]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
89d3c87e 462#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 463static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
464#elif defined(CONFIG_KASAN)
465static int slub_debug = SLAB_STORE_USER;
f0630fff 466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
a79316c6
AR
473/*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479static inline void metadata_access_enable(void)
480{
481 kasan_disable_current();
482}
483
484static inline void metadata_access_disable(void)
485{
486 kasan_enable_current();
487}
488
81819f0f
CL
489/*
490 * Object debugging
491 */
492static void print_section(char *text, u8 *addr, unsigned int length)
493{
a79316c6 494 metadata_access_enable();
ffc79d28
SAS
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
a79316c6 497 metadata_access_disable();
81819f0f
CL
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
a79316c6 527 metadata_access_enable();
d6543e39 528 save_stack_trace(&trace);
a79316c6 529 metadata_access_disable();
d6543e39
BG
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538#endif
81819f0f
CL
539 p->addr = addr;
540 p->cpu = smp_processor_id();
88e4ccf2 541 p->pid = current->pid;
81819f0f
CL
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545}
546
81819f0f
CL
547static void init_tracking(struct kmem_cache *s, void *object)
548{
24922684
CL
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
ce71e27c
EGM
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
554}
555
556static void print_track(const char *s, struct track *t)
557{
558 if (!t->addr)
559 return;
560
f9f58285
FF
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
563#ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
f9f58285 568 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
569 else
570 break;
571 }
572#endif
24922684
CL
573}
574
575static void print_tracking(struct kmem_cache *s, void *object)
576{
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582}
583
584static void print_page_info(struct page *page)
585{
f9f58285 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 587 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
588
589}
590
591static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592{
ecc42fbe 593 struct va_format vaf;
24922684 594 va_list args;
24922684
CL
595
596 va_start(args, fmt);
ecc42fbe
FF
597 vaf.fmt = fmt;
598 vaf.va = &args;
f9f58285 599 pr_err("=============================================================================\n");
ecc42fbe 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 601 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 602
373d4d09 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 604 va_end(args);
81819f0f
CL
605}
606
24922684
CL
607static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608{
ecc42fbe 609 struct va_format vaf;
24922684 610 va_list args;
24922684
CL
611
612 va_start(args, fmt);
ecc42fbe
FF
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 616 va_end(args);
24922684
CL
617}
618
619static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
620{
621 unsigned int off; /* Offset of last byte */
a973e9dd 622 u8 *addr = page_address(page);
24922684
CL
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
f9f58285
FF
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
24922684
CL
630
631 if (p > addr + 16)
ffc79d28 632 print_section("Bytes b4 ", p - 16, 16);
81819f0f 633
3b0efdfa 634 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 635 PAGE_SIZE));
81819f0f 636 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
81819f0f 639
81819f0f
CL
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
24922684 645 if (s->flags & SLAB_STORE_USER)
81819f0f 646 off += 2 * sizeof(struct track);
81819f0f
CL
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
ffc79d28 650 print_section("Padding ", p + off, s->size - off);
24922684
CL
651
652 dump_stack();
81819f0f
CL
653}
654
75c66def 655void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
656 u8 *object, char *reason)
657{
3dc50637 658 slab_bug(s, "%s", reason);
24922684 659 print_trailer(s, page, object);
81819f0f
CL
660}
661
d0e0ac97
CG
662static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
81819f0f
CL
664{
665 va_list args;
666 char buf[100];
667
24922684
CL
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 670 va_end(args);
3dc50637 671 slab_bug(s, "%s", buf);
24922684 672 print_page_info(page);
81819f0f
CL
673 dump_stack();
674}
675
f7cb1933 676static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
677{
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
81819f0f
CL
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 686 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
687}
688
24922684
CL
689static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691{
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694}
695
696static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
06428780 698 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
699{
700 u8 *fault;
701 u8 *end;
702
a79316c6 703 metadata_access_enable();
79824820 704 fault = memchr_inv(start, value, bytes);
a79316c6 705 metadata_access_disable();
24922684
CL
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
f9f58285 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
81819f0f
CL
720}
721
81819f0f
CL
722/*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
672bba3a 729 *
81819f0f
CL
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
3b0efdfa 733 * object + s->object_size
81819f0f 734 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 735 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 736 * object_size == inuse.
672bba3a 737 *
81819f0f
CL
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
672bba3a
CL
742 * Meta data starts here.
743 *
81819f0f
CL
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
672bba3a 746 * C. Padding to reach required alignment boundary or at mininum
6446faa2 747 * one word if debugging is on to be able to detect writes
672bba3a
CL
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
751 *
752 * object + s->size
672bba3a 753 * Nothing is used beyond s->size.
81819f0f 754 *
3b0efdfa 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 756 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
757 * may be used with merged slabcaches.
758 */
759
81819f0f
CL
760static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761{
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
24922684
CL
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
777}
778
39b26464 779/* Check the pad bytes at the end of a slab page */
81819f0f
CL
780static int slab_pad_check(struct kmem_cache *s, struct page *page)
781{
24922684
CL
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
81819f0f
CL
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
a973e9dd 791 start = page_address(page);
ab9a0f19 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
793 end = start + length;
794 remainder = length % s->size;
81819f0f
CL
795 if (!remainder)
796 return 1;
797
a79316c6 798 metadata_access_enable();
79824820 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 800 metadata_access_disable();
24922684
CL
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 807 print_section("Padding ", end - remainder, remainder);
24922684 808
8a3d271d 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 810 return 0;
81819f0f
CL
811}
812
813static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 814 void *object, u8 val)
81819f0f
CL
815{
816 u8 *p = object;
3b0efdfa 817 u8 *endobject = object + s->object_size;
81819f0f
CL
818
819 if (s->flags & SLAB_RED_ZONE) {
24922684 820 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 821 endobject, val, s->inuse - s->object_size))
81819f0f 822 return 0;
81819f0f 823 } else {
3b0efdfa 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 825 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
3adbefee 828 }
81819f0f
CL
829 }
830
831 if (s->flags & SLAB_POISON) {
f7cb1933 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 833 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 834 POISON_FREE, s->object_size - 1) ||
24922684 835 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 836 p + s->object_size - 1, POISON_END, 1)))
81819f0f 837 return 0;
81819f0f
CL
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
f7cb1933 844 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
9f6c708e 855 * No choice but to zap it and thus lose the remainder
81819f0f 856 * of the free objects in this slab. May cause
672bba3a 857 * another error because the object count is now wrong.
81819f0f 858 */
a973e9dd 859 set_freepointer(s, p, NULL);
81819f0f
CL
860 return 0;
861 }
862 return 1;
863}
864
865static int check_slab(struct kmem_cache *s, struct page *page)
866{
39b26464
CL
867 int maxobj;
868
81819f0f
CL
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
24922684 872 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
873 return 0;
874 }
39b26464 875
ab9a0f19 876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
f6edde9c 879 page->objects, maxobj);
39b26464
CL
880 return 0;
881 }
882 if (page->inuse > page->objects) {
24922684 883 slab_err(s, page, "inuse %u > max %u",
f6edde9c 884 page->inuse, page->objects);
81819f0f
CL
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890}
891
892/*
672bba3a
CL
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
895 */
896static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897{
898 int nr = 0;
881db7fb 899 void *fp;
81819f0f 900 void *object = NULL;
f6edde9c 901 int max_objects;
81819f0f 902
881db7fb 903 fp = page->freelist;
39b26464 904 while (fp && nr <= page->objects) {
81819f0f
CL
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
a973e9dd 911 set_freepointer(s, object, NULL);
81819f0f 912 } else {
24922684 913 slab_err(s, page, "Freepointer corrupt");
a973e9dd 914 page->freelist = NULL;
39b26464 915 page->inuse = page->objects;
24922684 916 slab_fix(s, "Freelist cleared");
81819f0f
CL
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
ab9a0f19 926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
39b26464 936 if (page->inuse != page->objects - nr) {
70d71228 937 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
24922684 940 slab_fix(s, "Object count adjusted.");
81819f0f
CL
941 }
942 return search == NULL;
943}
944
0121c619
CL
945static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
3ec09742
CL
947{
948 if (s->flags & SLAB_TRACE) {
f9f58285 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
d0e0ac97
CG
956 print_section("Object ", (void *)object,
957 s->object_size);
3ec09742
CL
958
959 dump_stack();
960 }
961}
962
643b1138 963/*
672bba3a 964 * Tracking of fully allocated slabs for debugging purposes.
643b1138 965 */
5cc6eee8
CL
966static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
643b1138 968{
5cc6eee8
CL
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
255d0884 972 lockdep_assert_held(&n->list_lock);
643b1138 973 list_add(&page->lru, &n->full);
643b1138
CL
974}
975
c65c1877 976static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
255d0884 981 lockdep_assert_held(&n->list_lock);
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
338b2642 1008 if (likely(n)) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
d0e0ac97
CG
1032static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
ce71e27c 1034 void *object, unsigned long addr)
81819f0f
CL
1035{
1036 if (!check_slab(s, page))
1037 goto bad;
1038
81819f0f
CL
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1041 goto bad;
81819f0f
CL
1042 }
1043
f7cb1933 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1045 goto bad;
81819f0f 1046
3ec09742
CL
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
f7cb1933 1051 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1052 return 1;
3ec09742 1053
81819f0f
CL
1054bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
672bba3a 1059 * as used avoids touching the remaining objects.
81819f0f 1060 */
24922684 1061 slab_fix(s, "Marking all objects used");
39b26464 1062 page->inuse = page->objects;
a973e9dd 1063 page->freelist = NULL;
81819f0f
CL
1064 }
1065 return 0;
1066}
1067
81084651 1068/* Supports checking bulk free of a constructed freelist */
19c7ff9e 1069static noinline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1070 struct kmem_cache *s, struct page *page,
1071 void *head, void *tail, int bulk_cnt,
19c7ff9e 1072 unsigned long addr, unsigned long *flags)
81819f0f 1073{
19c7ff9e 1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
81084651
JDB
1075 void *object = head;
1076 int cnt = 0;
5c2e4bbb 1077
19c7ff9e 1078 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1079 slab_lock(page);
1080
81819f0f
CL
1081 if (!check_slab(s, page))
1082 goto fail;
1083
81084651
JDB
1084next_object:
1085 cnt++;
1086
81819f0f 1087 if (!check_valid_pointer(s, page, object)) {
70d71228 1088 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1089 goto fail;
1090 }
1091
1092 if (on_freelist(s, page, object)) {
24922684 1093 object_err(s, page, object, "Object already free");
81819f0f
CL
1094 goto fail;
1095 }
1096
f7cb1933 1097 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1098 goto out;
81819f0f 1099
1b4f59e3 1100 if (unlikely(s != page->slab_cache)) {
3adbefee 1101 if (!PageSlab(page)) {
70d71228
CL
1102 slab_err(s, page, "Attempt to free object(0x%p) "
1103 "outside of slab", object);
1b4f59e3 1104 } else if (!page->slab_cache) {
f9f58285
FF
1105 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1106 object);
70d71228 1107 dump_stack();
06428780 1108 } else
24922684
CL
1109 object_err(s, page, object,
1110 "page slab pointer corrupt.");
81819f0f
CL
1111 goto fail;
1112 }
3ec09742 1113
3ec09742
CL
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_FREE, addr);
1116 trace(s, page, object, 0);
81084651 1117 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1118 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1119
1120 /* Reached end of constructed freelist yet? */
1121 if (object != tail) {
1122 object = get_freepointer(s, object);
1123 goto next_object;
1124 }
5c2e4bbb 1125out:
81084651
JDB
1126 if (cnt != bulk_cnt)
1127 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1128 bulk_cnt, cnt);
1129
881db7fb 1130 slab_unlock(page);
19c7ff9e
CL
1131 /*
1132 * Keep node_lock to preserve integrity
1133 * until the object is actually freed
1134 */
1135 return n;
3ec09742 1136
81819f0f 1137fail:
19c7ff9e
CL
1138 slab_unlock(page);
1139 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1140 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1141 return NULL;
81819f0f
CL
1142}
1143
41ecc55b
CL
1144static int __init setup_slub_debug(char *str)
1145{
f0630fff
CL
1146 slub_debug = DEBUG_DEFAULT_FLAGS;
1147 if (*str++ != '=' || !*str)
1148 /*
1149 * No options specified. Switch on full debugging.
1150 */
1151 goto out;
1152
1153 if (*str == ',')
1154 /*
1155 * No options but restriction on slabs. This means full
1156 * debugging for slabs matching a pattern.
1157 */
1158 goto check_slabs;
1159
1160 slub_debug = 0;
1161 if (*str == '-')
1162 /*
1163 * Switch off all debugging measures.
1164 */
1165 goto out;
1166
1167 /*
1168 * Determine which debug features should be switched on
1169 */
06428780 1170 for (; *str && *str != ','; str++) {
f0630fff
CL
1171 switch (tolower(*str)) {
1172 case 'f':
1173 slub_debug |= SLAB_DEBUG_FREE;
1174 break;
1175 case 'z':
1176 slub_debug |= SLAB_RED_ZONE;
1177 break;
1178 case 'p':
1179 slub_debug |= SLAB_POISON;
1180 break;
1181 case 'u':
1182 slub_debug |= SLAB_STORE_USER;
1183 break;
1184 case 't':
1185 slub_debug |= SLAB_TRACE;
1186 break;
4c13dd3b
DM
1187 case 'a':
1188 slub_debug |= SLAB_FAILSLAB;
1189 break;
08303a73
CA
1190 case 'o':
1191 /*
1192 * Avoid enabling debugging on caches if its minimum
1193 * order would increase as a result.
1194 */
1195 disable_higher_order_debug = 1;
1196 break;
f0630fff 1197 default:
f9f58285
FF
1198 pr_err("slub_debug option '%c' unknown. skipped\n",
1199 *str);
f0630fff 1200 }
41ecc55b
CL
1201 }
1202
f0630fff 1203check_slabs:
41ecc55b
CL
1204 if (*str == ',')
1205 slub_debug_slabs = str + 1;
f0630fff 1206out:
41ecc55b
CL
1207 return 1;
1208}
1209
1210__setup("slub_debug", setup_slub_debug);
1211
423c929c 1212unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1213 unsigned long flags, const char *name,
51cc5068 1214 void (*ctor)(void *))
41ecc55b
CL
1215{
1216 /*
e153362a 1217 * Enable debugging if selected on the kernel commandline.
41ecc55b 1218 */
c6f58d9b
CL
1219 if (slub_debug && (!slub_debug_slabs || (name &&
1220 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1221 flags |= slub_debug;
ba0268a8
CL
1222
1223 return flags;
41ecc55b 1224}
b4a64718 1225#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1226static inline void setup_object_debug(struct kmem_cache *s,
1227 struct page *page, void *object) {}
41ecc55b 1228
3ec09742 1229static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1230 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1231
19c7ff9e 1232static inline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1233 struct kmem_cache *s, struct page *page,
1234 void *head, void *tail, int bulk_cnt,
19c7ff9e 1235 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1236
41ecc55b
CL
1237static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1238 { return 1; }
1239static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1240 void *object, u8 val) { return 1; }
5cc6eee8
CL
1241static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1242 struct page *page) {}
c65c1877
PZ
1243static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
423c929c 1245unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1246 unsigned long flags, const char *name,
51cc5068 1247 void (*ctor)(void *))
ba0268a8
CL
1248{
1249 return flags;
1250}
41ecc55b 1251#define slub_debug 0
0f389ec6 1252
fdaa45e9
IM
1253#define disable_higher_order_debug 0
1254
0f389ec6
CL
1255static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1256 { return 0; }
26c02cf0
AB
1257static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1258 { return 0; }
205ab99d
CL
1259static inline void inc_slabs_node(struct kmem_cache *s, int node,
1260 int objects) {}
1261static inline void dec_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
7d550c56 1263
02e72cc6
AR
1264#endif /* CONFIG_SLUB_DEBUG */
1265
1266/*
1267 * Hooks for other subsystems that check memory allocations. In a typical
1268 * production configuration these hooks all should produce no code at all.
1269 */
d56791b3
RB
1270static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1271{
1272 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1273 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1274}
1275
1276static inline void kfree_hook(const void *x)
1277{
1278 kmemleak_free(x);
0316bec2 1279 kasan_kfree_large(x);
d56791b3
RB
1280}
1281
8135be5a
VD
1282static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1283 gfp_t flags)
02e72cc6
AR
1284{
1285 flags &= gfp_allowed_mask;
1286 lockdep_trace_alloc(flags);
d0164adc 1287 might_sleep_if(gfpflags_allow_blocking(flags));
7d550c56 1288
8135be5a
VD
1289 if (should_failslab(s->object_size, flags, s->flags))
1290 return NULL;
1291
1292 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1293}
1294
03ec0ed5
JDB
1295static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1296 size_t size, void **p)
d56791b3 1297{
03ec0ed5
JDB
1298 size_t i;
1299
02e72cc6 1300 flags &= gfp_allowed_mask;
03ec0ed5
JDB
1301 for (i = 0; i < size; i++) {
1302 void *object = p[i];
1303
1304 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1305 kmemleak_alloc_recursive(object, s->object_size, 1,
1306 s->flags, flags);
1307 kasan_slab_alloc(s, object);
1308 }
8135be5a 1309 memcg_kmem_put_cache(s);
d56791b3 1310}
7d550c56 1311
d56791b3
RB
1312static inline void slab_free_hook(struct kmem_cache *s, void *x)
1313{
1314 kmemleak_free_recursive(x, s->flags);
7d550c56 1315
02e72cc6
AR
1316 /*
1317 * Trouble is that we may no longer disable interrupts in the fast path
1318 * So in order to make the debug calls that expect irqs to be
1319 * disabled we need to disable interrupts temporarily.
1320 */
1321#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1322 {
1323 unsigned long flags;
1324
1325 local_irq_save(flags);
1326 kmemcheck_slab_free(s, x, s->object_size);
1327 debug_check_no_locks_freed(x, s->object_size);
1328 local_irq_restore(flags);
1329 }
1330#endif
1331 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1332 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1333
1334 kasan_slab_free(s, x);
02e72cc6 1335}
205ab99d 1336
81084651
JDB
1337static inline void slab_free_freelist_hook(struct kmem_cache *s,
1338 void *head, void *tail)
1339{
1340/*
1341 * Compiler cannot detect this function can be removed if slab_free_hook()
1342 * evaluates to nothing. Thus, catch all relevant config debug options here.
1343 */
1344#if defined(CONFIG_KMEMCHECK) || \
1345 defined(CONFIG_LOCKDEP) || \
1346 defined(CONFIG_DEBUG_KMEMLEAK) || \
1347 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1348 defined(CONFIG_KASAN)
1349
1350 void *object = head;
1351 void *tail_obj = tail ? : head;
1352
1353 do {
1354 slab_free_hook(s, object);
1355 } while ((object != tail_obj) &&
1356 (object = get_freepointer(s, object)));
1357#endif
1358}
1359
588f8ba9
TG
1360static void setup_object(struct kmem_cache *s, struct page *page,
1361 void *object)
1362{
1363 setup_object_debug(s, page, object);
1364 if (unlikely(s->ctor)) {
1365 kasan_unpoison_object_data(s, object);
1366 s->ctor(object);
1367 kasan_poison_object_data(s, object);
1368 }
1369}
1370
81819f0f
CL
1371/*
1372 * Slab allocation and freeing
1373 */
5dfb4175
VD
1374static inline struct page *alloc_slab_page(struct kmem_cache *s,
1375 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1376{
5dfb4175 1377 struct page *page;
65c3376a
CL
1378 int order = oo_order(oo);
1379
b1eeab67
VN
1380 flags |= __GFP_NOTRACK;
1381
2154a336 1382 if (node == NUMA_NO_NODE)
5dfb4175 1383 page = alloc_pages(flags, order);
65c3376a 1384 else
96db800f 1385 page = __alloc_pages_node(node, flags, order);
5dfb4175 1386
f3ccb2c4
VD
1387 if (page && memcg_charge_slab(page, flags, order, s)) {
1388 __free_pages(page, order);
1389 page = NULL;
1390 }
5dfb4175
VD
1391
1392 return page;
65c3376a
CL
1393}
1394
81819f0f
CL
1395static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1396{
06428780 1397 struct page *page;
834f3d11 1398 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1399 gfp_t alloc_gfp;
588f8ba9
TG
1400 void *start, *p;
1401 int idx, order;
81819f0f 1402
7e0528da
CL
1403 flags &= gfp_allowed_mask;
1404
d0164adc 1405 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1406 local_irq_enable();
1407
b7a49f0d 1408 flags |= s->allocflags;
e12ba74d 1409
ba52270d
PE
1410 /*
1411 * Let the initial higher-order allocation fail under memory pressure
1412 * so we fall-back to the minimum order allocation.
1413 */
1414 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1415 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1416 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1417
5dfb4175 1418 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1419 if (unlikely(!page)) {
1420 oo = s->min;
80c3a998 1421 alloc_gfp = flags;
65c3376a
CL
1422 /*
1423 * Allocation may have failed due to fragmentation.
1424 * Try a lower order alloc if possible
1425 */
5dfb4175 1426 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1427 if (unlikely(!page))
1428 goto out;
1429 stat(s, ORDER_FALLBACK);
65c3376a 1430 }
5a896d9e 1431
588f8ba9
TG
1432 if (kmemcheck_enabled &&
1433 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1434 int pages = 1 << oo_order(oo);
1435
80c3a998 1436 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1437
1438 /*
1439 * Objects from caches that have a constructor don't get
1440 * cleared when they're allocated, so we need to do it here.
1441 */
1442 if (s->ctor)
1443 kmemcheck_mark_uninitialized_pages(page, pages);
1444 else
1445 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1446 }
1447
834f3d11 1448 page->objects = oo_objects(oo);
81819f0f 1449
1f458cbf 1450 order = compound_order(page);
1b4f59e3 1451 page->slab_cache = s;
c03f94cc 1452 __SetPageSlab(page);
2f064f34 1453 if (page_is_pfmemalloc(page))
072bb0aa 1454 SetPageSlabPfmemalloc(page);
81819f0f
CL
1455
1456 start = page_address(page);
81819f0f
CL
1457
1458 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1459 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1460
0316bec2
AR
1461 kasan_poison_slab(page);
1462
54266640
WY
1463 for_each_object_idx(p, idx, s, start, page->objects) {
1464 setup_object(s, page, p);
1465 if (likely(idx < page->objects))
1466 set_freepointer(s, p, p + s->size);
1467 else
1468 set_freepointer(s, p, NULL);
81819f0f 1469 }
81819f0f
CL
1470
1471 page->freelist = start;
e6e82ea1 1472 page->inuse = page->objects;
8cb0a506 1473 page->frozen = 1;
588f8ba9 1474
81819f0f 1475out:
d0164adc 1476 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1477 local_irq_disable();
1478 if (!page)
1479 return NULL;
1480
1481 mod_zone_page_state(page_zone(page),
1482 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1483 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1484 1 << oo_order(oo));
1485
1486 inc_slabs_node(s, page_to_nid(page), page->objects);
1487
81819f0f
CL
1488 return page;
1489}
1490
588f8ba9
TG
1491static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1492{
1493 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1494 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1495 BUG();
1496 }
1497
1498 return allocate_slab(s,
1499 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1500}
1501
81819f0f
CL
1502static void __free_slab(struct kmem_cache *s, struct page *page)
1503{
834f3d11
CL
1504 int order = compound_order(page);
1505 int pages = 1 << order;
81819f0f 1506
af537b0a 1507 if (kmem_cache_debug(s)) {
81819f0f
CL
1508 void *p;
1509
1510 slab_pad_check(s, page);
224a88be
CL
1511 for_each_object(p, s, page_address(page),
1512 page->objects)
f7cb1933 1513 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1514 }
1515
b1eeab67 1516 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1517
81819f0f
CL
1518 mod_zone_page_state(page_zone(page),
1519 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1520 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1521 -pages);
81819f0f 1522
072bb0aa 1523 __ClearPageSlabPfmemalloc(page);
49bd5221 1524 __ClearPageSlab(page);
1f458cbf 1525
22b751c3 1526 page_mapcount_reset(page);
1eb5ac64
NP
1527 if (current->reclaim_state)
1528 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1529 __free_kmem_pages(page, order);
81819f0f
CL
1530}
1531
da9a638c
LJ
1532#define need_reserve_slab_rcu \
1533 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1534
81819f0f
CL
1535static void rcu_free_slab(struct rcu_head *h)
1536{
1537 struct page *page;
1538
da9a638c
LJ
1539 if (need_reserve_slab_rcu)
1540 page = virt_to_head_page(h);
1541 else
1542 page = container_of((struct list_head *)h, struct page, lru);
1543
1b4f59e3 1544 __free_slab(page->slab_cache, page);
81819f0f
CL
1545}
1546
1547static void free_slab(struct kmem_cache *s, struct page *page)
1548{
1549 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1550 struct rcu_head *head;
1551
1552 if (need_reserve_slab_rcu) {
1553 int order = compound_order(page);
1554 int offset = (PAGE_SIZE << order) - s->reserved;
1555
1556 VM_BUG_ON(s->reserved != sizeof(*head));
1557 head = page_address(page) + offset;
1558 } else {
bc4f610d 1559 head = &page->rcu_head;
da9a638c 1560 }
81819f0f
CL
1561
1562 call_rcu(head, rcu_free_slab);
1563 } else
1564 __free_slab(s, page);
1565}
1566
1567static void discard_slab(struct kmem_cache *s, struct page *page)
1568{
205ab99d 1569 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1570 free_slab(s, page);
1571}
1572
1573/*
5cc6eee8 1574 * Management of partially allocated slabs.
81819f0f 1575 */
1e4dd946
SR
1576static inline void
1577__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1578{
e95eed57 1579 n->nr_partial++;
136333d1 1580 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1581 list_add_tail(&page->lru, &n->partial);
1582 else
1583 list_add(&page->lru, &n->partial);
81819f0f
CL
1584}
1585
1e4dd946
SR
1586static inline void add_partial(struct kmem_cache_node *n,
1587 struct page *page, int tail)
62e346a8 1588{
c65c1877 1589 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1590 __add_partial(n, page, tail);
1591}
c65c1877 1592
1e4dd946
SR
1593static inline void
1594__remove_partial(struct kmem_cache_node *n, struct page *page)
1595{
62e346a8
CL
1596 list_del(&page->lru);
1597 n->nr_partial--;
1598}
1599
1e4dd946
SR
1600static inline void remove_partial(struct kmem_cache_node *n,
1601 struct page *page)
1602{
1603 lockdep_assert_held(&n->list_lock);
1604 __remove_partial(n, page);
1605}
1606
81819f0f 1607/*
7ced3719
CL
1608 * Remove slab from the partial list, freeze it and
1609 * return the pointer to the freelist.
81819f0f 1610 *
497b66f2 1611 * Returns a list of objects or NULL if it fails.
81819f0f 1612 */
497b66f2 1613static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1614 struct kmem_cache_node *n, struct page *page,
633b0764 1615 int mode, int *objects)
81819f0f 1616{
2cfb7455
CL
1617 void *freelist;
1618 unsigned long counters;
1619 struct page new;
1620
c65c1877
PZ
1621 lockdep_assert_held(&n->list_lock);
1622
2cfb7455
CL
1623 /*
1624 * Zap the freelist and set the frozen bit.
1625 * The old freelist is the list of objects for the
1626 * per cpu allocation list.
1627 */
7ced3719
CL
1628 freelist = page->freelist;
1629 counters = page->counters;
1630 new.counters = counters;
633b0764 1631 *objects = new.objects - new.inuse;
23910c50 1632 if (mode) {
7ced3719 1633 new.inuse = page->objects;
23910c50
PE
1634 new.freelist = NULL;
1635 } else {
1636 new.freelist = freelist;
1637 }
2cfb7455 1638
a0132ac0 1639 VM_BUG_ON(new.frozen);
7ced3719 1640 new.frozen = 1;
2cfb7455 1641
7ced3719 1642 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1643 freelist, counters,
02d7633f 1644 new.freelist, new.counters,
7ced3719 1645 "acquire_slab"))
7ced3719 1646 return NULL;
2cfb7455
CL
1647
1648 remove_partial(n, page);
7ced3719 1649 WARN_ON(!freelist);
49e22585 1650 return freelist;
81819f0f
CL
1651}
1652
633b0764 1653static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1654static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1655
81819f0f 1656/*
672bba3a 1657 * Try to allocate a partial slab from a specific node.
81819f0f 1658 */
8ba00bb6
JK
1659static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1660 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1661{
49e22585
CL
1662 struct page *page, *page2;
1663 void *object = NULL;
633b0764
JK
1664 int available = 0;
1665 int objects;
81819f0f
CL
1666
1667 /*
1668 * Racy check. If we mistakenly see no partial slabs then we
1669 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1670 * partial slab and there is none available then get_partials()
1671 * will return NULL.
81819f0f
CL
1672 */
1673 if (!n || !n->nr_partial)
1674 return NULL;
1675
1676 spin_lock(&n->list_lock);
49e22585 1677 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1678 void *t;
49e22585 1679
8ba00bb6
JK
1680 if (!pfmemalloc_match(page, flags))
1681 continue;
1682
633b0764 1683 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1684 if (!t)
1685 break;
1686
633b0764 1687 available += objects;
12d79634 1688 if (!object) {
49e22585 1689 c->page = page;
49e22585 1690 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1691 object = t;
49e22585 1692 } else {
633b0764 1693 put_cpu_partial(s, page, 0);
8028dcea 1694 stat(s, CPU_PARTIAL_NODE);
49e22585 1695 }
345c905d
JK
1696 if (!kmem_cache_has_cpu_partial(s)
1697 || available > s->cpu_partial / 2)
49e22585
CL
1698 break;
1699
497b66f2 1700 }
81819f0f 1701 spin_unlock(&n->list_lock);
497b66f2 1702 return object;
81819f0f
CL
1703}
1704
1705/*
672bba3a 1706 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1707 */
de3ec035 1708static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1709 struct kmem_cache_cpu *c)
81819f0f
CL
1710{
1711#ifdef CONFIG_NUMA
1712 struct zonelist *zonelist;
dd1a239f 1713 struct zoneref *z;
54a6eb5c
MG
1714 struct zone *zone;
1715 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1716 void *object;
cc9a6c87 1717 unsigned int cpuset_mems_cookie;
81819f0f
CL
1718
1719 /*
672bba3a
CL
1720 * The defrag ratio allows a configuration of the tradeoffs between
1721 * inter node defragmentation and node local allocations. A lower
1722 * defrag_ratio increases the tendency to do local allocations
1723 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1724 *
672bba3a
CL
1725 * If the defrag_ratio is set to 0 then kmalloc() always
1726 * returns node local objects. If the ratio is higher then kmalloc()
1727 * may return off node objects because partial slabs are obtained
1728 * from other nodes and filled up.
81819f0f 1729 *
6446faa2 1730 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1731 * defrag_ratio = 1000) then every (well almost) allocation will
1732 * first attempt to defrag slab caches on other nodes. This means
1733 * scanning over all nodes to look for partial slabs which may be
1734 * expensive if we do it every time we are trying to find a slab
1735 * with available objects.
81819f0f 1736 */
9824601e
CL
1737 if (!s->remote_node_defrag_ratio ||
1738 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1739 return NULL;
1740
cc9a6c87 1741 do {
d26914d1 1742 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1743 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1744 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1745 struct kmem_cache_node *n;
1746
1747 n = get_node(s, zone_to_nid(zone));
1748
dee2f8aa 1749 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1750 n->nr_partial > s->min_partial) {
8ba00bb6 1751 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1752 if (object) {
1753 /*
d26914d1
MG
1754 * Don't check read_mems_allowed_retry()
1755 * here - if mems_allowed was updated in
1756 * parallel, that was a harmless race
1757 * between allocation and the cpuset
1758 * update
cc9a6c87 1759 */
cc9a6c87
MG
1760 return object;
1761 }
c0ff7453 1762 }
81819f0f 1763 }
d26914d1 1764 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1765#endif
1766 return NULL;
1767}
1768
1769/*
1770 * Get a partial page, lock it and return it.
1771 */
497b66f2 1772static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1773 struct kmem_cache_cpu *c)
81819f0f 1774{
497b66f2 1775 void *object;
a561ce00
JK
1776 int searchnode = node;
1777
1778 if (node == NUMA_NO_NODE)
1779 searchnode = numa_mem_id();
1780 else if (!node_present_pages(node))
1781 searchnode = node_to_mem_node(node);
81819f0f 1782
8ba00bb6 1783 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1784 if (object || node != NUMA_NO_NODE)
1785 return object;
81819f0f 1786
acd19fd1 1787 return get_any_partial(s, flags, c);
81819f0f
CL
1788}
1789
8a5ec0ba
CL
1790#ifdef CONFIG_PREEMPT
1791/*
1792 * Calculate the next globally unique transaction for disambiguiation
1793 * during cmpxchg. The transactions start with the cpu number and are then
1794 * incremented by CONFIG_NR_CPUS.
1795 */
1796#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1797#else
1798/*
1799 * No preemption supported therefore also no need to check for
1800 * different cpus.
1801 */
1802#define TID_STEP 1
1803#endif
1804
1805static inline unsigned long next_tid(unsigned long tid)
1806{
1807 return tid + TID_STEP;
1808}
1809
1810static inline unsigned int tid_to_cpu(unsigned long tid)
1811{
1812 return tid % TID_STEP;
1813}
1814
1815static inline unsigned long tid_to_event(unsigned long tid)
1816{
1817 return tid / TID_STEP;
1818}
1819
1820static inline unsigned int init_tid(int cpu)
1821{
1822 return cpu;
1823}
1824
1825static inline void note_cmpxchg_failure(const char *n,
1826 const struct kmem_cache *s, unsigned long tid)
1827{
1828#ifdef SLUB_DEBUG_CMPXCHG
1829 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1830
f9f58285 1831 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1832
1833#ifdef CONFIG_PREEMPT
1834 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1835 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1836 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1837 else
1838#endif
1839 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1840 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1841 tid_to_event(tid), tid_to_event(actual_tid));
1842 else
f9f58285 1843 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1844 actual_tid, tid, next_tid(tid));
1845#endif
4fdccdfb 1846 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1847}
1848
788e1aad 1849static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1850{
8a5ec0ba
CL
1851 int cpu;
1852
1853 for_each_possible_cpu(cpu)
1854 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1855}
2cfb7455 1856
81819f0f
CL
1857/*
1858 * Remove the cpu slab
1859 */
d0e0ac97
CG
1860static void deactivate_slab(struct kmem_cache *s, struct page *page,
1861 void *freelist)
81819f0f 1862{
2cfb7455 1863 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1864 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1865 int lock = 0;
1866 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1867 void *nextfree;
136333d1 1868 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1869 struct page new;
1870 struct page old;
1871
1872 if (page->freelist) {
84e554e6 1873 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1874 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1875 }
1876
894b8788 1877 /*
2cfb7455
CL
1878 * Stage one: Free all available per cpu objects back
1879 * to the page freelist while it is still frozen. Leave the
1880 * last one.
1881 *
1882 * There is no need to take the list->lock because the page
1883 * is still frozen.
1884 */
1885 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1886 void *prior;
1887 unsigned long counters;
1888
1889 do {
1890 prior = page->freelist;
1891 counters = page->counters;
1892 set_freepointer(s, freelist, prior);
1893 new.counters = counters;
1894 new.inuse--;
a0132ac0 1895 VM_BUG_ON(!new.frozen);
2cfb7455 1896
1d07171c 1897 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1898 prior, counters,
1899 freelist, new.counters,
1900 "drain percpu freelist"));
1901
1902 freelist = nextfree;
1903 }
1904
894b8788 1905 /*
2cfb7455
CL
1906 * Stage two: Ensure that the page is unfrozen while the
1907 * list presence reflects the actual number of objects
1908 * during unfreeze.
1909 *
1910 * We setup the list membership and then perform a cmpxchg
1911 * with the count. If there is a mismatch then the page
1912 * is not unfrozen but the page is on the wrong list.
1913 *
1914 * Then we restart the process which may have to remove
1915 * the page from the list that we just put it on again
1916 * because the number of objects in the slab may have
1917 * changed.
894b8788 1918 */
2cfb7455 1919redo:
894b8788 1920
2cfb7455
CL
1921 old.freelist = page->freelist;
1922 old.counters = page->counters;
a0132ac0 1923 VM_BUG_ON(!old.frozen);
7c2e132c 1924
2cfb7455
CL
1925 /* Determine target state of the slab */
1926 new.counters = old.counters;
1927 if (freelist) {
1928 new.inuse--;
1929 set_freepointer(s, freelist, old.freelist);
1930 new.freelist = freelist;
1931 } else
1932 new.freelist = old.freelist;
1933
1934 new.frozen = 0;
1935
8a5b20ae 1936 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1937 m = M_FREE;
1938 else if (new.freelist) {
1939 m = M_PARTIAL;
1940 if (!lock) {
1941 lock = 1;
1942 /*
1943 * Taking the spinlock removes the possiblity
1944 * that acquire_slab() will see a slab page that
1945 * is frozen
1946 */
1947 spin_lock(&n->list_lock);
1948 }
1949 } else {
1950 m = M_FULL;
1951 if (kmem_cache_debug(s) && !lock) {
1952 lock = 1;
1953 /*
1954 * This also ensures that the scanning of full
1955 * slabs from diagnostic functions will not see
1956 * any frozen slabs.
1957 */
1958 spin_lock(&n->list_lock);
1959 }
1960 }
1961
1962 if (l != m) {
1963
1964 if (l == M_PARTIAL)
1965
1966 remove_partial(n, page);
1967
1968 else if (l == M_FULL)
894b8788 1969
c65c1877 1970 remove_full(s, n, page);
2cfb7455
CL
1971
1972 if (m == M_PARTIAL) {
1973
1974 add_partial(n, page, tail);
136333d1 1975 stat(s, tail);
2cfb7455
CL
1976
1977 } else if (m == M_FULL) {
894b8788 1978
2cfb7455
CL
1979 stat(s, DEACTIVATE_FULL);
1980 add_full(s, n, page);
1981
1982 }
1983 }
1984
1985 l = m;
1d07171c 1986 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1987 old.freelist, old.counters,
1988 new.freelist, new.counters,
1989 "unfreezing slab"))
1990 goto redo;
1991
2cfb7455
CL
1992 if (lock)
1993 spin_unlock(&n->list_lock);
1994
1995 if (m == M_FREE) {
1996 stat(s, DEACTIVATE_EMPTY);
1997 discard_slab(s, page);
1998 stat(s, FREE_SLAB);
894b8788 1999 }
81819f0f
CL
2000}
2001
d24ac77f
JK
2002/*
2003 * Unfreeze all the cpu partial slabs.
2004 *
59a09917
CL
2005 * This function must be called with interrupts disabled
2006 * for the cpu using c (or some other guarantee must be there
2007 * to guarantee no concurrent accesses).
d24ac77f 2008 */
59a09917
CL
2009static void unfreeze_partials(struct kmem_cache *s,
2010 struct kmem_cache_cpu *c)
49e22585 2011{
345c905d 2012#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2013 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2014 struct page *page, *discard_page = NULL;
49e22585
CL
2015
2016 while ((page = c->partial)) {
49e22585
CL
2017 struct page new;
2018 struct page old;
2019
2020 c->partial = page->next;
43d77867
JK
2021
2022 n2 = get_node(s, page_to_nid(page));
2023 if (n != n2) {
2024 if (n)
2025 spin_unlock(&n->list_lock);
2026
2027 n = n2;
2028 spin_lock(&n->list_lock);
2029 }
49e22585
CL
2030
2031 do {
2032
2033 old.freelist = page->freelist;
2034 old.counters = page->counters;
a0132ac0 2035 VM_BUG_ON(!old.frozen);
49e22585
CL
2036
2037 new.counters = old.counters;
2038 new.freelist = old.freelist;
2039
2040 new.frozen = 0;
2041
d24ac77f 2042 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2043 old.freelist, old.counters,
2044 new.freelist, new.counters,
2045 "unfreezing slab"));
2046
8a5b20ae 2047 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2048 page->next = discard_page;
2049 discard_page = page;
43d77867
JK
2050 } else {
2051 add_partial(n, page, DEACTIVATE_TO_TAIL);
2052 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2053 }
2054 }
2055
2056 if (n)
2057 spin_unlock(&n->list_lock);
9ada1934
SL
2058
2059 while (discard_page) {
2060 page = discard_page;
2061 discard_page = discard_page->next;
2062
2063 stat(s, DEACTIVATE_EMPTY);
2064 discard_slab(s, page);
2065 stat(s, FREE_SLAB);
2066 }
345c905d 2067#endif
49e22585
CL
2068}
2069
2070/*
2071 * Put a page that was just frozen (in __slab_free) into a partial page
2072 * slot if available. This is done without interrupts disabled and without
2073 * preemption disabled. The cmpxchg is racy and may put the partial page
2074 * onto a random cpus partial slot.
2075 *
2076 * If we did not find a slot then simply move all the partials to the
2077 * per node partial list.
2078 */
633b0764 2079static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2080{
345c905d 2081#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2082 struct page *oldpage;
2083 int pages;
2084 int pobjects;
2085
d6e0b7fa 2086 preempt_disable();
49e22585
CL
2087 do {
2088 pages = 0;
2089 pobjects = 0;
2090 oldpage = this_cpu_read(s->cpu_slab->partial);
2091
2092 if (oldpage) {
2093 pobjects = oldpage->pobjects;
2094 pages = oldpage->pages;
2095 if (drain && pobjects > s->cpu_partial) {
2096 unsigned long flags;
2097 /*
2098 * partial array is full. Move the existing
2099 * set to the per node partial list.
2100 */
2101 local_irq_save(flags);
59a09917 2102 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2103 local_irq_restore(flags);
e24fc410 2104 oldpage = NULL;
49e22585
CL
2105 pobjects = 0;
2106 pages = 0;
8028dcea 2107 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2108 }
2109 }
2110
2111 pages++;
2112 pobjects += page->objects - page->inuse;
2113
2114 page->pages = pages;
2115 page->pobjects = pobjects;
2116 page->next = oldpage;
2117
d0e0ac97
CG
2118 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2119 != oldpage);
d6e0b7fa
VD
2120 if (unlikely(!s->cpu_partial)) {
2121 unsigned long flags;
2122
2123 local_irq_save(flags);
2124 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2125 local_irq_restore(flags);
2126 }
2127 preempt_enable();
345c905d 2128#endif
49e22585
CL
2129}
2130
dfb4f096 2131static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2132{
84e554e6 2133 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2134 deactivate_slab(s, c->page, c->freelist);
2135
2136 c->tid = next_tid(c->tid);
2137 c->page = NULL;
2138 c->freelist = NULL;
81819f0f
CL
2139}
2140
2141/*
2142 * Flush cpu slab.
6446faa2 2143 *
81819f0f
CL
2144 * Called from IPI handler with interrupts disabled.
2145 */
0c710013 2146static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2147{
9dfc6e68 2148 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2149
49e22585
CL
2150 if (likely(c)) {
2151 if (c->page)
2152 flush_slab(s, c);
2153
59a09917 2154 unfreeze_partials(s, c);
49e22585 2155 }
81819f0f
CL
2156}
2157
2158static void flush_cpu_slab(void *d)
2159{
2160 struct kmem_cache *s = d;
81819f0f 2161
dfb4f096 2162 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2163}
2164
a8364d55
GBY
2165static bool has_cpu_slab(int cpu, void *info)
2166{
2167 struct kmem_cache *s = info;
2168 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2169
02e1a9cd 2170 return c->page || c->partial;
a8364d55
GBY
2171}
2172
81819f0f
CL
2173static void flush_all(struct kmem_cache *s)
2174{
a8364d55 2175 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2176}
2177
dfb4f096
CL
2178/*
2179 * Check if the objects in a per cpu structure fit numa
2180 * locality expectations.
2181 */
57d437d2 2182static inline int node_match(struct page *page, int node)
dfb4f096
CL
2183{
2184#ifdef CONFIG_NUMA
4d7868e6 2185 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2186 return 0;
2187#endif
2188 return 1;
2189}
2190
9a02d699 2191#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2192static int count_free(struct page *page)
2193{
2194 return page->objects - page->inuse;
2195}
2196
9a02d699
DR
2197static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2198{
2199 return atomic_long_read(&n->total_objects);
2200}
2201#endif /* CONFIG_SLUB_DEBUG */
2202
2203#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2204static unsigned long count_partial(struct kmem_cache_node *n,
2205 int (*get_count)(struct page *))
2206{
2207 unsigned long flags;
2208 unsigned long x = 0;
2209 struct page *page;
2210
2211 spin_lock_irqsave(&n->list_lock, flags);
2212 list_for_each_entry(page, &n->partial, lru)
2213 x += get_count(page);
2214 spin_unlock_irqrestore(&n->list_lock, flags);
2215 return x;
2216}
9a02d699 2217#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2218
781b2ba6
PE
2219static noinline void
2220slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2221{
9a02d699
DR
2222#ifdef CONFIG_SLUB_DEBUG
2223 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2224 DEFAULT_RATELIMIT_BURST);
781b2ba6 2225 int node;
fa45dc25 2226 struct kmem_cache_node *n;
781b2ba6 2227
9a02d699
DR
2228 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2229 return;
2230
f9f58285 2231 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2232 nid, gfpflags);
f9f58285
FF
2233 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2234 s->name, s->object_size, s->size, oo_order(s->oo),
2235 oo_order(s->min));
781b2ba6 2236
3b0efdfa 2237 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2238 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2239 s->name);
fa5ec8a1 2240
fa45dc25 2241 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2242 unsigned long nr_slabs;
2243 unsigned long nr_objs;
2244 unsigned long nr_free;
2245
26c02cf0
AB
2246 nr_free = count_partial(n, count_free);
2247 nr_slabs = node_nr_slabs(n);
2248 nr_objs = node_nr_objs(n);
781b2ba6 2249
f9f58285 2250 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2251 node, nr_slabs, nr_objs, nr_free);
2252 }
9a02d699 2253#endif
781b2ba6
PE
2254}
2255
497b66f2
CL
2256static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2257 int node, struct kmem_cache_cpu **pc)
2258{
6faa6833 2259 void *freelist;
188fd063
CL
2260 struct kmem_cache_cpu *c = *pc;
2261 struct page *page;
497b66f2 2262
188fd063 2263 freelist = get_partial(s, flags, node, c);
497b66f2 2264
188fd063
CL
2265 if (freelist)
2266 return freelist;
2267
2268 page = new_slab(s, flags, node);
497b66f2 2269 if (page) {
7c8e0181 2270 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2271 if (c->page)
2272 flush_slab(s, c);
2273
2274 /*
2275 * No other reference to the page yet so we can
2276 * muck around with it freely without cmpxchg
2277 */
6faa6833 2278 freelist = page->freelist;
497b66f2
CL
2279 page->freelist = NULL;
2280
2281 stat(s, ALLOC_SLAB);
497b66f2
CL
2282 c->page = page;
2283 *pc = c;
2284 } else
6faa6833 2285 freelist = NULL;
497b66f2 2286
6faa6833 2287 return freelist;
497b66f2
CL
2288}
2289
072bb0aa
MG
2290static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2291{
2292 if (unlikely(PageSlabPfmemalloc(page)))
2293 return gfp_pfmemalloc_allowed(gfpflags);
2294
2295 return true;
2296}
2297
213eeb9f 2298/*
d0e0ac97
CG
2299 * Check the page->freelist of a page and either transfer the freelist to the
2300 * per cpu freelist or deactivate the page.
213eeb9f
CL
2301 *
2302 * The page is still frozen if the return value is not NULL.
2303 *
2304 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2305 *
2306 * This function must be called with interrupt disabled.
213eeb9f
CL
2307 */
2308static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2309{
2310 struct page new;
2311 unsigned long counters;
2312 void *freelist;
2313
2314 do {
2315 freelist = page->freelist;
2316 counters = page->counters;
6faa6833 2317
213eeb9f 2318 new.counters = counters;
a0132ac0 2319 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2320
2321 new.inuse = page->objects;
2322 new.frozen = freelist != NULL;
2323
d24ac77f 2324 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2325 freelist, counters,
2326 NULL, new.counters,
2327 "get_freelist"));
2328
2329 return freelist;
2330}
2331
81819f0f 2332/*
894b8788
CL
2333 * Slow path. The lockless freelist is empty or we need to perform
2334 * debugging duties.
2335 *
894b8788
CL
2336 * Processing is still very fast if new objects have been freed to the
2337 * regular freelist. In that case we simply take over the regular freelist
2338 * as the lockless freelist and zap the regular freelist.
81819f0f 2339 *
894b8788
CL
2340 * If that is not working then we fall back to the partial lists. We take the
2341 * first element of the freelist as the object to allocate now and move the
2342 * rest of the freelist to the lockless freelist.
81819f0f 2343 *
894b8788 2344 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2345 * we need to allocate a new slab. This is the slowest path since it involves
2346 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2347 *
2348 * Version of __slab_alloc to use when we know that interrupts are
2349 * already disabled (which is the case for bulk allocation).
81819f0f 2350 */
a380a3c7 2351static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2352 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2353{
6faa6833 2354 void *freelist;
f6e7def7 2355 struct page *page;
81819f0f 2356
f6e7def7
CL
2357 page = c->page;
2358 if (!page)
81819f0f 2359 goto new_slab;
49e22585 2360redo:
6faa6833 2361
57d437d2 2362 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2363 int searchnode = node;
2364
2365 if (node != NUMA_NO_NODE && !node_present_pages(node))
2366 searchnode = node_to_mem_node(node);
2367
2368 if (unlikely(!node_match(page, searchnode))) {
2369 stat(s, ALLOC_NODE_MISMATCH);
2370 deactivate_slab(s, page, c->freelist);
2371 c->page = NULL;
2372 c->freelist = NULL;
2373 goto new_slab;
2374 }
fc59c053 2375 }
6446faa2 2376
072bb0aa
MG
2377 /*
2378 * By rights, we should be searching for a slab page that was
2379 * PFMEMALLOC but right now, we are losing the pfmemalloc
2380 * information when the page leaves the per-cpu allocator
2381 */
2382 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2383 deactivate_slab(s, page, c->freelist);
2384 c->page = NULL;
2385 c->freelist = NULL;
2386 goto new_slab;
2387 }
2388
73736e03 2389 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2390 freelist = c->freelist;
2391 if (freelist)
73736e03 2392 goto load_freelist;
03e404af 2393
f6e7def7 2394 freelist = get_freelist(s, page);
6446faa2 2395
6faa6833 2396 if (!freelist) {
03e404af
CL
2397 c->page = NULL;
2398 stat(s, DEACTIVATE_BYPASS);
fc59c053 2399 goto new_slab;
03e404af 2400 }
6446faa2 2401
84e554e6 2402 stat(s, ALLOC_REFILL);
6446faa2 2403
894b8788 2404load_freelist:
507effea
CL
2405 /*
2406 * freelist is pointing to the list of objects to be used.
2407 * page is pointing to the page from which the objects are obtained.
2408 * That page must be frozen for per cpu allocations to work.
2409 */
a0132ac0 2410 VM_BUG_ON(!c->page->frozen);
6faa6833 2411 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2412 c->tid = next_tid(c->tid);
6faa6833 2413 return freelist;
81819f0f 2414
81819f0f 2415new_slab:
2cfb7455 2416
49e22585 2417 if (c->partial) {
f6e7def7
CL
2418 page = c->page = c->partial;
2419 c->partial = page->next;
49e22585
CL
2420 stat(s, CPU_PARTIAL_ALLOC);
2421 c->freelist = NULL;
2422 goto redo;
81819f0f
CL
2423 }
2424
188fd063 2425 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2426
f4697436 2427 if (unlikely(!freelist)) {
9a02d699 2428 slab_out_of_memory(s, gfpflags, node);
f4697436 2429 return NULL;
81819f0f 2430 }
2cfb7455 2431
f6e7def7 2432 page = c->page;
5091b74a 2433 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2434 goto load_freelist;
2cfb7455 2435
497b66f2 2436 /* Only entered in the debug case */
d0e0ac97
CG
2437 if (kmem_cache_debug(s) &&
2438 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2439 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2440
f6e7def7 2441 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2442 c->page = NULL;
2443 c->freelist = NULL;
6faa6833 2444 return freelist;
894b8788
CL
2445}
2446
a380a3c7
CL
2447/*
2448 * Another one that disabled interrupt and compensates for possible
2449 * cpu changes by refetching the per cpu area pointer.
2450 */
2451static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2452 unsigned long addr, struct kmem_cache_cpu *c)
2453{
2454 void *p;
2455 unsigned long flags;
2456
2457 local_irq_save(flags);
2458#ifdef CONFIG_PREEMPT
2459 /*
2460 * We may have been preempted and rescheduled on a different
2461 * cpu before disabling interrupts. Need to reload cpu area
2462 * pointer.
2463 */
2464 c = this_cpu_ptr(s->cpu_slab);
2465#endif
2466
2467 p = ___slab_alloc(s, gfpflags, node, addr, c);
2468 local_irq_restore(flags);
2469 return p;
2470}
2471
894b8788
CL
2472/*
2473 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2474 * have the fastpath folded into their functions. So no function call
2475 * overhead for requests that can be satisfied on the fastpath.
2476 *
2477 * The fastpath works by first checking if the lockless freelist can be used.
2478 * If not then __slab_alloc is called for slow processing.
2479 *
2480 * Otherwise we can simply pick the next object from the lockless free list.
2481 */
2b847c3c 2482static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2483 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2484{
03ec0ed5 2485 void *object;
dfb4f096 2486 struct kmem_cache_cpu *c;
57d437d2 2487 struct page *page;
8a5ec0ba 2488 unsigned long tid;
1f84260c 2489
8135be5a
VD
2490 s = slab_pre_alloc_hook(s, gfpflags);
2491 if (!s)
773ff60e 2492 return NULL;
8a5ec0ba 2493redo:
8a5ec0ba
CL
2494 /*
2495 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2496 * enabled. We may switch back and forth between cpus while
2497 * reading from one cpu area. That does not matter as long
2498 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2499 *
9aabf810
JK
2500 * We should guarantee that tid and kmem_cache are retrieved on
2501 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2502 * to check if it is matched or not.
8a5ec0ba 2503 */
9aabf810
JK
2504 do {
2505 tid = this_cpu_read(s->cpu_slab->tid);
2506 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2507 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2508 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2509
2510 /*
2511 * Irqless object alloc/free algorithm used here depends on sequence
2512 * of fetching cpu_slab's data. tid should be fetched before anything
2513 * on c to guarantee that object and page associated with previous tid
2514 * won't be used with current tid. If we fetch tid first, object and
2515 * page could be one associated with next tid and our alloc/free
2516 * request will be failed. In this case, we will retry. So, no problem.
2517 */
2518 barrier();
8a5ec0ba 2519
8a5ec0ba
CL
2520 /*
2521 * The transaction ids are globally unique per cpu and per operation on
2522 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2523 * occurs on the right processor and that there was no operation on the
2524 * linked list in between.
2525 */
8a5ec0ba 2526
9dfc6e68 2527 object = c->freelist;
57d437d2 2528 page = c->page;
8eae1492 2529 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2530 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2531 stat(s, ALLOC_SLOWPATH);
2532 } else {
0ad9500e
ED
2533 void *next_object = get_freepointer_safe(s, object);
2534
8a5ec0ba 2535 /*
25985edc 2536 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2537 * operation and if we are on the right processor.
2538 *
d0e0ac97
CG
2539 * The cmpxchg does the following atomically (without lock
2540 * semantics!)
8a5ec0ba
CL
2541 * 1. Relocate first pointer to the current per cpu area.
2542 * 2. Verify that tid and freelist have not been changed
2543 * 3. If they were not changed replace tid and freelist
2544 *
d0e0ac97
CG
2545 * Since this is without lock semantics the protection is only
2546 * against code executing on this cpu *not* from access by
2547 * other cpus.
8a5ec0ba 2548 */
933393f5 2549 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2550 s->cpu_slab->freelist, s->cpu_slab->tid,
2551 object, tid,
0ad9500e 2552 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2553
2554 note_cmpxchg_failure("slab_alloc", s, tid);
2555 goto redo;
2556 }
0ad9500e 2557 prefetch_freepointer(s, next_object);
84e554e6 2558 stat(s, ALLOC_FASTPATH);
894b8788 2559 }
8a5ec0ba 2560
74e2134f 2561 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2562 memset(object, 0, s->object_size);
d07dbea4 2563
03ec0ed5 2564 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2565
894b8788 2566 return object;
81819f0f
CL
2567}
2568
2b847c3c
EG
2569static __always_inline void *slab_alloc(struct kmem_cache *s,
2570 gfp_t gfpflags, unsigned long addr)
2571{
2572 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2573}
2574
81819f0f
CL
2575void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2576{
2b847c3c 2577 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2578
d0e0ac97
CG
2579 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2580 s->size, gfpflags);
5b882be4
EGM
2581
2582 return ret;
81819f0f
CL
2583}
2584EXPORT_SYMBOL(kmem_cache_alloc);
2585
0f24f128 2586#ifdef CONFIG_TRACING
4a92379b
RK
2587void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2588{
2b847c3c 2589 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2590 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2591 kasan_kmalloc(s, ret, size);
4a92379b
RK
2592 return ret;
2593}
2594EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2595#endif
2596
81819f0f
CL
2597#ifdef CONFIG_NUMA
2598void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2599{
2b847c3c 2600 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2601
ca2b84cb 2602 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2603 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2604
2605 return ret;
81819f0f
CL
2606}
2607EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2608
0f24f128 2609#ifdef CONFIG_TRACING
4a92379b 2610void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2611 gfp_t gfpflags,
4a92379b 2612 int node, size_t size)
5b882be4 2613{
2b847c3c 2614 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2615
2616 trace_kmalloc_node(_RET_IP_, ret,
2617 size, s->size, gfpflags, node);
0316bec2
AR
2618
2619 kasan_kmalloc(s, ret, size);
4a92379b 2620 return ret;
5b882be4 2621}
4a92379b 2622EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2623#endif
5d1f57e4 2624#endif
5b882be4 2625
81819f0f 2626/*
94e4d712 2627 * Slow path handling. This may still be called frequently since objects
894b8788 2628 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2629 *
894b8788
CL
2630 * So we still attempt to reduce cache line usage. Just take the slab
2631 * lock and free the item. If there is no additional partial page
2632 * handling required then we can return immediately.
81819f0f 2633 */
894b8788 2634static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2635 void *head, void *tail, int cnt,
2636 unsigned long addr)
2637
81819f0f
CL
2638{
2639 void *prior;
2cfb7455 2640 int was_frozen;
2cfb7455
CL
2641 struct page new;
2642 unsigned long counters;
2643 struct kmem_cache_node *n = NULL;
61728d1e 2644 unsigned long uninitialized_var(flags);
81819f0f 2645
8a5ec0ba 2646 stat(s, FREE_SLOWPATH);
81819f0f 2647
19c7ff9e 2648 if (kmem_cache_debug(s) &&
81084651
JDB
2649 !(n = free_debug_processing(s, page, head, tail, cnt,
2650 addr, &flags)))
80f08c19 2651 return;
6446faa2 2652
2cfb7455 2653 do {
837d678d
JK
2654 if (unlikely(n)) {
2655 spin_unlock_irqrestore(&n->list_lock, flags);
2656 n = NULL;
2657 }
2cfb7455
CL
2658 prior = page->freelist;
2659 counters = page->counters;
81084651 2660 set_freepointer(s, tail, prior);
2cfb7455
CL
2661 new.counters = counters;
2662 was_frozen = new.frozen;
81084651 2663 new.inuse -= cnt;
837d678d 2664 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2665
c65c1877 2666 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2667
2668 /*
d0e0ac97
CG
2669 * Slab was on no list before and will be
2670 * partially empty
2671 * We can defer the list move and instead
2672 * freeze it.
49e22585
CL
2673 */
2674 new.frozen = 1;
2675
c65c1877 2676 } else { /* Needs to be taken off a list */
49e22585 2677
b455def2 2678 n = get_node(s, page_to_nid(page));
49e22585
CL
2679 /*
2680 * Speculatively acquire the list_lock.
2681 * If the cmpxchg does not succeed then we may
2682 * drop the list_lock without any processing.
2683 *
2684 * Otherwise the list_lock will synchronize with
2685 * other processors updating the list of slabs.
2686 */
2687 spin_lock_irqsave(&n->list_lock, flags);
2688
2689 }
2cfb7455 2690 }
81819f0f 2691
2cfb7455
CL
2692 } while (!cmpxchg_double_slab(s, page,
2693 prior, counters,
81084651 2694 head, new.counters,
2cfb7455 2695 "__slab_free"));
81819f0f 2696
2cfb7455 2697 if (likely(!n)) {
49e22585
CL
2698
2699 /*
2700 * If we just froze the page then put it onto the
2701 * per cpu partial list.
2702 */
8028dcea 2703 if (new.frozen && !was_frozen) {
49e22585 2704 put_cpu_partial(s, page, 1);
8028dcea
AS
2705 stat(s, CPU_PARTIAL_FREE);
2706 }
49e22585 2707 /*
2cfb7455
CL
2708 * The list lock was not taken therefore no list
2709 * activity can be necessary.
2710 */
b455def2
L
2711 if (was_frozen)
2712 stat(s, FREE_FROZEN);
2713 return;
2714 }
81819f0f 2715
8a5b20ae 2716 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2717 goto slab_empty;
2718
81819f0f 2719 /*
837d678d
JK
2720 * Objects left in the slab. If it was not on the partial list before
2721 * then add it.
81819f0f 2722 */
345c905d
JK
2723 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2724 if (kmem_cache_debug(s))
c65c1877 2725 remove_full(s, n, page);
837d678d
JK
2726 add_partial(n, page, DEACTIVATE_TO_TAIL);
2727 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2728 }
80f08c19 2729 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2730 return;
2731
2732slab_empty:
a973e9dd 2733 if (prior) {
81819f0f 2734 /*
6fbabb20 2735 * Slab on the partial list.
81819f0f 2736 */
5cc6eee8 2737 remove_partial(n, page);
84e554e6 2738 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2739 } else {
6fbabb20 2740 /* Slab must be on the full list */
c65c1877
PZ
2741 remove_full(s, n, page);
2742 }
2cfb7455 2743
80f08c19 2744 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2745 stat(s, FREE_SLAB);
81819f0f 2746 discard_slab(s, page);
81819f0f
CL
2747}
2748
894b8788
CL
2749/*
2750 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2751 * can perform fastpath freeing without additional function calls.
2752 *
2753 * The fastpath is only possible if we are freeing to the current cpu slab
2754 * of this processor. This typically the case if we have just allocated
2755 * the item before.
2756 *
2757 * If fastpath is not possible then fall back to __slab_free where we deal
2758 * with all sorts of special processing.
81084651
JDB
2759 *
2760 * Bulk free of a freelist with several objects (all pointing to the
2761 * same page) possible by specifying head and tail ptr, plus objects
2762 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2763 */
81084651
JDB
2764static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2765 void *head, void *tail, int cnt,
2766 unsigned long addr)
894b8788 2767{
81084651 2768 void *tail_obj = tail ? : head;
dfb4f096 2769 struct kmem_cache_cpu *c;
8a5ec0ba 2770 unsigned long tid;
1f84260c 2771
81084651 2772 slab_free_freelist_hook(s, head, tail);
c016b0bd 2773
8a5ec0ba
CL
2774redo:
2775 /*
2776 * Determine the currently cpus per cpu slab.
2777 * The cpu may change afterward. However that does not matter since
2778 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2779 * during the cmpxchg then the free will succeed.
8a5ec0ba 2780 */
9aabf810
JK
2781 do {
2782 tid = this_cpu_read(s->cpu_slab->tid);
2783 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2784 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2785 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2786
9aabf810
JK
2787 /* Same with comment on barrier() in slab_alloc_node() */
2788 barrier();
c016b0bd 2789
442b06bc 2790 if (likely(page == c->page)) {
81084651 2791 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2792
933393f5 2793 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2794 s->cpu_slab->freelist, s->cpu_slab->tid,
2795 c->freelist, tid,
81084651 2796 head, next_tid(tid)))) {
8a5ec0ba
CL
2797
2798 note_cmpxchg_failure("slab_free", s, tid);
2799 goto redo;
2800 }
84e554e6 2801 stat(s, FREE_FASTPATH);
894b8788 2802 } else
81084651 2803 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2804
894b8788
CL
2805}
2806
81819f0f
CL
2807void kmem_cache_free(struct kmem_cache *s, void *x)
2808{
b9ce5ef4
GC
2809 s = cache_from_obj(s, x);
2810 if (!s)
79576102 2811 return;
81084651 2812 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2813 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2814}
2815EXPORT_SYMBOL(kmem_cache_free);
2816
d0ecd894 2817struct detached_freelist {
fbd02630 2818 struct page *page;
d0ecd894
JDB
2819 void *tail;
2820 void *freelist;
2821 int cnt;
2822};
fbd02630 2823
d0ecd894
JDB
2824/*
2825 * This function progressively scans the array with free objects (with
2826 * a limited look ahead) and extract objects belonging to the same
2827 * page. It builds a detached freelist directly within the given
2828 * page/objects. This can happen without any need for
2829 * synchronization, because the objects are owned by running process.
2830 * The freelist is build up as a single linked list in the objects.
2831 * The idea is, that this detached freelist can then be bulk
2832 * transferred to the real freelist(s), but only requiring a single
2833 * synchronization primitive. Look ahead in the array is limited due
2834 * to performance reasons.
2835 */
2836static int build_detached_freelist(struct kmem_cache *s, size_t size,
2837 void **p, struct detached_freelist *df)
2838{
2839 size_t first_skipped_index = 0;
2840 int lookahead = 3;
2841 void *object;
fbd02630 2842
d0ecd894
JDB
2843 /* Always re-init detached_freelist */
2844 df->page = NULL;
fbd02630 2845
d0ecd894
JDB
2846 do {
2847 object = p[--size];
2848 } while (!object && size);
3eed034d 2849
d0ecd894
JDB
2850 if (!object)
2851 return 0;
fbd02630 2852
d0ecd894
JDB
2853 /* Start new detached freelist */
2854 set_freepointer(s, object, NULL);
2855 df->page = virt_to_head_page(object);
2856 df->tail = object;
2857 df->freelist = object;
2858 p[size] = NULL; /* mark object processed */
2859 df->cnt = 1;
2860
2861 while (size) {
2862 object = p[--size];
2863 if (!object)
2864 continue; /* Skip processed objects */
2865
2866 /* df->page is always set at this point */
2867 if (df->page == virt_to_head_page(object)) {
2868 /* Opportunity build freelist */
2869 set_freepointer(s, object, df->freelist);
2870 df->freelist = object;
2871 df->cnt++;
2872 p[size] = NULL; /* mark object processed */
2873
2874 continue;
fbd02630 2875 }
d0ecd894
JDB
2876
2877 /* Limit look ahead search */
2878 if (!--lookahead)
2879 break;
2880
2881 if (!first_skipped_index)
2882 first_skipped_index = size + 1;
fbd02630 2883 }
d0ecd894
JDB
2884
2885 return first_skipped_index;
2886}
2887
2888
2889/* Note that interrupts must be enabled when calling this function. */
03374518 2890void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
d0ecd894
JDB
2891{
2892 if (WARN_ON(!size))
2893 return;
2894
2895 do {
2896 struct detached_freelist df;
03374518
JDB
2897 struct kmem_cache *s;
2898
2899 /* Support for memcg */
2900 s = cache_from_obj(orig_s, p[size - 1]);
d0ecd894
JDB
2901
2902 size = build_detached_freelist(s, size, p, &df);
2903 if (unlikely(!df.page))
2904 continue;
2905
2906 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2907 } while (likely(size));
484748f0
CL
2908}
2909EXPORT_SYMBOL(kmem_cache_free_bulk);
2910
994eb764 2911/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2912int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2913 void **p)
484748f0 2914{
994eb764
JDB
2915 struct kmem_cache_cpu *c;
2916 int i;
2917
03ec0ed5
JDB
2918 /* memcg and kmem_cache debug support */
2919 s = slab_pre_alloc_hook(s, flags);
2920 if (unlikely(!s))
2921 return false;
994eb764
JDB
2922 /*
2923 * Drain objects in the per cpu slab, while disabling local
2924 * IRQs, which protects against PREEMPT and interrupts
2925 * handlers invoking normal fastpath.
2926 */
2927 local_irq_disable();
2928 c = this_cpu_ptr(s->cpu_slab);
2929
2930 for (i = 0; i < size; i++) {
2931 void *object = c->freelist;
2932
ebe909e0 2933 if (unlikely(!object)) {
ebe909e0
JDB
2934 /*
2935 * Invoking slow path likely have side-effect
2936 * of re-populating per CPU c->freelist
2937 */
87098373 2938 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2939 _RET_IP_, c);
87098373
CL
2940 if (unlikely(!p[i]))
2941 goto error;
2942
ebe909e0
JDB
2943 c = this_cpu_ptr(s->cpu_slab);
2944 continue; /* goto for-loop */
2945 }
994eb764
JDB
2946 c->freelist = get_freepointer(s, object);
2947 p[i] = object;
2948 }
2949 c->tid = next_tid(c->tid);
2950 local_irq_enable();
2951
2952 /* Clear memory outside IRQ disabled fastpath loop */
2953 if (unlikely(flags & __GFP_ZERO)) {
2954 int j;
2955
2956 for (j = 0; j < i; j++)
2957 memset(p[j], 0, s->object_size);
2958 }
2959
03ec0ed5
JDB
2960 /* memcg and kmem_cache debug support */
2961 slab_post_alloc_hook(s, flags, size, p);
865762a8 2962 return i;
87098373 2963error:
87098373 2964 local_irq_enable();
03ec0ed5
JDB
2965 slab_post_alloc_hook(s, flags, i, p);
2966 __kmem_cache_free_bulk(s, i, p);
865762a8 2967 return 0;
484748f0
CL
2968}
2969EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2970
2971
81819f0f 2972/*
672bba3a
CL
2973 * Object placement in a slab is made very easy because we always start at
2974 * offset 0. If we tune the size of the object to the alignment then we can
2975 * get the required alignment by putting one properly sized object after
2976 * another.
81819f0f
CL
2977 *
2978 * Notice that the allocation order determines the sizes of the per cpu
2979 * caches. Each processor has always one slab available for allocations.
2980 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2981 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2982 * locking overhead.
81819f0f
CL
2983 */
2984
2985/*
2986 * Mininum / Maximum order of slab pages. This influences locking overhead
2987 * and slab fragmentation. A higher order reduces the number of partial slabs
2988 * and increases the number of allocations possible without having to
2989 * take the list_lock.
2990 */
2991static int slub_min_order;
114e9e89 2992static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2993static int slub_min_objects;
81819f0f 2994
81819f0f
CL
2995/*
2996 * Calculate the order of allocation given an slab object size.
2997 *
672bba3a
CL
2998 * The order of allocation has significant impact on performance and other
2999 * system components. Generally order 0 allocations should be preferred since
3000 * order 0 does not cause fragmentation in the page allocator. Larger objects
3001 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3002 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3003 * would be wasted.
3004 *
3005 * In order to reach satisfactory performance we must ensure that a minimum
3006 * number of objects is in one slab. Otherwise we may generate too much
3007 * activity on the partial lists which requires taking the list_lock. This is
3008 * less a concern for large slabs though which are rarely used.
81819f0f 3009 *
672bba3a
CL
3010 * slub_max_order specifies the order where we begin to stop considering the
3011 * number of objects in a slab as critical. If we reach slub_max_order then
3012 * we try to keep the page order as low as possible. So we accept more waste
3013 * of space in favor of a small page order.
81819f0f 3014 *
672bba3a
CL
3015 * Higher order allocations also allow the placement of more objects in a
3016 * slab and thereby reduce object handling overhead. If the user has
3017 * requested a higher mininum order then we start with that one instead of
3018 * the smallest order which will fit the object.
81819f0f 3019 */
5e6d444e 3020static inline int slab_order(int size, int min_objects,
ab9a0f19 3021 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3022{
3023 int order;
3024 int rem;
6300ea75 3025 int min_order = slub_min_order;
81819f0f 3026
ab9a0f19 3027 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3028 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3029
9f835703 3030 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3031 order <= max_order; order++) {
81819f0f 3032
5e6d444e 3033 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3034
ab9a0f19 3035 rem = (slab_size - reserved) % size;
81819f0f 3036
5e6d444e 3037 if (rem <= slab_size / fract_leftover)
81819f0f 3038 break;
81819f0f 3039 }
672bba3a 3040
81819f0f
CL
3041 return order;
3042}
3043
ab9a0f19 3044static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3045{
3046 int order;
3047 int min_objects;
3048 int fraction;
e8120ff1 3049 int max_objects;
5e6d444e
CL
3050
3051 /*
3052 * Attempt to find best configuration for a slab. This
3053 * works by first attempting to generate a layout with
3054 * the best configuration and backing off gradually.
3055 *
422ff4d7 3056 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3057 * we reduce the minimum objects required in a slab.
3058 */
3059 min_objects = slub_min_objects;
9b2cd506
CL
3060 if (!min_objects)
3061 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3062 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3063 min_objects = min(min_objects, max_objects);
3064
5e6d444e 3065 while (min_objects > 1) {
c124f5b5 3066 fraction = 16;
5e6d444e
CL
3067 while (fraction >= 4) {
3068 order = slab_order(size, min_objects,
ab9a0f19 3069 slub_max_order, fraction, reserved);
5e6d444e
CL
3070 if (order <= slub_max_order)
3071 return order;
3072 fraction /= 2;
3073 }
5086c389 3074 min_objects--;
5e6d444e
CL
3075 }
3076
3077 /*
3078 * We were unable to place multiple objects in a slab. Now
3079 * lets see if we can place a single object there.
3080 */
ab9a0f19 3081 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3082 if (order <= slub_max_order)
3083 return order;
3084
3085 /*
3086 * Doh this slab cannot be placed using slub_max_order.
3087 */
ab9a0f19 3088 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3089 if (order < MAX_ORDER)
5e6d444e
CL
3090 return order;
3091 return -ENOSYS;
3092}
3093
5595cffc 3094static void
4053497d 3095init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3096{
3097 n->nr_partial = 0;
81819f0f
CL
3098 spin_lock_init(&n->list_lock);
3099 INIT_LIST_HEAD(&n->partial);
8ab1372f 3100#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3101 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3102 atomic_long_set(&n->total_objects, 0);
643b1138 3103 INIT_LIST_HEAD(&n->full);
8ab1372f 3104#endif
81819f0f
CL
3105}
3106
55136592 3107static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3108{
6c182dc0 3109 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3110 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3111
8a5ec0ba 3112 /*
d4d84fef
CM
3113 * Must align to double word boundary for the double cmpxchg
3114 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3115 */
d4d84fef
CM
3116 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3117 2 * sizeof(void *));
8a5ec0ba
CL
3118
3119 if (!s->cpu_slab)
3120 return 0;
3121
3122 init_kmem_cache_cpus(s);
4c93c355 3123
8a5ec0ba 3124 return 1;
4c93c355 3125}
4c93c355 3126
51df1142
CL
3127static struct kmem_cache *kmem_cache_node;
3128
81819f0f
CL
3129/*
3130 * No kmalloc_node yet so do it by hand. We know that this is the first
3131 * slab on the node for this slabcache. There are no concurrent accesses
3132 * possible.
3133 *
721ae22a
ZYW
3134 * Note that this function only works on the kmem_cache_node
3135 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3136 * memory on a fresh node that has no slab structures yet.
81819f0f 3137 */
55136592 3138static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3139{
3140 struct page *page;
3141 struct kmem_cache_node *n;
3142
51df1142 3143 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3144
51df1142 3145 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3146
3147 BUG_ON(!page);
a2f92ee7 3148 if (page_to_nid(page) != node) {
f9f58285
FF
3149 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3150 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3151 }
3152
81819f0f
CL
3153 n = page->freelist;
3154 BUG_ON(!n);
51df1142 3155 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3156 page->inuse = 1;
8cb0a506 3157 page->frozen = 0;
51df1142 3158 kmem_cache_node->node[node] = n;
8ab1372f 3159#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3160 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3161 init_tracking(kmem_cache_node, n);
8ab1372f 3162#endif
0316bec2 3163 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3164 init_kmem_cache_node(n);
51df1142 3165 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3166
67b6c900 3167 /*
1e4dd946
SR
3168 * No locks need to be taken here as it has just been
3169 * initialized and there is no concurrent access.
67b6c900 3170 */
1e4dd946 3171 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3172}
3173
3174static void free_kmem_cache_nodes(struct kmem_cache *s)
3175{
3176 int node;
fa45dc25 3177 struct kmem_cache_node *n;
81819f0f 3178
fa45dc25
CL
3179 for_each_kmem_cache_node(s, node, n) {
3180 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3181 s->node[node] = NULL;
3182 }
3183}
3184
55136592 3185static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3186{
3187 int node;
81819f0f 3188
f64dc58c 3189 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3190 struct kmem_cache_node *n;
3191
73367bd8 3192 if (slab_state == DOWN) {
55136592 3193 early_kmem_cache_node_alloc(node);
73367bd8
AD
3194 continue;
3195 }
51df1142 3196 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3197 GFP_KERNEL, node);
81819f0f 3198
73367bd8
AD
3199 if (!n) {
3200 free_kmem_cache_nodes(s);
3201 return 0;
81819f0f 3202 }
73367bd8 3203
81819f0f 3204 s->node[node] = n;
4053497d 3205 init_kmem_cache_node(n);
81819f0f
CL
3206 }
3207 return 1;
3208}
81819f0f 3209
c0bdb232 3210static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3211{
3212 if (min < MIN_PARTIAL)
3213 min = MIN_PARTIAL;
3214 else if (min > MAX_PARTIAL)
3215 min = MAX_PARTIAL;
3216 s->min_partial = min;
3217}
3218
81819f0f
CL
3219/*
3220 * calculate_sizes() determines the order and the distribution of data within
3221 * a slab object.
3222 */
06b285dc 3223static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3224{
3225 unsigned long flags = s->flags;
3b0efdfa 3226 unsigned long size = s->object_size;
834f3d11 3227 int order;
81819f0f 3228
d8b42bf5
CL
3229 /*
3230 * Round up object size to the next word boundary. We can only
3231 * place the free pointer at word boundaries and this determines
3232 * the possible location of the free pointer.
3233 */
3234 size = ALIGN(size, sizeof(void *));
3235
3236#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3237 /*
3238 * Determine if we can poison the object itself. If the user of
3239 * the slab may touch the object after free or before allocation
3240 * then we should never poison the object itself.
3241 */
3242 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3243 !s->ctor)
81819f0f
CL
3244 s->flags |= __OBJECT_POISON;
3245 else
3246 s->flags &= ~__OBJECT_POISON;
3247
81819f0f
CL
3248
3249 /*
672bba3a 3250 * If we are Redzoning then check if there is some space between the
81819f0f 3251 * end of the object and the free pointer. If not then add an
672bba3a 3252 * additional word to have some bytes to store Redzone information.
81819f0f 3253 */
3b0efdfa 3254 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3255 size += sizeof(void *);
41ecc55b 3256#endif
81819f0f
CL
3257
3258 /*
672bba3a
CL
3259 * With that we have determined the number of bytes in actual use
3260 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3261 */
3262 s->inuse = size;
3263
3264 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3265 s->ctor)) {
81819f0f
CL
3266 /*
3267 * Relocate free pointer after the object if it is not
3268 * permitted to overwrite the first word of the object on
3269 * kmem_cache_free.
3270 *
3271 * This is the case if we do RCU, have a constructor or
3272 * destructor or are poisoning the objects.
3273 */
3274 s->offset = size;
3275 size += sizeof(void *);
3276 }
3277
c12b3c62 3278#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3279 if (flags & SLAB_STORE_USER)
3280 /*
3281 * Need to store information about allocs and frees after
3282 * the object.
3283 */
3284 size += 2 * sizeof(struct track);
3285
be7b3fbc 3286 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3287 /*
3288 * Add some empty padding so that we can catch
3289 * overwrites from earlier objects rather than let
3290 * tracking information or the free pointer be
0211a9c8 3291 * corrupted if a user writes before the start
81819f0f
CL
3292 * of the object.
3293 */
3294 size += sizeof(void *);
41ecc55b 3295#endif
672bba3a 3296
81819f0f
CL
3297 /*
3298 * SLUB stores one object immediately after another beginning from
3299 * offset 0. In order to align the objects we have to simply size
3300 * each object to conform to the alignment.
3301 */
45906855 3302 size = ALIGN(size, s->align);
81819f0f 3303 s->size = size;
06b285dc
CL
3304 if (forced_order >= 0)
3305 order = forced_order;
3306 else
ab9a0f19 3307 order = calculate_order(size, s->reserved);
81819f0f 3308
834f3d11 3309 if (order < 0)
81819f0f
CL
3310 return 0;
3311
b7a49f0d 3312 s->allocflags = 0;
834f3d11 3313 if (order)
b7a49f0d
CL
3314 s->allocflags |= __GFP_COMP;
3315
3316 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3317 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3318
3319 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3320 s->allocflags |= __GFP_RECLAIMABLE;
3321
81819f0f
CL
3322 /*
3323 * Determine the number of objects per slab
3324 */
ab9a0f19
LJ
3325 s->oo = oo_make(order, size, s->reserved);
3326 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3327 if (oo_objects(s->oo) > oo_objects(s->max))
3328 s->max = s->oo;
81819f0f 3329
834f3d11 3330 return !!oo_objects(s->oo);
81819f0f
CL
3331}
3332
8a13a4cc 3333static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3334{
8a13a4cc 3335 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3336 s->reserved = 0;
81819f0f 3337
da9a638c
LJ
3338 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3339 s->reserved = sizeof(struct rcu_head);
81819f0f 3340
06b285dc 3341 if (!calculate_sizes(s, -1))
81819f0f 3342 goto error;
3de47213
DR
3343 if (disable_higher_order_debug) {
3344 /*
3345 * Disable debugging flags that store metadata if the min slab
3346 * order increased.
3347 */
3b0efdfa 3348 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3349 s->flags &= ~DEBUG_METADATA_FLAGS;
3350 s->offset = 0;
3351 if (!calculate_sizes(s, -1))
3352 goto error;
3353 }
3354 }
81819f0f 3355
2565409f
HC
3356#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3358 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3359 /* Enable fast mode */
3360 s->flags |= __CMPXCHG_DOUBLE;
3361#endif
3362
3b89d7d8
DR
3363 /*
3364 * The larger the object size is, the more pages we want on the partial
3365 * list to avoid pounding the page allocator excessively.
3366 */
49e22585
CL
3367 set_min_partial(s, ilog2(s->size) / 2);
3368
3369 /*
3370 * cpu_partial determined the maximum number of objects kept in the
3371 * per cpu partial lists of a processor.
3372 *
3373 * Per cpu partial lists mainly contain slabs that just have one
3374 * object freed. If they are used for allocation then they can be
3375 * filled up again with minimal effort. The slab will never hit the
3376 * per node partial lists and therefore no locking will be required.
3377 *
3378 * This setting also determines
3379 *
3380 * A) The number of objects from per cpu partial slabs dumped to the
3381 * per node list when we reach the limit.
9f264904 3382 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3383 * per node list when we run out of per cpu objects. We only fetch
3384 * 50% to keep some capacity around for frees.
49e22585 3385 */
345c905d 3386 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3387 s->cpu_partial = 0;
3388 else if (s->size >= PAGE_SIZE)
49e22585
CL
3389 s->cpu_partial = 2;
3390 else if (s->size >= 1024)
3391 s->cpu_partial = 6;
3392 else if (s->size >= 256)
3393 s->cpu_partial = 13;
3394 else
3395 s->cpu_partial = 30;
3396
81819f0f 3397#ifdef CONFIG_NUMA
e2cb96b7 3398 s->remote_node_defrag_ratio = 1000;
81819f0f 3399#endif
55136592 3400 if (!init_kmem_cache_nodes(s))
dfb4f096 3401 goto error;
81819f0f 3402
55136592 3403 if (alloc_kmem_cache_cpus(s))
278b1bb1 3404 return 0;
ff12059e 3405
4c93c355 3406 free_kmem_cache_nodes(s);
81819f0f
CL
3407error:
3408 if (flags & SLAB_PANIC)
3409 panic("Cannot create slab %s size=%lu realsize=%u "
3410 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3411 s->name, (unsigned long)s->size, s->size,
3412 oo_order(s->oo), s->offset, flags);
278b1bb1 3413 return -EINVAL;
81819f0f 3414}
81819f0f 3415
33b12c38
CL
3416static void list_slab_objects(struct kmem_cache *s, struct page *page,
3417 const char *text)
3418{
3419#ifdef CONFIG_SLUB_DEBUG
3420 void *addr = page_address(page);
3421 void *p;
a5dd5c11
NK
3422 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3423 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3424 if (!map)
3425 return;
945cf2b6 3426 slab_err(s, page, text, s->name);
33b12c38 3427 slab_lock(page);
33b12c38 3428
5f80b13a 3429 get_map(s, page, map);
33b12c38
CL
3430 for_each_object(p, s, addr, page->objects) {
3431
3432 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3433 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3434 print_tracking(s, p);
3435 }
3436 }
3437 slab_unlock(page);
bbd7d57b 3438 kfree(map);
33b12c38
CL
3439#endif
3440}
3441
81819f0f 3442/*
599870b1 3443 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3444 * This is called from kmem_cache_close(). We must be the last thread
3445 * using the cache and therefore we do not need to lock anymore.
81819f0f 3446 */
599870b1 3447static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3448{
81819f0f
CL
3449 struct page *page, *h;
3450
33b12c38 3451 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3452 if (!page->inuse) {
1e4dd946 3453 __remove_partial(n, page);
81819f0f 3454 discard_slab(s, page);
33b12c38
CL
3455 } else {
3456 list_slab_objects(s, page,
945cf2b6 3457 "Objects remaining in %s on kmem_cache_close()");
599870b1 3458 }
33b12c38 3459 }
81819f0f
CL
3460}
3461
3462/*
672bba3a 3463 * Release all resources used by a slab cache.
81819f0f 3464 */
0c710013 3465static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3466{
3467 int node;
fa45dc25 3468 struct kmem_cache_node *n;
81819f0f
CL
3469
3470 flush_all(s);
81819f0f 3471 /* Attempt to free all objects */
fa45dc25 3472 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3473 free_partial(s, n);
3474 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3475 return 1;
3476 }
945cf2b6 3477 free_percpu(s->cpu_slab);
81819f0f
CL
3478 free_kmem_cache_nodes(s);
3479 return 0;
3480}
3481
945cf2b6 3482int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3483{
41a21285 3484 return kmem_cache_close(s);
81819f0f 3485}
81819f0f
CL
3486
3487/********************************************************************
3488 * Kmalloc subsystem
3489 *******************************************************************/
3490
81819f0f
CL
3491static int __init setup_slub_min_order(char *str)
3492{
06428780 3493 get_option(&str, &slub_min_order);
81819f0f
CL
3494
3495 return 1;
3496}
3497
3498__setup("slub_min_order=", setup_slub_min_order);
3499
3500static int __init setup_slub_max_order(char *str)
3501{
06428780 3502 get_option(&str, &slub_max_order);
818cf590 3503 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3504
3505 return 1;
3506}
3507
3508__setup("slub_max_order=", setup_slub_max_order);
3509
3510static int __init setup_slub_min_objects(char *str)
3511{
06428780 3512 get_option(&str, &slub_min_objects);
81819f0f
CL
3513
3514 return 1;
3515}
3516
3517__setup("slub_min_objects=", setup_slub_min_objects);
3518
81819f0f
CL
3519void *__kmalloc(size_t size, gfp_t flags)
3520{
aadb4bc4 3521 struct kmem_cache *s;
5b882be4 3522 void *ret;
81819f0f 3523
95a05b42 3524 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3525 return kmalloc_large(size, flags);
aadb4bc4 3526
2c59dd65 3527 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3528
3529 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3530 return s;
3531
2b847c3c 3532 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3533
ca2b84cb 3534 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3535
0316bec2
AR
3536 kasan_kmalloc(s, ret, size);
3537
5b882be4 3538 return ret;
81819f0f
CL
3539}
3540EXPORT_SYMBOL(__kmalloc);
3541
5d1f57e4 3542#ifdef CONFIG_NUMA
f619cfe1
CL
3543static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3544{
b1eeab67 3545 struct page *page;
e4f7c0b4 3546 void *ptr = NULL;
f619cfe1 3547
52383431
VD
3548 flags |= __GFP_COMP | __GFP_NOTRACK;
3549 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3550 if (page)
e4f7c0b4
CM
3551 ptr = page_address(page);
3552
d56791b3 3553 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3554 return ptr;
f619cfe1
CL
3555}
3556
81819f0f
CL
3557void *__kmalloc_node(size_t size, gfp_t flags, int node)
3558{
aadb4bc4 3559 struct kmem_cache *s;
5b882be4 3560 void *ret;
81819f0f 3561
95a05b42 3562 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3563 ret = kmalloc_large_node(size, flags, node);
3564
ca2b84cb
EGM
3565 trace_kmalloc_node(_RET_IP_, ret,
3566 size, PAGE_SIZE << get_order(size),
3567 flags, node);
5b882be4
EGM
3568
3569 return ret;
3570 }
aadb4bc4 3571
2c59dd65 3572 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3573
3574 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3575 return s;
3576
2b847c3c 3577 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3578
ca2b84cb 3579 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3580
0316bec2
AR
3581 kasan_kmalloc(s, ret, size);
3582
5b882be4 3583 return ret;
81819f0f
CL
3584}
3585EXPORT_SYMBOL(__kmalloc_node);
3586#endif
3587
0316bec2 3588static size_t __ksize(const void *object)
81819f0f 3589{
272c1d21 3590 struct page *page;
81819f0f 3591
ef8b4520 3592 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3593 return 0;
3594
294a80a8 3595 page = virt_to_head_page(object);
294a80a8 3596
76994412
PE
3597 if (unlikely(!PageSlab(page))) {
3598 WARN_ON(!PageCompound(page));
294a80a8 3599 return PAGE_SIZE << compound_order(page);
76994412 3600 }
81819f0f 3601
1b4f59e3 3602 return slab_ksize(page->slab_cache);
81819f0f 3603}
0316bec2
AR
3604
3605size_t ksize(const void *object)
3606{
3607 size_t size = __ksize(object);
3608 /* We assume that ksize callers could use whole allocated area,
3609 so we need unpoison this area. */
3610 kasan_krealloc(object, size);
3611 return size;
3612}
b1aabecd 3613EXPORT_SYMBOL(ksize);
81819f0f
CL
3614
3615void kfree(const void *x)
3616{
81819f0f 3617 struct page *page;
5bb983b0 3618 void *object = (void *)x;
81819f0f 3619
2121db74
PE
3620 trace_kfree(_RET_IP_, x);
3621
2408c550 3622 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3623 return;
3624
b49af68f 3625 page = virt_to_head_page(x);
aadb4bc4 3626 if (unlikely(!PageSlab(page))) {
0937502a 3627 BUG_ON(!PageCompound(page));
d56791b3 3628 kfree_hook(x);
52383431 3629 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3630 return;
3631 }
81084651 3632 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3633}
3634EXPORT_SYMBOL(kfree);
3635
832f37f5
VD
3636#define SHRINK_PROMOTE_MAX 32
3637
2086d26a 3638/*
832f37f5
VD
3639 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3640 * up most to the head of the partial lists. New allocations will then
3641 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3642 *
3643 * The slabs with the least items are placed last. This results in them
3644 * being allocated from last increasing the chance that the last objects
3645 * are freed in them.
2086d26a 3646 */
d6e0b7fa 3647int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3648{
3649 int node;
3650 int i;
3651 struct kmem_cache_node *n;
3652 struct page *page;
3653 struct page *t;
832f37f5
VD
3654 struct list_head discard;
3655 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3656 unsigned long flags;
ce3712d7 3657 int ret = 0;
2086d26a 3658
d6e0b7fa
VD
3659 if (deactivate) {
3660 /*
3661 * Disable empty slabs caching. Used to avoid pinning offline
3662 * memory cgroups by kmem pages that can be freed.
3663 */
3664 s->cpu_partial = 0;
3665 s->min_partial = 0;
3666
3667 /*
3668 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3669 * so we have to make sure the change is visible.
3670 */
3671 kick_all_cpus_sync();
3672 }
3673
2086d26a 3674 flush_all(s);
fa45dc25 3675 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3676 INIT_LIST_HEAD(&discard);
3677 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3678 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3679
3680 spin_lock_irqsave(&n->list_lock, flags);
3681
3682 /*
832f37f5 3683 * Build lists of slabs to discard or promote.
2086d26a 3684 *
672bba3a
CL
3685 * Note that concurrent frees may occur while we hold the
3686 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3687 */
3688 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3689 int free = page->objects - page->inuse;
3690
3691 /* Do not reread page->inuse */
3692 barrier();
3693
3694 /* We do not keep full slabs on the list */
3695 BUG_ON(free <= 0);
3696
3697 if (free == page->objects) {
3698 list_move(&page->lru, &discard);
69cb8e6b 3699 n->nr_partial--;
832f37f5
VD
3700 } else if (free <= SHRINK_PROMOTE_MAX)
3701 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3702 }
3703
2086d26a 3704 /*
832f37f5
VD
3705 * Promote the slabs filled up most to the head of the
3706 * partial list.
2086d26a 3707 */
832f37f5
VD
3708 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3709 list_splice(promote + i, &n->partial);
2086d26a 3710
2086d26a 3711 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3712
3713 /* Release empty slabs */
832f37f5 3714 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3715 discard_slab(s, page);
ce3712d7
VD
3716
3717 if (slabs_node(s, node))
3718 ret = 1;
2086d26a
CL
3719 }
3720
ce3712d7 3721 return ret;
2086d26a 3722}
2086d26a 3723
b9049e23
YG
3724static int slab_mem_going_offline_callback(void *arg)
3725{
3726 struct kmem_cache *s;
3727
18004c5d 3728 mutex_lock(&slab_mutex);
b9049e23 3729 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3730 __kmem_cache_shrink(s, false);
18004c5d 3731 mutex_unlock(&slab_mutex);
b9049e23
YG
3732
3733 return 0;
3734}
3735
3736static void slab_mem_offline_callback(void *arg)
3737{
3738 struct kmem_cache_node *n;
3739 struct kmem_cache *s;
3740 struct memory_notify *marg = arg;
3741 int offline_node;
3742
b9d5ab25 3743 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3744
3745 /*
3746 * If the node still has available memory. we need kmem_cache_node
3747 * for it yet.
3748 */
3749 if (offline_node < 0)
3750 return;
3751
18004c5d 3752 mutex_lock(&slab_mutex);
b9049e23
YG
3753 list_for_each_entry(s, &slab_caches, list) {
3754 n = get_node(s, offline_node);
3755 if (n) {
3756 /*
3757 * if n->nr_slabs > 0, slabs still exist on the node
3758 * that is going down. We were unable to free them,
c9404c9c 3759 * and offline_pages() function shouldn't call this
b9049e23
YG
3760 * callback. So, we must fail.
3761 */
0f389ec6 3762 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3763
3764 s->node[offline_node] = NULL;
8de66a0c 3765 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3766 }
3767 }
18004c5d 3768 mutex_unlock(&slab_mutex);
b9049e23
YG
3769}
3770
3771static int slab_mem_going_online_callback(void *arg)
3772{
3773 struct kmem_cache_node *n;
3774 struct kmem_cache *s;
3775 struct memory_notify *marg = arg;
b9d5ab25 3776 int nid = marg->status_change_nid_normal;
b9049e23
YG
3777 int ret = 0;
3778
3779 /*
3780 * If the node's memory is already available, then kmem_cache_node is
3781 * already created. Nothing to do.
3782 */
3783 if (nid < 0)
3784 return 0;
3785
3786 /*
0121c619 3787 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3788 * allocate a kmem_cache_node structure in order to bring the node
3789 * online.
3790 */
18004c5d 3791 mutex_lock(&slab_mutex);
b9049e23
YG
3792 list_for_each_entry(s, &slab_caches, list) {
3793 /*
3794 * XXX: kmem_cache_alloc_node will fallback to other nodes
3795 * since memory is not yet available from the node that
3796 * is brought up.
3797 */
8de66a0c 3798 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3799 if (!n) {
3800 ret = -ENOMEM;
3801 goto out;
3802 }
4053497d 3803 init_kmem_cache_node(n);
b9049e23
YG
3804 s->node[nid] = n;
3805 }
3806out:
18004c5d 3807 mutex_unlock(&slab_mutex);
b9049e23
YG
3808 return ret;
3809}
3810
3811static int slab_memory_callback(struct notifier_block *self,
3812 unsigned long action, void *arg)
3813{
3814 int ret = 0;
3815
3816 switch (action) {
3817 case MEM_GOING_ONLINE:
3818 ret = slab_mem_going_online_callback(arg);
3819 break;
3820 case MEM_GOING_OFFLINE:
3821 ret = slab_mem_going_offline_callback(arg);
3822 break;
3823 case MEM_OFFLINE:
3824 case MEM_CANCEL_ONLINE:
3825 slab_mem_offline_callback(arg);
3826 break;
3827 case MEM_ONLINE:
3828 case MEM_CANCEL_OFFLINE:
3829 break;
3830 }
dc19f9db
KH
3831 if (ret)
3832 ret = notifier_from_errno(ret);
3833 else
3834 ret = NOTIFY_OK;
b9049e23
YG
3835 return ret;
3836}
3837
3ac38faa
AM
3838static struct notifier_block slab_memory_callback_nb = {
3839 .notifier_call = slab_memory_callback,
3840 .priority = SLAB_CALLBACK_PRI,
3841};
b9049e23 3842
81819f0f
CL
3843/********************************************************************
3844 * Basic setup of slabs
3845 *******************************************************************/
3846
51df1142
CL
3847/*
3848 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3849 * the page allocator. Allocate them properly then fix up the pointers
3850 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3851 */
3852
dffb4d60 3853static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3854{
3855 int node;
dffb4d60 3856 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3857 struct kmem_cache_node *n;
51df1142 3858
dffb4d60 3859 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3860
7d557b3c
GC
3861 /*
3862 * This runs very early, and only the boot processor is supposed to be
3863 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3864 * IPIs around.
3865 */
3866 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3867 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3868 struct page *p;
3869
fa45dc25
CL
3870 list_for_each_entry(p, &n->partial, lru)
3871 p->slab_cache = s;
51df1142 3872
607bf324 3873#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3874 list_for_each_entry(p, &n->full, lru)
3875 p->slab_cache = s;
51df1142 3876#endif
51df1142 3877 }
f7ce3190 3878 slab_init_memcg_params(s);
dffb4d60
CL
3879 list_add(&s->list, &slab_caches);
3880 return s;
51df1142
CL
3881}
3882
81819f0f
CL
3883void __init kmem_cache_init(void)
3884{
dffb4d60
CL
3885 static __initdata struct kmem_cache boot_kmem_cache,
3886 boot_kmem_cache_node;
51df1142 3887
fc8d8620
SG
3888 if (debug_guardpage_minorder())
3889 slub_max_order = 0;
3890
dffb4d60
CL
3891 kmem_cache_node = &boot_kmem_cache_node;
3892 kmem_cache = &boot_kmem_cache;
51df1142 3893
dffb4d60
CL
3894 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3895 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3896
3ac38faa 3897 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3898
3899 /* Able to allocate the per node structures */
3900 slab_state = PARTIAL;
3901
dffb4d60
CL
3902 create_boot_cache(kmem_cache, "kmem_cache",
3903 offsetof(struct kmem_cache, node) +
3904 nr_node_ids * sizeof(struct kmem_cache_node *),
3905 SLAB_HWCACHE_ALIGN);
8a13a4cc 3906
dffb4d60 3907 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3908
51df1142
CL
3909 /*
3910 * Allocate kmem_cache_node properly from the kmem_cache slab.
3911 * kmem_cache_node is separately allocated so no need to
3912 * update any list pointers.
3913 */
dffb4d60 3914 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3915
3916 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3917 setup_kmalloc_cache_index_table();
f97d5f63 3918 create_kmalloc_caches(0);
81819f0f
CL
3919
3920#ifdef CONFIG_SMP
3921 register_cpu_notifier(&slab_notifier);
9dfc6e68 3922#endif
81819f0f 3923
f9f58285 3924 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3925 cache_line_size(),
81819f0f
CL
3926 slub_min_order, slub_max_order, slub_min_objects,
3927 nr_cpu_ids, nr_node_ids);
3928}
3929
7e85ee0c
PE
3930void __init kmem_cache_init_late(void)
3931{
7e85ee0c
PE
3932}
3933
2633d7a0 3934struct kmem_cache *
a44cb944
VD
3935__kmem_cache_alias(const char *name, size_t size, size_t align,
3936 unsigned long flags, void (*ctor)(void *))
81819f0f 3937{
426589f5 3938 struct kmem_cache *s, *c;
81819f0f 3939
a44cb944 3940 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3941 if (s) {
3942 s->refcount++;
84d0ddd6 3943
81819f0f
CL
3944 /*
3945 * Adjust the object sizes so that we clear
3946 * the complete object on kzalloc.
3947 */
3b0efdfa 3948 s->object_size = max(s->object_size, (int)size);
81819f0f 3949 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3950
426589f5 3951 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3952 c->object_size = s->object_size;
3953 c->inuse = max_t(int, c->inuse,
3954 ALIGN(size, sizeof(void *)));
3955 }
3956
7b8f3b66 3957 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3958 s->refcount--;
cbb79694 3959 s = NULL;
7b8f3b66 3960 }
a0e1d1be 3961 }
6446faa2 3962
cbb79694
CL
3963 return s;
3964}
84c1cf62 3965
8a13a4cc 3966int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3967{
aac3a166
PE
3968 int err;
3969
3970 err = kmem_cache_open(s, flags);
3971 if (err)
3972 return err;
20cea968 3973
45530c44
CL
3974 /* Mutex is not taken during early boot */
3975 if (slab_state <= UP)
3976 return 0;
3977
107dab5c 3978 memcg_propagate_slab_attrs(s);
aac3a166 3979 err = sysfs_slab_add(s);
aac3a166
PE
3980 if (err)
3981 kmem_cache_close(s);
20cea968 3982
aac3a166 3983 return err;
81819f0f 3984}
81819f0f 3985
81819f0f 3986#ifdef CONFIG_SMP
81819f0f 3987/*
672bba3a
CL
3988 * Use the cpu notifier to insure that the cpu slabs are flushed when
3989 * necessary.
81819f0f 3990 */
0db0628d 3991static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3992 unsigned long action, void *hcpu)
3993{
3994 long cpu = (long)hcpu;
5b95a4ac
CL
3995 struct kmem_cache *s;
3996 unsigned long flags;
81819f0f
CL
3997
3998 switch (action) {
3999 case CPU_UP_CANCELED:
8bb78442 4000 case CPU_UP_CANCELED_FROZEN:
81819f0f 4001 case CPU_DEAD:
8bb78442 4002 case CPU_DEAD_FROZEN:
18004c5d 4003 mutex_lock(&slab_mutex);
5b95a4ac
CL
4004 list_for_each_entry(s, &slab_caches, list) {
4005 local_irq_save(flags);
4006 __flush_cpu_slab(s, cpu);
4007 local_irq_restore(flags);
4008 }
18004c5d 4009 mutex_unlock(&slab_mutex);
81819f0f
CL
4010 break;
4011 default:
4012 break;
4013 }
4014 return NOTIFY_OK;
4015}
4016
0db0628d 4017static struct notifier_block slab_notifier = {
3adbefee 4018 .notifier_call = slab_cpuup_callback
06428780 4019};
81819f0f
CL
4020
4021#endif
4022
ce71e27c 4023void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4024{
aadb4bc4 4025 struct kmem_cache *s;
94b528d0 4026 void *ret;
aadb4bc4 4027
95a05b42 4028 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4029 return kmalloc_large(size, gfpflags);
4030
2c59dd65 4031 s = kmalloc_slab(size, gfpflags);
81819f0f 4032
2408c550 4033 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4034 return s;
81819f0f 4035
2b847c3c 4036 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4037
25985edc 4038 /* Honor the call site pointer we received. */
ca2b84cb 4039 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4040
4041 return ret;
81819f0f
CL
4042}
4043
5d1f57e4 4044#ifdef CONFIG_NUMA
81819f0f 4045void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4046 int node, unsigned long caller)
81819f0f 4047{
aadb4bc4 4048 struct kmem_cache *s;
94b528d0 4049 void *ret;
aadb4bc4 4050
95a05b42 4051 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4052 ret = kmalloc_large_node(size, gfpflags, node);
4053
4054 trace_kmalloc_node(caller, ret,
4055 size, PAGE_SIZE << get_order(size),
4056 gfpflags, node);
4057
4058 return ret;
4059 }
eada35ef 4060
2c59dd65 4061 s = kmalloc_slab(size, gfpflags);
81819f0f 4062
2408c550 4063 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4064 return s;
81819f0f 4065
2b847c3c 4066 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4067
25985edc 4068 /* Honor the call site pointer we received. */
ca2b84cb 4069 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4070
4071 return ret;
81819f0f 4072}
5d1f57e4 4073#endif
81819f0f 4074
ab4d5ed5 4075#ifdef CONFIG_SYSFS
205ab99d
CL
4076static int count_inuse(struct page *page)
4077{
4078 return page->inuse;
4079}
4080
4081static int count_total(struct page *page)
4082{
4083 return page->objects;
4084}
ab4d5ed5 4085#endif
205ab99d 4086
ab4d5ed5 4087#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4088static int validate_slab(struct kmem_cache *s, struct page *page,
4089 unsigned long *map)
53e15af0
CL
4090{
4091 void *p;
a973e9dd 4092 void *addr = page_address(page);
53e15af0
CL
4093
4094 if (!check_slab(s, page) ||
4095 !on_freelist(s, page, NULL))
4096 return 0;
4097
4098 /* Now we know that a valid freelist exists */
39b26464 4099 bitmap_zero(map, page->objects);
53e15af0 4100
5f80b13a
CL
4101 get_map(s, page, map);
4102 for_each_object(p, s, addr, page->objects) {
4103 if (test_bit(slab_index(p, s, addr), map))
4104 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4105 return 0;
53e15af0
CL
4106 }
4107
224a88be 4108 for_each_object(p, s, addr, page->objects)
7656c72b 4109 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4110 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4111 return 0;
4112 return 1;
4113}
4114
434e245d
CL
4115static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4116 unsigned long *map)
53e15af0 4117{
881db7fb
CL
4118 slab_lock(page);
4119 validate_slab(s, page, map);
4120 slab_unlock(page);
53e15af0
CL
4121}
4122
434e245d
CL
4123static int validate_slab_node(struct kmem_cache *s,
4124 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4125{
4126 unsigned long count = 0;
4127 struct page *page;
4128 unsigned long flags;
4129
4130 spin_lock_irqsave(&n->list_lock, flags);
4131
4132 list_for_each_entry(page, &n->partial, lru) {
434e245d 4133 validate_slab_slab(s, page, map);
53e15af0
CL
4134 count++;
4135 }
4136 if (count != n->nr_partial)
f9f58285
FF
4137 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4138 s->name, count, n->nr_partial);
53e15af0
CL
4139
4140 if (!(s->flags & SLAB_STORE_USER))
4141 goto out;
4142
4143 list_for_each_entry(page, &n->full, lru) {
434e245d 4144 validate_slab_slab(s, page, map);
53e15af0
CL
4145 count++;
4146 }
4147 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4148 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4149 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4150
4151out:
4152 spin_unlock_irqrestore(&n->list_lock, flags);
4153 return count;
4154}
4155
434e245d 4156static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4157{
4158 int node;
4159 unsigned long count = 0;
205ab99d 4160 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4161 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4162 struct kmem_cache_node *n;
434e245d
CL
4163
4164 if (!map)
4165 return -ENOMEM;
53e15af0
CL
4166
4167 flush_all(s);
fa45dc25 4168 for_each_kmem_cache_node(s, node, n)
434e245d 4169 count += validate_slab_node(s, n, map);
434e245d 4170 kfree(map);
53e15af0
CL
4171 return count;
4172}
88a420e4 4173/*
672bba3a 4174 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4175 * and freed.
4176 */
4177
4178struct location {
4179 unsigned long count;
ce71e27c 4180 unsigned long addr;
45edfa58
CL
4181 long long sum_time;
4182 long min_time;
4183 long max_time;
4184 long min_pid;
4185 long max_pid;
174596a0 4186 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4187 nodemask_t nodes;
88a420e4
CL
4188};
4189
4190struct loc_track {
4191 unsigned long max;
4192 unsigned long count;
4193 struct location *loc;
4194};
4195
4196static void free_loc_track(struct loc_track *t)
4197{
4198 if (t->max)
4199 free_pages((unsigned long)t->loc,
4200 get_order(sizeof(struct location) * t->max));
4201}
4202
68dff6a9 4203static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4204{
4205 struct location *l;
4206 int order;
4207
88a420e4
CL
4208 order = get_order(sizeof(struct location) * max);
4209
68dff6a9 4210 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4211 if (!l)
4212 return 0;
4213
4214 if (t->count) {
4215 memcpy(l, t->loc, sizeof(struct location) * t->count);
4216 free_loc_track(t);
4217 }
4218 t->max = max;
4219 t->loc = l;
4220 return 1;
4221}
4222
4223static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4224 const struct track *track)
88a420e4
CL
4225{
4226 long start, end, pos;
4227 struct location *l;
ce71e27c 4228 unsigned long caddr;
45edfa58 4229 unsigned long age = jiffies - track->when;
88a420e4
CL
4230
4231 start = -1;
4232 end = t->count;
4233
4234 for ( ; ; ) {
4235 pos = start + (end - start + 1) / 2;
4236
4237 /*
4238 * There is nothing at "end". If we end up there
4239 * we need to add something to before end.
4240 */
4241 if (pos == end)
4242 break;
4243
4244 caddr = t->loc[pos].addr;
45edfa58
CL
4245 if (track->addr == caddr) {
4246
4247 l = &t->loc[pos];
4248 l->count++;
4249 if (track->when) {
4250 l->sum_time += age;
4251 if (age < l->min_time)
4252 l->min_time = age;
4253 if (age > l->max_time)
4254 l->max_time = age;
4255
4256 if (track->pid < l->min_pid)
4257 l->min_pid = track->pid;
4258 if (track->pid > l->max_pid)
4259 l->max_pid = track->pid;
4260
174596a0
RR
4261 cpumask_set_cpu(track->cpu,
4262 to_cpumask(l->cpus));
45edfa58
CL
4263 }
4264 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4265 return 1;
4266 }
4267
45edfa58 4268 if (track->addr < caddr)
88a420e4
CL
4269 end = pos;
4270 else
4271 start = pos;
4272 }
4273
4274 /*
672bba3a 4275 * Not found. Insert new tracking element.
88a420e4 4276 */
68dff6a9 4277 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4278 return 0;
4279
4280 l = t->loc + pos;
4281 if (pos < t->count)
4282 memmove(l + 1, l,
4283 (t->count - pos) * sizeof(struct location));
4284 t->count++;
4285 l->count = 1;
45edfa58
CL
4286 l->addr = track->addr;
4287 l->sum_time = age;
4288 l->min_time = age;
4289 l->max_time = age;
4290 l->min_pid = track->pid;
4291 l->max_pid = track->pid;
174596a0
RR
4292 cpumask_clear(to_cpumask(l->cpus));
4293 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4294 nodes_clear(l->nodes);
4295 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4296 return 1;
4297}
4298
4299static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4300 struct page *page, enum track_item alloc,
a5dd5c11 4301 unsigned long *map)
88a420e4 4302{
a973e9dd 4303 void *addr = page_address(page);
88a420e4
CL
4304 void *p;
4305
39b26464 4306 bitmap_zero(map, page->objects);
5f80b13a 4307 get_map(s, page, map);
88a420e4 4308
224a88be 4309 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4310 if (!test_bit(slab_index(p, s, addr), map))
4311 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4312}
4313
4314static int list_locations(struct kmem_cache *s, char *buf,
4315 enum track_item alloc)
4316{
e374d483 4317 int len = 0;
88a420e4 4318 unsigned long i;
68dff6a9 4319 struct loc_track t = { 0, 0, NULL };
88a420e4 4320 int node;
bbd7d57b
ED
4321 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4322 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4323 struct kmem_cache_node *n;
88a420e4 4324
bbd7d57b
ED
4325 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4326 GFP_TEMPORARY)) {
4327 kfree(map);
68dff6a9 4328 return sprintf(buf, "Out of memory\n");
bbd7d57b 4329 }
88a420e4
CL
4330 /* Push back cpu slabs */
4331 flush_all(s);
4332
fa45dc25 4333 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4334 unsigned long flags;
4335 struct page *page;
4336
9e86943b 4337 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4338 continue;
4339
4340 spin_lock_irqsave(&n->list_lock, flags);
4341 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4342 process_slab(&t, s, page, alloc, map);
88a420e4 4343 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4344 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4345 spin_unlock_irqrestore(&n->list_lock, flags);
4346 }
4347
4348 for (i = 0; i < t.count; i++) {
45edfa58 4349 struct location *l = &t.loc[i];
88a420e4 4350
9c246247 4351 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4352 break;
e374d483 4353 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4354
4355 if (l->addr)
62c70bce 4356 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4357 else
e374d483 4358 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4359
4360 if (l->sum_time != l->min_time) {
e374d483 4361 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4362 l->min_time,
4363 (long)div_u64(l->sum_time, l->count),
4364 l->max_time);
45edfa58 4365 } else
e374d483 4366 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4367 l->min_time);
4368
4369 if (l->min_pid != l->max_pid)
e374d483 4370 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4371 l->min_pid, l->max_pid);
4372 else
e374d483 4373 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4374 l->min_pid);
4375
174596a0
RR
4376 if (num_online_cpus() > 1 &&
4377 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4378 len < PAGE_SIZE - 60)
4379 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4380 " cpus=%*pbl",
4381 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4382
62bc62a8 4383 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4384 len < PAGE_SIZE - 60)
4385 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4386 " nodes=%*pbl",
4387 nodemask_pr_args(&l->nodes));
45edfa58 4388
e374d483 4389 len += sprintf(buf + len, "\n");
88a420e4
CL
4390 }
4391
4392 free_loc_track(&t);
bbd7d57b 4393 kfree(map);
88a420e4 4394 if (!t.count)
e374d483
HH
4395 len += sprintf(buf, "No data\n");
4396 return len;
88a420e4 4397}
ab4d5ed5 4398#endif
88a420e4 4399
a5a84755 4400#ifdef SLUB_RESILIENCY_TEST
c07b8183 4401static void __init resiliency_test(void)
a5a84755
CL
4402{
4403 u8 *p;
4404
95a05b42 4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4406
f9f58285
FF
4407 pr_err("SLUB resiliency testing\n");
4408 pr_err("-----------------------\n");
4409 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4410
4411 p = kzalloc(16, GFP_KERNEL);
4412 p[16] = 0x12;
f9f58285
FF
4413 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4414 p + 16);
a5a84755
CL
4415
4416 validate_slab_cache(kmalloc_caches[4]);
4417
4418 /* Hmmm... The next two are dangerous */
4419 p = kzalloc(32, GFP_KERNEL);
4420 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4421 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4422 p);
4423 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4424
4425 validate_slab_cache(kmalloc_caches[5]);
4426 p = kzalloc(64, GFP_KERNEL);
4427 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4428 *p = 0x56;
f9f58285
FF
4429 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4430 p);
4431 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4432 validate_slab_cache(kmalloc_caches[6]);
4433
f9f58285 4434 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4435 p = kzalloc(128, GFP_KERNEL);
4436 kfree(p);
4437 *p = 0x78;
f9f58285 4438 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4439 validate_slab_cache(kmalloc_caches[7]);
4440
4441 p = kzalloc(256, GFP_KERNEL);
4442 kfree(p);
4443 p[50] = 0x9a;
f9f58285 4444 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4445 validate_slab_cache(kmalloc_caches[8]);
4446
4447 p = kzalloc(512, GFP_KERNEL);
4448 kfree(p);
4449 p[512] = 0xab;
f9f58285 4450 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4451 validate_slab_cache(kmalloc_caches[9]);
4452}
4453#else
4454#ifdef CONFIG_SYSFS
4455static void resiliency_test(void) {};
4456#endif
4457#endif
4458
ab4d5ed5 4459#ifdef CONFIG_SYSFS
81819f0f 4460enum slab_stat_type {
205ab99d
CL
4461 SL_ALL, /* All slabs */
4462 SL_PARTIAL, /* Only partially allocated slabs */
4463 SL_CPU, /* Only slabs used for cpu caches */
4464 SL_OBJECTS, /* Determine allocated objects not slabs */
4465 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4466};
4467
205ab99d 4468#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4469#define SO_PARTIAL (1 << SL_PARTIAL)
4470#define SO_CPU (1 << SL_CPU)
4471#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4472#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4473
62e5c4b4
CG
4474static ssize_t show_slab_objects(struct kmem_cache *s,
4475 char *buf, unsigned long flags)
81819f0f
CL
4476{
4477 unsigned long total = 0;
81819f0f
CL
4478 int node;
4479 int x;
4480 unsigned long *nodes;
81819f0f 4481
e35e1a97 4482 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4483 if (!nodes)
4484 return -ENOMEM;
81819f0f 4485
205ab99d
CL
4486 if (flags & SO_CPU) {
4487 int cpu;
81819f0f 4488
205ab99d 4489 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4490 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4491 cpu);
ec3ab083 4492 int node;
49e22585 4493 struct page *page;
dfb4f096 4494
4db0c3c2 4495 page = READ_ONCE(c->page);
ec3ab083
CL
4496 if (!page)
4497 continue;
205ab99d 4498
ec3ab083
CL
4499 node = page_to_nid(page);
4500 if (flags & SO_TOTAL)
4501 x = page->objects;
4502 else if (flags & SO_OBJECTS)
4503 x = page->inuse;
4504 else
4505 x = 1;
49e22585 4506
ec3ab083
CL
4507 total += x;
4508 nodes[node] += x;
4509
4db0c3c2 4510 page = READ_ONCE(c->partial);
49e22585 4511 if (page) {
8afb1474
LZ
4512 node = page_to_nid(page);
4513 if (flags & SO_TOTAL)
4514 WARN_ON_ONCE(1);
4515 else if (flags & SO_OBJECTS)
4516 WARN_ON_ONCE(1);
4517 else
4518 x = page->pages;
bc6697d8
ED
4519 total += x;
4520 nodes[node] += x;
49e22585 4521 }
81819f0f
CL
4522 }
4523 }
4524
bfc8c901 4525 get_online_mems();
ab4d5ed5 4526#ifdef CONFIG_SLUB_DEBUG
205ab99d 4527 if (flags & SO_ALL) {
fa45dc25
CL
4528 struct kmem_cache_node *n;
4529
4530 for_each_kmem_cache_node(s, node, n) {
205ab99d 4531
d0e0ac97
CG
4532 if (flags & SO_TOTAL)
4533 x = atomic_long_read(&n->total_objects);
4534 else if (flags & SO_OBJECTS)
4535 x = atomic_long_read(&n->total_objects) -
4536 count_partial(n, count_free);
81819f0f 4537 else
205ab99d 4538 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4539 total += x;
4540 nodes[node] += x;
4541 }
4542
ab4d5ed5
CL
4543 } else
4544#endif
4545 if (flags & SO_PARTIAL) {
fa45dc25 4546 struct kmem_cache_node *n;
81819f0f 4547
fa45dc25 4548 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4549 if (flags & SO_TOTAL)
4550 x = count_partial(n, count_total);
4551 else if (flags & SO_OBJECTS)
4552 x = count_partial(n, count_inuse);
81819f0f 4553 else
205ab99d 4554 x = n->nr_partial;
81819f0f
CL
4555 total += x;
4556 nodes[node] += x;
4557 }
4558 }
81819f0f
CL
4559 x = sprintf(buf, "%lu", total);
4560#ifdef CONFIG_NUMA
fa45dc25 4561 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4562 if (nodes[node])
4563 x += sprintf(buf + x, " N%d=%lu",
4564 node, nodes[node]);
4565#endif
bfc8c901 4566 put_online_mems();
81819f0f
CL
4567 kfree(nodes);
4568 return x + sprintf(buf + x, "\n");
4569}
4570
ab4d5ed5 4571#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4572static int any_slab_objects(struct kmem_cache *s)
4573{
4574 int node;
fa45dc25 4575 struct kmem_cache_node *n;
81819f0f 4576
fa45dc25 4577 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4578 if (atomic_long_read(&n->total_objects))
81819f0f 4579 return 1;
fa45dc25 4580
81819f0f
CL
4581 return 0;
4582}
ab4d5ed5 4583#endif
81819f0f
CL
4584
4585#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4586#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4587
4588struct slab_attribute {
4589 struct attribute attr;
4590 ssize_t (*show)(struct kmem_cache *s, char *buf);
4591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4592};
4593
4594#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4597
4598#define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
ab067e99 4600 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4601
81819f0f
CL
4602static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4603{
4604 return sprintf(buf, "%d\n", s->size);
4605}
4606SLAB_ATTR_RO(slab_size);
4607
4608static ssize_t align_show(struct kmem_cache *s, char *buf)
4609{
4610 return sprintf(buf, "%d\n", s->align);
4611}
4612SLAB_ATTR_RO(align);
4613
4614static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4615{
3b0efdfa 4616 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4617}
4618SLAB_ATTR_RO(object_size);
4619
4620static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4621{
834f3d11 4622 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4623}
4624SLAB_ATTR_RO(objs_per_slab);
4625
06b285dc
CL
4626static ssize_t order_store(struct kmem_cache *s,
4627 const char *buf, size_t length)
4628{
0121c619
CL
4629 unsigned long order;
4630 int err;
4631
3dbb95f7 4632 err = kstrtoul(buf, 10, &order);
0121c619
CL
4633 if (err)
4634 return err;
06b285dc
CL
4635
4636 if (order > slub_max_order || order < slub_min_order)
4637 return -EINVAL;
4638
4639 calculate_sizes(s, order);
4640 return length;
4641}
4642
81819f0f
CL
4643static ssize_t order_show(struct kmem_cache *s, char *buf)
4644{
834f3d11 4645 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4646}
06b285dc 4647SLAB_ATTR(order);
81819f0f 4648
73d342b1
DR
4649static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4650{
4651 return sprintf(buf, "%lu\n", s->min_partial);
4652}
4653
4654static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4655 size_t length)
4656{
4657 unsigned long min;
4658 int err;
4659
3dbb95f7 4660 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4661 if (err)
4662 return err;
4663
c0bdb232 4664 set_min_partial(s, min);
73d342b1
DR
4665 return length;
4666}
4667SLAB_ATTR(min_partial);
4668
49e22585
CL
4669static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4670{
4671 return sprintf(buf, "%u\n", s->cpu_partial);
4672}
4673
4674static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4675 size_t length)
4676{
4677 unsigned long objects;
4678 int err;
4679
3dbb95f7 4680 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4681 if (err)
4682 return err;
345c905d 4683 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4684 return -EINVAL;
49e22585
CL
4685
4686 s->cpu_partial = objects;
4687 flush_all(s);
4688 return length;
4689}
4690SLAB_ATTR(cpu_partial);
4691
81819f0f
CL
4692static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4693{
62c70bce
JP
4694 if (!s->ctor)
4695 return 0;
4696 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4697}
4698SLAB_ATTR_RO(ctor);
4699
81819f0f
CL
4700static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4701{
4307c14f 4702 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4703}
4704SLAB_ATTR_RO(aliases);
4705
81819f0f
CL
4706static ssize_t partial_show(struct kmem_cache *s, char *buf)
4707{
d9acf4b7 4708 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4709}
4710SLAB_ATTR_RO(partial);
4711
4712static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4713{
d9acf4b7 4714 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4715}
4716SLAB_ATTR_RO(cpu_slabs);
4717
4718static ssize_t objects_show(struct kmem_cache *s, char *buf)
4719{
205ab99d 4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4721}
4722SLAB_ATTR_RO(objects);
4723
205ab99d
CL
4724static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4725{
4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4727}
4728SLAB_ATTR_RO(objects_partial);
4729
49e22585
CL
4730static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4731{
4732 int objects = 0;
4733 int pages = 0;
4734 int cpu;
4735 int len;
4736
4737 for_each_online_cpu(cpu) {
4738 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4739
4740 if (page) {
4741 pages += page->pages;
4742 objects += page->pobjects;
4743 }
4744 }
4745
4746 len = sprintf(buf, "%d(%d)", objects, pages);
4747
4748#ifdef CONFIG_SMP
4749 for_each_online_cpu(cpu) {
4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4751
4752 if (page && len < PAGE_SIZE - 20)
4753 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4754 page->pobjects, page->pages);
4755 }
4756#endif
4757 return len + sprintf(buf + len, "\n");
4758}
4759SLAB_ATTR_RO(slabs_cpu_partial);
4760
a5a84755
CL
4761static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4762{
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4764}
4765
4766static ssize_t reclaim_account_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4768{
4769 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4770 if (buf[0] == '1')
4771 s->flags |= SLAB_RECLAIM_ACCOUNT;
4772 return length;
4773}
4774SLAB_ATTR(reclaim_account);
4775
4776static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4777{
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4779}
4780SLAB_ATTR_RO(hwcache_align);
4781
4782#ifdef CONFIG_ZONE_DMA
4783static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4784{
4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4786}
4787SLAB_ATTR_RO(cache_dma);
4788#endif
4789
4790static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4791{
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4793}
4794SLAB_ATTR_RO(destroy_by_rcu);
4795
ab9a0f19
LJ
4796static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4797{
4798 return sprintf(buf, "%d\n", s->reserved);
4799}
4800SLAB_ATTR_RO(reserved);
4801
ab4d5ed5 4802#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4803static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4804{
4805 return show_slab_objects(s, buf, SO_ALL);
4806}
4807SLAB_ATTR_RO(slabs);
4808
205ab99d
CL
4809static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4810{
4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4812}
4813SLAB_ATTR_RO(total_objects);
4814
81819f0f
CL
4815static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4816{
4817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4818}
4819
4820static ssize_t sanity_checks_store(struct kmem_cache *s,
4821 const char *buf, size_t length)
4822{
4823 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4824 if (buf[0] == '1') {
4825 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4826 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4827 }
81819f0f
CL
4828 return length;
4829}
4830SLAB_ATTR(sanity_checks);
4831
4832static ssize_t trace_show(struct kmem_cache *s, char *buf)
4833{
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4835}
4836
4837static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4838 size_t length)
4839{
c9e16131
CL
4840 /*
4841 * Tracing a merged cache is going to give confusing results
4842 * as well as cause other issues like converting a mergeable
4843 * cache into an umergeable one.
4844 */
4845 if (s->refcount > 1)
4846 return -EINVAL;
4847
81819f0f 4848 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4849 if (buf[0] == '1') {
4850 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4851 s->flags |= SLAB_TRACE;
b789ef51 4852 }
81819f0f
CL
4853 return length;
4854}
4855SLAB_ATTR(trace);
4856
81819f0f
CL
4857static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4858{
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4860}
4861
4862static ssize_t red_zone_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864{
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4871 s->flags |= SLAB_RED_ZONE;
b789ef51 4872 }
06b285dc 4873 calculate_sizes(s, -1);
81819f0f
CL
4874 return length;
4875}
4876SLAB_ATTR(red_zone);
4877
4878static ssize_t poison_show(struct kmem_cache *s, char *buf)
4879{
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4881}
4882
4883static ssize_t poison_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885{
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_POISON;
b789ef51
CL
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4892 s->flags |= SLAB_POISON;
b789ef51 4893 }
06b285dc 4894 calculate_sizes(s, -1);
81819f0f
CL
4895 return length;
4896}
4897SLAB_ATTR(poison);
4898
4899static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4900{
4901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4902}
4903
4904static ssize_t store_user_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906{
4907 if (any_slab_objects(s))
4908 return -EBUSY;
4909
4910 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4911 if (buf[0] == '1') {
4912 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4913 s->flags |= SLAB_STORE_USER;
b789ef51 4914 }
06b285dc 4915 calculate_sizes(s, -1);
81819f0f
CL
4916 return length;
4917}
4918SLAB_ATTR(store_user);
4919
53e15af0
CL
4920static ssize_t validate_show(struct kmem_cache *s, char *buf)
4921{
4922 return 0;
4923}
4924
4925static ssize_t validate_store(struct kmem_cache *s,
4926 const char *buf, size_t length)
4927{
434e245d
CL
4928 int ret = -EINVAL;
4929
4930 if (buf[0] == '1') {
4931 ret = validate_slab_cache(s);
4932 if (ret >= 0)
4933 ret = length;
4934 }
4935 return ret;
53e15af0
CL
4936}
4937SLAB_ATTR(validate);
a5a84755
CL
4938
4939static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4940{
4941 if (!(s->flags & SLAB_STORE_USER))
4942 return -ENOSYS;
4943 return list_locations(s, buf, TRACK_ALLOC);
4944}
4945SLAB_ATTR_RO(alloc_calls);
4946
4947static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4948{
4949 if (!(s->flags & SLAB_STORE_USER))
4950 return -ENOSYS;
4951 return list_locations(s, buf, TRACK_FREE);
4952}
4953SLAB_ATTR_RO(free_calls);
4954#endif /* CONFIG_SLUB_DEBUG */
4955
4956#ifdef CONFIG_FAILSLAB
4957static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4958{
4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4960}
4961
4962static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4963 size_t length)
4964{
c9e16131
CL
4965 if (s->refcount > 1)
4966 return -EINVAL;
4967
a5a84755
CL
4968 s->flags &= ~SLAB_FAILSLAB;
4969 if (buf[0] == '1')
4970 s->flags |= SLAB_FAILSLAB;
4971 return length;
4972}
4973SLAB_ATTR(failslab);
ab4d5ed5 4974#endif
53e15af0 4975
2086d26a
CL
4976static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4977{
4978 return 0;
4979}
4980
4981static ssize_t shrink_store(struct kmem_cache *s,
4982 const char *buf, size_t length)
4983{
832f37f5
VD
4984 if (buf[0] == '1')
4985 kmem_cache_shrink(s);
4986 else
2086d26a
CL
4987 return -EINVAL;
4988 return length;
4989}
4990SLAB_ATTR(shrink);
4991
81819f0f 4992#ifdef CONFIG_NUMA
9824601e 4993static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4994{
9824601e 4995 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4996}
4997
9824601e 4998static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4999 const char *buf, size_t length)
5000{
0121c619
CL
5001 unsigned long ratio;
5002 int err;
5003
3dbb95f7 5004 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5005 if (err)
5006 return err;
5007
e2cb96b7 5008 if (ratio <= 100)
0121c619 5009 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5010
81819f0f
CL
5011 return length;
5012}
9824601e 5013SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5014#endif
5015
8ff12cfc 5016#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5017static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5018{
5019 unsigned long sum = 0;
5020 int cpu;
5021 int len;
5022 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5023
5024 if (!data)
5025 return -ENOMEM;
5026
5027 for_each_online_cpu(cpu) {
9dfc6e68 5028 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5029
5030 data[cpu] = x;
5031 sum += x;
5032 }
5033
5034 len = sprintf(buf, "%lu", sum);
5035
50ef37b9 5036#ifdef CONFIG_SMP
8ff12cfc
CL
5037 for_each_online_cpu(cpu) {
5038 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5039 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5040 }
50ef37b9 5041#endif
8ff12cfc
CL
5042 kfree(data);
5043 return len + sprintf(buf + len, "\n");
5044}
5045
78eb00cc
DR
5046static void clear_stat(struct kmem_cache *s, enum stat_item si)
5047{
5048 int cpu;
5049
5050 for_each_online_cpu(cpu)
9dfc6e68 5051 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5052}
5053
8ff12cfc
CL
5054#define STAT_ATTR(si, text) \
5055static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5056{ \
5057 return show_stat(s, buf, si); \
5058} \
78eb00cc
DR
5059static ssize_t text##_store(struct kmem_cache *s, \
5060 const char *buf, size_t length) \
5061{ \
5062 if (buf[0] != '0') \
5063 return -EINVAL; \
5064 clear_stat(s, si); \
5065 return length; \
5066} \
5067SLAB_ATTR(text); \
8ff12cfc
CL
5068
5069STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5070STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5071STAT_ATTR(FREE_FASTPATH, free_fastpath);
5072STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5073STAT_ATTR(FREE_FROZEN, free_frozen);
5074STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5075STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5076STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5077STAT_ATTR(ALLOC_SLAB, alloc_slab);
5078STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5079STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5080STAT_ATTR(FREE_SLAB, free_slab);
5081STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5082STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5083STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5084STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5085STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5086STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5087STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5088STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5089STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5090STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5091STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5092STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5093STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5094STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5095#endif
5096
06428780 5097static struct attribute *slab_attrs[] = {
81819f0f
CL
5098 &slab_size_attr.attr,
5099 &object_size_attr.attr,
5100 &objs_per_slab_attr.attr,
5101 &order_attr.attr,
73d342b1 5102 &min_partial_attr.attr,
49e22585 5103 &cpu_partial_attr.attr,
81819f0f 5104 &objects_attr.attr,
205ab99d 5105 &objects_partial_attr.attr,
81819f0f
CL
5106 &partial_attr.attr,
5107 &cpu_slabs_attr.attr,
5108 &ctor_attr.attr,
81819f0f
CL
5109 &aliases_attr.attr,
5110 &align_attr.attr,
81819f0f
CL
5111 &hwcache_align_attr.attr,
5112 &reclaim_account_attr.attr,
5113 &destroy_by_rcu_attr.attr,
a5a84755 5114 &shrink_attr.attr,
ab9a0f19 5115 &reserved_attr.attr,
49e22585 5116 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5117#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5118 &total_objects_attr.attr,
5119 &slabs_attr.attr,
5120 &sanity_checks_attr.attr,
5121 &trace_attr.attr,
81819f0f
CL
5122 &red_zone_attr.attr,
5123 &poison_attr.attr,
5124 &store_user_attr.attr,
53e15af0 5125 &validate_attr.attr,
88a420e4
CL
5126 &alloc_calls_attr.attr,
5127 &free_calls_attr.attr,
ab4d5ed5 5128#endif
81819f0f
CL
5129#ifdef CONFIG_ZONE_DMA
5130 &cache_dma_attr.attr,
5131#endif
5132#ifdef CONFIG_NUMA
9824601e 5133 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5134#endif
5135#ifdef CONFIG_SLUB_STATS
5136 &alloc_fastpath_attr.attr,
5137 &alloc_slowpath_attr.attr,
5138 &free_fastpath_attr.attr,
5139 &free_slowpath_attr.attr,
5140 &free_frozen_attr.attr,
5141 &free_add_partial_attr.attr,
5142 &free_remove_partial_attr.attr,
5143 &alloc_from_partial_attr.attr,
5144 &alloc_slab_attr.attr,
5145 &alloc_refill_attr.attr,
e36a2652 5146 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5147 &free_slab_attr.attr,
5148 &cpuslab_flush_attr.attr,
5149 &deactivate_full_attr.attr,
5150 &deactivate_empty_attr.attr,
5151 &deactivate_to_head_attr.attr,
5152 &deactivate_to_tail_attr.attr,
5153 &deactivate_remote_frees_attr.attr,
03e404af 5154 &deactivate_bypass_attr.attr,
65c3376a 5155 &order_fallback_attr.attr,
b789ef51
CL
5156 &cmpxchg_double_fail_attr.attr,
5157 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5158 &cpu_partial_alloc_attr.attr,
5159 &cpu_partial_free_attr.attr,
8028dcea
AS
5160 &cpu_partial_node_attr.attr,
5161 &cpu_partial_drain_attr.attr,
81819f0f 5162#endif
4c13dd3b
DM
5163#ifdef CONFIG_FAILSLAB
5164 &failslab_attr.attr,
5165#endif
5166
81819f0f
CL
5167 NULL
5168};
5169
5170static struct attribute_group slab_attr_group = {
5171 .attrs = slab_attrs,
5172};
5173
5174static ssize_t slab_attr_show(struct kobject *kobj,
5175 struct attribute *attr,
5176 char *buf)
5177{
5178 struct slab_attribute *attribute;
5179 struct kmem_cache *s;
5180 int err;
5181
5182 attribute = to_slab_attr(attr);
5183 s = to_slab(kobj);
5184
5185 if (!attribute->show)
5186 return -EIO;
5187
5188 err = attribute->show(s, buf);
5189
5190 return err;
5191}
5192
5193static ssize_t slab_attr_store(struct kobject *kobj,
5194 struct attribute *attr,
5195 const char *buf, size_t len)
5196{
5197 struct slab_attribute *attribute;
5198 struct kmem_cache *s;
5199 int err;
5200
5201 attribute = to_slab_attr(attr);
5202 s = to_slab(kobj);
5203
5204 if (!attribute->store)
5205 return -EIO;
5206
5207 err = attribute->store(s, buf, len);
107dab5c
GC
5208#ifdef CONFIG_MEMCG_KMEM
5209 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5210 struct kmem_cache *c;
81819f0f 5211
107dab5c
GC
5212 mutex_lock(&slab_mutex);
5213 if (s->max_attr_size < len)
5214 s->max_attr_size = len;
5215
ebe945c2
GC
5216 /*
5217 * This is a best effort propagation, so this function's return
5218 * value will be determined by the parent cache only. This is
5219 * basically because not all attributes will have a well
5220 * defined semantics for rollbacks - most of the actions will
5221 * have permanent effects.
5222 *
5223 * Returning the error value of any of the children that fail
5224 * is not 100 % defined, in the sense that users seeing the
5225 * error code won't be able to know anything about the state of
5226 * the cache.
5227 *
5228 * Only returning the error code for the parent cache at least
5229 * has well defined semantics. The cache being written to
5230 * directly either failed or succeeded, in which case we loop
5231 * through the descendants with best-effort propagation.
5232 */
426589f5
VD
5233 for_each_memcg_cache(c, s)
5234 attribute->store(c, buf, len);
107dab5c
GC
5235 mutex_unlock(&slab_mutex);
5236 }
5237#endif
81819f0f
CL
5238 return err;
5239}
5240
107dab5c
GC
5241static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5242{
5243#ifdef CONFIG_MEMCG_KMEM
5244 int i;
5245 char *buffer = NULL;
93030d83 5246 struct kmem_cache *root_cache;
107dab5c 5247
93030d83 5248 if (is_root_cache(s))
107dab5c
GC
5249 return;
5250
f7ce3190 5251 root_cache = s->memcg_params.root_cache;
93030d83 5252
107dab5c
GC
5253 /*
5254 * This mean this cache had no attribute written. Therefore, no point
5255 * in copying default values around
5256 */
93030d83 5257 if (!root_cache->max_attr_size)
107dab5c
GC
5258 return;
5259
5260 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5261 char mbuf[64];
5262 char *buf;
5263 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5264
5265 if (!attr || !attr->store || !attr->show)
5266 continue;
5267
5268 /*
5269 * It is really bad that we have to allocate here, so we will
5270 * do it only as a fallback. If we actually allocate, though,
5271 * we can just use the allocated buffer until the end.
5272 *
5273 * Most of the slub attributes will tend to be very small in
5274 * size, but sysfs allows buffers up to a page, so they can
5275 * theoretically happen.
5276 */
5277 if (buffer)
5278 buf = buffer;
93030d83 5279 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5280 buf = mbuf;
5281 else {
5282 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5283 if (WARN_ON(!buffer))
5284 continue;
5285 buf = buffer;
5286 }
5287
93030d83 5288 attr->show(root_cache, buf);
107dab5c
GC
5289 attr->store(s, buf, strlen(buf));
5290 }
5291
5292 if (buffer)
5293 free_page((unsigned long)buffer);
5294#endif
5295}
5296
41a21285
CL
5297static void kmem_cache_release(struct kobject *k)
5298{
5299 slab_kmem_cache_release(to_slab(k));
5300}
5301
52cf25d0 5302static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5303 .show = slab_attr_show,
5304 .store = slab_attr_store,
5305};
5306
5307static struct kobj_type slab_ktype = {
5308 .sysfs_ops = &slab_sysfs_ops,
41a21285 5309 .release = kmem_cache_release,
81819f0f
CL
5310};
5311
5312static int uevent_filter(struct kset *kset, struct kobject *kobj)
5313{
5314 struct kobj_type *ktype = get_ktype(kobj);
5315
5316 if (ktype == &slab_ktype)
5317 return 1;
5318 return 0;
5319}
5320
9cd43611 5321static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5322 .filter = uevent_filter,
5323};
5324
27c3a314 5325static struct kset *slab_kset;
81819f0f 5326
9a41707b
VD
5327static inline struct kset *cache_kset(struct kmem_cache *s)
5328{
5329#ifdef CONFIG_MEMCG_KMEM
5330 if (!is_root_cache(s))
f7ce3190 5331 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5332#endif
5333 return slab_kset;
5334}
5335
81819f0f
CL
5336#define ID_STR_LENGTH 64
5337
5338/* Create a unique string id for a slab cache:
6446faa2
CL
5339 *
5340 * Format :[flags-]size
81819f0f
CL
5341 */
5342static char *create_unique_id(struct kmem_cache *s)
5343{
5344 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5345 char *p = name;
5346
5347 BUG_ON(!name);
5348
5349 *p++ = ':';
5350 /*
5351 * First flags affecting slabcache operations. We will only
5352 * get here for aliasable slabs so we do not need to support
5353 * too many flags. The flags here must cover all flags that
5354 * are matched during merging to guarantee that the id is
5355 * unique.
5356 */
5357 if (s->flags & SLAB_CACHE_DMA)
5358 *p++ = 'd';
5359 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5360 *p++ = 'a';
5361 if (s->flags & SLAB_DEBUG_FREE)
5362 *p++ = 'F';
5a896d9e
VN
5363 if (!(s->flags & SLAB_NOTRACK))
5364 *p++ = 't';
81819f0f
CL
5365 if (p != name + 1)
5366 *p++ = '-';
5367 p += sprintf(p, "%07d", s->size);
2633d7a0 5368
81819f0f
CL
5369 BUG_ON(p > name + ID_STR_LENGTH - 1);
5370 return name;
5371}
5372
5373static int sysfs_slab_add(struct kmem_cache *s)
5374{
5375 int err;
5376 const char *name;
45530c44 5377 int unmergeable = slab_unmergeable(s);
81819f0f 5378
81819f0f
CL
5379 if (unmergeable) {
5380 /*
5381 * Slabcache can never be merged so we can use the name proper.
5382 * This is typically the case for debug situations. In that
5383 * case we can catch duplicate names easily.
5384 */
27c3a314 5385 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5386 name = s->name;
5387 } else {
5388 /*
5389 * Create a unique name for the slab as a target
5390 * for the symlinks.
5391 */
5392 name = create_unique_id(s);
5393 }
5394
9a41707b 5395 s->kobj.kset = cache_kset(s);
26e4f205 5396 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5397 if (err)
80da026a 5398 goto out;
81819f0f
CL
5399
5400 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5401 if (err)
5402 goto out_del_kobj;
9a41707b
VD
5403
5404#ifdef CONFIG_MEMCG_KMEM
5405 if (is_root_cache(s)) {
5406 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5407 if (!s->memcg_kset) {
54b6a731
DJ
5408 err = -ENOMEM;
5409 goto out_del_kobj;
9a41707b
VD
5410 }
5411 }
5412#endif
5413
81819f0f
CL
5414 kobject_uevent(&s->kobj, KOBJ_ADD);
5415 if (!unmergeable) {
5416 /* Setup first alias */
5417 sysfs_slab_alias(s, s->name);
81819f0f 5418 }
54b6a731
DJ
5419out:
5420 if (!unmergeable)
5421 kfree(name);
5422 return err;
5423out_del_kobj:
5424 kobject_del(&s->kobj);
54b6a731 5425 goto out;
81819f0f
CL
5426}
5427
41a21285 5428void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5429{
97d06609 5430 if (slab_state < FULL)
2bce6485
CL
5431 /*
5432 * Sysfs has not been setup yet so no need to remove the
5433 * cache from sysfs.
5434 */
5435 return;
5436
9a41707b
VD
5437#ifdef CONFIG_MEMCG_KMEM
5438 kset_unregister(s->memcg_kset);
5439#endif
81819f0f
CL
5440 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5441 kobject_del(&s->kobj);
151c602f 5442 kobject_put(&s->kobj);
81819f0f
CL
5443}
5444
5445/*
5446 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5447 * available lest we lose that information.
81819f0f
CL
5448 */
5449struct saved_alias {
5450 struct kmem_cache *s;
5451 const char *name;
5452 struct saved_alias *next;
5453};
5454
5af328a5 5455static struct saved_alias *alias_list;
81819f0f
CL
5456
5457static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5458{
5459 struct saved_alias *al;
5460
97d06609 5461 if (slab_state == FULL) {
81819f0f
CL
5462 /*
5463 * If we have a leftover link then remove it.
5464 */
27c3a314
GKH
5465 sysfs_remove_link(&slab_kset->kobj, name);
5466 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5467 }
5468
5469 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5470 if (!al)
5471 return -ENOMEM;
5472
5473 al->s = s;
5474 al->name = name;
5475 al->next = alias_list;
5476 alias_list = al;
5477 return 0;
5478}
5479
5480static int __init slab_sysfs_init(void)
5481{
5b95a4ac 5482 struct kmem_cache *s;
81819f0f
CL
5483 int err;
5484
18004c5d 5485 mutex_lock(&slab_mutex);
2bce6485 5486
0ff21e46 5487 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5488 if (!slab_kset) {
18004c5d 5489 mutex_unlock(&slab_mutex);
f9f58285 5490 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5491 return -ENOSYS;
5492 }
5493
97d06609 5494 slab_state = FULL;
26a7bd03 5495
5b95a4ac 5496 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5497 err = sysfs_slab_add(s);
5d540fb7 5498 if (err)
f9f58285
FF
5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5500 s->name);
26a7bd03 5501 }
81819f0f
CL
5502
5503 while (alias_list) {
5504 struct saved_alias *al = alias_list;
5505
5506 alias_list = alias_list->next;
5507 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5508 if (err)
f9f58285
FF
5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5510 al->name);
81819f0f
CL
5511 kfree(al);
5512 }
5513
18004c5d 5514 mutex_unlock(&slab_mutex);
81819f0f
CL
5515 resiliency_test();
5516 return 0;
5517}
5518
5519__initcall(slab_sysfs_init);
ab4d5ed5 5520#endif /* CONFIG_SYSFS */
57ed3eda
PE
5521
5522/*
5523 * The /proc/slabinfo ABI
5524 */
158a9624 5525#ifdef CONFIG_SLABINFO
0d7561c6 5526void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5527{
57ed3eda 5528 unsigned long nr_slabs = 0;
205ab99d
CL
5529 unsigned long nr_objs = 0;
5530 unsigned long nr_free = 0;
57ed3eda 5531 int node;
fa45dc25 5532 struct kmem_cache_node *n;
57ed3eda 5533
fa45dc25 5534 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5535 nr_slabs += node_nr_slabs(n);
5536 nr_objs += node_nr_objs(n);
205ab99d 5537 nr_free += count_partial(n, count_free);
57ed3eda
PE
5538 }
5539
0d7561c6
GC
5540 sinfo->active_objs = nr_objs - nr_free;
5541 sinfo->num_objs = nr_objs;
5542 sinfo->active_slabs = nr_slabs;
5543 sinfo->num_slabs = nr_slabs;
5544 sinfo->objects_per_slab = oo_objects(s->oo);
5545 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5546}
5547
0d7561c6 5548void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5549{
7b3c3a50
AD
5550}
5551
b7454ad3
GC
5552ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5553 size_t count, loff_t *ppos)
7b3c3a50 5554{
b7454ad3 5555 return -EIO;
7b3c3a50 5556}
158a9624 5557#endif /* CONFIG_SLABINFO */