]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
3ac7fe5a 22#include <linux/debugobjects.h>
81819f0f 23#include <linux/kallsyms.h>
b9049e23 24#include <linux/memory.h>
f8bd2258 25#include <linux/math64.h>
81819f0f
CL
26
27/*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
672bba3a
CL
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 74 * freed then the slab will show up again on the partial lists.
672bba3a
CL
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
81819f0f
CL
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
4b6f0750
CL
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
dfb4f096 96 * freelist that allows lockless access to
894b8788
CL
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
81819f0f
CL
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
894b8788 102 * the fast path and disables lockless freelists.
81819f0f
CL
103 */
104
5577bd8a
CL
105#define FROZEN (1 << PG_active)
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG (1 << PG_error)
109#else
110#define SLABDEBUG 0
111#endif
112
4b6f0750
CL
113static inline int SlabFrozen(struct page *page)
114{
5577bd8a 115 return page->flags & FROZEN;
4b6f0750
CL
116}
117
118static inline void SetSlabFrozen(struct page *page)
119{
5577bd8a 120 page->flags |= FROZEN;
4b6f0750
CL
121}
122
123static inline void ClearSlabFrozen(struct page *page)
124{
5577bd8a 125 page->flags &= ~FROZEN;
4b6f0750
CL
126}
127
35e5d7ee
CL
128static inline int SlabDebug(struct page *page)
129{
5577bd8a 130 return page->flags & SLABDEBUG;
35e5d7ee
CL
131}
132
133static inline void SetSlabDebug(struct page *page)
134{
5577bd8a 135 page->flags |= SLABDEBUG;
35e5d7ee
CL
136}
137
138static inline void ClearSlabDebug(struct page *page)
139{
5577bd8a 140 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
2086d26a
CL
154/*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
76be8950 158#define MIN_PARTIAL 5
e95eed57 159
2086d26a
CL
160/*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165#define MAX_PARTIAL 10
166
81819f0f
CL
167#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
672bba3a 169
81819f0f
CL
170/*
171 * Set of flags that will prevent slab merging
172 */
173#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
178
179#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
181#endif
182
183#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 184#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
185#endif
186
187/* Internal SLUB flags */
1ceef402
CL
188#define __OBJECT_POISON 0x80000000 /* Poison object */
189#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
190
191static int kmem_size = sizeof(struct kmem_cache);
192
193#ifdef CONFIG_SMP
194static struct notifier_block slab_notifier;
195#endif
196
197static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 200 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
201 SYSFS /* Sysfs up */
202} slab_state = DOWN;
203
204/* A list of all slab caches on the system */
205static DECLARE_RWSEM(slub_lock);
5af328a5 206static LIST_HEAD(slab_caches);
81819f0f 207
02cbc874
CL
208/*
209 * Tracking user of a slab.
210 */
211struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
41ecc55b 220#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
223static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 224
81819f0f 225#else
0c710013
CL
226static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
151c602f
CL
229static inline void sysfs_slab_remove(struct kmem_cache *s)
230{
231 kfree(s);
232}
8ff12cfc 233
81819f0f
CL
234#endif
235
8ff12cfc
CL
236static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237{
238#ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240#endif
241}
242
81819f0f
CL
243/********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
246
247int slab_is_available(void)
248{
249 return slab_state >= UP;
250}
251
252static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253{
254#ifdef CONFIG_NUMA
255 return s->node[node];
256#else
257 return &s->local_node;
258#endif
259}
260
dfb4f096
CL
261static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262{
4c93c355
CL
263#ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265#else
266 return &s->cpu_slab;
267#endif
dfb4f096
CL
268}
269
6446faa2 270/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
271static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
273{
274 void *base;
275
a973e9dd 276 if (!object)
02cbc874
CL
277 return 1;
278
a973e9dd 279 base = page_address(page);
39b26464 280 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
281 (object - base) % s->size) {
282 return 0;
283 }
284
285 return 1;
286}
287
7656c72b
CL
288/*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295static inline void *get_freepointer(struct kmem_cache *s, void *object)
296{
297 return *(void **)(object + s->offset);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302 *(void **)(object + s->offset) = fp;
303}
304
305/* Loop over all objects in a slab */
224a88be
CL
306#define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
308 __p += (__s)->size)
309
310/* Scan freelist */
311#define for_each_free_object(__p, __s, __free) \
a973e9dd 312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
313
314/* Determine object index from a given position */
315static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316{
317 return (p - addr) / s->size;
318}
319
834f3d11
CL
320static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
322{
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
325 };
326
327 return x;
328}
329
330static inline int oo_order(struct kmem_cache_order_objects x)
331{
332 return x.x >> 16;
333}
334
335static inline int oo_objects(struct kmem_cache_order_objects x)
336{
337 return x.x & ((1 << 16) - 1);
338}
339
41ecc55b
CL
340#ifdef CONFIG_SLUB_DEBUG
341/*
342 * Debug settings:
343 */
f0630fff
CL
344#ifdef CONFIG_SLUB_DEBUG_ON
345static int slub_debug = DEBUG_DEFAULT_FLAGS;
346#else
41ecc55b 347static int slub_debug;
f0630fff 348#endif
41ecc55b
CL
349
350static char *slub_debug_slabs;
351
81819f0f
CL
352/*
353 * Object debugging
354 */
355static void print_section(char *text, u8 *addr, unsigned int length)
356{
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
360
361 ascii[16] = 0;
362
363 for (i = 0; i < length; i++) {
364 if (newline) {
24922684 365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
366 newline = 0;
367 }
06428780 368 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
06428780 372 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
373 newline = 1;
374 }
375 }
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
06428780 379 printk(KERN_CONT " ");
81819f0f
CL
380 ascii[i] = ' ';
381 i++;
382 }
06428780 383 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
384 }
385}
386
81819f0f
CL
387static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
389{
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 return p + alloc;
398}
399
400static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
402{
403 struct track *p;
404
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
409
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current ? current->pid : -1;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
418}
419
81819f0f
CL
420static void init_tracking(struct kmem_cache *s, void *object)
421{
24922684
CL
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
424
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
427}
428
429static void print_track(const char *s, struct track *t)
430{
431 if (!t->addr)
432 return;
433
24922684 434 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 435 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
436 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437}
438
439static void print_tracking(struct kmem_cache *s, void *object)
440{
441 if (!(s->flags & SLAB_STORE_USER))
442 return;
443
444 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445 print_track("Freed", get_track(s, object, TRACK_FREE));
446}
447
448static void print_page_info(struct page *page)
449{
39b26464
CL
450 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
452
453}
454
455static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456{
457 va_list args;
458 char buf[100];
459
460 va_start(args, fmt);
461 vsnprintf(buf, sizeof(buf), fmt, args);
462 va_end(args);
463 printk(KERN_ERR "========================================"
464 "=====================================\n");
465 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466 printk(KERN_ERR "----------------------------------------"
467 "-------------------------------------\n\n");
81819f0f
CL
468}
469
24922684
CL
470static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471{
472 va_list args;
473 char buf[100];
474
475 va_start(args, fmt);
476 vsnprintf(buf, sizeof(buf), fmt, args);
477 va_end(args);
478 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479}
480
481static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
482{
483 unsigned int off; /* Offset of last byte */
a973e9dd 484 u8 *addr = page_address(page);
24922684
CL
485
486 print_tracking(s, p);
487
488 print_page_info(page);
489
490 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 p, p - addr, get_freepointer(s, p));
492
493 if (p > addr + 16)
494 print_section("Bytes b4", p - 16, 16);
495
496 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
497
498 if (s->flags & SLAB_RED_ZONE)
499 print_section("Redzone", p + s->objsize,
500 s->inuse - s->objsize);
501
81819f0f
CL
502 if (s->offset)
503 off = s->offset + sizeof(void *);
504 else
505 off = s->inuse;
506
24922684 507 if (s->flags & SLAB_STORE_USER)
81819f0f 508 off += 2 * sizeof(struct track);
81819f0f
CL
509
510 if (off != s->size)
511 /* Beginning of the filler is the free pointer */
24922684
CL
512 print_section("Padding", p + off, s->size - off);
513
514 dump_stack();
81819f0f
CL
515}
516
517static void object_err(struct kmem_cache *s, struct page *page,
518 u8 *object, char *reason)
519{
3dc50637 520 slab_bug(s, "%s", reason);
24922684 521 print_trailer(s, page, object);
81819f0f
CL
522}
523
24922684 524static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
525{
526 va_list args;
527 char buf[100];
528
24922684
CL
529 va_start(args, fmt);
530 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 531 va_end(args);
3dc50637 532 slab_bug(s, "%s", buf);
24922684 533 print_page_info(page);
81819f0f
CL
534 dump_stack();
535}
536
537static void init_object(struct kmem_cache *s, void *object, int active)
538{
539 u8 *p = object;
540
541 if (s->flags & __OBJECT_POISON) {
542 memset(p, POISON_FREE, s->objsize - 1);
06428780 543 p[s->objsize - 1] = POISON_END;
81819f0f
CL
544 }
545
546 if (s->flags & SLAB_RED_ZONE)
547 memset(p + s->objsize,
548 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549 s->inuse - s->objsize);
550}
551
24922684 552static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
553{
554 while (bytes) {
555 if (*start != (u8)value)
24922684 556 return start;
81819f0f
CL
557 start++;
558 bytes--;
559 }
24922684
CL
560 return NULL;
561}
562
563static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564 void *from, void *to)
565{
566 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567 memset(from, data, to - from);
568}
569
570static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571 u8 *object, char *what,
06428780 572 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
573{
574 u8 *fault;
575 u8 *end;
576
577 fault = check_bytes(start, value, bytes);
578 if (!fault)
579 return 1;
580
581 end = start + bytes;
582 while (end > fault && end[-1] == value)
583 end--;
584
585 slab_bug(s, "%s overwritten", what);
586 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 fault, end - 1, fault[0], value);
588 print_trailer(s, page, object);
589
590 restore_bytes(s, what, value, fault, end);
591 return 0;
81819f0f
CL
592}
593
81819f0f
CL
594/*
595 * Object layout:
596 *
597 * object address
598 * Bytes of the object to be managed.
599 * If the freepointer may overlay the object then the free
600 * pointer is the first word of the object.
672bba3a 601 *
81819f0f
CL
602 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * 0xa5 (POISON_END)
604 *
605 * object + s->objsize
606 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
607 * Padding is extended by another word if Redzoning is enabled and
608 * objsize == inuse.
609 *
81819f0f
CL
610 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 0xcc (RED_ACTIVE) for objects in use.
612 *
613 * object + s->inuse
672bba3a
CL
614 * Meta data starts here.
615 *
81819f0f
CL
616 * A. Free pointer (if we cannot overwrite object on free)
617 * B. Tracking data for SLAB_STORE_USER
672bba3a 618 * C. Padding to reach required alignment boundary or at mininum
6446faa2 619 * one word if debugging is on to be able to detect writes
672bba3a
CL
620 * before the word boundary.
621 *
622 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
623 *
624 * object + s->size
672bba3a 625 * Nothing is used beyond s->size.
81819f0f 626 *
672bba3a
CL
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
629 * may be used with merged slabcaches.
630 */
631
81819f0f
CL
632static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633{
634 unsigned long off = s->inuse; /* The end of info */
635
636 if (s->offset)
637 /* Freepointer is placed after the object. */
638 off += sizeof(void *);
639
640 if (s->flags & SLAB_STORE_USER)
641 /* We also have user information there */
642 off += 2 * sizeof(struct track);
643
644 if (s->size == off)
645 return 1;
646
24922684
CL
647 return check_bytes_and_report(s, page, p, "Object padding",
648 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
649}
650
39b26464 651/* Check the pad bytes at the end of a slab page */
81819f0f
CL
652static int slab_pad_check(struct kmem_cache *s, struct page *page)
653{
24922684
CL
654 u8 *start;
655 u8 *fault;
656 u8 *end;
657 int length;
658 int remainder;
81819f0f
CL
659
660 if (!(s->flags & SLAB_POISON))
661 return 1;
662
a973e9dd 663 start = page_address(page);
834f3d11 664 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
665 end = start + length;
666 remainder = length % s->size;
81819f0f
CL
667 if (!remainder)
668 return 1;
669
39b26464 670 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
671 if (!fault)
672 return 1;
673 while (end > fault && end[-1] == POISON_INUSE)
674 end--;
675
676 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 677 print_section("Padding", end - remainder, remainder);
24922684
CL
678
679 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680 return 0;
81819f0f
CL
681}
682
683static int check_object(struct kmem_cache *s, struct page *page,
684 void *object, int active)
685{
686 u8 *p = object;
687 u8 *endobject = object + s->objsize;
688
689 if (s->flags & SLAB_RED_ZONE) {
690 unsigned int red =
691 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692
24922684
CL
693 if (!check_bytes_and_report(s, page, object, "Redzone",
694 endobject, red, s->inuse - s->objsize))
81819f0f 695 return 0;
81819f0f 696 } else {
3adbefee
IM
697 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698 check_bytes_and_report(s, page, p, "Alignment padding",
699 endobject, POISON_INUSE, s->inuse - s->objsize);
700 }
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_POISON) {
704 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
705 (!check_bytes_and_report(s, page, p, "Poison", p,
706 POISON_FREE, s->objsize - 1) ||
707 !check_bytes_and_report(s, page, p, "Poison",
06428780 708 p + s->objsize - 1, POISON_END, 1)))
81819f0f 709 return 0;
81819f0f
CL
710 /*
711 * check_pad_bytes cleans up on its own.
712 */
713 check_pad_bytes(s, page, p);
714 }
715
716 if (!s->offset && active)
717 /*
718 * Object and freepointer overlap. Cannot check
719 * freepointer while object is allocated.
720 */
721 return 1;
722
723 /* Check free pointer validity */
724 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725 object_err(s, page, p, "Freepointer corrupt");
726 /*
727 * No choice but to zap it and thus loose the remainder
728 * of the free objects in this slab. May cause
672bba3a 729 * another error because the object count is now wrong.
81819f0f 730 */
a973e9dd 731 set_freepointer(s, p, NULL);
81819f0f
CL
732 return 0;
733 }
734 return 1;
735}
736
737static int check_slab(struct kmem_cache *s, struct page *page)
738{
39b26464
CL
739 int maxobj;
740
81819f0f
CL
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
24922684 744 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
745 return 0;
746 }
39b26464
CL
747
748 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749 if (page->objects > maxobj) {
750 slab_err(s, page, "objects %u > max %u",
751 s->name, page->objects, maxobj);
752 return 0;
753 }
754 if (page->inuse > page->objects) {
24922684 755 slab_err(s, page, "inuse %u > max %u",
39b26464 756 s->name, page->inuse, page->objects);
81819f0f
CL
757 return 0;
758 }
759 /* Slab_pad_check fixes things up after itself */
760 slab_pad_check(s, page);
761 return 1;
762}
763
764/*
672bba3a
CL
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
767 */
768static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769{
770 int nr = 0;
771 void *fp = page->freelist;
772 void *object = NULL;
224a88be 773 unsigned long max_objects;
81819f0f 774
39b26464 775 while (fp && nr <= page->objects) {
81819f0f
CL
776 if (fp == search)
777 return 1;
778 if (!check_valid_pointer(s, page, fp)) {
779 if (object) {
780 object_err(s, page, object,
781 "Freechain corrupt");
a973e9dd 782 set_freepointer(s, object, NULL);
81819f0f
CL
783 break;
784 } else {
24922684 785 slab_err(s, page, "Freepointer corrupt");
a973e9dd 786 page->freelist = NULL;
39b26464 787 page->inuse = page->objects;
24922684 788 slab_fix(s, "Freelist cleared");
81819f0f
CL
789 return 0;
790 }
791 break;
792 }
793 object = fp;
794 fp = get_freepointer(s, object);
795 nr++;
796 }
797
224a88be
CL
798 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799 if (max_objects > 65535)
800 max_objects = 65535;
801
802 if (page->objects != max_objects) {
803 slab_err(s, page, "Wrong number of objects. Found %d but "
804 "should be %d", page->objects, max_objects);
805 page->objects = max_objects;
806 slab_fix(s, "Number of objects adjusted.");
807 }
39b26464 808 if (page->inuse != page->objects - nr) {
70d71228 809 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
810 "counted were %d", page->inuse, page->objects - nr);
811 page->inuse = page->objects - nr;
24922684 812 slab_fix(s, "Object count adjusted.");
81819f0f
CL
813 }
814 return search == NULL;
815}
816
3ec09742
CL
817static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
818{
819 if (s->flags & SLAB_TRACE) {
820 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821 s->name,
822 alloc ? "alloc" : "free",
823 object, page->inuse,
824 page->freelist);
825
826 if (!alloc)
827 print_section("Object", (void *)object, s->objsize);
828
829 dump_stack();
830 }
831}
832
643b1138 833/*
672bba3a 834 * Tracking of fully allocated slabs for debugging purposes.
643b1138 835 */
e95eed57 836static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 837{
643b1138
CL
838 spin_lock(&n->list_lock);
839 list_add(&page->lru, &n->full);
840 spin_unlock(&n->list_lock);
841}
842
843static void remove_full(struct kmem_cache *s, struct page *page)
844{
845 struct kmem_cache_node *n;
846
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
849
850 n = get_node(s, page_to_nid(page));
851
852 spin_lock(&n->list_lock);
853 list_del(&page->lru);
854 spin_unlock(&n->list_lock);
855}
856
0f389ec6
CL
857/* Tracking of the number of slabs for debugging purposes */
858static inline unsigned long slabs_node(struct kmem_cache *s, int node)
859{
860 struct kmem_cache_node *n = get_node(s, node);
861
862 return atomic_long_read(&n->nr_slabs);
863}
864
205ab99d 865static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
866{
867 struct kmem_cache_node *n = get_node(s, node);
868
869 /*
870 * May be called early in order to allocate a slab for the
871 * kmem_cache_node structure. Solve the chicken-egg
872 * dilemma by deferring the increment of the count during
873 * bootstrap (see early_kmem_cache_node_alloc).
874 */
205ab99d 875 if (!NUMA_BUILD || n) {
0f389ec6 876 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
877 atomic_long_add(objects, &n->total_objects);
878 }
0f389ec6 879}
205ab99d 880static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
881{
882 struct kmem_cache_node *n = get_node(s, node);
883
884 atomic_long_dec(&n->nr_slabs);
205ab99d 885 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
886}
887
888/* Object debug checks for alloc/free paths */
3ec09742
CL
889static void setup_object_debug(struct kmem_cache *s, struct page *page,
890 void *object)
891{
892 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
893 return;
894
895 init_object(s, object, 0);
896 init_tracking(s, object);
897}
898
899static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
900 void *object, void *addr)
81819f0f
CL
901{
902 if (!check_slab(s, page))
903 goto bad;
904
d692ef6d 905 if (!on_freelist(s, page, object)) {
24922684 906 object_err(s, page, object, "Object already allocated");
70d71228 907 goto bad;
81819f0f
CL
908 }
909
910 if (!check_valid_pointer(s, page, object)) {
911 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 912 goto bad;
81819f0f
CL
913 }
914
d692ef6d 915 if (!check_object(s, page, object, 0))
81819f0f 916 goto bad;
81819f0f 917
3ec09742
CL
918 /* Success perform special debug activities for allocs */
919 if (s->flags & SLAB_STORE_USER)
920 set_track(s, object, TRACK_ALLOC, addr);
921 trace(s, page, object, 1);
922 init_object(s, object, 1);
81819f0f 923 return 1;
3ec09742 924
81819f0f
CL
925bad:
926 if (PageSlab(page)) {
927 /*
928 * If this is a slab page then lets do the best we can
929 * to avoid issues in the future. Marking all objects
672bba3a 930 * as used avoids touching the remaining objects.
81819f0f 931 */
24922684 932 slab_fix(s, "Marking all objects used");
39b26464 933 page->inuse = page->objects;
a973e9dd 934 page->freelist = NULL;
81819f0f
CL
935 }
936 return 0;
937}
938
3ec09742
CL
939static int free_debug_processing(struct kmem_cache *s, struct page *page,
940 void *object, void *addr)
81819f0f
CL
941{
942 if (!check_slab(s, page))
943 goto fail;
944
945 if (!check_valid_pointer(s, page, object)) {
70d71228 946 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
947 goto fail;
948 }
949
950 if (on_freelist(s, page, object)) {
24922684 951 object_err(s, page, object, "Object already free");
81819f0f
CL
952 goto fail;
953 }
954
955 if (!check_object(s, page, object, 1))
956 return 0;
957
958 if (unlikely(s != page->slab)) {
3adbefee 959 if (!PageSlab(page)) {
70d71228
CL
960 slab_err(s, page, "Attempt to free object(0x%p) "
961 "outside of slab", object);
3adbefee 962 } else if (!page->slab) {
81819f0f 963 printk(KERN_ERR
70d71228 964 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 965 object);
70d71228 966 dump_stack();
06428780 967 } else
24922684
CL
968 object_err(s, page, object,
969 "page slab pointer corrupt.");
81819f0f
CL
970 goto fail;
971 }
3ec09742
CL
972
973 /* Special debug activities for freeing objects */
a973e9dd 974 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
975 remove_full(s, page);
976 if (s->flags & SLAB_STORE_USER)
977 set_track(s, object, TRACK_FREE, addr);
978 trace(s, page, object, 0);
979 init_object(s, object, 0);
81819f0f 980 return 1;
3ec09742 981
81819f0f 982fail:
24922684 983 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
984 return 0;
985}
986
41ecc55b
CL
987static int __init setup_slub_debug(char *str)
988{
f0630fff
CL
989 slub_debug = DEBUG_DEFAULT_FLAGS;
990 if (*str++ != '=' || !*str)
991 /*
992 * No options specified. Switch on full debugging.
993 */
994 goto out;
995
996 if (*str == ',')
997 /*
998 * No options but restriction on slabs. This means full
999 * debugging for slabs matching a pattern.
1000 */
1001 goto check_slabs;
1002
1003 slub_debug = 0;
1004 if (*str == '-')
1005 /*
1006 * Switch off all debugging measures.
1007 */
1008 goto out;
1009
1010 /*
1011 * Determine which debug features should be switched on
1012 */
06428780 1013 for (; *str && *str != ','; str++) {
f0630fff
CL
1014 switch (tolower(*str)) {
1015 case 'f':
1016 slub_debug |= SLAB_DEBUG_FREE;
1017 break;
1018 case 'z':
1019 slub_debug |= SLAB_RED_ZONE;
1020 break;
1021 case 'p':
1022 slub_debug |= SLAB_POISON;
1023 break;
1024 case 'u':
1025 slub_debug |= SLAB_STORE_USER;
1026 break;
1027 case 't':
1028 slub_debug |= SLAB_TRACE;
1029 break;
1030 default:
1031 printk(KERN_ERR "slub_debug option '%c' "
06428780 1032 "unknown. skipped\n", *str);
f0630fff 1033 }
41ecc55b
CL
1034 }
1035
f0630fff 1036check_slabs:
41ecc55b
CL
1037 if (*str == ',')
1038 slub_debug_slabs = str + 1;
f0630fff 1039out:
41ecc55b
CL
1040 return 1;
1041}
1042
1043__setup("slub_debug", setup_slub_debug);
1044
ba0268a8
CL
1045static unsigned long kmem_cache_flags(unsigned long objsize,
1046 unsigned long flags, const char *name,
4ba9b9d0 1047 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1048{
1049 /*
e153362a 1050 * Enable debugging if selected on the kernel commandline.
41ecc55b 1051 */
e153362a
CL
1052 if (slub_debug && (!slub_debug_slabs ||
1053 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1054 flags |= slub_debug;
ba0268a8
CL
1055
1056 return flags;
41ecc55b
CL
1057}
1058#else
3ec09742
CL
1059static inline void setup_object_debug(struct kmem_cache *s,
1060 struct page *page, void *object) {}
41ecc55b 1061
3ec09742
CL
1062static inline int alloc_debug_processing(struct kmem_cache *s,
1063 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1064
3ec09742
CL
1065static inline int free_debug_processing(struct kmem_cache *s,
1066 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1067
41ecc55b
CL
1068static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1069 { return 1; }
1070static inline int check_object(struct kmem_cache *s, struct page *page,
1071 void *object, int active) { return 1; }
3ec09742 1072static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1073static inline unsigned long kmem_cache_flags(unsigned long objsize,
1074 unsigned long flags, const char *name,
4ba9b9d0 1075 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1076{
1077 return flags;
1078}
41ecc55b 1079#define slub_debug 0
0f389ec6
CL
1080
1081static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082 { return 0; }
205ab99d
CL
1083static inline void inc_slabs_node(struct kmem_cache *s, int node,
1084 int objects) {}
1085static inline void dec_slabs_node(struct kmem_cache *s, int node,
1086 int objects) {}
41ecc55b 1087#endif
205ab99d 1088
81819f0f
CL
1089/*
1090 * Slab allocation and freeing
1091 */
65c3376a
CL
1092static inline struct page *alloc_slab_page(gfp_t flags, int node,
1093 struct kmem_cache_order_objects oo)
1094{
1095 int order = oo_order(oo);
1096
1097 if (node == -1)
1098 return alloc_pages(flags, order);
1099 else
1100 return alloc_pages_node(node, flags, order);
1101}
1102
81819f0f
CL
1103static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1104{
06428780 1105 struct page *page;
834f3d11 1106 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1107
b7a49f0d 1108 flags |= s->allocflags;
e12ba74d 1109
65c3376a
CL
1110 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1111 oo);
1112 if (unlikely(!page)) {
1113 oo = s->min;
1114 /*
1115 * Allocation may have failed due to fragmentation.
1116 * Try a lower order alloc if possible
1117 */
1118 page = alloc_slab_page(flags, node, oo);
1119 if (!page)
1120 return NULL;
81819f0f 1121
65c3376a
CL
1122 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1123 }
834f3d11 1124 page->objects = oo_objects(oo);
81819f0f
CL
1125 mod_zone_page_state(page_zone(page),
1126 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1127 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1128 1 << oo_order(oo));
81819f0f
CL
1129
1130 return page;
1131}
1132
1133static void setup_object(struct kmem_cache *s, struct page *page,
1134 void *object)
1135{
3ec09742 1136 setup_object_debug(s, page, object);
4f104934 1137 if (unlikely(s->ctor))
4ba9b9d0 1138 s->ctor(s, object);
81819f0f
CL
1139}
1140
1141static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1142{
1143 struct page *page;
81819f0f 1144 void *start;
81819f0f
CL
1145 void *last;
1146 void *p;
1147
6cb06229 1148 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1149
6cb06229
CL
1150 page = allocate_slab(s,
1151 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1152 if (!page)
1153 goto out;
1154
205ab99d 1155 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1156 page->slab = s;
1157 page->flags |= 1 << PG_slab;
1158 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1159 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1160 SetSlabDebug(page);
81819f0f
CL
1161
1162 start = page_address(page);
81819f0f
CL
1163
1164 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1165 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1166
1167 last = start;
224a88be 1168 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1169 setup_object(s, page, last);
1170 set_freepointer(s, last, p);
1171 last = p;
1172 }
1173 setup_object(s, page, last);
a973e9dd 1174 set_freepointer(s, last, NULL);
81819f0f
CL
1175
1176 page->freelist = start;
1177 page->inuse = 0;
1178out:
81819f0f
CL
1179 return page;
1180}
1181
1182static void __free_slab(struct kmem_cache *s, struct page *page)
1183{
834f3d11
CL
1184 int order = compound_order(page);
1185 int pages = 1 << order;
81819f0f 1186
c59def9f 1187 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1188 void *p;
1189
1190 slab_pad_check(s, page);
224a88be
CL
1191 for_each_object(p, s, page_address(page),
1192 page->objects)
81819f0f 1193 check_object(s, page, p, 0);
2208b764 1194 ClearSlabDebug(page);
81819f0f
CL
1195 }
1196
1197 mod_zone_page_state(page_zone(page),
1198 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1200 -pages);
81819f0f 1201
49bd5221
CL
1202 __ClearPageSlab(page);
1203 reset_page_mapcount(page);
834f3d11 1204 __free_pages(page, order);
81819f0f
CL
1205}
1206
1207static void rcu_free_slab(struct rcu_head *h)
1208{
1209 struct page *page;
1210
1211 page = container_of((struct list_head *)h, struct page, lru);
1212 __free_slab(page->slab, page);
1213}
1214
1215static void free_slab(struct kmem_cache *s, struct page *page)
1216{
1217 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1218 /*
1219 * RCU free overloads the RCU head over the LRU
1220 */
1221 struct rcu_head *head = (void *)&page->lru;
1222
1223 call_rcu(head, rcu_free_slab);
1224 } else
1225 __free_slab(s, page);
1226}
1227
1228static void discard_slab(struct kmem_cache *s, struct page *page)
1229{
205ab99d 1230 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1231 free_slab(s, page);
1232}
1233
1234/*
1235 * Per slab locking using the pagelock
1236 */
1237static __always_inline void slab_lock(struct page *page)
1238{
1239 bit_spin_lock(PG_locked, &page->flags);
1240}
1241
1242static __always_inline void slab_unlock(struct page *page)
1243{
a76d3546 1244 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1245}
1246
1247static __always_inline int slab_trylock(struct page *page)
1248{
1249 int rc = 1;
1250
1251 rc = bit_spin_trylock(PG_locked, &page->flags);
1252 return rc;
1253}
1254
1255/*
1256 * Management of partially allocated slabs
1257 */
7c2e132c
CL
1258static void add_partial(struct kmem_cache_node *n,
1259 struct page *page, int tail)
81819f0f 1260{
e95eed57
CL
1261 spin_lock(&n->list_lock);
1262 n->nr_partial++;
7c2e132c
CL
1263 if (tail)
1264 list_add_tail(&page->lru, &n->partial);
1265 else
1266 list_add(&page->lru, &n->partial);
81819f0f
CL
1267 spin_unlock(&n->list_lock);
1268}
1269
1270static void remove_partial(struct kmem_cache *s,
1271 struct page *page)
1272{
1273 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274
1275 spin_lock(&n->list_lock);
1276 list_del(&page->lru);
1277 n->nr_partial--;
1278 spin_unlock(&n->list_lock);
1279}
1280
1281/*
672bba3a 1282 * Lock slab and remove from the partial list.
81819f0f 1283 *
672bba3a 1284 * Must hold list_lock.
81819f0f 1285 */
4b6f0750 1286static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1287{
1288 if (slab_trylock(page)) {
1289 list_del(&page->lru);
1290 n->nr_partial--;
4b6f0750 1291 SetSlabFrozen(page);
81819f0f
CL
1292 return 1;
1293 }
1294 return 0;
1295}
1296
1297/*
672bba3a 1298 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1299 */
1300static struct page *get_partial_node(struct kmem_cache_node *n)
1301{
1302 struct page *page;
1303
1304 /*
1305 * Racy check. If we mistakenly see no partial slabs then we
1306 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1307 * partial slab and there is none available then get_partials()
1308 * will return NULL.
81819f0f
CL
1309 */
1310 if (!n || !n->nr_partial)
1311 return NULL;
1312
1313 spin_lock(&n->list_lock);
1314 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1315 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1316 goto out;
1317 page = NULL;
1318out:
1319 spin_unlock(&n->list_lock);
1320 return page;
1321}
1322
1323/*
672bba3a 1324 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1325 */
1326static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1327{
1328#ifdef CONFIG_NUMA
1329 struct zonelist *zonelist;
dd1a239f 1330 struct zoneref *z;
54a6eb5c
MG
1331 struct zone *zone;
1332 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1333 struct page *page;
1334
1335 /*
672bba3a
CL
1336 * The defrag ratio allows a configuration of the tradeoffs between
1337 * inter node defragmentation and node local allocations. A lower
1338 * defrag_ratio increases the tendency to do local allocations
1339 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1340 *
672bba3a
CL
1341 * If the defrag_ratio is set to 0 then kmalloc() always
1342 * returns node local objects. If the ratio is higher then kmalloc()
1343 * may return off node objects because partial slabs are obtained
1344 * from other nodes and filled up.
81819f0f 1345 *
6446faa2 1346 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1347 * defrag_ratio = 1000) then every (well almost) allocation will
1348 * first attempt to defrag slab caches on other nodes. This means
1349 * scanning over all nodes to look for partial slabs which may be
1350 * expensive if we do it every time we are trying to find a slab
1351 * with available objects.
81819f0f 1352 */
9824601e
CL
1353 if (!s->remote_node_defrag_ratio ||
1354 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1355 return NULL;
1356
0e88460d 1357 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1358 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1359 struct kmem_cache_node *n;
1360
54a6eb5c 1361 n = get_node(s, zone_to_nid(zone));
81819f0f 1362
54a6eb5c 1363 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
e95eed57 1364 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1365 page = get_partial_node(n);
1366 if (page)
1367 return page;
1368 }
1369 }
1370#endif
1371 return NULL;
1372}
1373
1374/*
1375 * Get a partial page, lock it and return it.
1376 */
1377static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1378{
1379 struct page *page;
1380 int searchnode = (node == -1) ? numa_node_id() : node;
1381
1382 page = get_partial_node(get_node(s, searchnode));
1383 if (page || (flags & __GFP_THISNODE))
1384 return page;
1385
1386 return get_any_partial(s, flags);
1387}
1388
1389/*
1390 * Move a page back to the lists.
1391 *
1392 * Must be called with the slab lock held.
1393 *
1394 * On exit the slab lock will have been dropped.
1395 */
7c2e132c 1396static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1397{
e95eed57 1398 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1399 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1400
4b6f0750 1401 ClearSlabFrozen(page);
81819f0f 1402 if (page->inuse) {
e95eed57 1403
a973e9dd 1404 if (page->freelist) {
7c2e132c 1405 add_partial(n, page, tail);
8ff12cfc
CL
1406 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1407 } else {
1408 stat(c, DEACTIVATE_FULL);
1409 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1410 add_full(n, page);
1411 }
81819f0f
CL
1412 slab_unlock(page);
1413 } else {
8ff12cfc 1414 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1415 if (n->nr_partial < MIN_PARTIAL) {
1416 /*
672bba3a
CL
1417 * Adding an empty slab to the partial slabs in order
1418 * to avoid page allocator overhead. This slab needs
1419 * to come after the other slabs with objects in
6446faa2
CL
1420 * so that the others get filled first. That way the
1421 * size of the partial list stays small.
1422 *
1423 * kmem_cache_shrink can reclaim any empty slabs from the
1424 * partial list.
e95eed57 1425 */
7c2e132c 1426 add_partial(n, page, 1);
e95eed57
CL
1427 slab_unlock(page);
1428 } else {
1429 slab_unlock(page);
8ff12cfc 1430 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1431 discard_slab(s, page);
1432 }
81819f0f
CL
1433 }
1434}
1435
1436/*
1437 * Remove the cpu slab
1438 */
dfb4f096 1439static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1440{
dfb4f096 1441 struct page *page = c->page;
7c2e132c 1442 int tail = 1;
8ff12cfc 1443
b773ad73 1444 if (page->freelist)
8ff12cfc 1445 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1446 /*
6446faa2 1447 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1448 * because both freelists are empty. So this is unlikely
1449 * to occur.
1450 */
a973e9dd 1451 while (unlikely(c->freelist)) {
894b8788
CL
1452 void **object;
1453
7c2e132c
CL
1454 tail = 0; /* Hot objects. Put the slab first */
1455
894b8788 1456 /* Retrieve object from cpu_freelist */
dfb4f096 1457 object = c->freelist;
b3fba8da 1458 c->freelist = c->freelist[c->offset];
894b8788
CL
1459
1460 /* And put onto the regular freelist */
b3fba8da 1461 object[c->offset] = page->freelist;
894b8788
CL
1462 page->freelist = object;
1463 page->inuse--;
1464 }
dfb4f096 1465 c->page = NULL;
7c2e132c 1466 unfreeze_slab(s, page, tail);
81819f0f
CL
1467}
1468
dfb4f096 1469static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1470{
8ff12cfc 1471 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1472 slab_lock(c->page);
1473 deactivate_slab(s, c);
81819f0f
CL
1474}
1475
1476/*
1477 * Flush cpu slab.
6446faa2 1478 *
81819f0f
CL
1479 * Called from IPI handler with interrupts disabled.
1480 */
0c710013 1481static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1482{
dfb4f096 1483 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1484
dfb4f096
CL
1485 if (likely(c && c->page))
1486 flush_slab(s, c);
81819f0f
CL
1487}
1488
1489static void flush_cpu_slab(void *d)
1490{
1491 struct kmem_cache *s = d;
81819f0f 1492
dfb4f096 1493 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1494}
1495
1496static void flush_all(struct kmem_cache *s)
1497{
1498#ifdef CONFIG_SMP
1499 on_each_cpu(flush_cpu_slab, s, 1, 1);
1500#else
1501 unsigned long flags;
1502
1503 local_irq_save(flags);
1504 flush_cpu_slab(s);
1505 local_irq_restore(flags);
1506#endif
1507}
1508
dfb4f096
CL
1509/*
1510 * Check if the objects in a per cpu structure fit numa
1511 * locality expectations.
1512 */
1513static inline int node_match(struct kmem_cache_cpu *c, int node)
1514{
1515#ifdef CONFIG_NUMA
1516 if (node != -1 && c->node != node)
1517 return 0;
1518#endif
1519 return 1;
1520}
1521
81819f0f 1522/*
894b8788
CL
1523 * Slow path. The lockless freelist is empty or we need to perform
1524 * debugging duties.
1525 *
1526 * Interrupts are disabled.
81819f0f 1527 *
894b8788
CL
1528 * Processing is still very fast if new objects have been freed to the
1529 * regular freelist. In that case we simply take over the regular freelist
1530 * as the lockless freelist and zap the regular freelist.
81819f0f 1531 *
894b8788
CL
1532 * If that is not working then we fall back to the partial lists. We take the
1533 * first element of the freelist as the object to allocate now and move the
1534 * rest of the freelist to the lockless freelist.
81819f0f 1535 *
894b8788 1536 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1537 * we need to allocate a new slab. This is the slowest path since it involves
1538 * a call to the page allocator and the setup of a new slab.
81819f0f 1539 */
894b8788 1540static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1541 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1542{
81819f0f 1543 void **object;
dfb4f096 1544 struct page *new;
81819f0f 1545
e72e9c23
LT
1546 /* We handle __GFP_ZERO in the caller */
1547 gfpflags &= ~__GFP_ZERO;
1548
dfb4f096 1549 if (!c->page)
81819f0f
CL
1550 goto new_slab;
1551
dfb4f096
CL
1552 slab_lock(c->page);
1553 if (unlikely(!node_match(c, node)))
81819f0f 1554 goto another_slab;
6446faa2 1555
8ff12cfc 1556 stat(c, ALLOC_REFILL);
6446faa2 1557
894b8788 1558load_freelist:
dfb4f096 1559 object = c->page->freelist;
a973e9dd 1560 if (unlikely(!object))
81819f0f 1561 goto another_slab;
dfb4f096 1562 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1563 goto debug;
1564
b3fba8da 1565 c->freelist = object[c->offset];
39b26464 1566 c->page->inuse = c->page->objects;
a973e9dd 1567 c->page->freelist = NULL;
dfb4f096 1568 c->node = page_to_nid(c->page);
1f84260c 1569unlock_out:
dfb4f096 1570 slab_unlock(c->page);
8ff12cfc 1571 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1572 return object;
1573
1574another_slab:
dfb4f096 1575 deactivate_slab(s, c);
81819f0f
CL
1576
1577new_slab:
dfb4f096
CL
1578 new = get_partial(s, gfpflags, node);
1579 if (new) {
1580 c->page = new;
8ff12cfc 1581 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1582 goto load_freelist;
81819f0f
CL
1583 }
1584
b811c202
CL
1585 if (gfpflags & __GFP_WAIT)
1586 local_irq_enable();
1587
dfb4f096 1588 new = new_slab(s, gfpflags, node);
b811c202
CL
1589
1590 if (gfpflags & __GFP_WAIT)
1591 local_irq_disable();
1592
dfb4f096
CL
1593 if (new) {
1594 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1595 stat(c, ALLOC_SLAB);
05aa3450 1596 if (c->page)
dfb4f096 1597 flush_slab(s, c);
dfb4f096
CL
1598 slab_lock(new);
1599 SetSlabFrozen(new);
1600 c->page = new;
4b6f0750 1601 goto load_freelist;
81819f0f 1602 }
71c7a06f 1603 return NULL;
81819f0f 1604debug:
dfb4f096 1605 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1606 goto another_slab;
894b8788 1607
dfb4f096 1608 c->page->inuse++;
b3fba8da 1609 c->page->freelist = object[c->offset];
ee3c72a1 1610 c->node = -1;
1f84260c 1611 goto unlock_out;
894b8788
CL
1612}
1613
1614/*
1615 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1616 * have the fastpath folded into their functions. So no function call
1617 * overhead for requests that can be satisfied on the fastpath.
1618 *
1619 * The fastpath works by first checking if the lockless freelist can be used.
1620 * If not then __slab_alloc is called for slow processing.
1621 *
1622 * Otherwise we can simply pick the next object from the lockless free list.
1623 */
06428780 1624static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1625 gfp_t gfpflags, int node, void *addr)
894b8788 1626{
894b8788 1627 void **object;
dfb4f096 1628 struct kmem_cache_cpu *c;
1f84260c
CL
1629 unsigned long flags;
1630
894b8788 1631 local_irq_save(flags);
dfb4f096 1632 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1633 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1634
dfb4f096 1635 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1636
1637 else {
dfb4f096 1638 object = c->freelist;
b3fba8da 1639 c->freelist = object[c->offset];
8ff12cfc 1640 stat(c, ALLOC_FASTPATH);
894b8788
CL
1641 }
1642 local_irq_restore(flags);
d07dbea4
CL
1643
1644 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1645 memset(object, 0, c->objsize);
d07dbea4 1646
894b8788 1647 return object;
81819f0f
CL
1648}
1649
1650void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1651{
ce15fea8 1652 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1653}
1654EXPORT_SYMBOL(kmem_cache_alloc);
1655
1656#ifdef CONFIG_NUMA
1657void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1658{
ce15fea8 1659 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1660}
1661EXPORT_SYMBOL(kmem_cache_alloc_node);
1662#endif
1663
1664/*
894b8788
CL
1665 * Slow patch handling. This may still be called frequently since objects
1666 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1667 *
894b8788
CL
1668 * So we still attempt to reduce cache line usage. Just take the slab
1669 * lock and free the item. If there is no additional partial page
1670 * handling required then we can return immediately.
81819f0f 1671 */
894b8788 1672static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1673 void *x, void *addr, unsigned int offset)
81819f0f
CL
1674{
1675 void *prior;
1676 void **object = (void *)x;
8ff12cfc 1677 struct kmem_cache_cpu *c;
81819f0f 1678
8ff12cfc
CL
1679 c = get_cpu_slab(s, raw_smp_processor_id());
1680 stat(c, FREE_SLOWPATH);
81819f0f
CL
1681 slab_lock(page);
1682
35e5d7ee 1683 if (unlikely(SlabDebug(page)))
81819f0f 1684 goto debug;
6446faa2 1685
81819f0f 1686checks_ok:
b3fba8da 1687 prior = object[offset] = page->freelist;
81819f0f
CL
1688 page->freelist = object;
1689 page->inuse--;
1690
8ff12cfc
CL
1691 if (unlikely(SlabFrozen(page))) {
1692 stat(c, FREE_FROZEN);
81819f0f 1693 goto out_unlock;
8ff12cfc 1694 }
81819f0f
CL
1695
1696 if (unlikely(!page->inuse))
1697 goto slab_empty;
1698
1699 /*
6446faa2 1700 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1701 * then add it.
1702 */
a973e9dd 1703 if (unlikely(!prior)) {
7c2e132c 1704 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1705 stat(c, FREE_ADD_PARTIAL);
1706 }
81819f0f
CL
1707
1708out_unlock:
1709 slab_unlock(page);
81819f0f
CL
1710 return;
1711
1712slab_empty:
a973e9dd 1713 if (prior) {
81819f0f 1714 /*
672bba3a 1715 * Slab still on the partial list.
81819f0f
CL
1716 */
1717 remove_partial(s, page);
8ff12cfc
CL
1718 stat(c, FREE_REMOVE_PARTIAL);
1719 }
81819f0f 1720 slab_unlock(page);
8ff12cfc 1721 stat(c, FREE_SLAB);
81819f0f 1722 discard_slab(s, page);
81819f0f
CL
1723 return;
1724
1725debug:
3ec09742 1726 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1727 goto out_unlock;
77c5e2d0 1728 goto checks_ok;
81819f0f
CL
1729}
1730
894b8788
CL
1731/*
1732 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1733 * can perform fastpath freeing without additional function calls.
1734 *
1735 * The fastpath is only possible if we are freeing to the current cpu slab
1736 * of this processor. This typically the case if we have just allocated
1737 * the item before.
1738 *
1739 * If fastpath is not possible then fall back to __slab_free where we deal
1740 * with all sorts of special processing.
1741 */
06428780 1742static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1743 struct page *page, void *x, void *addr)
1744{
1745 void **object = (void *)x;
dfb4f096 1746 struct kmem_cache_cpu *c;
1f84260c
CL
1747 unsigned long flags;
1748
894b8788 1749 local_irq_save(flags);
dfb4f096 1750 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1751 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a
TG
1752 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1753 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1754 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1755 object[c->offset] = c->freelist;
dfb4f096 1756 c->freelist = object;
8ff12cfc 1757 stat(c, FREE_FASTPATH);
894b8788 1758 } else
b3fba8da 1759 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1760
1761 local_irq_restore(flags);
1762}
1763
81819f0f
CL
1764void kmem_cache_free(struct kmem_cache *s, void *x)
1765{
77c5e2d0 1766 struct page *page;
81819f0f 1767
b49af68f 1768 page = virt_to_head_page(x);
81819f0f 1769
77c5e2d0 1770 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1771}
1772EXPORT_SYMBOL(kmem_cache_free);
1773
1774/* Figure out on which slab object the object resides */
1775static struct page *get_object_page(const void *x)
1776{
b49af68f 1777 struct page *page = virt_to_head_page(x);
81819f0f
CL
1778
1779 if (!PageSlab(page))
1780 return NULL;
1781
1782 return page;
1783}
1784
1785/*
672bba3a
CL
1786 * Object placement in a slab is made very easy because we always start at
1787 * offset 0. If we tune the size of the object to the alignment then we can
1788 * get the required alignment by putting one properly sized object after
1789 * another.
81819f0f
CL
1790 *
1791 * Notice that the allocation order determines the sizes of the per cpu
1792 * caches. Each processor has always one slab available for allocations.
1793 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1794 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1795 * locking overhead.
81819f0f
CL
1796 */
1797
1798/*
1799 * Mininum / Maximum order of slab pages. This influences locking overhead
1800 * and slab fragmentation. A higher order reduces the number of partial slabs
1801 * and increases the number of allocations possible without having to
1802 * take the list_lock.
1803 */
1804static int slub_min_order;
114e9e89 1805static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1806static int slub_min_objects;
81819f0f
CL
1807
1808/*
1809 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1810 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1811 */
1812static int slub_nomerge;
1813
81819f0f
CL
1814/*
1815 * Calculate the order of allocation given an slab object size.
1816 *
672bba3a
CL
1817 * The order of allocation has significant impact on performance and other
1818 * system components. Generally order 0 allocations should be preferred since
1819 * order 0 does not cause fragmentation in the page allocator. Larger objects
1820 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1821 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1822 * would be wasted.
1823 *
1824 * In order to reach satisfactory performance we must ensure that a minimum
1825 * number of objects is in one slab. Otherwise we may generate too much
1826 * activity on the partial lists which requires taking the list_lock. This is
1827 * less a concern for large slabs though which are rarely used.
81819f0f 1828 *
672bba3a
CL
1829 * slub_max_order specifies the order where we begin to stop considering the
1830 * number of objects in a slab as critical. If we reach slub_max_order then
1831 * we try to keep the page order as low as possible. So we accept more waste
1832 * of space in favor of a small page order.
81819f0f 1833 *
672bba3a
CL
1834 * Higher order allocations also allow the placement of more objects in a
1835 * slab and thereby reduce object handling overhead. If the user has
1836 * requested a higher mininum order then we start with that one instead of
1837 * the smallest order which will fit the object.
81819f0f 1838 */
5e6d444e
CL
1839static inline int slab_order(int size, int min_objects,
1840 int max_order, int fract_leftover)
81819f0f
CL
1841{
1842 int order;
1843 int rem;
6300ea75 1844 int min_order = slub_min_order;
81819f0f 1845
39b26464
CL
1846 if ((PAGE_SIZE << min_order) / size > 65535)
1847 return get_order(size * 65535) - 1;
1848
6300ea75 1849 for (order = max(min_order,
5e6d444e
CL
1850 fls(min_objects * size - 1) - PAGE_SHIFT);
1851 order <= max_order; order++) {
81819f0f 1852
5e6d444e 1853 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1854
5e6d444e 1855 if (slab_size < min_objects * size)
81819f0f
CL
1856 continue;
1857
1858 rem = slab_size % size;
1859
5e6d444e 1860 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1861 break;
1862
1863 }
672bba3a 1864
81819f0f
CL
1865 return order;
1866}
1867
5e6d444e
CL
1868static inline int calculate_order(int size)
1869{
1870 int order;
1871 int min_objects;
1872 int fraction;
1873
1874 /*
1875 * Attempt to find best configuration for a slab. This
1876 * works by first attempting to generate a layout with
1877 * the best configuration and backing off gradually.
1878 *
1879 * First we reduce the acceptable waste in a slab. Then
1880 * we reduce the minimum objects required in a slab.
1881 */
1882 min_objects = slub_min_objects;
9b2cd506
CL
1883 if (!min_objects)
1884 min_objects = 4 * (fls(nr_cpu_ids) + 1);
5e6d444e 1885 while (min_objects > 1) {
c124f5b5 1886 fraction = 16;
5e6d444e
CL
1887 while (fraction >= 4) {
1888 order = slab_order(size, min_objects,
1889 slub_max_order, fraction);
1890 if (order <= slub_max_order)
1891 return order;
1892 fraction /= 2;
1893 }
1894 min_objects /= 2;
1895 }
1896
1897 /*
1898 * We were unable to place multiple objects in a slab. Now
1899 * lets see if we can place a single object there.
1900 */
1901 order = slab_order(size, 1, slub_max_order, 1);
1902 if (order <= slub_max_order)
1903 return order;
1904
1905 /*
1906 * Doh this slab cannot be placed using slub_max_order.
1907 */
1908 order = slab_order(size, 1, MAX_ORDER, 1);
1909 if (order <= MAX_ORDER)
1910 return order;
1911 return -ENOSYS;
1912}
1913
81819f0f 1914/*
672bba3a 1915 * Figure out what the alignment of the objects will be.
81819f0f
CL
1916 */
1917static unsigned long calculate_alignment(unsigned long flags,
1918 unsigned long align, unsigned long size)
1919{
1920 /*
6446faa2
CL
1921 * If the user wants hardware cache aligned objects then follow that
1922 * suggestion if the object is sufficiently large.
81819f0f 1923 *
6446faa2
CL
1924 * The hardware cache alignment cannot override the specified
1925 * alignment though. If that is greater then use it.
81819f0f 1926 */
b6210386
NP
1927 if (flags & SLAB_HWCACHE_ALIGN) {
1928 unsigned long ralign = cache_line_size();
1929 while (size <= ralign / 2)
1930 ralign /= 2;
1931 align = max(align, ralign);
1932 }
81819f0f
CL
1933
1934 if (align < ARCH_SLAB_MINALIGN)
b6210386 1935 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1936
1937 return ALIGN(align, sizeof(void *));
1938}
1939
dfb4f096
CL
1940static void init_kmem_cache_cpu(struct kmem_cache *s,
1941 struct kmem_cache_cpu *c)
1942{
1943 c->page = NULL;
a973e9dd 1944 c->freelist = NULL;
dfb4f096 1945 c->node = 0;
42a9fdbb
CL
1946 c->offset = s->offset / sizeof(void *);
1947 c->objsize = s->objsize;
62f75532
PE
1948#ifdef CONFIG_SLUB_STATS
1949 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1950#endif
dfb4f096
CL
1951}
1952
81819f0f
CL
1953static void init_kmem_cache_node(struct kmem_cache_node *n)
1954{
1955 n->nr_partial = 0;
81819f0f
CL
1956 spin_lock_init(&n->list_lock);
1957 INIT_LIST_HEAD(&n->partial);
8ab1372f 1958#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1959 atomic_long_set(&n->nr_slabs, 0);
643b1138 1960 INIT_LIST_HEAD(&n->full);
8ab1372f 1961#endif
81819f0f
CL
1962}
1963
4c93c355
CL
1964#ifdef CONFIG_SMP
1965/*
1966 * Per cpu array for per cpu structures.
1967 *
1968 * The per cpu array places all kmem_cache_cpu structures from one processor
1969 * close together meaning that it becomes possible that multiple per cpu
1970 * structures are contained in one cacheline. This may be particularly
1971 * beneficial for the kmalloc caches.
1972 *
1973 * A desktop system typically has around 60-80 slabs. With 100 here we are
1974 * likely able to get per cpu structures for all caches from the array defined
1975 * here. We must be able to cover all kmalloc caches during bootstrap.
1976 *
1977 * If the per cpu array is exhausted then fall back to kmalloc
1978 * of individual cachelines. No sharing is possible then.
1979 */
1980#define NR_KMEM_CACHE_CPU 100
1981
1982static DEFINE_PER_CPU(struct kmem_cache_cpu,
1983 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1984
1985static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1986static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1987
1988static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1989 int cpu, gfp_t flags)
1990{
1991 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1992
1993 if (c)
1994 per_cpu(kmem_cache_cpu_free, cpu) =
1995 (void *)c->freelist;
1996 else {
1997 /* Table overflow: So allocate ourselves */
1998 c = kmalloc_node(
1999 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2000 flags, cpu_to_node(cpu));
2001 if (!c)
2002 return NULL;
2003 }
2004
2005 init_kmem_cache_cpu(s, c);
2006 return c;
2007}
2008
2009static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2010{
2011 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2012 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2013 kfree(c);
2014 return;
2015 }
2016 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2017 per_cpu(kmem_cache_cpu_free, cpu) = c;
2018}
2019
2020static void free_kmem_cache_cpus(struct kmem_cache *s)
2021{
2022 int cpu;
2023
2024 for_each_online_cpu(cpu) {
2025 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2026
2027 if (c) {
2028 s->cpu_slab[cpu] = NULL;
2029 free_kmem_cache_cpu(c, cpu);
2030 }
2031 }
2032}
2033
2034static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2035{
2036 int cpu;
2037
2038 for_each_online_cpu(cpu) {
2039 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2040
2041 if (c)
2042 continue;
2043
2044 c = alloc_kmem_cache_cpu(s, cpu, flags);
2045 if (!c) {
2046 free_kmem_cache_cpus(s);
2047 return 0;
2048 }
2049 s->cpu_slab[cpu] = c;
2050 }
2051 return 1;
2052}
2053
2054/*
2055 * Initialize the per cpu array.
2056 */
2057static void init_alloc_cpu_cpu(int cpu)
2058{
2059 int i;
2060
2061 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2062 return;
2063
2064 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2065 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2066
2067 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2068}
2069
2070static void __init init_alloc_cpu(void)
2071{
2072 int cpu;
2073
2074 for_each_online_cpu(cpu)
2075 init_alloc_cpu_cpu(cpu);
2076 }
2077
2078#else
2079static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2080static inline void init_alloc_cpu(void) {}
2081
2082static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2083{
2084 init_kmem_cache_cpu(s, &s->cpu_slab);
2085 return 1;
2086}
2087#endif
2088
81819f0f
CL
2089#ifdef CONFIG_NUMA
2090/*
2091 * No kmalloc_node yet so do it by hand. We know that this is the first
2092 * slab on the node for this slabcache. There are no concurrent accesses
2093 * possible.
2094 *
2095 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2096 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2097 * memory on a fresh node that has no slab structures yet.
81819f0f 2098 */
1cd7daa5
AB
2099static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2100 int node)
81819f0f
CL
2101{
2102 struct page *page;
2103 struct kmem_cache_node *n;
ba84c73c 2104 unsigned long flags;
81819f0f
CL
2105
2106 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2107
a2f92ee7 2108 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2109
2110 BUG_ON(!page);
a2f92ee7
CL
2111 if (page_to_nid(page) != node) {
2112 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2113 "node %d\n", node);
2114 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2115 "in order to be able to continue\n");
2116 }
2117
81819f0f
CL
2118 n = page->freelist;
2119 BUG_ON(!n);
2120 page->freelist = get_freepointer(kmalloc_caches, n);
2121 page->inuse++;
2122 kmalloc_caches->node[node] = n;
8ab1372f 2123#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2124 init_object(kmalloc_caches, n, 1);
2125 init_tracking(kmalloc_caches, n);
8ab1372f 2126#endif
81819f0f 2127 init_kmem_cache_node(n);
205ab99d 2128 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2129
ba84c73c 2130 /*
2131 * lockdep requires consistent irq usage for each lock
2132 * so even though there cannot be a race this early in
2133 * the boot sequence, we still disable irqs.
2134 */
2135 local_irq_save(flags);
7c2e132c 2136 add_partial(n, page, 0);
ba84c73c 2137 local_irq_restore(flags);
81819f0f
CL
2138 return n;
2139}
2140
2141static void free_kmem_cache_nodes(struct kmem_cache *s)
2142{
2143 int node;
2144
f64dc58c 2145 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2146 struct kmem_cache_node *n = s->node[node];
2147 if (n && n != &s->local_node)
2148 kmem_cache_free(kmalloc_caches, n);
2149 s->node[node] = NULL;
2150 }
2151}
2152
2153static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2154{
2155 int node;
2156 int local_node;
2157
2158 if (slab_state >= UP)
2159 local_node = page_to_nid(virt_to_page(s));
2160 else
2161 local_node = 0;
2162
f64dc58c 2163 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2164 struct kmem_cache_node *n;
2165
2166 if (local_node == node)
2167 n = &s->local_node;
2168 else {
2169 if (slab_state == DOWN) {
2170 n = early_kmem_cache_node_alloc(gfpflags,
2171 node);
2172 continue;
2173 }
2174 n = kmem_cache_alloc_node(kmalloc_caches,
2175 gfpflags, node);
2176
2177 if (!n) {
2178 free_kmem_cache_nodes(s);
2179 return 0;
2180 }
2181
2182 }
2183 s->node[node] = n;
2184 init_kmem_cache_node(n);
2185 }
2186 return 1;
2187}
2188#else
2189static void free_kmem_cache_nodes(struct kmem_cache *s)
2190{
2191}
2192
2193static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2194{
2195 init_kmem_cache_node(&s->local_node);
2196 return 1;
2197}
2198#endif
2199
2200/*
2201 * calculate_sizes() determines the order and the distribution of data within
2202 * a slab object.
2203 */
06b285dc 2204static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2205{
2206 unsigned long flags = s->flags;
2207 unsigned long size = s->objsize;
2208 unsigned long align = s->align;
834f3d11 2209 int order;
81819f0f 2210
d8b42bf5
CL
2211 /*
2212 * Round up object size to the next word boundary. We can only
2213 * place the free pointer at word boundaries and this determines
2214 * the possible location of the free pointer.
2215 */
2216 size = ALIGN(size, sizeof(void *));
2217
2218#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2219 /*
2220 * Determine if we can poison the object itself. If the user of
2221 * the slab may touch the object after free or before allocation
2222 * then we should never poison the object itself.
2223 */
2224 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2225 !s->ctor)
81819f0f
CL
2226 s->flags |= __OBJECT_POISON;
2227 else
2228 s->flags &= ~__OBJECT_POISON;
2229
81819f0f
CL
2230
2231 /*
672bba3a 2232 * If we are Redzoning then check if there is some space between the
81819f0f 2233 * end of the object and the free pointer. If not then add an
672bba3a 2234 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2235 */
2236 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2237 size += sizeof(void *);
41ecc55b 2238#endif
81819f0f
CL
2239
2240 /*
672bba3a
CL
2241 * With that we have determined the number of bytes in actual use
2242 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2243 */
2244 s->inuse = size;
2245
2246 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2247 s->ctor)) {
81819f0f
CL
2248 /*
2249 * Relocate free pointer after the object if it is not
2250 * permitted to overwrite the first word of the object on
2251 * kmem_cache_free.
2252 *
2253 * This is the case if we do RCU, have a constructor or
2254 * destructor or are poisoning the objects.
2255 */
2256 s->offset = size;
2257 size += sizeof(void *);
2258 }
2259
c12b3c62 2260#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2261 if (flags & SLAB_STORE_USER)
2262 /*
2263 * Need to store information about allocs and frees after
2264 * the object.
2265 */
2266 size += 2 * sizeof(struct track);
2267
be7b3fbc 2268 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2269 /*
2270 * Add some empty padding so that we can catch
2271 * overwrites from earlier objects rather than let
2272 * tracking information or the free pointer be
2273 * corrupted if an user writes before the start
2274 * of the object.
2275 */
2276 size += sizeof(void *);
41ecc55b 2277#endif
672bba3a 2278
81819f0f
CL
2279 /*
2280 * Determine the alignment based on various parameters that the
65c02d4c
CL
2281 * user specified and the dynamic determination of cache line size
2282 * on bootup.
81819f0f
CL
2283 */
2284 align = calculate_alignment(flags, align, s->objsize);
2285
2286 /*
2287 * SLUB stores one object immediately after another beginning from
2288 * offset 0. In order to align the objects we have to simply size
2289 * each object to conform to the alignment.
2290 */
2291 size = ALIGN(size, align);
2292 s->size = size;
06b285dc
CL
2293 if (forced_order >= 0)
2294 order = forced_order;
2295 else
2296 order = calculate_order(size);
81819f0f 2297
834f3d11 2298 if (order < 0)
81819f0f
CL
2299 return 0;
2300
b7a49f0d 2301 s->allocflags = 0;
834f3d11 2302 if (order)
b7a49f0d
CL
2303 s->allocflags |= __GFP_COMP;
2304
2305 if (s->flags & SLAB_CACHE_DMA)
2306 s->allocflags |= SLUB_DMA;
2307
2308 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2309 s->allocflags |= __GFP_RECLAIMABLE;
2310
81819f0f
CL
2311 /*
2312 * Determine the number of objects per slab
2313 */
834f3d11 2314 s->oo = oo_make(order, size);
65c3376a 2315 s->min = oo_make(get_order(size), size);
205ab99d
CL
2316 if (oo_objects(s->oo) > oo_objects(s->max))
2317 s->max = s->oo;
81819f0f 2318
834f3d11 2319 return !!oo_objects(s->oo);
81819f0f
CL
2320
2321}
2322
81819f0f
CL
2323static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2324 const char *name, size_t size,
2325 size_t align, unsigned long flags,
4ba9b9d0 2326 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2327{
2328 memset(s, 0, kmem_size);
2329 s->name = name;
2330 s->ctor = ctor;
81819f0f 2331 s->objsize = size;
81819f0f 2332 s->align = align;
ba0268a8 2333 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2334
06b285dc 2335 if (!calculate_sizes(s, -1))
81819f0f
CL
2336 goto error;
2337
2338 s->refcount = 1;
2339#ifdef CONFIG_NUMA
9824601e 2340 s->remote_node_defrag_ratio = 100;
81819f0f 2341#endif
dfb4f096
CL
2342 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2343 goto error;
81819f0f 2344
dfb4f096 2345 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2346 return 1;
4c93c355 2347 free_kmem_cache_nodes(s);
81819f0f
CL
2348error:
2349 if (flags & SLAB_PANIC)
2350 panic("Cannot create slab %s size=%lu realsize=%u "
2351 "order=%u offset=%u flags=%lx\n",
834f3d11 2352 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2353 s->offset, flags);
2354 return 0;
2355}
81819f0f
CL
2356
2357/*
2358 * Check if a given pointer is valid
2359 */
2360int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2361{
06428780 2362 struct page *page;
81819f0f
CL
2363
2364 page = get_object_page(object);
2365
2366 if (!page || s != page->slab)
2367 /* No slab or wrong slab */
2368 return 0;
2369
abcd08a6 2370 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2371 return 0;
2372
2373 /*
2374 * We could also check if the object is on the slabs freelist.
2375 * But this would be too expensive and it seems that the main
6446faa2 2376 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2377 * to a certain slab.
2378 */
2379 return 1;
2380}
2381EXPORT_SYMBOL(kmem_ptr_validate);
2382
2383/*
2384 * Determine the size of a slab object
2385 */
2386unsigned int kmem_cache_size(struct kmem_cache *s)
2387{
2388 return s->objsize;
2389}
2390EXPORT_SYMBOL(kmem_cache_size);
2391
2392const char *kmem_cache_name(struct kmem_cache *s)
2393{
2394 return s->name;
2395}
2396EXPORT_SYMBOL(kmem_cache_name);
2397
33b12c38
CL
2398static void list_slab_objects(struct kmem_cache *s, struct page *page,
2399 const char *text)
2400{
2401#ifdef CONFIG_SLUB_DEBUG
2402 void *addr = page_address(page);
2403 void *p;
2404 DECLARE_BITMAP(map, page->objects);
2405
2406 bitmap_zero(map, page->objects);
2407 slab_err(s, page, "%s", text);
2408 slab_lock(page);
2409 for_each_free_object(p, s, page->freelist)
2410 set_bit(slab_index(p, s, addr), map);
2411
2412 for_each_object(p, s, addr, page->objects) {
2413
2414 if (!test_bit(slab_index(p, s, addr), map)) {
2415 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2416 p, p - addr);
2417 print_tracking(s, p);
2418 }
2419 }
2420 slab_unlock(page);
2421#endif
2422}
2423
81819f0f 2424/*
599870b1 2425 * Attempt to free all partial slabs on a node.
81819f0f 2426 */
599870b1 2427static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2428{
81819f0f
CL
2429 unsigned long flags;
2430 struct page *page, *h;
2431
2432 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2433 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2434 if (!page->inuse) {
2435 list_del(&page->lru);
2436 discard_slab(s, page);
599870b1 2437 n->nr_partial--;
33b12c38
CL
2438 } else {
2439 list_slab_objects(s, page,
2440 "Objects remaining on kmem_cache_close()");
599870b1 2441 }
33b12c38 2442 }
81819f0f 2443 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2444}
2445
2446/*
672bba3a 2447 * Release all resources used by a slab cache.
81819f0f 2448 */
0c710013 2449static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2450{
2451 int node;
2452
2453 flush_all(s);
2454
2455 /* Attempt to free all objects */
4c93c355 2456 free_kmem_cache_cpus(s);
f64dc58c 2457 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2458 struct kmem_cache_node *n = get_node(s, node);
2459
599870b1
CL
2460 free_partial(s, n);
2461 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2462 return 1;
2463 }
2464 free_kmem_cache_nodes(s);
2465 return 0;
2466}
2467
2468/*
2469 * Close a cache and release the kmem_cache structure
2470 * (must be used for caches created using kmem_cache_create)
2471 */
2472void kmem_cache_destroy(struct kmem_cache *s)
2473{
2474 down_write(&slub_lock);
2475 s->refcount--;
2476 if (!s->refcount) {
2477 list_del(&s->list);
a0e1d1be 2478 up_write(&slub_lock);
d629d819
PE
2479 if (kmem_cache_close(s)) {
2480 printk(KERN_ERR "SLUB %s: %s called for cache that "
2481 "still has objects.\n", s->name, __func__);
2482 dump_stack();
2483 }
81819f0f 2484 sysfs_slab_remove(s);
a0e1d1be
CL
2485 } else
2486 up_write(&slub_lock);
81819f0f
CL
2487}
2488EXPORT_SYMBOL(kmem_cache_destroy);
2489
2490/********************************************************************
2491 * Kmalloc subsystem
2492 *******************************************************************/
2493
331dc558 2494struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2495EXPORT_SYMBOL(kmalloc_caches);
2496
81819f0f
CL
2497static int __init setup_slub_min_order(char *str)
2498{
06428780 2499 get_option(&str, &slub_min_order);
81819f0f
CL
2500
2501 return 1;
2502}
2503
2504__setup("slub_min_order=", setup_slub_min_order);
2505
2506static int __init setup_slub_max_order(char *str)
2507{
06428780 2508 get_option(&str, &slub_max_order);
81819f0f
CL
2509
2510 return 1;
2511}
2512
2513__setup("slub_max_order=", setup_slub_max_order);
2514
2515static int __init setup_slub_min_objects(char *str)
2516{
06428780 2517 get_option(&str, &slub_min_objects);
81819f0f
CL
2518
2519 return 1;
2520}
2521
2522__setup("slub_min_objects=", setup_slub_min_objects);
2523
2524static int __init setup_slub_nomerge(char *str)
2525{
2526 slub_nomerge = 1;
2527 return 1;
2528}
2529
2530__setup("slub_nomerge", setup_slub_nomerge);
2531
81819f0f
CL
2532static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2533 const char *name, int size, gfp_t gfp_flags)
2534{
2535 unsigned int flags = 0;
2536
2537 if (gfp_flags & SLUB_DMA)
2538 flags = SLAB_CACHE_DMA;
2539
2540 down_write(&slub_lock);
2541 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2542 flags, NULL))
81819f0f
CL
2543 goto panic;
2544
2545 list_add(&s->list, &slab_caches);
2546 up_write(&slub_lock);
2547 if (sysfs_slab_add(s))
2548 goto panic;
2549 return s;
2550
2551panic:
2552 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2553}
2554
2e443fd0 2555#ifdef CONFIG_ZONE_DMA
4097d601 2556static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2557
2558static void sysfs_add_func(struct work_struct *w)
2559{
2560 struct kmem_cache *s;
2561
2562 down_write(&slub_lock);
2563 list_for_each_entry(s, &slab_caches, list) {
2564 if (s->flags & __SYSFS_ADD_DEFERRED) {
2565 s->flags &= ~__SYSFS_ADD_DEFERRED;
2566 sysfs_slab_add(s);
2567 }
2568 }
2569 up_write(&slub_lock);
2570}
2571
2572static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2573
2e443fd0
CL
2574static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2575{
2576 struct kmem_cache *s;
2e443fd0
CL
2577 char *text;
2578 size_t realsize;
2579
2580 s = kmalloc_caches_dma[index];
2581 if (s)
2582 return s;
2583
2584 /* Dynamically create dma cache */
1ceef402
CL
2585 if (flags & __GFP_WAIT)
2586 down_write(&slub_lock);
2587 else {
2588 if (!down_write_trylock(&slub_lock))
2589 goto out;
2590 }
2591
2592 if (kmalloc_caches_dma[index])
2593 goto unlock_out;
2e443fd0 2594
7b55f620 2595 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2596 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2597 (unsigned int)realsize);
1ceef402
CL
2598 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2599
2600 if (!s || !text || !kmem_cache_open(s, flags, text,
2601 realsize, ARCH_KMALLOC_MINALIGN,
2602 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2603 kfree(s);
2604 kfree(text);
2605 goto unlock_out;
dfce8648 2606 }
1ceef402
CL
2607
2608 list_add(&s->list, &slab_caches);
2609 kmalloc_caches_dma[index] = s;
2610
2611 schedule_work(&sysfs_add_work);
2612
2613unlock_out:
dfce8648 2614 up_write(&slub_lock);
1ceef402 2615out:
dfce8648 2616 return kmalloc_caches_dma[index];
2e443fd0
CL
2617}
2618#endif
2619
f1b26339
CL
2620/*
2621 * Conversion table for small slabs sizes / 8 to the index in the
2622 * kmalloc array. This is necessary for slabs < 192 since we have non power
2623 * of two cache sizes there. The size of larger slabs can be determined using
2624 * fls.
2625 */
2626static s8 size_index[24] = {
2627 3, /* 8 */
2628 4, /* 16 */
2629 5, /* 24 */
2630 5, /* 32 */
2631 6, /* 40 */
2632 6, /* 48 */
2633 6, /* 56 */
2634 6, /* 64 */
2635 1, /* 72 */
2636 1, /* 80 */
2637 1, /* 88 */
2638 1, /* 96 */
2639 7, /* 104 */
2640 7, /* 112 */
2641 7, /* 120 */
2642 7, /* 128 */
2643 2, /* 136 */
2644 2, /* 144 */
2645 2, /* 152 */
2646 2, /* 160 */
2647 2, /* 168 */
2648 2, /* 176 */
2649 2, /* 184 */
2650 2 /* 192 */
2651};
2652
81819f0f
CL
2653static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2654{
f1b26339 2655 int index;
81819f0f 2656
f1b26339
CL
2657 if (size <= 192) {
2658 if (!size)
2659 return ZERO_SIZE_PTR;
81819f0f 2660
f1b26339 2661 index = size_index[(size - 1) / 8];
aadb4bc4 2662 } else
f1b26339 2663 index = fls(size - 1);
81819f0f
CL
2664
2665#ifdef CONFIG_ZONE_DMA
f1b26339 2666 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2667 return dma_kmalloc_cache(index, flags);
f1b26339 2668
81819f0f
CL
2669#endif
2670 return &kmalloc_caches[index];
2671}
2672
2673void *__kmalloc(size_t size, gfp_t flags)
2674{
aadb4bc4 2675 struct kmem_cache *s;
81819f0f 2676
331dc558 2677 if (unlikely(size > PAGE_SIZE))
eada35ef 2678 return kmalloc_large(size, flags);
aadb4bc4
CL
2679
2680 s = get_slab(size, flags);
2681
2682 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2683 return s;
2684
ce15fea8 2685 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2686}
2687EXPORT_SYMBOL(__kmalloc);
2688
f619cfe1
CL
2689static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2690{
2691 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2692 get_order(size));
2693
2694 if (page)
2695 return page_address(page);
2696 else
2697 return NULL;
2698}
2699
81819f0f
CL
2700#ifdef CONFIG_NUMA
2701void *__kmalloc_node(size_t size, gfp_t flags, int node)
2702{
aadb4bc4 2703 struct kmem_cache *s;
81819f0f 2704
331dc558 2705 if (unlikely(size > PAGE_SIZE))
f619cfe1 2706 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2707
2708 s = get_slab(size, flags);
2709
2710 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2711 return s;
2712
ce15fea8 2713 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2714}
2715EXPORT_SYMBOL(__kmalloc_node);
2716#endif
2717
2718size_t ksize(const void *object)
2719{
272c1d21 2720 struct page *page;
81819f0f
CL
2721 struct kmem_cache *s;
2722
ef8b4520 2723 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2724 return 0;
2725
294a80a8 2726 page = virt_to_head_page(object);
294a80a8
VN
2727
2728 if (unlikely(!PageSlab(page)))
2729 return PAGE_SIZE << compound_order(page);
2730
81819f0f 2731 s = page->slab;
81819f0f 2732
ae20bfda 2733#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2734 /*
2735 * Debugging requires use of the padding between object
2736 * and whatever may come after it.
2737 */
2738 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2739 return s->objsize;
2740
ae20bfda 2741#endif
81819f0f
CL
2742 /*
2743 * If we have the need to store the freelist pointer
2744 * back there or track user information then we can
2745 * only use the space before that information.
2746 */
2747 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2748 return s->inuse;
81819f0f
CL
2749 /*
2750 * Else we can use all the padding etc for the allocation
2751 */
2752 return s->size;
2753}
2754EXPORT_SYMBOL(ksize);
2755
2756void kfree(const void *x)
2757{
81819f0f 2758 struct page *page;
5bb983b0 2759 void *object = (void *)x;
81819f0f 2760
2408c550 2761 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2762 return;
2763
b49af68f 2764 page = virt_to_head_page(x);
aadb4bc4
CL
2765 if (unlikely(!PageSlab(page))) {
2766 put_page(page);
2767 return;
2768 }
5bb983b0 2769 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2770}
2771EXPORT_SYMBOL(kfree);
2772
2086d26a 2773/*
672bba3a
CL
2774 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2775 * the remaining slabs by the number of items in use. The slabs with the
2776 * most items in use come first. New allocations will then fill those up
2777 * and thus they can be removed from the partial lists.
2778 *
2779 * The slabs with the least items are placed last. This results in them
2780 * being allocated from last increasing the chance that the last objects
2781 * are freed in them.
2086d26a
CL
2782 */
2783int kmem_cache_shrink(struct kmem_cache *s)
2784{
2785 int node;
2786 int i;
2787 struct kmem_cache_node *n;
2788 struct page *page;
2789 struct page *t;
205ab99d 2790 int objects = oo_objects(s->max);
2086d26a 2791 struct list_head *slabs_by_inuse =
834f3d11 2792 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2793 unsigned long flags;
2794
2795 if (!slabs_by_inuse)
2796 return -ENOMEM;
2797
2798 flush_all(s);
f64dc58c 2799 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2800 n = get_node(s, node);
2801
2802 if (!n->nr_partial)
2803 continue;
2804
834f3d11 2805 for (i = 0; i < objects; i++)
2086d26a
CL
2806 INIT_LIST_HEAD(slabs_by_inuse + i);
2807
2808 spin_lock_irqsave(&n->list_lock, flags);
2809
2810 /*
672bba3a 2811 * Build lists indexed by the items in use in each slab.
2086d26a 2812 *
672bba3a
CL
2813 * Note that concurrent frees may occur while we hold the
2814 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2815 */
2816 list_for_each_entry_safe(page, t, &n->partial, lru) {
2817 if (!page->inuse && slab_trylock(page)) {
2818 /*
2819 * Must hold slab lock here because slab_free
2820 * may have freed the last object and be
2821 * waiting to release the slab.
2822 */
2823 list_del(&page->lru);
2824 n->nr_partial--;
2825 slab_unlock(page);
2826 discard_slab(s, page);
2827 } else {
fcda3d89
CL
2828 list_move(&page->lru,
2829 slabs_by_inuse + page->inuse);
2086d26a
CL
2830 }
2831 }
2832
2086d26a 2833 /*
672bba3a
CL
2834 * Rebuild the partial list with the slabs filled up most
2835 * first and the least used slabs at the end.
2086d26a 2836 */
834f3d11 2837 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2838 list_splice(slabs_by_inuse + i, n->partial.prev);
2839
2086d26a
CL
2840 spin_unlock_irqrestore(&n->list_lock, flags);
2841 }
2842
2843 kfree(slabs_by_inuse);
2844 return 0;
2845}
2846EXPORT_SYMBOL(kmem_cache_shrink);
2847
b9049e23
YG
2848#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2849static int slab_mem_going_offline_callback(void *arg)
2850{
2851 struct kmem_cache *s;
2852
2853 down_read(&slub_lock);
2854 list_for_each_entry(s, &slab_caches, list)
2855 kmem_cache_shrink(s);
2856 up_read(&slub_lock);
2857
2858 return 0;
2859}
2860
2861static void slab_mem_offline_callback(void *arg)
2862{
2863 struct kmem_cache_node *n;
2864 struct kmem_cache *s;
2865 struct memory_notify *marg = arg;
2866 int offline_node;
2867
2868 offline_node = marg->status_change_nid;
2869
2870 /*
2871 * If the node still has available memory. we need kmem_cache_node
2872 * for it yet.
2873 */
2874 if (offline_node < 0)
2875 return;
2876
2877 down_read(&slub_lock);
2878 list_for_each_entry(s, &slab_caches, list) {
2879 n = get_node(s, offline_node);
2880 if (n) {
2881 /*
2882 * if n->nr_slabs > 0, slabs still exist on the node
2883 * that is going down. We were unable to free them,
2884 * and offline_pages() function shoudn't call this
2885 * callback. So, we must fail.
2886 */
0f389ec6 2887 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2888
2889 s->node[offline_node] = NULL;
2890 kmem_cache_free(kmalloc_caches, n);
2891 }
2892 }
2893 up_read(&slub_lock);
2894}
2895
2896static int slab_mem_going_online_callback(void *arg)
2897{
2898 struct kmem_cache_node *n;
2899 struct kmem_cache *s;
2900 struct memory_notify *marg = arg;
2901 int nid = marg->status_change_nid;
2902 int ret = 0;
2903
2904 /*
2905 * If the node's memory is already available, then kmem_cache_node is
2906 * already created. Nothing to do.
2907 */
2908 if (nid < 0)
2909 return 0;
2910
2911 /*
2912 * We are bringing a node online. No memory is availabe yet. We must
2913 * allocate a kmem_cache_node structure in order to bring the node
2914 * online.
2915 */
2916 down_read(&slub_lock);
2917 list_for_each_entry(s, &slab_caches, list) {
2918 /*
2919 * XXX: kmem_cache_alloc_node will fallback to other nodes
2920 * since memory is not yet available from the node that
2921 * is brought up.
2922 */
2923 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2924 if (!n) {
2925 ret = -ENOMEM;
2926 goto out;
2927 }
2928 init_kmem_cache_node(n);
2929 s->node[nid] = n;
2930 }
2931out:
2932 up_read(&slub_lock);
2933 return ret;
2934}
2935
2936static int slab_memory_callback(struct notifier_block *self,
2937 unsigned long action, void *arg)
2938{
2939 int ret = 0;
2940
2941 switch (action) {
2942 case MEM_GOING_ONLINE:
2943 ret = slab_mem_going_online_callback(arg);
2944 break;
2945 case MEM_GOING_OFFLINE:
2946 ret = slab_mem_going_offline_callback(arg);
2947 break;
2948 case MEM_OFFLINE:
2949 case MEM_CANCEL_ONLINE:
2950 slab_mem_offline_callback(arg);
2951 break;
2952 case MEM_ONLINE:
2953 case MEM_CANCEL_OFFLINE:
2954 break;
2955 }
2956
2957 ret = notifier_from_errno(ret);
2958 return ret;
2959}
2960
2961#endif /* CONFIG_MEMORY_HOTPLUG */
2962
81819f0f
CL
2963/********************************************************************
2964 * Basic setup of slabs
2965 *******************************************************************/
2966
2967void __init kmem_cache_init(void)
2968{
2969 int i;
4b356be0 2970 int caches = 0;
81819f0f 2971
4c93c355
CL
2972 init_alloc_cpu();
2973
81819f0f
CL
2974#ifdef CONFIG_NUMA
2975 /*
2976 * Must first have the slab cache available for the allocations of the
672bba3a 2977 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2978 * kmem_cache_open for slab_state == DOWN.
2979 */
2980 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2981 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2982 kmalloc_caches[0].refcount = -1;
4b356be0 2983 caches++;
b9049e23 2984
0c40ba4f 2985 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2986#endif
2987
2988 /* Able to allocate the per node structures */
2989 slab_state = PARTIAL;
2990
2991 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2992 if (KMALLOC_MIN_SIZE <= 64) {
2993 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2994 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2995 caches++;
2996 }
2997 if (KMALLOC_MIN_SIZE <= 128) {
2998 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2999 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3000 caches++;
3001 }
81819f0f 3002
331dc558 3003 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3004 create_kmalloc_cache(&kmalloc_caches[i],
3005 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3006 caches++;
3007 }
81819f0f 3008
f1b26339
CL
3009
3010 /*
3011 * Patch up the size_index table if we have strange large alignment
3012 * requirements for the kmalloc array. This is only the case for
6446faa2 3013 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3014 *
3015 * Largest permitted alignment is 256 bytes due to the way we
3016 * handle the index determination for the smaller caches.
3017 *
3018 * Make sure that nothing crazy happens if someone starts tinkering
3019 * around with ARCH_KMALLOC_MINALIGN
3020 */
3021 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3023
12ad6843 3024 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3025 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3026
81819f0f
CL
3027 slab_state = UP;
3028
3029 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3030 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3031 kmalloc_caches[i]. name =
3032 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3033
3034#ifdef CONFIG_SMP
3035 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3036 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3037 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3038#else
3039 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3040#endif
3041
3adbefee
IM
3042 printk(KERN_INFO
3043 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3044 " CPUs=%d, Nodes=%d\n",
3045 caches, cache_line_size(),
81819f0f
CL
3046 slub_min_order, slub_max_order, slub_min_objects,
3047 nr_cpu_ids, nr_node_ids);
3048}
3049
3050/*
3051 * Find a mergeable slab cache
3052 */
3053static int slab_unmergeable(struct kmem_cache *s)
3054{
3055 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3056 return 1;
3057
c59def9f 3058 if (s->ctor)
81819f0f
CL
3059 return 1;
3060
8ffa6875
CL
3061 /*
3062 * We may have set a slab to be unmergeable during bootstrap.
3063 */
3064 if (s->refcount < 0)
3065 return 1;
3066
81819f0f
CL
3067 return 0;
3068}
3069
3070static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3071 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3072 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3073{
5b95a4ac 3074 struct kmem_cache *s;
81819f0f
CL
3075
3076 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3077 return NULL;
3078
c59def9f 3079 if (ctor)
81819f0f
CL
3080 return NULL;
3081
3082 size = ALIGN(size, sizeof(void *));
3083 align = calculate_alignment(flags, align, size);
3084 size = ALIGN(size, align);
ba0268a8 3085 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3086
5b95a4ac 3087 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3088 if (slab_unmergeable(s))
3089 continue;
3090
3091 if (size > s->size)
3092 continue;
3093
ba0268a8 3094 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3095 continue;
3096 /*
3097 * Check if alignment is compatible.
3098 * Courtesy of Adrian Drzewiecki
3099 */
06428780 3100 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3101 continue;
3102
3103 if (s->size - size >= sizeof(void *))
3104 continue;
3105
3106 return s;
3107 }
3108 return NULL;
3109}
3110
3111struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3112 size_t align, unsigned long flags,
4ba9b9d0 3113 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3114{
3115 struct kmem_cache *s;
3116
3117 down_write(&slub_lock);
ba0268a8 3118 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3119 if (s) {
42a9fdbb
CL
3120 int cpu;
3121
81819f0f
CL
3122 s->refcount++;
3123 /*
3124 * Adjust the object sizes so that we clear
3125 * the complete object on kzalloc.
3126 */
3127 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3128
3129 /*
3130 * And then we need to update the object size in the
3131 * per cpu structures
3132 */
3133 for_each_online_cpu(cpu)
3134 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3135
81819f0f 3136 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3137 up_write(&slub_lock);
6446faa2 3138
81819f0f
CL
3139 if (sysfs_slab_alias(s, name))
3140 goto err;
a0e1d1be
CL
3141 return s;
3142 }
6446faa2 3143
a0e1d1be
CL
3144 s = kmalloc(kmem_size, GFP_KERNEL);
3145 if (s) {
3146 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3147 size, align, flags, ctor)) {
81819f0f 3148 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3149 up_write(&slub_lock);
3150 if (sysfs_slab_add(s))
3151 goto err;
3152 return s;
3153 }
3154 kfree(s);
81819f0f
CL
3155 }
3156 up_write(&slub_lock);
81819f0f
CL
3157
3158err:
81819f0f
CL
3159 if (flags & SLAB_PANIC)
3160 panic("Cannot create slabcache %s\n", name);
3161 else
3162 s = NULL;
3163 return s;
3164}
3165EXPORT_SYMBOL(kmem_cache_create);
3166
81819f0f 3167#ifdef CONFIG_SMP
81819f0f 3168/*
672bba3a
CL
3169 * Use the cpu notifier to insure that the cpu slabs are flushed when
3170 * necessary.
81819f0f
CL
3171 */
3172static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3173 unsigned long action, void *hcpu)
3174{
3175 long cpu = (long)hcpu;
5b95a4ac
CL
3176 struct kmem_cache *s;
3177 unsigned long flags;
81819f0f
CL
3178
3179 switch (action) {
4c93c355
CL
3180 case CPU_UP_PREPARE:
3181 case CPU_UP_PREPARE_FROZEN:
3182 init_alloc_cpu_cpu(cpu);
3183 down_read(&slub_lock);
3184 list_for_each_entry(s, &slab_caches, list)
3185 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3186 GFP_KERNEL);
3187 up_read(&slub_lock);
3188 break;
3189
81819f0f 3190 case CPU_UP_CANCELED:
8bb78442 3191 case CPU_UP_CANCELED_FROZEN:
81819f0f 3192 case CPU_DEAD:
8bb78442 3193 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3194 down_read(&slub_lock);
3195 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3196 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3197
5b95a4ac
CL
3198 local_irq_save(flags);
3199 __flush_cpu_slab(s, cpu);
3200 local_irq_restore(flags);
4c93c355
CL
3201 free_kmem_cache_cpu(c, cpu);
3202 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3203 }
3204 up_read(&slub_lock);
81819f0f
CL
3205 break;
3206 default:
3207 break;
3208 }
3209 return NOTIFY_OK;
3210}
3211
06428780 3212static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3213 .notifier_call = slab_cpuup_callback
06428780 3214};
81819f0f
CL
3215
3216#endif
3217
81819f0f
CL
3218void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3219{
aadb4bc4
CL
3220 struct kmem_cache *s;
3221
331dc558 3222 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3223 return kmalloc_large(size, gfpflags);
3224
aadb4bc4 3225 s = get_slab(size, gfpflags);
81819f0f 3226
2408c550 3227 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3228 return s;
81819f0f 3229
ce15fea8 3230 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3231}
3232
3233void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3234 int node, void *caller)
3235{
aadb4bc4
CL
3236 struct kmem_cache *s;
3237
331dc558 3238 if (unlikely(size > PAGE_SIZE))
f619cfe1 3239 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3240
aadb4bc4 3241 s = get_slab(size, gfpflags);
81819f0f 3242
2408c550 3243 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3244 return s;
81819f0f 3245
ce15fea8 3246 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3247}
3248
5b06c853 3249#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
205ab99d
CL
3250static unsigned long count_partial(struct kmem_cache_node *n,
3251 int (*get_count)(struct page *))
5b06c853
CL
3252{
3253 unsigned long flags;
3254 unsigned long x = 0;
3255 struct page *page;
3256
3257 spin_lock_irqsave(&n->list_lock, flags);
3258 list_for_each_entry(page, &n->partial, lru)
205ab99d 3259 x += get_count(page);
5b06c853
CL
3260 spin_unlock_irqrestore(&n->list_lock, flags);
3261 return x;
3262}
205ab99d
CL
3263
3264static int count_inuse(struct page *page)
3265{
3266 return page->inuse;
3267}
3268
3269static int count_total(struct page *page)
3270{
3271 return page->objects;
3272}
3273
3274static int count_free(struct page *page)
3275{
3276 return page->objects - page->inuse;
3277}
5b06c853
CL
3278#endif
3279
41ecc55b 3280#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3281static int validate_slab(struct kmem_cache *s, struct page *page,
3282 unsigned long *map)
53e15af0
CL
3283{
3284 void *p;
a973e9dd 3285 void *addr = page_address(page);
53e15af0
CL
3286
3287 if (!check_slab(s, page) ||
3288 !on_freelist(s, page, NULL))
3289 return 0;
3290
3291 /* Now we know that a valid freelist exists */
39b26464 3292 bitmap_zero(map, page->objects);
53e15af0 3293
7656c72b
CL
3294 for_each_free_object(p, s, page->freelist) {
3295 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3296 if (!check_object(s, page, p, 0))
3297 return 0;
3298 }
3299
224a88be 3300 for_each_object(p, s, addr, page->objects)
7656c72b 3301 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3302 if (!check_object(s, page, p, 1))
3303 return 0;
3304 return 1;
3305}
3306
434e245d
CL
3307static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3308 unsigned long *map)
53e15af0
CL
3309{
3310 if (slab_trylock(page)) {
434e245d 3311 validate_slab(s, page, map);
53e15af0
CL
3312 slab_unlock(page);
3313 } else
3314 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3315 s->name, page);
3316
3317 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3318 if (!SlabDebug(page))
3319 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3320 "on slab 0x%p\n", s->name, page);
3321 } else {
35e5d7ee
CL
3322 if (SlabDebug(page))
3323 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3324 "slab 0x%p\n", s->name, page);
3325 }
3326}
3327
434e245d
CL
3328static int validate_slab_node(struct kmem_cache *s,
3329 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3330{
3331 unsigned long count = 0;
3332 struct page *page;
3333 unsigned long flags;
3334
3335 spin_lock_irqsave(&n->list_lock, flags);
3336
3337 list_for_each_entry(page, &n->partial, lru) {
434e245d 3338 validate_slab_slab(s, page, map);
53e15af0
CL
3339 count++;
3340 }
3341 if (count != n->nr_partial)
3342 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3343 "counter=%ld\n", s->name, count, n->nr_partial);
3344
3345 if (!(s->flags & SLAB_STORE_USER))
3346 goto out;
3347
3348 list_for_each_entry(page, &n->full, lru) {
434e245d 3349 validate_slab_slab(s, page, map);
53e15af0
CL
3350 count++;
3351 }
3352 if (count != atomic_long_read(&n->nr_slabs))
3353 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3354 "counter=%ld\n", s->name, count,
3355 atomic_long_read(&n->nr_slabs));
3356
3357out:
3358 spin_unlock_irqrestore(&n->list_lock, flags);
3359 return count;
3360}
3361
434e245d 3362static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3363{
3364 int node;
3365 unsigned long count = 0;
205ab99d 3366 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3367 sizeof(unsigned long), GFP_KERNEL);
3368
3369 if (!map)
3370 return -ENOMEM;
53e15af0
CL
3371
3372 flush_all(s);
f64dc58c 3373 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3374 struct kmem_cache_node *n = get_node(s, node);
3375
434e245d 3376 count += validate_slab_node(s, n, map);
53e15af0 3377 }
434e245d 3378 kfree(map);
53e15af0
CL
3379 return count;
3380}
3381
b3459709
CL
3382#ifdef SLUB_RESILIENCY_TEST
3383static void resiliency_test(void)
3384{
3385 u8 *p;
3386
3387 printk(KERN_ERR "SLUB resiliency testing\n");
3388 printk(KERN_ERR "-----------------------\n");
3389 printk(KERN_ERR "A. Corruption after allocation\n");
3390
3391 p = kzalloc(16, GFP_KERNEL);
3392 p[16] = 0x12;
3393 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3394 " 0x12->0x%p\n\n", p + 16);
3395
3396 validate_slab_cache(kmalloc_caches + 4);
3397
3398 /* Hmmm... The next two are dangerous */
3399 p = kzalloc(32, GFP_KERNEL);
3400 p[32 + sizeof(void *)] = 0x34;
3401 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3402 " 0x34 -> -0x%p\n", p);
3403 printk(KERN_ERR
3404 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3405
3406 validate_slab_cache(kmalloc_caches + 5);
3407 p = kzalloc(64, GFP_KERNEL);
3408 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3409 *p = 0x56;
3410 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3411 p);
3adbefee
IM
3412 printk(KERN_ERR
3413 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3414 validate_slab_cache(kmalloc_caches + 6);
3415
3416 printk(KERN_ERR "\nB. Corruption after free\n");
3417 p = kzalloc(128, GFP_KERNEL);
3418 kfree(p);
3419 *p = 0x78;
3420 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3421 validate_slab_cache(kmalloc_caches + 7);
3422
3423 p = kzalloc(256, GFP_KERNEL);
3424 kfree(p);
3425 p[50] = 0x9a;
3adbefee
IM
3426 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3427 p);
b3459709
CL
3428 validate_slab_cache(kmalloc_caches + 8);
3429
3430 p = kzalloc(512, GFP_KERNEL);
3431 kfree(p);
3432 p[512] = 0xab;
3433 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3434 validate_slab_cache(kmalloc_caches + 9);
3435}
3436#else
3437static void resiliency_test(void) {};
3438#endif
3439
88a420e4 3440/*
672bba3a 3441 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3442 * and freed.
3443 */
3444
3445struct location {
3446 unsigned long count;
3447 void *addr;
45edfa58
CL
3448 long long sum_time;
3449 long min_time;
3450 long max_time;
3451 long min_pid;
3452 long max_pid;
3453 cpumask_t cpus;
3454 nodemask_t nodes;
88a420e4
CL
3455};
3456
3457struct loc_track {
3458 unsigned long max;
3459 unsigned long count;
3460 struct location *loc;
3461};
3462
3463static void free_loc_track(struct loc_track *t)
3464{
3465 if (t->max)
3466 free_pages((unsigned long)t->loc,
3467 get_order(sizeof(struct location) * t->max));
3468}
3469
68dff6a9 3470static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3471{
3472 struct location *l;
3473 int order;
3474
88a420e4
CL
3475 order = get_order(sizeof(struct location) * max);
3476
68dff6a9 3477 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3478 if (!l)
3479 return 0;
3480
3481 if (t->count) {
3482 memcpy(l, t->loc, sizeof(struct location) * t->count);
3483 free_loc_track(t);
3484 }
3485 t->max = max;
3486 t->loc = l;
3487 return 1;
3488}
3489
3490static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3491 const struct track *track)
88a420e4
CL
3492{
3493 long start, end, pos;
3494 struct location *l;
3495 void *caddr;
45edfa58 3496 unsigned long age = jiffies - track->when;
88a420e4
CL
3497
3498 start = -1;
3499 end = t->count;
3500
3501 for ( ; ; ) {
3502 pos = start + (end - start + 1) / 2;
3503
3504 /*
3505 * There is nothing at "end". If we end up there
3506 * we need to add something to before end.
3507 */
3508 if (pos == end)
3509 break;
3510
3511 caddr = t->loc[pos].addr;
45edfa58
CL
3512 if (track->addr == caddr) {
3513
3514 l = &t->loc[pos];
3515 l->count++;
3516 if (track->when) {
3517 l->sum_time += age;
3518 if (age < l->min_time)
3519 l->min_time = age;
3520 if (age > l->max_time)
3521 l->max_time = age;
3522
3523 if (track->pid < l->min_pid)
3524 l->min_pid = track->pid;
3525 if (track->pid > l->max_pid)
3526 l->max_pid = track->pid;
3527
3528 cpu_set(track->cpu, l->cpus);
3529 }
3530 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3531 return 1;
3532 }
3533
45edfa58 3534 if (track->addr < caddr)
88a420e4
CL
3535 end = pos;
3536 else
3537 start = pos;
3538 }
3539
3540 /*
672bba3a 3541 * Not found. Insert new tracking element.
88a420e4 3542 */
68dff6a9 3543 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3544 return 0;
3545
3546 l = t->loc + pos;
3547 if (pos < t->count)
3548 memmove(l + 1, l,
3549 (t->count - pos) * sizeof(struct location));
3550 t->count++;
3551 l->count = 1;
45edfa58
CL
3552 l->addr = track->addr;
3553 l->sum_time = age;
3554 l->min_time = age;
3555 l->max_time = age;
3556 l->min_pid = track->pid;
3557 l->max_pid = track->pid;
3558 cpus_clear(l->cpus);
3559 cpu_set(track->cpu, l->cpus);
3560 nodes_clear(l->nodes);
3561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3562 return 1;
3563}
3564
3565static void process_slab(struct loc_track *t, struct kmem_cache *s,
3566 struct page *page, enum track_item alloc)
3567{
a973e9dd 3568 void *addr = page_address(page);
39b26464 3569 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3570 void *p;
3571
39b26464 3572 bitmap_zero(map, page->objects);
7656c72b
CL
3573 for_each_free_object(p, s, page->freelist)
3574 set_bit(slab_index(p, s, addr), map);
88a420e4 3575
224a88be 3576 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3577 if (!test_bit(slab_index(p, s, addr), map))
3578 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3579}
3580
3581static int list_locations(struct kmem_cache *s, char *buf,
3582 enum track_item alloc)
3583{
e374d483 3584 int len = 0;
88a420e4 3585 unsigned long i;
68dff6a9 3586 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3587 int node;
3588
68dff6a9 3589 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3590 GFP_TEMPORARY))
68dff6a9 3591 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3592
3593 /* Push back cpu slabs */
3594 flush_all(s);
3595
f64dc58c 3596 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3597 struct kmem_cache_node *n = get_node(s, node);
3598 unsigned long flags;
3599 struct page *page;
3600
9e86943b 3601 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3602 continue;
3603
3604 spin_lock_irqsave(&n->list_lock, flags);
3605 list_for_each_entry(page, &n->partial, lru)
3606 process_slab(&t, s, page, alloc);
3607 list_for_each_entry(page, &n->full, lru)
3608 process_slab(&t, s, page, alloc);
3609 spin_unlock_irqrestore(&n->list_lock, flags);
3610 }
3611
3612 for (i = 0; i < t.count; i++) {
45edfa58 3613 struct location *l = &t.loc[i];
88a420e4 3614
e374d483 3615 if (len > PAGE_SIZE - 100)
88a420e4 3616 break;
e374d483 3617 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3618
3619 if (l->addr)
e374d483 3620 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3621 else
e374d483 3622 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3623
3624 if (l->sum_time != l->min_time) {
e374d483 3625 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3626 l->min_time,
3627 (long)div_u64(l->sum_time, l->count),
3628 l->max_time);
45edfa58 3629 } else
e374d483 3630 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3631 l->min_time);
3632
3633 if (l->min_pid != l->max_pid)
e374d483 3634 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3635 l->min_pid, l->max_pid);
3636 else
e374d483 3637 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3638 l->min_pid);
3639
84966343 3640 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3641 len < PAGE_SIZE - 60) {
3642 len += sprintf(buf + len, " cpus=");
3643 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3644 l->cpus);
3645 }
3646
84966343 3647 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3648 len < PAGE_SIZE - 60) {
3649 len += sprintf(buf + len, " nodes=");
3650 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3651 l->nodes);
3652 }
3653
e374d483 3654 len += sprintf(buf + len, "\n");
88a420e4
CL
3655 }
3656
3657 free_loc_track(&t);
3658 if (!t.count)
e374d483
HH
3659 len += sprintf(buf, "No data\n");
3660 return len;
88a420e4
CL
3661}
3662
81819f0f 3663enum slab_stat_type {
205ab99d
CL
3664 SL_ALL, /* All slabs */
3665 SL_PARTIAL, /* Only partially allocated slabs */
3666 SL_CPU, /* Only slabs used for cpu caches */
3667 SL_OBJECTS, /* Determine allocated objects not slabs */
3668 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3669};
3670
205ab99d 3671#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3672#define SO_PARTIAL (1 << SL_PARTIAL)
3673#define SO_CPU (1 << SL_CPU)
3674#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3675#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3676
62e5c4b4
CG
3677static ssize_t show_slab_objects(struct kmem_cache *s,
3678 char *buf, unsigned long flags)
81819f0f
CL
3679{
3680 unsigned long total = 0;
81819f0f
CL
3681 int node;
3682 int x;
3683 unsigned long *nodes;
3684 unsigned long *per_cpu;
3685
3686 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3687 if (!nodes)
3688 return -ENOMEM;
81819f0f
CL
3689 per_cpu = nodes + nr_node_ids;
3690
205ab99d
CL
3691 if (flags & SO_CPU) {
3692 int cpu;
81819f0f 3693
205ab99d
CL
3694 for_each_possible_cpu(cpu) {
3695 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3696
205ab99d
CL
3697 if (!c || c->node < 0)
3698 continue;
3699
3700 if (c->page) {
3701 if (flags & SO_TOTAL)
3702 x = c->page->objects;
3703 else if (flags & SO_OBJECTS)
3704 x = c->page->inuse;
81819f0f
CL
3705 else
3706 x = 1;
205ab99d 3707
81819f0f 3708 total += x;
205ab99d 3709 nodes[c->node] += x;
81819f0f 3710 }
205ab99d 3711 per_cpu[c->node]++;
81819f0f
CL
3712 }
3713 }
3714
205ab99d
CL
3715 if (flags & SO_ALL) {
3716 for_each_node_state(node, N_NORMAL_MEMORY) {
3717 struct kmem_cache_node *n = get_node(s, node);
3718
3719 if (flags & SO_TOTAL)
3720 x = atomic_long_read(&n->total_objects);
3721 else if (flags & SO_OBJECTS)
3722 x = atomic_long_read(&n->total_objects) -
3723 count_partial(n, count_free);
81819f0f 3724
81819f0f 3725 else
205ab99d 3726 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3727 total += x;
3728 nodes[node] += x;
3729 }
3730
205ab99d
CL
3731 } else if (flags & SO_PARTIAL) {
3732 for_each_node_state(node, N_NORMAL_MEMORY) {
3733 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3734
205ab99d
CL
3735 if (flags & SO_TOTAL)
3736 x = count_partial(n, count_total);
3737 else if (flags & SO_OBJECTS)
3738 x = count_partial(n, count_inuse);
81819f0f 3739 else
205ab99d 3740 x = n->nr_partial;
81819f0f
CL
3741 total += x;
3742 nodes[node] += x;
3743 }
3744 }
81819f0f
CL
3745 x = sprintf(buf, "%lu", total);
3746#ifdef CONFIG_NUMA
f64dc58c 3747 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3748 if (nodes[node])
3749 x += sprintf(buf + x, " N%d=%lu",
3750 node, nodes[node]);
3751#endif
3752 kfree(nodes);
3753 return x + sprintf(buf + x, "\n");
3754}
3755
3756static int any_slab_objects(struct kmem_cache *s)
3757{
3758 int node;
81819f0f 3759
dfb4f096 3760 for_each_online_node(node) {
81819f0f
CL
3761 struct kmem_cache_node *n = get_node(s, node);
3762
dfb4f096
CL
3763 if (!n)
3764 continue;
3765
31d33baf 3766 if (atomic_read(&n->total_objects))
81819f0f
CL
3767 return 1;
3768 }
3769 return 0;
3770}
3771
3772#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3773#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3774
3775struct slab_attribute {
3776 struct attribute attr;
3777 ssize_t (*show)(struct kmem_cache *s, char *buf);
3778 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3779};
3780
3781#define SLAB_ATTR_RO(_name) \
3782 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3783
3784#define SLAB_ATTR(_name) \
3785 static struct slab_attribute _name##_attr = \
3786 __ATTR(_name, 0644, _name##_show, _name##_store)
3787
81819f0f
CL
3788static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3789{
3790 return sprintf(buf, "%d\n", s->size);
3791}
3792SLAB_ATTR_RO(slab_size);
3793
3794static ssize_t align_show(struct kmem_cache *s, char *buf)
3795{
3796 return sprintf(buf, "%d\n", s->align);
3797}
3798SLAB_ATTR_RO(align);
3799
3800static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3801{
3802 return sprintf(buf, "%d\n", s->objsize);
3803}
3804SLAB_ATTR_RO(object_size);
3805
3806static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3807{
834f3d11 3808 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3809}
3810SLAB_ATTR_RO(objs_per_slab);
3811
06b285dc
CL
3812static ssize_t order_store(struct kmem_cache *s,
3813 const char *buf, size_t length)
3814{
3815 int order = simple_strtoul(buf, NULL, 10);
3816
3817 if (order > slub_max_order || order < slub_min_order)
3818 return -EINVAL;
3819
3820 calculate_sizes(s, order);
3821 return length;
3822}
3823
81819f0f
CL
3824static ssize_t order_show(struct kmem_cache *s, char *buf)
3825{
834f3d11 3826 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3827}
06b285dc 3828SLAB_ATTR(order);
81819f0f
CL
3829
3830static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3831{
3832 if (s->ctor) {
3833 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3834
3835 return n + sprintf(buf + n, "\n");
3836 }
3837 return 0;
3838}
3839SLAB_ATTR_RO(ctor);
3840
81819f0f
CL
3841static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3842{
3843 return sprintf(buf, "%d\n", s->refcount - 1);
3844}
3845SLAB_ATTR_RO(aliases);
3846
3847static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3848{
205ab99d 3849 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3850}
3851SLAB_ATTR_RO(slabs);
3852
3853static ssize_t partial_show(struct kmem_cache *s, char *buf)
3854{
d9acf4b7 3855 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3856}
3857SLAB_ATTR_RO(partial);
3858
3859static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3860{
d9acf4b7 3861 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3862}
3863SLAB_ATTR_RO(cpu_slabs);
3864
3865static ssize_t objects_show(struct kmem_cache *s, char *buf)
3866{
205ab99d 3867 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3868}
3869SLAB_ATTR_RO(objects);
3870
205ab99d
CL
3871static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3872{
3873 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3874}
3875SLAB_ATTR_RO(objects_partial);
3876
3877static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3878{
3879 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3880}
3881SLAB_ATTR_RO(total_objects);
3882
81819f0f
CL
3883static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3884{
3885 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3886}
3887
3888static ssize_t sanity_checks_store(struct kmem_cache *s,
3889 const char *buf, size_t length)
3890{
3891 s->flags &= ~SLAB_DEBUG_FREE;
3892 if (buf[0] == '1')
3893 s->flags |= SLAB_DEBUG_FREE;
3894 return length;
3895}
3896SLAB_ATTR(sanity_checks);
3897
3898static ssize_t trace_show(struct kmem_cache *s, char *buf)
3899{
3900 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3901}
3902
3903static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3904 size_t length)
3905{
3906 s->flags &= ~SLAB_TRACE;
3907 if (buf[0] == '1')
3908 s->flags |= SLAB_TRACE;
3909 return length;
3910}
3911SLAB_ATTR(trace);
3912
3913static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3914{
3915 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3916}
3917
3918static ssize_t reclaim_account_store(struct kmem_cache *s,
3919 const char *buf, size_t length)
3920{
3921 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3922 if (buf[0] == '1')
3923 s->flags |= SLAB_RECLAIM_ACCOUNT;
3924 return length;
3925}
3926SLAB_ATTR(reclaim_account);
3927
3928static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3929{
5af60839 3930 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3931}
3932SLAB_ATTR_RO(hwcache_align);
3933
3934#ifdef CONFIG_ZONE_DMA
3935static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3936{
3937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3938}
3939SLAB_ATTR_RO(cache_dma);
3940#endif
3941
3942static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3943{
3944 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3945}
3946SLAB_ATTR_RO(destroy_by_rcu);
3947
3948static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3949{
3950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3951}
3952
3953static ssize_t red_zone_store(struct kmem_cache *s,
3954 const char *buf, size_t length)
3955{
3956 if (any_slab_objects(s))
3957 return -EBUSY;
3958
3959 s->flags &= ~SLAB_RED_ZONE;
3960 if (buf[0] == '1')
3961 s->flags |= SLAB_RED_ZONE;
06b285dc 3962 calculate_sizes(s, -1);
81819f0f
CL
3963 return length;
3964}
3965SLAB_ATTR(red_zone);
3966
3967static ssize_t poison_show(struct kmem_cache *s, char *buf)
3968{
3969 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3970}
3971
3972static ssize_t poison_store(struct kmem_cache *s,
3973 const char *buf, size_t length)
3974{
3975 if (any_slab_objects(s))
3976 return -EBUSY;
3977
3978 s->flags &= ~SLAB_POISON;
3979 if (buf[0] == '1')
3980 s->flags |= SLAB_POISON;
06b285dc 3981 calculate_sizes(s, -1);
81819f0f
CL
3982 return length;
3983}
3984SLAB_ATTR(poison);
3985
3986static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3987{
3988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3989}
3990
3991static ssize_t store_user_store(struct kmem_cache *s,
3992 const char *buf, size_t length)
3993{
3994 if (any_slab_objects(s))
3995 return -EBUSY;
3996
3997 s->flags &= ~SLAB_STORE_USER;
3998 if (buf[0] == '1')
3999 s->flags |= SLAB_STORE_USER;
06b285dc 4000 calculate_sizes(s, -1);
81819f0f
CL
4001 return length;
4002}
4003SLAB_ATTR(store_user);
4004
53e15af0
CL
4005static ssize_t validate_show(struct kmem_cache *s, char *buf)
4006{
4007 return 0;
4008}
4009
4010static ssize_t validate_store(struct kmem_cache *s,
4011 const char *buf, size_t length)
4012{
434e245d
CL
4013 int ret = -EINVAL;
4014
4015 if (buf[0] == '1') {
4016 ret = validate_slab_cache(s);
4017 if (ret >= 0)
4018 ret = length;
4019 }
4020 return ret;
53e15af0
CL
4021}
4022SLAB_ATTR(validate);
4023
2086d26a
CL
4024static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4025{
4026 return 0;
4027}
4028
4029static ssize_t shrink_store(struct kmem_cache *s,
4030 const char *buf, size_t length)
4031{
4032 if (buf[0] == '1') {
4033 int rc = kmem_cache_shrink(s);
4034
4035 if (rc)
4036 return rc;
4037 } else
4038 return -EINVAL;
4039 return length;
4040}
4041SLAB_ATTR(shrink);
4042
88a420e4
CL
4043static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4044{
4045 if (!(s->flags & SLAB_STORE_USER))
4046 return -ENOSYS;
4047 return list_locations(s, buf, TRACK_ALLOC);
4048}
4049SLAB_ATTR_RO(alloc_calls);
4050
4051static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4052{
4053 if (!(s->flags & SLAB_STORE_USER))
4054 return -ENOSYS;
4055 return list_locations(s, buf, TRACK_FREE);
4056}
4057SLAB_ATTR_RO(free_calls);
4058
81819f0f 4059#ifdef CONFIG_NUMA
9824601e 4060static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4061{
9824601e 4062 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4063}
4064
9824601e 4065static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4066 const char *buf, size_t length)
4067{
4068 int n = simple_strtoul(buf, NULL, 10);
4069
4070 if (n < 100)
9824601e 4071 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
4072 return length;
4073}
9824601e 4074SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4075#endif
4076
8ff12cfc 4077#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4078static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4079{
4080 unsigned long sum = 0;
4081 int cpu;
4082 int len;
4083 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4084
4085 if (!data)
4086 return -ENOMEM;
4087
4088 for_each_online_cpu(cpu) {
4089 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4090
4091 data[cpu] = x;
4092 sum += x;
4093 }
4094
4095 len = sprintf(buf, "%lu", sum);
4096
50ef37b9 4097#ifdef CONFIG_SMP
8ff12cfc
CL
4098 for_each_online_cpu(cpu) {
4099 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4100 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4101 }
50ef37b9 4102#endif
8ff12cfc
CL
4103 kfree(data);
4104 return len + sprintf(buf + len, "\n");
4105}
4106
4107#define STAT_ATTR(si, text) \
4108static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4109{ \
4110 return show_stat(s, buf, si); \
4111} \
4112SLAB_ATTR_RO(text); \
4113
4114STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4115STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4116STAT_ATTR(FREE_FASTPATH, free_fastpath);
4117STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4118STAT_ATTR(FREE_FROZEN, free_frozen);
4119STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4120STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4121STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4122STAT_ATTR(ALLOC_SLAB, alloc_slab);
4123STAT_ATTR(ALLOC_REFILL, alloc_refill);
4124STAT_ATTR(FREE_SLAB, free_slab);
4125STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4126STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4127STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4128STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4129STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4130STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4131STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4132#endif
4133
06428780 4134static struct attribute *slab_attrs[] = {
81819f0f
CL
4135 &slab_size_attr.attr,
4136 &object_size_attr.attr,
4137 &objs_per_slab_attr.attr,
4138 &order_attr.attr,
4139 &objects_attr.attr,
205ab99d
CL
4140 &objects_partial_attr.attr,
4141 &total_objects_attr.attr,
81819f0f
CL
4142 &slabs_attr.attr,
4143 &partial_attr.attr,
4144 &cpu_slabs_attr.attr,
4145 &ctor_attr.attr,
81819f0f
CL
4146 &aliases_attr.attr,
4147 &align_attr.attr,
4148 &sanity_checks_attr.attr,
4149 &trace_attr.attr,
4150 &hwcache_align_attr.attr,
4151 &reclaim_account_attr.attr,
4152 &destroy_by_rcu_attr.attr,
4153 &red_zone_attr.attr,
4154 &poison_attr.attr,
4155 &store_user_attr.attr,
53e15af0 4156 &validate_attr.attr,
2086d26a 4157 &shrink_attr.attr,
88a420e4
CL
4158 &alloc_calls_attr.attr,
4159 &free_calls_attr.attr,
81819f0f
CL
4160#ifdef CONFIG_ZONE_DMA
4161 &cache_dma_attr.attr,
4162#endif
4163#ifdef CONFIG_NUMA
9824601e 4164 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4165#endif
4166#ifdef CONFIG_SLUB_STATS
4167 &alloc_fastpath_attr.attr,
4168 &alloc_slowpath_attr.attr,
4169 &free_fastpath_attr.attr,
4170 &free_slowpath_attr.attr,
4171 &free_frozen_attr.attr,
4172 &free_add_partial_attr.attr,
4173 &free_remove_partial_attr.attr,
4174 &alloc_from_partial_attr.attr,
4175 &alloc_slab_attr.attr,
4176 &alloc_refill_attr.attr,
4177 &free_slab_attr.attr,
4178 &cpuslab_flush_attr.attr,
4179 &deactivate_full_attr.attr,
4180 &deactivate_empty_attr.attr,
4181 &deactivate_to_head_attr.attr,
4182 &deactivate_to_tail_attr.attr,
4183 &deactivate_remote_frees_attr.attr,
65c3376a 4184 &order_fallback_attr.attr,
81819f0f
CL
4185#endif
4186 NULL
4187};
4188
4189static struct attribute_group slab_attr_group = {
4190 .attrs = slab_attrs,
4191};
4192
4193static ssize_t slab_attr_show(struct kobject *kobj,
4194 struct attribute *attr,
4195 char *buf)
4196{
4197 struct slab_attribute *attribute;
4198 struct kmem_cache *s;
4199 int err;
4200
4201 attribute = to_slab_attr(attr);
4202 s = to_slab(kobj);
4203
4204 if (!attribute->show)
4205 return -EIO;
4206
4207 err = attribute->show(s, buf);
4208
4209 return err;
4210}
4211
4212static ssize_t slab_attr_store(struct kobject *kobj,
4213 struct attribute *attr,
4214 const char *buf, size_t len)
4215{
4216 struct slab_attribute *attribute;
4217 struct kmem_cache *s;
4218 int err;
4219
4220 attribute = to_slab_attr(attr);
4221 s = to_slab(kobj);
4222
4223 if (!attribute->store)
4224 return -EIO;
4225
4226 err = attribute->store(s, buf, len);
4227
4228 return err;
4229}
4230
151c602f
CL
4231static void kmem_cache_release(struct kobject *kobj)
4232{
4233 struct kmem_cache *s = to_slab(kobj);
4234
4235 kfree(s);
4236}
4237
81819f0f
CL
4238static struct sysfs_ops slab_sysfs_ops = {
4239 .show = slab_attr_show,
4240 .store = slab_attr_store,
4241};
4242
4243static struct kobj_type slab_ktype = {
4244 .sysfs_ops = &slab_sysfs_ops,
151c602f 4245 .release = kmem_cache_release
81819f0f
CL
4246};
4247
4248static int uevent_filter(struct kset *kset, struct kobject *kobj)
4249{
4250 struct kobj_type *ktype = get_ktype(kobj);
4251
4252 if (ktype == &slab_ktype)
4253 return 1;
4254 return 0;
4255}
4256
4257static struct kset_uevent_ops slab_uevent_ops = {
4258 .filter = uevent_filter,
4259};
4260
27c3a314 4261static struct kset *slab_kset;
81819f0f
CL
4262
4263#define ID_STR_LENGTH 64
4264
4265/* Create a unique string id for a slab cache:
6446faa2
CL
4266 *
4267 * Format :[flags-]size
81819f0f
CL
4268 */
4269static char *create_unique_id(struct kmem_cache *s)
4270{
4271 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4272 char *p = name;
4273
4274 BUG_ON(!name);
4275
4276 *p++ = ':';
4277 /*
4278 * First flags affecting slabcache operations. We will only
4279 * get here for aliasable slabs so we do not need to support
4280 * too many flags. The flags here must cover all flags that
4281 * are matched during merging to guarantee that the id is
4282 * unique.
4283 */
4284 if (s->flags & SLAB_CACHE_DMA)
4285 *p++ = 'd';
4286 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4287 *p++ = 'a';
4288 if (s->flags & SLAB_DEBUG_FREE)
4289 *p++ = 'F';
4290 if (p != name + 1)
4291 *p++ = '-';
4292 p += sprintf(p, "%07d", s->size);
4293 BUG_ON(p > name + ID_STR_LENGTH - 1);
4294 return name;
4295}
4296
4297static int sysfs_slab_add(struct kmem_cache *s)
4298{
4299 int err;
4300 const char *name;
4301 int unmergeable;
4302
4303 if (slab_state < SYSFS)
4304 /* Defer until later */
4305 return 0;
4306
4307 unmergeable = slab_unmergeable(s);
4308 if (unmergeable) {
4309 /*
4310 * Slabcache can never be merged so we can use the name proper.
4311 * This is typically the case for debug situations. In that
4312 * case we can catch duplicate names easily.
4313 */
27c3a314 4314 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4315 name = s->name;
4316 } else {
4317 /*
4318 * Create a unique name for the slab as a target
4319 * for the symlinks.
4320 */
4321 name = create_unique_id(s);
4322 }
4323
27c3a314 4324 s->kobj.kset = slab_kset;
1eada11c
GKH
4325 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4326 if (err) {
4327 kobject_put(&s->kobj);
81819f0f 4328 return err;
1eada11c 4329 }
81819f0f
CL
4330
4331 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4332 if (err)
4333 return err;
4334 kobject_uevent(&s->kobj, KOBJ_ADD);
4335 if (!unmergeable) {
4336 /* Setup first alias */
4337 sysfs_slab_alias(s, s->name);
4338 kfree(name);
4339 }
4340 return 0;
4341}
4342
4343static void sysfs_slab_remove(struct kmem_cache *s)
4344{
4345 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4346 kobject_del(&s->kobj);
151c602f 4347 kobject_put(&s->kobj);
81819f0f
CL
4348}
4349
4350/*
4351 * Need to buffer aliases during bootup until sysfs becomes
4352 * available lest we loose that information.
4353 */
4354struct saved_alias {
4355 struct kmem_cache *s;
4356 const char *name;
4357 struct saved_alias *next;
4358};
4359
5af328a5 4360static struct saved_alias *alias_list;
81819f0f
CL
4361
4362static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4363{
4364 struct saved_alias *al;
4365
4366 if (slab_state == SYSFS) {
4367 /*
4368 * If we have a leftover link then remove it.
4369 */
27c3a314
GKH
4370 sysfs_remove_link(&slab_kset->kobj, name);
4371 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4372 }
4373
4374 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4375 if (!al)
4376 return -ENOMEM;
4377
4378 al->s = s;
4379 al->name = name;
4380 al->next = alias_list;
4381 alias_list = al;
4382 return 0;
4383}
4384
4385static int __init slab_sysfs_init(void)
4386{
5b95a4ac 4387 struct kmem_cache *s;
81819f0f
CL
4388 int err;
4389
0ff21e46 4390 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4391 if (!slab_kset) {
81819f0f
CL
4392 printk(KERN_ERR "Cannot register slab subsystem.\n");
4393 return -ENOSYS;
4394 }
4395
26a7bd03
CL
4396 slab_state = SYSFS;
4397
5b95a4ac 4398 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4399 err = sysfs_slab_add(s);
5d540fb7
CL
4400 if (err)
4401 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4402 " to sysfs\n", s->name);
26a7bd03 4403 }
81819f0f
CL
4404
4405 while (alias_list) {
4406 struct saved_alias *al = alias_list;
4407
4408 alias_list = alias_list->next;
4409 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4410 if (err)
4411 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4412 " %s to sysfs\n", s->name);
81819f0f
CL
4413 kfree(al);
4414 }
4415
4416 resiliency_test();
4417 return 0;
4418}
4419
4420__initcall(slab_sysfs_init);
81819f0f 4421#endif
57ed3eda
PE
4422
4423/*
4424 * The /proc/slabinfo ABI
4425 */
158a9624
LT
4426#ifdef CONFIG_SLABINFO
4427
4428ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4429 size_t count, loff_t *ppos)
4430{
4431 return -EINVAL;
4432}
4433
57ed3eda
PE
4434
4435static void print_slabinfo_header(struct seq_file *m)
4436{
4437 seq_puts(m, "slabinfo - version: 2.1\n");
4438 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4439 "<objperslab> <pagesperslab>");
4440 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4441 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4442 seq_putc(m, '\n');
4443}
4444
4445static void *s_start(struct seq_file *m, loff_t *pos)
4446{
4447 loff_t n = *pos;
4448
4449 down_read(&slub_lock);
4450 if (!n)
4451 print_slabinfo_header(m);
4452
4453 return seq_list_start(&slab_caches, *pos);
4454}
4455
4456static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4457{
4458 return seq_list_next(p, &slab_caches, pos);
4459}
4460
4461static void s_stop(struct seq_file *m, void *p)
4462{
4463 up_read(&slub_lock);
4464}
4465
4466static int s_show(struct seq_file *m, void *p)
4467{
4468 unsigned long nr_partials = 0;
4469 unsigned long nr_slabs = 0;
4470 unsigned long nr_inuse = 0;
205ab99d
CL
4471 unsigned long nr_objs = 0;
4472 unsigned long nr_free = 0;
57ed3eda
PE
4473 struct kmem_cache *s;
4474 int node;
4475
4476 s = list_entry(p, struct kmem_cache, list);
4477
4478 for_each_online_node(node) {
4479 struct kmem_cache_node *n = get_node(s, node);
4480
4481 if (!n)
4482 continue;
4483
4484 nr_partials += n->nr_partial;
4485 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4486 nr_objs += atomic_long_read(&n->total_objects);
4487 nr_free += count_partial(n, count_free);
57ed3eda
PE
4488 }
4489
205ab99d 4490 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4491
4492 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4493 nr_objs, s->size, oo_objects(s->oo),
4494 (1 << oo_order(s->oo)));
57ed3eda
PE
4495 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4496 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4497 0UL);
4498 seq_putc(m, '\n');
4499 return 0;
4500}
4501
4502const struct seq_operations slabinfo_op = {
4503 .start = s_start,
4504 .next = s_next,
4505 .stop = s_stop,
4506 .show = s_show,
4507};
4508
158a9624 4509#endif /* CONFIG_SLABINFO */