a8
CL
1278{
1279 return flags;
1280}
41ecc55b 1281#define slub_debug 0
0f389ec6 1282
fdaa45e9
IM
1283#define disable_higher_order_debug 0
1284
0f389ec6
CL
1285static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1286 { return 0; }
26c02cf0
AB
1287static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1288 { return 0; }
205ab99d
CL
1289static inline void inc_slabs_node(struct kmem_cache *s, int node,
1290 int objects) {}
1291static inline void dec_slabs_node(struct kmem_cache *s, int node,
1292 int objects) {}
7d550c56
CL
1293
1294static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1295 { return 0; }
1296
1297static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 void *object) {}
1299
1300static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1301
ab4d5ed5 1302#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1303
81819f0f
CL
1304/*
1305 * Slab allocation and freeing
1306 */
65c3376a
CL
1307static inline struct page *alloc_slab_page(gfp_t flags, int node,
1308 struct kmem_cache_order_objects oo)
1309{
1310 int order = oo_order(oo);
1311
b1eeab67
VN
1312 flags |= __GFP_NOTRACK;
1313
2154a336 1314 if (node == NUMA_NO_NODE)
65c3376a
CL
1315 return alloc_pages(flags, order);
1316 else
6b65aaf3 1317 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1318}
1319
81819f0f
CL
1320static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1321{
06428780 1322 struct page *page;
834f3d11 1323 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1324 gfp_t alloc_gfp;
81819f0f 1325
7e0528da
CL
1326 flags &= gfp_allowed_mask;
1327
1328 if (flags & __GFP_WAIT)
1329 local_irq_enable();
1330
b7a49f0d 1331 flags |= s->allocflags;
e12ba74d 1332
ba52270d
PE
1333 /*
1334 * Let the initial higher-order allocation fail under memory pressure
1335 * so we fall-back to the minimum order allocation.
1336 */
1337 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1338
1339 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1340 if (unlikely(!page)) {
1341 oo = s->min;
1342 /*
1343 * Allocation may have failed due to fragmentation.
1344 * Try a lower order alloc if possible
1345 */
1346 page = alloc_slab_page(flags, node, oo);
81819f0f 1347
7e0528da
CL
1348 if (page)
1349 stat(s, ORDER_FALLBACK);
65c3376a 1350 }
5a896d9e 1351
7e0528da
CL
1352 if (flags & __GFP_WAIT)
1353 local_irq_disable();
1354
1355 if (!page)
1356 return NULL;
1357
5a896d9e 1358 if (kmemcheck_enabled
5086c389 1359 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1360 int pages = 1 << oo_order(oo);
1361
1362 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1363
1364 /*
1365 * Objects from caches that have a constructor don't get
1366 * cleared when they're allocated, so we need to do it here.
1367 */
1368 if (s->ctor)
1369 kmemcheck_mark_uninitialized_pages(page, pages);
1370 else
1371 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1372 }
1373
834f3d11 1374 page->objects = oo_objects(oo);
81819f0f
CL
1375 mod_zone_page_state(page_zone(page),
1376 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1377 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1378 1 << oo_order(oo));
81819f0f
CL
1379
1380 return page;
1381}
1382
1383static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385{
3ec09742 1386 setup_object_debug(s, page, object);
4f104934 1387 if (unlikely(s->ctor))
51cc5068 1388 s->ctor(object);
81819f0f
CL
1389}
1390
1391static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1392{
1393 struct page *page;
81819f0f 1394 void *start;
81819f0f
CL
1395 void *last;
1396 void *p;
1397
6cb06229 1398 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1399
6cb06229
CL
1400 page = allocate_slab(s,
1401 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1402 if (!page)
1403 goto out;
1404
205ab99d 1405 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1406 page->slab = s;
1407 page->flags |= 1 << PG_slab;
81819f0f
CL
1408
1409 start = page_address(page);
81819f0f
CL
1410
1411 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1412 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1413
1414 last = start;
224a88be 1415 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1416 setup_object(s, page, last);
1417 set_freepointer(s, last, p);
1418 last = p;
1419 }
1420 setup_object(s, page, last);
a973e9dd 1421 set_freepointer(s, last, NULL);
81819f0f
CL
1422
1423 page->freelist = start;
e6e82ea1 1424 page->inuse = page->objects;
8cb0a506 1425 page->frozen = 1;
81819f0f 1426out:
81819f0f
CL
1427 return page;
1428}
1429
1430static void __free_slab(struct kmem_cache *s, struct page *page)
1431{
834f3d11
CL
1432 int order = compound_order(page);
1433 int pages = 1 << order;
81819f0f 1434
af537b0a 1435 if (kmem_cache_debug(s)) {
81819f0f
CL
1436 void *p;
1437
1438 slab_pad_check(s, page);
224a88be
CL
1439 for_each_object(p, s, page_address(page),
1440 page->objects)
f7cb1933 1441 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1442 }
1443
b1eeab67 1444 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1445
81819f0f
CL
1446 mod_zone_page_state(page_zone(page),
1447 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1448 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1449 -pages);
81819f0f 1450
49bd5221
CL
1451 __ClearPageSlab(page);
1452 reset_page_mapcount(page);
1eb5ac64
NP
1453 if (current->reclaim_state)
1454 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1455 __free_pages(page, order);
81819f0f
CL
1456}
1457
da9a638c
LJ
1458#define need_reserve_slab_rcu \
1459 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1460
81819f0f
CL
1461static void rcu_free_slab(struct rcu_head *h)
1462{
1463 struct page *page;
1464
da9a638c
LJ
1465 if (need_reserve_slab_rcu)
1466 page = virt_to_head_page(h);
1467 else
1468 page = container_of((struct list_head *)h, struct page, lru);
1469
81819f0f
CL
1470 __free_slab(page->slab, page);
1471}
1472
1473static void free_slab(struct kmem_cache *s, struct page *page)
1474{
1475 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1476 struct rcu_head *head;
1477
1478 if (need_reserve_slab_rcu) {
1479 int order = compound_order(page);
1480 int offset = (PAGE_SIZE << order) - s->reserved;
1481
1482 VM_BUG_ON(s->reserved != sizeof(*head));
1483 head = page_address(page) + offset;
1484 } else {
1485 /*
1486 * RCU free overloads the RCU head over the LRU
1487 */
1488 head = (void *)&page->lru;
1489 }
81819f0f
CL
1490
1491 call_rcu(head, rcu_free_slab);
1492 } else
1493 __free_slab(s, page);
1494}
1495
1496static void discard_slab(struct kmem_cache *s, struct page *page)
1497{
205ab99d 1498 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1499 free_slab(s, page);
1500}
1501
1502/*
5cc6eee8
CL
1503 * Management of partially allocated slabs.
1504 *
1505 * list_lock must be held.
81819f0f 1506 */
5cc6eee8 1507static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1508 struct page *page, int tail)
81819f0f 1509{
e95eed57 1510 n->nr_partial++;
136333d1 1511 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1512 list_add_tail(&page->lru, &n->partial);
1513 else
1514 list_add(&page->lru, &n->partial);
81819f0f
CL
1515}
1516
5cc6eee8
CL
1517/*
1518 * list_lock must be held.
1519 */
1520static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1521 struct page *page)
1522{
1523 list_del(&page->lru);
1524 n->nr_partial--;
1525}
1526
81819f0f 1527/*
5cc6eee8
CL
1528 * Lock slab, remove from the partial list and put the object into the
1529 * per cpu freelist.
81819f0f 1530 *
497b66f2
CL
1531 * Returns a list of objects or NULL if it fails.
1532 *
672bba3a 1533 * Must hold list_lock.
81819f0f 1534 */
497b66f2 1535static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1536 struct kmem_cache_node *n, struct page *page,
49e22585 1537 int mode)
81819f0f 1538{
2cfb7455
CL
1539 void *freelist;
1540 unsigned long counters;
1541 struct page new;
1542
2cfb7455
CL
1543 /*
1544 * Zap the freelist and set the frozen bit.
1545 * The old freelist is the list of objects for the
1546 * per cpu allocation list.
1547 */
1548 do {
1549 freelist = page->freelist;
1550 counters = page->counters;
1551 new.counters = counters;
49e22585
CL
1552 if (mode)
1553 new.inuse = page->objects;
2cfb7455
CL
1554
1555 VM_BUG_ON(new.frozen);
1556 new.frozen = 1;
1557
1d07171c 1558 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1559 freelist, counters,
1560 NULL, new.counters,
1561 "lock and freeze"));
1562
1563 remove_partial(n, page);
49e22585 1564 return freelist;
81819f0f
CL
1565}
1566
49e22585
CL
1567static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1568
81819f0f 1569/*
672bba3a 1570 * Try to allocate a partial slab from a specific node.
81819f0f 1571 */
497b66f2 1572static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1573 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1574{
49e22585
CL
1575 struct page *page, *page2;
1576 void *object = NULL;
81819f0f
CL
1577
1578 /*
1579 * Racy check. If we mistakenly see no partial slabs then we
1580 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1581 * partial slab and there is none available then get_partials()
1582 * will return NULL.
81819f0f
CL
1583 */
1584 if (!n || !n->nr_partial)
1585 return NULL;
1586
1587 spin_lock(&n->list_lock);
49e22585 1588 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1589 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1590 int available;
1591
1592 if (!t)
1593 break;
1594
12d79634 1595 if (!object) {
49e22585
CL
1596 c->page = page;
1597 c->node = page_to_nid(page);
1598 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1599 object = t;
1600 available = page->objects - page->inuse;
1601 } else {
1602 page->freelist = t;
1603 available = put_cpu_partial(s, page, 0);
1604 }
1605 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1606 break;
1607
497b66f2 1608 }
81819f0f 1609 spin_unlock(&n->list_lock);
497b66f2 1610 return object;
81819f0f
CL
1611}
1612
1613/*
672bba3a 1614 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1615 */
acd19fd1
CL
1616static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1617 struct kmem_cache_cpu *c)
81819f0f
CL
1618{
1619#ifdef CONFIG_NUMA
1620 struct zonelist *zonelist;
dd1a239f 1621 struct zoneref *z;
54a6eb5c
MG
1622 struct zone *zone;
1623 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1624 void *object;
81819f0f
CL
1625
1626 /*
672bba3a
CL
1627 * The defrag ratio allows a configuration of the tradeoffs between
1628 * inter node defragmentation and node local allocations. A lower
1629 * defrag_ratio increases the tendency to do local allocations
1630 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1631 *
672bba3a
CL
1632 * If the defrag_ratio is set to 0 then kmalloc() always
1633 * returns node local objects. If the ratio is higher then kmalloc()
1634 * may return off node objects because partial slabs are obtained
1635 * from other nodes and filled up.
81819f0f 1636 *
6446faa2 1637 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1638 * defrag_ratio = 1000) then every (well almost) allocation will
1639 * first attempt to defrag slab caches on other nodes. This means
1640 * scanning over all nodes to look for partial slabs which may be
1641 * expensive if we do it every time we are trying to find a slab
1642 * with available objects.
81819f0f 1643 */
9824601e
CL
1644 if (!s->remote_node_defrag_ratio ||
1645 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1646 return NULL;
1647
c0ff7453 1648 get_mems_allowed();
0e88460d 1649 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1650 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1651 struct kmem_cache_node *n;
1652
54a6eb5c 1653 n = get_node(s, zone_to_nid(zone));
81819f0f 1654
54a6eb5c 1655 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1656 n->nr_partial > s->min_partial) {
497b66f2
CL
1657 object = get_partial_node(s, n, c);
1658 if (object) {
c0ff7453 1659 put_mems_allowed();
497b66f2 1660 return object;
c0ff7453 1661 }
81819f0f
CL
1662 }
1663 }
c0ff7453 1664 put_mems_allowed();
81819f0f
CL
1665#endif
1666 return NULL;
1667}
1668
1669/*
1670 * Get a partial page, lock it and return it.
1671 */
497b66f2 1672static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1673 struct kmem_cache_cpu *c)
81819f0f 1674{
497b66f2 1675 void *object;
2154a336 1676 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1677
497b66f2
CL
1678 object = get_partial_node(s, get_node(s, searchnode), c);
1679 if (object || node != NUMA_NO_NODE)
1680 return object;
81819f0f 1681
acd19fd1 1682 return get_any_partial(s, flags, c);
81819f0f
CL
1683}
1684
8a5ec0ba
CL
1685#ifdef CONFIG_PREEMPT
1686/*
1687 * Calculate the next globally unique transaction for disambiguiation
1688 * during cmpxchg. The transactions start with the cpu number and are then
1689 * incremented by CONFIG_NR_CPUS.
1690 */
1691#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1692#else
1693/*
1694 * No preemption supported therefore also no need to check for
1695 * different cpus.
1696 */
1697#define TID_STEP 1
1698#endif
1699
1700static inline unsigned long next_tid(unsigned long tid)
1701{
1702 return tid + TID_STEP;
1703}
1704
1705static inline unsigned int tid_to_cpu(unsigned long tid)
1706{
1707 return tid % TID_STEP;
1708}
1709
1710static inline unsigned long tid_to_event(unsigned long tid)
1711{
1712 return tid / TID_STEP;
1713}
1714
1715static inline unsigned int init_tid(int cpu)
1716{
1717 return cpu;
1718}
1719
1720static inline void note_cmpxchg_failure(const char *n,
1721 const struct kmem_cache *s, unsigned long tid)
1722{
1723#ifdef SLUB_DEBUG_CMPXCHG
1724 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1725
1726 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1727
1728#ifdef CONFIG_PREEMPT
1729 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1730 printk("due to cpu change %d -> %d\n",
1731 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1732 else
1733#endif
1734 if (tid_to_event(tid) != tid_to_event(actual_tid))
1735 printk("due to cpu running other code. Event %ld->%ld\n",
1736 tid_to_event(tid), tid_to_event(actual_tid));
1737 else
1738 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1739 actual_tid, tid, next_tid(tid));
1740#endif
4fdccdfb 1741 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1742}
1743
8a5ec0ba
CL
1744void init_kmem_cache_cpus(struct kmem_cache *s)
1745{
8a5ec0ba
CL
1746 int cpu;
1747
1748 for_each_possible_cpu(cpu)
1749 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1750}
2cfb7455 1751
81819f0f
CL
1752/*
1753 * Remove the cpu slab
1754 */
dfb4f096 1755static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1756{
2cfb7455 1757 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1758 struct page *page = c->page;
2cfb7455
CL
1759 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1760 int lock = 0;
1761 enum slab_modes l = M_NONE, m = M_NONE;
1762 void *freelist;
1763 void *nextfree;
136333d1 1764 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1765 struct page new;
1766 struct page old;
1767
1768 if (page->freelist) {
84e554e6 1769 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1770 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1771 }
1772
1773 c->tid = next_tid(c->tid);
1774 c->page = NULL;
1775 freelist = c->freelist;
1776 c->freelist = NULL;
1777
894b8788 1778 /*
2cfb7455
CL
1779 * Stage one: Free all available per cpu objects back
1780 * to the page freelist while it is still frozen. Leave the
1781 * last one.
1782 *
1783 * There is no need to take the list->lock because the page
1784 * is still frozen.
1785 */
1786 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1787 void *prior;
1788 unsigned long counters;
1789
1790 do {
1791 prior = page->freelist;
1792 counters = page->counters;
1793 set_freepointer(s, freelist, prior);
1794 new.counters = counters;
1795 new.inuse--;
1796 VM_BUG_ON(!new.frozen);
1797
1d07171c 1798 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1799 prior, counters,
1800 freelist, new.counters,
1801 "drain percpu freelist"));
1802
1803 freelist = nextfree;
1804 }
1805
894b8788 1806 /*
2cfb7455
CL
1807 * Stage two: Ensure that the page is unfrozen while the
1808 * list presence reflects the actual number of objects
1809 * during unfreeze.
1810 *
1811 * We setup the list membership and then perform a cmpxchg
1812 * with the count. If there is a mismatch then the page
1813 * is not unfrozen but the page is on the wrong list.
1814 *
1815 * Then we restart the process which may have to remove
1816 * the page from the list that we just put it on again
1817 * because the number of objects in the slab may have
1818 * changed.
894b8788 1819 */
2cfb7455 1820redo:
894b8788 1821
2cfb7455
CL
1822 old.freelist = page->freelist;
1823 old.counters = page->counters;
1824 VM_BUG_ON(!old.frozen);
7c2e132c 1825
2cfb7455
CL
1826 /* Determine target state of the slab */
1827 new.counters = old.counters;
1828 if (freelist) {
1829 new.inuse--;
1830 set_freepointer(s, freelist, old.freelist);
1831 new.freelist = freelist;
1832 } else
1833 new.freelist = old.freelist;
1834
1835 new.frozen = 0;
1836
81107188 1837 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1838 m = M_FREE;
1839 else if (new.freelist) {
1840 m = M_PARTIAL;
1841 if (!lock) {
1842 lock = 1;
1843 /*
1844 * Taking the spinlock removes the possiblity
1845 * that acquire_slab() will see a slab page that
1846 * is frozen
1847 */
1848 spin_lock(&n->list_lock);
1849 }
1850 } else {
1851 m = M_FULL;
1852 if (kmem_cache_debug(s) && !lock) {
1853 lock = 1;
1854 /*
1855 * This also ensures that the scanning of full
1856 * slabs from diagnostic functions will not see
1857 * any frozen slabs.
1858 */
1859 spin_lock(&n->list_lock);
1860 }
1861 }
1862
1863 if (l != m) {
1864
1865 if (l == M_PARTIAL)
1866
1867 remove_partial(n, page);
1868
1869 else if (l == M_FULL)
894b8788 1870
2cfb7455
CL
1871 remove_full(s, page);
1872
1873 if (m == M_PARTIAL) {
1874
1875 add_partial(n, page, tail);
136333d1 1876 stat(s, tail);
2cfb7455
CL
1877
1878 } else if (m == M_FULL) {
894b8788 1879
2cfb7455
CL
1880 stat(s, DEACTIVATE_FULL);
1881 add_full(s, n, page);
1882
1883 }
1884 }
1885
1886 l = m;
1d07171c 1887 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1888 old.freelist, old.counters,
1889 new.freelist, new.counters,
1890 "unfreezing slab"))
1891 goto redo;
1892
2cfb7455
CL
1893 if (lock)
1894 spin_unlock(&n->list_lock);
1895
1896 if (m == M_FREE) {
1897 stat(s, DEACTIVATE_EMPTY);
1898 discard_slab(s, page);
1899 stat(s, FREE_SLAB);
894b8788 1900 }
81819f0f
CL
1901}
1902
49e22585
CL
1903/* Unfreeze all the cpu partial slabs */
1904static void unfreeze_partials(struct kmem_cache *s)
1905{
1906 struct kmem_cache_node *n = NULL;
1907 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1908 struct page *page;
1909
1910 while ((page = c->partial)) {
1911 enum slab_modes { M_PARTIAL, M_FREE };
1912 enum slab_modes l, m;
1913 struct page new;
1914 struct page old;
1915
1916 c->partial = page->next;
1917 l = M_FREE;
1918
1919 do {
1920
1921 old.freelist = page->freelist;
1922 old.counters = page->counters;
1923 VM_BUG_ON(!old.frozen);
1924
1925 new.counters = old.counters;
1926 new.freelist = old.freelist;
1927
1928 new.frozen = 0;
1929
dcc3be6a 1930 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1931 m = M_FREE;
1932 else {
1933 struct kmem_cache_node *n2 = get_node(s,
1934 page_to_nid(page));
1935
1936 m = M_PARTIAL;
1937 if (n != n2) {
1938 if (n)
1939 spin_unlock(&n->list_lock);
1940
1941 n = n2;
1942 spin_lock(&n->list_lock);
1943 }
1944 }
1945
1946 if (l != m) {
1947 if (l == M_PARTIAL)
1948 remove_partial(n, page);
1949 else
1950 add_partial(n, page, 1);
1951
1952 l = m;
1953 }
1954
1955 } while (!cmpxchg_double_slab(s, page,
1956 old.freelist, old.counters,
1957 new.freelist, new.counters,
1958 "unfreezing slab"));
1959
1960 if (m == M_FREE) {
1961 stat(s, DEACTIVATE_EMPTY);
1962 discard_slab(s, page);
1963 stat(s, FREE_SLAB);
1964 }
1965 }
1966
1967 if (n)
1968 spin_unlock(&n->list_lock);
1969}
1970
1971/*
1972 * Put a page that was just frozen (in __slab_free) into a partial page
1973 * slot if available. This is done without interrupts disabled and without
1974 * preemption disabled. The cmpxchg is racy and may put the partial page
1975 * onto a random cpus partial slot.
1976 *
1977 * If we did not find a slot then simply move all the partials to the
1978 * per node partial list.
1979 */
1980int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1981{
1982 struct page *oldpage;
1983 int pages;
1984 int pobjects;
1985
1986 do {
1987 pages = 0;
1988 pobjects = 0;
1989 oldpage = this_cpu_read(s->cpu_slab->partial);
1990
1991 if (oldpage) {
1992 pobjects = oldpage->pobjects;
1993 pages = oldpage->pages;
1994 if (drain && pobjects > s->cpu_partial) {
1995 unsigned long flags;
1996 /*
1997 * partial array is full. Move the existing
1998 * set to the per node partial list.
1999 */
2000 local_irq_save(flags);
2001 unfreeze_partials(s);
2002 local_irq_restore(flags);
2003 pobjects = 0;
2004 pages = 0;
2005 }
2006 }
2007
2008 pages++;
2009 pobjects += page->objects - page->inuse;
2010
2011 page->pages = pages;
2012 page->pobjects = pobjects;
2013 page->next = oldpage;
2014
2015 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2016 stat(s, CPU_PARTIAL_FREE);
2017 return pobjects;
2018}
2019
dfb4f096 2020static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2021{
84e554e6 2022 stat(s, CPUSLAB_FLUSH);
dfb4f096 2023 deactivate_slab(s, c);
81819f0f
CL
2024}
2025
2026/*
2027 * Flush cpu slab.
6446faa2 2028 *
81819f0f
CL
2029 * Called from IPI handler with interrupts disabled.
2030 */
0c710013 2031static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2032{
9dfc6e68 2033 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2034
49e22585
CL
2035 if (likely(c)) {
2036 if (c->page)
2037 flush_slab(s, c);
2038
2039 unfreeze_partials(s);
2040 }
81819f0f
CL
2041}
2042
2043static void flush_cpu_slab(void *d)
2044{
2045 struct kmem_cache *s = d;
81819f0f 2046
dfb4f096 2047 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2048}
2049
2050static void flush_all(struct kmem_cache *s)
2051{
15c8b6c1 2052 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2053}
2054
dfb4f096
CL
2055/*
2056 * Check if the objects in a per cpu structure fit numa
2057 * locality expectations.
2058 */
2059static inline int node_match(struct kmem_cache_cpu *c, int node)
2060{
2061#ifdef CONFIG_NUMA
2154a336 2062 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2063 return 0;
2064#endif
2065 return 1;
2066}
2067
781b2ba6
PE
2068static int count_free(struct page *page)
2069{
2070 return page->objects - page->inuse;
2071}
2072
2073static unsigned long count_partial(struct kmem_cache_node *n,
2074 int (*get_count)(struct page *))
2075{
2076 unsigned long flags;
2077 unsigned long x = 0;
2078 struct page *page;
2079
2080 spin_lock_irqsave(&n->list_lock, flags);
2081 list_for_each_entry(page, &n->partial, lru)
2082 x += get_count(page);
2083 spin_unlock_irqrestore(&n->list_lock, flags);
2084 return x;
2085}
2086
26c02cf0
AB
2087static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2088{
2089#ifdef CONFIG_SLUB_DEBUG
2090 return atomic_long_read(&n->total_objects);
2091#else
2092 return 0;
2093#endif
2094}
2095
781b2ba6
PE
2096static noinline void
2097slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2098{
2099 int node;
2100
2101 printk(KERN_WARNING
2102 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2103 nid, gfpflags);
2104 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2105 "default order: %d, min order: %d\n", s->name, s->objsize,
2106 s->size, oo_order(s->oo), oo_order(s->min));
2107
fa5ec8a1
DR
2108 if (oo_order(s->min) > get_order(s->objsize))
2109 printk(KERN_WARNING " %s debugging increased min order, use "
2110 "slub_debug=O to disable.\n", s->name);
2111
781b2ba6
PE
2112 for_each_online_node(node) {
2113 struct kmem_cache_node *n = get_node(s, node);
2114 unsigned long nr_slabs;
2115 unsigned long nr_objs;
2116 unsigned long nr_free;
2117
2118 if (!n)
2119 continue;
2120
26c02cf0
AB
2121 nr_free = count_partial(n, count_free);
2122 nr_slabs = node_nr_slabs(n);
2123 nr_objs = node_nr_objs(n);
781b2ba6
PE
2124
2125 printk(KERN_WARNING
2126 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2127 node, nr_slabs, nr_objs, nr_free);
2128 }
2129}
2130
497b66f2
CL
2131static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2132 int node, struct kmem_cache_cpu **pc)
2133{
2134 void *object;
2135 struct kmem_cache_cpu *c;
2136 struct page *page = new_slab(s, flags, node);
2137
2138 if (page) {
2139 c = __this_cpu_ptr(s->cpu_slab);
2140 if (c->page)
2141 flush_slab(s, c);
2142
2143 /*
2144 * No other reference to the page yet so we can
2145 * muck around with it freely without cmpxchg
2146 */
2147 object = page->freelist;
2148 page->freelist = NULL;
2149
2150 stat(s, ALLOC_SLAB);
2151 c->node = page_to_nid(page);
2152 c->page = page;
2153 *pc = c;
2154 } else
2155 object = NULL;
2156
2157 return object;
2158}
2159
81819f0f 2160/*
894b8788
CL
2161 * Slow path. The lockless freelist is empty or we need to perform
2162 * debugging duties.
2163 *
894b8788
CL
2164 * Processing is still very fast if new objects have been freed to the
2165 * regular freelist. In that case we simply take over the regular freelist
2166 * as the lockless freelist and zap the regular freelist.
81819f0f 2167 *
894b8788
CL
2168 * If that is not working then we fall back to the partial lists. We take the
2169 * first element of the freelist as the object to allocate now and move the
2170 * rest of the freelist to the lockless freelist.
81819f0f 2171 *
894b8788 2172 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2173 * we need to allocate a new slab. This is the slowest path since it involves
2174 * a call to the page allocator and the setup of a new slab.
81819f0f 2175 */
ce71e27c
EGM
2176static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2177 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2178{
81819f0f 2179 void **object;
8a5ec0ba 2180 unsigned long flags;
2cfb7455
CL
2181 struct page new;
2182 unsigned long counters;
8a5ec0ba
CL
2183
2184 local_irq_save(flags);
2185#ifdef CONFIG_PREEMPT
2186 /*
2187 * We may have been preempted and rescheduled on a different
2188 * cpu before disabling interrupts. Need to reload cpu area
2189 * pointer.
2190 */
2191 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2192#endif
81819f0f 2193
497b66f2 2194 if (!c->page)
81819f0f 2195 goto new_slab;
49e22585 2196redo:
fc59c053 2197 if (unlikely(!node_match(c, node))) {
e36a2652 2198 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2199 deactivate_slab(s, c);
2200 goto new_slab;
2201 }
6446faa2 2202
2cfb7455
CL
2203 stat(s, ALLOC_SLOWPATH);
2204
2205 do {
497b66f2
CL
2206 object = c->page->freelist;
2207 counters = c->page->counters;
2cfb7455 2208 new.counters = counters;
2cfb7455
CL
2209 VM_BUG_ON(!new.frozen);
2210
03e404af
CL
2211 /*
2212 * If there is no object left then we use this loop to
2213 * deactivate the slab which is simple since no objects
2214 * are left in the slab and therefore we do not need to
2215 * put the page back onto the partial list.
2216 *
2217 * If there are objects left then we retrieve them
2218 * and use them to refill the per cpu queue.
497b66f2 2219 */
03e404af 2220
497b66f2 2221 new.inuse = c->page->objects;
03e404af
CL
2222 new.frozen = object != NULL;
2223
497b66f2 2224 } while (!__cmpxchg_double_slab(s, c->page,
2cfb7455
CL
2225 object, counters,
2226 NULL, new.counters,
2227 "__slab_alloc"));
6446faa2 2228
49e22585 2229 if (!object) {
03e404af
CL
2230 c->page = NULL;
2231 stat(s, DEACTIVATE_BYPASS);
fc59c053 2232 goto new_slab;
03e404af 2233 }
6446faa2 2234
84e554e6 2235 stat(s, ALLOC_REFILL);
6446faa2 2236
894b8788 2237load_freelist:
ff12059e 2238 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2239 c->tid = next_tid(c->tid);
2240 local_irq_restore(flags);
81819f0f
CL
2241 return object;
2242
81819f0f 2243new_slab:
2cfb7455 2244
49e22585
CL
2245 if (c->partial) {
2246 c->page = c->partial;
2247 c->partial = c->page->next;
2248 c->node = page_to_nid(c->page);
2249 stat(s, CPU_PARTIAL_ALLOC);
2250 c->freelist = NULL;
2251 goto redo;
81819f0f
CL
2252 }
2253
49e22585 2254 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2255 object = get_partial(s, gfpflags, node, c);
b811c202 2256
497b66f2 2257 if (unlikely(!object)) {
01ad8a7b 2258
497b66f2 2259 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2260
497b66f2
CL
2261 if (unlikely(!object)) {
2262 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2263 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2264
497b66f2
CL
2265 local_irq_restore(flags);
2266 return NULL;
2267 }
81819f0f 2268 }
2cfb7455 2269
497b66f2 2270 if (likely(!kmem_cache_debug(s)))
4b6f0750 2271 goto load_freelist;
2cfb7455 2272
497b66f2
CL
2273 /* Only entered in the debug case */
2274 if (!alloc_debug_processing(s, c->page, object, addr))
2275 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2276
2cfb7455 2277 c->freelist = get_freepointer(s, object);
442b06bc 2278 deactivate_slab(s, c);
15b7c514 2279 c->node = NUMA_NO_NODE;
a71ae47a
CL
2280 local_irq_restore(flags);
2281 return object;
894b8788
CL
2282}
2283
2284/*
2285 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2286 * have the fastpath folded into their functions. So no function call
2287 * overhead for requests that can be satisfied on the fastpath.
2288 *
2289 * The fastpath works by first checking if the lockless freelist can be used.
2290 * If not then __slab_alloc is called for slow processing.
2291 *
2292 * Otherwise we can simply pick the next object from the lockless free list.
2293 */
06428780 2294static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2295 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2296{
894b8788 2297 void **object;
dfb4f096 2298 struct kmem_cache_cpu *c;
8a5ec0ba 2299 unsigned long tid;
1f84260c 2300
c016b0bd 2301 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2302 return NULL;
1f84260c 2303
8a5ec0ba 2304redo:
8a5ec0ba
CL
2305
2306 /*
2307 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2308 * enabled. We may switch back and forth between cpus while
2309 * reading from one cpu area. That does not matter as long
2310 * as we end up on the original cpu again when doing the cmpxchg.
2311 */
9dfc6e68 2312 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2313
8a5ec0ba
CL
2314 /*
2315 * The transaction ids are globally unique per cpu and per operation on
2316 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2317 * occurs on the right processor and that there was no operation on the
2318 * linked list in between.
2319 */
2320 tid = c->tid;
2321 barrier();
8a5ec0ba 2322
9dfc6e68 2323 object = c->freelist;
9dfc6e68 2324 if (unlikely(!object || !node_match(c, node)))
894b8788 2325
dfb4f096 2326 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2327
2328 else {
8a5ec0ba 2329 /*
25985edc 2330 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2331 * operation and if we are on the right processor.
2332 *
2333 * The cmpxchg does the following atomically (without lock semantics!)
2334 * 1. Relocate first pointer to the current per cpu area.
2335 * 2. Verify that tid and freelist have not been changed
2336 * 3. If they were not changed replace tid and freelist
2337 *
2338 * Since this is without lock semantics the protection is only against
2339 * code executing on this cpu *not* from access by other cpus.
2340 */
30106b8c 2341 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2342 s->cpu_slab->freelist, s->cpu_slab->tid,
2343 object, tid,
1393d9a1 2344 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2345
2346 note_cmpxchg_failure("slab_alloc", s, tid);
2347 goto redo;
2348 }
84e554e6 2349 stat(s, ALLOC_FASTPATH);
894b8788 2350 }
8a5ec0ba 2351
74e2134f 2352 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2353 memset(object, 0, s->objsize);
d07dbea4 2354
c016b0bd 2355 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2356
894b8788 2357 return object;
81819f0f
CL
2358}
2359
2360void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2361{
2154a336 2362 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2363
ca2b84cb 2364 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2365
2366 return ret;
81819f0f
CL
2367}
2368EXPORT_SYMBOL(kmem_cache_alloc);
2369
0f24f128 2370#ifdef CONFIG_TRACING
4a92379b
RK
2371void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2372{
2373 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2374 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2375 return ret;
2376}
2377EXPORT_SYMBOL(kmem_cache_alloc_trace);
2378
2379void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2380{
4a92379b
RK
2381 void *ret = kmalloc_order(size, flags, order);
2382 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2383 return ret;
5b882be4 2384}
4a92379b 2385EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2386#endif
2387
81819f0f
CL
2388#ifdef CONFIG_NUMA
2389void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2390{
5b882be4
EGM
2391 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2392
ca2b84cb
EGM
2393 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2394 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2395
2396 return ret;
81819f0f
CL
2397}
2398EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2399
0f24f128 2400#ifdef CONFIG_TRACING
4a92379b 2401void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2402 gfp_t gfpflags,
4a92379b 2403 int node, size_t size)
5b882be4 2404{
4a92379b
RK
2405 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2406
2407 trace_kmalloc_node(_RET_IP_, ret,
2408 size, s->size, gfpflags, node);
2409 return ret;
5b882be4 2410}
4a92379b 2411EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2412#endif
5d1f57e4 2413#endif
5b882be4 2414
81819f0f 2415/*
894b8788
CL
2416 * Slow patch handling. This may still be called frequently since objects
2417 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2418 *
894b8788
CL
2419 * So we still attempt to reduce cache line usage. Just take the slab
2420 * lock and free the item. If there is no additional partial page
2421 * handling required then we can return immediately.
81819f0f 2422 */
894b8788 2423static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2424 void *x, unsigned long addr)
81819f0f
CL
2425{
2426 void *prior;
2427 void **object = (void *)x;
2cfb7455
CL
2428 int was_frozen;
2429 int inuse;
2430 struct page new;
2431 unsigned long counters;
2432 struct kmem_cache_node *n = NULL;
61728d1e 2433 unsigned long uninitialized_var(flags);
81819f0f 2434
8a5ec0ba 2435 stat(s, FREE_SLOWPATH);
81819f0f 2436
8dc16c6c 2437 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2438 return;
6446faa2 2439
2cfb7455
CL
2440 do {
2441 prior = page->freelist;
2442 counters = page->counters;
2443 set_freepointer(s, object, prior);
2444 new.counters = counters;
2445 was_frozen = new.frozen;
2446 new.inuse--;
2447 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2448
2449 if (!kmem_cache_debug(s) && !prior)
2450
2451 /*
2452 * Slab was on no list before and will be partially empty
2453 * We can defer the list move and instead freeze it.
2454 */
2455 new.frozen = 1;
2456
2457 else { /* Needs to be taken off a list */
2458
2459 n = get_node(s, page_to_nid(page));
2460 /*
2461 * Speculatively acquire the list_lock.
2462 * If the cmpxchg does not succeed then we may
2463 * drop the list_lock without any processing.
2464 *
2465 * Otherwise the list_lock will synchronize with
2466 * other processors updating the list of slabs.
2467 */
2468 spin_lock_irqsave(&n->list_lock, flags);
2469
2470 }
2cfb7455
CL
2471 }
2472 inuse = new.inuse;
81819f0f 2473
2cfb7455
CL
2474 } while (!cmpxchg_double_slab(s, page,
2475 prior, counters,
2476 object, new.counters,
2477 "__slab_free"));
81819f0f 2478
2cfb7455 2479 if (likely(!n)) {
49e22585
CL
2480
2481 /*
2482 * If we just froze the page then put it onto the
2483 * per cpu partial list.
2484 */
2485 if (new.frozen && !was_frozen)
2486 put_cpu_partial(s, page, 1);
2487
2488 /*
2cfb7455
CL
2489 * The list lock was not taken therefore no list
2490 * activity can be necessary.
2491 */
2492 if (was_frozen)
2493 stat(s, FREE_FROZEN);
80f08c19 2494 return;
2cfb7455 2495 }
81819f0f
CL
2496
2497 /*
2cfb7455
CL
2498 * was_frozen may have been set after we acquired the list_lock in
2499 * an earlier loop. So we need to check it here again.
81819f0f 2500 */
2cfb7455
CL
2501 if (was_frozen)
2502 stat(s, FREE_FROZEN);
2503 else {
2504 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2505 goto slab_empty;
81819f0f 2506
2cfb7455
CL
2507 /*
2508 * Objects left in the slab. If it was not on the partial list before
2509 * then add it.
2510 */
2511 if (unlikely(!prior)) {
2512 remove_full(s, page);
136333d1 2513 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2514 stat(s, FREE_ADD_PARTIAL);
2515 }
8ff12cfc 2516 }
80f08c19 2517 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2518 return;
2519
2520slab_empty:
a973e9dd 2521 if (prior) {
81819f0f 2522 /*
6fbabb20 2523 * Slab on the partial list.
81819f0f 2524 */
5cc6eee8 2525 remove_partial(n, page);
84e554e6 2526 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2527 } else
2528 /* Slab must be on the full list */
2529 remove_full(s, page);
2cfb7455 2530
80f08c19 2531 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2532 stat(s, FREE_SLAB);
81819f0f 2533 discard_slab(s, page);
81819f0f
CL
2534}
2535
894b8788
CL
2536/*
2537 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2538 * can perform fastpath freeing without additional function calls.
2539 *
2540 * The fastpath is only possible if we are freeing to the current cpu slab
2541 * of this processor. This typically the case if we have just allocated
2542 * the item before.
2543 *
2544 * If fastpath is not possible then fall back to __slab_free where we deal
2545 * with all sorts of special processing.
2546 */
06428780 2547static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2548 struct page *page, void *x, unsigned long addr)
894b8788
CL
2549{
2550 void **object = (void *)x;
dfb4f096 2551 struct kmem_cache_cpu *c;
8a5ec0ba 2552 unsigned long tid;
1f84260c 2553
c016b0bd
CL
2554 slab_free_hook(s, x);
2555
8a5ec0ba
CL
2556redo:
2557 /*
2558 * Determine the currently cpus per cpu slab.
2559 * The cpu may change afterward. However that does not matter since
2560 * data is retrieved via this pointer. If we are on the same cpu
2561 * during the cmpxchg then the free will succedd.
2562 */
9dfc6e68 2563 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2564
8a5ec0ba
CL
2565 tid = c->tid;
2566 barrier();
c016b0bd 2567
442b06bc 2568 if (likely(page == c->page)) {
ff12059e 2569 set_freepointer(s, object, c->freelist);
8a5ec0ba 2570
30106b8c 2571 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2572 s->cpu_slab->freelist, s->cpu_slab->tid,
2573 c->freelist, tid,
2574 object, next_tid(tid)))) {
2575
2576 note_cmpxchg_failure("slab_free", s, tid);
2577 goto redo;
2578 }
84e554e6 2579 stat(s, FREE_FASTPATH);
894b8788 2580 } else
ff12059e 2581 __slab_free(s, page, x, addr);
894b8788 2582
894b8788
CL
2583}
2584
81819f0f
CL
2585void kmem_cache_free(struct kmem_cache *s, void *x)
2586{
77c5e2d0 2587 struct page *page;
81819f0f 2588
b49af68f 2589 page = virt_to_head_page(x);
81819f0f 2590
ce71e27c 2591 slab_free(s, page, x, _RET_IP_);
5b882be4 2592
ca2b84cb 2593 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2594}
2595EXPORT_SYMBOL(kmem_cache_free);
2596
81819f0f 2597/*
672bba3a
CL
2598 * Object placement in a slab is made very easy because we always start at
2599 * offset 0. If we tune the size of the object to the alignment then we can
2600 * get the required alignment by putting one properly sized object after
2601 * another.
81819f0f
CL
2602 *
2603 * Notice that the allocation order determines the sizes of the per cpu
2604 * caches. Each processor has always one slab available for allocations.
2605 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2606 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2607 * locking overhead.
81819f0f
CL
2608 */
2609
2610/*
2611 * Mininum / Maximum order of slab pages. This influences locking overhead
2612 * and slab fragmentation. A higher order reduces the number of partial slabs
2613 * and increases the number of allocations possible without having to
2614 * take the list_lock.
2615 */
2616static int slub_min_order;
114e9e89 2617static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2618static int slub_min_objects;
81819f0f
CL
2619
2620/*
2621 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2622 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2623 */
2624static int slub_nomerge;
2625
81819f0f
CL
2626/*
2627 * Calculate the order of allocation given an slab object size.
2628 *
672bba3a
CL
2629 * The order of allocation has significant impact on performance and other
2630 * system components. Generally order 0 allocations should be preferred since
2631 * order 0 does not cause fragmentation in the page allocator. Larger objects
2632 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2633 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2634 * would be wasted.
2635 *
2636 * In order to reach satisfactory performance we must ensure that a minimum
2637 * number of objects is in one slab. Otherwise we may generate too much
2638 * activity on the partial lists which requires taking the list_lock. This is
2639 * less a concern for large slabs though which are rarely used.
81819f0f 2640 *
672bba3a
CL
2641 * slub_max_order specifies the order where we begin to stop considering the
2642 * number of objects in a slab as critical. If we reach slub_max_order then
2643 * we try to keep the page order as low as possible. So we accept more waste
2644 * of space in favor of a small page order.
81819f0f 2645 *
672bba3a
CL
2646 * Higher order allocations also allow the placement of more objects in a
2647 * slab and thereby reduce object handling overhead. If the user has
2648 * requested a higher mininum order then we start with that one instead of
2649 * the smallest order which will fit the object.
81819f0f 2650 */
5e6d444e 2651static inline int slab_order(int size, int min_objects,
ab9a0f19 2652 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2653{
2654 int order;
2655 int rem;
6300ea75 2656 int min_order = slub_min_order;
81819f0f 2657
ab9a0f19 2658 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2659 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2660
6300ea75 2661 for (order = max(min_order,
5e6d444e
CL
2662 fls(min_objects * size - 1) - PAGE_SHIFT);
2663 order <= max_order; order++) {
81819f0f 2664
5e6d444e 2665 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2666
ab9a0f19 2667 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2668 continue;
2669
ab9a0f19 2670 rem = (slab_size - reserved) % size;
81819f0f 2671
5e6d444e 2672 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2673 break;
2674
2675 }
672bba3a 2676
81819f0f
CL
2677 return order;
2678}
2679
ab9a0f19 2680static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2681{
2682 int order;
2683 int min_objects;
2684 int fraction;
e8120ff1 2685 int max_objects;
5e6d444e
CL
2686
2687 /*
2688 * Attempt to find best configuration for a slab. This
2689 * works by first attempting to generate a layout with
2690 * the best configuration and backing off gradually.
2691 *
2692 * First we reduce the acceptable waste in a slab. Then
2693 * we reduce the minimum objects required in a slab.
2694 */
2695 min_objects = slub_min_objects;
9b2cd506
CL
2696 if (!min_objects)
2697 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2698 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2699 min_objects = min(min_objects, max_objects);
2700
5e6d444e 2701 while (min_objects > 1) {
c124f5b5 2702 fraction = 16;
5e6d444e
CL
2703 while (fraction >= 4) {
2704 order = slab_order(size, min_objects,
ab9a0f19 2705 slub_max_order, fraction, reserved);
5e6d444e
CL
2706 if (order <= slub_max_order)
2707 return order;
2708 fraction /= 2;
2709 }
5086c389 2710 min_objects--;
5e6d444e
CL
2711 }
2712
2713 /*
2714 * We were unable to place multiple objects in a slab. Now
2715 * lets see if we can place a single object there.
2716 */
ab9a0f19 2717 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2718 if (order <= slub_max_order)
2719 return order;
2720
2721 /*
2722 * Doh this slab cannot be placed using slub_max_order.
2723 */
ab9a0f19 2724 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2725 if (order < MAX_ORDER)
5e6d444e
CL
2726 return order;
2727 return -ENOSYS;
2728}
2729
81819f0f 2730/*
672bba3a 2731 * Figure out what the alignment of the objects will be.
81819f0f
CL
2732 */
2733static unsigned long calculate_alignment(unsigned long flags,
2734 unsigned long align, unsigned long size)
2735{
2736 /*
6446faa2
CL
2737 * If the user wants hardware cache aligned objects then follow that
2738 * suggestion if the object is sufficiently large.
81819f0f 2739 *
6446faa2
CL
2740 * The hardware cache alignment cannot override the specified
2741 * alignment though. If that is greater then use it.
81819f0f 2742 */
b6210386
NP
2743 if (flags & SLAB_HWCACHE_ALIGN) {
2744 unsigned long ralign = cache_line_size();
2745 while (size <= ralign / 2)
2746 ralign /= 2;
2747 align = max(align, ralign);
2748 }
81819f0f
CL
2749
2750 if (align < ARCH_SLAB_MINALIGN)
b6210386 2751 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2752
2753 return ALIGN(align, sizeof(void *));
2754}
2755
5595cffc
PE
2756static void
2757init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2758{
2759 n->nr_partial = 0;
81819f0f
CL
2760 spin_lock_init(&n->list_lock);
2761 INIT_LIST_HEAD(&n->partial);
8ab1372f 2762#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2763 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2764 atomic_long_set(&n->total_objects, 0);
643b1138 2765 INIT_LIST_HEAD(&n->full);
8ab1372f 2766#endif
81819f0f
CL
2767}
2768
55136592 2769static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2770{
6c182dc0
CL
2771 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2772 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2773
8a5ec0ba 2774 /*
d4d84fef
CM
2775 * Must align to double word boundary for the double cmpxchg
2776 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2777 */
d4d84fef
CM
2778 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2779 2 * sizeof(void *));
8a5ec0ba
CL
2780
2781 if (!s->cpu_slab)
2782 return 0;
2783
2784 init_kmem_cache_cpus(s);
4c93c355 2785
8a5ec0ba 2786 return 1;
4c93c355 2787}
4c93c355 2788
51df1142
CL
2789static struct kmem_cache *kmem_cache_node;
2790
81819f0f
CL
2791/*
2792 * No kmalloc_node yet so do it by hand. We know that this is the first
2793 * slab on the node for this slabcache. There are no concurrent accesses
2794 * possible.
2795 *
2796 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2797 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2798 * memory on a fresh node that has no slab structures yet.
81819f0f 2799 */
55136592 2800static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2801{
2802 struct page *page;
2803 struct kmem_cache_node *n;
2804
51df1142 2805 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2806
51df1142 2807 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2808
2809 BUG_ON(!page);
a2f92ee7
CL
2810 if (page_to_nid(page) != node) {
2811 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2812 "node %d\n", node);
2813 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2814 "in order to be able to continue\n");
2815 }
2816
81819f0f
CL
2817 n = page->freelist;
2818 BUG_ON(!n);
51df1142 2819 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2820 page->inuse = 1;
8cb0a506 2821 page->frozen = 0;
51df1142 2822 kmem_cache_node->node[node] = n;
8ab1372f 2823#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2824 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2825 init_tracking(kmem_cache_node, n);
8ab1372f 2826#endif
51df1142
CL
2827 init_kmem_cache_node(n, kmem_cache_node);
2828 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2829
136333d1 2830 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2831}
2832
2833static void free_kmem_cache_nodes(struct kmem_cache *s)
2834{
2835 int node;
2836
f64dc58c 2837 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2838 struct kmem_cache_node *n = s->node[node];
51df1142 2839
73367bd8 2840 if (n)
51df1142
CL
2841 kmem_cache_free(kmem_cache_node, n);
2842
81819f0f
CL
2843 s->node[node] = NULL;
2844 }
2845}
2846
55136592 2847static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2848{
2849 int node;
81819f0f 2850
f64dc58c 2851 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2852 struct kmem_cache_node *n;
2853
73367bd8 2854 if (slab_state == DOWN) {
55136592 2855 early_kmem_cache_node_alloc(node);
73367bd8
AD
2856 continue;
2857 }
51df1142 2858 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2859 GFP_KERNEL, node);
81819f0f 2860
73367bd8
AD
2861 if (!n) {
2862 free_kmem_cache_nodes(s);
2863 return 0;
81819f0f 2864 }
73367bd8 2865
81819f0f 2866 s->node[node] = n;
5595cffc 2867 init_kmem_cache_node(n, s);
81819f0f
CL
2868 }
2869 return 1;
2870}
81819f0f 2871
c0bdb232 2872static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2873{
2874 if (min < MIN_PARTIAL)
2875 min = MIN_PARTIAL;
2876 else if (min > MAX_PARTIAL)
2877 min = MAX_PARTIAL;
2878 s->min_partial = min;
2879}
2880
81819f0f
CL
2881/*
2882 * calculate_sizes() determines the order and the distribution of data within
2883 * a slab object.
2884 */
06b285dc 2885static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2886{
2887 unsigned long flags = s->flags;
2888 unsigned long size = s->objsize;
2889 unsigned long align = s->align;
834f3d11 2890 int order;
81819f0f 2891
d8b42bf5
CL
2892 /*
2893 * Round up object size to the next word boundary. We can only
2894 * place the free pointer at word boundaries and this determines
2895 * the possible location of the free pointer.
2896 */
2897 size = ALIGN(size, sizeof(void *));
2898
2899#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2900 /*
2901 * Determine if we can poison the object itself. If the user of
2902 * the slab may touch the object after free or before allocation
2903 * then we should never poison the object itself.
2904 */
2905 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2906 !s->ctor)
81819f0f
CL
2907 s->flags |= __OBJECT_POISON;
2908 else
2909 s->flags &= ~__OBJECT_POISON;
2910
81819f0f
CL
2911
2912 /*
672bba3a 2913 * If we are Redzoning then check if there is some space between the
81819f0f 2914 * end of the object and the free pointer. If not then add an
672bba3a 2915 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2916 */
2917 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2918 size += sizeof(void *);
41ecc55b 2919#endif
81819f0f
CL
2920
2921 /*
672bba3a
CL
2922 * With that we have determined the number of bytes in actual use
2923 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2924 */
2925 s->inuse = size;
2926
2927 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2928 s->ctor)) {
81819f0f
CL
2929 /*
2930 * Relocate free pointer after the object if it is not
2931 * permitted to overwrite the first word of the object on
2932 * kmem_cache_free.
2933 *
2934 * This is the case if we do RCU, have a constructor or
2935 * destructor or are poisoning the objects.
2936 */
2937 s->offset = size;
2938 size += sizeof(void *);
2939 }
2940
c12b3c62 2941#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2942 if (flags & SLAB_STORE_USER)
2943 /*
2944 * Need to store information about allocs and frees after
2945 * the object.
2946 */
2947 size += 2 * sizeof(struct track);
2948
be7b3fbc 2949 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2950 /*
2951 * Add some empty padding so that we can catch
2952 * overwrites from earlier objects rather than let
2953 * tracking information or the free pointer be
0211a9c8 2954 * corrupted if a user writes before the start
81819f0f
CL
2955 * of the object.
2956 */
2957 size += sizeof(void *);
41ecc55b 2958#endif
672bba3a 2959
81819f0f
CL
2960 /*
2961 * Determine the alignment based on various parameters that the
65c02d4c
CL
2962 * user specified and the dynamic determination of cache line size
2963 * on bootup.
81819f0f
CL
2964 */
2965 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2966 s->align = align;
81819f0f
CL
2967
2968 /*
2969 * SLUB stores one object immediately after another beginning from
2970 * offset 0. In order to align the objects we have to simply size
2971 * each object to conform to the alignment.
2972 */
2973 size = ALIGN(size, align);
2974 s->size = size;
06b285dc
CL
2975 if (forced_order >= 0)
2976 order = forced_order;
2977 else
ab9a0f19 2978 order = calculate_order(size, s->reserved);
81819f0f 2979
834f3d11 2980 if (order < 0)
81819f0f
CL
2981 return 0;
2982
b7a49f0d 2983 s->allocflags = 0;
834f3d11 2984 if (order)
b7a49f0d
CL
2985 s->allocflags |= __GFP_COMP;
2986
2987 if (s->flags & SLAB_CACHE_DMA)
2988 s->allocflags |= SLUB_DMA;
2989
2990 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2991 s->allocflags |= __GFP_RECLAIMABLE;
2992
81819f0f
CL
2993 /*
2994 * Determine the number of objects per slab
2995 */
ab9a0f19
LJ
2996 s->oo = oo_make(order, size, s->reserved);
2997 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2998 if (oo_objects(s->oo) > oo_objects(s->max))
2999 s->max = s->oo;
81819f0f 3000
834f3d11 3001 return !!oo_objects(s->oo);
81819f0f
CL
3002
3003}
3004
55136592 3005static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3006 const char *name, size_t size,
3007 size_t align, unsigned long flags,
51cc5068 3008 void (*ctor)(void *))
81819f0f
CL
3009{
3010 memset(s, 0, kmem_size);
3011 s->name = name;
3012 s->ctor = ctor;
81819f0f 3013 s->objsize = size;
81819f0f 3014 s->align = align;
ba0268a8 3015 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3016 s->reserved = 0;
81819f0f 3017
da9a638c
LJ
3018 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3019 s->reserved = sizeof(struct rcu_head);
81819f0f 3020
06b285dc 3021 if (!calculate_sizes(s, -1))
81819f0f 3022 goto error;
3de47213
DR
3023 if (disable_higher_order_debug) {
3024 /*
3025 * Disable debugging flags that store metadata if the min slab
3026 * order increased.
3027 */
3028 if (get_order(s->size) > get_order(s->objsize)) {
3029 s->flags &= ~DEBUG_METADATA_FLAGS;
3030 s->offset = 0;
3031 if (!calculate_sizes(s, -1))
3032 goto error;
3033 }
3034 }
81819f0f 3035
b789ef51
CL
3036#ifdef CONFIG_CMPXCHG_DOUBLE
3037 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3038 /* Enable fast mode */
3039 s->flags |= __CMPXCHG_DOUBLE;
3040#endif
3041
3b89d7d8
DR
3042 /*
3043 * The larger the object size is, the more pages we want on the partial
3044 * list to avoid pounding the page allocator excessively.
3045 */
49e22585
CL
3046 set_min_partial(s, ilog2(s->size) / 2);
3047
3048 /*
3049 * cpu_partial determined the maximum number of objects kept in the
3050 * per cpu partial lists of a processor.
3051 *
3052 * Per cpu partial lists mainly contain slabs that just have one
3053 * object freed. If they are used for allocation then they can be
3054 * filled up again with minimal effort. The slab will never hit the
3055 * per node partial lists and therefore no locking will be required.
3056 *
3057 * This setting also determines
3058 *
3059 * A) The number of objects from per cpu partial slabs dumped to the
3060 * per node list when we reach the limit.
9f264904 3061 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3062 * per node list when we run out of per cpu objects. We only fetch 50%
3063 * to keep some capacity around for frees.
3064 */
3065 if (s->size >= PAGE_SIZE)
3066 s->cpu_partial = 2;
3067 else if (s->size >= 1024)
3068 s->cpu_partial = 6;
3069 else if (s->size >= 256)
3070 s->cpu_partial = 13;
3071 else
3072 s->cpu_partial = 30;
3073
81819f0f
CL
3074 s->refcount = 1;
3075#ifdef CONFIG_NUMA
e2cb96b7 3076 s->remote_node_defrag_ratio = 1000;
81819f0f 3077#endif
55136592 3078 if (!init_kmem_cache_nodes(s))
dfb4f096 3079 goto error;
81819f0f 3080
55136592 3081 if (alloc_kmem_cache_cpus(s))
81819f0f 3082 return 1;
ff12059e 3083
4c93c355 3084 free_kmem_cache_nodes(s);
81819f0f
CL
3085error:
3086 if (flags & SLAB_PANIC)
3087 panic("Cannot create slab %s size=%lu realsize=%u "
3088 "order=%u offset=%u flags=%lx\n",
834f3d11 3089 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3090 s->offset, flags);
3091 return 0;
3092}
81819f0f 3093
81819f0f
CL
3094/*
3095 * Determine the size of a slab object
3096 */
3097unsigned int kmem_cache_size(struct kmem_cache *s)
3098{
3099 return s->objsize;
3100}
3101EXPORT_SYMBOL(kmem_cache_size);
3102
33b12c38
CL
3103static void list_slab_objects(struct kmem_cache *s, struct page *page,
3104 const char *text)
3105{
3106#ifdef CONFIG_SLUB_DEBUG
3107 void *addr = page_address(page);
3108 void *p;
a5dd5c11
NK
3109 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3110 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3111 if (!map)
3112 return;
33b12c38
CL
3113 slab_err(s, page, "%s", text);
3114 slab_lock(page);
33b12c38 3115
5f80b13a 3116 get_map(s, page, map);
33b12c38
CL
3117 for_each_object(p, s, addr, page->objects) {
3118
3119 if (!test_bit(slab_index(p, s, addr), map)) {
3120 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3121 p, p - addr);
3122 print_tracking(s, p);
3123 }
3124 }
3125 slab_unlock(page);
bbd7d57b 3126 kfree(map);
33b12c38
CL
3127#endif
3128}
3129
81819f0f 3130/*
599870b1 3131 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3132 * This is called from kmem_cache_close(). We must be the last thread
3133 * using the cache and therefore we do not need to lock anymore.
81819f0f 3134 */
599870b1 3135static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3136{
81819f0f
CL
3137 struct page *page, *h;
3138
33b12c38 3139 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3140 if (!page->inuse) {
5cc6eee8 3141 remove_partial(n, page);
81819f0f 3142 discard_slab(s, page);
33b12c38
CL
3143 } else {
3144 list_slab_objects(s, page,
3145 "Objects remaining on kmem_cache_close()");
599870b1 3146 }
33b12c38 3147 }
81819f0f
CL
3148}
3149
3150/*
672bba3a 3151 * Release all resources used by a slab cache.
81819f0f 3152 */
0c710013 3153static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3154{
3155 int node;
3156
3157 flush_all(s);
9dfc6e68 3158 free_percpu(s->cpu_slab);
81819f0f 3159 /* Attempt to free all objects */
f64dc58c 3160 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3161 struct kmem_cache_node *n = get_node(s, node);
3162
599870b1
CL
3163 free_partial(s, n);
3164 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3165 return 1;
3166 }
3167 free_kmem_cache_nodes(s);
3168 return 0;
3169}
3170
3171/*
3172 * Close a cache and release the kmem_cache structure
3173 * (must be used for caches created using kmem_cache_create)
3174 */
3175void kmem_cache_destroy(struct kmem_cache *s)
3176{
3177 down_write(&slub_lock);
3178 s->refcount--;
3179 if (!s->refcount) {
3180 list_del(&s->list);
69cb8e6b 3181 up_write(&slub_lock);
d629d819
PE
3182 if (kmem_cache_close(s)) {
3183 printk(KERN_ERR "SLUB %s: %s called for cache that "
3184 "still has objects.\n", s->name, __func__);
3185 dump_stack();
3186 }
d76b1590
ED
3187 if (s->flags & SLAB_DESTROY_BY_RCU)
3188 rcu_barrier();
81819f0f 3189 sysfs_slab_remove(s);
69cb8e6b
CL
3190 } else
3191 up_write(&slub_lock);
81819f0f
CL
3192}
3193EXPORT_SYMBOL(kmem_cache_destroy);
3194
3195/********************************************************************
3196 * Kmalloc subsystem
3197 *******************************************************************/
3198
51df1142 3199struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3200EXPORT_SYMBOL(kmalloc_caches);
3201
51df1142
CL
3202static struct kmem_cache *kmem_cache;
3203
55136592 3204#ifdef CONFIG_ZONE_DMA
51df1142 3205static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3206#endif
3207
81819f0f
CL
3208static int __init setup_slub_min_order(char *str)
3209{
06428780 3210 get_option(&str, &slub_min_order);
81819f0f
CL
3211
3212 return 1;
3213}
3214
3215__setup("slub_min_order=", setup_slub_min_order);
3216
3217static int __init setup_slub_max_order(char *str)
3218{
06428780 3219 get_option(&str, &slub_max_order);
818cf590 3220 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3221
3222 return 1;
3223}
3224
3225__setup("slub_max_order=", setup_slub_max_order);
3226
3227static int __init setup_slub_min_objects(char *str)
3228{
06428780 3229 get_option(&str, &slub_min_objects);
81819f0f
CL
3230
3231 return 1;
3232}
3233
3234__setup("slub_min_objects=", setup_slub_min_objects);
3235
3236static int __init setup_slub_nomerge(char *str)
3237{
3238 slub_nomerge = 1;
3239 return 1;
3240}
3241
3242__setup("slub_nomerge", setup_slub_nomerge);
3243
51df1142
CL
3244static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3245 int size, unsigned int flags)
81819f0f 3246{
51df1142
CL
3247 struct kmem_cache *s;
3248
3249 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3250
83b519e8
PE
3251 /*
3252 * This function is called with IRQs disabled during early-boot on
3253 * single CPU so there's no need to take slub_lock here.
3254 */
55136592 3255 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3256 flags, NULL))
81819f0f
CL
3257 goto panic;
3258
3259 list_add(&s->list, &slab_caches);
51df1142 3260 return s;
81819f0f
CL
3261
3262panic:
3263 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3264 return NULL;
81819f0f
CL
3265}
3266
f1b26339
CL
3267/*
3268 * Conversion table for small slabs sizes / 8 to the index in the
3269 * kmalloc array. This is necessary for slabs < 192 since we have non power
3270 * of two cache sizes there. The size of larger slabs can be determined using
3271 * fls.
3272 */
3273static s8 size_index[24] = {
3274 3, /* 8 */
3275 4, /* 16 */
3276 5, /* 24 */
3277 5, /* 32 */
3278 6, /* 40 */
3279 6, /* 48 */
3280 6, /* 56 */
3281 6, /* 64 */
3282 1, /* 72 */
3283 1, /* 80 */
3284 1, /* 88 */
3285 1, /* 96 */
3286 7, /* 104 */
3287 7, /* 112 */
3288 7, /* 120 */
3289 7, /* 128 */
3290 2, /* 136 */
3291 2, /* 144 */
3292 2, /* 152 */
3293 2, /* 160 */
3294 2, /* 168 */
3295 2, /* 176 */
3296 2, /* 184 */
3297 2 /* 192 */
3298};
3299
acdfcd04
AK
3300static inline int size_index_elem(size_t bytes)
3301{
3302 return (bytes - 1) / 8;
3303}
3304
81819f0f
CL
3305static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3306{
f1b26339 3307 int index;
81819f0f 3308
f1b26339
CL
3309 if (size <= 192) {
3310 if (!size)
3311 return ZERO_SIZE_PTR;
81819f0f 3312
acdfcd04 3313 index = size_index[size_index_elem(size)];
aadb4bc4 3314 } else
f1b26339 3315 index = fls(size - 1);
81819f0f
CL
3316
3317#ifdef CONFIG_ZONE_DMA
f1b26339 3318 if (unlikely((flags & SLUB_DMA)))
51df1142 3319 return kmalloc_dma_caches[index];
f1b26339 3320
81819f0f 3321#endif
51df1142 3322 return kmalloc_caches[index];
81819f0f
CL
3323}
3324
3325void *__kmalloc(size_t size, gfp_t flags)
3326{
aadb4bc4 3327 struct kmem_cache *s;
5b882be4 3328 void *ret;
81819f0f 3329
ffadd4d0 3330 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3331 return kmalloc_large(size, flags);
aadb4bc4
CL
3332
3333 s = get_slab(size, flags);
3334
3335 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3336 return s;
3337
2154a336 3338 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3339
ca2b84cb 3340 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3341
3342 return ret;
81819f0f
CL
3343}
3344EXPORT_SYMBOL(__kmalloc);
3345
5d1f57e4 3346#ifdef CONFIG_NUMA
f619cfe1
CL
3347static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3348{
b1eeab67 3349 struct page *page;
e4f7c0b4 3350 void *ptr = NULL;
f619cfe1 3351
b1eeab67
VN
3352 flags |= __GFP_COMP | __GFP_NOTRACK;
3353 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3354 if (page)
e4f7c0b4
CM
3355 ptr = page_address(page);
3356
3357 kmemleak_alloc(ptr, size, 1, flags);
3358 return ptr;
f619cfe1
CL
3359}
3360
81819f0f
CL
3361void *__kmalloc_node(size_t size, gfp_t flags, int node)
3362{
aadb4bc4 3363 struct kmem_cache *s;
5b882be4 3364 void *ret;
81819f0f 3365
057685cf 3366 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3367 ret = kmalloc_large_node(size, flags, node);
3368
ca2b84cb
EGM
3369 trace_kmalloc_node(_RET_IP_, ret,
3370 size, PAGE_SIZE << get_order(size),
3371 flags, node);
5b882be4
EGM
3372
3373 return ret;
3374 }
aadb4bc4
CL
3375
3376 s = get_slab(size, flags);
3377
3378 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3379 return s;
3380
5b882be4
EGM
3381 ret = slab_alloc(s, flags, node, _RET_IP_);
3382
ca2b84cb 3383 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3384
3385 return ret;
81819f0f
CL
3386}
3387EXPORT_SYMBOL(__kmalloc_node);
3388#endif
3389
3390size_t ksize(const void *object)
3391{
272c1d21 3392 struct page *page;
81819f0f 3393
ef8b4520 3394 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3395 return 0;
3396
294a80a8 3397 page = virt_to_head_page(object);
294a80a8 3398
76994412
PE
3399 if (unlikely(!PageSlab(page))) {
3400 WARN_ON(!PageCompound(page));
294a80a8 3401 return PAGE_SIZE << compound_order(page);
76994412 3402 }
81819f0f 3403
b3d41885 3404 return slab_ksize(page->slab);
81819f0f 3405}
b1aabecd 3406EXPORT_SYMBOL(ksize);
81819f0f 3407
d18a90dd
BG
3408#ifdef CONFIG_SLUB_DEBUG
3409bool verify_mem_not_deleted(const void *x)
3410{
3411 struct page *page;
3412 void *object = (void *)x;
3413 unsigned long flags;
3414 bool rv;
3415
3416 if (unlikely(ZERO_OR_NULL_PTR(x)))
3417 return false;
3418
3419 local_irq_save(flags);
3420
3421 page = virt_to_head_page(x);
3422 if (unlikely(!PageSlab(page))) {
3423 /* maybe it was from stack? */
3424 rv = true;
3425 goto out_unlock;
3426 }
3427
3428 slab_lock(page);
3429 if (on_freelist(page->slab, page, object)) {
3430 object_err(page->slab, page, object, "Object is on free-list");
3431 rv = false;
3432 } else {
3433 rv = true;
3434 }
3435 slab_unlock(page);
3436
3437out_unlock:
3438 local_irq_restore(flags);
3439 return rv;
3440}
3441EXPORT_SYMBOL(verify_mem_not_deleted);
3442#endif
3443
81819f0f
CL
3444void kfree(const void *x)
3445{
81819f0f 3446 struct page *page;
5bb983b0 3447 void *object = (void *)x;
81819f0f 3448
2121db74
PE
3449 trace_kfree(_RET_IP_, x);
3450
2408c550 3451 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3452 return;
3453
b49af68f 3454 page = virt_to_head_page(x);
aadb4bc4 3455 if (unlikely(!PageSlab(page))) {
0937502a 3456 BUG_ON(!PageCompound(page));
e4f7c0b4 3457 kmemleak_free(x);
aadb4bc4
CL
3458 put_page(page);
3459 return;
3460 }
ce71e27c 3461 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3462}
3463EXPORT_SYMBOL(kfree);
3464
2086d26a 3465/*
672bba3a
CL
3466 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3467 * the remaining slabs by the number of items in use. The slabs with the
3468 * most items in use come first. New allocations will then fill those up
3469 * and thus they can be removed from the partial lists.
3470 *
3471 * The slabs with the least items are placed last. This results in them
3472 * being allocated from last increasing the chance that the last objects
3473 * are freed in them.
2086d26a
CL
3474 */
3475int kmem_cache_shrink(struct kmem_cache *s)
3476{
3477 int node;
3478 int i;
3479 struct kmem_cache_node *n;
3480 struct page *page;
3481 struct page *t;
205ab99d 3482 int objects = oo_objects(s->max);
2086d26a 3483 struct list_head *slabs_by_inuse =
834f3d11 3484 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3485 unsigned long flags;
3486
3487 if (!slabs_by_inuse)
3488 return -ENOMEM;
3489
3490 flush_all(s);
f64dc58c 3491 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3492 n = get_node(s, node);
3493
3494 if (!n->nr_partial)
3495 continue;
3496
834f3d11 3497 for (i = 0; i < objects; i++)
2086d26a
CL
3498 INIT_LIST_HEAD(slabs_by_inuse + i);
3499
3500 spin_lock_irqsave(&n->list_lock, flags);
3501
3502 /*
672bba3a 3503 * Build lists indexed by the items in use in each slab.
2086d26a 3504 *
672bba3a
CL
3505 * Note that concurrent frees may occur while we hold the
3506 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3507 */
3508 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3509 list_move(&page->lru, slabs_by_inuse + page->inuse);
3510 if (!page->inuse)
3511 n->nr_partial--;
2086d26a
CL
3512 }
3513
2086d26a 3514 /*
672bba3a
CL
3515 * Rebuild the partial list with the slabs filled up most
3516 * first and the least used slabs at the end.
2086d26a 3517 */
69cb8e6b 3518 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3519 list_splice(slabs_by_inuse + i, n->partial.prev);
3520
2086d26a 3521 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3522
3523 /* Release empty slabs */
3524 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3525 discard_slab(s, page);
2086d26a
CL
3526 }
3527
3528 kfree(slabs_by_inuse);
3529 return 0;
3530}
3531EXPORT_SYMBOL(kmem_cache_shrink);
3532
92a5bbc1 3533#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3534static int slab_mem_going_offline_callback(void *arg)
3535{
3536 struct kmem_cache *s;
3537
3538 down_read(&slub_lock);
3539 list_for_each_entry(s, &slab_caches, list)
3540 kmem_cache_shrink(s);
3541 up_read(&slub_lock);
3542
3543 return 0;
3544}
3545
3546static void slab_mem_offline_callback(void *arg)
3547{
3548 struct kmem_cache_node *n;
3549 struct kmem_cache *s;
3550 struct memory_notify *marg = arg;
3551 int offline_node;
3552
3553 offline_node = marg->status_change_nid;
3554
3555 /*
3556 * If the node still has available memory. we need kmem_cache_node
3557 * for it yet.
3558 */
3559 if (offline_node < 0)
3560 return;
3561
3562 down_read(&slub_lock);
3563 list_for_each_entry(s, &slab_caches, list) {
3564 n = get_node(s, offline_node);
3565 if (n) {
3566 /*
3567 * if n->nr_slabs > 0, slabs still exist on the node
3568 * that is going down. We were unable to free them,
c9404c9c 3569 * and offline_pages() function shouldn't call this
b9049e23
YG
3570 * callback. So, we must fail.
3571 */
0f389ec6 3572 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3573
3574 s->node[offline_node] = NULL;
8de66a0c 3575 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3576 }
3577 }
3578 up_read(&slub_lock);
3579}
3580
3581static int slab_mem_going_online_callback(void *arg)
3582{
3583 struct kmem_cache_node *n;
3584 struct kmem_cache *s;
3585 struct memory_notify *marg = arg;
3586 int nid = marg->status_change_nid;
3587 int ret = 0;
3588
3589 /*
3590 * If the node's memory is already available, then kmem_cache_node is
3591 * already created. Nothing to do.
3592 */
3593 if (nid < 0)
3594 return 0;
3595
3596 /*
0121c619 3597 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3598 * allocate a kmem_cache_node structure in order to bring the node
3599 * online.
3600 */
3601 down_read(&slub_lock);
3602 list_for_each_entry(s, &slab_caches, list) {
3603 /*
3604 * XXX: kmem_cache_alloc_node will fallback to other nodes
3605 * since memory is not yet available from the node that
3606 * is brought up.
3607 */
8de66a0c 3608 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3609 if (!n) {
3610 ret = -ENOMEM;
3611 goto out;
3612 }
5595cffc 3613 init_kmem_cache_node(n, s);
b9049e23
YG
3614 s->node[nid] = n;
3615 }
3616out:
3617 up_read(&slub_lock);
3618 return ret;
3619}
3620
3621static int slab_memory_callback(struct notifier_block *self,
3622 unsigned long action, void *arg)
3623{
3624 int ret = 0;
3625
3626 switch (action) {
3627 case MEM_GOING_ONLINE:
3628 ret = slab_mem_going_online_callback(arg);
3629 break;
3630 case MEM_GOING_OFFLINE:
3631 ret = slab_mem_going_offline_callback(arg);
3632 break;
3633 case MEM_OFFLINE:
3634 case MEM_CANCEL_ONLINE:
3635 slab_mem_offline_callback(arg);
3636 break;
3637 case MEM_ONLINE:
3638 case MEM_CANCEL_OFFLINE:
3639 break;
3640 }
dc19f9db
KH
3641 if (ret)
3642 ret = notifier_from_errno(ret);
3643 else
3644 ret = NOTIFY_OK;
b9049e23
YG
3645 return ret;
3646}
3647
3648#endif /* CONFIG_MEMORY_HOTPLUG */
3649
81819f0f
CL
3650/********************************************************************
3651 * Basic setup of slabs
3652 *******************************************************************/
3653
51df1142
CL
3654/*
3655 * Used for early kmem_cache structures that were allocated using
3656 * the page allocator
3657 */
3658
3659static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3660{
3661 int node;
3662
3663 list_add(&s->list, &slab_caches);
3664 s->refcount = -1;
3665
3666 for_each_node_state(node, N_NORMAL_MEMORY) {
3667 struct kmem_cache_node *n = get_node(s, node);
3668 struct page *p;
3669
3670 if (n) {
3671 list_for_each_entry(p, &n->partial, lru)
3672 p->slab = s;
3673
607bf324 3674#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3675 list_for_each_entry(p, &n->full, lru)
3676 p->slab = s;
3677#endif
3678 }
3679 }
3680}
3681
81819f0f
CL
3682void __init kmem_cache_init(void)
3683{
3684 int i;
4b356be0 3685 int caches = 0;
51df1142
CL
3686 struct kmem_cache *temp_kmem_cache;
3687 int order;
51df1142
CL
3688 struct kmem_cache *temp_kmem_cache_node;
3689 unsigned long kmalloc_size;
3690
3691 kmem_size = offsetof(struct kmem_cache, node) +
3692 nr_node_ids * sizeof(struct kmem_cache_node *);
3693
3694 /* Allocate two kmem_caches from the page allocator */
3695 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3696 order = get_order(2 * kmalloc_size);
3697 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3698
81819f0f
CL
3699 /*
3700 * Must first have the slab cache available for the allocations of the
672bba3a 3701 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3702 * kmem_cache_open for slab_state == DOWN.
3703 */
51df1142
CL
3704 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3705
3706 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3707 sizeof(struct kmem_cache_node),
3708 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3709
0c40ba4f 3710 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3711
3712 /* Able to allocate the per node structures */
3713 slab_state = PARTIAL;
3714
51df1142
CL
3715 temp_kmem_cache = kmem_cache;
3716 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3717 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3718 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3719 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3720
51df1142
CL
3721 /*
3722 * Allocate kmem_cache_node properly from the kmem_cache slab.
3723 * kmem_cache_node is separately allocated so no need to
3724 * update any list pointers.
3725 */
3726 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3727
51df1142
CL
3728 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3729 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3730
3731 kmem_cache_bootstrap_fixup(kmem_cache_node);
3732
3733 caches++;
51df1142
CL
3734 kmem_cache_bootstrap_fixup(kmem_cache);
3735 caches++;
3736 /* Free temporary boot structure */
3737 free_pages((unsigned long)temp_kmem_cache, order);
3738
3739 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3740
3741 /*
3742 * Patch up the size_index table if we have strange large alignment
3743 * requirements for the kmalloc array. This is only the case for
6446faa2 3744 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3745 *
3746 * Largest permitted alignment is 256 bytes due to the way we
3747 * handle the index determination for the smaller caches.
3748 *
3749 * Make sure that nothing crazy happens if someone starts tinkering
3750 * around with ARCH_KMALLOC_MINALIGN
3751 */
3752 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3753 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3754
acdfcd04
AK
3755 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3756 int elem = size_index_elem(i);
3757 if (elem >= ARRAY_SIZE(size_index))
3758 break;
3759 size_index[elem] = KMALLOC_SHIFT_LOW;
3760 }
f1b26339 3761
acdfcd04
AK
3762 if (KMALLOC_MIN_SIZE == 64) {
3763 /*
3764 * The 96 byte size cache is not used if the alignment
3765 * is 64 byte.
3766 */
3767 for (i = 64 + 8; i <= 96; i += 8)
3768 size_index[size_index_elem(i)] = 7;
3769 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3770 /*
3771 * The 192 byte sized cache is not used if the alignment
3772 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3773 * instead.
3774 */
3775 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3776 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3777 }
3778
51df1142
CL
3779 /* Caches that are not of the two-to-the-power-of size */
3780 if (KMALLOC_MIN_SIZE <= 32) {
3781 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3782 caches++;
3783 }
3784
3785 if (KMALLOC_MIN_SIZE <= 64) {
3786 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3787 caches++;
3788 }
3789
3790 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3791 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3792 caches++;
3793 }
3794
81819f0f
CL
3795 slab_state = UP;
3796
3797 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3798 if (KMALLOC_MIN_SIZE <= 32) {
3799 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3800 BUG_ON(!kmalloc_caches[1]->name);
3801 }
3802
3803 if (KMALLOC_MIN_SIZE <= 64) {
3804 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3805 BUG_ON(!kmalloc_caches[2]->name);
3806 }
3807
d7278bd7
CL
3808 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3809 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3810
3811 BUG_ON(!s);
51df1142 3812 kmalloc_caches[i]->name = s;
d7278bd7 3813 }
81819f0f
CL
3814
3815#ifdef CONFIG_SMP
3816 register_cpu_notifier(&slab_notifier);
9dfc6e68 3817#endif
81819f0f 3818
55136592 3819#ifdef CONFIG_ZONE_DMA
51df1142
CL
3820 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3821 struct kmem_cache *s = kmalloc_caches[i];
55136592 3822
51df1142 3823 if (s && s->size) {
55136592
CL
3824 char *name = kasprintf(GFP_NOWAIT,
3825 "dma-kmalloc-%d", s->objsize);
3826
3827 BUG_ON(!name);
51df1142
CL
3828 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3829 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3830 }
3831 }
3832#endif
3adbefee
IM
3833 printk(KERN_INFO
3834 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3835 " CPUs=%d, Nodes=%d\n",
3836 caches, cache_line_size(),
81819f0f
CL
3837 slub_min_order, slub_max_order, slub_min_objects,
3838 nr_cpu_ids, nr_node_ids);
3839}
3840
7e85ee0c
PE
3841void __init kmem_cache_init_late(void)
3842{
7e85ee0c
PE
3843}
3844
81819f0f
CL
3845/*
3846 * Find a mergeable slab cache
3847 */
3848static int slab_unmergeable(struct kmem_cache *s)
3849{
3850 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3851 return 1;
3852
c59def9f 3853 if (s->ctor)
81819f0f
CL
3854 return 1;
3855
8ffa6875
CL
3856 /*
3857 * We may have set a slab to be unmergeable during bootstrap.
3858 */
3859 if (s->refcount < 0)
3860 return 1;
3861
81819f0f
CL
3862 return 0;
3863}
3864
3865static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3866 size_t align, unsigned long flags, const char *name,
51cc5068 3867 void (*ctor)(void *))
81819f0f 3868{
5b95a4ac 3869 struct kmem_cache *s;
81819f0f
CL
3870
3871 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3872 return NULL;
3873
c59def9f 3874 if (ctor)
81819f0f
CL
3875 return NULL;
3876
3877 size = ALIGN(size, sizeof(void *));
3878 align = calculate_alignment(flags, align, size);
3879 size = ALIGN(size, align);
ba0268a8 3880 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3881
5b95a4ac 3882 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3883 if (slab_unmergeable(s))
3884 continue;
3885
3886 if (size > s->size)
3887 continue;
3888
ba0268a8 3889 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3890 continue;
3891 /*
3892 * Check if alignment is compatible.
3893 * Courtesy of Adrian Drzewiecki
3894 */
06428780 3895 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3896 continue;
3897
3898 if (s->size - size >= sizeof(void *))
3899 continue;
3900
3901 return s;
3902 }
3903 return NULL;
3904}
3905
3906struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3907 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3908{
3909 struct kmem_cache *s;
84c1cf62 3910 char *n;
81819f0f 3911
fe1ff49d
BH
3912 if (WARN_ON(!name))
3913 return NULL;
3914
81819f0f 3915 down_write(&slub_lock);
ba0268a8 3916 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3917 if (s) {
3918 s->refcount++;
3919 /*
3920 * Adjust the object sizes so that we clear
3921 * the complete object on kzalloc.
3922 */
3923 s->objsize = max(s->objsize, (int)size);
3924 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3925
7b8f3b66 3926 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3927 s->refcount--;
81819f0f 3928 goto err;
7b8f3b66 3929 }
2bce6485 3930 up_write(&slub_lock);
a0e1d1be
CL
3931 return s;
3932 }
6446faa2 3933
84c1cf62
PE
3934 n = kstrdup(name, GFP_KERNEL);
3935 if (!n)
3936 goto err;
3937
a0e1d1be
CL
3938 s = kmalloc(kmem_size, GFP_KERNEL);
3939 if (s) {
84c1cf62 3940 if (kmem_cache_open(s, n,
c59def9f 3941 size, align, flags, ctor)) {
81819f0f 3942 list_add(&s->list, &slab_caches);
7b8f3b66 3943 if (sysfs_slab_add(s)) {
7b8f3b66 3944 list_del(&s->list);
84c1cf62 3945 kfree(n);
7b8f3b66 3946 kfree(s);
a0e1d1be 3947 goto err;
7b8f3b66 3948 }
2bce6485 3949 up_write(&slub_lock);
a0e1d1be
CL
3950 return s;
3951 }
84c1cf62 3952 kfree(n);
a0e1d1be 3953 kfree(s);
81819f0f 3954 }
68cee4f1 3955err:
81819f0f 3956 up_write(&slub_lock);
81819f0f 3957
81819f0f
CL
3958 if (flags & SLAB_PANIC)
3959 panic("Cannot create slabcache %s\n", name);
3960 else
3961 s = NULL;
3962 return s;
3963}
3964EXPORT_SYMBOL(kmem_cache_create);
3965
81819f0f 3966#ifdef CONFIG_SMP
81819f0f 3967/*
672bba3a
CL
3968 * Use the cpu notifier to insure that the cpu slabs are flushed when
3969 * necessary.
81819f0f
CL
3970 */
3971static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3972 unsigned long action, void *hcpu)
3973{
3974 long cpu = (long)hcpu;
5b95a4ac
CL
3975 struct kmem_cache *s;
3976 unsigned long flags;
81819f0f
CL
3977
3978 switch (action) {
3979 case CPU_UP_CANCELED:
8bb78442 3980 case CPU_UP_CANCELED_FROZEN:
81819f0f 3981 case CPU_DEAD:
8bb78442 3982 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3983 down_read(&slub_lock);
3984 list_for_each_entry(s, &slab_caches, list) {
3985 local_irq_save(flags);
3986 __flush_cpu_slab(s, cpu);
3987 local_irq_restore(flags);
3988 }
3989 up_read(&slub_lock);
81819f0f
CL
3990 break;
3991 default:
3992 break;
3993 }
3994 return NOTIFY_OK;
3995}
3996
06428780 3997static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3998 .notifier_call = slab_cpuup_callback
06428780 3999};
81819f0f
CL
4000
4001#endif
4002
ce71e27c 4003void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4004{
aadb4bc4 4005 struct kmem_cache *s;
94b528d0 4006 void *ret;
aadb4bc4 4007
ffadd4d0 4008 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4009 return kmalloc_large(size, gfpflags);
4010
aadb4bc4 4011 s = get_slab(size, gfpflags);
81819f0f 4012
2408c550 4013 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4014 return s;
81819f0f 4015
2154a336 4016 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4017
25985edc 4018 /* Honor the call site pointer we received. */
ca2b84cb 4019 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4020
4021 return ret;
81819f0f
CL
4022}
4023
5d1f57e4 4024#ifdef CONFIG_NUMA
81819f0f 4025void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4026 int node, unsigned long caller)
81819f0f 4027{
aadb4bc4 4028 struct kmem_cache *s;
94b528d0 4029 void *ret;
aadb4bc4 4030
d3e14aa3
XF
4031 if (unlikely(size > SLUB_MAX_SIZE)) {
4032 ret = kmalloc_large_node(size, gfpflags, node);
4033
4034 trace_kmalloc_node(caller, ret,
4035 size, PAGE_SIZE << get_order(size),
4036 gfpflags, node);
4037
4038 return ret;
4039 }
eada35ef 4040
aadb4bc4 4041 s = get_slab(size, gfpflags);
81819f0f 4042
2408c550 4043 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4044 return s;
81819f0f 4045
94b528d0
EGM
4046 ret = slab_alloc(s, gfpflags, node, caller);
4047
25985edc 4048 /* Honor the call site pointer we received. */
ca2b84cb 4049 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4050
4051 return ret;
81819f0f 4052}
5d1f57e4 4053#endif
81819f0f 4054
ab4d5ed5 4055#ifdef CONFIG_SYSFS
205ab99d
CL
4056static int count_inuse(struct page *page)
4057{
4058 return page->inuse;
4059}
4060
4061static int count_total(struct page *page)
4062{
4063 return page->objects;
4064}
ab4d5ed5 4065#endif
205ab99d 4066
ab4d5ed5 4067#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4068static int validate_slab(struct kmem_cache *s, struct page *page,
4069 unsigned long *map)
53e15af0
CL
4070{
4071 void *p;
a973e9dd 4072 void *addr = page_address(page);
53e15af0
CL
4073
4074 if (!check_slab(s, page) ||
4075 !on_freelist(s, page, NULL))
4076 return 0;
4077
4078 /* Now we know that a valid freelist exists */
39b26464 4079 bitmap_zero(map, page->objects);
53e15af0 4080
5f80b13a
CL
4081 get_map(s, page, map);
4082 for_each_object(p, s, addr, page->objects) {
4083 if (test_bit(slab_index(p, s, addr), map))
4084 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4085 return 0;
53e15af0
CL
4086 }
4087
224a88be 4088 for_each_object(p, s, addr, page->objects)
7656c72b 4089 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4090 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4091 return 0;
4092 return 1;
4093}
4094
434e245d
CL
4095static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4096 unsigned long *map)
53e15af0 4097{
881db7fb
CL
4098 slab_lock(page);
4099 validate_slab(s, page, map);
4100 slab_unlock(page);
53e15af0
CL
4101}
4102
434e245d
CL
4103static int validate_slab_node(struct kmem_cache *s,
4104 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4105{
4106 unsigned long count = 0;
4107 struct page *page;
4108 unsigned long flags;
4109
4110 spin_lock_irqsave(&n->list_lock, flags);
4111
4112 list_for_each_entry(page, &n->partial, lru) {
434e245d 4113 validate_slab_slab(s, page, map);
53e15af0
CL
4114 count++;
4115 }
4116 if (count != n->nr_partial)
4117 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4118 "counter=%ld\n", s->name, count, n->nr_partial);
4119
4120 if (!(s->flags & SLAB_STORE_USER))
4121 goto out;
4122
4123 list_for_each_entry(page, &n->full, lru) {
434e245d 4124 validate_slab_slab(s, page, map);
53e15af0
CL
4125 count++;
4126 }
4127 if (count != atomic_long_read(&n->nr_slabs))
4128 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4129 "counter=%ld\n", s->name, count,
4130 atomic_long_read(&n->nr_slabs));
4131
4132out:
4133 spin_unlock_irqrestore(&n->list_lock, flags);
4134 return count;
4135}
4136
434e245d 4137static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4138{
4139 int node;
4140 unsigned long count = 0;
205ab99d 4141 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4142 sizeof(unsigned long), GFP_KERNEL);
4143
4144 if (!map)
4145 return -ENOMEM;
53e15af0
CL
4146
4147 flush_all(s);
f64dc58c 4148 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4149 struct kmem_cache_node *n = get_node(s, node);
4150
434e245d 4151 count += validate_slab_node(s, n, map);
53e15af0 4152 }
434e245d 4153 kfree(map);
53e15af0
CL
4154 return count;
4155}
88a420e4 4156/*
672bba3a 4157 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4158 * and freed.
4159 */
4160
4161struct location {
4162 unsigned long count;
ce71e27c 4163 unsigned long addr;
45edfa58
CL
4164 long long sum_time;
4165 long min_time;
4166 long max_time;
4167 long min_pid;
4168 long max_pid;
174596a0 4169 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4170 nodemask_t nodes;
88a420e4
CL
4171};
4172
4173struct loc_track {
4174 unsigned long max;
4175 unsigned long count;
4176 struct location *loc;
4177};
4178
4179static void free_loc_track(struct loc_track *t)
4180{
4181 if (t->max)
4182 free_pages((unsigned long)t->loc,
4183 get_order(sizeof(struct location) * t->max));
4184}
4185
68dff6a9 4186static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4187{
4188 struct location *l;
4189 int order;
4190
88a420e4
CL
4191 order = get_order(sizeof(struct location) * max);
4192
68dff6a9 4193 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4194 if (!l)
4195 return 0;
4196
4197 if (t->count) {
4198 memcpy(l, t->loc, sizeof(struct location) * t->count);
4199 free_loc_track(t);
4200 }
4201 t->max = max;
4202 t->loc = l;
4203 return 1;
4204}
4205
4206static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4207 const struct track *track)
88a420e4
CL
4208{
4209 long start, end, pos;
4210 struct location *l;
ce71e27c 4211 unsigned long caddr;
45edfa58 4212 unsigned long age = jiffies - track->when;
88a420e4
CL
4213
4214 start = -1;
4215 end = t->count;
4216
4217 for ( ; ; ) {
4218 pos = start + (end - start + 1) / 2;
4219
4220 /*
4221 * There is nothing at "end". If we end up there
4222 * we need to add something to before end.
4223 */
4224 if (pos == end)
4225 break;
4226
4227 caddr = t->loc[pos].addr;
45edfa58
CL
4228 if (track->addr == caddr) {
4229
4230 l = &t->loc[pos];
4231 l->count++;
4232 if (track->when) {
4233 l->sum_time += age;
4234 if (age < l->min_time)
4235 l->min_time = age;
4236 if (age > l->max_time)
4237 l->max_time = age;
4238
4239 if (track->pid < l->min_pid)
4240 l->min_pid = track->pid;
4241 if (track->pid > l->max_pid)
4242 l->max_pid = track->pid;
4243
174596a0
RR
4244 cpumask_set_cpu(track->cpu,
4245 to_cpumask(l->cpus));
45edfa58
CL
4246 }
4247 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4248 return 1;
4249 }
4250
45edfa58 4251 if (track->addr < caddr)
88a420e4
CL
4252 end = pos;
4253 else
4254 start = pos;
4255 }
4256
4257 /*
672bba3a 4258 * Not found. Insert new tracking element.
88a420e4 4259 */
68dff6a9 4260 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4261 return 0;
4262
4263 l = t->loc + pos;
4264 if (pos < t->count)
4265 memmove(l + 1, l,
4266 (t->count - pos) * sizeof(struct location));
4267 t->count++;
4268 l->count = 1;
45edfa58
CL
4269 l->addr = track->addr;
4270 l->sum_time = age;
4271 l->min_time = age;
4272 l->max_time = age;
4273 l->min_pid = track->pid;
4274 l->max_pid = track->pid;
174596a0
RR
4275 cpumask_clear(to_cpumask(l->cpus));
4276 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4277 nodes_clear(l->nodes);
4278 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4279 return 1;
4280}
4281
4282static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4283 struct page *page, enum track_item alloc,
a5dd5c11 4284 unsigned long *map)
88a420e4 4285{
a973e9dd 4286 void *addr = page_address(page);
88a420e4
CL
4287 void *p;
4288
39b26464 4289 bitmap_zero(map, page->objects);
5f80b13a 4290 get_map(s, page, map);
88a420e4 4291
224a88be 4292 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4293 if (!test_bit(slab_index(p, s, addr), map))
4294 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4295}
4296
4297static int list_locations(struct kmem_cache *s, char *buf,
4298 enum track_item alloc)
4299{
e374d483 4300 int len = 0;
88a420e4 4301 unsigned long i;
68dff6a9 4302 struct loc_track t = { 0, 0, NULL };
88a420e4 4303 int node;
bbd7d57b
ED
4304 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4305 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4306
bbd7d57b
ED
4307 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4308 GFP_TEMPORARY)) {
4309 kfree(map);
68dff6a9 4310 return sprintf(buf, "Out of memory\n");
bbd7d57b 4311 }
88a420e4
CL
4312 /* Push back cpu slabs */
4313 flush_all(s);
4314
f64dc58c 4315 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4316 struct kmem_cache_node *n = get_node(s, node);
4317 unsigned long flags;
4318 struct page *page;
4319
9e86943b 4320 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4321 continue;
4322
4323 spin_lock_irqsave(&n->list_lock, flags);
4324 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4325 process_slab(&t, s, page, alloc, map);
88a420e4 4326 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4327 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4328 spin_unlock_irqrestore(&n->list_lock, flags);
4329 }
4330
4331 for (i = 0; i < t.count; i++) {
45edfa58 4332 struct location *l = &t.loc[i];
88a420e4 4333
9c246247 4334 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4335 break;
e374d483 4336 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4337
4338 if (l->addr)
62c70bce 4339 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4340 else
e374d483 4341 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4342
4343 if (l->sum_time != l->min_time) {
e374d483 4344 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4345 l->min_time,
4346 (long)div_u64(l->sum_time, l->count),
4347 l->max_time);
45edfa58 4348 } else
e374d483 4349 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4350 l->min_time);
4351
4352 if (l->min_pid != l->max_pid)
e374d483 4353 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4354 l->min_pid, l->max_pid);
4355 else
e374d483 4356 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4357 l->min_pid);
4358
174596a0
RR
4359 if (num_online_cpus() > 1 &&
4360 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4361 len < PAGE_SIZE - 60) {
4362 len += sprintf(buf + len, " cpus=");
4363 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4364 to_cpumask(l->cpus));
45edfa58
CL
4365 }
4366
62bc62a8 4367 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4368 len < PAGE_SIZE - 60) {
4369 len += sprintf(buf + len, " nodes=");
4370 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4371 l->nodes);
4372 }
4373
e374d483 4374 len += sprintf(buf + len, "\n");
88a420e4
CL
4375 }
4376
4377 free_loc_track(&t);
bbd7d57b 4378 kfree(map);
88a420e4 4379 if (!t.count)
e374d483
HH
4380 len += sprintf(buf, "No data\n");
4381 return len;
88a420e4 4382}
ab4d5ed5 4383#endif
88a420e4 4384
a5a84755
CL
4385#ifdef SLUB_RESILIENCY_TEST
4386static void resiliency_test(void)
4387{
4388 u8 *p;
4389
4390 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4391
4392 printk(KERN_ERR "SLUB resiliency testing\n");
4393 printk(KERN_ERR "-----------------------\n");
4394 printk(KERN_ERR "A. Corruption after allocation\n");
4395
4396 p = kzalloc(16, GFP_KERNEL);
4397 p[16] = 0x12;
4398 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4399 " 0x12->0x%p\n\n", p + 16);
4400
4401 validate_slab_cache(kmalloc_caches[4]);
4402
4403 /* Hmmm... The next two are dangerous */
4404 p = kzalloc(32, GFP_KERNEL);
4405 p[32 + sizeof(void *)] = 0x34;
4406 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4407 " 0x34 -> -0x%p\n", p);
4408 printk(KERN_ERR
4409 "If allocated object is overwritten then not detectable\n\n");
4410
4411 validate_slab_cache(kmalloc_caches[5]);
4412 p = kzalloc(64, GFP_KERNEL);
4413 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4414 *p = 0x56;
4415 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4416 p);
4417 printk(KERN_ERR
4418 "If allocated object is overwritten then not detectable\n\n");
4419 validate_slab_cache(kmalloc_caches[6]);
4420
4421 printk(KERN_ERR "\nB. Corruption after free\n");
4422 p = kzalloc(128, GFP_KERNEL);
4423 kfree(p);
4424 *p = 0x78;
4425 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4426 validate_slab_cache(kmalloc_caches[7]);
4427
4428 p = kzalloc(256, GFP_KERNEL);
4429 kfree(p);
4430 p[50] = 0x9a;
4431 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4432 p);
4433 validate_slab_cache(kmalloc_caches[8]);
4434
4435 p = kzalloc(512, GFP_KERNEL);
4436 kfree(p);
4437 p[512] = 0xab;
4438 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4439 validate_slab_cache(kmalloc_caches[9]);
4440}
4441#else
4442#ifdef CONFIG_SYSFS
4443static void resiliency_test(void) {};
4444#endif
4445#endif
4446
ab4d5ed5 4447#ifdef CONFIG_SYSFS
81819f0f 4448enum slab_stat_type {
205ab99d
CL
4449 SL_ALL, /* All slabs */
4450 SL_PARTIAL, /* Only partially allocated slabs */
4451 SL_CPU, /* Only slabs used for cpu caches */
4452 SL_OBJECTS, /* Determine allocated objects not slabs */
4453 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4454};
4455
205ab99d 4456#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4457#define SO_PARTIAL (1 << SL_PARTIAL)
4458#define SO_CPU (1 << SL_CPU)
4459#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4460#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4461
62e5c4b4
CG
4462static ssize_t show_slab_objects(struct kmem_cache *s,
4463 char *buf, unsigned long flags)
81819f0f
CL
4464{
4465 unsigned long total = 0;
81819f0f
CL
4466 int node;
4467 int x;
4468 unsigned long *nodes;
4469 unsigned long *per_cpu;
4470
4471 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4472 if (!nodes)
4473 return -ENOMEM;
81819f0f
CL
4474 per_cpu = nodes + nr_node_ids;
4475
205ab99d
CL
4476 if (flags & SO_CPU) {
4477 int cpu;
81819f0f 4478
205ab99d 4479 for_each_possible_cpu(cpu) {
9dfc6e68 4480 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
49e22585 4481 struct page *page;
dfb4f096 4482
205ab99d
CL
4483 if (!c || c->node < 0)
4484 continue;
4485
4486 if (c->page) {
4487 if (flags & SO_TOTAL)
4488 x = c->page->objects;
4489 else if (flags & SO_OBJECTS)
4490 x = c->page->inuse;
81819f0f
CL
4491 else
4492 x = 1;
205ab99d 4493
81819f0f 4494 total += x;
205ab99d 4495 nodes[c->node] += x;
81819f0f 4496 }
49e22585
CL
4497 page = c->partial;
4498
4499 if (page) {
4500 x = page->pobjects;
4501 total += x;
4502 nodes[c->node] += x;
4503 }
205ab99d 4504 per_cpu[c->node]++;
81819f0f
CL
4505 }
4506 }
4507
04d94879 4508 lock_memory_hotplug();
ab4d5ed5 4509#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4510 if (flags & SO_ALL) {
4511 for_each_node_state(node, N_NORMAL_MEMORY) {
4512 struct kmem_cache_node *n = get_node(s, node);
4513
4514 if (flags & SO_TOTAL)
4515 x = atomic_long_read(&n->total_objects);
4516 else if (flags & SO_OBJECTS)
4517 x = atomic_long_read(&n->total_objects) -
4518 count_partial(n, count_free);
81819f0f 4519
81819f0f 4520 else
205ab99d 4521 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
ab4d5ed5
CL
4526 } else
4527#endif
4528 if (flags & SO_PARTIAL) {
205ab99d
CL
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4531
205ab99d
CL
4532 if (flags & SO_TOTAL)
4533 x = count_partial(n, count_total);
4534 else if (flags & SO_OBJECTS)
4535 x = count_partial(n, count_inuse);
81819f0f 4536 else
205ab99d 4537 x = n->nr_partial;
81819f0f
CL
4538 total += x;
4539 nodes[node] += x;
4540 }
4541 }
81819f0f
CL
4542 x = sprintf(buf, "%lu", total);
4543#ifdef CONFIG_NUMA
f64dc58c 4544 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4545 if (nodes[node])
4546 x += sprintf(buf + x, " N%d=%lu",
4547 node, nodes[node]);
4548#endif
04d94879 4549 unlock_memory_hotplug();
81819f0f
CL
4550 kfree(nodes);
4551 return x + sprintf(buf + x, "\n");
4552}
4553
ab4d5ed5 4554#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4555static int any_slab_objects(struct kmem_cache *s)
4556{
4557 int node;
81819f0f 4558
dfb4f096 4559 for_each_online_node(node) {
81819f0f
CL
4560 struct kmem_cache_node *n = get_node(s, node);
4561
dfb4f096
CL
4562 if (!n)
4563 continue;
4564
4ea33e2d 4565 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4566 return 1;
4567 }
4568 return 0;
4569}
ab4d5ed5 4570#endif
81819f0f
CL
4571
4572#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4573#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4574
4575struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579};
4580
4581#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4584
4585#define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
ab067e99 4587 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4588
81819f0f
CL
4589static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590{
4591 return sprintf(buf, "%d\n", s->size);
4592}
4593SLAB_ATTR_RO(slab_size);
4594
4595static ssize_t align_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", s->align);
4598}
4599SLAB_ATTR_RO(align);
4600
4601static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", s->objsize);
4604}
4605SLAB_ATTR_RO(object_size);
4606
4607static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608{
834f3d11 4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4610}
4611SLAB_ATTR_RO(objs_per_slab);
4612
06b285dc
CL
4613static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615{
0121c619
CL
4616 unsigned long order;
4617 int err;
4618
4619 err = strict_strtoul(buf, 10, &order);
4620 if (err)
4621 return err;
06b285dc
CL
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628}
4629
81819f0f
CL
4630static ssize_t order_show(struct kmem_cache *s, char *buf)
4631{
834f3d11 4632 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4633}
06b285dc 4634SLAB_ATTR(order);
81819f0f 4635
73d342b1
DR
4636static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637{
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639}
4640
4641static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643{
4644 unsigned long min;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &min);
4648 if (err)
4649 return err;
4650
c0bdb232 4651 set_min_partial(s, min);
73d342b1
DR
4652 return length;
4653}
4654SLAB_ATTR(min_partial);
4655
49e22585
CL
4656static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657{
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659}
4660
4661static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663{
4664 unsigned long objects;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &objects);
4668 if (err)
4669 return err;
4670
4671 s->cpu_partial = objects;
4672 flush_all(s);
4673 return length;
4674}
4675SLAB_ATTR(cpu_partial);
4676
81819f0f
CL
4677static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4678{
62c70bce
JP
4679 if (!s->ctor)
4680 return 0;
4681 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4682}
4683SLAB_ATTR_RO(ctor);
4684
81819f0f
CL
4685static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4686{
4687 return sprintf(buf, "%d\n", s->refcount - 1);
4688}
4689SLAB_ATTR_RO(aliases);
4690
81819f0f
CL
4691static ssize_t partial_show(struct kmem_cache *s, char *buf)
4692{
d9acf4b7 4693 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4694}
4695SLAB_ATTR_RO(partial);
4696
4697static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4698{
d9acf4b7 4699 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4700}
4701SLAB_ATTR_RO(cpu_slabs);
4702
4703static ssize_t objects_show(struct kmem_cache *s, char *buf)
4704{
205ab99d 4705 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4706}
4707SLAB_ATTR_RO(objects);
4708
205ab99d
CL
4709static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4710{
4711 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4712}
4713SLAB_ATTR_RO(objects_partial);
4714
49e22585
CL
4715static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4716{
4717 int objects = 0;
4718 int pages = 0;
4719 int cpu;
4720 int len;
4721
4722 for_each_online_cpu(cpu) {
4723 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4724
4725 if (page) {
4726 pages += page->pages;
4727 objects += page->pobjects;
4728 }
4729 }
4730
4731 len = sprintf(buf, "%d(%d)", objects, pages);
4732
4733#ifdef CONFIG_SMP
4734 for_each_online_cpu(cpu) {
4735 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4736
4737 if (page && len < PAGE_SIZE - 20)
4738 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4739 page->pobjects, page->pages);
4740 }
4741#endif
4742 return len + sprintf(buf + len, "\n");
4743}
4744SLAB_ATTR_RO(slabs_cpu_partial);
4745
a5a84755
CL
4746static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4747{
4748 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4749}
4750
4751static ssize_t reclaim_account_store(struct kmem_cache *s,
4752 const char *buf, size_t length)
4753{
4754 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4755 if (buf[0] == '1')
4756 s->flags |= SLAB_RECLAIM_ACCOUNT;
4757 return length;
4758}
4759SLAB_ATTR(reclaim_account);
4760
4761static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4762{
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4764}
4765SLAB_ATTR_RO(hwcache_align);
4766
4767#ifdef CONFIG_ZONE_DMA
4768static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4769{
4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4771}
4772SLAB_ATTR_RO(cache_dma);
4773#endif
4774
4775static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4776{
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4778}
4779SLAB_ATTR_RO(destroy_by_rcu);
4780
ab9a0f19
LJ
4781static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4782{
4783 return sprintf(buf, "%d\n", s->reserved);
4784}
4785SLAB_ATTR_RO(reserved);
4786
ab4d5ed5 4787#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4788static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4789{
4790 return show_slab_objects(s, buf, SO_ALL);
4791}
4792SLAB_ATTR_RO(slabs);
4793
205ab99d
CL
4794static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4795{
4796 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4797}
4798SLAB_ATTR_RO(total_objects);
4799
81819f0f
CL
4800static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4801{
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4803}
4804
4805static ssize_t sanity_checks_store(struct kmem_cache *s,
4806 const char *buf, size_t length)
4807{
4808 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4809 if (buf[0] == '1') {
4810 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4811 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4812 }
81819f0f
CL
4813 return length;
4814}
4815SLAB_ATTR(sanity_checks);
4816
4817static ssize_t trace_show(struct kmem_cache *s, char *buf)
4818{
4819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4820}
4821
4822static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4823 size_t length)
4824{
4825 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4826 if (buf[0] == '1') {
4827 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4828 s->flags |= SLAB_TRACE;
b789ef51 4829 }
81819f0f
CL
4830 return length;
4831}
4832SLAB_ATTR(trace);
4833
81819f0f
CL
4834static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4835{
4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4837}
4838
4839static ssize_t red_zone_store(struct kmem_cache *s,
4840 const char *buf, size_t length)
4841{
4842 if (any_slab_objects(s))
4843 return -EBUSY;
4844
4845 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4846 if (buf[0] == '1') {
4847 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4848 s->flags |= SLAB_RED_ZONE;
b789ef51 4849 }
06b285dc 4850 calculate_sizes(s, -1);
81819f0f
CL
4851 return length;
4852}
4853SLAB_ATTR(red_zone);
4854
4855static ssize_t poison_show(struct kmem_cache *s, char *buf)
4856{
4857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4858}
4859
4860static ssize_t poison_store(struct kmem_cache *s,
4861 const char *buf, size_t length)
4862{
4863 if (any_slab_objects(s))
4864 return -EBUSY;
4865
4866 s->flags &= ~SLAB_POISON;
b789ef51
CL
4867 if (buf[0] == '1') {
4868 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4869 s->flags |= SLAB_POISON;
b789ef51 4870 }
06b285dc 4871 calculate_sizes(s, -1);
81819f0f
CL
4872 return length;
4873}
4874SLAB_ATTR(poison);
4875
4876static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4877{
4878 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4879}
4880
4881static ssize_t store_user_store(struct kmem_cache *s,
4882 const char *buf, size_t length)
4883{
4884 if (any_slab_objects(s))
4885 return -EBUSY;
4886
4887 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4888 if (buf[0] == '1') {
4889 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4890 s->flags |= SLAB_STORE_USER;
b789ef51 4891 }
06b285dc 4892 calculate_sizes(s, -1);
81819f0f
CL
4893 return length;
4894}
4895SLAB_ATTR(store_user);
4896
53e15af0
CL
4897static ssize_t validate_show(struct kmem_cache *s, char *buf)
4898{
4899 return 0;
4900}
4901
4902static ssize_t validate_store(struct kmem_cache *s,
4903 const char *buf, size_t length)
4904{
434e245d
CL
4905 int ret = -EINVAL;
4906
4907 if (buf[0] == '1') {
4908 ret = validate_slab_cache(s);
4909 if (ret >= 0)
4910 ret = length;
4911 }
4912 return ret;
53e15af0
CL
4913}
4914SLAB_ATTR(validate);
a5a84755
CL
4915
4916static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4917{
4918 if (!(s->flags & SLAB_STORE_USER))
4919 return -ENOSYS;
4920 return list_locations(s, buf, TRACK_ALLOC);
4921}
4922SLAB_ATTR_RO(alloc_calls);
4923
4924static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4925{
4926 if (!(s->flags & SLAB_STORE_USER))
4927 return -ENOSYS;
4928 return list_locations(s, buf, TRACK_FREE);
4929}
4930SLAB_ATTR_RO(free_calls);
4931#endif /* CONFIG_SLUB_DEBUG */
4932
4933#ifdef CONFIG_FAILSLAB
4934static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4935{
4936 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4937}
4938
4939static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4940 size_t length)
4941{
4942 s->flags &= ~SLAB_FAILSLAB;
4943 if (buf[0] == '1')
4944 s->flags |= SLAB_FAILSLAB;
4945 return length;
4946}
4947SLAB_ATTR(failslab);
ab4d5ed5 4948#endif
53e15af0 4949
2086d26a
CL
4950static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4951{
4952 return 0;
4953}
4954
4955static ssize_t shrink_store(struct kmem_cache *s,
4956 const char *buf, size_t length)
4957{
4958 if (buf[0] == '1') {
4959 int rc = kmem_cache_shrink(s);
4960
4961 if (rc)
4962 return rc;
4963 } else
4964 return -EINVAL;
4965 return length;
4966}
4967SLAB_ATTR(shrink);
4968
81819f0f 4969#ifdef CONFIG_NUMA
9824601e 4970static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4971{
9824601e 4972 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4973}
4974
9824601e 4975static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4976 const char *buf, size_t length)
4977{
0121c619
CL
4978 unsigned long ratio;
4979 int err;
4980
4981 err = strict_strtoul(buf, 10, &ratio);
4982 if (err)
4983 return err;
4984
e2cb96b7 4985 if (ratio <= 100)
0121c619 4986 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4987
81819f0f
CL
4988 return length;
4989}
9824601e 4990SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4991#endif
4992
8ff12cfc 4993#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4994static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4995{
4996 unsigned long sum = 0;
4997 int cpu;
4998 int len;
4999 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5000
5001 if (!data)
5002 return -ENOMEM;
5003
5004 for_each_online_cpu(cpu) {
9dfc6e68 5005 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5006
5007 data[cpu] = x;
5008 sum += x;
5009 }
5010
5011 len = sprintf(buf, "%lu", sum);
5012
50ef37b9 5013#ifdef CONFIG_SMP
8ff12cfc
CL
5014 for_each_online_cpu(cpu) {
5015 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5016 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5017 }
50ef37b9 5018#endif
8ff12cfc
CL
5019 kfree(data);
5020 return len + sprintf(buf + len, "\n");
5021}
5022
78eb00cc
DR
5023static void clear_stat(struct kmem_cache *s, enum stat_item si)
5024{
5025 int cpu;
5026
5027 for_each_online_cpu(cpu)
9dfc6e68 5028 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5029}
5030
8ff12cfc
CL
5031#define STAT_ATTR(si, text) \
5032static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5033{ \
5034 return show_stat(s, buf, si); \
5035} \
78eb00cc
DR
5036static ssize_t text##_store(struct kmem_cache *s, \
5037 const char *buf, size_t length) \
5038{ \
5039 if (buf[0] != '0') \
5040 return -EINVAL; \
5041 clear_stat(s, si); \
5042 return length; \
5043} \
5044SLAB_ATTR(text); \
8ff12cfc
CL
5045
5046STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5047STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5048STAT_ATTR(FREE_FASTPATH, free_fastpath);
5049STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5050STAT_ATTR(FREE_FROZEN, free_frozen);
5051STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5052STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5053STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5054STAT_ATTR(ALLOC_SLAB, alloc_slab);
5055STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5056STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5057STAT_ATTR(FREE_SLAB, free_slab);
5058STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5059STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5060STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5061STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5062STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5063STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5064STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5065STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5066STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5067STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5068STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5069STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5070#endif
5071
06428780 5072static struct attribute *slab_attrs[] = {
81819f0f
CL
5073 &slab_size_attr.attr,
5074 &object_size_attr.attr,
5075 &objs_per_slab_attr.attr,
5076 &order_attr.attr,
73d342b1 5077 &min_partial_attr.attr,
49e22585 5078 &cpu_partial_attr.attr,
81819f0f 5079 &objects_attr.attr,
205ab99d 5080 &objects_partial_attr.attr,
81819f0f
CL
5081 &partial_attr.attr,
5082 &cpu_slabs_attr.attr,
5083 &ctor_attr.attr,
81819f0f
CL
5084 &aliases_attr.attr,
5085 &align_attr.attr,
81819f0f
CL
5086 &hwcache_align_attr.attr,
5087 &reclaim_account_attr.attr,
5088 &destroy_by_rcu_attr.attr,
a5a84755 5089 &shrink_attr.attr,
ab9a0f19 5090 &reserved_attr.attr,
49e22585 5091 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5092#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5093 &total_objects_attr.attr,
5094 &slabs_attr.attr,
5095 &sanity_checks_attr.attr,
5096 &trace_attr.attr,
81819f0f
CL
5097 &red_zone_attr.attr,
5098 &poison_attr.attr,
5099 &store_user_attr.attr,
53e15af0 5100 &validate_attr.attr,
88a420e4
CL
5101 &alloc_calls_attr.attr,
5102 &free_calls_attr.attr,
ab4d5ed5 5103#endif
81819f0f
CL
5104#ifdef CONFIG_ZONE_DMA
5105 &cache_dma_attr.attr,
5106#endif
5107#ifdef CONFIG_NUMA
9824601e 5108 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5109#endif
5110#ifdef CONFIG_SLUB_STATS
5111 &alloc_fastpath_attr.attr,
5112 &alloc_slowpath_attr.attr,
5113 &free_fastpath_attr.attr,
5114 &free_slowpath_attr.attr,
5115 &free_frozen_attr.attr,
5116 &free_add_partial_attr.attr,
5117 &free_remove_partial_attr.attr,
5118 &alloc_from_partial_attr.attr,
5119 &alloc_slab_attr.attr,
5120 &alloc_refill_attr.attr,
e36a2652 5121 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5122 &free_slab_attr.attr,
5123 &cpuslab_flush_attr.attr,
5124 &deactivate_full_attr.attr,
5125 &deactivate_empty_attr.attr,
5126 &deactivate_to_head_attr.attr,
5127 &deactivate_to_tail_attr.attr,
5128 &deactivate_remote_frees_attr.attr,
03e404af 5129 &deactivate_bypass_attr.attr,
65c3376a 5130 &order_fallback_attr.attr,
b789ef51
CL
5131 &cmpxchg_double_fail_attr.attr,
5132 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5133 &cpu_partial_alloc_attr.attr,
5134 &cpu_partial_free_attr.attr,
81819f0f 5135#endif
4c13dd3b
DM
5136#ifdef CONFIG_FAILSLAB
5137 &failslab_attr.attr,
5138#endif
5139
81819f0f
CL
5140 NULL
5141};
5142
5143static struct attribute_group slab_attr_group = {
5144 .attrs = slab_attrs,
5145};
5146
5147static ssize_t slab_attr_show(struct kobject *kobj,
5148 struct attribute *attr,
5149 char *buf)
5150{
5151 struct slab_attribute *attribute;
5152 struct kmem_cache *s;
5153 int err;
5154
5155 attribute = to_slab_attr(attr);
5156 s = to_slab(kobj);
5157
5158 if (!attribute->show)
5159 return -EIO;
5160
5161 err = attribute->show(s, buf);
5162
5163 return err;
5164}
5165
5166static ssize_t slab_attr_store(struct kobject *kobj,
5167 struct attribute *attr,
5168 const char *buf, size_t len)
5169{
5170 struct slab_attribute *attribute;
5171 struct kmem_cache *s;
5172 int err;
5173
5174 attribute = to_slab_attr(attr);
5175 s = to_slab(kobj);
5176
5177 if (!attribute->store)
5178 return -EIO;
5179
5180 err = attribute->store(s, buf, len);
5181
5182 return err;
5183}
5184
151c602f
CL
5185static void kmem_cache_release(struct kobject *kobj)
5186{
5187 struct kmem_cache *s = to_slab(kobj);
5188
84c1cf62 5189 kfree(s->name);
151c602f
CL
5190 kfree(s);
5191}
5192
52cf25d0 5193static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5194 .show = slab_attr_show,
5195 .store = slab_attr_store,
5196};
5197
5198static struct kobj_type slab_ktype = {
5199 .sysfs_ops = &slab_sysfs_ops,
151c602f 5200 .release = kmem_cache_release
81819f0f
CL
5201};
5202
5203static int uevent_filter(struct kset *kset, struct kobject *kobj)
5204{
5205 struct kobj_type *ktype = get_ktype(kobj);
5206
5207 if (ktype == &slab_ktype)
5208 return 1;
5209 return 0;
5210}
5211
9cd43611 5212static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5213 .filter = uevent_filter,
5214};
5215
27c3a314 5216static struct kset *slab_kset;
81819f0f
CL
5217
5218#define ID_STR_LENGTH 64
5219
5220/* Create a unique string id for a slab cache:
6446faa2
CL
5221 *
5222 * Format :[flags-]size
81819f0f
CL
5223 */
5224static char *create_unique_id(struct kmem_cache *s)
5225{
5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 char *p = name;
5228
5229 BUG_ON(!name);
5230
5231 *p++ = ':';
5232 /*
5233 * First flags affecting slabcache operations. We will only
5234 * get here for aliasable slabs so we do not need to support
5235 * too many flags. The flags here must cover all flags that
5236 * are matched during merging to guarantee that the id is
5237 * unique.
5238 */
5239 if (s->flags & SLAB_CACHE_DMA)
5240 *p++ = 'd';
5241 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 *p++ = 'a';
5243 if (s->flags & SLAB_DEBUG_FREE)
5244 *p++ = 'F';
5a896d9e
VN
5245 if (!(s->flags & SLAB_NOTRACK))
5246 *p++ = 't';
81819f0f
CL
5247 if (p != name + 1)
5248 *p++ = '-';
5249 p += sprintf(p, "%07d", s->size);
5250 BUG_ON(p > name + ID_STR_LENGTH - 1);
5251 return name;
5252}
5253
5254static int sysfs_slab_add(struct kmem_cache *s)
5255{
5256 int err;
5257 const char *name;
5258 int unmergeable;
5259
5260 if (slab_state < SYSFS)
5261 /* Defer until later */
5262 return 0;
5263
5264 unmergeable = slab_unmergeable(s);
5265 if (unmergeable) {
5266 /*
5267 * Slabcache can never be merged so we can use the name proper.
5268 * This is typically the case for debug situations. In that
5269 * case we can catch duplicate names easily.
5270 */
27c3a314 5271 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5272 name = s->name;
5273 } else {
5274 /*
5275 * Create a unique name for the slab as a target
5276 * for the symlinks.
5277 */
5278 name = create_unique_id(s);
5279 }
5280
27c3a314 5281 s->kobj.kset = slab_kset;
1eada11c
GKH
5282 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5283 if (err) {
5284 kobject_put(&s->kobj);
81819f0f 5285 return err;
1eada11c 5286 }
81819f0f
CL
5287
5288 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5289 if (err) {
5290 kobject_del(&s->kobj);
5291 kobject_put(&s->kobj);
81819f0f 5292 return err;
5788d8ad 5293 }
81819f0f
CL
5294 kobject_uevent(&s->kobj, KOBJ_ADD);
5295 if (!unmergeable) {
5296 /* Setup first alias */
5297 sysfs_slab_alias(s, s->name);
5298 kfree(name);
5299 }
5300 return 0;
5301}
5302
5303static void sysfs_slab_remove(struct kmem_cache *s)
5304{
2bce6485
CL
5305 if (slab_state < SYSFS)
5306 /*
5307 * Sysfs has not been setup yet so no need to remove the
5308 * cache from sysfs.
5309 */
5310 return;
5311
81819f0f
CL
5312 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5313 kobject_del(&s->kobj);
151c602f 5314 kobject_put(&s->kobj);
81819f0f
CL
5315}
5316
5317/*
5318 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5319 * available lest we lose that information.
81819f0f
CL
5320 */
5321struct saved_alias {
5322 struct kmem_cache *s;
5323 const char *name;
5324 struct saved_alias *next;
5325};
5326
5af328a5 5327static struct saved_alias *alias_list;
81819f0f
CL
5328
5329static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5330{
5331 struct saved_alias *al;
5332
5333 if (slab_state == SYSFS) {
5334 /*
5335 * If we have a leftover link then remove it.
5336 */
27c3a314
GKH
5337 sysfs_remove_link(&slab_kset->kobj, name);
5338 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5339 }
5340
5341 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5342 if (!al)
5343 return -ENOMEM;
5344
5345 al->s = s;
5346 al->name = name;
5347 al->next = alias_list;
5348 alias_list = al;
5349 return 0;
5350}
5351
5352static int __init slab_sysfs_init(void)
5353{
5b95a4ac 5354 struct kmem_cache *s;
81819f0f
CL
5355 int err;
5356
2bce6485
CL
5357 down_write(&slub_lock);
5358
0ff21e46 5359 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5360 if (!slab_kset) {
2bce6485 5361 up_write(&slub_lock);
81819f0f
CL
5362 printk(KERN_ERR "Cannot register slab subsystem.\n");
5363 return -ENOSYS;
5364 }
5365
26a7bd03
CL
5366 slab_state = SYSFS;
5367
5b95a4ac 5368 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5369 err = sysfs_slab_add(s);
5d540fb7
CL
5370 if (err)
5371 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5372 " to sysfs\n", s->name);
26a7bd03 5373 }
81819f0f
CL
5374
5375 while (alias_list) {
5376 struct saved_alias *al = alias_list;
5377
5378 alias_list = alias_list->next;
5379 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5382 " %s to sysfs\n", s->name);
81819f0f
CL
5383 kfree(al);
5384 }
5385
2bce6485 5386 up_write(&slub_lock);
81819f0f
CL
5387 resiliency_test();
5388 return 0;
5389}
5390
5391__initcall(slab_sysfs_init);
ab4d5ed5 5392#endif /* CONFIG_SYSFS */
57ed3eda
PE
5393
5394/*
5395 * The /proc/slabinfo ABI
5396 */
158a9624 5397#ifdef CONFIG_SLABINFO
57ed3eda
PE
5398static void print_slabinfo_header(struct seq_file *m)
5399{
5400 seq_puts(m, "slabinfo - version: 2.1\n");
5401 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5402 "<objperslab> <pagesperslab>");
5403 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5404 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5405 seq_putc(m, '\n');
5406}
5407
5408static void *s_start(struct seq_file *m, loff_t *pos)
5409{
5410 loff_t n = *pos;
5411
5412 down_read(&slub_lock);
5413 if (!n)
5414 print_slabinfo_header(m);
5415
5416 return seq_list_start(&slab_caches, *pos);
5417}
5418
5419static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5420{
5421 return seq_list_next(p, &slab_caches, pos);
5422}
5423
5424static void s_stop(struct seq_file *m, void *p)
5425{
5426 up_read(&slub_lock);
5427}
5428
5429static int s_show(struct seq_file *m, void *p)
5430{
5431 unsigned long nr_partials = 0;
5432 unsigned long nr_slabs = 0;
5433 unsigned long nr_inuse = 0;
205ab99d
CL
5434 unsigned long nr_objs = 0;
5435 unsigned long nr_free = 0;
57ed3eda
PE
5436 struct kmem_cache *s;
5437 int node;
5438
5439 s = list_entry(p, struct kmem_cache, list);
5440
5441 for_each_online_node(node) {
5442 struct kmem_cache_node *n = get_node(s, node);
5443
5444 if (!n)
5445 continue;
5446
5447 nr_partials += n->nr_partial;
5448 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5449 nr_objs += atomic_long_read(&n->total_objects);
5450 nr_free += count_partial(n, count_free);
57ed3eda
PE
5451 }
5452
205ab99d 5453 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5454
5455 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5456 nr_objs, s->size, oo_objects(s->oo),
5457 (1 << oo_order(s->oo)));
57ed3eda
PE
5458 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5459 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5460 0UL);
5461 seq_putc(m, '\n');
5462 return 0;
5463}
5464
7b3c3a50 5465static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5466 .start = s_start,
5467 .next = s_next,
5468 .stop = s_stop,
5469 .show = s_show,
5470};
5471
7b3c3a50
AD
5472static int slabinfo_open(struct inode *inode, struct file *file)
5473{
5474 return seq_open(file, &slabinfo_op);
5475}
5476
5477static const struct file_operations proc_slabinfo_operations = {
5478 .open = slabinfo_open,
5479 .read = seq_read,
5480 .llseek = seq_lseek,
5481 .release = seq_release,
5482};
5483
5484static int __init slab_proc_init(void)
5485{
ab067e99 5486 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5487 return 0;
5488}
5489module_init(slab_proc_init);
158a9624 5490#endif /* CONFIG_SLABINFO */