]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/slub.c
slub: Add dummy functions for the !SLUB_DEBUG case
[mirror_ubuntu-focal-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
f6acb635 201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
212 kfree(s);
213}
8ff12cfc 214
81819f0f
CL
215#endif
216
84e554e6 217static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
218{
219#ifdef CONFIG_SLUB_STATS
84e554e6 220 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
221#endif
222}
223
81819f0f
CL
224/********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
227
228int slab_is_available(void)
229{
230 return slab_state >= UP;
231}
232
233static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
234{
235#ifdef CONFIG_NUMA
236 return s->node[node];
237#else
238 return &s->local_node;
239#endif
240}
241
6446faa2 242/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
243static inline int check_valid_pointer(struct kmem_cache *s,
244 struct page *page, const void *object)
245{
246 void *base;
247
a973e9dd 248 if (!object)
02cbc874
CL
249 return 1;
250
a973e9dd 251 base = page_address(page);
39b26464 252 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
253 (object - base) % s->size) {
254 return 0;
255 }
256
257 return 1;
258}
259
7656c72b
CL
260static inline void *get_freepointer(struct kmem_cache *s, void *object)
261{
262 return *(void **)(object + s->offset);
263}
264
265static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
266{
267 *(void **)(object + s->offset) = fp;
268}
269
270/* Loop over all objects in a slab */
224a88be
CL
271#define for_each_object(__p, __s, __addr, __objects) \
272 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
273 __p += (__s)->size)
274
275/* Scan freelist */
276#define for_each_free_object(__p, __s, __free) \
a973e9dd 277 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
278
279/* Determine object index from a given position */
280static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281{
282 return (p - addr) / s->size;
283}
284
834f3d11
CL
285static inline struct kmem_cache_order_objects oo_make(int order,
286 unsigned long size)
287{
288 struct kmem_cache_order_objects x = {
210b5c06 289 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
290 };
291
292 return x;
293}
294
295static inline int oo_order(struct kmem_cache_order_objects x)
296{
210b5c06 297 return x.x >> OO_SHIFT;
834f3d11
CL
298}
299
300static inline int oo_objects(struct kmem_cache_order_objects x)
301{
210b5c06 302 return x.x & OO_MASK;
834f3d11
CL
303}
304
41ecc55b
CL
305#ifdef CONFIG_SLUB_DEBUG
306/*
307 * Debug settings:
308 */
f0630fff
CL
309#ifdef CONFIG_SLUB_DEBUG_ON
310static int slub_debug = DEBUG_DEFAULT_FLAGS;
311#else
41ecc55b 312static int slub_debug;
f0630fff 313#endif
41ecc55b
CL
314
315static char *slub_debug_slabs;
fa5ec8a1 316static int disable_higher_order_debug;
41ecc55b 317
81819f0f
CL
318/*
319 * Object debugging
320 */
321static void print_section(char *text, u8 *addr, unsigned int length)
322{
323 int i, offset;
324 int newline = 1;
325 char ascii[17];
326
327 ascii[16] = 0;
328
329 for (i = 0; i < length; i++) {
330 if (newline) {
24922684 331 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
332 newline = 0;
333 }
06428780 334 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
335 offset = i % 16;
336 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
337 if (offset == 15) {
06428780 338 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
339 newline = 1;
340 }
341 }
342 if (!newline) {
343 i %= 16;
344 while (i < 16) {
06428780 345 printk(KERN_CONT " ");
81819f0f
CL
346 ascii[i] = ' ';
347 i++;
348 }
06428780 349 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
350 }
351}
352
81819f0f
CL
353static struct track *get_track(struct kmem_cache *s, void *object,
354 enum track_item alloc)
355{
356 struct track *p;
357
358 if (s->offset)
359 p = object + s->offset + sizeof(void *);
360 else
361 p = object + s->inuse;
362
363 return p + alloc;
364}
365
366static void set_track(struct kmem_cache *s, void *object,
ce71e27c 367 enum track_item alloc, unsigned long addr)
81819f0f 368{
1a00df4a 369 struct track *p = get_track(s, object, alloc);
81819f0f 370
81819f0f
CL
371 if (addr) {
372 p->addr = addr;
373 p->cpu = smp_processor_id();
88e4ccf2 374 p->pid = current->pid;
81819f0f
CL
375 p->when = jiffies;
376 } else
377 memset(p, 0, sizeof(struct track));
378}
379
81819f0f
CL
380static void init_tracking(struct kmem_cache *s, void *object)
381{
24922684
CL
382 if (!(s->flags & SLAB_STORE_USER))
383 return;
384
ce71e27c
EGM
385 set_track(s, object, TRACK_FREE, 0UL);
386 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
387}
388
389static void print_track(const char *s, struct track *t)
390{
391 if (!t->addr)
392 return;
393
7daf705f 394 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 395 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
396}
397
398static void print_tracking(struct kmem_cache *s, void *object)
399{
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
402
403 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
404 print_track("Freed", get_track(s, object, TRACK_FREE));
405}
406
407static void print_page_info(struct page *page)
408{
39b26464
CL
409 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
410 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
411
412}
413
414static void slab_bug(struct kmem_cache *s, char *fmt, ...)
415{
416 va_list args;
417 char buf[100];
418
419 va_start(args, fmt);
420 vsnprintf(buf, sizeof(buf), fmt, args);
421 va_end(args);
422 printk(KERN_ERR "========================================"
423 "=====================================\n");
424 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
425 printk(KERN_ERR "----------------------------------------"
426 "-------------------------------------\n\n");
81819f0f
CL
427}
428
24922684
CL
429static void slab_fix(struct kmem_cache *s, char *fmt, ...)
430{
431 va_list args;
432 char buf[100];
433
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
438}
439
440static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
441{
442 unsigned int off; /* Offset of last byte */
a973e9dd 443 u8 *addr = page_address(page);
24922684
CL
444
445 print_tracking(s, p);
446
447 print_page_info(page);
448
449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
450 p, p - addr, get_freepointer(s, p));
451
452 if (p > addr + 16)
453 print_section("Bytes b4", p - 16, 16);
454
0ebd652b 455 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
456
457 if (s->flags & SLAB_RED_ZONE)
458 print_section("Redzone", p + s->objsize,
459 s->inuse - s->objsize);
460
81819f0f
CL
461 if (s->offset)
462 off = s->offset + sizeof(void *);
463 else
464 off = s->inuse;
465
24922684 466 if (s->flags & SLAB_STORE_USER)
81819f0f 467 off += 2 * sizeof(struct track);
81819f0f
CL
468
469 if (off != s->size)
470 /* Beginning of the filler is the free pointer */
24922684
CL
471 print_section("Padding", p + off, s->size - off);
472
473 dump_stack();
81819f0f
CL
474}
475
476static void object_err(struct kmem_cache *s, struct page *page,
477 u8 *object, char *reason)
478{
3dc50637 479 slab_bug(s, "%s", reason);
24922684 480 print_trailer(s, page, object);
81819f0f
CL
481}
482
24922684 483static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
484{
485 va_list args;
486 char buf[100];
487
24922684
CL
488 va_start(args, fmt);
489 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 490 va_end(args);
3dc50637 491 slab_bug(s, "%s", buf);
24922684 492 print_page_info(page);
81819f0f
CL
493 dump_stack();
494}
495
496static void init_object(struct kmem_cache *s, void *object, int active)
497{
498 u8 *p = object;
499
500 if (s->flags & __OBJECT_POISON) {
501 memset(p, POISON_FREE, s->objsize - 1);
06428780 502 p[s->objsize - 1] = POISON_END;
81819f0f
CL
503 }
504
505 if (s->flags & SLAB_RED_ZONE)
506 memset(p + s->objsize,
507 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
508 s->inuse - s->objsize);
509}
510
24922684 511static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
512{
513 while (bytes) {
514 if (*start != (u8)value)
24922684 515 return start;
81819f0f
CL
516 start++;
517 bytes--;
518 }
24922684
CL
519 return NULL;
520}
521
522static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
523 void *from, void *to)
524{
525 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
526 memset(from, data, to - from);
527}
528
529static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
530 u8 *object, char *what,
06428780 531 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
532{
533 u8 *fault;
534 u8 *end;
535
536 fault = check_bytes(start, value, bytes);
537 if (!fault)
538 return 1;
539
540 end = start + bytes;
541 while (end > fault && end[-1] == value)
542 end--;
543
544 slab_bug(s, "%s overwritten", what);
545 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
546 fault, end - 1, fault[0], value);
547 print_trailer(s, page, object);
548
549 restore_bytes(s, what, value, fault, end);
550 return 0;
81819f0f
CL
551}
552
81819f0f
CL
553/*
554 * Object layout:
555 *
556 * object address
557 * Bytes of the object to be managed.
558 * If the freepointer may overlay the object then the free
559 * pointer is the first word of the object.
672bba3a 560 *
81819f0f
CL
561 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
562 * 0xa5 (POISON_END)
563 *
564 * object + s->objsize
565 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
566 * Padding is extended by another word if Redzoning is enabled and
567 * objsize == inuse.
568 *
81819f0f
CL
569 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
570 * 0xcc (RED_ACTIVE) for objects in use.
571 *
572 * object + s->inuse
672bba3a
CL
573 * Meta data starts here.
574 *
81819f0f
CL
575 * A. Free pointer (if we cannot overwrite object on free)
576 * B. Tracking data for SLAB_STORE_USER
672bba3a 577 * C. Padding to reach required alignment boundary or at mininum
6446faa2 578 * one word if debugging is on to be able to detect writes
672bba3a
CL
579 * before the word boundary.
580 *
581 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
582 *
583 * object + s->size
672bba3a 584 * Nothing is used beyond s->size.
81819f0f 585 *
672bba3a
CL
586 * If slabcaches are merged then the objsize and inuse boundaries are mostly
587 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
588 * may be used with merged slabcaches.
589 */
590
81819f0f
CL
591static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
592{
593 unsigned long off = s->inuse; /* The end of info */
594
595 if (s->offset)
596 /* Freepointer is placed after the object. */
597 off += sizeof(void *);
598
599 if (s->flags & SLAB_STORE_USER)
600 /* We also have user information there */
601 off += 2 * sizeof(struct track);
602
603 if (s->size == off)
604 return 1;
605
24922684
CL
606 return check_bytes_and_report(s, page, p, "Object padding",
607 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
608}
609
39b26464 610/* Check the pad bytes at the end of a slab page */
81819f0f
CL
611static int slab_pad_check(struct kmem_cache *s, struct page *page)
612{
24922684
CL
613 u8 *start;
614 u8 *fault;
615 u8 *end;
616 int length;
617 int remainder;
81819f0f
CL
618
619 if (!(s->flags & SLAB_POISON))
620 return 1;
621
a973e9dd 622 start = page_address(page);
834f3d11 623 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
624 end = start + length;
625 remainder = length % s->size;
81819f0f
CL
626 if (!remainder)
627 return 1;
628
39b26464 629 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
630 if (!fault)
631 return 1;
632 while (end > fault && end[-1] == POISON_INUSE)
633 end--;
634
635 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 636 print_section("Padding", end - remainder, remainder);
24922684 637
8a3d271d 638 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 639 return 0;
81819f0f
CL
640}
641
642static int check_object(struct kmem_cache *s, struct page *page,
643 void *object, int active)
644{
645 u8 *p = object;
646 u8 *endobject = object + s->objsize;
647
648 if (s->flags & SLAB_RED_ZONE) {
649 unsigned int red =
650 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
651
24922684
CL
652 if (!check_bytes_and_report(s, page, object, "Redzone",
653 endobject, red, s->inuse - s->objsize))
81819f0f 654 return 0;
81819f0f 655 } else {
3adbefee
IM
656 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
657 check_bytes_and_report(s, page, p, "Alignment padding",
658 endobject, POISON_INUSE, s->inuse - s->objsize);
659 }
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_POISON) {
663 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
664 (!check_bytes_and_report(s, page, p, "Poison", p,
665 POISON_FREE, s->objsize - 1) ||
666 !check_bytes_and_report(s, page, p, "Poison",
06428780 667 p + s->objsize - 1, POISON_END, 1)))
81819f0f 668 return 0;
81819f0f
CL
669 /*
670 * check_pad_bytes cleans up on its own.
671 */
672 check_pad_bytes(s, page, p);
673 }
674
675 if (!s->offset && active)
676 /*
677 * Object and freepointer overlap. Cannot check
678 * freepointer while object is allocated.
679 */
680 return 1;
681
682 /* Check free pointer validity */
683 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
684 object_err(s, page, p, "Freepointer corrupt");
685 /*
9f6c708e 686 * No choice but to zap it and thus lose the remainder
81819f0f 687 * of the free objects in this slab. May cause
672bba3a 688 * another error because the object count is now wrong.
81819f0f 689 */
a973e9dd 690 set_freepointer(s, p, NULL);
81819f0f
CL
691 return 0;
692 }
693 return 1;
694}
695
696static int check_slab(struct kmem_cache *s, struct page *page)
697{
39b26464
CL
698 int maxobj;
699
81819f0f
CL
700 VM_BUG_ON(!irqs_disabled());
701
702 if (!PageSlab(page)) {
24922684 703 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
704 return 0;
705 }
39b26464
CL
706
707 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
708 if (page->objects > maxobj) {
709 slab_err(s, page, "objects %u > max %u",
710 s->name, page->objects, maxobj);
711 return 0;
712 }
713 if (page->inuse > page->objects) {
24922684 714 slab_err(s, page, "inuse %u > max %u",
39b26464 715 s->name, page->inuse, page->objects);
81819f0f
CL
716 return 0;
717 }
718 /* Slab_pad_check fixes things up after itself */
719 slab_pad_check(s, page);
720 return 1;
721}
722
723/*
672bba3a
CL
724 * Determine if a certain object on a page is on the freelist. Must hold the
725 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
726 */
727static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
728{
729 int nr = 0;
730 void *fp = page->freelist;
731 void *object = NULL;
224a88be 732 unsigned long max_objects;
81819f0f 733
39b26464 734 while (fp && nr <= page->objects) {
81819f0f
CL
735 if (fp == search)
736 return 1;
737 if (!check_valid_pointer(s, page, fp)) {
738 if (object) {
739 object_err(s, page, object,
740 "Freechain corrupt");
a973e9dd 741 set_freepointer(s, object, NULL);
81819f0f
CL
742 break;
743 } else {
24922684 744 slab_err(s, page, "Freepointer corrupt");
a973e9dd 745 page->freelist = NULL;
39b26464 746 page->inuse = page->objects;
24922684 747 slab_fix(s, "Freelist cleared");
81819f0f
CL
748 return 0;
749 }
750 break;
751 }
752 object = fp;
753 fp = get_freepointer(s, object);
754 nr++;
755 }
756
224a88be 757 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
758 if (max_objects > MAX_OBJS_PER_PAGE)
759 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
760
761 if (page->objects != max_objects) {
762 slab_err(s, page, "Wrong number of objects. Found %d but "
763 "should be %d", page->objects, max_objects);
764 page->objects = max_objects;
765 slab_fix(s, "Number of objects adjusted.");
766 }
39b26464 767 if (page->inuse != page->objects - nr) {
70d71228 768 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
769 "counted were %d", page->inuse, page->objects - nr);
770 page->inuse = page->objects - nr;
24922684 771 slab_fix(s, "Object count adjusted.");
81819f0f
CL
772 }
773 return search == NULL;
774}
775
0121c619
CL
776static void trace(struct kmem_cache *s, struct page *page, void *object,
777 int alloc)
3ec09742
CL
778{
779 if (s->flags & SLAB_TRACE) {
780 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
781 s->name,
782 alloc ? "alloc" : "free",
783 object, page->inuse,
784 page->freelist);
785
786 if (!alloc)
787 print_section("Object", (void *)object, s->objsize);
788
789 dump_stack();
790 }
791}
792
c016b0bd
CL
793/*
794 * Hooks for other subsystems that check memory allocations. In a typical
795 * production configuration these hooks all should produce no code at all.
796 */
797static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
798{
c1d50836 799 flags &= gfp_allowed_mask;
c016b0bd
CL
800 lockdep_trace_alloc(flags);
801 might_sleep_if(flags & __GFP_WAIT);
802
803 return should_failslab(s->objsize, flags, s->flags);
804}
805
806static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
807{
c1d50836 808 flags &= gfp_allowed_mask;
c016b0bd
CL
809 kmemcheck_slab_alloc(s, flags, object, s->objsize);
810 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
811}
812
813static inline void slab_free_hook(struct kmem_cache *s, void *x)
814{
815 kmemleak_free_recursive(x, s->flags);
816}
817
818static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
819{
820 kmemcheck_slab_free(s, object, s->objsize);
821 debug_check_no_locks_freed(object, s->objsize);
822 if (!(s->flags & SLAB_DEBUG_OBJECTS))
823 debug_check_no_obj_freed(object, s->objsize);
824}
825
643b1138 826/*
672bba3a 827 * Tracking of fully allocated slabs for debugging purposes.
643b1138 828 */
e95eed57 829static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 830{
643b1138
CL
831 spin_lock(&n->list_lock);
832 list_add(&page->lru, &n->full);
833 spin_unlock(&n->list_lock);
834}
835
836static void remove_full(struct kmem_cache *s, struct page *page)
837{
838 struct kmem_cache_node *n;
839
840 if (!(s->flags & SLAB_STORE_USER))
841 return;
842
843 n = get_node(s, page_to_nid(page));
844
845 spin_lock(&n->list_lock);
846 list_del(&page->lru);
847 spin_unlock(&n->list_lock);
848}
849
0f389ec6
CL
850/* Tracking of the number of slabs for debugging purposes */
851static inline unsigned long slabs_node(struct kmem_cache *s, int node)
852{
853 struct kmem_cache_node *n = get_node(s, node);
854
855 return atomic_long_read(&n->nr_slabs);
856}
857
26c02cf0
AB
858static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
859{
860 return atomic_long_read(&n->nr_slabs);
861}
862
205ab99d 863static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
864{
865 struct kmem_cache_node *n = get_node(s, node);
866
867 /*
868 * May be called early in order to allocate a slab for the
869 * kmem_cache_node structure. Solve the chicken-egg
870 * dilemma by deferring the increment of the count during
871 * bootstrap (see early_kmem_cache_node_alloc).
872 */
205ab99d 873 if (!NUMA_BUILD || n) {
0f389ec6 874 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
875 atomic_long_add(objects, &n->total_objects);
876 }
0f389ec6 877}
205ab99d 878static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
879{
880 struct kmem_cache_node *n = get_node(s, node);
881
882 atomic_long_dec(&n->nr_slabs);
205ab99d 883 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
884}
885
886/* Object debug checks for alloc/free paths */
3ec09742
CL
887static void setup_object_debug(struct kmem_cache *s, struct page *page,
888 void *object)
889{
890 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
891 return;
892
893 init_object(s, object, 0);
894 init_tracking(s, object);
895}
896
1537066c 897static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 898 void *object, unsigned long addr)
81819f0f
CL
899{
900 if (!check_slab(s, page))
901 goto bad;
902
d692ef6d 903 if (!on_freelist(s, page, object)) {
24922684 904 object_err(s, page, object, "Object already allocated");
70d71228 905 goto bad;
81819f0f
CL
906 }
907
908 if (!check_valid_pointer(s, page, object)) {
909 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 910 goto bad;
81819f0f
CL
911 }
912
d692ef6d 913 if (!check_object(s, page, object, 0))
81819f0f 914 goto bad;
81819f0f 915
3ec09742
CL
916 /* Success perform special debug activities for allocs */
917 if (s->flags & SLAB_STORE_USER)
918 set_track(s, object, TRACK_ALLOC, addr);
919 trace(s, page, object, 1);
920 init_object(s, object, 1);
81819f0f 921 return 1;
3ec09742 922
81819f0f
CL
923bad:
924 if (PageSlab(page)) {
925 /*
926 * If this is a slab page then lets do the best we can
927 * to avoid issues in the future. Marking all objects
672bba3a 928 * as used avoids touching the remaining objects.
81819f0f 929 */
24922684 930 slab_fix(s, "Marking all objects used");
39b26464 931 page->inuse = page->objects;
a973e9dd 932 page->freelist = NULL;
81819f0f
CL
933 }
934 return 0;
935}
936
1537066c
CL
937static noinline int free_debug_processing(struct kmem_cache *s,
938 struct page *page, void *object, unsigned long addr)
81819f0f
CL
939{
940 if (!check_slab(s, page))
941 goto fail;
942
943 if (!check_valid_pointer(s, page, object)) {
70d71228 944 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
945 goto fail;
946 }
947
948 if (on_freelist(s, page, object)) {
24922684 949 object_err(s, page, object, "Object already free");
81819f0f
CL
950 goto fail;
951 }
952
953 if (!check_object(s, page, object, 1))
954 return 0;
955
956 if (unlikely(s != page->slab)) {
3adbefee 957 if (!PageSlab(page)) {
70d71228
CL
958 slab_err(s, page, "Attempt to free object(0x%p) "
959 "outside of slab", object);
3adbefee 960 } else if (!page->slab) {
81819f0f 961 printk(KERN_ERR
70d71228 962 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 963 object);
70d71228 964 dump_stack();
06428780 965 } else
24922684
CL
966 object_err(s, page, object,
967 "page slab pointer corrupt.");
81819f0f
CL
968 goto fail;
969 }
3ec09742
CL
970
971 /* Special debug activities for freeing objects */
8a38082d 972 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
973 remove_full(s, page);
974 if (s->flags & SLAB_STORE_USER)
975 set_track(s, object, TRACK_FREE, addr);
976 trace(s, page, object, 0);
977 init_object(s, object, 0);
81819f0f 978 return 1;
3ec09742 979
81819f0f 980fail:
24922684 981 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
982 return 0;
983}
984
41ecc55b
CL
985static int __init setup_slub_debug(char *str)
986{
f0630fff
CL
987 slub_debug = DEBUG_DEFAULT_FLAGS;
988 if (*str++ != '=' || !*str)
989 /*
990 * No options specified. Switch on full debugging.
991 */
992 goto out;
993
994 if (*str == ',')
995 /*
996 * No options but restriction on slabs. This means full
997 * debugging for slabs matching a pattern.
998 */
999 goto check_slabs;
1000
fa5ec8a1
DR
1001 if (tolower(*str) == 'o') {
1002 /*
1003 * Avoid enabling debugging on caches if its minimum order
1004 * would increase as a result.
1005 */
1006 disable_higher_order_debug = 1;
1007 goto out;
1008 }
1009
f0630fff
CL
1010 slub_debug = 0;
1011 if (*str == '-')
1012 /*
1013 * Switch off all debugging measures.
1014 */
1015 goto out;
1016
1017 /*
1018 * Determine which debug features should be switched on
1019 */
06428780 1020 for (; *str && *str != ','; str++) {
f0630fff
CL
1021 switch (tolower(*str)) {
1022 case 'f':
1023 slub_debug |= SLAB_DEBUG_FREE;
1024 break;
1025 case 'z':
1026 slub_debug |= SLAB_RED_ZONE;
1027 break;
1028 case 'p':
1029 slub_debug |= SLAB_POISON;
1030 break;
1031 case 'u':
1032 slub_debug |= SLAB_STORE_USER;
1033 break;
1034 case 't':
1035 slub_debug |= SLAB_TRACE;
1036 break;
4c13dd3b
DM
1037 case 'a':
1038 slub_debug |= SLAB_FAILSLAB;
1039 break;
f0630fff
CL
1040 default:
1041 printk(KERN_ERR "slub_debug option '%c' "
06428780 1042 "unknown. skipped\n", *str);
f0630fff 1043 }
41ecc55b
CL
1044 }
1045
f0630fff 1046check_slabs:
41ecc55b
CL
1047 if (*str == ',')
1048 slub_debug_slabs = str + 1;
f0630fff 1049out:
41ecc55b
CL
1050 return 1;
1051}
1052
1053__setup("slub_debug", setup_slub_debug);
1054
ba0268a8
CL
1055static unsigned long kmem_cache_flags(unsigned long objsize,
1056 unsigned long flags, const char *name,
51cc5068 1057 void (*ctor)(void *))
41ecc55b
CL
1058{
1059 /*
e153362a 1060 * Enable debugging if selected on the kernel commandline.
41ecc55b 1061 */
e153362a 1062 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1063 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1064 flags |= slub_debug;
ba0268a8
CL
1065
1066 return flags;
41ecc55b
CL
1067}
1068#else
3ec09742
CL
1069static inline void setup_object_debug(struct kmem_cache *s,
1070 struct page *page, void *object) {}
41ecc55b 1071
3ec09742 1072static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1073 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1074
3ec09742 1075static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1076 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1077
41ecc55b
CL
1078static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1079 { return 1; }
1080static inline int check_object(struct kmem_cache *s, struct page *page,
1081 void *object, int active) { return 1; }
3ec09742 1082static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1083static inline unsigned long kmem_cache_flags(unsigned long objsize,
1084 unsigned long flags, const char *name,
51cc5068 1085 void (*ctor)(void *))
ba0268a8
CL
1086{
1087 return flags;
1088}
41ecc55b 1089#define slub_debug 0
0f389ec6 1090
fdaa45e9
IM
1091#define disable_higher_order_debug 0
1092
0f389ec6
CL
1093static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1094 { return 0; }
26c02cf0
AB
1095static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1096 { return 0; }
205ab99d
CL
1097static inline void inc_slabs_node(struct kmem_cache *s, int node,
1098 int objects) {}
1099static inline void dec_slabs_node(struct kmem_cache *s, int node,
1100 int objects) {}
7d550c56
CL
1101
1102static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1103 { return 0; }
1104
1105static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1106 void *object) {}
1107
1108static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1109
1110static inline void slab_free_hook_irq(struct kmem_cache *s,
1111 void *object) {}
1112
41ecc55b 1113#endif
205ab99d 1114
81819f0f
CL
1115/*
1116 * Slab allocation and freeing
1117 */
65c3376a
CL
1118static inline struct page *alloc_slab_page(gfp_t flags, int node,
1119 struct kmem_cache_order_objects oo)
1120{
1121 int order = oo_order(oo);
1122
b1eeab67
VN
1123 flags |= __GFP_NOTRACK;
1124
2154a336 1125 if (node == NUMA_NO_NODE)
65c3376a
CL
1126 return alloc_pages(flags, order);
1127 else
6b65aaf3 1128 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1129}
1130
81819f0f
CL
1131static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1132{
06428780 1133 struct page *page;
834f3d11 1134 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1135 gfp_t alloc_gfp;
81819f0f 1136
b7a49f0d 1137 flags |= s->allocflags;
e12ba74d 1138
ba52270d
PE
1139 /*
1140 * Let the initial higher-order allocation fail under memory pressure
1141 * so we fall-back to the minimum order allocation.
1142 */
1143 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1144
1145 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1146 if (unlikely(!page)) {
1147 oo = s->min;
1148 /*
1149 * Allocation may have failed due to fragmentation.
1150 * Try a lower order alloc if possible
1151 */
1152 page = alloc_slab_page(flags, node, oo);
1153 if (!page)
1154 return NULL;
81819f0f 1155
84e554e6 1156 stat(s, ORDER_FALLBACK);
65c3376a 1157 }
5a896d9e
VN
1158
1159 if (kmemcheck_enabled
5086c389 1160 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1161 int pages = 1 << oo_order(oo);
1162
1163 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1164
1165 /*
1166 * Objects from caches that have a constructor don't get
1167 * cleared when they're allocated, so we need to do it here.
1168 */
1169 if (s->ctor)
1170 kmemcheck_mark_uninitialized_pages(page, pages);
1171 else
1172 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1173 }
1174
834f3d11 1175 page->objects = oo_objects(oo);
81819f0f
CL
1176 mod_zone_page_state(page_zone(page),
1177 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1178 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1179 1 << oo_order(oo));
81819f0f
CL
1180
1181 return page;
1182}
1183
1184static void setup_object(struct kmem_cache *s, struct page *page,
1185 void *object)
1186{
3ec09742 1187 setup_object_debug(s, page, object);
4f104934 1188 if (unlikely(s->ctor))
51cc5068 1189 s->ctor(object);
81819f0f
CL
1190}
1191
1192static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1193{
1194 struct page *page;
81819f0f 1195 void *start;
81819f0f
CL
1196 void *last;
1197 void *p;
1198
6cb06229 1199 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1200
6cb06229
CL
1201 page = allocate_slab(s,
1202 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1203 if (!page)
1204 goto out;
1205
205ab99d 1206 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1207 page->slab = s;
1208 page->flags |= 1 << PG_slab;
81819f0f
CL
1209
1210 start = page_address(page);
81819f0f
CL
1211
1212 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1213 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1214
1215 last = start;
224a88be 1216 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1217 setup_object(s, page, last);
1218 set_freepointer(s, last, p);
1219 last = p;
1220 }
1221 setup_object(s, page, last);
a973e9dd 1222 set_freepointer(s, last, NULL);
81819f0f
CL
1223
1224 page->freelist = start;
1225 page->inuse = 0;
1226out:
81819f0f
CL
1227 return page;
1228}
1229
1230static void __free_slab(struct kmem_cache *s, struct page *page)
1231{
834f3d11
CL
1232 int order = compound_order(page);
1233 int pages = 1 << order;
81819f0f 1234
af537b0a 1235 if (kmem_cache_debug(s)) {
81819f0f
CL
1236 void *p;
1237
1238 slab_pad_check(s, page);
224a88be
CL
1239 for_each_object(p, s, page_address(page),
1240 page->objects)
81819f0f 1241 check_object(s, page, p, 0);
81819f0f
CL
1242 }
1243
b1eeab67 1244 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1245
81819f0f
CL
1246 mod_zone_page_state(page_zone(page),
1247 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1248 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1249 -pages);
81819f0f 1250
49bd5221
CL
1251 __ClearPageSlab(page);
1252 reset_page_mapcount(page);
1eb5ac64
NP
1253 if (current->reclaim_state)
1254 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1255 __free_pages(page, order);
81819f0f
CL
1256}
1257
1258static void rcu_free_slab(struct rcu_head *h)
1259{
1260 struct page *page;
1261
1262 page = container_of((struct list_head *)h, struct page, lru);
1263 __free_slab(page->slab, page);
1264}
1265
1266static void free_slab(struct kmem_cache *s, struct page *page)
1267{
1268 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1269 /*
1270 * RCU free overloads the RCU head over the LRU
1271 */
1272 struct rcu_head *head = (void *)&page->lru;
1273
1274 call_rcu(head, rcu_free_slab);
1275 } else
1276 __free_slab(s, page);
1277}
1278
1279static void discard_slab(struct kmem_cache *s, struct page *page)
1280{
205ab99d 1281 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1282 free_slab(s, page);
1283}
1284
1285/*
1286 * Per slab locking using the pagelock
1287 */
1288static __always_inline void slab_lock(struct page *page)
1289{
1290 bit_spin_lock(PG_locked, &page->flags);
1291}
1292
1293static __always_inline void slab_unlock(struct page *page)
1294{
a76d3546 1295 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1296}
1297
1298static __always_inline int slab_trylock(struct page *page)
1299{
1300 int rc = 1;
1301
1302 rc = bit_spin_trylock(PG_locked, &page->flags);
1303 return rc;
1304}
1305
1306/*
1307 * Management of partially allocated slabs
1308 */
7c2e132c
CL
1309static void add_partial(struct kmem_cache_node *n,
1310 struct page *page, int tail)
81819f0f 1311{
e95eed57
CL
1312 spin_lock(&n->list_lock);
1313 n->nr_partial++;
7c2e132c
CL
1314 if (tail)
1315 list_add_tail(&page->lru, &n->partial);
1316 else
1317 list_add(&page->lru, &n->partial);
81819f0f
CL
1318 spin_unlock(&n->list_lock);
1319}
1320
0121c619 1321static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1322{
1323 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1324
1325 spin_lock(&n->list_lock);
1326 list_del(&page->lru);
1327 n->nr_partial--;
1328 spin_unlock(&n->list_lock);
1329}
1330
1331/*
672bba3a 1332 * Lock slab and remove from the partial list.
81819f0f 1333 *
672bba3a 1334 * Must hold list_lock.
81819f0f 1335 */
0121c619
CL
1336static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1337 struct page *page)
81819f0f
CL
1338{
1339 if (slab_trylock(page)) {
1340 list_del(&page->lru);
1341 n->nr_partial--;
8a38082d 1342 __SetPageSlubFrozen(page);
81819f0f
CL
1343 return 1;
1344 }
1345 return 0;
1346}
1347
1348/*
672bba3a 1349 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1350 */
1351static struct page *get_partial_node(struct kmem_cache_node *n)
1352{
1353 struct page *page;
1354
1355 /*
1356 * Racy check. If we mistakenly see no partial slabs then we
1357 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1358 * partial slab and there is none available then get_partials()
1359 * will return NULL.
81819f0f
CL
1360 */
1361 if (!n || !n->nr_partial)
1362 return NULL;
1363
1364 spin_lock(&n->list_lock);
1365 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1366 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1367 goto out;
1368 page = NULL;
1369out:
1370 spin_unlock(&n->list_lock);
1371 return page;
1372}
1373
1374/*
672bba3a 1375 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1376 */
1377static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1378{
1379#ifdef CONFIG_NUMA
1380 struct zonelist *zonelist;
dd1a239f 1381 struct zoneref *z;
54a6eb5c
MG
1382 struct zone *zone;
1383 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1384 struct page *page;
1385
1386 /*
672bba3a
CL
1387 * The defrag ratio allows a configuration of the tradeoffs between
1388 * inter node defragmentation and node local allocations. A lower
1389 * defrag_ratio increases the tendency to do local allocations
1390 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1391 *
672bba3a
CL
1392 * If the defrag_ratio is set to 0 then kmalloc() always
1393 * returns node local objects. If the ratio is higher then kmalloc()
1394 * may return off node objects because partial slabs are obtained
1395 * from other nodes and filled up.
81819f0f 1396 *
6446faa2 1397 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1398 * defrag_ratio = 1000) then every (well almost) allocation will
1399 * first attempt to defrag slab caches on other nodes. This means
1400 * scanning over all nodes to look for partial slabs which may be
1401 * expensive if we do it every time we are trying to find a slab
1402 * with available objects.
81819f0f 1403 */
9824601e
CL
1404 if (!s->remote_node_defrag_ratio ||
1405 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1406 return NULL;
1407
c0ff7453 1408 get_mems_allowed();
0e88460d 1409 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1410 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1411 struct kmem_cache_node *n;
1412
54a6eb5c 1413 n = get_node(s, zone_to_nid(zone));
81819f0f 1414
54a6eb5c 1415 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1416 n->nr_partial > s->min_partial) {
81819f0f 1417 page = get_partial_node(n);
c0ff7453
MX
1418 if (page) {
1419 put_mems_allowed();
81819f0f 1420 return page;
c0ff7453 1421 }
81819f0f
CL
1422 }
1423 }
c0ff7453 1424 put_mems_allowed();
81819f0f
CL
1425#endif
1426 return NULL;
1427}
1428
1429/*
1430 * Get a partial page, lock it and return it.
1431 */
1432static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1433{
1434 struct page *page;
2154a336 1435 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1436
1437 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1438 if (page || node != -1)
81819f0f
CL
1439 return page;
1440
1441 return get_any_partial(s, flags);
1442}
1443
1444/*
1445 * Move a page back to the lists.
1446 *
1447 * Must be called with the slab lock held.
1448 *
1449 * On exit the slab lock will have been dropped.
1450 */
7c2e132c 1451static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1452{
e95eed57
CL
1453 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1454
8a38082d 1455 __ClearPageSlubFrozen(page);
81819f0f 1456 if (page->inuse) {
e95eed57 1457
a973e9dd 1458 if (page->freelist) {
7c2e132c 1459 add_partial(n, page, tail);
84e554e6 1460 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1461 } else {
84e554e6 1462 stat(s, DEACTIVATE_FULL);
af537b0a 1463 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1464 add_full(n, page);
1465 }
81819f0f
CL
1466 slab_unlock(page);
1467 } else {
84e554e6 1468 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1469 if (n->nr_partial < s->min_partial) {
e95eed57 1470 /*
672bba3a
CL
1471 * Adding an empty slab to the partial slabs in order
1472 * to avoid page allocator overhead. This slab needs
1473 * to come after the other slabs with objects in
6446faa2
CL
1474 * so that the others get filled first. That way the
1475 * size of the partial list stays small.
1476 *
0121c619
CL
1477 * kmem_cache_shrink can reclaim any empty slabs from
1478 * the partial list.
e95eed57 1479 */
7c2e132c 1480 add_partial(n, page, 1);
e95eed57
CL
1481 slab_unlock(page);
1482 } else {
1483 slab_unlock(page);
84e554e6 1484 stat(s, FREE_SLAB);
e95eed57
CL
1485 discard_slab(s, page);
1486 }
81819f0f
CL
1487 }
1488}
1489
1490/*
1491 * Remove the cpu slab
1492 */
dfb4f096 1493static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1494{
dfb4f096 1495 struct page *page = c->page;
7c2e132c 1496 int tail = 1;
8ff12cfc 1497
b773ad73 1498 if (page->freelist)
84e554e6 1499 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1500 /*
6446faa2 1501 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1502 * because both freelists are empty. So this is unlikely
1503 * to occur.
1504 */
a973e9dd 1505 while (unlikely(c->freelist)) {
894b8788
CL
1506 void **object;
1507
7c2e132c
CL
1508 tail = 0; /* Hot objects. Put the slab first */
1509
894b8788 1510 /* Retrieve object from cpu_freelist */
dfb4f096 1511 object = c->freelist;
ff12059e 1512 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1513
1514 /* And put onto the regular freelist */
ff12059e 1515 set_freepointer(s, object, page->freelist);
894b8788
CL
1516 page->freelist = object;
1517 page->inuse--;
1518 }
dfb4f096 1519 c->page = NULL;
7c2e132c 1520 unfreeze_slab(s, page, tail);
81819f0f
CL
1521}
1522
dfb4f096 1523static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1524{
84e554e6 1525 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1526 slab_lock(c->page);
1527 deactivate_slab(s, c);
81819f0f
CL
1528}
1529
1530/*
1531 * Flush cpu slab.
6446faa2 1532 *
81819f0f
CL
1533 * Called from IPI handler with interrupts disabled.
1534 */
0c710013 1535static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1536{
9dfc6e68 1537 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1538
dfb4f096
CL
1539 if (likely(c && c->page))
1540 flush_slab(s, c);
81819f0f
CL
1541}
1542
1543static void flush_cpu_slab(void *d)
1544{
1545 struct kmem_cache *s = d;
81819f0f 1546
dfb4f096 1547 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1548}
1549
1550static void flush_all(struct kmem_cache *s)
1551{
15c8b6c1 1552 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1553}
1554
dfb4f096
CL
1555/*
1556 * Check if the objects in a per cpu structure fit numa
1557 * locality expectations.
1558 */
1559static inline int node_match(struct kmem_cache_cpu *c, int node)
1560{
1561#ifdef CONFIG_NUMA
2154a336 1562 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1563 return 0;
1564#endif
1565 return 1;
1566}
1567
781b2ba6
PE
1568static int count_free(struct page *page)
1569{
1570 return page->objects - page->inuse;
1571}
1572
1573static unsigned long count_partial(struct kmem_cache_node *n,
1574 int (*get_count)(struct page *))
1575{
1576 unsigned long flags;
1577 unsigned long x = 0;
1578 struct page *page;
1579
1580 spin_lock_irqsave(&n->list_lock, flags);
1581 list_for_each_entry(page, &n->partial, lru)
1582 x += get_count(page);
1583 spin_unlock_irqrestore(&n->list_lock, flags);
1584 return x;
1585}
1586
26c02cf0
AB
1587static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1588{
1589#ifdef CONFIG_SLUB_DEBUG
1590 return atomic_long_read(&n->total_objects);
1591#else
1592 return 0;
1593#endif
1594}
1595
781b2ba6
PE
1596static noinline void
1597slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1598{
1599 int node;
1600
1601 printk(KERN_WARNING
1602 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1603 nid, gfpflags);
1604 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1605 "default order: %d, min order: %d\n", s->name, s->objsize,
1606 s->size, oo_order(s->oo), oo_order(s->min));
1607
fa5ec8a1
DR
1608 if (oo_order(s->min) > get_order(s->objsize))
1609 printk(KERN_WARNING " %s debugging increased min order, use "
1610 "slub_debug=O to disable.\n", s->name);
1611
781b2ba6
PE
1612 for_each_online_node(node) {
1613 struct kmem_cache_node *n = get_node(s, node);
1614 unsigned long nr_slabs;
1615 unsigned long nr_objs;
1616 unsigned long nr_free;
1617
1618 if (!n)
1619 continue;
1620
26c02cf0
AB
1621 nr_free = count_partial(n, count_free);
1622 nr_slabs = node_nr_slabs(n);
1623 nr_objs = node_nr_objs(n);
781b2ba6
PE
1624
1625 printk(KERN_WARNING
1626 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1627 node, nr_slabs, nr_objs, nr_free);
1628 }
1629}
1630
81819f0f 1631/*
894b8788
CL
1632 * Slow path. The lockless freelist is empty or we need to perform
1633 * debugging duties.
1634 *
1635 * Interrupts are disabled.
81819f0f 1636 *
894b8788
CL
1637 * Processing is still very fast if new objects have been freed to the
1638 * regular freelist. In that case we simply take over the regular freelist
1639 * as the lockless freelist and zap the regular freelist.
81819f0f 1640 *
894b8788
CL
1641 * If that is not working then we fall back to the partial lists. We take the
1642 * first element of the freelist as the object to allocate now and move the
1643 * rest of the freelist to the lockless freelist.
81819f0f 1644 *
894b8788 1645 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1646 * we need to allocate a new slab. This is the slowest path since it involves
1647 * a call to the page allocator and the setup of a new slab.
81819f0f 1648 */
ce71e27c
EGM
1649static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1650 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1651{
81819f0f 1652 void **object;
dfb4f096 1653 struct page *new;
81819f0f 1654
e72e9c23
LT
1655 /* We handle __GFP_ZERO in the caller */
1656 gfpflags &= ~__GFP_ZERO;
1657
dfb4f096 1658 if (!c->page)
81819f0f
CL
1659 goto new_slab;
1660
dfb4f096
CL
1661 slab_lock(c->page);
1662 if (unlikely(!node_match(c, node)))
81819f0f 1663 goto another_slab;
6446faa2 1664
84e554e6 1665 stat(s, ALLOC_REFILL);
6446faa2 1666
894b8788 1667load_freelist:
dfb4f096 1668 object = c->page->freelist;
a973e9dd 1669 if (unlikely(!object))
81819f0f 1670 goto another_slab;
af537b0a 1671 if (kmem_cache_debug(s))
81819f0f
CL
1672 goto debug;
1673
ff12059e 1674 c->freelist = get_freepointer(s, object);
39b26464 1675 c->page->inuse = c->page->objects;
a973e9dd 1676 c->page->freelist = NULL;
dfb4f096 1677 c->node = page_to_nid(c->page);
1f84260c 1678unlock_out:
dfb4f096 1679 slab_unlock(c->page);
84e554e6 1680 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1681 return object;
1682
1683another_slab:
dfb4f096 1684 deactivate_slab(s, c);
81819f0f
CL
1685
1686new_slab:
dfb4f096
CL
1687 new = get_partial(s, gfpflags, node);
1688 if (new) {
1689 c->page = new;
84e554e6 1690 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1691 goto load_freelist;
81819f0f
CL
1692 }
1693
c1d50836 1694 gfpflags &= gfp_allowed_mask;
b811c202
CL
1695 if (gfpflags & __GFP_WAIT)
1696 local_irq_enable();
1697
dfb4f096 1698 new = new_slab(s, gfpflags, node);
b811c202
CL
1699
1700 if (gfpflags & __GFP_WAIT)
1701 local_irq_disable();
1702
dfb4f096 1703 if (new) {
9dfc6e68 1704 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1705 stat(s, ALLOC_SLAB);
05aa3450 1706 if (c->page)
dfb4f096 1707 flush_slab(s, c);
dfb4f096 1708 slab_lock(new);
8a38082d 1709 __SetPageSlubFrozen(new);
dfb4f096 1710 c->page = new;
4b6f0750 1711 goto load_freelist;
81819f0f 1712 }
95f85989
PE
1713 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1714 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1715 return NULL;
81819f0f 1716debug:
dfb4f096 1717 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1718 goto another_slab;
894b8788 1719
dfb4f096 1720 c->page->inuse++;
ff12059e 1721 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1722 c->node = -1;
1f84260c 1723 goto unlock_out;
894b8788
CL
1724}
1725
1726/*
1727 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1728 * have the fastpath folded into their functions. So no function call
1729 * overhead for requests that can be satisfied on the fastpath.
1730 *
1731 * The fastpath works by first checking if the lockless freelist can be used.
1732 * If not then __slab_alloc is called for slow processing.
1733 *
1734 * Otherwise we can simply pick the next object from the lockless free list.
1735 */
06428780 1736static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1737 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1738{
894b8788 1739 void **object;
dfb4f096 1740 struct kmem_cache_cpu *c;
1f84260c
CL
1741 unsigned long flags;
1742
c016b0bd 1743 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1744 return NULL;
1f84260c 1745
894b8788 1746 local_irq_save(flags);
9dfc6e68
CL
1747 c = __this_cpu_ptr(s->cpu_slab);
1748 object = c->freelist;
9dfc6e68 1749 if (unlikely(!object || !node_match(c, node)))
894b8788 1750
dfb4f096 1751 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1752
1753 else {
ff12059e 1754 c->freelist = get_freepointer(s, object);
84e554e6 1755 stat(s, ALLOC_FASTPATH);
894b8788
CL
1756 }
1757 local_irq_restore(flags);
d07dbea4 1758
74e2134f 1759 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1760 memset(object, 0, s->objsize);
d07dbea4 1761
c016b0bd 1762 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1763
894b8788 1764 return object;
81819f0f
CL
1765}
1766
1767void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1768{
2154a336 1769 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1770
ca2b84cb 1771 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1772
1773 return ret;
81819f0f
CL
1774}
1775EXPORT_SYMBOL(kmem_cache_alloc);
1776
0f24f128 1777#ifdef CONFIG_TRACING
5b882be4
EGM
1778void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1779{
2154a336 1780 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1781}
1782EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1783#endif
1784
81819f0f
CL
1785#ifdef CONFIG_NUMA
1786void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1787{
5b882be4
EGM
1788 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1789
ca2b84cb
EGM
1790 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1791 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1792
1793 return ret;
81819f0f
CL
1794}
1795EXPORT_SYMBOL(kmem_cache_alloc_node);
1796#endif
1797
0f24f128 1798#ifdef CONFIG_TRACING
5b882be4
EGM
1799void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1800 gfp_t gfpflags,
1801 int node)
1802{
1803 return slab_alloc(s, gfpflags, node, _RET_IP_);
1804}
1805EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1806#endif
1807
81819f0f 1808/*
894b8788
CL
1809 * Slow patch handling. This may still be called frequently since objects
1810 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1811 *
894b8788
CL
1812 * So we still attempt to reduce cache line usage. Just take the slab
1813 * lock and free the item. If there is no additional partial page
1814 * handling required then we can return immediately.
81819f0f 1815 */
894b8788 1816static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1817 void *x, unsigned long addr)
81819f0f
CL
1818{
1819 void *prior;
1820 void **object = (void *)x;
81819f0f 1821
84e554e6 1822 stat(s, FREE_SLOWPATH);
81819f0f
CL
1823 slab_lock(page);
1824
af537b0a 1825 if (kmem_cache_debug(s))
81819f0f 1826 goto debug;
6446faa2 1827
81819f0f 1828checks_ok:
ff12059e
CL
1829 prior = page->freelist;
1830 set_freepointer(s, object, prior);
81819f0f
CL
1831 page->freelist = object;
1832 page->inuse--;
1833
8a38082d 1834 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1835 stat(s, FREE_FROZEN);
81819f0f 1836 goto out_unlock;
8ff12cfc 1837 }
81819f0f
CL
1838
1839 if (unlikely(!page->inuse))
1840 goto slab_empty;
1841
1842 /*
6446faa2 1843 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1844 * then add it.
1845 */
a973e9dd 1846 if (unlikely(!prior)) {
7c2e132c 1847 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1848 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1849 }
81819f0f
CL
1850
1851out_unlock:
1852 slab_unlock(page);
81819f0f
CL
1853 return;
1854
1855slab_empty:
a973e9dd 1856 if (prior) {
81819f0f 1857 /*
672bba3a 1858 * Slab still on the partial list.
81819f0f
CL
1859 */
1860 remove_partial(s, page);
84e554e6 1861 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1862 }
81819f0f 1863 slab_unlock(page);
84e554e6 1864 stat(s, FREE_SLAB);
81819f0f 1865 discard_slab(s, page);
81819f0f
CL
1866 return;
1867
1868debug:
3ec09742 1869 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1870 goto out_unlock;
77c5e2d0 1871 goto checks_ok;
81819f0f
CL
1872}
1873
894b8788
CL
1874/*
1875 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1876 * can perform fastpath freeing without additional function calls.
1877 *
1878 * The fastpath is only possible if we are freeing to the current cpu slab
1879 * of this processor. This typically the case if we have just allocated
1880 * the item before.
1881 *
1882 * If fastpath is not possible then fall back to __slab_free where we deal
1883 * with all sorts of special processing.
1884 */
06428780 1885static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1886 struct page *page, void *x, unsigned long addr)
894b8788
CL
1887{
1888 void **object = (void *)x;
dfb4f096 1889 struct kmem_cache_cpu *c;
1f84260c
CL
1890 unsigned long flags;
1891
c016b0bd
CL
1892 slab_free_hook(s, x);
1893
894b8788 1894 local_irq_save(flags);
9dfc6e68 1895 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1896
1897 slab_free_hook_irq(s, x);
1898
ee3c72a1 1899 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1900 set_freepointer(s, object, c->freelist);
dfb4f096 1901 c->freelist = object;
84e554e6 1902 stat(s, FREE_FASTPATH);
894b8788 1903 } else
ff12059e 1904 __slab_free(s, page, x, addr);
894b8788
CL
1905
1906 local_irq_restore(flags);
1907}
1908
81819f0f
CL
1909void kmem_cache_free(struct kmem_cache *s, void *x)
1910{
77c5e2d0 1911 struct page *page;
81819f0f 1912
b49af68f 1913 page = virt_to_head_page(x);
81819f0f 1914
ce71e27c 1915 slab_free(s, page, x, _RET_IP_);
5b882be4 1916
ca2b84cb 1917 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1918}
1919EXPORT_SYMBOL(kmem_cache_free);
1920
e9beef18 1921/* Figure out on which slab page the object resides */
81819f0f
CL
1922static struct page *get_object_page(const void *x)
1923{
b49af68f 1924 struct page *page = virt_to_head_page(x);
81819f0f
CL
1925
1926 if (!PageSlab(page))
1927 return NULL;
1928
1929 return page;
1930}
1931
1932/*
672bba3a
CL
1933 * Object placement in a slab is made very easy because we always start at
1934 * offset 0. If we tune the size of the object to the alignment then we can
1935 * get the required alignment by putting one properly sized object after
1936 * another.
81819f0f
CL
1937 *
1938 * Notice that the allocation order determines the sizes of the per cpu
1939 * caches. Each processor has always one slab available for allocations.
1940 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1941 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1942 * locking overhead.
81819f0f
CL
1943 */
1944
1945/*
1946 * Mininum / Maximum order of slab pages. This influences locking overhead
1947 * and slab fragmentation. A higher order reduces the number of partial slabs
1948 * and increases the number of allocations possible without having to
1949 * take the list_lock.
1950 */
1951static int slub_min_order;
114e9e89 1952static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1953static int slub_min_objects;
81819f0f
CL
1954
1955/*
1956 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1957 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1958 */
1959static int slub_nomerge;
1960
81819f0f
CL
1961/*
1962 * Calculate the order of allocation given an slab object size.
1963 *
672bba3a
CL
1964 * The order of allocation has significant impact on performance and other
1965 * system components. Generally order 0 allocations should be preferred since
1966 * order 0 does not cause fragmentation in the page allocator. Larger objects
1967 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1968 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1969 * would be wasted.
1970 *
1971 * In order to reach satisfactory performance we must ensure that a minimum
1972 * number of objects is in one slab. Otherwise we may generate too much
1973 * activity on the partial lists which requires taking the list_lock. This is
1974 * less a concern for large slabs though which are rarely used.
81819f0f 1975 *
672bba3a
CL
1976 * slub_max_order specifies the order where we begin to stop considering the
1977 * number of objects in a slab as critical. If we reach slub_max_order then
1978 * we try to keep the page order as low as possible. So we accept more waste
1979 * of space in favor of a small page order.
81819f0f 1980 *
672bba3a
CL
1981 * Higher order allocations also allow the placement of more objects in a
1982 * slab and thereby reduce object handling overhead. If the user has
1983 * requested a higher mininum order then we start with that one instead of
1984 * the smallest order which will fit the object.
81819f0f 1985 */
5e6d444e
CL
1986static inline int slab_order(int size, int min_objects,
1987 int max_order, int fract_leftover)
81819f0f
CL
1988{
1989 int order;
1990 int rem;
6300ea75 1991 int min_order = slub_min_order;
81819f0f 1992
210b5c06
CG
1993 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1994 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1995
6300ea75 1996 for (order = max(min_order,
5e6d444e
CL
1997 fls(min_objects * size - 1) - PAGE_SHIFT);
1998 order <= max_order; order++) {
81819f0f 1999
5e6d444e 2000 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2001
5e6d444e 2002 if (slab_size < min_objects * size)
81819f0f
CL
2003 continue;
2004
2005 rem = slab_size % size;
2006
5e6d444e 2007 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2008 break;
2009
2010 }
672bba3a 2011
81819f0f
CL
2012 return order;
2013}
2014
5e6d444e
CL
2015static inline int calculate_order(int size)
2016{
2017 int order;
2018 int min_objects;
2019 int fraction;
e8120ff1 2020 int max_objects;
5e6d444e
CL
2021
2022 /*
2023 * Attempt to find best configuration for a slab. This
2024 * works by first attempting to generate a layout with
2025 * the best configuration and backing off gradually.
2026 *
2027 * First we reduce the acceptable waste in a slab. Then
2028 * we reduce the minimum objects required in a slab.
2029 */
2030 min_objects = slub_min_objects;
9b2cd506
CL
2031 if (!min_objects)
2032 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2033 max_objects = (PAGE_SIZE << slub_max_order)/size;
2034 min_objects = min(min_objects, max_objects);
2035
5e6d444e 2036 while (min_objects > 1) {
c124f5b5 2037 fraction = 16;
5e6d444e
CL
2038 while (fraction >= 4) {
2039 order = slab_order(size, min_objects,
2040 slub_max_order, fraction);
2041 if (order <= slub_max_order)
2042 return order;
2043 fraction /= 2;
2044 }
5086c389 2045 min_objects--;
5e6d444e
CL
2046 }
2047
2048 /*
2049 * We were unable to place multiple objects in a slab. Now
2050 * lets see if we can place a single object there.
2051 */
2052 order = slab_order(size, 1, slub_max_order, 1);
2053 if (order <= slub_max_order)
2054 return order;
2055
2056 /*
2057 * Doh this slab cannot be placed using slub_max_order.
2058 */
2059 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2060 if (order < MAX_ORDER)
5e6d444e
CL
2061 return order;
2062 return -ENOSYS;
2063}
2064
81819f0f 2065/*
672bba3a 2066 * Figure out what the alignment of the objects will be.
81819f0f
CL
2067 */
2068static unsigned long calculate_alignment(unsigned long flags,
2069 unsigned long align, unsigned long size)
2070{
2071 /*
6446faa2
CL
2072 * If the user wants hardware cache aligned objects then follow that
2073 * suggestion if the object is sufficiently large.
81819f0f 2074 *
6446faa2
CL
2075 * The hardware cache alignment cannot override the specified
2076 * alignment though. If that is greater then use it.
81819f0f 2077 */
b6210386
NP
2078 if (flags & SLAB_HWCACHE_ALIGN) {
2079 unsigned long ralign = cache_line_size();
2080 while (size <= ralign / 2)
2081 ralign /= 2;
2082 align = max(align, ralign);
2083 }
81819f0f
CL
2084
2085 if (align < ARCH_SLAB_MINALIGN)
b6210386 2086 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2087
2088 return ALIGN(align, sizeof(void *));
2089}
2090
5595cffc
PE
2091static void
2092init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2093{
2094 n->nr_partial = 0;
81819f0f
CL
2095 spin_lock_init(&n->list_lock);
2096 INIT_LIST_HEAD(&n->partial);
8ab1372f 2097#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2098 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2099 atomic_long_set(&n->total_objects, 0);
643b1138 2100 INIT_LIST_HEAD(&n->full);
8ab1372f 2101#endif
81819f0f
CL
2102}
2103
55136592 2104static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2105{
6c182dc0
CL
2106 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2107 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2108
6c182dc0 2109 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2110
6c182dc0 2111 return s->cpu_slab != NULL;
4c93c355 2112}
4c93c355 2113
81819f0f 2114#ifdef CONFIG_NUMA
51df1142
CL
2115static struct kmem_cache *kmem_cache_node;
2116
81819f0f
CL
2117/*
2118 * No kmalloc_node yet so do it by hand. We know that this is the first
2119 * slab on the node for this slabcache. There are no concurrent accesses
2120 * possible.
2121 *
2122 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2123 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2124 * memory on a fresh node that has no slab structures yet.
81819f0f 2125 */
55136592 2126static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2127{
2128 struct page *page;
2129 struct kmem_cache_node *n;
ba84c73c 2130 unsigned long flags;
81819f0f 2131
51df1142 2132 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2133
51df1142 2134 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2135
2136 BUG_ON(!page);
a2f92ee7
CL
2137 if (page_to_nid(page) != node) {
2138 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2139 "node %d\n", node);
2140 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2141 "in order to be able to continue\n");
2142 }
2143
81819f0f
CL
2144 n = page->freelist;
2145 BUG_ON(!n);
51df1142 2146 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2147 page->inuse++;
51df1142 2148 kmem_cache_node->node[node] = n;
8ab1372f 2149#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
2150 init_object(kmem_cache_node, n, 1);
2151 init_tracking(kmem_cache_node, n);
8ab1372f 2152#endif
51df1142
CL
2153 init_kmem_cache_node(n, kmem_cache_node);
2154 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2155
ba84c73c 2156 /*
2157 * lockdep requires consistent irq usage for each lock
2158 * so even though there cannot be a race this early in
2159 * the boot sequence, we still disable irqs.
2160 */
2161 local_irq_save(flags);
7c2e132c 2162 add_partial(n, page, 0);
ba84c73c 2163 local_irq_restore(flags);
81819f0f
CL
2164}
2165
2166static void free_kmem_cache_nodes(struct kmem_cache *s)
2167{
2168 int node;
2169
f64dc58c 2170 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2171 struct kmem_cache_node *n = s->node[node];
51df1142 2172
73367bd8 2173 if (n)
51df1142
CL
2174 kmem_cache_free(kmem_cache_node, n);
2175
81819f0f
CL
2176 s->node[node] = NULL;
2177 }
2178}
2179
55136592 2180static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2181{
2182 int node;
81819f0f 2183
f64dc58c 2184 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2185 struct kmem_cache_node *n;
2186
73367bd8 2187 if (slab_state == DOWN) {
55136592 2188 early_kmem_cache_node_alloc(node);
73367bd8
AD
2189 continue;
2190 }
51df1142 2191 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2192 GFP_KERNEL, node);
81819f0f 2193
73367bd8
AD
2194 if (!n) {
2195 free_kmem_cache_nodes(s);
2196 return 0;
81819f0f 2197 }
73367bd8 2198
81819f0f 2199 s->node[node] = n;
5595cffc 2200 init_kmem_cache_node(n, s);
81819f0f
CL
2201 }
2202 return 1;
2203}
2204#else
2205static void free_kmem_cache_nodes(struct kmem_cache *s)
2206{
2207}
2208
55136592 2209static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f 2210{
5595cffc 2211 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2212 return 1;
2213}
2214#endif
2215
c0bdb232 2216static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2217{
2218 if (min < MIN_PARTIAL)
2219 min = MIN_PARTIAL;
2220 else if (min > MAX_PARTIAL)
2221 min = MAX_PARTIAL;
2222 s->min_partial = min;
2223}
2224
81819f0f
CL
2225/*
2226 * calculate_sizes() determines the order and the distribution of data within
2227 * a slab object.
2228 */
06b285dc 2229static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2230{
2231 unsigned long flags = s->flags;
2232 unsigned long size = s->objsize;
2233 unsigned long align = s->align;
834f3d11 2234 int order;
81819f0f 2235
d8b42bf5
CL
2236 /*
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2240 */
2241 size = ALIGN(size, sizeof(void *));
2242
2243#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2244 /*
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2248 */
2249 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2250 !s->ctor)
81819f0f
CL
2251 s->flags |= __OBJECT_POISON;
2252 else
2253 s->flags &= ~__OBJECT_POISON;
2254
81819f0f
CL
2255
2256 /*
672bba3a 2257 * If we are Redzoning then check if there is some space between the
81819f0f 2258 * end of the object and the free pointer. If not then add an
672bba3a 2259 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2260 */
2261 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 size += sizeof(void *);
41ecc55b 2263#endif
81819f0f
CL
2264
2265 /*
672bba3a
CL
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2268 */
2269 s->inuse = size;
2270
2271 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2272 s->ctor)) {
81819f0f
CL
2273 /*
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2276 * kmem_cache_free.
2277 *
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2280 */
2281 s->offset = size;
2282 size += sizeof(void *);
2283 }
2284
c12b3c62 2285#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2286 if (flags & SLAB_STORE_USER)
2287 /*
2288 * Need to store information about allocs and frees after
2289 * the object.
2290 */
2291 size += 2 * sizeof(struct track);
2292
be7b3fbc 2293 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2294 /*
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
0211a9c8 2298 * corrupted if a user writes before the start
81819f0f
CL
2299 * of the object.
2300 */
2301 size += sizeof(void *);
41ecc55b 2302#endif
672bba3a 2303
81819f0f
CL
2304 /*
2305 * Determine the alignment based on various parameters that the
65c02d4c
CL
2306 * user specified and the dynamic determination of cache line size
2307 * on bootup.
81819f0f
CL
2308 */
2309 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2310 s->align = align;
81819f0f
CL
2311
2312 /*
2313 * SLUB stores one object immediately after another beginning from
2314 * offset 0. In order to align the objects we have to simply size
2315 * each object to conform to the alignment.
2316 */
2317 size = ALIGN(size, align);
2318 s->size = size;
06b285dc
CL
2319 if (forced_order >= 0)
2320 order = forced_order;
2321 else
2322 order = calculate_order(size);
81819f0f 2323
834f3d11 2324 if (order < 0)
81819f0f
CL
2325 return 0;
2326
b7a49f0d 2327 s->allocflags = 0;
834f3d11 2328 if (order)
b7a49f0d
CL
2329 s->allocflags |= __GFP_COMP;
2330
2331 if (s->flags & SLAB_CACHE_DMA)
2332 s->allocflags |= SLUB_DMA;
2333
2334 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2335 s->allocflags |= __GFP_RECLAIMABLE;
2336
81819f0f
CL
2337 /*
2338 * Determine the number of objects per slab
2339 */
834f3d11 2340 s->oo = oo_make(order, size);
65c3376a 2341 s->min = oo_make(get_order(size), size);
205ab99d
CL
2342 if (oo_objects(s->oo) > oo_objects(s->max))
2343 s->max = s->oo;
81819f0f 2344
834f3d11 2345 return !!oo_objects(s->oo);
81819f0f
CL
2346
2347}
2348
55136592 2349static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2350 const char *name, size_t size,
2351 size_t align, unsigned long flags,
51cc5068 2352 void (*ctor)(void *))
81819f0f
CL
2353{
2354 memset(s, 0, kmem_size);
2355 s->name = name;
2356 s->ctor = ctor;
81819f0f 2357 s->objsize = size;
81819f0f 2358 s->align = align;
ba0268a8 2359 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2360
06b285dc 2361 if (!calculate_sizes(s, -1))
81819f0f 2362 goto error;
3de47213
DR
2363 if (disable_higher_order_debug) {
2364 /*
2365 * Disable debugging flags that store metadata if the min slab
2366 * order increased.
2367 */
2368 if (get_order(s->size) > get_order(s->objsize)) {
2369 s->flags &= ~DEBUG_METADATA_FLAGS;
2370 s->offset = 0;
2371 if (!calculate_sizes(s, -1))
2372 goto error;
2373 }
2374 }
81819f0f 2375
3b89d7d8
DR
2376 /*
2377 * The larger the object size is, the more pages we want on the partial
2378 * list to avoid pounding the page allocator excessively.
2379 */
c0bdb232 2380 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2381 s->refcount = 1;
2382#ifdef CONFIG_NUMA
e2cb96b7 2383 s->remote_node_defrag_ratio = 1000;
81819f0f 2384#endif
55136592 2385 if (!init_kmem_cache_nodes(s))
dfb4f096 2386 goto error;
81819f0f 2387
55136592 2388 if (alloc_kmem_cache_cpus(s))
81819f0f 2389 return 1;
ff12059e 2390
4c93c355 2391 free_kmem_cache_nodes(s);
81819f0f
CL
2392error:
2393 if (flags & SLAB_PANIC)
2394 panic("Cannot create slab %s size=%lu realsize=%u "
2395 "order=%u offset=%u flags=%lx\n",
834f3d11 2396 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2397 s->offset, flags);
2398 return 0;
2399}
81819f0f
CL
2400
2401/*
2402 * Check if a given pointer is valid
2403 */
2404int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2405{
06428780 2406 struct page *page;
81819f0f 2407
d3e06e2b
PE
2408 if (!kern_ptr_validate(object, s->size))
2409 return 0;
2410
81819f0f
CL
2411 page = get_object_page(object);
2412
2413 if (!page || s != page->slab)
2414 /* No slab or wrong slab */
2415 return 0;
2416
abcd08a6 2417 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2418 return 0;
2419
2420 /*
2421 * We could also check if the object is on the slabs freelist.
2422 * But this would be too expensive and it seems that the main
6446faa2 2423 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2424 * to a certain slab.
2425 */
2426 return 1;
2427}
2428EXPORT_SYMBOL(kmem_ptr_validate);
2429
2430/*
2431 * Determine the size of a slab object
2432 */
2433unsigned int kmem_cache_size(struct kmem_cache *s)
2434{
2435 return s->objsize;
2436}
2437EXPORT_SYMBOL(kmem_cache_size);
2438
2439const char *kmem_cache_name(struct kmem_cache *s)
2440{
2441 return s->name;
2442}
2443EXPORT_SYMBOL(kmem_cache_name);
2444
33b12c38
CL
2445static void list_slab_objects(struct kmem_cache *s, struct page *page,
2446 const char *text)
2447{
2448#ifdef CONFIG_SLUB_DEBUG
2449 void *addr = page_address(page);
2450 void *p;
bbd7d57b
ED
2451 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2452 GFP_ATOMIC);
33b12c38 2453
bbd7d57b
ED
2454 if (!map)
2455 return;
33b12c38
CL
2456 slab_err(s, page, "%s", text);
2457 slab_lock(page);
2458 for_each_free_object(p, s, page->freelist)
2459 set_bit(slab_index(p, s, addr), map);
2460
2461 for_each_object(p, s, addr, page->objects) {
2462
2463 if (!test_bit(slab_index(p, s, addr), map)) {
2464 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2465 p, p - addr);
2466 print_tracking(s, p);
2467 }
2468 }
2469 slab_unlock(page);
bbd7d57b 2470 kfree(map);
33b12c38
CL
2471#endif
2472}
2473
81819f0f 2474/*
599870b1 2475 * Attempt to free all partial slabs on a node.
81819f0f 2476 */
599870b1 2477static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2478{
81819f0f
CL
2479 unsigned long flags;
2480 struct page *page, *h;
2481
2482 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2483 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2484 if (!page->inuse) {
2485 list_del(&page->lru);
2486 discard_slab(s, page);
599870b1 2487 n->nr_partial--;
33b12c38
CL
2488 } else {
2489 list_slab_objects(s, page,
2490 "Objects remaining on kmem_cache_close()");
599870b1 2491 }
33b12c38 2492 }
81819f0f 2493 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2494}
2495
2496/*
672bba3a 2497 * Release all resources used by a slab cache.
81819f0f 2498 */
0c710013 2499static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2500{
2501 int node;
2502
2503 flush_all(s);
9dfc6e68 2504 free_percpu(s->cpu_slab);
81819f0f 2505 /* Attempt to free all objects */
f64dc58c 2506 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2507 struct kmem_cache_node *n = get_node(s, node);
2508
599870b1
CL
2509 free_partial(s, n);
2510 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2511 return 1;
2512 }
2513 free_kmem_cache_nodes(s);
2514 return 0;
2515}
2516
2517/*
2518 * Close a cache and release the kmem_cache structure
2519 * (must be used for caches created using kmem_cache_create)
2520 */
2521void kmem_cache_destroy(struct kmem_cache *s)
2522{
2523 down_write(&slub_lock);
2524 s->refcount--;
2525 if (!s->refcount) {
2526 list_del(&s->list);
d629d819
PE
2527 if (kmem_cache_close(s)) {
2528 printk(KERN_ERR "SLUB %s: %s called for cache that "
2529 "still has objects.\n", s->name, __func__);
2530 dump_stack();
2531 }
d76b1590
ED
2532 if (s->flags & SLAB_DESTROY_BY_RCU)
2533 rcu_barrier();
81819f0f 2534 sysfs_slab_remove(s);
2bce6485
CL
2535 }
2536 up_write(&slub_lock);
81819f0f
CL
2537}
2538EXPORT_SYMBOL(kmem_cache_destroy);
2539
2540/********************************************************************
2541 * Kmalloc subsystem
2542 *******************************************************************/
2543
51df1142 2544struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2545EXPORT_SYMBOL(kmalloc_caches);
2546
51df1142
CL
2547static struct kmem_cache *kmem_cache;
2548
55136592 2549#ifdef CONFIG_ZONE_DMA
51df1142 2550static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2551#endif
2552
81819f0f
CL
2553static int __init setup_slub_min_order(char *str)
2554{
06428780 2555 get_option(&str, &slub_min_order);
81819f0f
CL
2556
2557 return 1;
2558}
2559
2560__setup("slub_min_order=", setup_slub_min_order);
2561
2562static int __init setup_slub_max_order(char *str)
2563{
06428780 2564 get_option(&str, &slub_max_order);
818cf590 2565 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2566
2567 return 1;
2568}
2569
2570__setup("slub_max_order=", setup_slub_max_order);
2571
2572static int __init setup_slub_min_objects(char *str)
2573{
06428780 2574 get_option(&str, &slub_min_objects);
81819f0f
CL
2575
2576 return 1;
2577}
2578
2579__setup("slub_min_objects=", setup_slub_min_objects);
2580
2581static int __init setup_slub_nomerge(char *str)
2582{
2583 slub_nomerge = 1;
2584 return 1;
2585}
2586
2587__setup("slub_nomerge", setup_slub_nomerge);
2588
51df1142
CL
2589static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2590 int size, unsigned int flags)
81819f0f 2591{
51df1142
CL
2592 struct kmem_cache *s;
2593
2594 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2595
83b519e8
PE
2596 /*
2597 * This function is called with IRQs disabled during early-boot on
2598 * single CPU so there's no need to take slub_lock here.
2599 */
55136592 2600 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2601 flags, NULL))
81819f0f
CL
2602 goto panic;
2603
2604 list_add(&s->list, &slab_caches);
51df1142 2605 return s;
81819f0f
CL
2606
2607panic:
2608 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2609 return NULL;
81819f0f
CL
2610}
2611
f1b26339
CL
2612/*
2613 * Conversion table for small slabs sizes / 8 to the index in the
2614 * kmalloc array. This is necessary for slabs < 192 since we have non power
2615 * of two cache sizes there. The size of larger slabs can be determined using
2616 * fls.
2617 */
2618static s8 size_index[24] = {
2619 3, /* 8 */
2620 4, /* 16 */
2621 5, /* 24 */
2622 5, /* 32 */
2623 6, /* 40 */
2624 6, /* 48 */
2625 6, /* 56 */
2626 6, /* 64 */
2627 1, /* 72 */
2628 1, /* 80 */
2629 1, /* 88 */
2630 1, /* 96 */
2631 7, /* 104 */
2632 7, /* 112 */
2633 7, /* 120 */
2634 7, /* 128 */
2635 2, /* 136 */
2636 2, /* 144 */
2637 2, /* 152 */
2638 2, /* 160 */
2639 2, /* 168 */
2640 2, /* 176 */
2641 2, /* 184 */
2642 2 /* 192 */
2643};
2644
acdfcd04
AK
2645static inline int size_index_elem(size_t bytes)
2646{
2647 return (bytes - 1) / 8;
2648}
2649
81819f0f
CL
2650static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2651{
f1b26339 2652 int index;
81819f0f 2653
f1b26339
CL
2654 if (size <= 192) {
2655 if (!size)
2656 return ZERO_SIZE_PTR;
81819f0f 2657
acdfcd04 2658 index = size_index[size_index_elem(size)];
aadb4bc4 2659 } else
f1b26339 2660 index = fls(size - 1);
81819f0f
CL
2661
2662#ifdef CONFIG_ZONE_DMA
f1b26339 2663 if (unlikely((flags & SLUB_DMA)))
51df1142 2664 return kmalloc_dma_caches[index];
f1b26339 2665
81819f0f 2666#endif
51df1142 2667 return kmalloc_caches[index];
81819f0f
CL
2668}
2669
2670void *__kmalloc(size_t size, gfp_t flags)
2671{
aadb4bc4 2672 struct kmem_cache *s;
5b882be4 2673 void *ret;
81819f0f 2674
ffadd4d0 2675 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2676 return kmalloc_large(size, flags);
aadb4bc4
CL
2677
2678 s = get_slab(size, flags);
2679
2680 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2681 return s;
2682
2154a336 2683 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2684
ca2b84cb 2685 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2686
2687 return ret;
81819f0f
CL
2688}
2689EXPORT_SYMBOL(__kmalloc);
2690
f619cfe1
CL
2691static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2692{
b1eeab67 2693 struct page *page;
e4f7c0b4 2694 void *ptr = NULL;
f619cfe1 2695
b1eeab67
VN
2696 flags |= __GFP_COMP | __GFP_NOTRACK;
2697 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2698 if (page)
e4f7c0b4
CM
2699 ptr = page_address(page);
2700
2701 kmemleak_alloc(ptr, size, 1, flags);
2702 return ptr;
f619cfe1
CL
2703}
2704
81819f0f
CL
2705#ifdef CONFIG_NUMA
2706void *__kmalloc_node(size_t size, gfp_t flags, int node)
2707{
aadb4bc4 2708 struct kmem_cache *s;
5b882be4 2709 void *ret;
81819f0f 2710
057685cf 2711 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2712 ret = kmalloc_large_node(size, flags, node);
2713
ca2b84cb
EGM
2714 trace_kmalloc_node(_RET_IP_, ret,
2715 size, PAGE_SIZE << get_order(size),
2716 flags, node);
5b882be4
EGM
2717
2718 return ret;
2719 }
aadb4bc4
CL
2720
2721 s = get_slab(size, flags);
2722
2723 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2724 return s;
2725
5b882be4
EGM
2726 ret = slab_alloc(s, flags, node, _RET_IP_);
2727
ca2b84cb 2728 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2729
2730 return ret;
81819f0f
CL
2731}
2732EXPORT_SYMBOL(__kmalloc_node);
2733#endif
2734
2735size_t ksize(const void *object)
2736{
272c1d21 2737 struct page *page;
81819f0f
CL
2738 struct kmem_cache *s;
2739
ef8b4520 2740 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2741 return 0;
2742
294a80a8 2743 page = virt_to_head_page(object);
294a80a8 2744
76994412
PE
2745 if (unlikely(!PageSlab(page))) {
2746 WARN_ON(!PageCompound(page));
294a80a8 2747 return PAGE_SIZE << compound_order(page);
76994412 2748 }
81819f0f 2749 s = page->slab;
81819f0f 2750
ae20bfda 2751#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2752 /*
2753 * Debugging requires use of the padding between object
2754 * and whatever may come after it.
2755 */
2756 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2757 return s->objsize;
2758
ae20bfda 2759#endif
81819f0f
CL
2760 /*
2761 * If we have the need to store the freelist pointer
2762 * back there or track user information then we can
2763 * only use the space before that information.
2764 */
2765 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2766 return s->inuse;
81819f0f
CL
2767 /*
2768 * Else we can use all the padding etc for the allocation
2769 */
2770 return s->size;
2771}
b1aabecd 2772EXPORT_SYMBOL(ksize);
81819f0f
CL
2773
2774void kfree(const void *x)
2775{
81819f0f 2776 struct page *page;
5bb983b0 2777 void *object = (void *)x;
81819f0f 2778
2121db74
PE
2779 trace_kfree(_RET_IP_, x);
2780
2408c550 2781 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2782 return;
2783
b49af68f 2784 page = virt_to_head_page(x);
aadb4bc4 2785 if (unlikely(!PageSlab(page))) {
0937502a 2786 BUG_ON(!PageCompound(page));
e4f7c0b4 2787 kmemleak_free(x);
aadb4bc4
CL
2788 put_page(page);
2789 return;
2790 }
ce71e27c 2791 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2792}
2793EXPORT_SYMBOL(kfree);
2794
2086d26a 2795/*
672bba3a
CL
2796 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2797 * the remaining slabs by the number of items in use. The slabs with the
2798 * most items in use come first. New allocations will then fill those up
2799 * and thus they can be removed from the partial lists.
2800 *
2801 * The slabs with the least items are placed last. This results in them
2802 * being allocated from last increasing the chance that the last objects
2803 * are freed in them.
2086d26a
CL
2804 */
2805int kmem_cache_shrink(struct kmem_cache *s)
2806{
2807 int node;
2808 int i;
2809 struct kmem_cache_node *n;
2810 struct page *page;
2811 struct page *t;
205ab99d 2812 int objects = oo_objects(s->max);
2086d26a 2813 struct list_head *slabs_by_inuse =
834f3d11 2814 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2815 unsigned long flags;
2816
2817 if (!slabs_by_inuse)
2818 return -ENOMEM;
2819
2820 flush_all(s);
f64dc58c 2821 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2822 n = get_node(s, node);
2823
2824 if (!n->nr_partial)
2825 continue;
2826
834f3d11 2827 for (i = 0; i < objects; i++)
2086d26a
CL
2828 INIT_LIST_HEAD(slabs_by_inuse + i);
2829
2830 spin_lock_irqsave(&n->list_lock, flags);
2831
2832 /*
672bba3a 2833 * Build lists indexed by the items in use in each slab.
2086d26a 2834 *
672bba3a
CL
2835 * Note that concurrent frees may occur while we hold the
2836 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2837 */
2838 list_for_each_entry_safe(page, t, &n->partial, lru) {
2839 if (!page->inuse && slab_trylock(page)) {
2840 /*
2841 * Must hold slab lock here because slab_free
2842 * may have freed the last object and be
2843 * waiting to release the slab.
2844 */
2845 list_del(&page->lru);
2846 n->nr_partial--;
2847 slab_unlock(page);
2848 discard_slab(s, page);
2849 } else {
fcda3d89
CL
2850 list_move(&page->lru,
2851 slabs_by_inuse + page->inuse);
2086d26a
CL
2852 }
2853 }
2854
2086d26a 2855 /*
672bba3a
CL
2856 * Rebuild the partial list with the slabs filled up most
2857 * first and the least used slabs at the end.
2086d26a 2858 */
834f3d11 2859 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2860 list_splice(slabs_by_inuse + i, n->partial.prev);
2861
2086d26a
CL
2862 spin_unlock_irqrestore(&n->list_lock, flags);
2863 }
2864
2865 kfree(slabs_by_inuse);
2866 return 0;
2867}
2868EXPORT_SYMBOL(kmem_cache_shrink);
2869
b9049e23
YG
2870#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2871static int slab_mem_going_offline_callback(void *arg)
2872{
2873 struct kmem_cache *s;
2874
2875 down_read(&slub_lock);
2876 list_for_each_entry(s, &slab_caches, list)
2877 kmem_cache_shrink(s);
2878 up_read(&slub_lock);
2879
2880 return 0;
2881}
2882
2883static void slab_mem_offline_callback(void *arg)
2884{
2885 struct kmem_cache_node *n;
2886 struct kmem_cache *s;
2887 struct memory_notify *marg = arg;
2888 int offline_node;
2889
2890 offline_node = marg->status_change_nid;
2891
2892 /*
2893 * If the node still has available memory. we need kmem_cache_node
2894 * for it yet.
2895 */
2896 if (offline_node < 0)
2897 return;
2898
2899 down_read(&slub_lock);
2900 list_for_each_entry(s, &slab_caches, list) {
2901 n = get_node(s, offline_node);
2902 if (n) {
2903 /*
2904 * if n->nr_slabs > 0, slabs still exist on the node
2905 * that is going down. We were unable to free them,
c9404c9c 2906 * and offline_pages() function shouldn't call this
b9049e23
YG
2907 * callback. So, we must fail.
2908 */
0f389ec6 2909 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2910
2911 s->node[offline_node] = NULL;
2912 kmem_cache_free(kmalloc_caches, n);
2913 }
2914 }
2915 up_read(&slub_lock);
2916}
2917
2918static int slab_mem_going_online_callback(void *arg)
2919{
2920 struct kmem_cache_node *n;
2921 struct kmem_cache *s;
2922 struct memory_notify *marg = arg;
2923 int nid = marg->status_change_nid;
2924 int ret = 0;
2925
2926 /*
2927 * If the node's memory is already available, then kmem_cache_node is
2928 * already created. Nothing to do.
2929 */
2930 if (nid < 0)
2931 return 0;
2932
2933 /*
0121c619 2934 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2935 * allocate a kmem_cache_node structure in order to bring the node
2936 * online.
2937 */
2938 down_read(&slub_lock);
2939 list_for_each_entry(s, &slab_caches, list) {
2940 /*
2941 * XXX: kmem_cache_alloc_node will fallback to other nodes
2942 * since memory is not yet available from the node that
2943 * is brought up.
2944 */
2945 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2946 if (!n) {
2947 ret = -ENOMEM;
2948 goto out;
2949 }
5595cffc 2950 init_kmem_cache_node(n, s);
b9049e23
YG
2951 s->node[nid] = n;
2952 }
2953out:
2954 up_read(&slub_lock);
2955 return ret;
2956}
2957
2958static int slab_memory_callback(struct notifier_block *self,
2959 unsigned long action, void *arg)
2960{
2961 int ret = 0;
2962
2963 switch (action) {
2964 case MEM_GOING_ONLINE:
2965 ret = slab_mem_going_online_callback(arg);
2966 break;
2967 case MEM_GOING_OFFLINE:
2968 ret = slab_mem_going_offline_callback(arg);
2969 break;
2970 case MEM_OFFLINE:
2971 case MEM_CANCEL_ONLINE:
2972 slab_mem_offline_callback(arg);
2973 break;
2974 case MEM_ONLINE:
2975 case MEM_CANCEL_OFFLINE:
2976 break;
2977 }
dc19f9db
KH
2978 if (ret)
2979 ret = notifier_from_errno(ret);
2980 else
2981 ret = NOTIFY_OK;
b9049e23
YG
2982 return ret;
2983}
2984
2985#endif /* CONFIG_MEMORY_HOTPLUG */
2986
81819f0f
CL
2987/********************************************************************
2988 * Basic setup of slabs
2989 *******************************************************************/
2990
51df1142
CL
2991/*
2992 * Used for early kmem_cache structures that were allocated using
2993 * the page allocator
2994 */
2995
2996static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2997{
2998 int node;
2999
3000 list_add(&s->list, &slab_caches);
3001 s->refcount = -1;
3002
3003 for_each_node_state(node, N_NORMAL_MEMORY) {
3004 struct kmem_cache_node *n = get_node(s, node);
3005 struct page *p;
3006
3007 if (n) {
3008 list_for_each_entry(p, &n->partial, lru)
3009 p->slab = s;
3010
3011#ifdef CONFIG_SLAB_DEBUG
3012 list_for_each_entry(p, &n->full, lru)
3013 p->slab = s;
3014#endif
3015 }
3016 }
3017}
3018
81819f0f
CL
3019void __init kmem_cache_init(void)
3020{
3021 int i;
4b356be0 3022 int caches = 0;
51df1142
CL
3023 struct kmem_cache *temp_kmem_cache;
3024 int order;
81819f0f
CL
3025
3026#ifdef CONFIG_NUMA
51df1142
CL
3027 struct kmem_cache *temp_kmem_cache_node;
3028 unsigned long kmalloc_size;
3029
3030 kmem_size = offsetof(struct kmem_cache, node) +
3031 nr_node_ids * sizeof(struct kmem_cache_node *);
3032
3033 /* Allocate two kmem_caches from the page allocator */
3034 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3035 order = get_order(2 * kmalloc_size);
3036 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3037
81819f0f
CL
3038 /*
3039 * Must first have the slab cache available for the allocations of the
672bba3a 3040 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3041 * kmem_cache_open for slab_state == DOWN.
3042 */
51df1142
CL
3043 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3044
3045 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3046 sizeof(struct kmem_cache_node),
3047 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3048
0c40ba4f 3049 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
51df1142
CL
3050#else
3051 /* Allocate a single kmem_cache from the page allocator */
3052 kmem_size = sizeof(struct kmem_cache);
3053 order = get_order(kmem_size);
3054 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
81819f0f
CL
3055#endif
3056
3057 /* Able to allocate the per node structures */
3058 slab_state = PARTIAL;
3059
51df1142
CL
3060 temp_kmem_cache = kmem_cache;
3061 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3062 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3063 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3064 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3065
51df1142
CL
3066#ifdef CONFIG_NUMA
3067 /*
3068 * Allocate kmem_cache_node properly from the kmem_cache slab.
3069 * kmem_cache_node is separately allocated so no need to
3070 * update any list pointers.
3071 */
3072 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3073
51df1142
CL
3074 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3075 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3076
3077 kmem_cache_bootstrap_fixup(kmem_cache_node);
3078
3079 caches++;
3080#else
3081 /*
3082 * kmem_cache has kmem_cache_node embedded and we moved it!
3083 * Update the list heads
3084 */
3085 INIT_LIST_HEAD(&kmem_cache->local_node.partial);
3086 list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
3087#ifdef CONFIG_SLUB_DEBUG
3088 INIT_LIST_HEAD(&kmem_cache->local_node.full);
3089 list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
3090#endif
3091#endif
3092 kmem_cache_bootstrap_fixup(kmem_cache);
3093 caches++;
3094 /* Free temporary boot structure */
3095 free_pages((unsigned long)temp_kmem_cache, order);
3096
3097 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3098
3099 /*
3100 * Patch up the size_index table if we have strange large alignment
3101 * requirements for the kmalloc array. This is only the case for
6446faa2 3102 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3103 *
3104 * Largest permitted alignment is 256 bytes due to the way we
3105 * handle the index determination for the smaller caches.
3106 *
3107 * Make sure that nothing crazy happens if someone starts tinkering
3108 * around with ARCH_KMALLOC_MINALIGN
3109 */
3110 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3111 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3112
acdfcd04
AK
3113 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3114 int elem = size_index_elem(i);
3115 if (elem >= ARRAY_SIZE(size_index))
3116 break;
3117 size_index[elem] = KMALLOC_SHIFT_LOW;
3118 }
f1b26339 3119
acdfcd04
AK
3120 if (KMALLOC_MIN_SIZE == 64) {
3121 /*
3122 * The 96 byte size cache is not used if the alignment
3123 * is 64 byte.
3124 */
3125 for (i = 64 + 8; i <= 96; i += 8)
3126 size_index[size_index_elem(i)] = 7;
3127 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3128 /*
3129 * The 192 byte sized cache is not used if the alignment
3130 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3131 * instead.
3132 */
3133 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3134 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3135 }
3136
51df1142
CL
3137 /* Caches that are not of the two-to-the-power-of size */
3138 if (KMALLOC_MIN_SIZE <= 32) {
3139 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3140 caches++;
3141 }
3142
3143 if (KMALLOC_MIN_SIZE <= 64) {
3144 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3145 caches++;
3146 }
3147
3148 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3149 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3150 caches++;
3151 }
3152
81819f0f
CL
3153 slab_state = UP;
3154
3155 /* Provide the correct kmalloc names now that the caches are up */
d7278bd7
CL
3156 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3157 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3158
3159 BUG_ON(!s);
51df1142 3160 kmalloc_caches[i]->name = s;
d7278bd7 3161 }
81819f0f
CL
3162
3163#ifdef CONFIG_SMP
3164 register_cpu_notifier(&slab_notifier);
9dfc6e68 3165#endif
81819f0f 3166
55136592 3167#ifdef CONFIG_ZONE_DMA
51df1142
CL
3168 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3169 struct kmem_cache *s = kmalloc_caches[i];
55136592 3170
51df1142 3171 if (s && s->size) {
55136592
CL
3172 char *name = kasprintf(GFP_NOWAIT,
3173 "dma-kmalloc-%d", s->objsize);
3174
3175 BUG_ON(!name);
51df1142
CL
3176 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3177 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3178 }
3179 }
3180#endif
3adbefee
IM
3181 printk(KERN_INFO
3182 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3183 " CPUs=%d, Nodes=%d\n",
3184 caches, cache_line_size(),
81819f0f
CL
3185 slub_min_order, slub_max_order, slub_min_objects,
3186 nr_cpu_ids, nr_node_ids);
3187}
3188
7e85ee0c
PE
3189void __init kmem_cache_init_late(void)
3190{
7e85ee0c
PE
3191}
3192
81819f0f
CL
3193/*
3194 * Find a mergeable slab cache
3195 */
3196static int slab_unmergeable(struct kmem_cache *s)
3197{
3198 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3199 return 1;
3200
c59def9f 3201 if (s->ctor)
81819f0f
CL
3202 return 1;
3203
8ffa6875
CL
3204 /*
3205 * We may have set a slab to be unmergeable during bootstrap.
3206 */
3207 if (s->refcount < 0)
3208 return 1;
3209
81819f0f
CL
3210 return 0;
3211}
3212
3213static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3214 size_t align, unsigned long flags, const char *name,
51cc5068 3215 void (*ctor)(void *))
81819f0f 3216{
5b95a4ac 3217 struct kmem_cache *s;
81819f0f
CL
3218
3219 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3220 return NULL;
3221
c59def9f 3222 if (ctor)
81819f0f
CL
3223 return NULL;
3224
3225 size = ALIGN(size, sizeof(void *));
3226 align = calculate_alignment(flags, align, size);
3227 size = ALIGN(size, align);
ba0268a8 3228 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3229
5b95a4ac 3230 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3231 if (slab_unmergeable(s))
3232 continue;
3233
3234 if (size > s->size)
3235 continue;
3236
ba0268a8 3237 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3238 continue;
3239 /*
3240 * Check if alignment is compatible.
3241 * Courtesy of Adrian Drzewiecki
3242 */
06428780 3243 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3244 continue;
3245
3246 if (s->size - size >= sizeof(void *))
3247 continue;
3248
3249 return s;
3250 }
3251 return NULL;
3252}
3253
3254struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3255 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3256{
3257 struct kmem_cache *s;
3258
fe1ff49d
BH
3259 if (WARN_ON(!name))
3260 return NULL;
3261
81819f0f 3262 down_write(&slub_lock);
ba0268a8 3263 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3264 if (s) {
3265 s->refcount++;
3266 /*
3267 * Adjust the object sizes so that we clear
3268 * the complete object on kzalloc.
3269 */
3270 s->objsize = max(s->objsize, (int)size);
3271 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3272
7b8f3b66 3273 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3274 s->refcount--;
81819f0f 3275 goto err;
7b8f3b66 3276 }
2bce6485 3277 up_write(&slub_lock);
a0e1d1be
CL
3278 return s;
3279 }
6446faa2 3280
a0e1d1be
CL
3281 s = kmalloc(kmem_size, GFP_KERNEL);
3282 if (s) {
55136592 3283 if (kmem_cache_open(s, name,
c59def9f 3284 size, align, flags, ctor)) {
81819f0f 3285 list_add(&s->list, &slab_caches);
7b8f3b66 3286 if (sysfs_slab_add(s)) {
7b8f3b66 3287 list_del(&s->list);
7b8f3b66 3288 kfree(s);
a0e1d1be 3289 goto err;
7b8f3b66 3290 }
2bce6485 3291 up_write(&slub_lock);
a0e1d1be
CL
3292 return s;
3293 }
3294 kfree(s);
81819f0f
CL
3295 }
3296 up_write(&slub_lock);
81819f0f
CL
3297
3298err:
81819f0f
CL
3299 if (flags & SLAB_PANIC)
3300 panic("Cannot create slabcache %s\n", name);
3301 else
3302 s = NULL;
3303 return s;
3304}
3305EXPORT_SYMBOL(kmem_cache_create);
3306
81819f0f 3307#ifdef CONFIG_SMP
81819f0f 3308/*
672bba3a
CL
3309 * Use the cpu notifier to insure that the cpu slabs are flushed when
3310 * necessary.
81819f0f
CL
3311 */
3312static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3313 unsigned long action, void *hcpu)
3314{
3315 long cpu = (long)hcpu;
5b95a4ac
CL
3316 struct kmem_cache *s;
3317 unsigned long flags;
81819f0f
CL
3318
3319 switch (action) {
3320 case CPU_UP_CANCELED:
8bb78442 3321 case CPU_UP_CANCELED_FROZEN:
81819f0f 3322 case CPU_DEAD:
8bb78442 3323 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3324 down_read(&slub_lock);
3325 list_for_each_entry(s, &slab_caches, list) {
3326 local_irq_save(flags);
3327 __flush_cpu_slab(s, cpu);
3328 local_irq_restore(flags);
3329 }
3330 up_read(&slub_lock);
81819f0f
CL
3331 break;
3332 default:
3333 break;
3334 }
3335 return NOTIFY_OK;
3336}
3337
06428780 3338static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3339 .notifier_call = slab_cpuup_callback
06428780 3340};
81819f0f
CL
3341
3342#endif
3343
ce71e27c 3344void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3345{
aadb4bc4 3346 struct kmem_cache *s;
94b528d0 3347 void *ret;
aadb4bc4 3348
ffadd4d0 3349 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3350 return kmalloc_large(size, gfpflags);
3351
aadb4bc4 3352 s = get_slab(size, gfpflags);
81819f0f 3353
2408c550 3354 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3355 return s;
81819f0f 3356
2154a336 3357 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3358
3359 /* Honor the call site pointer we recieved. */
ca2b84cb 3360 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3361
3362 return ret;
81819f0f
CL
3363}
3364
3365void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3366 int node, unsigned long caller)
81819f0f 3367{
aadb4bc4 3368 struct kmem_cache *s;
94b528d0 3369 void *ret;
aadb4bc4 3370
d3e14aa3
XF
3371 if (unlikely(size > SLUB_MAX_SIZE)) {
3372 ret = kmalloc_large_node(size, gfpflags, node);
3373
3374 trace_kmalloc_node(caller, ret,
3375 size, PAGE_SIZE << get_order(size),
3376 gfpflags, node);
3377
3378 return ret;
3379 }
eada35ef 3380
aadb4bc4 3381 s = get_slab(size, gfpflags);
81819f0f 3382
2408c550 3383 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3384 return s;
81819f0f 3385
94b528d0
EGM
3386 ret = slab_alloc(s, gfpflags, node, caller);
3387
3388 /* Honor the call site pointer we recieved. */
ca2b84cb 3389 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3390
3391 return ret;
81819f0f
CL
3392}
3393
f6acb635 3394#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3395static int count_inuse(struct page *page)
3396{
3397 return page->inuse;
3398}
3399
3400static int count_total(struct page *page)
3401{
3402 return page->objects;
3403}
3404
434e245d
CL
3405static int validate_slab(struct kmem_cache *s, struct page *page,
3406 unsigned long *map)
53e15af0
CL
3407{
3408 void *p;
a973e9dd 3409 void *addr = page_address(page);
53e15af0
CL
3410
3411 if (!check_slab(s, page) ||
3412 !on_freelist(s, page, NULL))
3413 return 0;
3414
3415 /* Now we know that a valid freelist exists */
39b26464 3416 bitmap_zero(map, page->objects);
53e15af0 3417
7656c72b
CL
3418 for_each_free_object(p, s, page->freelist) {
3419 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3420 if (!check_object(s, page, p, 0))
3421 return 0;
3422 }
3423
224a88be 3424 for_each_object(p, s, addr, page->objects)
7656c72b 3425 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3426 if (!check_object(s, page, p, 1))
3427 return 0;
3428 return 1;
3429}
3430
434e245d
CL
3431static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3432 unsigned long *map)
53e15af0
CL
3433{
3434 if (slab_trylock(page)) {
434e245d 3435 validate_slab(s, page, map);
53e15af0
CL
3436 slab_unlock(page);
3437 } else
3438 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3439 s->name, page);
53e15af0
CL
3440}
3441
434e245d
CL
3442static int validate_slab_node(struct kmem_cache *s,
3443 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3444{
3445 unsigned long count = 0;
3446 struct page *page;
3447 unsigned long flags;
3448
3449 spin_lock_irqsave(&n->list_lock, flags);
3450
3451 list_for_each_entry(page, &n->partial, lru) {
434e245d 3452 validate_slab_slab(s, page, map);
53e15af0
CL
3453 count++;
3454 }
3455 if (count != n->nr_partial)
3456 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3457 "counter=%ld\n", s->name, count, n->nr_partial);
3458
3459 if (!(s->flags & SLAB_STORE_USER))
3460 goto out;
3461
3462 list_for_each_entry(page, &n->full, lru) {
434e245d 3463 validate_slab_slab(s, page, map);
53e15af0
CL
3464 count++;
3465 }
3466 if (count != atomic_long_read(&n->nr_slabs))
3467 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3468 "counter=%ld\n", s->name, count,
3469 atomic_long_read(&n->nr_slabs));
3470
3471out:
3472 spin_unlock_irqrestore(&n->list_lock, flags);
3473 return count;
3474}
3475
434e245d 3476static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3477{
3478 int node;
3479 unsigned long count = 0;
205ab99d 3480 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3481 sizeof(unsigned long), GFP_KERNEL);
3482
3483 if (!map)
3484 return -ENOMEM;
53e15af0
CL
3485
3486 flush_all(s);
f64dc58c 3487 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3488 struct kmem_cache_node *n = get_node(s, node);
3489
434e245d 3490 count += validate_slab_node(s, n, map);
53e15af0 3491 }
434e245d 3492 kfree(map);
53e15af0
CL
3493 return count;
3494}
3495
b3459709
CL
3496#ifdef SLUB_RESILIENCY_TEST
3497static void resiliency_test(void)
3498{
3499 u8 *p;
3500
3501 printk(KERN_ERR "SLUB resiliency testing\n");
3502 printk(KERN_ERR "-----------------------\n");
3503 printk(KERN_ERR "A. Corruption after allocation\n");
3504
3505 p = kzalloc(16, GFP_KERNEL);
3506 p[16] = 0x12;
3507 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3508 " 0x12->0x%p\n\n", p + 16);
3509
3510 validate_slab_cache(kmalloc_caches + 4);
3511
3512 /* Hmmm... The next two are dangerous */
3513 p = kzalloc(32, GFP_KERNEL);
3514 p[32 + sizeof(void *)] = 0x34;
3515 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3516 " 0x34 -> -0x%p\n", p);
3517 printk(KERN_ERR
3518 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3519
3520 validate_slab_cache(kmalloc_caches + 5);
3521 p = kzalloc(64, GFP_KERNEL);
3522 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3523 *p = 0x56;
3524 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3525 p);
3adbefee
IM
3526 printk(KERN_ERR
3527 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3528 validate_slab_cache(kmalloc_caches + 6);
3529
3530 printk(KERN_ERR "\nB. Corruption after free\n");
3531 p = kzalloc(128, GFP_KERNEL);
3532 kfree(p);
3533 *p = 0x78;
3534 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3535 validate_slab_cache(kmalloc_caches + 7);
3536
3537 p = kzalloc(256, GFP_KERNEL);
3538 kfree(p);
3539 p[50] = 0x9a;
3adbefee
IM
3540 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3541 p);
b3459709
CL
3542 validate_slab_cache(kmalloc_caches + 8);
3543
3544 p = kzalloc(512, GFP_KERNEL);
3545 kfree(p);
3546 p[512] = 0xab;
3547 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3548 validate_slab_cache(kmalloc_caches + 9);
3549}
3550#else
3551static void resiliency_test(void) {};
3552#endif
3553
88a420e4 3554/*
672bba3a 3555 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3556 * and freed.
3557 */
3558
3559struct location {
3560 unsigned long count;
ce71e27c 3561 unsigned long addr;
45edfa58
CL
3562 long long sum_time;
3563 long min_time;
3564 long max_time;
3565 long min_pid;
3566 long max_pid;
174596a0 3567 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3568 nodemask_t nodes;
88a420e4
CL
3569};
3570
3571struct loc_track {
3572 unsigned long max;
3573 unsigned long count;
3574 struct location *loc;
3575};
3576
3577static void free_loc_track(struct loc_track *t)
3578{
3579 if (t->max)
3580 free_pages((unsigned long)t->loc,
3581 get_order(sizeof(struct location) * t->max));
3582}
3583
68dff6a9 3584static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3585{
3586 struct location *l;
3587 int order;
3588
88a420e4
CL
3589 order = get_order(sizeof(struct location) * max);
3590
68dff6a9 3591 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3592 if (!l)
3593 return 0;
3594
3595 if (t->count) {
3596 memcpy(l, t->loc, sizeof(struct location) * t->count);
3597 free_loc_track(t);
3598 }
3599 t->max = max;
3600 t->loc = l;
3601 return 1;
3602}
3603
3604static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3605 const struct track *track)
88a420e4
CL
3606{
3607 long start, end, pos;
3608 struct location *l;
ce71e27c 3609 unsigned long caddr;
45edfa58 3610 unsigned long age = jiffies - track->when;
88a420e4
CL
3611
3612 start = -1;
3613 end = t->count;
3614
3615 for ( ; ; ) {
3616 pos = start + (end - start + 1) / 2;
3617
3618 /*
3619 * There is nothing at "end". If we end up there
3620 * we need to add something to before end.
3621 */
3622 if (pos == end)
3623 break;
3624
3625 caddr = t->loc[pos].addr;
45edfa58
CL
3626 if (track->addr == caddr) {
3627
3628 l = &t->loc[pos];
3629 l->count++;
3630 if (track->when) {
3631 l->sum_time += age;
3632 if (age < l->min_time)
3633 l->min_time = age;
3634 if (age > l->max_time)
3635 l->max_time = age;
3636
3637 if (track->pid < l->min_pid)
3638 l->min_pid = track->pid;
3639 if (track->pid > l->max_pid)
3640 l->max_pid = track->pid;
3641
174596a0
RR
3642 cpumask_set_cpu(track->cpu,
3643 to_cpumask(l->cpus));
45edfa58
CL
3644 }
3645 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3646 return 1;
3647 }
3648
45edfa58 3649 if (track->addr < caddr)
88a420e4
CL
3650 end = pos;
3651 else
3652 start = pos;
3653 }
3654
3655 /*
672bba3a 3656 * Not found. Insert new tracking element.
88a420e4 3657 */
68dff6a9 3658 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3659 return 0;
3660
3661 l = t->loc + pos;
3662 if (pos < t->count)
3663 memmove(l + 1, l,
3664 (t->count - pos) * sizeof(struct location));
3665 t->count++;
3666 l->count = 1;
45edfa58
CL
3667 l->addr = track->addr;
3668 l->sum_time = age;
3669 l->min_time = age;
3670 l->max_time = age;
3671 l->min_pid = track->pid;
3672 l->max_pid = track->pid;
174596a0
RR
3673 cpumask_clear(to_cpumask(l->cpus));
3674 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3675 nodes_clear(l->nodes);
3676 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3677 return 1;
3678}
3679
3680static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3681 struct page *page, enum track_item alloc,
3682 long *map)
88a420e4 3683{
a973e9dd 3684 void *addr = page_address(page);
88a420e4
CL
3685 void *p;
3686
39b26464 3687 bitmap_zero(map, page->objects);
7656c72b
CL
3688 for_each_free_object(p, s, page->freelist)
3689 set_bit(slab_index(p, s, addr), map);
88a420e4 3690
224a88be 3691 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3692 if (!test_bit(slab_index(p, s, addr), map))
3693 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3694}
3695
3696static int list_locations(struct kmem_cache *s, char *buf,
3697 enum track_item alloc)
3698{
e374d483 3699 int len = 0;
88a420e4 3700 unsigned long i;
68dff6a9 3701 struct loc_track t = { 0, 0, NULL };
88a420e4 3702 int node;
bbd7d57b
ED
3703 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3704 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3705
bbd7d57b
ED
3706 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3707 GFP_TEMPORARY)) {
3708 kfree(map);
68dff6a9 3709 return sprintf(buf, "Out of memory\n");
bbd7d57b 3710 }
88a420e4
CL
3711 /* Push back cpu slabs */
3712 flush_all(s);
3713
f64dc58c 3714 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3715 struct kmem_cache_node *n = get_node(s, node);
3716 unsigned long flags;
3717 struct page *page;
3718
9e86943b 3719 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3720 continue;
3721
3722 spin_lock_irqsave(&n->list_lock, flags);
3723 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3724 process_slab(&t, s, page, alloc, map);
88a420e4 3725 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3726 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3727 spin_unlock_irqrestore(&n->list_lock, flags);
3728 }
3729
3730 for (i = 0; i < t.count; i++) {
45edfa58 3731 struct location *l = &t.loc[i];
88a420e4 3732
9c246247 3733 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3734 break;
e374d483 3735 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3736
3737 if (l->addr)
e374d483 3738 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3739 else
e374d483 3740 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3741
3742 if (l->sum_time != l->min_time) {
e374d483 3743 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3744 l->min_time,
3745 (long)div_u64(l->sum_time, l->count),
3746 l->max_time);
45edfa58 3747 } else
e374d483 3748 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3749 l->min_time);
3750
3751 if (l->min_pid != l->max_pid)
e374d483 3752 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3753 l->min_pid, l->max_pid);
3754 else
e374d483 3755 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3756 l->min_pid);
3757
174596a0
RR
3758 if (num_online_cpus() > 1 &&
3759 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3760 len < PAGE_SIZE - 60) {
3761 len += sprintf(buf + len, " cpus=");
3762 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3763 to_cpumask(l->cpus));
45edfa58
CL
3764 }
3765
62bc62a8 3766 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3767 len < PAGE_SIZE - 60) {
3768 len += sprintf(buf + len, " nodes=");
3769 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3770 l->nodes);
3771 }
3772
e374d483 3773 len += sprintf(buf + len, "\n");
88a420e4
CL
3774 }
3775
3776 free_loc_track(&t);
bbd7d57b 3777 kfree(map);
88a420e4 3778 if (!t.count)
e374d483
HH
3779 len += sprintf(buf, "No data\n");
3780 return len;
88a420e4
CL
3781}
3782
81819f0f 3783enum slab_stat_type {
205ab99d
CL
3784 SL_ALL, /* All slabs */
3785 SL_PARTIAL, /* Only partially allocated slabs */
3786 SL_CPU, /* Only slabs used for cpu caches */
3787 SL_OBJECTS, /* Determine allocated objects not slabs */
3788 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3789};
3790
205ab99d 3791#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3792#define SO_PARTIAL (1 << SL_PARTIAL)
3793#define SO_CPU (1 << SL_CPU)
3794#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3795#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3796
62e5c4b4
CG
3797static ssize_t show_slab_objects(struct kmem_cache *s,
3798 char *buf, unsigned long flags)
81819f0f
CL
3799{
3800 unsigned long total = 0;
81819f0f
CL
3801 int node;
3802 int x;
3803 unsigned long *nodes;
3804 unsigned long *per_cpu;
3805
3806 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3807 if (!nodes)
3808 return -ENOMEM;
81819f0f
CL
3809 per_cpu = nodes + nr_node_ids;
3810
205ab99d
CL
3811 if (flags & SO_CPU) {
3812 int cpu;
81819f0f 3813
205ab99d 3814 for_each_possible_cpu(cpu) {
9dfc6e68 3815 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3816
205ab99d
CL
3817 if (!c || c->node < 0)
3818 continue;
3819
3820 if (c->page) {
3821 if (flags & SO_TOTAL)
3822 x = c->page->objects;
3823 else if (flags & SO_OBJECTS)
3824 x = c->page->inuse;
81819f0f
CL
3825 else
3826 x = 1;
205ab99d 3827
81819f0f 3828 total += x;
205ab99d 3829 nodes[c->node] += x;
81819f0f 3830 }
205ab99d 3831 per_cpu[c->node]++;
81819f0f
CL
3832 }
3833 }
3834
205ab99d
CL
3835 if (flags & SO_ALL) {
3836 for_each_node_state(node, N_NORMAL_MEMORY) {
3837 struct kmem_cache_node *n = get_node(s, node);
3838
3839 if (flags & SO_TOTAL)
3840 x = atomic_long_read(&n->total_objects);
3841 else if (flags & SO_OBJECTS)
3842 x = atomic_long_read(&n->total_objects) -
3843 count_partial(n, count_free);
81819f0f 3844
81819f0f 3845 else
205ab99d 3846 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3847 total += x;
3848 nodes[node] += x;
3849 }
3850
205ab99d
CL
3851 } else if (flags & SO_PARTIAL) {
3852 for_each_node_state(node, N_NORMAL_MEMORY) {
3853 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3854
205ab99d
CL
3855 if (flags & SO_TOTAL)
3856 x = count_partial(n, count_total);
3857 else if (flags & SO_OBJECTS)
3858 x = count_partial(n, count_inuse);
81819f0f 3859 else
205ab99d 3860 x = n->nr_partial;
81819f0f
CL
3861 total += x;
3862 nodes[node] += x;
3863 }
3864 }
81819f0f
CL
3865 x = sprintf(buf, "%lu", total);
3866#ifdef CONFIG_NUMA
f64dc58c 3867 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3868 if (nodes[node])
3869 x += sprintf(buf + x, " N%d=%lu",
3870 node, nodes[node]);
3871#endif
3872 kfree(nodes);
3873 return x + sprintf(buf + x, "\n");
3874}
3875
3876static int any_slab_objects(struct kmem_cache *s)
3877{
3878 int node;
81819f0f 3879
dfb4f096 3880 for_each_online_node(node) {
81819f0f
CL
3881 struct kmem_cache_node *n = get_node(s, node);
3882
dfb4f096
CL
3883 if (!n)
3884 continue;
3885
4ea33e2d 3886 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3887 return 1;
3888 }
3889 return 0;
3890}
3891
3892#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3893#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3894
3895struct slab_attribute {
3896 struct attribute attr;
3897 ssize_t (*show)(struct kmem_cache *s, char *buf);
3898 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3899};
3900
3901#define SLAB_ATTR_RO(_name) \
3902 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3903
3904#define SLAB_ATTR(_name) \
3905 static struct slab_attribute _name##_attr = \
3906 __ATTR(_name, 0644, _name##_show, _name##_store)
3907
81819f0f
CL
3908static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3909{
3910 return sprintf(buf, "%d\n", s->size);
3911}
3912SLAB_ATTR_RO(slab_size);
3913
3914static ssize_t align_show(struct kmem_cache *s, char *buf)
3915{
3916 return sprintf(buf, "%d\n", s->align);
3917}
3918SLAB_ATTR_RO(align);
3919
3920static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3921{
3922 return sprintf(buf, "%d\n", s->objsize);
3923}
3924SLAB_ATTR_RO(object_size);
3925
3926static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3927{
834f3d11 3928 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3929}
3930SLAB_ATTR_RO(objs_per_slab);
3931
06b285dc
CL
3932static ssize_t order_store(struct kmem_cache *s,
3933 const char *buf, size_t length)
3934{
0121c619
CL
3935 unsigned long order;
3936 int err;
3937
3938 err = strict_strtoul(buf, 10, &order);
3939 if (err)
3940 return err;
06b285dc
CL
3941
3942 if (order > slub_max_order || order < slub_min_order)
3943 return -EINVAL;
3944
3945 calculate_sizes(s, order);
3946 return length;
3947}
3948
81819f0f
CL
3949static ssize_t order_show(struct kmem_cache *s, char *buf)
3950{
834f3d11 3951 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3952}
06b285dc 3953SLAB_ATTR(order);
81819f0f 3954
73d342b1
DR
3955static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3956{
3957 return sprintf(buf, "%lu\n", s->min_partial);
3958}
3959
3960static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3961 size_t length)
3962{
3963 unsigned long min;
3964 int err;
3965
3966 err = strict_strtoul(buf, 10, &min);
3967 if (err)
3968 return err;
3969
c0bdb232 3970 set_min_partial(s, min);
73d342b1
DR
3971 return length;
3972}
3973SLAB_ATTR(min_partial);
3974
81819f0f
CL
3975static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3976{
3977 if (s->ctor) {
3978 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3979
3980 return n + sprintf(buf + n, "\n");
3981 }
3982 return 0;
3983}
3984SLAB_ATTR_RO(ctor);
3985
81819f0f
CL
3986static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3987{
3988 return sprintf(buf, "%d\n", s->refcount - 1);
3989}
3990SLAB_ATTR_RO(aliases);
3991
3992static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3993{
205ab99d 3994 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3995}
3996SLAB_ATTR_RO(slabs);
3997
3998static ssize_t partial_show(struct kmem_cache *s, char *buf)
3999{
d9acf4b7 4000 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4001}
4002SLAB_ATTR_RO(partial);
4003
4004static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4005{
d9acf4b7 4006 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4007}
4008SLAB_ATTR_RO(cpu_slabs);
4009
4010static ssize_t objects_show(struct kmem_cache *s, char *buf)
4011{
205ab99d 4012 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4013}
4014SLAB_ATTR_RO(objects);
4015
205ab99d
CL
4016static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4017{
4018 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4019}
4020SLAB_ATTR_RO(objects_partial);
4021
4022static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4023{
4024 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4025}
4026SLAB_ATTR_RO(total_objects);
4027
81819f0f
CL
4028static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4029{
4030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4031}
4032
4033static ssize_t sanity_checks_store(struct kmem_cache *s,
4034 const char *buf, size_t length)
4035{
4036 s->flags &= ~SLAB_DEBUG_FREE;
4037 if (buf[0] == '1')
4038 s->flags |= SLAB_DEBUG_FREE;
4039 return length;
4040}
4041SLAB_ATTR(sanity_checks);
4042
4043static ssize_t trace_show(struct kmem_cache *s, char *buf)
4044{
4045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4046}
4047
4048static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4049 size_t length)
4050{
4051 s->flags &= ~SLAB_TRACE;
4052 if (buf[0] == '1')
4053 s->flags |= SLAB_TRACE;
4054 return length;
4055}
4056SLAB_ATTR(trace);
4057
4c13dd3b
DM
4058#ifdef CONFIG_FAILSLAB
4059static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4060{
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4062}
4063
4064static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4065 size_t length)
4066{
4067 s->flags &= ~SLAB_FAILSLAB;
4068 if (buf[0] == '1')
4069 s->flags |= SLAB_FAILSLAB;
4070 return length;
4071}
4072SLAB_ATTR(failslab);
4073#endif
4074
81819f0f
CL
4075static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4076{
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4078}
4079
4080static ssize_t reclaim_account_store(struct kmem_cache *s,
4081 const char *buf, size_t length)
4082{
4083 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4084 if (buf[0] == '1')
4085 s->flags |= SLAB_RECLAIM_ACCOUNT;
4086 return length;
4087}
4088SLAB_ATTR(reclaim_account);
4089
4090static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4091{
5af60839 4092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4093}
4094SLAB_ATTR_RO(hwcache_align);
4095
4096#ifdef CONFIG_ZONE_DMA
4097static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4098{
4099 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4100}
4101SLAB_ATTR_RO(cache_dma);
4102#endif
4103
4104static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4105{
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4107}
4108SLAB_ATTR_RO(destroy_by_rcu);
4109
4110static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4111{
4112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4113}
4114
4115static ssize_t red_zone_store(struct kmem_cache *s,
4116 const char *buf, size_t length)
4117{
4118 if (any_slab_objects(s))
4119 return -EBUSY;
4120
4121 s->flags &= ~SLAB_RED_ZONE;
4122 if (buf[0] == '1')
4123 s->flags |= SLAB_RED_ZONE;
06b285dc 4124 calculate_sizes(s, -1);
81819f0f
CL
4125 return length;
4126}
4127SLAB_ATTR(red_zone);
4128
4129static ssize_t poison_show(struct kmem_cache *s, char *buf)
4130{
4131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4132}
4133
4134static ssize_t poison_store(struct kmem_cache *s,
4135 const char *buf, size_t length)
4136{
4137 if (any_slab_objects(s))
4138 return -EBUSY;
4139
4140 s->flags &= ~SLAB_POISON;
4141 if (buf[0] == '1')
4142 s->flags |= SLAB_POISON;
06b285dc 4143 calculate_sizes(s, -1);
81819f0f
CL
4144 return length;
4145}
4146SLAB_ATTR(poison);
4147
4148static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4149{
4150 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4151}
4152
4153static ssize_t store_user_store(struct kmem_cache *s,
4154 const char *buf, size_t length)
4155{
4156 if (any_slab_objects(s))
4157 return -EBUSY;
4158
4159 s->flags &= ~SLAB_STORE_USER;
4160 if (buf[0] == '1')
4161 s->flags |= SLAB_STORE_USER;
06b285dc 4162 calculate_sizes(s, -1);
81819f0f
CL
4163 return length;
4164}
4165SLAB_ATTR(store_user);
4166
53e15af0
CL
4167static ssize_t validate_show(struct kmem_cache *s, char *buf)
4168{
4169 return 0;
4170}
4171
4172static ssize_t validate_store(struct kmem_cache *s,
4173 const char *buf, size_t length)
4174{
434e245d
CL
4175 int ret = -EINVAL;
4176
4177 if (buf[0] == '1') {
4178 ret = validate_slab_cache(s);
4179 if (ret >= 0)
4180 ret = length;
4181 }
4182 return ret;
53e15af0
CL
4183}
4184SLAB_ATTR(validate);
4185
2086d26a
CL
4186static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4187{
4188 return 0;
4189}
4190
4191static ssize_t shrink_store(struct kmem_cache *s,
4192 const char *buf, size_t length)
4193{
4194 if (buf[0] == '1') {
4195 int rc = kmem_cache_shrink(s);
4196
4197 if (rc)
4198 return rc;
4199 } else
4200 return -EINVAL;
4201 return length;
4202}
4203SLAB_ATTR(shrink);
4204
88a420e4
CL
4205static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4206{
4207 if (!(s->flags & SLAB_STORE_USER))
4208 return -ENOSYS;
4209 return list_locations(s, buf, TRACK_ALLOC);
4210}
4211SLAB_ATTR_RO(alloc_calls);
4212
4213static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4214{
4215 if (!(s->flags & SLAB_STORE_USER))
4216 return -ENOSYS;
4217 return list_locations(s, buf, TRACK_FREE);
4218}
4219SLAB_ATTR_RO(free_calls);
4220
81819f0f 4221#ifdef CONFIG_NUMA
9824601e 4222static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4223{
9824601e 4224 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4225}
4226
9824601e 4227static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4228 const char *buf, size_t length)
4229{
0121c619
CL
4230 unsigned long ratio;
4231 int err;
4232
4233 err = strict_strtoul(buf, 10, &ratio);
4234 if (err)
4235 return err;
4236
e2cb96b7 4237 if (ratio <= 100)
0121c619 4238 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4239
81819f0f
CL
4240 return length;
4241}
9824601e 4242SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4243#endif
4244
8ff12cfc 4245#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4246static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4247{
4248 unsigned long sum = 0;
4249 int cpu;
4250 int len;
4251 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4252
4253 if (!data)
4254 return -ENOMEM;
4255
4256 for_each_online_cpu(cpu) {
9dfc6e68 4257 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4258
4259 data[cpu] = x;
4260 sum += x;
4261 }
4262
4263 len = sprintf(buf, "%lu", sum);
4264
50ef37b9 4265#ifdef CONFIG_SMP
8ff12cfc
CL
4266 for_each_online_cpu(cpu) {
4267 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4268 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4269 }
50ef37b9 4270#endif
8ff12cfc
CL
4271 kfree(data);
4272 return len + sprintf(buf + len, "\n");
4273}
4274
78eb00cc
DR
4275static void clear_stat(struct kmem_cache *s, enum stat_item si)
4276{
4277 int cpu;
4278
4279 for_each_online_cpu(cpu)
9dfc6e68 4280 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4281}
4282
8ff12cfc
CL
4283#define STAT_ATTR(si, text) \
4284static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4285{ \
4286 return show_stat(s, buf, si); \
4287} \
78eb00cc
DR
4288static ssize_t text##_store(struct kmem_cache *s, \
4289 const char *buf, size_t length) \
4290{ \
4291 if (buf[0] != '0') \
4292 return -EINVAL; \
4293 clear_stat(s, si); \
4294 return length; \
4295} \
4296SLAB_ATTR(text); \
8ff12cfc
CL
4297
4298STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4299STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4300STAT_ATTR(FREE_FASTPATH, free_fastpath);
4301STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4302STAT_ATTR(FREE_FROZEN, free_frozen);
4303STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4304STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4305STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4306STAT_ATTR(ALLOC_SLAB, alloc_slab);
4307STAT_ATTR(ALLOC_REFILL, alloc_refill);
4308STAT_ATTR(FREE_SLAB, free_slab);
4309STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4310STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4311STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4312STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4313STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4314STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4315STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4316#endif
4317
06428780 4318static struct attribute *slab_attrs[] = {
81819f0f
CL
4319 &slab_size_attr.attr,
4320 &object_size_attr.attr,
4321 &objs_per_slab_attr.attr,
4322 &order_attr.attr,
73d342b1 4323 &min_partial_attr.attr,
81819f0f 4324 &objects_attr.attr,
205ab99d
CL
4325 &objects_partial_attr.attr,
4326 &total_objects_attr.attr,
81819f0f
CL
4327 &slabs_attr.attr,
4328 &partial_attr.attr,
4329 &cpu_slabs_attr.attr,
4330 &ctor_attr.attr,
81819f0f
CL
4331 &aliases_attr.attr,
4332 &align_attr.attr,
4333 &sanity_checks_attr.attr,
4334 &trace_attr.attr,
4335 &hwcache_align_attr.attr,
4336 &reclaim_account_attr.attr,
4337 &destroy_by_rcu_attr.attr,
4338 &red_zone_attr.attr,
4339 &poison_attr.attr,
4340 &store_user_attr.attr,
53e15af0 4341 &validate_attr.attr,
2086d26a 4342 &shrink_attr.attr,
88a420e4
CL
4343 &alloc_calls_attr.attr,
4344 &free_calls_attr.attr,
81819f0f
CL
4345#ifdef CONFIG_ZONE_DMA
4346 &cache_dma_attr.attr,
4347#endif
4348#ifdef CONFIG_NUMA
9824601e 4349 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4350#endif
4351#ifdef CONFIG_SLUB_STATS
4352 &alloc_fastpath_attr.attr,
4353 &alloc_slowpath_attr.attr,
4354 &free_fastpath_attr.attr,
4355 &free_slowpath_attr.attr,
4356 &free_frozen_attr.attr,
4357 &free_add_partial_attr.attr,
4358 &free_remove_partial_attr.attr,
4359 &alloc_from_partial_attr.attr,
4360 &alloc_slab_attr.attr,
4361 &alloc_refill_attr.attr,
4362 &free_slab_attr.attr,
4363 &cpuslab_flush_attr.attr,
4364 &deactivate_full_attr.attr,
4365 &deactivate_empty_attr.attr,
4366 &deactivate_to_head_attr.attr,
4367 &deactivate_to_tail_attr.attr,
4368 &deactivate_remote_frees_attr.attr,
65c3376a 4369 &order_fallback_attr.attr,
81819f0f 4370#endif
4c13dd3b
DM
4371#ifdef CONFIG_FAILSLAB
4372 &failslab_attr.attr,
4373#endif
4374
81819f0f
CL
4375 NULL
4376};
4377
4378static struct attribute_group slab_attr_group = {
4379 .attrs = slab_attrs,
4380};
4381
4382static ssize_t slab_attr_show(struct kobject *kobj,
4383 struct attribute *attr,
4384 char *buf)
4385{
4386 struct slab_attribute *attribute;
4387 struct kmem_cache *s;
4388 int err;
4389
4390 attribute = to_slab_attr(attr);
4391 s = to_slab(kobj);
4392
4393 if (!attribute->show)
4394 return -EIO;
4395
4396 err = attribute->show(s, buf);
4397
4398 return err;
4399}
4400
4401static ssize_t slab_attr_store(struct kobject *kobj,
4402 struct attribute *attr,
4403 const char *buf, size_t len)
4404{
4405 struct slab_attribute *attribute;
4406 struct kmem_cache *s;
4407 int err;
4408
4409 attribute = to_slab_attr(attr);
4410 s = to_slab(kobj);
4411
4412 if (!attribute->store)
4413 return -EIO;
4414
4415 err = attribute->store(s, buf, len);
4416
4417 return err;
4418}
4419
151c602f
CL
4420static void kmem_cache_release(struct kobject *kobj)
4421{
4422 struct kmem_cache *s = to_slab(kobj);
4423
4424 kfree(s);
4425}
4426
52cf25d0 4427static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4428 .show = slab_attr_show,
4429 .store = slab_attr_store,
4430};
4431
4432static struct kobj_type slab_ktype = {
4433 .sysfs_ops = &slab_sysfs_ops,
151c602f 4434 .release = kmem_cache_release
81819f0f
CL
4435};
4436
4437static int uevent_filter(struct kset *kset, struct kobject *kobj)
4438{
4439 struct kobj_type *ktype = get_ktype(kobj);
4440
4441 if (ktype == &slab_ktype)
4442 return 1;
4443 return 0;
4444}
4445
9cd43611 4446static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4447 .filter = uevent_filter,
4448};
4449
27c3a314 4450static struct kset *slab_kset;
81819f0f
CL
4451
4452#define ID_STR_LENGTH 64
4453
4454/* Create a unique string id for a slab cache:
6446faa2
CL
4455 *
4456 * Format :[flags-]size
81819f0f
CL
4457 */
4458static char *create_unique_id(struct kmem_cache *s)
4459{
4460 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4461 char *p = name;
4462
4463 BUG_ON(!name);
4464
4465 *p++ = ':';
4466 /*
4467 * First flags affecting slabcache operations. We will only
4468 * get here for aliasable slabs so we do not need to support
4469 * too many flags. The flags here must cover all flags that
4470 * are matched during merging to guarantee that the id is
4471 * unique.
4472 */
4473 if (s->flags & SLAB_CACHE_DMA)
4474 *p++ = 'd';
4475 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4476 *p++ = 'a';
4477 if (s->flags & SLAB_DEBUG_FREE)
4478 *p++ = 'F';
5a896d9e
VN
4479 if (!(s->flags & SLAB_NOTRACK))
4480 *p++ = 't';
81819f0f
CL
4481 if (p != name + 1)
4482 *p++ = '-';
4483 p += sprintf(p, "%07d", s->size);
4484 BUG_ON(p > name + ID_STR_LENGTH - 1);
4485 return name;
4486}
4487
4488static int sysfs_slab_add(struct kmem_cache *s)
4489{
4490 int err;
4491 const char *name;
4492 int unmergeable;
4493
4494 if (slab_state < SYSFS)
4495 /* Defer until later */
4496 return 0;
4497
4498 unmergeable = slab_unmergeable(s);
4499 if (unmergeable) {
4500 /*
4501 * Slabcache can never be merged so we can use the name proper.
4502 * This is typically the case for debug situations. In that
4503 * case we can catch duplicate names easily.
4504 */
27c3a314 4505 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4506 name = s->name;
4507 } else {
4508 /*
4509 * Create a unique name for the slab as a target
4510 * for the symlinks.
4511 */
4512 name = create_unique_id(s);
4513 }
4514
27c3a314 4515 s->kobj.kset = slab_kset;
1eada11c
GKH
4516 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4517 if (err) {
4518 kobject_put(&s->kobj);
81819f0f 4519 return err;
1eada11c 4520 }
81819f0f
CL
4521
4522 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4523 if (err) {
4524 kobject_del(&s->kobj);
4525 kobject_put(&s->kobj);
81819f0f 4526 return err;
5788d8ad 4527 }
81819f0f
CL
4528 kobject_uevent(&s->kobj, KOBJ_ADD);
4529 if (!unmergeable) {
4530 /* Setup first alias */
4531 sysfs_slab_alias(s, s->name);
4532 kfree(name);
4533 }
4534 return 0;
4535}
4536
4537static void sysfs_slab_remove(struct kmem_cache *s)
4538{
2bce6485
CL
4539 if (slab_state < SYSFS)
4540 /*
4541 * Sysfs has not been setup yet so no need to remove the
4542 * cache from sysfs.
4543 */
4544 return;
4545
81819f0f
CL
4546 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4547 kobject_del(&s->kobj);
151c602f 4548 kobject_put(&s->kobj);
81819f0f
CL
4549}
4550
4551/*
4552 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4553 * available lest we lose that information.
81819f0f
CL
4554 */
4555struct saved_alias {
4556 struct kmem_cache *s;
4557 const char *name;
4558 struct saved_alias *next;
4559};
4560
5af328a5 4561static struct saved_alias *alias_list;
81819f0f
CL
4562
4563static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4564{
4565 struct saved_alias *al;
4566
4567 if (slab_state == SYSFS) {
4568 /*
4569 * If we have a leftover link then remove it.
4570 */
27c3a314
GKH
4571 sysfs_remove_link(&slab_kset->kobj, name);
4572 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4573 }
4574
4575 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4576 if (!al)
4577 return -ENOMEM;
4578
4579 al->s = s;
4580 al->name = name;
4581 al->next = alias_list;
4582 alias_list = al;
4583 return 0;
4584}
4585
4586static int __init slab_sysfs_init(void)
4587{
5b95a4ac 4588 struct kmem_cache *s;
81819f0f
CL
4589 int err;
4590
2bce6485
CL
4591 down_write(&slub_lock);
4592
0ff21e46 4593 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4594 if (!slab_kset) {
2bce6485 4595 up_write(&slub_lock);
81819f0f
CL
4596 printk(KERN_ERR "Cannot register slab subsystem.\n");
4597 return -ENOSYS;
4598 }
4599
26a7bd03
CL
4600 slab_state = SYSFS;
4601
5b95a4ac 4602 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4603 err = sysfs_slab_add(s);
5d540fb7
CL
4604 if (err)
4605 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4606 " to sysfs\n", s->name);
26a7bd03 4607 }
81819f0f
CL
4608
4609 while (alias_list) {
4610 struct saved_alias *al = alias_list;
4611
4612 alias_list = alias_list->next;
4613 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4614 if (err)
4615 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4616 " %s to sysfs\n", s->name);
81819f0f
CL
4617 kfree(al);
4618 }
4619
2bce6485 4620 up_write(&slub_lock);
81819f0f
CL
4621 resiliency_test();
4622 return 0;
4623}
4624
4625__initcall(slab_sysfs_init);
81819f0f 4626#endif
57ed3eda
PE
4627
4628/*
4629 * The /proc/slabinfo ABI
4630 */
158a9624 4631#ifdef CONFIG_SLABINFO
57ed3eda
PE
4632static void print_slabinfo_header(struct seq_file *m)
4633{
4634 seq_puts(m, "slabinfo - version: 2.1\n");
4635 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4636 "<objperslab> <pagesperslab>");
4637 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4638 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4639 seq_putc(m, '\n');
4640}
4641
4642static void *s_start(struct seq_file *m, loff_t *pos)
4643{
4644 loff_t n = *pos;
4645
4646 down_read(&slub_lock);
4647 if (!n)
4648 print_slabinfo_header(m);
4649
4650 return seq_list_start(&slab_caches, *pos);
4651}
4652
4653static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4654{
4655 return seq_list_next(p, &slab_caches, pos);
4656}
4657
4658static void s_stop(struct seq_file *m, void *p)
4659{
4660 up_read(&slub_lock);
4661}
4662
4663static int s_show(struct seq_file *m, void *p)
4664{
4665 unsigned long nr_partials = 0;
4666 unsigned long nr_slabs = 0;
4667 unsigned long nr_inuse = 0;
205ab99d
CL
4668 unsigned long nr_objs = 0;
4669 unsigned long nr_free = 0;
57ed3eda
PE
4670 struct kmem_cache *s;
4671 int node;
4672
4673 s = list_entry(p, struct kmem_cache, list);
4674
4675 for_each_online_node(node) {
4676 struct kmem_cache_node *n = get_node(s, node);
4677
4678 if (!n)
4679 continue;
4680
4681 nr_partials += n->nr_partial;
4682 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4683 nr_objs += atomic_long_read(&n->total_objects);
4684 nr_free += count_partial(n, count_free);
57ed3eda
PE
4685 }
4686
205ab99d 4687 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4688
4689 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4690 nr_objs, s->size, oo_objects(s->oo),
4691 (1 << oo_order(s->oo)));
57ed3eda
PE
4692 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4693 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4694 0UL);
4695 seq_putc(m, '\n');
4696 return 0;
4697}
4698
7b3c3a50 4699static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4700 .start = s_start,
4701 .next = s_next,
4702 .stop = s_stop,
4703 .show = s_show,
4704};
4705
7b3c3a50
AD
4706static int slabinfo_open(struct inode *inode, struct file *file)
4707{
4708 return seq_open(file, &slabinfo_op);
4709}
4710
4711static const struct file_operations proc_slabinfo_operations = {
4712 .open = slabinfo_open,
4713 .read = seq_read,
4714 .llseek = seq_lseek,
4715 .release = seq_release,
4716};
4717
4718static int __init slab_proc_init(void)
4719{
cf5d1131 4720 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4721 return 0;
4722}
4723module_init(slab_proc_init);
158a9624 4724#endif /* CONFIG_SLABINFO */