]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm, kasan: SLAB support
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
d86bd1be
JK
127static inline void *fixup_red_left(struct kmem_cache *s, void *p)
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
81819f0f
CL
197#ifdef CONFIG_SMP
198static struct notifier_block slab_notifier;
199#endif
200
02cbc874
CL
201/*
202 * Tracking user of a slab.
203 */
d6543e39 204#define TRACK_ADDRS_COUNT 16
02cbc874 205struct track {
ce71e27c 206 unsigned long addr; /* Called from address */
d6543e39
BG
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
02cbc874
CL
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
ab4d5ed5 217#ifdef CONFIG_SYSFS
81819f0f
CL
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
7656c72b
CL
243static inline void *get_freepointer(struct kmem_cache *s, void *object)
244{
245 return *(void **)(object + s->offset);
246}
247
0ad9500e
ED
248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249{
250 prefetch(object + s->offset);
251}
252
1393d9a1
CL
253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254{
255 void *p;
256
922d566c
JK
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s, object);
259
1393d9a1 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
261 return p;
262}
263
7656c72b
CL
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be 270#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
273 __p += (__s)->size)
7656c72b 274
54266640 275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
54266640 279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
ab9a0f19
LJ
286static inline int order_objects(int order, unsigned long size, int reserved)
287{
288 return ((PAGE_SIZE << order) - reserved) / size;
289}
290
834f3d11 291static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 292 unsigned long size, int reserved)
834f3d11
CL
293{
294 struct kmem_cache_order_objects x = {
ab9a0f19 295 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
296 };
297
298 return x;
299}
300
301static inline int oo_order(struct kmem_cache_order_objects x)
302{
210b5c06 303 return x.x >> OO_SHIFT;
834f3d11
CL
304}
305
306static inline int oo_objects(struct kmem_cache_order_objects x)
307{
210b5c06 308 return x.x & OO_MASK;
834f3d11
CL
309}
310
881db7fb
CL
311/*
312 * Per slab locking using the pagelock
313 */
314static __always_inline void slab_lock(struct page *page)
315{
48c935ad 316 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
317 bit_spin_lock(PG_locked, &page->flags);
318}
319
320static __always_inline void slab_unlock(struct page *page)
321{
48c935ad 322 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
323 __bit_spin_unlock(PG_locked, &page->flags);
324}
325
a0320865
DH
326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327{
328 struct page tmp;
329 tmp.counters = counters_new;
330 /*
331 * page->counters can cover frozen/inuse/objects as well
332 * as page->_count. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_count, so
334 * be careful and only assign to the fields we need.
335 */
336 page->frozen = tmp.frozen;
337 page->inuse = tmp.inuse;
338 page->objects = tmp.objects;
339}
340
1d07171c
CL
341/* Interrupts must be disabled (for the fallback code to work right) */
342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 void *freelist_old, unsigned long counters_old,
344 void *freelist_new, unsigned long counters_new,
345 const char *n)
346{
347 VM_BUG_ON(!irqs_disabled());
2565409f
HC
348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 350 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 351 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
352 freelist_old, counters_old,
353 freelist_new, counters_new))
6f6528a1 354 return true;
1d07171c
CL
355 } else
356#endif
357 {
358 slab_lock(page);
d0e0ac97
CG
359 if (page->freelist == freelist_old &&
360 page->counters == counters_old) {
1d07171c 361 page->freelist = freelist_new;
a0320865 362 set_page_slub_counters(page, counters_new);
1d07171c 363 slab_unlock(page);
6f6528a1 364 return true;
1d07171c
CL
365 }
366 slab_unlock(page);
367 }
368
369 cpu_relax();
370 stat(s, CMPXCHG_DOUBLE_FAIL);
371
372#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 373 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
374#endif
375
6f6528a1 376 return false;
1d07171c
CL
377}
378
b789ef51
CL
379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 void *freelist_old, unsigned long counters_old,
381 void *freelist_new, unsigned long counters_new,
382 const char *n)
383{
2565409f
HC
384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 386 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 387 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
388 freelist_old, counters_old,
389 freelist_new, counters_new))
6f6528a1 390 return true;
b789ef51
CL
391 } else
392#endif
393 {
1d07171c
CL
394 unsigned long flags;
395
396 local_irq_save(flags);
881db7fb 397 slab_lock(page);
d0e0ac97
CG
398 if (page->freelist == freelist_old &&
399 page->counters == counters_old) {
b789ef51 400 page->freelist = freelist_new;
a0320865 401 set_page_slub_counters(page, counters_new);
881db7fb 402 slab_unlock(page);
1d07171c 403 local_irq_restore(flags);
6f6528a1 404 return true;
b789ef51 405 }
881db7fb 406 slab_unlock(page);
1d07171c 407 local_irq_restore(flags);
b789ef51
CL
408 }
409
410 cpu_relax();
411 stat(s, CMPXCHG_DOUBLE_FAIL);
412
413#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 414 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
415#endif
416
6f6528a1 417 return false;
b789ef51
CL
418}
419
41ecc55b 420#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
421/*
422 * Determine a map of object in use on a page.
423 *
881db7fb 424 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
425 * not vanish from under us.
426 */
427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428{
429 void *p;
430 void *addr = page_address(page);
431
432 for (p = page->freelist; p; p = get_freepointer(s, p))
433 set_bit(slab_index(p, s, addr), map);
434}
435
d86bd1be
JK
436static inline int size_from_object(struct kmem_cache *s)
437{
438 if (s->flags & SLAB_RED_ZONE)
439 return s->size - s->red_left_pad;
440
441 return s->size;
442}
443
444static inline void *restore_red_left(struct kmem_cache *s, void *p)
445{
446 if (s->flags & SLAB_RED_ZONE)
447 p -= s->red_left_pad;
448
449 return p;
450}
451
41ecc55b
CL
452/*
453 * Debug settings:
454 */
89d3c87e 455#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 456static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
457#elif defined(CONFIG_KASAN)
458static int slub_debug = SLAB_STORE_USER;
f0630fff 459#else
41ecc55b 460static int slub_debug;
f0630fff 461#endif
41ecc55b
CL
462
463static char *slub_debug_slabs;
fa5ec8a1 464static int disable_higher_order_debug;
41ecc55b 465
a79316c6
AR
466/*
467 * slub is about to manipulate internal object metadata. This memory lies
468 * outside the range of the allocated object, so accessing it would normally
469 * be reported by kasan as a bounds error. metadata_access_enable() is used
470 * to tell kasan that these accesses are OK.
471 */
472static inline void metadata_access_enable(void)
473{
474 kasan_disable_current();
475}
476
477static inline void metadata_access_disable(void)
478{
479 kasan_enable_current();
480}
481
81819f0f
CL
482/*
483 * Object debugging
484 */
d86bd1be
JK
485
486/* Verify that a pointer has an address that is valid within a slab page */
487static inline int check_valid_pointer(struct kmem_cache *s,
488 struct page *page, void *object)
489{
490 void *base;
491
492 if (!object)
493 return 1;
494
495 base = page_address(page);
496 object = restore_red_left(s, object);
497 if (object < base || object >= base + page->objects * s->size ||
498 (object - base) % s->size) {
499 return 0;
500 }
501
502 return 1;
503}
504
81819f0f
CL
505static void print_section(char *text, u8 *addr, unsigned int length)
506{
a79316c6 507 metadata_access_enable();
ffc79d28
SAS
508 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
509 length, 1);
a79316c6 510 metadata_access_disable();
81819f0f
CL
511}
512
81819f0f
CL
513static struct track *get_track(struct kmem_cache *s, void *object,
514 enum track_item alloc)
515{
516 struct track *p;
517
518 if (s->offset)
519 p = object + s->offset + sizeof(void *);
520 else
521 p = object + s->inuse;
522
523 return p + alloc;
524}
525
526static void set_track(struct kmem_cache *s, void *object,
ce71e27c 527 enum track_item alloc, unsigned long addr)
81819f0f 528{
1a00df4a 529 struct track *p = get_track(s, object, alloc);
81819f0f 530
81819f0f 531 if (addr) {
d6543e39
BG
532#ifdef CONFIG_STACKTRACE
533 struct stack_trace trace;
534 int i;
535
536 trace.nr_entries = 0;
537 trace.max_entries = TRACK_ADDRS_COUNT;
538 trace.entries = p->addrs;
539 trace.skip = 3;
a79316c6 540 metadata_access_enable();
d6543e39 541 save_stack_trace(&trace);
a79316c6 542 metadata_access_disable();
d6543e39
BG
543
544 /* See rant in lockdep.c */
545 if (trace.nr_entries != 0 &&
546 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
547 trace.nr_entries--;
548
549 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
550 p->addrs[i] = 0;
551#endif
81819f0f
CL
552 p->addr = addr;
553 p->cpu = smp_processor_id();
88e4ccf2 554 p->pid = current->pid;
81819f0f
CL
555 p->when = jiffies;
556 } else
557 memset(p, 0, sizeof(struct track));
558}
559
81819f0f
CL
560static void init_tracking(struct kmem_cache *s, void *object)
561{
24922684
CL
562 if (!(s->flags & SLAB_STORE_USER))
563 return;
564
ce71e27c
EGM
565 set_track(s, object, TRACK_FREE, 0UL);
566 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
567}
568
569static void print_track(const char *s, struct track *t)
570{
571 if (!t->addr)
572 return;
573
f9f58285
FF
574 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
575 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
576#ifdef CONFIG_STACKTRACE
577 {
578 int i;
579 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
580 if (t->addrs[i])
f9f58285 581 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
582 else
583 break;
584 }
585#endif
24922684
CL
586}
587
588static void print_tracking(struct kmem_cache *s, void *object)
589{
590 if (!(s->flags & SLAB_STORE_USER))
591 return;
592
593 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
594 print_track("Freed", get_track(s, object, TRACK_FREE));
595}
596
597static void print_page_info(struct page *page)
598{
f9f58285 599 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 600 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
601
602}
603
604static void slab_bug(struct kmem_cache *s, char *fmt, ...)
605{
ecc42fbe 606 struct va_format vaf;
24922684 607 va_list args;
24922684
CL
608
609 va_start(args, fmt);
ecc42fbe
FF
610 vaf.fmt = fmt;
611 vaf.va = &args;
f9f58285 612 pr_err("=============================================================================\n");
ecc42fbe 613 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 614 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 615
373d4d09 616 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 617 va_end(args);
81819f0f
CL
618}
619
24922684
CL
620static void slab_fix(struct kmem_cache *s, char *fmt, ...)
621{
ecc42fbe 622 struct va_format vaf;
24922684 623 va_list args;
24922684
CL
624
625 va_start(args, fmt);
ecc42fbe
FF
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 629 va_end(args);
24922684
CL
630}
631
632static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
633{
634 unsigned int off; /* Offset of last byte */
a973e9dd 635 u8 *addr = page_address(page);
24922684
CL
636
637 print_tracking(s, p);
638
639 print_page_info(page);
640
f9f58285
FF
641 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
642 p, p - addr, get_freepointer(s, p));
24922684 643
d86bd1be
JK
644 if (s->flags & SLAB_RED_ZONE)
645 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
646 else if (p > addr + 16)
ffc79d28 647 print_section("Bytes b4 ", p - 16, 16);
81819f0f 648
3b0efdfa 649 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 650 PAGE_SIZE));
81819f0f 651 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
652 print_section("Redzone ", p + s->object_size,
653 s->inuse - s->object_size);
81819f0f 654
81819f0f
CL
655 if (s->offset)
656 off = s->offset + sizeof(void *);
657 else
658 off = s->inuse;
659
24922684 660 if (s->flags & SLAB_STORE_USER)
81819f0f 661 off += 2 * sizeof(struct track);
81819f0f 662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
d86bd1be 665 print_section("Padding ", p + off, size_from_object(s) - off);
24922684
CL
666
667 dump_stack();
81819f0f
CL
668}
669
75c66def 670void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
671 u8 *object, char *reason)
672{
3dc50637 673 slab_bug(s, "%s", reason);
24922684 674 print_trailer(s, page, object);
81819f0f
CL
675}
676
d0e0ac97
CG
677static void slab_err(struct kmem_cache *s, struct page *page,
678 const char *fmt, ...)
81819f0f
CL
679{
680 va_list args;
681 char buf[100];
682
24922684
CL
683 va_start(args, fmt);
684 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 685 va_end(args);
3dc50637 686 slab_bug(s, "%s", buf);
24922684 687 print_page_info(page);
81819f0f
CL
688 dump_stack();
689}
690
f7cb1933 691static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
692{
693 u8 *p = object;
694
d86bd1be
JK
695 if (s->flags & SLAB_RED_ZONE)
696 memset(p - s->red_left_pad, val, s->red_left_pad);
697
81819f0f 698 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
699 memset(p, POISON_FREE, s->object_size - 1);
700 p[s->object_size - 1] = POISON_END;
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 704 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
705}
706
24922684
CL
707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 void *from, void *to)
709{
710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 memset(from, data, to - from);
712}
713
714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 u8 *object, char *what,
06428780 716 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
717{
718 u8 *fault;
719 u8 *end;
720
a79316c6 721 metadata_access_enable();
79824820 722 fault = memchr_inv(start, value, bytes);
a79316c6 723 metadata_access_disable();
24922684
CL
724 if (!fault)
725 return 1;
726
727 end = start + bytes;
728 while (end > fault && end[-1] == value)
729 end--;
730
731 slab_bug(s, "%s overwritten", what);
f9f58285 732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
733 fault, end - 1, fault[0], value);
734 print_trailer(s, page, object);
735
736 restore_bytes(s, what, value, fault, end);
737 return 0;
81819f0f
CL
738}
739
81819f0f
CL
740/*
741 * Object layout:
742 *
743 * object address
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
672bba3a 747 *
81819f0f
CL
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
749 * 0xa5 (POISON_END)
750 *
3b0efdfa 751 * object + s->object_size
81819f0f 752 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 753 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 754 * object_size == inuse.
672bba3a 755 *
81819f0f
CL
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
758 *
759 * object + s->inuse
672bba3a
CL
760 * Meta data starts here.
761 *
81819f0f
CL
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
672bba3a 764 * C. Padding to reach required alignment boundary or at mininum
6446faa2 765 * one word if debugging is on to be able to detect writes
672bba3a
CL
766 * before the word boundary.
767 *
768 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
769 *
770 * object + s->size
672bba3a 771 * Nothing is used beyond s->size.
81819f0f 772 *
3b0efdfa 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 774 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
775 * may be used with merged slabcaches.
776 */
777
81819f0f
CL
778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779{
780 unsigned long off = s->inuse; /* The end of info */
781
782 if (s->offset)
783 /* Freepointer is placed after the object. */
784 off += sizeof(void *);
785
786 if (s->flags & SLAB_STORE_USER)
787 /* We also have user information there */
788 off += 2 * sizeof(struct track);
789
d86bd1be 790 if (size_from_object(s) == off)
81819f0f
CL
791 return 1;
792
24922684 793 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 794 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
795}
796
39b26464 797/* Check the pad bytes at the end of a slab page */
81819f0f
CL
798static int slab_pad_check(struct kmem_cache *s, struct page *page)
799{
24922684
CL
800 u8 *start;
801 u8 *fault;
802 u8 *end;
803 int length;
804 int remainder;
81819f0f
CL
805
806 if (!(s->flags & SLAB_POISON))
807 return 1;
808
a973e9dd 809 start = page_address(page);
ab9a0f19 810 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
811 end = start + length;
812 remainder = length % s->size;
81819f0f
CL
813 if (!remainder)
814 return 1;
815
a79316c6 816 metadata_access_enable();
79824820 817 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 818 metadata_access_disable();
24922684
CL
819 if (!fault)
820 return 1;
821 while (end > fault && end[-1] == POISON_INUSE)
822 end--;
823
824 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 825 print_section("Padding ", end - remainder, remainder);
24922684 826
8a3d271d 827 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 828 return 0;
81819f0f
CL
829}
830
831static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 832 void *object, u8 val)
81819f0f
CL
833{
834 u8 *p = object;
3b0efdfa 835 u8 *endobject = object + s->object_size;
81819f0f
CL
836
837 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
838 if (!check_bytes_and_report(s, page, object, "Redzone",
839 object - s->red_left_pad, val, s->red_left_pad))
840 return 0;
841
24922684 842 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 843 endobject, val, s->inuse - s->object_size))
81819f0f 844 return 0;
81819f0f 845 } else {
3b0efdfa 846 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 847 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
848 endobject, POISON_INUSE,
849 s->inuse - s->object_size);
3adbefee 850 }
81819f0f
CL
851 }
852
853 if (s->flags & SLAB_POISON) {
f7cb1933 854 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 855 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 856 POISON_FREE, s->object_size - 1) ||
24922684 857 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 858 p + s->object_size - 1, POISON_END, 1)))
81819f0f 859 return 0;
81819f0f
CL
860 /*
861 * check_pad_bytes cleans up on its own.
862 */
863 check_pad_bytes(s, page, p);
864 }
865
f7cb1933 866 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
867 /*
868 * Object and freepointer overlap. Cannot check
869 * freepointer while object is allocated.
870 */
871 return 1;
872
873 /* Check free pointer validity */
874 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
875 object_err(s, page, p, "Freepointer corrupt");
876 /*
9f6c708e 877 * No choice but to zap it and thus lose the remainder
81819f0f 878 * of the free objects in this slab. May cause
672bba3a 879 * another error because the object count is now wrong.
81819f0f 880 */
a973e9dd 881 set_freepointer(s, p, NULL);
81819f0f
CL
882 return 0;
883 }
884 return 1;
885}
886
887static int check_slab(struct kmem_cache *s, struct page *page)
888{
39b26464
CL
889 int maxobj;
890
81819f0f
CL
891 VM_BUG_ON(!irqs_disabled());
892
893 if (!PageSlab(page)) {
24922684 894 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
895 return 0;
896 }
39b26464 897
ab9a0f19 898 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
899 if (page->objects > maxobj) {
900 slab_err(s, page, "objects %u > max %u",
f6edde9c 901 page->objects, maxobj);
39b26464
CL
902 return 0;
903 }
904 if (page->inuse > page->objects) {
24922684 905 slab_err(s, page, "inuse %u > max %u",
f6edde9c 906 page->inuse, page->objects);
81819f0f
CL
907 return 0;
908 }
909 /* Slab_pad_check fixes things up after itself */
910 slab_pad_check(s, page);
911 return 1;
912}
913
914/*
672bba3a
CL
915 * Determine if a certain object on a page is on the freelist. Must hold the
916 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
917 */
918static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
919{
920 int nr = 0;
881db7fb 921 void *fp;
81819f0f 922 void *object = NULL;
f6edde9c 923 int max_objects;
81819f0f 924
881db7fb 925 fp = page->freelist;
39b26464 926 while (fp && nr <= page->objects) {
81819f0f
CL
927 if (fp == search)
928 return 1;
929 if (!check_valid_pointer(s, page, fp)) {
930 if (object) {
931 object_err(s, page, object,
932 "Freechain corrupt");
a973e9dd 933 set_freepointer(s, object, NULL);
81819f0f 934 } else {
24922684 935 slab_err(s, page, "Freepointer corrupt");
a973e9dd 936 page->freelist = NULL;
39b26464 937 page->inuse = page->objects;
24922684 938 slab_fix(s, "Freelist cleared");
81819f0f
CL
939 return 0;
940 }
941 break;
942 }
943 object = fp;
944 fp = get_freepointer(s, object);
945 nr++;
946 }
947
ab9a0f19 948 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
949 if (max_objects > MAX_OBJS_PER_PAGE)
950 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
951
952 if (page->objects != max_objects) {
756a025f
JP
953 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
954 page->objects, max_objects);
224a88be
CL
955 page->objects = max_objects;
956 slab_fix(s, "Number of objects adjusted.");
957 }
39b26464 958 if (page->inuse != page->objects - nr) {
756a025f
JP
959 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
960 page->inuse, page->objects - nr);
39b26464 961 page->inuse = page->objects - nr;
24922684 962 slab_fix(s, "Object count adjusted.");
81819f0f
CL
963 }
964 return search == NULL;
965}
966
0121c619
CL
967static void trace(struct kmem_cache *s, struct page *page, void *object,
968 int alloc)
3ec09742
CL
969{
970 if (s->flags & SLAB_TRACE) {
f9f58285 971 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
972 s->name,
973 alloc ? "alloc" : "free",
974 object, page->inuse,
975 page->freelist);
976
977 if (!alloc)
d0e0ac97
CG
978 print_section("Object ", (void *)object,
979 s->object_size);
3ec09742
CL
980
981 dump_stack();
982 }
983}
984
643b1138 985/*
672bba3a 986 * Tracking of fully allocated slabs for debugging purposes.
643b1138 987 */
5cc6eee8
CL
988static void add_full(struct kmem_cache *s,
989 struct kmem_cache_node *n, struct page *page)
643b1138 990{
5cc6eee8
CL
991 if (!(s->flags & SLAB_STORE_USER))
992 return;
993
255d0884 994 lockdep_assert_held(&n->list_lock);
643b1138 995 list_add(&page->lru, &n->full);
643b1138
CL
996}
997
c65c1877 998static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 999{
643b1138
CL
1000 if (!(s->flags & SLAB_STORE_USER))
1001 return;
1002
255d0884 1003 lockdep_assert_held(&n->list_lock);
643b1138 1004 list_del(&page->lru);
643b1138
CL
1005}
1006
0f389ec6
CL
1007/* Tracking of the number of slabs for debugging purposes */
1008static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1009{
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 return atomic_long_read(&n->nr_slabs);
1013}
1014
26c02cf0
AB
1015static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1016{
1017 return atomic_long_read(&n->nr_slabs);
1018}
1019
205ab99d 1020static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1021{
1022 struct kmem_cache_node *n = get_node(s, node);
1023
1024 /*
1025 * May be called early in order to allocate a slab for the
1026 * kmem_cache_node structure. Solve the chicken-egg
1027 * dilemma by deferring the increment of the count during
1028 * bootstrap (see early_kmem_cache_node_alloc).
1029 */
338b2642 1030 if (likely(n)) {
0f389ec6 1031 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1032 atomic_long_add(objects, &n->total_objects);
1033 }
0f389ec6 1034}
205ab99d 1035static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1036{
1037 struct kmem_cache_node *n = get_node(s, node);
1038
1039 atomic_long_dec(&n->nr_slabs);
205ab99d 1040 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1041}
1042
1043/* Object debug checks for alloc/free paths */
3ec09742
CL
1044static void setup_object_debug(struct kmem_cache *s, struct page *page,
1045 void *object)
1046{
1047 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1048 return;
1049
f7cb1933 1050 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1051 init_tracking(s, object);
1052}
1053
becfda68 1054static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1055 struct page *page,
ce71e27c 1056 void *object, unsigned long addr)
81819f0f
CL
1057{
1058 if (!check_slab(s, page))
becfda68 1059 return 0;
81819f0f 1060
81819f0f
CL
1061 if (!check_valid_pointer(s, page, object)) {
1062 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1063 return 0;
81819f0f
CL
1064 }
1065
f7cb1933 1066 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1067 return 0;
1068
1069 return 1;
1070}
1071
1072static noinline int alloc_debug_processing(struct kmem_cache *s,
1073 struct page *page,
1074 void *object, unsigned long addr)
1075{
1076 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1077 if (!alloc_consistency_checks(s, page, object, addr))
1078 goto bad;
1079 }
81819f0f 1080
3ec09742
CL
1081 /* Success perform special debug activities for allocs */
1082 if (s->flags & SLAB_STORE_USER)
1083 set_track(s, object, TRACK_ALLOC, addr);
1084 trace(s, page, object, 1);
f7cb1933 1085 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1086 return 1;
3ec09742 1087
81819f0f
CL
1088bad:
1089 if (PageSlab(page)) {
1090 /*
1091 * If this is a slab page then lets do the best we can
1092 * to avoid issues in the future. Marking all objects
672bba3a 1093 * as used avoids touching the remaining objects.
81819f0f 1094 */
24922684 1095 slab_fix(s, "Marking all objects used");
39b26464 1096 page->inuse = page->objects;
a973e9dd 1097 page->freelist = NULL;
81819f0f
CL
1098 }
1099 return 0;
1100}
1101
becfda68
LA
1102static inline int free_consistency_checks(struct kmem_cache *s,
1103 struct page *page, void *object, unsigned long addr)
81819f0f 1104{
81819f0f 1105 if (!check_valid_pointer(s, page, object)) {
70d71228 1106 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1107 return 0;
81819f0f
CL
1108 }
1109
1110 if (on_freelist(s, page, object)) {
24922684 1111 object_err(s, page, object, "Object already free");
becfda68 1112 return 0;
81819f0f
CL
1113 }
1114
f7cb1933 1115 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1116 return 0;
81819f0f 1117
1b4f59e3 1118 if (unlikely(s != page->slab_cache)) {
3adbefee 1119 if (!PageSlab(page)) {
756a025f
JP
1120 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1121 object);
1b4f59e3 1122 } else if (!page->slab_cache) {
f9f58285
FF
1123 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1124 object);
70d71228 1125 dump_stack();
06428780 1126 } else
24922684
CL
1127 object_err(s, page, object,
1128 "page slab pointer corrupt.");
becfda68
LA
1129 return 0;
1130 }
1131 return 1;
1132}
1133
1134/* Supports checking bulk free of a constructed freelist */
1135static noinline int free_debug_processing(
1136 struct kmem_cache *s, struct page *page,
1137 void *head, void *tail, int bulk_cnt,
1138 unsigned long addr)
1139{
1140 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1141 void *object = head;
1142 int cnt = 0;
1143 unsigned long uninitialized_var(flags);
1144 int ret = 0;
1145
1146 spin_lock_irqsave(&n->list_lock, flags);
1147 slab_lock(page);
1148
1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150 if (!check_slab(s, page))
1151 goto out;
1152 }
1153
1154next_object:
1155 cnt++;
1156
1157 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158 if (!free_consistency_checks(s, page, object, addr))
1159 goto out;
81819f0f 1160 }
3ec09742 1161
3ec09742
CL
1162 if (s->flags & SLAB_STORE_USER)
1163 set_track(s, object, TRACK_FREE, addr);
1164 trace(s, page, object, 0);
81084651 1165 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1166 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1167
1168 /* Reached end of constructed freelist yet? */
1169 if (object != tail) {
1170 object = get_freepointer(s, object);
1171 goto next_object;
1172 }
804aa132
LA
1173 ret = 1;
1174
5c2e4bbb 1175out:
81084651
JDB
1176 if (cnt != bulk_cnt)
1177 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1178 bulk_cnt, cnt);
1179
881db7fb 1180 slab_unlock(page);
282acb43 1181 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1182 if (!ret)
1183 slab_fix(s, "Object at 0x%p not freed", object);
1184 return ret;
81819f0f
CL
1185}
1186
41ecc55b
CL
1187static int __init setup_slub_debug(char *str)
1188{
f0630fff
CL
1189 slub_debug = DEBUG_DEFAULT_FLAGS;
1190 if (*str++ != '=' || !*str)
1191 /*
1192 * No options specified. Switch on full debugging.
1193 */
1194 goto out;
1195
1196 if (*str == ',')
1197 /*
1198 * No options but restriction on slabs. This means full
1199 * debugging for slabs matching a pattern.
1200 */
1201 goto check_slabs;
1202
1203 slub_debug = 0;
1204 if (*str == '-')
1205 /*
1206 * Switch off all debugging measures.
1207 */
1208 goto out;
1209
1210 /*
1211 * Determine which debug features should be switched on
1212 */
06428780 1213 for (; *str && *str != ','; str++) {
f0630fff
CL
1214 switch (tolower(*str)) {
1215 case 'f':
becfda68 1216 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1217 break;
1218 case 'z':
1219 slub_debug |= SLAB_RED_ZONE;
1220 break;
1221 case 'p':
1222 slub_debug |= SLAB_POISON;
1223 break;
1224 case 'u':
1225 slub_debug |= SLAB_STORE_USER;
1226 break;
1227 case 't':
1228 slub_debug |= SLAB_TRACE;
1229 break;
4c13dd3b
DM
1230 case 'a':
1231 slub_debug |= SLAB_FAILSLAB;
1232 break;
08303a73
CA
1233 case 'o':
1234 /*
1235 * Avoid enabling debugging on caches if its minimum
1236 * order would increase as a result.
1237 */
1238 disable_higher_order_debug = 1;
1239 break;
f0630fff 1240 default:
f9f58285
FF
1241 pr_err("slub_debug option '%c' unknown. skipped\n",
1242 *str);
f0630fff 1243 }
41ecc55b
CL
1244 }
1245
f0630fff 1246check_slabs:
41ecc55b
CL
1247 if (*str == ',')
1248 slub_debug_slabs = str + 1;
f0630fff 1249out:
41ecc55b
CL
1250 return 1;
1251}
1252
1253__setup("slub_debug", setup_slub_debug);
1254
423c929c 1255unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1256 unsigned long flags, const char *name,
51cc5068 1257 void (*ctor)(void *))
41ecc55b
CL
1258{
1259 /*
e153362a 1260 * Enable debugging if selected on the kernel commandline.
41ecc55b 1261 */
c6f58d9b
CL
1262 if (slub_debug && (!slub_debug_slabs || (name &&
1263 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1264 flags |= slub_debug;
ba0268a8
CL
1265
1266 return flags;
41ecc55b 1267}
b4a64718 1268#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1269static inline void setup_object_debug(struct kmem_cache *s,
1270 struct page *page, void *object) {}
41ecc55b 1271
3ec09742 1272static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1273 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1274
282acb43 1275static inline int free_debug_processing(
81084651
JDB
1276 struct kmem_cache *s, struct page *page,
1277 void *head, void *tail, int bulk_cnt,
282acb43 1278 unsigned long addr) { return 0; }
41ecc55b 1279
41ecc55b
CL
1280static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1281 { return 1; }
1282static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1283 void *object, u8 val) { return 1; }
5cc6eee8
CL
1284static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285 struct page *page) {}
c65c1877
PZ
1286static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 struct page *page) {}
423c929c 1288unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1289 unsigned long flags, const char *name,
51cc5068 1290 void (*ctor)(void *))
ba0268a8
CL
1291{
1292 return flags;
1293}
41ecc55b 1294#define slub_debug 0
0f389ec6 1295
fdaa45e9
IM
1296#define disable_higher_order_debug 0
1297
0f389ec6
CL
1298static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1299 { return 0; }
26c02cf0
AB
1300static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1301 { return 0; }
205ab99d
CL
1302static inline void inc_slabs_node(struct kmem_cache *s, int node,
1303 int objects) {}
1304static inline void dec_slabs_node(struct kmem_cache *s, int node,
1305 int objects) {}
7d550c56 1306
02e72cc6
AR
1307#endif /* CONFIG_SLUB_DEBUG */
1308
1309/*
1310 * Hooks for other subsystems that check memory allocations. In a typical
1311 * production configuration these hooks all should produce no code at all.
1312 */
d56791b3
RB
1313static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1314{
1315 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1316 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1317}
1318
1319static inline void kfree_hook(const void *x)
1320{
1321 kmemleak_free(x);
0316bec2 1322 kasan_kfree_large(x);
d56791b3
RB
1323}
1324
d56791b3
RB
1325static inline void slab_free_hook(struct kmem_cache *s, void *x)
1326{
1327 kmemleak_free_recursive(x, s->flags);
7d550c56 1328
02e72cc6
AR
1329 /*
1330 * Trouble is that we may no longer disable interrupts in the fast path
1331 * So in order to make the debug calls that expect irqs to be
1332 * disabled we need to disable interrupts temporarily.
1333 */
1334#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1335 {
1336 unsigned long flags;
1337
1338 local_irq_save(flags);
1339 kmemcheck_slab_free(s, x, s->object_size);
1340 debug_check_no_locks_freed(x, s->object_size);
1341 local_irq_restore(flags);
1342 }
1343#endif
1344 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1346
1347 kasan_slab_free(s, x);
02e72cc6 1348}
205ab99d 1349
81084651
JDB
1350static inline void slab_free_freelist_hook(struct kmem_cache *s,
1351 void *head, void *tail)
1352{
1353/*
1354 * Compiler cannot detect this function can be removed if slab_free_hook()
1355 * evaluates to nothing. Thus, catch all relevant config debug options here.
1356 */
1357#if defined(CONFIG_KMEMCHECK) || \
1358 defined(CONFIG_LOCKDEP) || \
1359 defined(CONFIG_DEBUG_KMEMLEAK) || \
1360 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1361 defined(CONFIG_KASAN)
1362
1363 void *object = head;
1364 void *tail_obj = tail ? : head;
1365
1366 do {
1367 slab_free_hook(s, object);
1368 } while ((object != tail_obj) &&
1369 (object = get_freepointer(s, object)));
1370#endif
1371}
1372
588f8ba9
TG
1373static void setup_object(struct kmem_cache *s, struct page *page,
1374 void *object)
1375{
1376 setup_object_debug(s, page, object);
1377 if (unlikely(s->ctor)) {
1378 kasan_unpoison_object_data(s, object);
1379 s->ctor(object);
1380 kasan_poison_object_data(s, object);
1381 }
1382}
1383
81819f0f
CL
1384/*
1385 * Slab allocation and freeing
1386 */
5dfb4175
VD
1387static inline struct page *alloc_slab_page(struct kmem_cache *s,
1388 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1389{
5dfb4175 1390 struct page *page;
65c3376a
CL
1391 int order = oo_order(oo);
1392
b1eeab67
VN
1393 flags |= __GFP_NOTRACK;
1394
2154a336 1395 if (node == NUMA_NO_NODE)
5dfb4175 1396 page = alloc_pages(flags, order);
65c3376a 1397 else
96db800f 1398 page = __alloc_pages_node(node, flags, order);
5dfb4175 1399
f3ccb2c4
VD
1400 if (page && memcg_charge_slab(page, flags, order, s)) {
1401 __free_pages(page, order);
1402 page = NULL;
1403 }
5dfb4175
VD
1404
1405 return page;
65c3376a
CL
1406}
1407
81819f0f
CL
1408static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
06428780 1410 struct page *page;
834f3d11 1411 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1412 gfp_t alloc_gfp;
588f8ba9
TG
1413 void *start, *p;
1414 int idx, order;
81819f0f 1415
7e0528da
CL
1416 flags &= gfp_allowed_mask;
1417
d0164adc 1418 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1419 local_irq_enable();
1420
b7a49f0d 1421 flags |= s->allocflags;
e12ba74d 1422
ba52270d
PE
1423 /*
1424 * Let the initial higher-order allocation fail under memory pressure
1425 * so we fall-back to the minimum order allocation.
1426 */
1427 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1428 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1429 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1430
5dfb4175 1431 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1432 if (unlikely(!page)) {
1433 oo = s->min;
80c3a998 1434 alloc_gfp = flags;
65c3376a
CL
1435 /*
1436 * Allocation may have failed due to fragmentation.
1437 * Try a lower order alloc if possible
1438 */
5dfb4175 1439 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1440 if (unlikely(!page))
1441 goto out;
1442 stat(s, ORDER_FALLBACK);
65c3376a 1443 }
5a896d9e 1444
588f8ba9
TG
1445 if (kmemcheck_enabled &&
1446 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1447 int pages = 1 << oo_order(oo);
1448
80c3a998 1449 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1450
1451 /*
1452 * Objects from caches that have a constructor don't get
1453 * cleared when they're allocated, so we need to do it here.
1454 */
1455 if (s->ctor)
1456 kmemcheck_mark_uninitialized_pages(page, pages);
1457 else
1458 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1459 }
1460
834f3d11 1461 page->objects = oo_objects(oo);
81819f0f 1462
1f458cbf 1463 order = compound_order(page);
1b4f59e3 1464 page->slab_cache = s;
c03f94cc 1465 __SetPageSlab(page);
2f064f34 1466 if (page_is_pfmemalloc(page))
072bb0aa 1467 SetPageSlabPfmemalloc(page);
81819f0f
CL
1468
1469 start = page_address(page);
81819f0f
CL
1470
1471 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1472 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1473
0316bec2
AR
1474 kasan_poison_slab(page);
1475
54266640
WY
1476 for_each_object_idx(p, idx, s, start, page->objects) {
1477 setup_object(s, page, p);
1478 if (likely(idx < page->objects))
1479 set_freepointer(s, p, p + s->size);
1480 else
1481 set_freepointer(s, p, NULL);
81819f0f 1482 }
81819f0f 1483
d86bd1be 1484 page->freelist = fixup_red_left(s, start);
e6e82ea1 1485 page->inuse = page->objects;
8cb0a506 1486 page->frozen = 1;
588f8ba9 1487
81819f0f 1488out:
d0164adc 1489 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1490 local_irq_disable();
1491 if (!page)
1492 return NULL;
1493
1494 mod_zone_page_state(page_zone(page),
1495 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1496 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1497 1 << oo_order(oo));
1498
1499 inc_slabs_node(s, page_to_nid(page), page->objects);
1500
81819f0f
CL
1501 return page;
1502}
1503
588f8ba9
TG
1504static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1505{
1506 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1507 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1508 BUG();
1509 }
1510
1511 return allocate_slab(s,
1512 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1513}
1514
81819f0f
CL
1515static void __free_slab(struct kmem_cache *s, struct page *page)
1516{
834f3d11
CL
1517 int order = compound_order(page);
1518 int pages = 1 << order;
81819f0f 1519
becfda68 1520 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1521 void *p;
1522
1523 slab_pad_check(s, page);
224a88be
CL
1524 for_each_object(p, s, page_address(page),
1525 page->objects)
f7cb1933 1526 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1527 }
1528
b1eeab67 1529 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1530
81819f0f
CL
1531 mod_zone_page_state(page_zone(page),
1532 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1533 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1534 -pages);
81819f0f 1535
072bb0aa 1536 __ClearPageSlabPfmemalloc(page);
49bd5221 1537 __ClearPageSlab(page);
1f458cbf 1538
22b751c3 1539 page_mapcount_reset(page);
1eb5ac64
NP
1540 if (current->reclaim_state)
1541 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1542 memcg_uncharge_slab(page, order, s);
1543 __free_pages(page, order);
81819f0f
CL
1544}
1545
da9a638c
LJ
1546#define need_reserve_slab_rcu \
1547 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1548
81819f0f
CL
1549static void rcu_free_slab(struct rcu_head *h)
1550{
1551 struct page *page;
1552
da9a638c
LJ
1553 if (need_reserve_slab_rcu)
1554 page = virt_to_head_page(h);
1555 else
1556 page = container_of((struct list_head *)h, struct page, lru);
1557
1b4f59e3 1558 __free_slab(page->slab_cache, page);
81819f0f
CL
1559}
1560
1561static void free_slab(struct kmem_cache *s, struct page *page)
1562{
1563 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1564 struct rcu_head *head;
1565
1566 if (need_reserve_slab_rcu) {
1567 int order = compound_order(page);
1568 int offset = (PAGE_SIZE << order) - s->reserved;
1569
1570 VM_BUG_ON(s->reserved != sizeof(*head));
1571 head = page_address(page) + offset;
1572 } else {
bc4f610d 1573 head = &page->rcu_head;
da9a638c 1574 }
81819f0f
CL
1575
1576 call_rcu(head, rcu_free_slab);
1577 } else
1578 __free_slab(s, page);
1579}
1580
1581static void discard_slab(struct kmem_cache *s, struct page *page)
1582{
205ab99d 1583 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1584 free_slab(s, page);
1585}
1586
1587/*
5cc6eee8 1588 * Management of partially allocated slabs.
81819f0f 1589 */
1e4dd946
SR
1590static inline void
1591__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1592{
e95eed57 1593 n->nr_partial++;
136333d1 1594 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1595 list_add_tail(&page->lru, &n->partial);
1596 else
1597 list_add(&page->lru, &n->partial);
81819f0f
CL
1598}
1599
1e4dd946
SR
1600static inline void add_partial(struct kmem_cache_node *n,
1601 struct page *page, int tail)
62e346a8 1602{
c65c1877 1603 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1604 __add_partial(n, page, tail);
1605}
c65c1877 1606
1e4dd946
SR
1607static inline void remove_partial(struct kmem_cache_node *n,
1608 struct page *page)
1609{
1610 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1611 list_del(&page->lru);
1612 n->nr_partial--;
1e4dd946
SR
1613}
1614
81819f0f 1615/*
7ced3719
CL
1616 * Remove slab from the partial list, freeze it and
1617 * return the pointer to the freelist.
81819f0f 1618 *
497b66f2 1619 * Returns a list of objects or NULL if it fails.
81819f0f 1620 */
497b66f2 1621static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1622 struct kmem_cache_node *n, struct page *page,
633b0764 1623 int mode, int *objects)
81819f0f 1624{
2cfb7455
CL
1625 void *freelist;
1626 unsigned long counters;
1627 struct page new;
1628
c65c1877
PZ
1629 lockdep_assert_held(&n->list_lock);
1630
2cfb7455
CL
1631 /*
1632 * Zap the freelist and set the frozen bit.
1633 * The old freelist is the list of objects for the
1634 * per cpu allocation list.
1635 */
7ced3719
CL
1636 freelist = page->freelist;
1637 counters = page->counters;
1638 new.counters = counters;
633b0764 1639 *objects = new.objects - new.inuse;
23910c50 1640 if (mode) {
7ced3719 1641 new.inuse = page->objects;
23910c50
PE
1642 new.freelist = NULL;
1643 } else {
1644 new.freelist = freelist;
1645 }
2cfb7455 1646
a0132ac0 1647 VM_BUG_ON(new.frozen);
7ced3719 1648 new.frozen = 1;
2cfb7455 1649
7ced3719 1650 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1651 freelist, counters,
02d7633f 1652 new.freelist, new.counters,
7ced3719 1653 "acquire_slab"))
7ced3719 1654 return NULL;
2cfb7455
CL
1655
1656 remove_partial(n, page);
7ced3719 1657 WARN_ON(!freelist);
49e22585 1658 return freelist;
81819f0f
CL
1659}
1660
633b0764 1661static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1662static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1663
81819f0f 1664/*
672bba3a 1665 * Try to allocate a partial slab from a specific node.
81819f0f 1666 */
8ba00bb6
JK
1667static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1668 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1669{
49e22585
CL
1670 struct page *page, *page2;
1671 void *object = NULL;
633b0764
JK
1672 int available = 0;
1673 int objects;
81819f0f
CL
1674
1675 /*
1676 * Racy check. If we mistakenly see no partial slabs then we
1677 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1678 * partial slab and there is none available then get_partials()
1679 * will return NULL.
81819f0f
CL
1680 */
1681 if (!n || !n->nr_partial)
1682 return NULL;
1683
1684 spin_lock(&n->list_lock);
49e22585 1685 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1686 void *t;
49e22585 1687
8ba00bb6
JK
1688 if (!pfmemalloc_match(page, flags))
1689 continue;
1690
633b0764 1691 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1692 if (!t)
1693 break;
1694
633b0764 1695 available += objects;
12d79634 1696 if (!object) {
49e22585 1697 c->page = page;
49e22585 1698 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1699 object = t;
49e22585 1700 } else {
633b0764 1701 put_cpu_partial(s, page, 0);
8028dcea 1702 stat(s, CPU_PARTIAL_NODE);
49e22585 1703 }
345c905d
JK
1704 if (!kmem_cache_has_cpu_partial(s)
1705 || available > s->cpu_partial / 2)
49e22585
CL
1706 break;
1707
497b66f2 1708 }
81819f0f 1709 spin_unlock(&n->list_lock);
497b66f2 1710 return object;
81819f0f
CL
1711}
1712
1713/*
672bba3a 1714 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1715 */
de3ec035 1716static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1717 struct kmem_cache_cpu *c)
81819f0f
CL
1718{
1719#ifdef CONFIG_NUMA
1720 struct zonelist *zonelist;
dd1a239f 1721 struct zoneref *z;
54a6eb5c
MG
1722 struct zone *zone;
1723 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1724 void *object;
cc9a6c87 1725 unsigned int cpuset_mems_cookie;
81819f0f
CL
1726
1727 /*
672bba3a
CL
1728 * The defrag ratio allows a configuration of the tradeoffs between
1729 * inter node defragmentation and node local allocations. A lower
1730 * defrag_ratio increases the tendency to do local allocations
1731 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1732 *
672bba3a
CL
1733 * If the defrag_ratio is set to 0 then kmalloc() always
1734 * returns node local objects. If the ratio is higher then kmalloc()
1735 * may return off node objects because partial slabs are obtained
1736 * from other nodes and filled up.
81819f0f 1737 *
6446faa2 1738 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1739 * defrag_ratio = 1000) then every (well almost) allocation will
1740 * first attempt to defrag slab caches on other nodes. This means
1741 * scanning over all nodes to look for partial slabs which may be
1742 * expensive if we do it every time we are trying to find a slab
1743 * with available objects.
81819f0f 1744 */
9824601e
CL
1745 if (!s->remote_node_defrag_ratio ||
1746 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1747 return NULL;
1748
cc9a6c87 1749 do {
d26914d1 1750 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1751 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1752 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1753 struct kmem_cache_node *n;
1754
1755 n = get_node(s, zone_to_nid(zone));
1756
dee2f8aa 1757 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1758 n->nr_partial > s->min_partial) {
8ba00bb6 1759 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1760 if (object) {
1761 /*
d26914d1
MG
1762 * Don't check read_mems_allowed_retry()
1763 * here - if mems_allowed was updated in
1764 * parallel, that was a harmless race
1765 * between allocation and the cpuset
1766 * update
cc9a6c87 1767 */
cc9a6c87
MG
1768 return object;
1769 }
c0ff7453 1770 }
81819f0f 1771 }
d26914d1 1772 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1773#endif
1774 return NULL;
1775}
1776
1777/*
1778 * Get a partial page, lock it and return it.
1779 */
497b66f2 1780static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1781 struct kmem_cache_cpu *c)
81819f0f 1782{
497b66f2 1783 void *object;
a561ce00
JK
1784 int searchnode = node;
1785
1786 if (node == NUMA_NO_NODE)
1787 searchnode = numa_mem_id();
1788 else if (!node_present_pages(node))
1789 searchnode = node_to_mem_node(node);
81819f0f 1790
8ba00bb6 1791 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1792 if (object || node != NUMA_NO_NODE)
1793 return object;
81819f0f 1794
acd19fd1 1795 return get_any_partial(s, flags, c);
81819f0f
CL
1796}
1797
8a5ec0ba
CL
1798#ifdef CONFIG_PREEMPT
1799/*
1800 * Calculate the next globally unique transaction for disambiguiation
1801 * during cmpxchg. The transactions start with the cpu number and are then
1802 * incremented by CONFIG_NR_CPUS.
1803 */
1804#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1805#else
1806/*
1807 * No preemption supported therefore also no need to check for
1808 * different cpus.
1809 */
1810#define TID_STEP 1
1811#endif
1812
1813static inline unsigned long next_tid(unsigned long tid)
1814{
1815 return tid + TID_STEP;
1816}
1817
1818static inline unsigned int tid_to_cpu(unsigned long tid)
1819{
1820 return tid % TID_STEP;
1821}
1822
1823static inline unsigned long tid_to_event(unsigned long tid)
1824{
1825 return tid / TID_STEP;
1826}
1827
1828static inline unsigned int init_tid(int cpu)
1829{
1830 return cpu;
1831}
1832
1833static inline void note_cmpxchg_failure(const char *n,
1834 const struct kmem_cache *s, unsigned long tid)
1835{
1836#ifdef SLUB_DEBUG_CMPXCHG
1837 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1838
f9f58285 1839 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1840
1841#ifdef CONFIG_PREEMPT
1842 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1843 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1844 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1845 else
1846#endif
1847 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1848 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1849 tid_to_event(tid), tid_to_event(actual_tid));
1850 else
f9f58285 1851 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1852 actual_tid, tid, next_tid(tid));
1853#endif
4fdccdfb 1854 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1855}
1856
788e1aad 1857static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1858{
8a5ec0ba
CL
1859 int cpu;
1860
1861 for_each_possible_cpu(cpu)
1862 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1863}
2cfb7455 1864
81819f0f
CL
1865/*
1866 * Remove the cpu slab
1867 */
d0e0ac97
CG
1868static void deactivate_slab(struct kmem_cache *s, struct page *page,
1869 void *freelist)
81819f0f 1870{
2cfb7455 1871 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1872 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1873 int lock = 0;
1874 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1875 void *nextfree;
136333d1 1876 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1877 struct page new;
1878 struct page old;
1879
1880 if (page->freelist) {
84e554e6 1881 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1882 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1883 }
1884
894b8788 1885 /*
2cfb7455
CL
1886 * Stage one: Free all available per cpu objects back
1887 * to the page freelist while it is still frozen. Leave the
1888 * last one.
1889 *
1890 * There is no need to take the list->lock because the page
1891 * is still frozen.
1892 */
1893 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1894 void *prior;
1895 unsigned long counters;
1896
1897 do {
1898 prior = page->freelist;
1899 counters = page->counters;
1900 set_freepointer(s, freelist, prior);
1901 new.counters = counters;
1902 new.inuse--;
a0132ac0 1903 VM_BUG_ON(!new.frozen);
2cfb7455 1904
1d07171c 1905 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1906 prior, counters,
1907 freelist, new.counters,
1908 "drain percpu freelist"));
1909
1910 freelist = nextfree;
1911 }
1912
894b8788 1913 /*
2cfb7455
CL
1914 * Stage two: Ensure that the page is unfrozen while the
1915 * list presence reflects the actual number of objects
1916 * during unfreeze.
1917 *
1918 * We setup the list membership and then perform a cmpxchg
1919 * with the count. If there is a mismatch then the page
1920 * is not unfrozen but the page is on the wrong list.
1921 *
1922 * Then we restart the process which may have to remove
1923 * the page from the list that we just put it on again
1924 * because the number of objects in the slab may have
1925 * changed.
894b8788 1926 */
2cfb7455 1927redo:
894b8788 1928
2cfb7455
CL
1929 old.freelist = page->freelist;
1930 old.counters = page->counters;
a0132ac0 1931 VM_BUG_ON(!old.frozen);
7c2e132c 1932
2cfb7455
CL
1933 /* Determine target state of the slab */
1934 new.counters = old.counters;
1935 if (freelist) {
1936 new.inuse--;
1937 set_freepointer(s, freelist, old.freelist);
1938 new.freelist = freelist;
1939 } else
1940 new.freelist = old.freelist;
1941
1942 new.frozen = 0;
1943
8a5b20ae 1944 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1945 m = M_FREE;
1946 else if (new.freelist) {
1947 m = M_PARTIAL;
1948 if (!lock) {
1949 lock = 1;
1950 /*
1951 * Taking the spinlock removes the possiblity
1952 * that acquire_slab() will see a slab page that
1953 * is frozen
1954 */
1955 spin_lock(&n->list_lock);
1956 }
1957 } else {
1958 m = M_FULL;
1959 if (kmem_cache_debug(s) && !lock) {
1960 lock = 1;
1961 /*
1962 * This also ensures that the scanning of full
1963 * slabs from diagnostic functions will not see
1964 * any frozen slabs.
1965 */
1966 spin_lock(&n->list_lock);
1967 }
1968 }
1969
1970 if (l != m) {
1971
1972 if (l == M_PARTIAL)
1973
1974 remove_partial(n, page);
1975
1976 else if (l == M_FULL)
894b8788 1977
c65c1877 1978 remove_full(s, n, page);
2cfb7455
CL
1979
1980 if (m == M_PARTIAL) {
1981
1982 add_partial(n, page, tail);
136333d1 1983 stat(s, tail);
2cfb7455
CL
1984
1985 } else if (m == M_FULL) {
894b8788 1986
2cfb7455
CL
1987 stat(s, DEACTIVATE_FULL);
1988 add_full(s, n, page);
1989
1990 }
1991 }
1992
1993 l = m;
1d07171c 1994 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1995 old.freelist, old.counters,
1996 new.freelist, new.counters,
1997 "unfreezing slab"))
1998 goto redo;
1999
2cfb7455
CL
2000 if (lock)
2001 spin_unlock(&n->list_lock);
2002
2003 if (m == M_FREE) {
2004 stat(s, DEACTIVATE_EMPTY);
2005 discard_slab(s, page);
2006 stat(s, FREE_SLAB);
894b8788 2007 }
81819f0f
CL
2008}
2009
d24ac77f
JK
2010/*
2011 * Unfreeze all the cpu partial slabs.
2012 *
59a09917
CL
2013 * This function must be called with interrupts disabled
2014 * for the cpu using c (or some other guarantee must be there
2015 * to guarantee no concurrent accesses).
d24ac77f 2016 */
59a09917
CL
2017static void unfreeze_partials(struct kmem_cache *s,
2018 struct kmem_cache_cpu *c)
49e22585 2019{
345c905d 2020#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2021 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2022 struct page *page, *discard_page = NULL;
49e22585
CL
2023
2024 while ((page = c->partial)) {
49e22585
CL
2025 struct page new;
2026 struct page old;
2027
2028 c->partial = page->next;
43d77867
JK
2029
2030 n2 = get_node(s, page_to_nid(page));
2031 if (n != n2) {
2032 if (n)
2033 spin_unlock(&n->list_lock);
2034
2035 n = n2;
2036 spin_lock(&n->list_lock);
2037 }
49e22585
CL
2038
2039 do {
2040
2041 old.freelist = page->freelist;
2042 old.counters = page->counters;
a0132ac0 2043 VM_BUG_ON(!old.frozen);
49e22585
CL
2044
2045 new.counters = old.counters;
2046 new.freelist = old.freelist;
2047
2048 new.frozen = 0;
2049
d24ac77f 2050 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2051 old.freelist, old.counters,
2052 new.freelist, new.counters,
2053 "unfreezing slab"));
2054
8a5b20ae 2055 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2056 page->next = discard_page;
2057 discard_page = page;
43d77867
JK
2058 } else {
2059 add_partial(n, page, DEACTIVATE_TO_TAIL);
2060 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2061 }
2062 }
2063
2064 if (n)
2065 spin_unlock(&n->list_lock);
9ada1934
SL
2066
2067 while (discard_page) {
2068 page = discard_page;
2069 discard_page = discard_page->next;
2070
2071 stat(s, DEACTIVATE_EMPTY);
2072 discard_slab(s, page);
2073 stat(s, FREE_SLAB);
2074 }
345c905d 2075#endif
49e22585
CL
2076}
2077
2078/*
2079 * Put a page that was just frozen (in __slab_free) into a partial page
2080 * slot if available. This is done without interrupts disabled and without
2081 * preemption disabled. The cmpxchg is racy and may put the partial page
2082 * onto a random cpus partial slot.
2083 *
2084 * If we did not find a slot then simply move all the partials to the
2085 * per node partial list.
2086 */
633b0764 2087static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2088{
345c905d 2089#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2090 struct page *oldpage;
2091 int pages;
2092 int pobjects;
2093
d6e0b7fa 2094 preempt_disable();
49e22585
CL
2095 do {
2096 pages = 0;
2097 pobjects = 0;
2098 oldpage = this_cpu_read(s->cpu_slab->partial);
2099
2100 if (oldpage) {
2101 pobjects = oldpage->pobjects;
2102 pages = oldpage->pages;
2103 if (drain && pobjects > s->cpu_partial) {
2104 unsigned long flags;
2105 /*
2106 * partial array is full. Move the existing
2107 * set to the per node partial list.
2108 */
2109 local_irq_save(flags);
59a09917 2110 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2111 local_irq_restore(flags);
e24fc410 2112 oldpage = NULL;
49e22585
CL
2113 pobjects = 0;
2114 pages = 0;
8028dcea 2115 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2116 }
2117 }
2118
2119 pages++;
2120 pobjects += page->objects - page->inuse;
2121
2122 page->pages = pages;
2123 page->pobjects = pobjects;
2124 page->next = oldpage;
2125
d0e0ac97
CG
2126 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2127 != oldpage);
d6e0b7fa
VD
2128 if (unlikely(!s->cpu_partial)) {
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2133 local_irq_restore(flags);
2134 }
2135 preempt_enable();
345c905d 2136#endif
49e22585
CL
2137}
2138
dfb4f096 2139static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2140{
84e554e6 2141 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2142 deactivate_slab(s, c->page, c->freelist);
2143
2144 c->tid = next_tid(c->tid);
2145 c->page = NULL;
2146 c->freelist = NULL;
81819f0f
CL
2147}
2148
2149/*
2150 * Flush cpu slab.
6446faa2 2151 *
81819f0f
CL
2152 * Called from IPI handler with interrupts disabled.
2153 */
0c710013 2154static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2155{
9dfc6e68 2156 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2157
49e22585
CL
2158 if (likely(c)) {
2159 if (c->page)
2160 flush_slab(s, c);
2161
59a09917 2162 unfreeze_partials(s, c);
49e22585 2163 }
81819f0f
CL
2164}
2165
2166static void flush_cpu_slab(void *d)
2167{
2168 struct kmem_cache *s = d;
81819f0f 2169
dfb4f096 2170 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2171}
2172
a8364d55
GBY
2173static bool has_cpu_slab(int cpu, void *info)
2174{
2175 struct kmem_cache *s = info;
2176 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2177
02e1a9cd 2178 return c->page || c->partial;
a8364d55
GBY
2179}
2180
81819f0f
CL
2181static void flush_all(struct kmem_cache *s)
2182{
a8364d55 2183 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2184}
2185
dfb4f096
CL
2186/*
2187 * Check if the objects in a per cpu structure fit numa
2188 * locality expectations.
2189 */
57d437d2 2190static inline int node_match(struct page *page, int node)
dfb4f096
CL
2191{
2192#ifdef CONFIG_NUMA
4d7868e6 2193 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2194 return 0;
2195#endif
2196 return 1;
2197}
2198
9a02d699 2199#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2200static int count_free(struct page *page)
2201{
2202 return page->objects - page->inuse;
2203}
2204
9a02d699
DR
2205static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2206{
2207 return atomic_long_read(&n->total_objects);
2208}
2209#endif /* CONFIG_SLUB_DEBUG */
2210
2211#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2212static unsigned long count_partial(struct kmem_cache_node *n,
2213 int (*get_count)(struct page *))
2214{
2215 unsigned long flags;
2216 unsigned long x = 0;
2217 struct page *page;
2218
2219 spin_lock_irqsave(&n->list_lock, flags);
2220 list_for_each_entry(page, &n->partial, lru)
2221 x += get_count(page);
2222 spin_unlock_irqrestore(&n->list_lock, flags);
2223 return x;
2224}
9a02d699 2225#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2226
781b2ba6
PE
2227static noinline void
2228slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2229{
9a02d699
DR
2230#ifdef CONFIG_SLUB_DEBUG
2231 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2232 DEFAULT_RATELIMIT_BURST);
781b2ba6 2233 int node;
fa45dc25 2234 struct kmem_cache_node *n;
781b2ba6 2235
9a02d699
DR
2236 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2237 return;
2238
5b3810e5
VB
2239 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2240 nid, gfpflags, &gfpflags);
f9f58285
FF
2241 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2242 s->name, s->object_size, s->size, oo_order(s->oo),
2243 oo_order(s->min));
781b2ba6 2244
3b0efdfa 2245 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2246 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2247 s->name);
fa5ec8a1 2248
fa45dc25 2249 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2250 unsigned long nr_slabs;
2251 unsigned long nr_objs;
2252 unsigned long nr_free;
2253
26c02cf0
AB
2254 nr_free = count_partial(n, count_free);
2255 nr_slabs = node_nr_slabs(n);
2256 nr_objs = node_nr_objs(n);
781b2ba6 2257
f9f58285 2258 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2259 node, nr_slabs, nr_objs, nr_free);
2260 }
9a02d699 2261#endif
781b2ba6
PE
2262}
2263
497b66f2
CL
2264static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2265 int node, struct kmem_cache_cpu **pc)
2266{
6faa6833 2267 void *freelist;
188fd063
CL
2268 struct kmem_cache_cpu *c = *pc;
2269 struct page *page;
497b66f2 2270
188fd063 2271 freelist = get_partial(s, flags, node, c);
497b66f2 2272
188fd063
CL
2273 if (freelist)
2274 return freelist;
2275
2276 page = new_slab(s, flags, node);
497b66f2 2277 if (page) {
7c8e0181 2278 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2279 if (c->page)
2280 flush_slab(s, c);
2281
2282 /*
2283 * No other reference to the page yet so we can
2284 * muck around with it freely without cmpxchg
2285 */
6faa6833 2286 freelist = page->freelist;
497b66f2
CL
2287 page->freelist = NULL;
2288
2289 stat(s, ALLOC_SLAB);
497b66f2
CL
2290 c->page = page;
2291 *pc = c;
2292 } else
6faa6833 2293 freelist = NULL;
497b66f2 2294
6faa6833 2295 return freelist;
497b66f2
CL
2296}
2297
072bb0aa
MG
2298static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2299{
2300 if (unlikely(PageSlabPfmemalloc(page)))
2301 return gfp_pfmemalloc_allowed(gfpflags);
2302
2303 return true;
2304}
2305
213eeb9f 2306/*
d0e0ac97
CG
2307 * Check the page->freelist of a page and either transfer the freelist to the
2308 * per cpu freelist or deactivate the page.
213eeb9f
CL
2309 *
2310 * The page is still frozen if the return value is not NULL.
2311 *
2312 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2313 *
2314 * This function must be called with interrupt disabled.
213eeb9f
CL
2315 */
2316static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2317{
2318 struct page new;
2319 unsigned long counters;
2320 void *freelist;
2321
2322 do {
2323 freelist = page->freelist;
2324 counters = page->counters;
6faa6833 2325
213eeb9f 2326 new.counters = counters;
a0132ac0 2327 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2328
2329 new.inuse = page->objects;
2330 new.frozen = freelist != NULL;
2331
d24ac77f 2332 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2333 freelist, counters,
2334 NULL, new.counters,
2335 "get_freelist"));
2336
2337 return freelist;
2338}
2339
81819f0f 2340/*
894b8788
CL
2341 * Slow path. The lockless freelist is empty or we need to perform
2342 * debugging duties.
2343 *
894b8788
CL
2344 * Processing is still very fast if new objects have been freed to the
2345 * regular freelist. In that case we simply take over the regular freelist
2346 * as the lockless freelist and zap the regular freelist.
81819f0f 2347 *
894b8788
CL
2348 * If that is not working then we fall back to the partial lists. We take the
2349 * first element of the freelist as the object to allocate now and move the
2350 * rest of the freelist to the lockless freelist.
81819f0f 2351 *
894b8788 2352 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2353 * we need to allocate a new slab. This is the slowest path since it involves
2354 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2355 *
2356 * Version of __slab_alloc to use when we know that interrupts are
2357 * already disabled (which is the case for bulk allocation).
81819f0f 2358 */
a380a3c7 2359static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2360 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2361{
6faa6833 2362 void *freelist;
f6e7def7 2363 struct page *page;
81819f0f 2364
f6e7def7
CL
2365 page = c->page;
2366 if (!page)
81819f0f 2367 goto new_slab;
49e22585 2368redo:
6faa6833 2369
57d437d2 2370 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2371 int searchnode = node;
2372
2373 if (node != NUMA_NO_NODE && !node_present_pages(node))
2374 searchnode = node_to_mem_node(node);
2375
2376 if (unlikely(!node_match(page, searchnode))) {
2377 stat(s, ALLOC_NODE_MISMATCH);
2378 deactivate_slab(s, page, c->freelist);
2379 c->page = NULL;
2380 c->freelist = NULL;
2381 goto new_slab;
2382 }
fc59c053 2383 }
6446faa2 2384
072bb0aa
MG
2385 /*
2386 * By rights, we should be searching for a slab page that was
2387 * PFMEMALLOC but right now, we are losing the pfmemalloc
2388 * information when the page leaves the per-cpu allocator
2389 */
2390 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2391 deactivate_slab(s, page, c->freelist);
2392 c->page = NULL;
2393 c->freelist = NULL;
2394 goto new_slab;
2395 }
2396
73736e03 2397 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2398 freelist = c->freelist;
2399 if (freelist)
73736e03 2400 goto load_freelist;
03e404af 2401
f6e7def7 2402 freelist = get_freelist(s, page);
6446faa2 2403
6faa6833 2404 if (!freelist) {
03e404af
CL
2405 c->page = NULL;
2406 stat(s, DEACTIVATE_BYPASS);
fc59c053 2407 goto new_slab;
03e404af 2408 }
6446faa2 2409
84e554e6 2410 stat(s, ALLOC_REFILL);
6446faa2 2411
894b8788 2412load_freelist:
507effea
CL
2413 /*
2414 * freelist is pointing to the list of objects to be used.
2415 * page is pointing to the page from which the objects are obtained.
2416 * That page must be frozen for per cpu allocations to work.
2417 */
a0132ac0 2418 VM_BUG_ON(!c->page->frozen);
6faa6833 2419 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2420 c->tid = next_tid(c->tid);
6faa6833 2421 return freelist;
81819f0f 2422
81819f0f 2423new_slab:
2cfb7455 2424
49e22585 2425 if (c->partial) {
f6e7def7
CL
2426 page = c->page = c->partial;
2427 c->partial = page->next;
49e22585
CL
2428 stat(s, CPU_PARTIAL_ALLOC);
2429 c->freelist = NULL;
2430 goto redo;
81819f0f
CL
2431 }
2432
188fd063 2433 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2434
f4697436 2435 if (unlikely(!freelist)) {
9a02d699 2436 slab_out_of_memory(s, gfpflags, node);
f4697436 2437 return NULL;
81819f0f 2438 }
2cfb7455 2439
f6e7def7 2440 page = c->page;
5091b74a 2441 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2442 goto load_freelist;
2cfb7455 2443
497b66f2 2444 /* Only entered in the debug case */
d0e0ac97
CG
2445 if (kmem_cache_debug(s) &&
2446 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2447 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2448
f6e7def7 2449 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2450 c->page = NULL;
2451 c->freelist = NULL;
6faa6833 2452 return freelist;
894b8788
CL
2453}
2454
a380a3c7
CL
2455/*
2456 * Another one that disabled interrupt and compensates for possible
2457 * cpu changes by refetching the per cpu area pointer.
2458 */
2459static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2460 unsigned long addr, struct kmem_cache_cpu *c)
2461{
2462 void *p;
2463 unsigned long flags;
2464
2465 local_irq_save(flags);
2466#ifdef CONFIG_PREEMPT
2467 /*
2468 * We may have been preempted and rescheduled on a different
2469 * cpu before disabling interrupts. Need to reload cpu area
2470 * pointer.
2471 */
2472 c = this_cpu_ptr(s->cpu_slab);
2473#endif
2474
2475 p = ___slab_alloc(s, gfpflags, node, addr, c);
2476 local_irq_restore(flags);
2477 return p;
2478}
2479
894b8788
CL
2480/*
2481 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2482 * have the fastpath folded into their functions. So no function call
2483 * overhead for requests that can be satisfied on the fastpath.
2484 *
2485 * The fastpath works by first checking if the lockless freelist can be used.
2486 * If not then __slab_alloc is called for slow processing.
2487 *
2488 * Otherwise we can simply pick the next object from the lockless free list.
2489 */
2b847c3c 2490static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2491 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2492{
03ec0ed5 2493 void *object;
dfb4f096 2494 struct kmem_cache_cpu *c;
57d437d2 2495 struct page *page;
8a5ec0ba 2496 unsigned long tid;
1f84260c 2497
8135be5a
VD
2498 s = slab_pre_alloc_hook(s, gfpflags);
2499 if (!s)
773ff60e 2500 return NULL;
8a5ec0ba 2501redo:
8a5ec0ba
CL
2502 /*
2503 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2504 * enabled. We may switch back and forth between cpus while
2505 * reading from one cpu area. That does not matter as long
2506 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2507 *
9aabf810
JK
2508 * We should guarantee that tid and kmem_cache are retrieved on
2509 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2510 * to check if it is matched or not.
8a5ec0ba 2511 */
9aabf810
JK
2512 do {
2513 tid = this_cpu_read(s->cpu_slab->tid);
2514 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2515 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2516 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2517
2518 /*
2519 * Irqless object alloc/free algorithm used here depends on sequence
2520 * of fetching cpu_slab's data. tid should be fetched before anything
2521 * on c to guarantee that object and page associated with previous tid
2522 * won't be used with current tid. If we fetch tid first, object and
2523 * page could be one associated with next tid and our alloc/free
2524 * request will be failed. In this case, we will retry. So, no problem.
2525 */
2526 barrier();
8a5ec0ba 2527
8a5ec0ba
CL
2528 /*
2529 * The transaction ids are globally unique per cpu and per operation on
2530 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2531 * occurs on the right processor and that there was no operation on the
2532 * linked list in between.
2533 */
8a5ec0ba 2534
9dfc6e68 2535 object = c->freelist;
57d437d2 2536 page = c->page;
8eae1492 2537 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2538 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2539 stat(s, ALLOC_SLOWPATH);
2540 } else {
0ad9500e
ED
2541 void *next_object = get_freepointer_safe(s, object);
2542
8a5ec0ba 2543 /*
25985edc 2544 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2545 * operation and if we are on the right processor.
2546 *
d0e0ac97
CG
2547 * The cmpxchg does the following atomically (without lock
2548 * semantics!)
8a5ec0ba
CL
2549 * 1. Relocate first pointer to the current per cpu area.
2550 * 2. Verify that tid and freelist have not been changed
2551 * 3. If they were not changed replace tid and freelist
2552 *
d0e0ac97
CG
2553 * Since this is without lock semantics the protection is only
2554 * against code executing on this cpu *not* from access by
2555 * other cpus.
8a5ec0ba 2556 */
933393f5 2557 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2558 s->cpu_slab->freelist, s->cpu_slab->tid,
2559 object, tid,
0ad9500e 2560 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2561
2562 note_cmpxchg_failure("slab_alloc", s, tid);
2563 goto redo;
2564 }
0ad9500e 2565 prefetch_freepointer(s, next_object);
84e554e6 2566 stat(s, ALLOC_FASTPATH);
894b8788 2567 }
8a5ec0ba 2568
74e2134f 2569 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2570 memset(object, 0, s->object_size);
d07dbea4 2571
03ec0ed5 2572 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2573
894b8788 2574 return object;
81819f0f
CL
2575}
2576
2b847c3c
EG
2577static __always_inline void *slab_alloc(struct kmem_cache *s,
2578 gfp_t gfpflags, unsigned long addr)
2579{
2580 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2581}
2582
81819f0f
CL
2583void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2584{
2b847c3c 2585 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2586
d0e0ac97
CG
2587 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2588 s->size, gfpflags);
5b882be4
EGM
2589
2590 return ret;
81819f0f
CL
2591}
2592EXPORT_SYMBOL(kmem_cache_alloc);
2593
0f24f128 2594#ifdef CONFIG_TRACING
4a92379b
RK
2595void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2596{
2b847c3c 2597 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2598 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2599 kasan_kmalloc(s, ret, size);
4a92379b
RK
2600 return ret;
2601}
2602EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2603#endif
2604
81819f0f
CL
2605#ifdef CONFIG_NUMA
2606void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2607{
2b847c3c 2608 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2609
ca2b84cb 2610 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2611 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2612
2613 return ret;
81819f0f
CL
2614}
2615EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2616
0f24f128 2617#ifdef CONFIG_TRACING
4a92379b 2618void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2619 gfp_t gfpflags,
4a92379b 2620 int node, size_t size)
5b882be4 2621{
2b847c3c 2622 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2623
2624 trace_kmalloc_node(_RET_IP_, ret,
2625 size, s->size, gfpflags, node);
0316bec2
AR
2626
2627 kasan_kmalloc(s, ret, size);
4a92379b 2628 return ret;
5b882be4 2629}
4a92379b 2630EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2631#endif
5d1f57e4 2632#endif
5b882be4 2633
81819f0f 2634/*
94e4d712 2635 * Slow path handling. This may still be called frequently since objects
894b8788 2636 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2637 *
894b8788
CL
2638 * So we still attempt to reduce cache line usage. Just take the slab
2639 * lock and free the item. If there is no additional partial page
2640 * handling required then we can return immediately.
81819f0f 2641 */
894b8788 2642static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2643 void *head, void *tail, int cnt,
2644 unsigned long addr)
2645
81819f0f
CL
2646{
2647 void *prior;
2cfb7455 2648 int was_frozen;
2cfb7455
CL
2649 struct page new;
2650 unsigned long counters;
2651 struct kmem_cache_node *n = NULL;
61728d1e 2652 unsigned long uninitialized_var(flags);
81819f0f 2653
8a5ec0ba 2654 stat(s, FREE_SLOWPATH);
81819f0f 2655
19c7ff9e 2656 if (kmem_cache_debug(s) &&
282acb43 2657 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2658 return;
6446faa2 2659
2cfb7455 2660 do {
837d678d
JK
2661 if (unlikely(n)) {
2662 spin_unlock_irqrestore(&n->list_lock, flags);
2663 n = NULL;
2664 }
2cfb7455
CL
2665 prior = page->freelist;
2666 counters = page->counters;
81084651 2667 set_freepointer(s, tail, prior);
2cfb7455
CL
2668 new.counters = counters;
2669 was_frozen = new.frozen;
81084651 2670 new.inuse -= cnt;
837d678d 2671 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2672
c65c1877 2673 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2674
2675 /*
d0e0ac97
CG
2676 * Slab was on no list before and will be
2677 * partially empty
2678 * We can defer the list move and instead
2679 * freeze it.
49e22585
CL
2680 */
2681 new.frozen = 1;
2682
c65c1877 2683 } else { /* Needs to be taken off a list */
49e22585 2684
b455def2 2685 n = get_node(s, page_to_nid(page));
49e22585
CL
2686 /*
2687 * Speculatively acquire the list_lock.
2688 * If the cmpxchg does not succeed then we may
2689 * drop the list_lock without any processing.
2690 *
2691 * Otherwise the list_lock will synchronize with
2692 * other processors updating the list of slabs.
2693 */
2694 spin_lock_irqsave(&n->list_lock, flags);
2695
2696 }
2cfb7455 2697 }
81819f0f 2698
2cfb7455
CL
2699 } while (!cmpxchg_double_slab(s, page,
2700 prior, counters,
81084651 2701 head, new.counters,
2cfb7455 2702 "__slab_free"));
81819f0f 2703
2cfb7455 2704 if (likely(!n)) {
49e22585
CL
2705
2706 /*
2707 * If we just froze the page then put it onto the
2708 * per cpu partial list.
2709 */
8028dcea 2710 if (new.frozen && !was_frozen) {
49e22585 2711 put_cpu_partial(s, page, 1);
8028dcea
AS
2712 stat(s, CPU_PARTIAL_FREE);
2713 }
49e22585 2714 /*
2cfb7455
CL
2715 * The list lock was not taken therefore no list
2716 * activity can be necessary.
2717 */
b455def2
L
2718 if (was_frozen)
2719 stat(s, FREE_FROZEN);
2720 return;
2721 }
81819f0f 2722
8a5b20ae 2723 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2724 goto slab_empty;
2725
81819f0f 2726 /*
837d678d
JK
2727 * Objects left in the slab. If it was not on the partial list before
2728 * then add it.
81819f0f 2729 */
345c905d
JK
2730 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2731 if (kmem_cache_debug(s))
c65c1877 2732 remove_full(s, n, page);
837d678d
JK
2733 add_partial(n, page, DEACTIVATE_TO_TAIL);
2734 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2735 }
80f08c19 2736 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2737 return;
2738
2739slab_empty:
a973e9dd 2740 if (prior) {
81819f0f 2741 /*
6fbabb20 2742 * Slab on the partial list.
81819f0f 2743 */
5cc6eee8 2744 remove_partial(n, page);
84e554e6 2745 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2746 } else {
6fbabb20 2747 /* Slab must be on the full list */
c65c1877
PZ
2748 remove_full(s, n, page);
2749 }
2cfb7455 2750
80f08c19 2751 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2752 stat(s, FREE_SLAB);
81819f0f 2753 discard_slab(s, page);
81819f0f
CL
2754}
2755
894b8788
CL
2756/*
2757 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2758 * can perform fastpath freeing without additional function calls.
2759 *
2760 * The fastpath is only possible if we are freeing to the current cpu slab
2761 * of this processor. This typically the case if we have just allocated
2762 * the item before.
2763 *
2764 * If fastpath is not possible then fall back to __slab_free where we deal
2765 * with all sorts of special processing.
81084651
JDB
2766 *
2767 * Bulk free of a freelist with several objects (all pointing to the
2768 * same page) possible by specifying head and tail ptr, plus objects
2769 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2770 */
81084651
JDB
2771static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2772 void *head, void *tail, int cnt,
2773 unsigned long addr)
894b8788 2774{
81084651 2775 void *tail_obj = tail ? : head;
dfb4f096 2776 struct kmem_cache_cpu *c;
8a5ec0ba 2777 unsigned long tid;
1f84260c 2778
81084651 2779 slab_free_freelist_hook(s, head, tail);
c016b0bd 2780
8a5ec0ba
CL
2781redo:
2782 /*
2783 * Determine the currently cpus per cpu slab.
2784 * The cpu may change afterward. However that does not matter since
2785 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2786 * during the cmpxchg then the free will succeed.
8a5ec0ba 2787 */
9aabf810
JK
2788 do {
2789 tid = this_cpu_read(s->cpu_slab->tid);
2790 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2791 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2792 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2793
9aabf810
JK
2794 /* Same with comment on barrier() in slab_alloc_node() */
2795 barrier();
c016b0bd 2796
442b06bc 2797 if (likely(page == c->page)) {
81084651 2798 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2799
933393f5 2800 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2801 s->cpu_slab->freelist, s->cpu_slab->tid,
2802 c->freelist, tid,
81084651 2803 head, next_tid(tid)))) {
8a5ec0ba
CL
2804
2805 note_cmpxchg_failure("slab_free", s, tid);
2806 goto redo;
2807 }
84e554e6 2808 stat(s, FREE_FASTPATH);
894b8788 2809 } else
81084651 2810 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2811
894b8788
CL
2812}
2813
81819f0f
CL
2814void kmem_cache_free(struct kmem_cache *s, void *x)
2815{
b9ce5ef4
GC
2816 s = cache_from_obj(s, x);
2817 if (!s)
79576102 2818 return;
81084651 2819 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2820 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2821}
2822EXPORT_SYMBOL(kmem_cache_free);
2823
d0ecd894 2824struct detached_freelist {
fbd02630 2825 struct page *page;
d0ecd894
JDB
2826 void *tail;
2827 void *freelist;
2828 int cnt;
376bf125 2829 struct kmem_cache *s;
d0ecd894 2830};
fbd02630 2831
d0ecd894
JDB
2832/*
2833 * This function progressively scans the array with free objects (with
2834 * a limited look ahead) and extract objects belonging to the same
2835 * page. It builds a detached freelist directly within the given
2836 * page/objects. This can happen without any need for
2837 * synchronization, because the objects are owned by running process.
2838 * The freelist is build up as a single linked list in the objects.
2839 * The idea is, that this detached freelist can then be bulk
2840 * transferred to the real freelist(s), but only requiring a single
2841 * synchronization primitive. Look ahead in the array is limited due
2842 * to performance reasons.
2843 */
376bf125
JDB
2844static inline
2845int build_detached_freelist(struct kmem_cache *s, size_t size,
2846 void **p, struct detached_freelist *df)
d0ecd894
JDB
2847{
2848 size_t first_skipped_index = 0;
2849 int lookahead = 3;
2850 void *object;
ca257195 2851 struct page *page;
fbd02630 2852
d0ecd894
JDB
2853 /* Always re-init detached_freelist */
2854 df->page = NULL;
fbd02630 2855
d0ecd894
JDB
2856 do {
2857 object = p[--size];
ca257195 2858 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2859 } while (!object && size);
3eed034d 2860
d0ecd894
JDB
2861 if (!object)
2862 return 0;
fbd02630 2863
ca257195
JDB
2864 page = virt_to_head_page(object);
2865 if (!s) {
2866 /* Handle kalloc'ed objects */
2867 if (unlikely(!PageSlab(page))) {
2868 BUG_ON(!PageCompound(page));
2869 kfree_hook(object);
2870 __free_kmem_pages(page, compound_order(page));
2871 p[size] = NULL; /* mark object processed */
2872 return size;
2873 }
2874 /* Derive kmem_cache from object */
2875 df->s = page->slab_cache;
2876 } else {
2877 df->s = cache_from_obj(s, object); /* Support for memcg */
2878 }
376bf125 2879
d0ecd894 2880 /* Start new detached freelist */
ca257195 2881 df->page = page;
376bf125 2882 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
2883 df->tail = object;
2884 df->freelist = object;
2885 p[size] = NULL; /* mark object processed */
2886 df->cnt = 1;
2887
2888 while (size) {
2889 object = p[--size];
2890 if (!object)
2891 continue; /* Skip processed objects */
2892
2893 /* df->page is always set at this point */
2894 if (df->page == virt_to_head_page(object)) {
2895 /* Opportunity build freelist */
376bf125 2896 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
2897 df->freelist = object;
2898 df->cnt++;
2899 p[size] = NULL; /* mark object processed */
2900
2901 continue;
fbd02630 2902 }
d0ecd894
JDB
2903
2904 /* Limit look ahead search */
2905 if (!--lookahead)
2906 break;
2907
2908 if (!first_skipped_index)
2909 first_skipped_index = size + 1;
fbd02630 2910 }
d0ecd894
JDB
2911
2912 return first_skipped_index;
2913}
2914
d0ecd894 2915/* Note that interrupts must be enabled when calling this function. */
376bf125 2916void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
2917{
2918 if (WARN_ON(!size))
2919 return;
2920
2921 do {
2922 struct detached_freelist df;
2923
2924 size = build_detached_freelist(s, size, p, &df);
2925 if (unlikely(!df.page))
2926 continue;
2927
376bf125 2928 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 2929 } while (likely(size));
484748f0
CL
2930}
2931EXPORT_SYMBOL(kmem_cache_free_bulk);
2932
994eb764 2933/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2934int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2935 void **p)
484748f0 2936{
994eb764
JDB
2937 struct kmem_cache_cpu *c;
2938 int i;
2939
03ec0ed5
JDB
2940 /* memcg and kmem_cache debug support */
2941 s = slab_pre_alloc_hook(s, flags);
2942 if (unlikely(!s))
2943 return false;
994eb764
JDB
2944 /*
2945 * Drain objects in the per cpu slab, while disabling local
2946 * IRQs, which protects against PREEMPT and interrupts
2947 * handlers invoking normal fastpath.
2948 */
2949 local_irq_disable();
2950 c = this_cpu_ptr(s->cpu_slab);
2951
2952 for (i = 0; i < size; i++) {
2953 void *object = c->freelist;
2954
ebe909e0 2955 if (unlikely(!object)) {
ebe909e0
JDB
2956 /*
2957 * Invoking slow path likely have side-effect
2958 * of re-populating per CPU c->freelist
2959 */
87098373 2960 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2961 _RET_IP_, c);
87098373
CL
2962 if (unlikely(!p[i]))
2963 goto error;
2964
ebe909e0
JDB
2965 c = this_cpu_ptr(s->cpu_slab);
2966 continue; /* goto for-loop */
2967 }
994eb764
JDB
2968 c->freelist = get_freepointer(s, object);
2969 p[i] = object;
2970 }
2971 c->tid = next_tid(c->tid);
2972 local_irq_enable();
2973
2974 /* Clear memory outside IRQ disabled fastpath loop */
2975 if (unlikely(flags & __GFP_ZERO)) {
2976 int j;
2977
2978 for (j = 0; j < i; j++)
2979 memset(p[j], 0, s->object_size);
2980 }
2981
03ec0ed5
JDB
2982 /* memcg and kmem_cache debug support */
2983 slab_post_alloc_hook(s, flags, size, p);
865762a8 2984 return i;
87098373 2985error:
87098373 2986 local_irq_enable();
03ec0ed5
JDB
2987 slab_post_alloc_hook(s, flags, i, p);
2988 __kmem_cache_free_bulk(s, i, p);
865762a8 2989 return 0;
484748f0
CL
2990}
2991EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2992
2993
81819f0f 2994/*
672bba3a
CL
2995 * Object placement in a slab is made very easy because we always start at
2996 * offset 0. If we tune the size of the object to the alignment then we can
2997 * get the required alignment by putting one properly sized object after
2998 * another.
81819f0f
CL
2999 *
3000 * Notice that the allocation order determines the sizes of the per cpu
3001 * caches. Each processor has always one slab available for allocations.
3002 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3003 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3004 * locking overhead.
81819f0f
CL
3005 */
3006
3007/*
3008 * Mininum / Maximum order of slab pages. This influences locking overhead
3009 * and slab fragmentation. A higher order reduces the number of partial slabs
3010 * and increases the number of allocations possible without having to
3011 * take the list_lock.
3012 */
3013static int slub_min_order;
114e9e89 3014static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3015static int slub_min_objects;
81819f0f 3016
81819f0f
CL
3017/*
3018 * Calculate the order of allocation given an slab object size.
3019 *
672bba3a
CL
3020 * The order of allocation has significant impact on performance and other
3021 * system components. Generally order 0 allocations should be preferred since
3022 * order 0 does not cause fragmentation in the page allocator. Larger objects
3023 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3024 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3025 * would be wasted.
3026 *
3027 * In order to reach satisfactory performance we must ensure that a minimum
3028 * number of objects is in one slab. Otherwise we may generate too much
3029 * activity on the partial lists which requires taking the list_lock. This is
3030 * less a concern for large slabs though which are rarely used.
81819f0f 3031 *
672bba3a
CL
3032 * slub_max_order specifies the order where we begin to stop considering the
3033 * number of objects in a slab as critical. If we reach slub_max_order then
3034 * we try to keep the page order as low as possible. So we accept more waste
3035 * of space in favor of a small page order.
81819f0f 3036 *
672bba3a
CL
3037 * Higher order allocations also allow the placement of more objects in a
3038 * slab and thereby reduce object handling overhead. If the user has
3039 * requested a higher mininum order then we start with that one instead of
3040 * the smallest order which will fit the object.
81819f0f 3041 */
5e6d444e 3042static inline int slab_order(int size, int min_objects,
ab9a0f19 3043 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3044{
3045 int order;
3046 int rem;
6300ea75 3047 int min_order = slub_min_order;
81819f0f 3048
ab9a0f19 3049 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3050 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3051
9f835703 3052 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3053 order <= max_order; order++) {
81819f0f 3054
5e6d444e 3055 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3056
ab9a0f19 3057 rem = (slab_size - reserved) % size;
81819f0f 3058
5e6d444e 3059 if (rem <= slab_size / fract_leftover)
81819f0f 3060 break;
81819f0f 3061 }
672bba3a 3062
81819f0f
CL
3063 return order;
3064}
3065
ab9a0f19 3066static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3067{
3068 int order;
3069 int min_objects;
3070 int fraction;
e8120ff1 3071 int max_objects;
5e6d444e
CL
3072
3073 /*
3074 * Attempt to find best configuration for a slab. This
3075 * works by first attempting to generate a layout with
3076 * the best configuration and backing off gradually.
3077 *
422ff4d7 3078 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3079 * we reduce the minimum objects required in a slab.
3080 */
3081 min_objects = slub_min_objects;
9b2cd506
CL
3082 if (!min_objects)
3083 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3084 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3085 min_objects = min(min_objects, max_objects);
3086
5e6d444e 3087 while (min_objects > 1) {
c124f5b5 3088 fraction = 16;
5e6d444e
CL
3089 while (fraction >= 4) {
3090 order = slab_order(size, min_objects,
ab9a0f19 3091 slub_max_order, fraction, reserved);
5e6d444e
CL
3092 if (order <= slub_max_order)
3093 return order;
3094 fraction /= 2;
3095 }
5086c389 3096 min_objects--;
5e6d444e
CL
3097 }
3098
3099 /*
3100 * We were unable to place multiple objects in a slab. Now
3101 * lets see if we can place a single object there.
3102 */
ab9a0f19 3103 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3104 if (order <= slub_max_order)
3105 return order;
3106
3107 /*
3108 * Doh this slab cannot be placed using slub_max_order.
3109 */
ab9a0f19 3110 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3111 if (order < MAX_ORDER)
5e6d444e
CL
3112 return order;
3113 return -ENOSYS;
3114}
3115
5595cffc 3116static void
4053497d 3117init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3118{
3119 n->nr_partial = 0;
81819f0f
CL
3120 spin_lock_init(&n->list_lock);
3121 INIT_LIST_HEAD(&n->partial);
8ab1372f 3122#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3123 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3124 atomic_long_set(&n->total_objects, 0);
643b1138 3125 INIT_LIST_HEAD(&n->full);
8ab1372f 3126#endif
81819f0f
CL
3127}
3128
55136592 3129static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3130{
6c182dc0 3131 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3132 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3133
8a5ec0ba 3134 /*
d4d84fef
CM
3135 * Must align to double word boundary for the double cmpxchg
3136 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3137 */
d4d84fef
CM
3138 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3139 2 * sizeof(void *));
8a5ec0ba
CL
3140
3141 if (!s->cpu_slab)
3142 return 0;
3143
3144 init_kmem_cache_cpus(s);
4c93c355 3145
8a5ec0ba 3146 return 1;
4c93c355 3147}
4c93c355 3148
51df1142
CL
3149static struct kmem_cache *kmem_cache_node;
3150
81819f0f
CL
3151/*
3152 * No kmalloc_node yet so do it by hand. We know that this is the first
3153 * slab on the node for this slabcache. There are no concurrent accesses
3154 * possible.
3155 *
721ae22a
ZYW
3156 * Note that this function only works on the kmem_cache_node
3157 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3158 * memory on a fresh node that has no slab structures yet.
81819f0f 3159 */
55136592 3160static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3161{
3162 struct page *page;
3163 struct kmem_cache_node *n;
3164
51df1142 3165 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3166
51df1142 3167 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3168
3169 BUG_ON(!page);
a2f92ee7 3170 if (page_to_nid(page) != node) {
f9f58285
FF
3171 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3172 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3173 }
3174
81819f0f
CL
3175 n = page->freelist;
3176 BUG_ON(!n);
51df1142 3177 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3178 page->inuse = 1;
8cb0a506 3179 page->frozen = 0;
51df1142 3180 kmem_cache_node->node[node] = n;
8ab1372f 3181#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3182 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3183 init_tracking(kmem_cache_node, n);
8ab1372f 3184#endif
0316bec2 3185 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3186 init_kmem_cache_node(n);
51df1142 3187 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3188
67b6c900 3189 /*
1e4dd946
SR
3190 * No locks need to be taken here as it has just been
3191 * initialized and there is no concurrent access.
67b6c900 3192 */
1e4dd946 3193 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3194}
3195
3196static void free_kmem_cache_nodes(struct kmem_cache *s)
3197{
3198 int node;
fa45dc25 3199 struct kmem_cache_node *n;
81819f0f 3200
fa45dc25
CL
3201 for_each_kmem_cache_node(s, node, n) {
3202 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3203 s->node[node] = NULL;
3204 }
3205}
3206
52b4b950
DS
3207void __kmem_cache_release(struct kmem_cache *s)
3208{
3209 free_percpu(s->cpu_slab);
3210 free_kmem_cache_nodes(s);
3211}
3212
55136592 3213static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3214{
3215 int node;
81819f0f 3216
f64dc58c 3217 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3218 struct kmem_cache_node *n;
3219
73367bd8 3220 if (slab_state == DOWN) {
55136592 3221 early_kmem_cache_node_alloc(node);
73367bd8
AD
3222 continue;
3223 }
51df1142 3224 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3225 GFP_KERNEL, node);
81819f0f 3226
73367bd8
AD
3227 if (!n) {
3228 free_kmem_cache_nodes(s);
3229 return 0;
81819f0f 3230 }
73367bd8 3231
81819f0f 3232 s->node[node] = n;
4053497d 3233 init_kmem_cache_node(n);
81819f0f
CL
3234 }
3235 return 1;
3236}
81819f0f 3237
c0bdb232 3238static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3239{
3240 if (min < MIN_PARTIAL)
3241 min = MIN_PARTIAL;
3242 else if (min > MAX_PARTIAL)
3243 min = MAX_PARTIAL;
3244 s->min_partial = min;
3245}
3246
81819f0f
CL
3247/*
3248 * calculate_sizes() determines the order and the distribution of data within
3249 * a slab object.
3250 */
06b285dc 3251static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3252{
3253 unsigned long flags = s->flags;
3b0efdfa 3254 unsigned long size = s->object_size;
834f3d11 3255 int order;
81819f0f 3256
d8b42bf5
CL
3257 /*
3258 * Round up object size to the next word boundary. We can only
3259 * place the free pointer at word boundaries and this determines
3260 * the possible location of the free pointer.
3261 */
3262 size = ALIGN(size, sizeof(void *));
3263
3264#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3265 /*
3266 * Determine if we can poison the object itself. If the user of
3267 * the slab may touch the object after free or before allocation
3268 * then we should never poison the object itself.
3269 */
3270 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3271 !s->ctor)
81819f0f
CL
3272 s->flags |= __OBJECT_POISON;
3273 else
3274 s->flags &= ~__OBJECT_POISON;
3275
81819f0f
CL
3276
3277 /*
672bba3a 3278 * If we are Redzoning then check if there is some space between the
81819f0f 3279 * end of the object and the free pointer. If not then add an
672bba3a 3280 * additional word to have some bytes to store Redzone information.
81819f0f 3281 */
3b0efdfa 3282 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3283 size += sizeof(void *);
41ecc55b 3284#endif
81819f0f
CL
3285
3286 /*
672bba3a
CL
3287 * With that we have determined the number of bytes in actual use
3288 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3289 */
3290 s->inuse = size;
3291
3292 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3293 s->ctor)) {
81819f0f
CL
3294 /*
3295 * Relocate free pointer after the object if it is not
3296 * permitted to overwrite the first word of the object on
3297 * kmem_cache_free.
3298 *
3299 * This is the case if we do RCU, have a constructor or
3300 * destructor or are poisoning the objects.
3301 */
3302 s->offset = size;
3303 size += sizeof(void *);
3304 }
3305
c12b3c62 3306#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3307 if (flags & SLAB_STORE_USER)
3308 /*
3309 * Need to store information about allocs and frees after
3310 * the object.
3311 */
3312 size += 2 * sizeof(struct track);
3313
d86bd1be 3314 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3315 /*
3316 * Add some empty padding so that we can catch
3317 * overwrites from earlier objects rather than let
3318 * tracking information or the free pointer be
0211a9c8 3319 * corrupted if a user writes before the start
81819f0f
CL
3320 * of the object.
3321 */
3322 size += sizeof(void *);
d86bd1be
JK
3323
3324 s->red_left_pad = sizeof(void *);
3325 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3326 size += s->red_left_pad;
3327 }
41ecc55b 3328#endif
672bba3a 3329
81819f0f
CL
3330 /*
3331 * SLUB stores one object immediately after another beginning from
3332 * offset 0. In order to align the objects we have to simply size
3333 * each object to conform to the alignment.
3334 */
45906855 3335 size = ALIGN(size, s->align);
81819f0f 3336 s->size = size;
06b285dc
CL
3337 if (forced_order >= 0)
3338 order = forced_order;
3339 else
ab9a0f19 3340 order = calculate_order(size, s->reserved);
81819f0f 3341
834f3d11 3342 if (order < 0)
81819f0f
CL
3343 return 0;
3344
b7a49f0d 3345 s->allocflags = 0;
834f3d11 3346 if (order)
b7a49f0d
CL
3347 s->allocflags |= __GFP_COMP;
3348
3349 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3350 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3351
3352 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3353 s->allocflags |= __GFP_RECLAIMABLE;
3354
81819f0f
CL
3355 /*
3356 * Determine the number of objects per slab
3357 */
ab9a0f19
LJ
3358 s->oo = oo_make(order, size, s->reserved);
3359 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3360 if (oo_objects(s->oo) > oo_objects(s->max))
3361 s->max = s->oo;
81819f0f 3362
834f3d11 3363 return !!oo_objects(s->oo);
81819f0f
CL
3364}
3365
8a13a4cc 3366static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3367{
8a13a4cc 3368 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3369 s->reserved = 0;
81819f0f 3370
da9a638c
LJ
3371 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3372 s->reserved = sizeof(struct rcu_head);
81819f0f 3373
06b285dc 3374 if (!calculate_sizes(s, -1))
81819f0f 3375 goto error;
3de47213
DR
3376 if (disable_higher_order_debug) {
3377 /*
3378 * Disable debugging flags that store metadata if the min slab
3379 * order increased.
3380 */
3b0efdfa 3381 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3382 s->flags &= ~DEBUG_METADATA_FLAGS;
3383 s->offset = 0;
3384 if (!calculate_sizes(s, -1))
3385 goto error;
3386 }
3387 }
81819f0f 3388
2565409f
HC
3389#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3390 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3391 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3392 /* Enable fast mode */
3393 s->flags |= __CMPXCHG_DOUBLE;
3394#endif
3395
3b89d7d8
DR
3396 /*
3397 * The larger the object size is, the more pages we want on the partial
3398 * list to avoid pounding the page allocator excessively.
3399 */
49e22585
CL
3400 set_min_partial(s, ilog2(s->size) / 2);
3401
3402 /*
3403 * cpu_partial determined the maximum number of objects kept in the
3404 * per cpu partial lists of a processor.
3405 *
3406 * Per cpu partial lists mainly contain slabs that just have one
3407 * object freed. If they are used for allocation then they can be
3408 * filled up again with minimal effort. The slab will never hit the
3409 * per node partial lists and therefore no locking will be required.
3410 *
3411 * This setting also determines
3412 *
3413 * A) The number of objects from per cpu partial slabs dumped to the
3414 * per node list when we reach the limit.
9f264904 3415 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3416 * per node list when we run out of per cpu objects. We only fetch
3417 * 50% to keep some capacity around for frees.
49e22585 3418 */
345c905d 3419 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3420 s->cpu_partial = 0;
3421 else if (s->size >= PAGE_SIZE)
49e22585
CL
3422 s->cpu_partial = 2;
3423 else if (s->size >= 1024)
3424 s->cpu_partial = 6;
3425 else if (s->size >= 256)
3426 s->cpu_partial = 13;
3427 else
3428 s->cpu_partial = 30;
3429
81819f0f 3430#ifdef CONFIG_NUMA
e2cb96b7 3431 s->remote_node_defrag_ratio = 1000;
81819f0f 3432#endif
55136592 3433 if (!init_kmem_cache_nodes(s))
dfb4f096 3434 goto error;
81819f0f 3435
55136592 3436 if (alloc_kmem_cache_cpus(s))
278b1bb1 3437 return 0;
ff12059e 3438
4c93c355 3439 free_kmem_cache_nodes(s);
81819f0f
CL
3440error:
3441 if (flags & SLAB_PANIC)
756a025f
JP
3442 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3443 s->name, (unsigned long)s->size, s->size,
3444 oo_order(s->oo), s->offset, flags);
278b1bb1 3445 return -EINVAL;
81819f0f 3446}
81819f0f 3447
33b12c38
CL
3448static void list_slab_objects(struct kmem_cache *s, struct page *page,
3449 const char *text)
3450{
3451#ifdef CONFIG_SLUB_DEBUG
3452 void *addr = page_address(page);
3453 void *p;
a5dd5c11
NK
3454 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3455 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3456 if (!map)
3457 return;
945cf2b6 3458 slab_err(s, page, text, s->name);
33b12c38 3459 slab_lock(page);
33b12c38 3460
5f80b13a 3461 get_map(s, page, map);
33b12c38
CL
3462 for_each_object(p, s, addr, page->objects) {
3463
3464 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3465 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3466 print_tracking(s, p);
3467 }
3468 }
3469 slab_unlock(page);
bbd7d57b 3470 kfree(map);
33b12c38
CL
3471#endif
3472}
3473
81819f0f 3474/*
599870b1 3475 * Attempt to free all partial slabs on a node.
52b4b950
DS
3476 * This is called from __kmem_cache_shutdown(). We must take list_lock
3477 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3478 */
599870b1 3479static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3480{
81819f0f
CL
3481 struct page *page, *h;
3482
52b4b950
DS
3483 BUG_ON(irqs_disabled());
3484 spin_lock_irq(&n->list_lock);
33b12c38 3485 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3486 if (!page->inuse) {
52b4b950 3487 remove_partial(n, page);
81819f0f 3488 discard_slab(s, page);
33b12c38
CL
3489 } else {
3490 list_slab_objects(s, page,
52b4b950 3491 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3492 }
33b12c38 3493 }
52b4b950 3494 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3495}
3496
3497/*
672bba3a 3498 * Release all resources used by a slab cache.
81819f0f 3499 */
52b4b950 3500int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3501{
3502 int node;
fa45dc25 3503 struct kmem_cache_node *n;
81819f0f
CL
3504
3505 flush_all(s);
81819f0f 3506 /* Attempt to free all objects */
fa45dc25 3507 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3508 free_partial(s, n);
3509 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3510 return 1;
3511 }
81819f0f
CL
3512 return 0;
3513}
3514
81819f0f
CL
3515/********************************************************************
3516 * Kmalloc subsystem
3517 *******************************************************************/
3518
81819f0f
CL
3519static int __init setup_slub_min_order(char *str)
3520{
06428780 3521 get_option(&str, &slub_min_order);
81819f0f
CL
3522
3523 return 1;
3524}
3525
3526__setup("slub_min_order=", setup_slub_min_order);
3527
3528static int __init setup_slub_max_order(char *str)
3529{
06428780 3530 get_option(&str, &slub_max_order);
818cf590 3531 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3532
3533 return 1;
3534}
3535
3536__setup("slub_max_order=", setup_slub_max_order);
3537
3538static int __init setup_slub_min_objects(char *str)
3539{
06428780 3540 get_option(&str, &slub_min_objects);
81819f0f
CL
3541
3542 return 1;
3543}
3544
3545__setup("slub_min_objects=", setup_slub_min_objects);
3546
81819f0f
CL
3547void *__kmalloc(size_t size, gfp_t flags)
3548{
aadb4bc4 3549 struct kmem_cache *s;
5b882be4 3550 void *ret;
81819f0f 3551
95a05b42 3552 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3553 return kmalloc_large(size, flags);
aadb4bc4 3554
2c59dd65 3555 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3556
3557 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3558 return s;
3559
2b847c3c 3560 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3561
ca2b84cb 3562 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3563
0316bec2
AR
3564 kasan_kmalloc(s, ret, size);
3565
5b882be4 3566 return ret;
81819f0f
CL
3567}
3568EXPORT_SYMBOL(__kmalloc);
3569
5d1f57e4 3570#ifdef CONFIG_NUMA
f619cfe1
CL
3571static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3572{
b1eeab67 3573 struct page *page;
e4f7c0b4 3574 void *ptr = NULL;
f619cfe1 3575
52383431
VD
3576 flags |= __GFP_COMP | __GFP_NOTRACK;
3577 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3578 if (page)
e4f7c0b4
CM
3579 ptr = page_address(page);
3580
d56791b3 3581 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3582 return ptr;
f619cfe1
CL
3583}
3584
81819f0f
CL
3585void *__kmalloc_node(size_t size, gfp_t flags, int node)
3586{
aadb4bc4 3587 struct kmem_cache *s;
5b882be4 3588 void *ret;
81819f0f 3589
95a05b42 3590 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3591 ret = kmalloc_large_node(size, flags, node);
3592
ca2b84cb
EGM
3593 trace_kmalloc_node(_RET_IP_, ret,
3594 size, PAGE_SIZE << get_order(size),
3595 flags, node);
5b882be4
EGM
3596
3597 return ret;
3598 }
aadb4bc4 3599
2c59dd65 3600 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3601
3602 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3603 return s;
3604
2b847c3c 3605 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3606
ca2b84cb 3607 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3608
0316bec2
AR
3609 kasan_kmalloc(s, ret, size);
3610
5b882be4 3611 return ret;
81819f0f
CL
3612}
3613EXPORT_SYMBOL(__kmalloc_node);
3614#endif
3615
0316bec2 3616static size_t __ksize(const void *object)
81819f0f 3617{
272c1d21 3618 struct page *page;
81819f0f 3619
ef8b4520 3620 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3621 return 0;
3622
294a80a8 3623 page = virt_to_head_page(object);
294a80a8 3624
76994412
PE
3625 if (unlikely(!PageSlab(page))) {
3626 WARN_ON(!PageCompound(page));
294a80a8 3627 return PAGE_SIZE << compound_order(page);
76994412 3628 }
81819f0f 3629
1b4f59e3 3630 return slab_ksize(page->slab_cache);
81819f0f 3631}
0316bec2
AR
3632
3633size_t ksize(const void *object)
3634{
3635 size_t size = __ksize(object);
3636 /* We assume that ksize callers could use whole allocated area,
3637 so we need unpoison this area. */
3638 kasan_krealloc(object, size);
3639 return size;
3640}
b1aabecd 3641EXPORT_SYMBOL(ksize);
81819f0f
CL
3642
3643void kfree(const void *x)
3644{
81819f0f 3645 struct page *page;
5bb983b0 3646 void *object = (void *)x;
81819f0f 3647
2121db74
PE
3648 trace_kfree(_RET_IP_, x);
3649
2408c550 3650 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3651 return;
3652
b49af68f 3653 page = virt_to_head_page(x);
aadb4bc4 3654 if (unlikely(!PageSlab(page))) {
0937502a 3655 BUG_ON(!PageCompound(page));
d56791b3 3656 kfree_hook(x);
52383431 3657 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3658 return;
3659 }
81084651 3660 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3661}
3662EXPORT_SYMBOL(kfree);
3663
832f37f5
VD
3664#define SHRINK_PROMOTE_MAX 32
3665
2086d26a 3666/*
832f37f5
VD
3667 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3668 * up most to the head of the partial lists. New allocations will then
3669 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3670 *
3671 * The slabs with the least items are placed last. This results in them
3672 * being allocated from last increasing the chance that the last objects
3673 * are freed in them.
2086d26a 3674 */
d6e0b7fa 3675int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3676{
3677 int node;
3678 int i;
3679 struct kmem_cache_node *n;
3680 struct page *page;
3681 struct page *t;
832f37f5
VD
3682 struct list_head discard;
3683 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3684 unsigned long flags;
ce3712d7 3685 int ret = 0;
2086d26a 3686
d6e0b7fa
VD
3687 if (deactivate) {
3688 /*
3689 * Disable empty slabs caching. Used to avoid pinning offline
3690 * memory cgroups by kmem pages that can be freed.
3691 */
3692 s->cpu_partial = 0;
3693 s->min_partial = 0;
3694
3695 /*
3696 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3697 * so we have to make sure the change is visible.
3698 */
3699 kick_all_cpus_sync();
3700 }
3701
2086d26a 3702 flush_all(s);
fa45dc25 3703 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3704 INIT_LIST_HEAD(&discard);
3705 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3706 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3707
3708 spin_lock_irqsave(&n->list_lock, flags);
3709
3710 /*
832f37f5 3711 * Build lists of slabs to discard or promote.
2086d26a 3712 *
672bba3a
CL
3713 * Note that concurrent frees may occur while we hold the
3714 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3715 */
3716 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3717 int free = page->objects - page->inuse;
3718
3719 /* Do not reread page->inuse */
3720 barrier();
3721
3722 /* We do not keep full slabs on the list */
3723 BUG_ON(free <= 0);
3724
3725 if (free == page->objects) {
3726 list_move(&page->lru, &discard);
69cb8e6b 3727 n->nr_partial--;
832f37f5
VD
3728 } else if (free <= SHRINK_PROMOTE_MAX)
3729 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3730 }
3731
2086d26a 3732 /*
832f37f5
VD
3733 * Promote the slabs filled up most to the head of the
3734 * partial list.
2086d26a 3735 */
832f37f5
VD
3736 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3737 list_splice(promote + i, &n->partial);
2086d26a 3738
2086d26a 3739 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3740
3741 /* Release empty slabs */
832f37f5 3742 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3743 discard_slab(s, page);
ce3712d7
VD
3744
3745 if (slabs_node(s, node))
3746 ret = 1;
2086d26a
CL
3747 }
3748
ce3712d7 3749 return ret;
2086d26a 3750}
2086d26a 3751
b9049e23
YG
3752static int slab_mem_going_offline_callback(void *arg)
3753{
3754 struct kmem_cache *s;
3755
18004c5d 3756 mutex_lock(&slab_mutex);
b9049e23 3757 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3758 __kmem_cache_shrink(s, false);
18004c5d 3759 mutex_unlock(&slab_mutex);
b9049e23
YG
3760
3761 return 0;
3762}
3763
3764static void slab_mem_offline_callback(void *arg)
3765{
3766 struct kmem_cache_node *n;
3767 struct kmem_cache *s;
3768 struct memory_notify *marg = arg;
3769 int offline_node;
3770
b9d5ab25 3771 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3772
3773 /*
3774 * If the node still has available memory. we need kmem_cache_node
3775 * for it yet.
3776 */
3777 if (offline_node < 0)
3778 return;
3779
18004c5d 3780 mutex_lock(&slab_mutex);
b9049e23
YG
3781 list_for_each_entry(s, &slab_caches, list) {
3782 n = get_node(s, offline_node);
3783 if (n) {
3784 /*
3785 * if n->nr_slabs > 0, slabs still exist on the node
3786 * that is going down. We were unable to free them,
c9404c9c 3787 * and offline_pages() function shouldn't call this
b9049e23
YG
3788 * callback. So, we must fail.
3789 */
0f389ec6 3790 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3791
3792 s->node[offline_node] = NULL;
8de66a0c 3793 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3794 }
3795 }
18004c5d 3796 mutex_unlock(&slab_mutex);
b9049e23
YG
3797}
3798
3799static int slab_mem_going_online_callback(void *arg)
3800{
3801 struct kmem_cache_node *n;
3802 struct kmem_cache *s;
3803 struct memory_notify *marg = arg;
b9d5ab25 3804 int nid = marg->status_change_nid_normal;
b9049e23
YG
3805 int ret = 0;
3806
3807 /*
3808 * If the node's memory is already available, then kmem_cache_node is
3809 * already created. Nothing to do.
3810 */
3811 if (nid < 0)
3812 return 0;
3813
3814 /*
0121c619 3815 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3816 * allocate a kmem_cache_node structure in order to bring the node
3817 * online.
3818 */
18004c5d 3819 mutex_lock(&slab_mutex);
b9049e23
YG
3820 list_for_each_entry(s, &slab_caches, list) {
3821 /*
3822 * XXX: kmem_cache_alloc_node will fallback to other nodes
3823 * since memory is not yet available from the node that
3824 * is brought up.
3825 */
8de66a0c 3826 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3827 if (!n) {
3828 ret = -ENOMEM;
3829 goto out;
3830 }
4053497d 3831 init_kmem_cache_node(n);
b9049e23
YG
3832 s->node[nid] = n;
3833 }
3834out:
18004c5d 3835 mutex_unlock(&slab_mutex);
b9049e23
YG
3836 return ret;
3837}
3838
3839static int slab_memory_callback(struct notifier_block *self,
3840 unsigned long action, void *arg)
3841{
3842 int ret = 0;
3843
3844 switch (action) {
3845 case MEM_GOING_ONLINE:
3846 ret = slab_mem_going_online_callback(arg);
3847 break;
3848 case MEM_GOING_OFFLINE:
3849 ret = slab_mem_going_offline_callback(arg);
3850 break;
3851 case MEM_OFFLINE:
3852 case MEM_CANCEL_ONLINE:
3853 slab_mem_offline_callback(arg);
3854 break;
3855 case MEM_ONLINE:
3856 case MEM_CANCEL_OFFLINE:
3857 break;
3858 }
dc19f9db
KH
3859 if (ret)
3860 ret = notifier_from_errno(ret);
3861 else
3862 ret = NOTIFY_OK;
b9049e23
YG
3863 return ret;
3864}
3865
3ac38faa
AM
3866static struct notifier_block slab_memory_callback_nb = {
3867 .notifier_call = slab_memory_callback,
3868 .priority = SLAB_CALLBACK_PRI,
3869};
b9049e23 3870
81819f0f
CL
3871/********************************************************************
3872 * Basic setup of slabs
3873 *******************************************************************/
3874
51df1142
CL
3875/*
3876 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3877 * the page allocator. Allocate them properly then fix up the pointers
3878 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3879 */
3880
dffb4d60 3881static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3882{
3883 int node;
dffb4d60 3884 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3885 struct kmem_cache_node *n;
51df1142 3886
dffb4d60 3887 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3888
7d557b3c
GC
3889 /*
3890 * This runs very early, and only the boot processor is supposed to be
3891 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3892 * IPIs around.
3893 */
3894 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3895 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3896 struct page *p;
3897
fa45dc25
CL
3898 list_for_each_entry(p, &n->partial, lru)
3899 p->slab_cache = s;
51df1142 3900
607bf324 3901#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3902 list_for_each_entry(p, &n->full, lru)
3903 p->slab_cache = s;
51df1142 3904#endif
51df1142 3905 }
f7ce3190 3906 slab_init_memcg_params(s);
dffb4d60
CL
3907 list_add(&s->list, &slab_caches);
3908 return s;
51df1142
CL
3909}
3910
81819f0f
CL
3911void __init kmem_cache_init(void)
3912{
dffb4d60
CL
3913 static __initdata struct kmem_cache boot_kmem_cache,
3914 boot_kmem_cache_node;
51df1142 3915
fc8d8620
SG
3916 if (debug_guardpage_minorder())
3917 slub_max_order = 0;
3918
dffb4d60
CL
3919 kmem_cache_node = &boot_kmem_cache_node;
3920 kmem_cache = &boot_kmem_cache;
51df1142 3921
dffb4d60
CL
3922 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3923 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3924
3ac38faa 3925 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3926
3927 /* Able to allocate the per node structures */
3928 slab_state = PARTIAL;
3929
dffb4d60
CL
3930 create_boot_cache(kmem_cache, "kmem_cache",
3931 offsetof(struct kmem_cache, node) +
3932 nr_node_ids * sizeof(struct kmem_cache_node *),
3933 SLAB_HWCACHE_ALIGN);
8a13a4cc 3934
dffb4d60 3935 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3936
51df1142
CL
3937 /*
3938 * Allocate kmem_cache_node properly from the kmem_cache slab.
3939 * kmem_cache_node is separately allocated so no need to
3940 * update any list pointers.
3941 */
dffb4d60 3942 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3943
3944 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3945 setup_kmalloc_cache_index_table();
f97d5f63 3946 create_kmalloc_caches(0);
81819f0f
CL
3947
3948#ifdef CONFIG_SMP
3949 register_cpu_notifier(&slab_notifier);
9dfc6e68 3950#endif
81819f0f 3951
f9f58285 3952 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3953 cache_line_size(),
81819f0f
CL
3954 slub_min_order, slub_max_order, slub_min_objects,
3955 nr_cpu_ids, nr_node_ids);
3956}
3957
7e85ee0c
PE
3958void __init kmem_cache_init_late(void)
3959{
7e85ee0c
PE
3960}
3961
2633d7a0 3962struct kmem_cache *
a44cb944
VD
3963__kmem_cache_alias(const char *name, size_t size, size_t align,
3964 unsigned long flags, void (*ctor)(void *))
81819f0f 3965{
426589f5 3966 struct kmem_cache *s, *c;
81819f0f 3967
a44cb944 3968 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3969 if (s) {
3970 s->refcount++;
84d0ddd6 3971
81819f0f
CL
3972 /*
3973 * Adjust the object sizes so that we clear
3974 * the complete object on kzalloc.
3975 */
3b0efdfa 3976 s->object_size = max(s->object_size, (int)size);
81819f0f 3977 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3978
426589f5 3979 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3980 c->object_size = s->object_size;
3981 c->inuse = max_t(int, c->inuse,
3982 ALIGN(size, sizeof(void *)));
3983 }
3984
7b8f3b66 3985 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3986 s->refcount--;
cbb79694 3987 s = NULL;
7b8f3b66 3988 }
a0e1d1be 3989 }
6446faa2 3990
cbb79694
CL
3991 return s;
3992}
84c1cf62 3993
8a13a4cc 3994int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3995{
aac3a166
PE
3996 int err;
3997
3998 err = kmem_cache_open(s, flags);
3999 if (err)
4000 return err;
20cea968 4001
45530c44
CL
4002 /* Mutex is not taken during early boot */
4003 if (slab_state <= UP)
4004 return 0;
4005
107dab5c 4006 memcg_propagate_slab_attrs(s);
aac3a166 4007 err = sysfs_slab_add(s);
aac3a166 4008 if (err)
52b4b950 4009 __kmem_cache_release(s);
20cea968 4010
aac3a166 4011 return err;
81819f0f 4012}
81819f0f 4013
81819f0f 4014#ifdef CONFIG_SMP
81819f0f 4015/*
672bba3a
CL
4016 * Use the cpu notifier to insure that the cpu slabs are flushed when
4017 * necessary.
81819f0f 4018 */
0db0628d 4019static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
4020 unsigned long action, void *hcpu)
4021{
4022 long cpu = (long)hcpu;
5b95a4ac
CL
4023 struct kmem_cache *s;
4024 unsigned long flags;
81819f0f
CL
4025
4026 switch (action) {
4027 case CPU_UP_CANCELED:
8bb78442 4028 case CPU_UP_CANCELED_FROZEN:
81819f0f 4029 case CPU_DEAD:
8bb78442 4030 case CPU_DEAD_FROZEN:
18004c5d 4031 mutex_lock(&slab_mutex);
5b95a4ac
CL
4032 list_for_each_entry(s, &slab_caches, list) {
4033 local_irq_save(flags);
4034 __flush_cpu_slab(s, cpu);
4035 local_irq_restore(flags);
4036 }
18004c5d 4037 mutex_unlock(&slab_mutex);
81819f0f
CL
4038 break;
4039 default:
4040 break;
4041 }
4042 return NOTIFY_OK;
4043}
4044
0db0628d 4045static struct notifier_block slab_notifier = {
3adbefee 4046 .notifier_call = slab_cpuup_callback
06428780 4047};
81819f0f
CL
4048
4049#endif
4050
ce71e27c 4051void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4052{
aadb4bc4 4053 struct kmem_cache *s;
94b528d0 4054 void *ret;
aadb4bc4 4055
95a05b42 4056 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4057 return kmalloc_large(size, gfpflags);
4058
2c59dd65 4059 s = kmalloc_slab(size, gfpflags);
81819f0f 4060
2408c550 4061 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4062 return s;
81819f0f 4063
2b847c3c 4064 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4065
25985edc 4066 /* Honor the call site pointer we received. */
ca2b84cb 4067 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4068
4069 return ret;
81819f0f
CL
4070}
4071
5d1f57e4 4072#ifdef CONFIG_NUMA
81819f0f 4073void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4074 int node, unsigned long caller)
81819f0f 4075{
aadb4bc4 4076 struct kmem_cache *s;
94b528d0 4077 void *ret;
aadb4bc4 4078
95a05b42 4079 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4080 ret = kmalloc_large_node(size, gfpflags, node);
4081
4082 trace_kmalloc_node(caller, ret,
4083 size, PAGE_SIZE << get_order(size),
4084 gfpflags, node);
4085
4086 return ret;
4087 }
eada35ef 4088
2c59dd65 4089 s = kmalloc_slab(size, gfpflags);
81819f0f 4090
2408c550 4091 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4092 return s;
81819f0f 4093
2b847c3c 4094 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4095
25985edc 4096 /* Honor the call site pointer we received. */
ca2b84cb 4097 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4098
4099 return ret;
81819f0f 4100}
5d1f57e4 4101#endif
81819f0f 4102
ab4d5ed5 4103#ifdef CONFIG_SYSFS
205ab99d
CL
4104static int count_inuse(struct page *page)
4105{
4106 return page->inuse;
4107}
4108
4109static int count_total(struct page *page)
4110{
4111 return page->objects;
4112}
ab4d5ed5 4113#endif
205ab99d 4114
ab4d5ed5 4115#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4116static int validate_slab(struct kmem_cache *s, struct page *page,
4117 unsigned long *map)
53e15af0
CL
4118{
4119 void *p;
a973e9dd 4120 void *addr = page_address(page);
53e15af0
CL
4121
4122 if (!check_slab(s, page) ||
4123 !on_freelist(s, page, NULL))
4124 return 0;
4125
4126 /* Now we know that a valid freelist exists */
39b26464 4127 bitmap_zero(map, page->objects);
53e15af0 4128
5f80b13a
CL
4129 get_map(s, page, map);
4130 for_each_object(p, s, addr, page->objects) {
4131 if (test_bit(slab_index(p, s, addr), map))
4132 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4133 return 0;
53e15af0
CL
4134 }
4135
224a88be 4136 for_each_object(p, s, addr, page->objects)
7656c72b 4137 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4138 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4139 return 0;
4140 return 1;
4141}
4142
434e245d
CL
4143static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4144 unsigned long *map)
53e15af0 4145{
881db7fb
CL
4146 slab_lock(page);
4147 validate_slab(s, page, map);
4148 slab_unlock(page);
53e15af0
CL
4149}
4150
434e245d
CL
4151static int validate_slab_node(struct kmem_cache *s,
4152 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4153{
4154 unsigned long count = 0;
4155 struct page *page;
4156 unsigned long flags;
4157
4158 spin_lock_irqsave(&n->list_lock, flags);
4159
4160 list_for_each_entry(page, &n->partial, lru) {
434e245d 4161 validate_slab_slab(s, page, map);
53e15af0
CL
4162 count++;
4163 }
4164 if (count != n->nr_partial)
f9f58285
FF
4165 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4166 s->name, count, n->nr_partial);
53e15af0
CL
4167
4168 if (!(s->flags & SLAB_STORE_USER))
4169 goto out;
4170
4171 list_for_each_entry(page, &n->full, lru) {
434e245d 4172 validate_slab_slab(s, page, map);
53e15af0
CL
4173 count++;
4174 }
4175 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4176 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4177 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4178
4179out:
4180 spin_unlock_irqrestore(&n->list_lock, flags);
4181 return count;
4182}
4183
434e245d 4184static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4185{
4186 int node;
4187 unsigned long count = 0;
205ab99d 4188 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4189 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4190 struct kmem_cache_node *n;
434e245d
CL
4191
4192 if (!map)
4193 return -ENOMEM;
53e15af0
CL
4194
4195 flush_all(s);
fa45dc25 4196 for_each_kmem_cache_node(s, node, n)
434e245d 4197 count += validate_slab_node(s, n, map);
434e245d 4198 kfree(map);
53e15af0
CL
4199 return count;
4200}
88a420e4 4201/*
672bba3a 4202 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4203 * and freed.
4204 */
4205
4206struct location {
4207 unsigned long count;
ce71e27c 4208 unsigned long addr;
45edfa58
CL
4209 long long sum_time;
4210 long min_time;
4211 long max_time;
4212 long min_pid;
4213 long max_pid;
174596a0 4214 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4215 nodemask_t nodes;
88a420e4
CL
4216};
4217
4218struct loc_track {
4219 unsigned long max;
4220 unsigned long count;
4221 struct location *loc;
4222};
4223
4224static void free_loc_track(struct loc_track *t)
4225{
4226 if (t->max)
4227 free_pages((unsigned long)t->loc,
4228 get_order(sizeof(struct location) * t->max));
4229}
4230
68dff6a9 4231static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4232{
4233 struct location *l;
4234 int order;
4235
88a420e4
CL
4236 order = get_order(sizeof(struct location) * max);
4237
68dff6a9 4238 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4239 if (!l)
4240 return 0;
4241
4242 if (t->count) {
4243 memcpy(l, t->loc, sizeof(struct location) * t->count);
4244 free_loc_track(t);
4245 }
4246 t->max = max;
4247 t->loc = l;
4248 return 1;
4249}
4250
4251static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4252 const struct track *track)
88a420e4
CL
4253{
4254 long start, end, pos;
4255 struct location *l;
ce71e27c 4256 unsigned long caddr;
45edfa58 4257 unsigned long age = jiffies - track->when;
88a420e4
CL
4258
4259 start = -1;
4260 end = t->count;
4261
4262 for ( ; ; ) {
4263 pos = start + (end - start + 1) / 2;
4264
4265 /*
4266 * There is nothing at "end". If we end up there
4267 * we need to add something to before end.
4268 */
4269 if (pos == end)
4270 break;
4271
4272 caddr = t->loc[pos].addr;
45edfa58
CL
4273 if (track->addr == caddr) {
4274
4275 l = &t->loc[pos];
4276 l->count++;
4277 if (track->when) {
4278 l->sum_time += age;
4279 if (age < l->min_time)
4280 l->min_time = age;
4281 if (age > l->max_time)
4282 l->max_time = age;
4283
4284 if (track->pid < l->min_pid)
4285 l->min_pid = track->pid;
4286 if (track->pid > l->max_pid)
4287 l->max_pid = track->pid;
4288
174596a0
RR
4289 cpumask_set_cpu(track->cpu,
4290 to_cpumask(l->cpus));
45edfa58
CL
4291 }
4292 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4293 return 1;
4294 }
4295
45edfa58 4296 if (track->addr < caddr)
88a420e4
CL
4297 end = pos;
4298 else
4299 start = pos;
4300 }
4301
4302 /*
672bba3a 4303 * Not found. Insert new tracking element.
88a420e4 4304 */
68dff6a9 4305 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4306 return 0;
4307
4308 l = t->loc + pos;
4309 if (pos < t->count)
4310 memmove(l + 1, l,
4311 (t->count - pos) * sizeof(struct location));
4312 t->count++;
4313 l->count = 1;
45edfa58
CL
4314 l->addr = track->addr;
4315 l->sum_time = age;
4316 l->min_time = age;
4317 l->max_time = age;
4318 l->min_pid = track->pid;
4319 l->max_pid = track->pid;
174596a0
RR
4320 cpumask_clear(to_cpumask(l->cpus));
4321 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4322 nodes_clear(l->nodes);
4323 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4324 return 1;
4325}
4326
4327static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4328 struct page *page, enum track_item alloc,
a5dd5c11 4329 unsigned long *map)
88a420e4 4330{
a973e9dd 4331 void *addr = page_address(page);
88a420e4
CL
4332 void *p;
4333
39b26464 4334 bitmap_zero(map, page->objects);
5f80b13a 4335 get_map(s, page, map);
88a420e4 4336
224a88be 4337 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4338 if (!test_bit(slab_index(p, s, addr), map))
4339 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4340}
4341
4342static int list_locations(struct kmem_cache *s, char *buf,
4343 enum track_item alloc)
4344{
e374d483 4345 int len = 0;
88a420e4 4346 unsigned long i;
68dff6a9 4347 struct loc_track t = { 0, 0, NULL };
88a420e4 4348 int node;
bbd7d57b
ED
4349 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4350 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4351 struct kmem_cache_node *n;
88a420e4 4352
bbd7d57b
ED
4353 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4354 GFP_TEMPORARY)) {
4355 kfree(map);
68dff6a9 4356 return sprintf(buf, "Out of memory\n");
bbd7d57b 4357 }
88a420e4
CL
4358 /* Push back cpu slabs */
4359 flush_all(s);
4360
fa45dc25 4361 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4362 unsigned long flags;
4363 struct page *page;
4364
9e86943b 4365 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4366 continue;
4367
4368 spin_lock_irqsave(&n->list_lock, flags);
4369 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4370 process_slab(&t, s, page, alloc, map);
88a420e4 4371 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4372 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4373 spin_unlock_irqrestore(&n->list_lock, flags);
4374 }
4375
4376 for (i = 0; i < t.count; i++) {
45edfa58 4377 struct location *l = &t.loc[i];
88a420e4 4378
9c246247 4379 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4380 break;
e374d483 4381 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4382
4383 if (l->addr)
62c70bce 4384 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4385 else
e374d483 4386 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4387
4388 if (l->sum_time != l->min_time) {
e374d483 4389 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4390 l->min_time,
4391 (long)div_u64(l->sum_time, l->count),
4392 l->max_time);
45edfa58 4393 } else
e374d483 4394 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4395 l->min_time);
4396
4397 if (l->min_pid != l->max_pid)
e374d483 4398 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4399 l->min_pid, l->max_pid);
4400 else
e374d483 4401 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4402 l->min_pid);
4403
174596a0
RR
4404 if (num_online_cpus() > 1 &&
4405 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4406 len < PAGE_SIZE - 60)
4407 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4408 " cpus=%*pbl",
4409 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4410
62bc62a8 4411 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4412 len < PAGE_SIZE - 60)
4413 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4414 " nodes=%*pbl",
4415 nodemask_pr_args(&l->nodes));
45edfa58 4416
e374d483 4417 len += sprintf(buf + len, "\n");
88a420e4
CL
4418 }
4419
4420 free_loc_track(&t);
bbd7d57b 4421 kfree(map);
88a420e4 4422 if (!t.count)
e374d483
HH
4423 len += sprintf(buf, "No data\n");
4424 return len;
88a420e4 4425}
ab4d5ed5 4426#endif
88a420e4 4427
a5a84755 4428#ifdef SLUB_RESILIENCY_TEST
c07b8183 4429static void __init resiliency_test(void)
a5a84755
CL
4430{
4431 u8 *p;
4432
95a05b42 4433 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4434
f9f58285
FF
4435 pr_err("SLUB resiliency testing\n");
4436 pr_err("-----------------------\n");
4437 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4438
4439 p = kzalloc(16, GFP_KERNEL);
4440 p[16] = 0x12;
f9f58285
FF
4441 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4442 p + 16);
a5a84755
CL
4443
4444 validate_slab_cache(kmalloc_caches[4]);
4445
4446 /* Hmmm... The next two are dangerous */
4447 p = kzalloc(32, GFP_KERNEL);
4448 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4449 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4450 p);
4451 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4452
4453 validate_slab_cache(kmalloc_caches[5]);
4454 p = kzalloc(64, GFP_KERNEL);
4455 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4456 *p = 0x56;
f9f58285
FF
4457 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4458 p);
4459 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4460 validate_slab_cache(kmalloc_caches[6]);
4461
f9f58285 4462 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4463 p = kzalloc(128, GFP_KERNEL);
4464 kfree(p);
4465 *p = 0x78;
f9f58285 4466 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4467 validate_slab_cache(kmalloc_caches[7]);
4468
4469 p = kzalloc(256, GFP_KERNEL);
4470 kfree(p);
4471 p[50] = 0x9a;
f9f58285 4472 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4473 validate_slab_cache(kmalloc_caches[8]);
4474
4475 p = kzalloc(512, GFP_KERNEL);
4476 kfree(p);
4477 p[512] = 0xab;
f9f58285 4478 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4479 validate_slab_cache(kmalloc_caches[9]);
4480}
4481#else
4482#ifdef CONFIG_SYSFS
4483static void resiliency_test(void) {};
4484#endif
4485#endif
4486
ab4d5ed5 4487#ifdef CONFIG_SYSFS
81819f0f 4488enum slab_stat_type {
205ab99d
CL
4489 SL_ALL, /* All slabs */
4490 SL_PARTIAL, /* Only partially allocated slabs */
4491 SL_CPU, /* Only slabs used for cpu caches */
4492 SL_OBJECTS, /* Determine allocated objects not slabs */
4493 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4494};
4495
205ab99d 4496#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4497#define SO_PARTIAL (1 << SL_PARTIAL)
4498#define SO_CPU (1 << SL_CPU)
4499#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4500#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4501
62e5c4b4
CG
4502static ssize_t show_slab_objects(struct kmem_cache *s,
4503 char *buf, unsigned long flags)
81819f0f
CL
4504{
4505 unsigned long total = 0;
81819f0f
CL
4506 int node;
4507 int x;
4508 unsigned long *nodes;
81819f0f 4509
e35e1a97 4510 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4511 if (!nodes)
4512 return -ENOMEM;
81819f0f 4513
205ab99d
CL
4514 if (flags & SO_CPU) {
4515 int cpu;
81819f0f 4516
205ab99d 4517 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4518 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4519 cpu);
ec3ab083 4520 int node;
49e22585 4521 struct page *page;
dfb4f096 4522
4db0c3c2 4523 page = READ_ONCE(c->page);
ec3ab083
CL
4524 if (!page)
4525 continue;
205ab99d 4526
ec3ab083
CL
4527 node = page_to_nid(page);
4528 if (flags & SO_TOTAL)
4529 x = page->objects;
4530 else if (flags & SO_OBJECTS)
4531 x = page->inuse;
4532 else
4533 x = 1;
49e22585 4534
ec3ab083
CL
4535 total += x;
4536 nodes[node] += x;
4537
4db0c3c2 4538 page = READ_ONCE(c->partial);
49e22585 4539 if (page) {
8afb1474
LZ
4540 node = page_to_nid(page);
4541 if (flags & SO_TOTAL)
4542 WARN_ON_ONCE(1);
4543 else if (flags & SO_OBJECTS)
4544 WARN_ON_ONCE(1);
4545 else
4546 x = page->pages;
bc6697d8
ED
4547 total += x;
4548 nodes[node] += x;
49e22585 4549 }
81819f0f
CL
4550 }
4551 }
4552
bfc8c901 4553 get_online_mems();
ab4d5ed5 4554#ifdef CONFIG_SLUB_DEBUG
205ab99d 4555 if (flags & SO_ALL) {
fa45dc25
CL
4556 struct kmem_cache_node *n;
4557
4558 for_each_kmem_cache_node(s, node, n) {
205ab99d 4559
d0e0ac97
CG
4560 if (flags & SO_TOTAL)
4561 x = atomic_long_read(&n->total_objects);
4562 else if (flags & SO_OBJECTS)
4563 x = atomic_long_read(&n->total_objects) -
4564 count_partial(n, count_free);
81819f0f 4565 else
205ab99d 4566 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4567 total += x;
4568 nodes[node] += x;
4569 }
4570
ab4d5ed5
CL
4571 } else
4572#endif
4573 if (flags & SO_PARTIAL) {
fa45dc25 4574 struct kmem_cache_node *n;
81819f0f 4575
fa45dc25 4576 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4577 if (flags & SO_TOTAL)
4578 x = count_partial(n, count_total);
4579 else if (flags & SO_OBJECTS)
4580 x = count_partial(n, count_inuse);
81819f0f 4581 else
205ab99d 4582 x = n->nr_partial;
81819f0f
CL
4583 total += x;
4584 nodes[node] += x;
4585 }
4586 }
81819f0f
CL
4587 x = sprintf(buf, "%lu", total);
4588#ifdef CONFIG_NUMA
fa45dc25 4589 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4590 if (nodes[node])
4591 x += sprintf(buf + x, " N%d=%lu",
4592 node, nodes[node]);
4593#endif
bfc8c901 4594 put_online_mems();
81819f0f
CL
4595 kfree(nodes);
4596 return x + sprintf(buf + x, "\n");
4597}
4598
ab4d5ed5 4599#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4600static int any_slab_objects(struct kmem_cache *s)
4601{
4602 int node;
fa45dc25 4603 struct kmem_cache_node *n;
81819f0f 4604
fa45dc25 4605 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4606 if (atomic_long_read(&n->total_objects))
81819f0f 4607 return 1;
fa45dc25 4608
81819f0f
CL
4609 return 0;
4610}
ab4d5ed5 4611#endif
81819f0f
CL
4612
4613#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4614#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4615
4616struct slab_attribute {
4617 struct attribute attr;
4618 ssize_t (*show)(struct kmem_cache *s, char *buf);
4619 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4620};
4621
4622#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4623 static struct slab_attribute _name##_attr = \
4624 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4625
4626#define SLAB_ATTR(_name) \
4627 static struct slab_attribute _name##_attr = \
ab067e99 4628 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4629
81819f0f
CL
4630static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", s->size);
4633}
4634SLAB_ATTR_RO(slab_size);
4635
4636static ssize_t align_show(struct kmem_cache *s, char *buf)
4637{
4638 return sprintf(buf, "%d\n", s->align);
4639}
4640SLAB_ATTR_RO(align);
4641
4642static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4643{
3b0efdfa 4644 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4645}
4646SLAB_ATTR_RO(object_size);
4647
4648static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4649{
834f3d11 4650 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4651}
4652SLAB_ATTR_RO(objs_per_slab);
4653
06b285dc
CL
4654static ssize_t order_store(struct kmem_cache *s,
4655 const char *buf, size_t length)
4656{
0121c619
CL
4657 unsigned long order;
4658 int err;
4659
3dbb95f7 4660 err = kstrtoul(buf, 10, &order);
0121c619
CL
4661 if (err)
4662 return err;
06b285dc
CL
4663
4664 if (order > slub_max_order || order < slub_min_order)
4665 return -EINVAL;
4666
4667 calculate_sizes(s, order);
4668 return length;
4669}
4670
81819f0f
CL
4671static ssize_t order_show(struct kmem_cache *s, char *buf)
4672{
834f3d11 4673 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4674}
06b285dc 4675SLAB_ATTR(order);
81819f0f 4676
73d342b1
DR
4677static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4678{
4679 return sprintf(buf, "%lu\n", s->min_partial);
4680}
4681
4682static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4683 size_t length)
4684{
4685 unsigned long min;
4686 int err;
4687
3dbb95f7 4688 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4689 if (err)
4690 return err;
4691
c0bdb232 4692 set_min_partial(s, min);
73d342b1
DR
4693 return length;
4694}
4695SLAB_ATTR(min_partial);
4696
49e22585
CL
4697static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4698{
4699 return sprintf(buf, "%u\n", s->cpu_partial);
4700}
4701
4702static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4703 size_t length)
4704{
4705 unsigned long objects;
4706 int err;
4707
3dbb95f7 4708 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4709 if (err)
4710 return err;
345c905d 4711 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4712 return -EINVAL;
49e22585
CL
4713
4714 s->cpu_partial = objects;
4715 flush_all(s);
4716 return length;
4717}
4718SLAB_ATTR(cpu_partial);
4719
81819f0f
CL
4720static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4721{
62c70bce
JP
4722 if (!s->ctor)
4723 return 0;
4724 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4725}
4726SLAB_ATTR_RO(ctor);
4727
81819f0f
CL
4728static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4729{
4307c14f 4730 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4731}
4732SLAB_ATTR_RO(aliases);
4733
81819f0f
CL
4734static ssize_t partial_show(struct kmem_cache *s, char *buf)
4735{
d9acf4b7 4736 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4737}
4738SLAB_ATTR_RO(partial);
4739
4740static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4741{
d9acf4b7 4742 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4743}
4744SLAB_ATTR_RO(cpu_slabs);
4745
4746static ssize_t objects_show(struct kmem_cache *s, char *buf)
4747{
205ab99d 4748 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4749}
4750SLAB_ATTR_RO(objects);
4751
205ab99d
CL
4752static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4753{
4754 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4755}
4756SLAB_ATTR_RO(objects_partial);
4757
49e22585
CL
4758static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4759{
4760 int objects = 0;
4761 int pages = 0;
4762 int cpu;
4763 int len;
4764
4765 for_each_online_cpu(cpu) {
4766 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4767
4768 if (page) {
4769 pages += page->pages;
4770 objects += page->pobjects;
4771 }
4772 }
4773
4774 len = sprintf(buf, "%d(%d)", objects, pages);
4775
4776#ifdef CONFIG_SMP
4777 for_each_online_cpu(cpu) {
4778 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4779
4780 if (page && len < PAGE_SIZE - 20)
4781 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4782 page->pobjects, page->pages);
4783 }
4784#endif
4785 return len + sprintf(buf + len, "\n");
4786}
4787SLAB_ATTR_RO(slabs_cpu_partial);
4788
a5a84755
CL
4789static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4790{
4791 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4792}
4793
4794static ssize_t reclaim_account_store(struct kmem_cache *s,
4795 const char *buf, size_t length)
4796{
4797 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4798 if (buf[0] == '1')
4799 s->flags |= SLAB_RECLAIM_ACCOUNT;
4800 return length;
4801}
4802SLAB_ATTR(reclaim_account);
4803
4804static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4805{
4806 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4807}
4808SLAB_ATTR_RO(hwcache_align);
4809
4810#ifdef CONFIG_ZONE_DMA
4811static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4812{
4813 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4814}
4815SLAB_ATTR_RO(cache_dma);
4816#endif
4817
4818static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4819{
4820 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4821}
4822SLAB_ATTR_RO(destroy_by_rcu);
4823
ab9a0f19
LJ
4824static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4825{
4826 return sprintf(buf, "%d\n", s->reserved);
4827}
4828SLAB_ATTR_RO(reserved);
4829
ab4d5ed5 4830#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4831static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4832{
4833 return show_slab_objects(s, buf, SO_ALL);
4834}
4835SLAB_ATTR_RO(slabs);
4836
205ab99d
CL
4837static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4838{
4839 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4840}
4841SLAB_ATTR_RO(total_objects);
4842
81819f0f
CL
4843static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4844{
becfda68 4845 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
4846}
4847
4848static ssize_t sanity_checks_store(struct kmem_cache *s,
4849 const char *buf, size_t length)
4850{
becfda68 4851 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
4852 if (buf[0] == '1') {
4853 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 4854 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 4855 }
81819f0f
CL
4856 return length;
4857}
4858SLAB_ATTR(sanity_checks);
4859
4860static ssize_t trace_show(struct kmem_cache *s, char *buf)
4861{
4862 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4863}
4864
4865static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4866 size_t length)
4867{
c9e16131
CL
4868 /*
4869 * Tracing a merged cache is going to give confusing results
4870 * as well as cause other issues like converting a mergeable
4871 * cache into an umergeable one.
4872 */
4873 if (s->refcount > 1)
4874 return -EINVAL;
4875
81819f0f 4876 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4877 if (buf[0] == '1') {
4878 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4879 s->flags |= SLAB_TRACE;
b789ef51 4880 }
81819f0f
CL
4881 return length;
4882}
4883SLAB_ATTR(trace);
4884
81819f0f
CL
4885static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4886{
4887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4888}
4889
4890static ssize_t red_zone_store(struct kmem_cache *s,
4891 const char *buf, size_t length)
4892{
4893 if (any_slab_objects(s))
4894 return -EBUSY;
4895
4896 s->flags &= ~SLAB_RED_ZONE;
b789ef51 4897 if (buf[0] == '1') {
81819f0f 4898 s->flags |= SLAB_RED_ZONE;
b789ef51 4899 }
06b285dc 4900 calculate_sizes(s, -1);
81819f0f
CL
4901 return length;
4902}
4903SLAB_ATTR(red_zone);
4904
4905static ssize_t poison_show(struct kmem_cache *s, char *buf)
4906{
4907 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4908}
4909
4910static ssize_t poison_store(struct kmem_cache *s,
4911 const char *buf, size_t length)
4912{
4913 if (any_slab_objects(s))
4914 return -EBUSY;
4915
4916 s->flags &= ~SLAB_POISON;
b789ef51 4917 if (buf[0] == '1') {
81819f0f 4918 s->flags |= SLAB_POISON;
b789ef51 4919 }
06b285dc 4920 calculate_sizes(s, -1);
81819f0f
CL
4921 return length;
4922}
4923SLAB_ATTR(poison);
4924
4925static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4926{
4927 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4928}
4929
4930static ssize_t store_user_store(struct kmem_cache *s,
4931 const char *buf, size_t length)
4932{
4933 if (any_slab_objects(s))
4934 return -EBUSY;
4935
4936 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4937 if (buf[0] == '1') {
4938 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4939 s->flags |= SLAB_STORE_USER;
b789ef51 4940 }
06b285dc 4941 calculate_sizes(s, -1);
81819f0f
CL
4942 return length;
4943}
4944SLAB_ATTR(store_user);
4945
53e15af0
CL
4946static ssize_t validate_show(struct kmem_cache *s, char *buf)
4947{
4948 return 0;
4949}
4950
4951static ssize_t validate_store(struct kmem_cache *s,
4952 const char *buf, size_t length)
4953{
434e245d
CL
4954 int ret = -EINVAL;
4955
4956 if (buf[0] == '1') {
4957 ret = validate_slab_cache(s);
4958 if (ret >= 0)
4959 ret = length;
4960 }
4961 return ret;
53e15af0
CL
4962}
4963SLAB_ATTR(validate);
a5a84755
CL
4964
4965static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4966{
4967 if (!(s->flags & SLAB_STORE_USER))
4968 return -ENOSYS;
4969 return list_locations(s, buf, TRACK_ALLOC);
4970}
4971SLAB_ATTR_RO(alloc_calls);
4972
4973static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4974{
4975 if (!(s->flags & SLAB_STORE_USER))
4976 return -ENOSYS;
4977 return list_locations(s, buf, TRACK_FREE);
4978}
4979SLAB_ATTR_RO(free_calls);
4980#endif /* CONFIG_SLUB_DEBUG */
4981
4982#ifdef CONFIG_FAILSLAB
4983static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4984{
4985 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4986}
4987
4988static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4989 size_t length)
4990{
c9e16131
CL
4991 if (s->refcount > 1)
4992 return -EINVAL;
4993
a5a84755
CL
4994 s->flags &= ~SLAB_FAILSLAB;
4995 if (buf[0] == '1')
4996 s->flags |= SLAB_FAILSLAB;
4997 return length;
4998}
4999SLAB_ATTR(failslab);
ab4d5ed5 5000#endif
53e15af0 5001
2086d26a
CL
5002static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5003{
5004 return 0;
5005}
5006
5007static ssize_t shrink_store(struct kmem_cache *s,
5008 const char *buf, size_t length)
5009{
832f37f5
VD
5010 if (buf[0] == '1')
5011 kmem_cache_shrink(s);
5012 else
2086d26a
CL
5013 return -EINVAL;
5014 return length;
5015}
5016SLAB_ATTR(shrink);
5017
81819f0f 5018#ifdef CONFIG_NUMA
9824601e 5019static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5020{
9824601e 5021 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5022}
5023
9824601e 5024static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5025 const char *buf, size_t length)
5026{
0121c619
CL
5027 unsigned long ratio;
5028 int err;
5029
3dbb95f7 5030 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5031 if (err)
5032 return err;
5033
e2cb96b7 5034 if (ratio <= 100)
0121c619 5035 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5036
81819f0f
CL
5037 return length;
5038}
9824601e 5039SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5040#endif
5041
8ff12cfc 5042#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5043static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5044{
5045 unsigned long sum = 0;
5046 int cpu;
5047 int len;
5048 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5049
5050 if (!data)
5051 return -ENOMEM;
5052
5053 for_each_online_cpu(cpu) {
9dfc6e68 5054 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5055
5056 data[cpu] = x;
5057 sum += x;
5058 }
5059
5060 len = sprintf(buf, "%lu", sum);
5061
50ef37b9 5062#ifdef CONFIG_SMP
8ff12cfc
CL
5063 for_each_online_cpu(cpu) {
5064 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5065 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5066 }
50ef37b9 5067#endif
8ff12cfc
CL
5068 kfree(data);
5069 return len + sprintf(buf + len, "\n");
5070}
5071
78eb00cc
DR
5072static void clear_stat(struct kmem_cache *s, enum stat_item si)
5073{
5074 int cpu;
5075
5076 for_each_online_cpu(cpu)
9dfc6e68 5077 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5078}
5079
8ff12cfc
CL
5080#define STAT_ATTR(si, text) \
5081static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5082{ \
5083 return show_stat(s, buf, si); \
5084} \
78eb00cc
DR
5085static ssize_t text##_store(struct kmem_cache *s, \
5086 const char *buf, size_t length) \
5087{ \
5088 if (buf[0] != '0') \
5089 return -EINVAL; \
5090 clear_stat(s, si); \
5091 return length; \
5092} \
5093SLAB_ATTR(text); \
8ff12cfc
CL
5094
5095STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5096STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5097STAT_ATTR(FREE_FASTPATH, free_fastpath);
5098STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5099STAT_ATTR(FREE_FROZEN, free_frozen);
5100STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5101STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5102STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5103STAT_ATTR(ALLOC_SLAB, alloc_slab);
5104STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5105STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5106STAT_ATTR(FREE_SLAB, free_slab);
5107STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5108STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5109STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5110STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5111STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5112STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5113STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5114STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5115STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5116STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5117STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5118STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5119STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5120STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5121#endif
5122
06428780 5123static struct attribute *slab_attrs[] = {
81819f0f
CL
5124 &slab_size_attr.attr,
5125 &object_size_attr.attr,
5126 &objs_per_slab_attr.attr,
5127 &order_attr.attr,
73d342b1 5128 &min_partial_attr.attr,
49e22585 5129 &cpu_partial_attr.attr,
81819f0f 5130 &objects_attr.attr,
205ab99d 5131 &objects_partial_attr.attr,
81819f0f
CL
5132 &partial_attr.attr,
5133 &cpu_slabs_attr.attr,
5134 &ctor_attr.attr,
81819f0f
CL
5135 &aliases_attr.attr,
5136 &align_attr.attr,
81819f0f
CL
5137 &hwcache_align_attr.attr,
5138 &reclaim_account_attr.attr,
5139 &destroy_by_rcu_attr.attr,
a5a84755 5140 &shrink_attr.attr,
ab9a0f19 5141 &reserved_attr.attr,
49e22585 5142 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5143#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5144 &total_objects_attr.attr,
5145 &slabs_attr.attr,
5146 &sanity_checks_attr.attr,
5147 &trace_attr.attr,
81819f0f
CL
5148 &red_zone_attr.attr,
5149 &poison_attr.attr,
5150 &store_user_attr.attr,
53e15af0 5151 &validate_attr.attr,
88a420e4
CL
5152 &alloc_calls_attr.attr,
5153 &free_calls_attr.attr,
ab4d5ed5 5154#endif
81819f0f
CL
5155#ifdef CONFIG_ZONE_DMA
5156 &cache_dma_attr.attr,
5157#endif
5158#ifdef CONFIG_NUMA
9824601e 5159 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5160#endif
5161#ifdef CONFIG_SLUB_STATS
5162 &alloc_fastpath_attr.attr,
5163 &alloc_slowpath_attr.attr,
5164 &free_fastpath_attr.attr,
5165 &free_slowpath_attr.attr,
5166 &free_frozen_attr.attr,
5167 &free_add_partial_attr.attr,
5168 &free_remove_partial_attr.attr,
5169 &alloc_from_partial_attr.attr,
5170 &alloc_slab_attr.attr,
5171 &alloc_refill_attr.attr,
e36a2652 5172 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5173 &free_slab_attr.attr,
5174 &cpuslab_flush_attr.attr,
5175 &deactivate_full_attr.attr,
5176 &deactivate_empty_attr.attr,
5177 &deactivate_to_head_attr.attr,
5178 &deactivate_to_tail_attr.attr,
5179 &deactivate_remote_frees_attr.attr,
03e404af 5180 &deactivate_bypass_attr.attr,
65c3376a 5181 &order_fallback_attr.attr,
b789ef51
CL
5182 &cmpxchg_double_fail_attr.attr,
5183 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5184 &cpu_partial_alloc_attr.attr,
5185 &cpu_partial_free_attr.attr,
8028dcea
AS
5186 &cpu_partial_node_attr.attr,
5187 &cpu_partial_drain_attr.attr,
81819f0f 5188#endif
4c13dd3b
DM
5189#ifdef CONFIG_FAILSLAB
5190 &failslab_attr.attr,
5191#endif
5192
81819f0f
CL
5193 NULL
5194};
5195
5196static struct attribute_group slab_attr_group = {
5197 .attrs = slab_attrs,
5198};
5199
5200static ssize_t slab_attr_show(struct kobject *kobj,
5201 struct attribute *attr,
5202 char *buf)
5203{
5204 struct slab_attribute *attribute;
5205 struct kmem_cache *s;
5206 int err;
5207
5208 attribute = to_slab_attr(attr);
5209 s = to_slab(kobj);
5210
5211 if (!attribute->show)
5212 return -EIO;
5213
5214 err = attribute->show(s, buf);
5215
5216 return err;
5217}
5218
5219static ssize_t slab_attr_store(struct kobject *kobj,
5220 struct attribute *attr,
5221 const char *buf, size_t len)
5222{
5223 struct slab_attribute *attribute;
5224 struct kmem_cache *s;
5225 int err;
5226
5227 attribute = to_slab_attr(attr);
5228 s = to_slab(kobj);
5229
5230 if (!attribute->store)
5231 return -EIO;
5232
5233 err = attribute->store(s, buf, len);
127424c8 5234#ifdef CONFIG_MEMCG
107dab5c 5235 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5236 struct kmem_cache *c;
81819f0f 5237
107dab5c
GC
5238 mutex_lock(&slab_mutex);
5239 if (s->max_attr_size < len)
5240 s->max_attr_size = len;
5241
ebe945c2
GC
5242 /*
5243 * This is a best effort propagation, so this function's return
5244 * value will be determined by the parent cache only. This is
5245 * basically because not all attributes will have a well
5246 * defined semantics for rollbacks - most of the actions will
5247 * have permanent effects.
5248 *
5249 * Returning the error value of any of the children that fail
5250 * is not 100 % defined, in the sense that users seeing the
5251 * error code won't be able to know anything about the state of
5252 * the cache.
5253 *
5254 * Only returning the error code for the parent cache at least
5255 * has well defined semantics. The cache being written to
5256 * directly either failed or succeeded, in which case we loop
5257 * through the descendants with best-effort propagation.
5258 */
426589f5
VD
5259 for_each_memcg_cache(c, s)
5260 attribute->store(c, buf, len);
107dab5c
GC
5261 mutex_unlock(&slab_mutex);
5262 }
5263#endif
81819f0f
CL
5264 return err;
5265}
5266
107dab5c
GC
5267static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5268{
127424c8 5269#ifdef CONFIG_MEMCG
107dab5c
GC
5270 int i;
5271 char *buffer = NULL;
93030d83 5272 struct kmem_cache *root_cache;
107dab5c 5273
93030d83 5274 if (is_root_cache(s))
107dab5c
GC
5275 return;
5276
f7ce3190 5277 root_cache = s->memcg_params.root_cache;
93030d83 5278
107dab5c
GC
5279 /*
5280 * This mean this cache had no attribute written. Therefore, no point
5281 * in copying default values around
5282 */
93030d83 5283 if (!root_cache->max_attr_size)
107dab5c
GC
5284 return;
5285
5286 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5287 char mbuf[64];
5288 char *buf;
5289 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5290
5291 if (!attr || !attr->store || !attr->show)
5292 continue;
5293
5294 /*
5295 * It is really bad that we have to allocate here, so we will
5296 * do it only as a fallback. If we actually allocate, though,
5297 * we can just use the allocated buffer until the end.
5298 *
5299 * Most of the slub attributes will tend to be very small in
5300 * size, but sysfs allows buffers up to a page, so they can
5301 * theoretically happen.
5302 */
5303 if (buffer)
5304 buf = buffer;
93030d83 5305 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5306 buf = mbuf;
5307 else {
5308 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5309 if (WARN_ON(!buffer))
5310 continue;
5311 buf = buffer;
5312 }
5313
93030d83 5314 attr->show(root_cache, buf);
107dab5c
GC
5315 attr->store(s, buf, strlen(buf));
5316 }
5317
5318 if (buffer)
5319 free_page((unsigned long)buffer);
5320#endif
5321}
5322
41a21285
CL
5323static void kmem_cache_release(struct kobject *k)
5324{
5325 slab_kmem_cache_release(to_slab(k));
5326}
5327
52cf25d0 5328static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5329 .show = slab_attr_show,
5330 .store = slab_attr_store,
5331};
5332
5333static struct kobj_type slab_ktype = {
5334 .sysfs_ops = &slab_sysfs_ops,
41a21285 5335 .release = kmem_cache_release,
81819f0f
CL
5336};
5337
5338static int uevent_filter(struct kset *kset, struct kobject *kobj)
5339{
5340 struct kobj_type *ktype = get_ktype(kobj);
5341
5342 if (ktype == &slab_ktype)
5343 return 1;
5344 return 0;
5345}
5346
9cd43611 5347static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5348 .filter = uevent_filter,
5349};
5350
27c3a314 5351static struct kset *slab_kset;
81819f0f 5352
9a41707b
VD
5353static inline struct kset *cache_kset(struct kmem_cache *s)
5354{
127424c8 5355#ifdef CONFIG_MEMCG
9a41707b 5356 if (!is_root_cache(s))
f7ce3190 5357 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5358#endif
5359 return slab_kset;
5360}
5361
81819f0f
CL
5362#define ID_STR_LENGTH 64
5363
5364/* Create a unique string id for a slab cache:
6446faa2
CL
5365 *
5366 * Format :[flags-]size
81819f0f
CL
5367 */
5368static char *create_unique_id(struct kmem_cache *s)
5369{
5370 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5371 char *p = name;
5372
5373 BUG_ON(!name);
5374
5375 *p++ = ':';
5376 /*
5377 * First flags affecting slabcache operations. We will only
5378 * get here for aliasable slabs so we do not need to support
5379 * too many flags. The flags here must cover all flags that
5380 * are matched during merging to guarantee that the id is
5381 * unique.
5382 */
5383 if (s->flags & SLAB_CACHE_DMA)
5384 *p++ = 'd';
5385 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5386 *p++ = 'a';
becfda68 5387 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5388 *p++ = 'F';
5a896d9e
VN
5389 if (!(s->flags & SLAB_NOTRACK))
5390 *p++ = 't';
230e9fc2
VD
5391 if (s->flags & SLAB_ACCOUNT)
5392 *p++ = 'A';
81819f0f
CL
5393 if (p != name + 1)
5394 *p++ = '-';
5395 p += sprintf(p, "%07d", s->size);
2633d7a0 5396
81819f0f
CL
5397 BUG_ON(p > name + ID_STR_LENGTH - 1);
5398 return name;
5399}
5400
5401static int sysfs_slab_add(struct kmem_cache *s)
5402{
5403 int err;
5404 const char *name;
45530c44 5405 int unmergeable = slab_unmergeable(s);
81819f0f 5406
81819f0f
CL
5407 if (unmergeable) {
5408 /*
5409 * Slabcache can never be merged so we can use the name proper.
5410 * This is typically the case for debug situations. In that
5411 * case we can catch duplicate names easily.
5412 */
27c3a314 5413 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5414 name = s->name;
5415 } else {
5416 /*
5417 * Create a unique name for the slab as a target
5418 * for the symlinks.
5419 */
5420 name = create_unique_id(s);
5421 }
5422
9a41707b 5423 s->kobj.kset = cache_kset(s);
26e4f205 5424 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5425 if (err)
80da026a 5426 goto out;
81819f0f
CL
5427
5428 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5429 if (err)
5430 goto out_del_kobj;
9a41707b 5431
127424c8 5432#ifdef CONFIG_MEMCG
9a41707b
VD
5433 if (is_root_cache(s)) {
5434 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5435 if (!s->memcg_kset) {
54b6a731
DJ
5436 err = -ENOMEM;
5437 goto out_del_kobj;
9a41707b
VD
5438 }
5439 }
5440#endif
5441
81819f0f
CL
5442 kobject_uevent(&s->kobj, KOBJ_ADD);
5443 if (!unmergeable) {
5444 /* Setup first alias */
5445 sysfs_slab_alias(s, s->name);
81819f0f 5446 }
54b6a731
DJ
5447out:
5448 if (!unmergeable)
5449 kfree(name);
5450 return err;
5451out_del_kobj:
5452 kobject_del(&s->kobj);
54b6a731 5453 goto out;
81819f0f
CL
5454}
5455
41a21285 5456void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5457{
97d06609 5458 if (slab_state < FULL)
2bce6485
CL
5459 /*
5460 * Sysfs has not been setup yet so no need to remove the
5461 * cache from sysfs.
5462 */
5463 return;
5464
127424c8 5465#ifdef CONFIG_MEMCG
9a41707b
VD
5466 kset_unregister(s->memcg_kset);
5467#endif
81819f0f
CL
5468 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5469 kobject_del(&s->kobj);
151c602f 5470 kobject_put(&s->kobj);
81819f0f
CL
5471}
5472
5473/*
5474 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5475 * available lest we lose that information.
81819f0f
CL
5476 */
5477struct saved_alias {
5478 struct kmem_cache *s;
5479 const char *name;
5480 struct saved_alias *next;
5481};
5482
5af328a5 5483static struct saved_alias *alias_list;
81819f0f
CL
5484
5485static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5486{
5487 struct saved_alias *al;
5488
97d06609 5489 if (slab_state == FULL) {
81819f0f
CL
5490 /*
5491 * If we have a leftover link then remove it.
5492 */
27c3a314
GKH
5493 sysfs_remove_link(&slab_kset->kobj, name);
5494 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5495 }
5496
5497 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5498 if (!al)
5499 return -ENOMEM;
5500
5501 al->s = s;
5502 al->name = name;
5503 al->next = alias_list;
5504 alias_list = al;
5505 return 0;
5506}
5507
5508static int __init slab_sysfs_init(void)
5509{
5b95a4ac 5510 struct kmem_cache *s;
81819f0f
CL
5511 int err;
5512
18004c5d 5513 mutex_lock(&slab_mutex);
2bce6485 5514
0ff21e46 5515 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5516 if (!slab_kset) {
18004c5d 5517 mutex_unlock(&slab_mutex);
f9f58285 5518 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5519 return -ENOSYS;
5520 }
5521
97d06609 5522 slab_state = FULL;
26a7bd03 5523
5b95a4ac 5524 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5525 err = sysfs_slab_add(s);
5d540fb7 5526 if (err)
f9f58285
FF
5527 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5528 s->name);
26a7bd03 5529 }
81819f0f
CL
5530
5531 while (alias_list) {
5532 struct saved_alias *al = alias_list;
5533
5534 alias_list = alias_list->next;
5535 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5536 if (err)
f9f58285
FF
5537 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5538 al->name);
81819f0f
CL
5539 kfree(al);
5540 }
5541
18004c5d 5542 mutex_unlock(&slab_mutex);
81819f0f
CL
5543 resiliency_test();
5544 return 0;
5545}
5546
5547__initcall(slab_sysfs_init);
ab4d5ed5 5548#endif /* CONFIG_SYSFS */
57ed3eda
PE
5549
5550/*
5551 * The /proc/slabinfo ABI
5552 */
158a9624 5553#ifdef CONFIG_SLABINFO
0d7561c6 5554void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5555{
57ed3eda 5556 unsigned long nr_slabs = 0;
205ab99d
CL
5557 unsigned long nr_objs = 0;
5558 unsigned long nr_free = 0;
57ed3eda 5559 int node;
fa45dc25 5560 struct kmem_cache_node *n;
57ed3eda 5561
fa45dc25 5562 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5563 nr_slabs += node_nr_slabs(n);
5564 nr_objs += node_nr_objs(n);
205ab99d 5565 nr_free += count_partial(n, count_free);
57ed3eda
PE
5566 }
5567
0d7561c6
GC
5568 sinfo->active_objs = nr_objs - nr_free;
5569 sinfo->num_objs = nr_objs;
5570 sinfo->active_slabs = nr_slabs;
5571 sinfo->num_slabs = nr_slabs;
5572 sinfo->objects_per_slab = oo_objects(s->oo);
5573 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5574}
5575
0d7561c6 5576void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5577{
7b3c3a50
AD
5578}
5579
b7454ad3
GC
5580ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5581 size_t count, loff_t *ppos)
7b3c3a50 5582{
b7454ad3 5583 return -EIO;
7b3c3a50 5584}
158a9624 5585#endif /* CONFIG_SLABINFO */