]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
mm: slub: fix ALLOC_SLOWPATH stat
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 214#else
0c710013
CL
215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
107dab5c 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
88da03a6
CL
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
81819f0f
CL
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
0ad9500e
ED
264static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265{
266 prefetch(object + s->offset);
267}
268
1393d9a1
CL
269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270{
271 void *p;
272
273#ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275#else
276 p = get_freepointer(s, object);
277#endif
278 return p;
279}
280
7656c72b
CL
281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282{
283 *(void **)(object + s->offset) = fp;
284}
285
286/* Loop over all objects in a slab */
224a88be
CL
287#define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
289 __p += (__s)->size)
290
7656c72b
CL
291/* Determine object index from a given position */
292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293{
294 return (p - addr) / s->size;
295}
296
d71f606f
MK
297static inline size_t slab_ksize(const struct kmem_cache *s)
298{
299#ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 305 return s->object_size;
d71f606f
MK
306
307#endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319}
320
ab9a0f19
LJ
321static inline int order_objects(int order, unsigned long size, int reserved)
322{
323 return ((PAGE_SIZE << order) - reserved) / size;
324}
325
834f3d11 326static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 327 unsigned long size, int reserved)
834f3d11
CL
328{
329 struct kmem_cache_order_objects x = {
ab9a0f19 330 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
331 };
332
333 return x;
334}
335
336static inline int oo_order(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x >> OO_SHIFT;
834f3d11
CL
339}
340
341static inline int oo_objects(struct kmem_cache_order_objects x)
342{
210b5c06 343 return x.x & OO_MASK;
834f3d11
CL
344}
345
881db7fb
CL
346/*
347 * Per slab locking using the pagelock
348 */
349static __always_inline void slab_lock(struct page *page)
350{
351 bit_spin_lock(PG_locked, &page->flags);
352}
353
354static __always_inline void slab_unlock(struct page *page)
355{
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
a0320865
DH
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return 1;
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
a0320865 395 set_page_slub_counters(page, counters_new);
1d07171c
CL
396 slab_unlock(page);
397 return 1;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
409 return 0;
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return 1;
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
a0320865 434 set_page_slub_counters(page, counters_new);
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
b789ef51
CL
437 return 1;
438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
450 return 0;
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
454/*
455 * Determine a map of object in use on a page.
456 *
881db7fb 457 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
41ecc55b
CL
469/*
470 * Debug settings:
471 */
f0630fff
CL
472#ifdef CONFIG_SLUB_DEBUG_ON
473static int slub_debug = DEBUG_DEFAULT_FLAGS;
474#else
41ecc55b 475static int slub_debug;
f0630fff 476#endif
41ecc55b
CL
477
478static char *slub_debug_slabs;
fa5ec8a1 479static int disable_higher_order_debug;
41ecc55b 480
81819f0f
CL
481/*
482 * Object debugging
483 */
484static void print_section(char *text, u8 *addr, unsigned int length)
485{
ffc79d28
SAS
486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 length, 1);
81819f0f
CL
488}
489
81819f0f
CL
490static struct track *get_track(struct kmem_cache *s, void *object,
491 enum track_item alloc)
492{
493 struct track *p;
494
495 if (s->offset)
496 p = object + s->offset + sizeof(void *);
497 else
498 p = object + s->inuse;
499
500 return p + alloc;
501}
502
503static void set_track(struct kmem_cache *s, void *object,
ce71e27c 504 enum track_item alloc, unsigned long addr)
81819f0f 505{
1a00df4a 506 struct track *p = get_track(s, object, alloc);
81819f0f 507
81819f0f 508 if (addr) {
d6543e39
BG
509#ifdef CONFIG_STACKTRACE
510 struct stack_trace trace;
511 int i;
512
513 trace.nr_entries = 0;
514 trace.max_entries = TRACK_ADDRS_COUNT;
515 trace.entries = p->addrs;
516 trace.skip = 3;
517 save_stack_trace(&trace);
518
519 /* See rant in lockdep.c */
520 if (trace.nr_entries != 0 &&
521 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 trace.nr_entries--;
523
524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 p->addrs[i] = 0;
526#endif
81819f0f
CL
527 p->addr = addr;
528 p->cpu = smp_processor_id();
88e4ccf2 529 p->pid = current->pid;
81819f0f
CL
530 p->when = jiffies;
531 } else
532 memset(p, 0, sizeof(struct track));
533}
534
81819f0f
CL
535static void init_tracking(struct kmem_cache *s, void *object)
536{
24922684
CL
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
ce71e27c
EGM
540 set_track(s, object, TRACK_FREE, 0UL);
541 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
542}
543
544static void print_track(const char *s, struct track *t)
545{
546 if (!t->addr)
547 return;
548
f9f58285
FF
549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
551#ifdef CONFIG_STACKTRACE
552 {
553 int i;
554 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 if (t->addrs[i])
f9f58285 556 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
557 else
558 break;
559 }
560#endif
24922684
CL
561}
562
563static void print_tracking(struct kmem_cache *s, void *object)
564{
565 if (!(s->flags & SLAB_STORE_USER))
566 return;
567
568 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 print_track("Freed", get_track(s, object, TRACK_FREE));
570}
571
572static void print_page_info(struct page *page)
573{
f9f58285 574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
ecc42fbe 581 struct va_format vaf;
24922684 582 va_list args;
24922684
CL
583
584 va_start(args, fmt);
ecc42fbe
FF
585 vaf.fmt = fmt;
586 vaf.va = &args;
f9f58285 587 pr_err("=============================================================================\n");
ecc42fbe 588 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 589 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 590
373d4d09 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 592 va_end(args);
81819f0f
CL
593}
594
24922684
CL
595static void slab_fix(struct kmem_cache *s, char *fmt, ...)
596{
ecc42fbe 597 struct va_format vaf;
24922684 598 va_list args;
24922684
CL
599
600 va_start(args, fmt);
ecc42fbe
FF
601 vaf.fmt = fmt;
602 vaf.va = &args;
603 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 604 va_end(args);
24922684
CL
605}
606
607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
608{
609 unsigned int off; /* Offset of last byte */
a973e9dd 610 u8 *addr = page_address(page);
24922684
CL
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
f9f58285
FF
616 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
24922684
CL
618
619 if (p > addr + 16)
ffc79d28 620 print_section("Bytes b4 ", p - 16, 16);
81819f0f 621
3b0efdfa 622 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 623 PAGE_SIZE));
81819f0f 624 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
81819f0f 627
81819f0f
CL
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
24922684 633 if (s->flags & SLAB_STORE_USER)
81819f0f 634 off += 2 * sizeof(struct track);
81819f0f
CL
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
ffc79d28 638 print_section("Padding ", p + off, s->size - off);
24922684
CL
639
640 dump_stack();
81819f0f
CL
641}
642
643static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645{
3dc50637 646 slab_bug(s, "%s", reason);
24922684 647 print_trailer(s, page, object);
81819f0f
CL
648}
649
d0e0ac97
CG
650static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
81819f0f
CL
652{
653 va_list args;
654 char buf[100];
655
24922684
CL
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 658 va_end(args);
3dc50637 659 slab_bug(s, "%s", buf);
24922684 660 print_page_info(page);
81819f0f
CL
661 dump_stack();
662}
663
f7cb1933 664static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
665{
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 674 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
675}
676
24922684
CL
677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679{
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682}
683
684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
06428780 686 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
687{
688 u8 *fault;
689 u8 *end;
690
79824820 691 fault = memchr_inv(start, value, bytes);
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
f9f58285 700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
79824820 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 791 print_section("Padding ", end - remainder, remainder);
24922684 792
8a3d271d 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 794 return 0;
81819f0f
CL
795}
796
797static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 798 void *object, u8 val)
81819f0f
CL
799{
800 u8 *p = object;
3b0efdfa 801 u8 *endobject = object + s->object_size;
81819f0f
CL
802
803 if (s->flags & SLAB_RED_ZONE) {
24922684 804 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 805 endobject, val, s->inuse - s->object_size))
81819f0f 806 return 0;
81819f0f 807 } else {
3b0efdfa 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 809 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
3adbefee 812 }
81819f0f
CL
813 }
814
815 if (s->flags & SLAB_POISON) {
f7cb1933 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 817 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 818 POISON_FREE, s->object_size - 1) ||
24922684 819 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 820 p + s->object_size - 1, POISON_END, 1)))
81819f0f 821 return 0;
81819f0f
CL
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
f7cb1933 828 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
9f6c708e 839 * No choice but to zap it and thus lose the remainder
81819f0f 840 * of the free objects in this slab. May cause
672bba3a 841 * another error because the object count is now wrong.
81819f0f 842 */
a973e9dd 843 set_freepointer(s, p, NULL);
81819f0f
CL
844 return 0;
845 }
846 return 1;
847}
848
849static int check_slab(struct kmem_cache *s, struct page *page)
850{
39b26464
CL
851 int maxobj;
852
81819f0f
CL
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
24922684 856 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
857 return 0;
858 }
39b26464 859
ab9a0f19 860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
24922684 867 slab_err(s, page, "inuse %u > max %u",
39b26464 868 s->name, page->inuse, page->objects);
81819f0f
CL
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874}
875
876/*
672bba3a
CL
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
879 */
880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881{
882 int nr = 0;
881db7fb 883 void *fp;
81819f0f 884 void *object = NULL;
224a88be 885 unsigned long max_objects;
81819f0f 886
881db7fb 887 fp = page->freelist;
39b26464 888 while (fp && nr <= page->objects) {
81819f0f
CL
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
a973e9dd 895 set_freepointer(s, object, NULL);
81819f0f 896 } else {
24922684 897 slab_err(s, page, "Freepointer corrupt");
a973e9dd 898 page->freelist = NULL;
39b26464 899 page->inuse = page->objects;
24922684 900 slab_fix(s, "Freelist cleared");
81819f0f
CL
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
ab9a0f19 910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
39b26464 920 if (page->inuse != page->objects - nr) {
70d71228 921 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
24922684 924 slab_fix(s, "Object count adjusted.");
81819f0f
CL
925 }
926 return search == NULL;
927}
928
0121c619
CL
929static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
3ec09742
CL
931{
932 if (s->flags & SLAB_TRACE) {
f9f58285 933 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
d0e0ac97
CG
940 print_section("Object ", (void *)object,
941 s->object_size);
3ec09742
CL
942
943 dump_stack();
944 }
945}
946
c016b0bd
CL
947/*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
d56791b3
RB
951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952{
953 kmemleak_alloc(ptr, size, 1, flags);
954}
955
956static inline void kfree_hook(const void *x)
957{
958 kmemleak_free(x);
959}
960
c016b0bd
CL
961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962{
c1d50836 963 flags &= gfp_allowed_mask;
c016b0bd
CL
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
3b0efdfa 967 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
968}
969
d0e0ac97
CG
970static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
c016b0bd 972{
c1d50836 973 flags &= gfp_allowed_mask;
b3d41885 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
976}
977
978static inline void slab_free_hook(struct kmem_cache *s, void *x)
979{
980 kmemleak_free_recursive(x, s->flags);
c016b0bd 981
d3f661d6 982 /*
d1756174 983 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
3b0efdfa
CL
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
994 local_irq_restore(flags);
995 }
996#endif
f9b615de 997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 998 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
999}
1000
643b1138 1001/*
672bba3a 1002 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1003 */
5cc6eee8
CL
1004static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
643b1138 1006{
5cc6eee8
CL
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
255d0884 1010 lockdep_assert_held(&n->list_lock);
643b1138 1011 list_add(&page->lru, &n->full);
643b1138
CL
1012}
1013
c65c1877 1014static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1015{
643b1138
CL
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
255d0884 1019 lockdep_assert_held(&n->list_lock);
643b1138 1020 list_del(&page->lru);
643b1138
CL
1021}
1022
0f389ec6
CL
1023/* Tracking of the number of slabs for debugging purposes */
1024static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025{
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029}
1030
26c02cf0
AB
1031static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032{
1033 return atomic_long_read(&n->nr_slabs);
1034}
1035
205ab99d 1036static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1037{
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
338b2642 1046 if (likely(n)) {
0f389ec6 1047 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1048 atomic_long_add(objects, &n->total_objects);
1049 }
0f389ec6 1050}
205ab99d 1051static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
205ab99d 1056 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1057}
1058
1059/* Object debug checks for alloc/free paths */
3ec09742
CL
1060static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062{
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
f7cb1933 1066 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1067 init_tracking(s, object);
1068}
1069
d0e0ac97
CG
1070static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
ce71e27c 1072 void *object, unsigned long addr)
81819f0f
CL
1073{
1074 if (!check_slab(s, page))
1075 goto bad;
1076
81819f0f
CL
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1079 goto bad;
81819f0f
CL
1080 }
1081
f7cb1933 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1083 goto bad;
81819f0f 1084
3ec09742
CL
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
f7cb1933 1089 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1090 return 1;
3ec09742 1091
81819f0f
CL
1092bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
672bba3a 1097 * as used avoids touching the remaining objects.
81819f0f 1098 */
24922684 1099 slab_fix(s, "Marking all objects used");
39b26464 1100 page->inuse = page->objects;
a973e9dd 1101 page->freelist = NULL;
81819f0f
CL
1102 }
1103 return 0;
1104}
1105
19c7ff9e
CL
1106static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
81819f0f 1109{
19c7ff9e 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1111
19c7ff9e 1112 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1113 slab_lock(page);
1114
81819f0f
CL
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
70d71228 1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
24922684 1124 object_err(s, page, object, "Object already free");
81819f0f
CL
1125 goto fail;
1126 }
1127
f7cb1933 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1129 goto out;
81819f0f 1130
1b4f59e3 1131 if (unlikely(s != page->slab_cache)) {
3adbefee 1132 if (!PageSlab(page)) {
70d71228
CL
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1b4f59e3 1135 } else if (!page->slab_cache) {
f9f58285
FF
1136 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1137 object);
70d71228 1138 dump_stack();
06428780 1139 } else
24922684
CL
1140 object_err(s, page, object,
1141 "page slab pointer corrupt.");
81819f0f
CL
1142 goto fail;
1143 }
3ec09742 1144
3ec09742
CL
1145 if (s->flags & SLAB_STORE_USER)
1146 set_track(s, object, TRACK_FREE, addr);
1147 trace(s, page, object, 0);
f7cb1933 1148 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1149out:
881db7fb 1150 slab_unlock(page);
19c7ff9e
CL
1151 /*
1152 * Keep node_lock to preserve integrity
1153 * until the object is actually freed
1154 */
1155 return n;
3ec09742 1156
81819f0f 1157fail:
19c7ff9e
CL
1158 slab_unlock(page);
1159 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1160 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1161 return NULL;
81819f0f
CL
1162}
1163
41ecc55b
CL
1164static int __init setup_slub_debug(char *str)
1165{
f0630fff
CL
1166 slub_debug = DEBUG_DEFAULT_FLAGS;
1167 if (*str++ != '=' || !*str)
1168 /*
1169 * No options specified. Switch on full debugging.
1170 */
1171 goto out;
1172
1173 if (*str == ',')
1174 /*
1175 * No options but restriction on slabs. This means full
1176 * debugging for slabs matching a pattern.
1177 */
1178 goto check_slabs;
1179
fa5ec8a1
DR
1180 if (tolower(*str) == 'o') {
1181 /*
1182 * Avoid enabling debugging on caches if its minimum order
1183 * would increase as a result.
1184 */
1185 disable_higher_order_debug = 1;
1186 goto out;
1187 }
1188
f0630fff
CL
1189 slub_debug = 0;
1190 if (*str == '-')
1191 /*
1192 * Switch off all debugging measures.
1193 */
1194 goto out;
1195
1196 /*
1197 * Determine which debug features should be switched on
1198 */
06428780 1199 for (; *str && *str != ','; str++) {
f0630fff
CL
1200 switch (tolower(*str)) {
1201 case 'f':
1202 slub_debug |= SLAB_DEBUG_FREE;
1203 break;
1204 case 'z':
1205 slub_debug |= SLAB_RED_ZONE;
1206 break;
1207 case 'p':
1208 slub_debug |= SLAB_POISON;
1209 break;
1210 case 'u':
1211 slub_debug |= SLAB_STORE_USER;
1212 break;
1213 case 't':
1214 slub_debug |= SLAB_TRACE;
1215 break;
4c13dd3b
DM
1216 case 'a':
1217 slub_debug |= SLAB_FAILSLAB;
1218 break;
f0630fff 1219 default:
f9f58285
FF
1220 pr_err("slub_debug option '%c' unknown. skipped\n",
1221 *str);
f0630fff 1222 }
41ecc55b
CL
1223 }
1224
f0630fff 1225check_slabs:
41ecc55b
CL
1226 if (*str == ',')
1227 slub_debug_slabs = str + 1;
f0630fff 1228out:
41ecc55b
CL
1229 return 1;
1230}
1231
1232__setup("slub_debug", setup_slub_debug);
1233
3b0efdfa 1234static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1235 unsigned long flags, const char *name,
51cc5068 1236 void (*ctor)(void *))
41ecc55b
CL
1237{
1238 /*
e153362a 1239 * Enable debugging if selected on the kernel commandline.
41ecc55b 1240 */
c6f58d9b
CL
1241 if (slub_debug && (!slub_debug_slabs || (name &&
1242 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1243 flags |= slub_debug;
ba0268a8
CL
1244
1245 return flags;
41ecc55b
CL
1246}
1247#else
3ec09742
CL
1248static inline void setup_object_debug(struct kmem_cache *s,
1249 struct page *page, void *object) {}
41ecc55b 1250
3ec09742 1251static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1252 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1253
19c7ff9e
CL
1254static inline struct kmem_cache_node *free_debug_processing(
1255 struct kmem_cache *s, struct page *page, void *object,
1256 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1257
41ecc55b
CL
1258static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1259 { return 1; }
1260static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1261 void *object, u8 val) { return 1; }
5cc6eee8
CL
1262static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263 struct page *page) {}
c65c1877
PZ
1264static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 struct page *page) {}
3b0efdfa 1266static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1267 unsigned long flags, const char *name,
51cc5068 1268 void (*ctor)(void *))
ba0268a8
CL
1269{
1270 return flags;
1271}
41ecc55b 1272#define slub_debug 0
0f389ec6 1273
fdaa45e9
IM
1274#define disable_higher_order_debug 0
1275
0f389ec6
CL
1276static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1277 { return 0; }
26c02cf0
AB
1278static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1279 { return 0; }
205ab99d
CL
1280static inline void inc_slabs_node(struct kmem_cache *s, int node,
1281 int objects) {}
1282static inline void dec_slabs_node(struct kmem_cache *s, int node,
1283 int objects) {}
7d550c56 1284
d56791b3
RB
1285static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1286{
1287 kmemleak_alloc(ptr, size, 1, flags);
1288}
1289
1290static inline void kfree_hook(const void *x)
1291{
1292 kmemleak_free(x);
1293}
1294
7d550c56
CL
1295static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1296 { return 0; }
1297
1298static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1299 void *object)
1300{
1301 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1302 flags & gfp_allowed_mask);
1303}
7d550c56 1304
d56791b3
RB
1305static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306{
1307 kmemleak_free_recursive(x, s->flags);
1308}
7d550c56 1309
ab4d5ed5 1310#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1311
81819f0f
CL
1312/*
1313 * Slab allocation and freeing
1314 */
65c3376a
CL
1315static inline struct page *alloc_slab_page(gfp_t flags, int node,
1316 struct kmem_cache_order_objects oo)
1317{
1318 int order = oo_order(oo);
1319
b1eeab67
VN
1320 flags |= __GFP_NOTRACK;
1321
2154a336 1322 if (node == NUMA_NO_NODE)
65c3376a
CL
1323 return alloc_pages(flags, order);
1324 else
6b65aaf3 1325 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1326}
1327
81819f0f
CL
1328static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1329{
06428780 1330 struct page *page;
834f3d11 1331 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1332 gfp_t alloc_gfp;
81819f0f 1333
7e0528da
CL
1334 flags &= gfp_allowed_mask;
1335
1336 if (flags & __GFP_WAIT)
1337 local_irq_enable();
1338
b7a49f0d 1339 flags |= s->allocflags;
e12ba74d 1340
ba52270d
PE
1341 /*
1342 * Let the initial higher-order allocation fail under memory pressure
1343 * so we fall-back to the minimum order allocation.
1344 */
1345 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1346
1347 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1348 if (unlikely(!page)) {
1349 oo = s->min;
80c3a998 1350 alloc_gfp = flags;
65c3376a
CL
1351 /*
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1354 */
80c3a998 1355 page = alloc_slab_page(alloc_gfp, node, oo);
81819f0f 1356
7e0528da
CL
1357 if (page)
1358 stat(s, ORDER_FALLBACK);
65c3376a 1359 }
5a896d9e 1360
737b719e 1361 if (kmemcheck_enabled && page
5086c389 1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1363 int pages = 1 << oo_order(oo);
1364
80c3a998 1365 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1366
1367 /*
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1370 */
1371 if (s->ctor)
1372 kmemcheck_mark_uninitialized_pages(page, pages);
1373 else
1374 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1375 }
1376
737b719e
DR
1377 if (flags & __GFP_WAIT)
1378 local_irq_disable();
1379 if (!page)
1380 return NULL;
1381
834f3d11 1382 page->objects = oo_objects(oo);
81819f0f
CL
1383 mod_zone_page_state(page_zone(page),
1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1386 1 << oo_order(oo));
81819f0f
CL
1387
1388 return page;
1389}
1390
1391static void setup_object(struct kmem_cache *s, struct page *page,
1392 void *object)
1393{
3ec09742 1394 setup_object_debug(s, page, object);
4f104934 1395 if (unlikely(s->ctor))
51cc5068 1396 s->ctor(object);
81819f0f
CL
1397}
1398
1399static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400{
1401 struct page *page;
81819f0f 1402 void *start;
81819f0f
CL
1403 void *last;
1404 void *p;
1f458cbf 1405 int order;
81819f0f 1406
6cb06229 1407 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1408
6cb06229
CL
1409 page = allocate_slab(s,
1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1411 if (!page)
1412 goto out;
1413
1f458cbf 1414 order = compound_order(page);
205ab99d 1415 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1416 memcg_bind_pages(s, order);
1b4f59e3 1417 page->slab_cache = s;
c03f94cc 1418 __SetPageSlab(page);
072bb0aa
MG
1419 if (page->pfmemalloc)
1420 SetPageSlabPfmemalloc(page);
81819f0f
CL
1421
1422 start = page_address(page);
81819f0f
CL
1423
1424 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1425 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1426
1427 last = start;
224a88be 1428 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1429 setup_object(s, page, last);
1430 set_freepointer(s, last, p);
1431 last = p;
1432 }
1433 setup_object(s, page, last);
a973e9dd 1434 set_freepointer(s, last, NULL);
81819f0f
CL
1435
1436 page->freelist = start;
e6e82ea1 1437 page->inuse = page->objects;
8cb0a506 1438 page->frozen = 1;
81819f0f 1439out:
81819f0f
CL
1440 return page;
1441}
1442
1443static void __free_slab(struct kmem_cache *s, struct page *page)
1444{
834f3d11
CL
1445 int order = compound_order(page);
1446 int pages = 1 << order;
81819f0f 1447
af537b0a 1448 if (kmem_cache_debug(s)) {
81819f0f
CL
1449 void *p;
1450
1451 slab_pad_check(s, page);
224a88be
CL
1452 for_each_object(p, s, page_address(page),
1453 page->objects)
f7cb1933 1454 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1455 }
1456
b1eeab67 1457 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1458
81819f0f
CL
1459 mod_zone_page_state(page_zone(page),
1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1462 -pages);
81819f0f 1463
072bb0aa 1464 __ClearPageSlabPfmemalloc(page);
49bd5221 1465 __ClearPageSlab(page);
1f458cbf
GC
1466
1467 memcg_release_pages(s, order);
22b751c3 1468 page_mapcount_reset(page);
1eb5ac64
NP
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1471 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1472}
1473
da9a638c
LJ
1474#define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476
81819f0f
CL
1477static void rcu_free_slab(struct rcu_head *h)
1478{
1479 struct page *page;
1480
da9a638c
LJ
1481 if (need_reserve_slab_rcu)
1482 page = virt_to_head_page(h);
1483 else
1484 page = container_of((struct list_head *)h, struct page, lru);
1485
1b4f59e3 1486 __free_slab(page->slab_cache, page);
81819f0f
CL
1487}
1488
1489static void free_slab(struct kmem_cache *s, struct page *page)
1490{
1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1492 struct rcu_head *head;
1493
1494 if (need_reserve_slab_rcu) {
1495 int order = compound_order(page);
1496 int offset = (PAGE_SIZE << order) - s->reserved;
1497
1498 VM_BUG_ON(s->reserved != sizeof(*head));
1499 head = page_address(page) + offset;
1500 } else {
1501 /*
1502 * RCU free overloads the RCU head over the LRU
1503 */
1504 head = (void *)&page->lru;
1505 }
81819f0f
CL
1506
1507 call_rcu(head, rcu_free_slab);
1508 } else
1509 __free_slab(s, page);
1510}
1511
1512static void discard_slab(struct kmem_cache *s, struct page *page)
1513{
205ab99d 1514 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1515 free_slab(s, page);
1516}
1517
1518/*
5cc6eee8 1519 * Management of partially allocated slabs.
81819f0f 1520 */
1e4dd946
SR
1521static inline void
1522__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1523{
e95eed57 1524 n->nr_partial++;
136333d1 1525 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1526 list_add_tail(&page->lru, &n->partial);
1527 else
1528 list_add(&page->lru, &n->partial);
81819f0f
CL
1529}
1530
1e4dd946
SR
1531static inline void add_partial(struct kmem_cache_node *n,
1532 struct page *page, int tail)
62e346a8 1533{
c65c1877 1534 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1535 __add_partial(n, page, tail);
1536}
c65c1877 1537
1e4dd946
SR
1538static inline void
1539__remove_partial(struct kmem_cache_node *n, struct page *page)
1540{
62e346a8
CL
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543}
1544
1e4dd946
SR
1545static inline void remove_partial(struct kmem_cache_node *n,
1546 struct page *page)
1547{
1548 lockdep_assert_held(&n->list_lock);
1549 __remove_partial(n, page);
1550}
1551
81819f0f 1552/*
7ced3719
CL
1553 * Remove slab from the partial list, freeze it and
1554 * return the pointer to the freelist.
81819f0f 1555 *
497b66f2 1556 * Returns a list of objects or NULL if it fails.
81819f0f 1557 */
497b66f2 1558static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1559 struct kmem_cache_node *n, struct page *page,
633b0764 1560 int mode, int *objects)
81819f0f 1561{
2cfb7455
CL
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
c65c1877
PZ
1566 lockdep_assert_held(&n->list_lock);
1567
2cfb7455
CL
1568 /*
1569 * Zap the freelist and set the frozen bit.
1570 * The old freelist is the list of objects for the
1571 * per cpu allocation list.
1572 */
7ced3719
CL
1573 freelist = page->freelist;
1574 counters = page->counters;
1575 new.counters = counters;
633b0764 1576 *objects = new.objects - new.inuse;
23910c50 1577 if (mode) {
7ced3719 1578 new.inuse = page->objects;
23910c50
PE
1579 new.freelist = NULL;
1580 } else {
1581 new.freelist = freelist;
1582 }
2cfb7455 1583
a0132ac0 1584 VM_BUG_ON(new.frozen);
7ced3719 1585 new.frozen = 1;
2cfb7455 1586
7ced3719 1587 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1588 freelist, counters,
02d7633f 1589 new.freelist, new.counters,
7ced3719 1590 "acquire_slab"))
7ced3719 1591 return NULL;
2cfb7455
CL
1592
1593 remove_partial(n, page);
7ced3719 1594 WARN_ON(!freelist);
49e22585 1595 return freelist;
81819f0f
CL
1596}
1597
633b0764 1598static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1599static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1600
81819f0f 1601/*
672bba3a 1602 * Try to allocate a partial slab from a specific node.
81819f0f 1603 */
8ba00bb6
JK
1604static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1605 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1606{
49e22585
CL
1607 struct page *page, *page2;
1608 void *object = NULL;
633b0764
JK
1609 int available = 0;
1610 int objects;
81819f0f
CL
1611
1612 /*
1613 * Racy check. If we mistakenly see no partial slabs then we
1614 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1615 * partial slab and there is none available then get_partials()
1616 * will return NULL.
81819f0f
CL
1617 */
1618 if (!n || !n->nr_partial)
1619 return NULL;
1620
1621 spin_lock(&n->list_lock);
49e22585 1622 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1623 void *t;
49e22585 1624
8ba00bb6
JK
1625 if (!pfmemalloc_match(page, flags))
1626 continue;
1627
633b0764 1628 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1629 if (!t)
1630 break;
1631
633b0764 1632 available += objects;
12d79634 1633 if (!object) {
49e22585 1634 c->page = page;
49e22585 1635 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1636 object = t;
49e22585 1637 } else {
633b0764 1638 put_cpu_partial(s, page, 0);
8028dcea 1639 stat(s, CPU_PARTIAL_NODE);
49e22585 1640 }
345c905d
JK
1641 if (!kmem_cache_has_cpu_partial(s)
1642 || available > s->cpu_partial / 2)
49e22585
CL
1643 break;
1644
497b66f2 1645 }
81819f0f 1646 spin_unlock(&n->list_lock);
497b66f2 1647 return object;
81819f0f
CL
1648}
1649
1650/*
672bba3a 1651 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1652 */
de3ec035 1653static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1654 struct kmem_cache_cpu *c)
81819f0f
CL
1655{
1656#ifdef CONFIG_NUMA
1657 struct zonelist *zonelist;
dd1a239f 1658 struct zoneref *z;
54a6eb5c
MG
1659 struct zone *zone;
1660 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1661 void *object;
cc9a6c87 1662 unsigned int cpuset_mems_cookie;
81819f0f
CL
1663
1664 /*
672bba3a
CL
1665 * The defrag ratio allows a configuration of the tradeoffs between
1666 * inter node defragmentation and node local allocations. A lower
1667 * defrag_ratio increases the tendency to do local allocations
1668 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1669 *
672bba3a
CL
1670 * If the defrag_ratio is set to 0 then kmalloc() always
1671 * returns node local objects. If the ratio is higher then kmalloc()
1672 * may return off node objects because partial slabs are obtained
1673 * from other nodes and filled up.
81819f0f 1674 *
6446faa2 1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1676 * defrag_ratio = 1000) then every (well almost) allocation will
1677 * first attempt to defrag slab caches on other nodes. This means
1678 * scanning over all nodes to look for partial slabs which may be
1679 * expensive if we do it every time we are trying to find a slab
1680 * with available objects.
81819f0f 1681 */
9824601e
CL
1682 if (!s->remote_node_defrag_ratio ||
1683 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1684 return NULL;
1685
cc9a6c87 1686 do {
d26914d1 1687 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1688 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1690 struct kmem_cache_node *n;
1691
1692 n = get_node(s, zone_to_nid(zone));
1693
1694 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1695 n->nr_partial > s->min_partial) {
8ba00bb6 1696 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1697 if (object) {
1698 /*
d26914d1
MG
1699 * Don't check read_mems_allowed_retry()
1700 * here - if mems_allowed was updated in
1701 * parallel, that was a harmless race
1702 * between allocation and the cpuset
1703 * update
cc9a6c87 1704 */
cc9a6c87
MG
1705 return object;
1706 }
c0ff7453 1707 }
81819f0f 1708 }
d26914d1 1709 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1710#endif
1711 return NULL;
1712}
1713
1714/*
1715 * Get a partial page, lock it and return it.
1716 */
497b66f2 1717static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1718 struct kmem_cache_cpu *c)
81819f0f 1719{
497b66f2 1720 void *object;
2154a336 1721 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1722
8ba00bb6 1723 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1724 if (object || node != NUMA_NO_NODE)
1725 return object;
81819f0f 1726
acd19fd1 1727 return get_any_partial(s, flags, c);
81819f0f
CL
1728}
1729
8a5ec0ba
CL
1730#ifdef CONFIG_PREEMPT
1731/*
1732 * Calculate the next globally unique transaction for disambiguiation
1733 * during cmpxchg. The transactions start with the cpu number and are then
1734 * incremented by CONFIG_NR_CPUS.
1735 */
1736#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1737#else
1738/*
1739 * No preemption supported therefore also no need to check for
1740 * different cpus.
1741 */
1742#define TID_STEP 1
1743#endif
1744
1745static inline unsigned long next_tid(unsigned long tid)
1746{
1747 return tid + TID_STEP;
1748}
1749
1750static inline unsigned int tid_to_cpu(unsigned long tid)
1751{
1752 return tid % TID_STEP;
1753}
1754
1755static inline unsigned long tid_to_event(unsigned long tid)
1756{
1757 return tid / TID_STEP;
1758}
1759
1760static inline unsigned int init_tid(int cpu)
1761{
1762 return cpu;
1763}
1764
1765static inline void note_cmpxchg_failure(const char *n,
1766 const struct kmem_cache *s, unsigned long tid)
1767{
1768#ifdef SLUB_DEBUG_CMPXCHG
1769 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1770
f9f58285 1771 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1772
1773#ifdef CONFIG_PREEMPT
1774 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1775 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1776 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1777 else
1778#endif
1779 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1780 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1781 tid_to_event(tid), tid_to_event(actual_tid));
1782 else
f9f58285 1783 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1784 actual_tid, tid, next_tid(tid));
1785#endif
4fdccdfb 1786 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1787}
1788
788e1aad 1789static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1790{
8a5ec0ba
CL
1791 int cpu;
1792
1793 for_each_possible_cpu(cpu)
1794 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1795}
2cfb7455 1796
81819f0f
CL
1797/*
1798 * Remove the cpu slab
1799 */
d0e0ac97
CG
1800static void deactivate_slab(struct kmem_cache *s, struct page *page,
1801 void *freelist)
81819f0f 1802{
2cfb7455 1803 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1804 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1805 int lock = 0;
1806 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1807 void *nextfree;
136333d1 1808 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1809 struct page new;
1810 struct page old;
1811
1812 if (page->freelist) {
84e554e6 1813 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1814 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1815 }
1816
894b8788 1817 /*
2cfb7455
CL
1818 * Stage one: Free all available per cpu objects back
1819 * to the page freelist while it is still frozen. Leave the
1820 * last one.
1821 *
1822 * There is no need to take the list->lock because the page
1823 * is still frozen.
1824 */
1825 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1826 void *prior;
1827 unsigned long counters;
1828
1829 do {
1830 prior = page->freelist;
1831 counters = page->counters;
1832 set_freepointer(s, freelist, prior);
1833 new.counters = counters;
1834 new.inuse--;
a0132ac0 1835 VM_BUG_ON(!new.frozen);
2cfb7455 1836
1d07171c 1837 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1838 prior, counters,
1839 freelist, new.counters,
1840 "drain percpu freelist"));
1841
1842 freelist = nextfree;
1843 }
1844
894b8788 1845 /*
2cfb7455
CL
1846 * Stage two: Ensure that the page is unfrozen while the
1847 * list presence reflects the actual number of objects
1848 * during unfreeze.
1849 *
1850 * We setup the list membership and then perform a cmpxchg
1851 * with the count. If there is a mismatch then the page
1852 * is not unfrozen but the page is on the wrong list.
1853 *
1854 * Then we restart the process which may have to remove
1855 * the page from the list that we just put it on again
1856 * because the number of objects in the slab may have
1857 * changed.
894b8788 1858 */
2cfb7455 1859redo:
894b8788 1860
2cfb7455
CL
1861 old.freelist = page->freelist;
1862 old.counters = page->counters;
a0132ac0 1863 VM_BUG_ON(!old.frozen);
7c2e132c 1864
2cfb7455
CL
1865 /* Determine target state of the slab */
1866 new.counters = old.counters;
1867 if (freelist) {
1868 new.inuse--;
1869 set_freepointer(s, freelist, old.freelist);
1870 new.freelist = freelist;
1871 } else
1872 new.freelist = old.freelist;
1873
1874 new.frozen = 0;
1875
81107188 1876 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1877 m = M_FREE;
1878 else if (new.freelist) {
1879 m = M_PARTIAL;
1880 if (!lock) {
1881 lock = 1;
1882 /*
1883 * Taking the spinlock removes the possiblity
1884 * that acquire_slab() will see a slab page that
1885 * is frozen
1886 */
1887 spin_lock(&n->list_lock);
1888 }
1889 } else {
1890 m = M_FULL;
1891 if (kmem_cache_debug(s) && !lock) {
1892 lock = 1;
1893 /*
1894 * This also ensures that the scanning of full
1895 * slabs from diagnostic functions will not see
1896 * any frozen slabs.
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 }
1901
1902 if (l != m) {
1903
1904 if (l == M_PARTIAL)
1905
1906 remove_partial(n, page);
1907
1908 else if (l == M_FULL)
894b8788 1909
c65c1877 1910 remove_full(s, n, page);
2cfb7455
CL
1911
1912 if (m == M_PARTIAL) {
1913
1914 add_partial(n, page, tail);
136333d1 1915 stat(s, tail);
2cfb7455
CL
1916
1917 } else if (m == M_FULL) {
894b8788 1918
2cfb7455
CL
1919 stat(s, DEACTIVATE_FULL);
1920 add_full(s, n, page);
1921
1922 }
1923 }
1924
1925 l = m;
1d07171c 1926 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1927 old.freelist, old.counters,
1928 new.freelist, new.counters,
1929 "unfreezing slab"))
1930 goto redo;
1931
2cfb7455
CL
1932 if (lock)
1933 spin_unlock(&n->list_lock);
1934
1935 if (m == M_FREE) {
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
894b8788 1939 }
81819f0f
CL
1940}
1941
d24ac77f
JK
1942/*
1943 * Unfreeze all the cpu partial slabs.
1944 *
59a09917
CL
1945 * This function must be called with interrupts disabled
1946 * for the cpu using c (or some other guarantee must be there
1947 * to guarantee no concurrent accesses).
d24ac77f 1948 */
59a09917
CL
1949static void unfreeze_partials(struct kmem_cache *s,
1950 struct kmem_cache_cpu *c)
49e22585 1951{
345c905d 1952#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1953 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1954 struct page *page, *discard_page = NULL;
49e22585
CL
1955
1956 while ((page = c->partial)) {
49e22585
CL
1957 struct page new;
1958 struct page old;
1959
1960 c->partial = page->next;
43d77867
JK
1961
1962 n2 = get_node(s, page_to_nid(page));
1963 if (n != n2) {
1964 if (n)
1965 spin_unlock(&n->list_lock);
1966
1967 n = n2;
1968 spin_lock(&n->list_lock);
1969 }
49e22585
CL
1970
1971 do {
1972
1973 old.freelist = page->freelist;
1974 old.counters = page->counters;
a0132ac0 1975 VM_BUG_ON(!old.frozen);
49e22585
CL
1976
1977 new.counters = old.counters;
1978 new.freelist = old.freelist;
1979
1980 new.frozen = 0;
1981
d24ac77f 1982 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1983 old.freelist, old.counters,
1984 new.freelist, new.counters,
1985 "unfreezing slab"));
1986
43d77867 1987 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1988 page->next = discard_page;
1989 discard_page = page;
43d77867
JK
1990 } else {
1991 add_partial(n, page, DEACTIVATE_TO_TAIL);
1992 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1993 }
1994 }
1995
1996 if (n)
1997 spin_unlock(&n->list_lock);
9ada1934
SL
1998
1999 while (discard_page) {
2000 page = discard_page;
2001 discard_page = discard_page->next;
2002
2003 stat(s, DEACTIVATE_EMPTY);
2004 discard_slab(s, page);
2005 stat(s, FREE_SLAB);
2006 }
345c905d 2007#endif
49e22585
CL
2008}
2009
2010/*
2011 * Put a page that was just frozen (in __slab_free) into a partial page
2012 * slot if available. This is done without interrupts disabled and without
2013 * preemption disabled. The cmpxchg is racy and may put the partial page
2014 * onto a random cpus partial slot.
2015 *
2016 * If we did not find a slot then simply move all the partials to the
2017 * per node partial list.
2018 */
633b0764 2019static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2020{
345c905d 2021#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2022 struct page *oldpage;
2023 int pages;
2024 int pobjects;
2025
2026 do {
2027 pages = 0;
2028 pobjects = 0;
2029 oldpage = this_cpu_read(s->cpu_slab->partial);
2030
2031 if (oldpage) {
2032 pobjects = oldpage->pobjects;
2033 pages = oldpage->pages;
2034 if (drain && pobjects > s->cpu_partial) {
2035 unsigned long flags;
2036 /*
2037 * partial array is full. Move the existing
2038 * set to the per node partial list.
2039 */
2040 local_irq_save(flags);
59a09917 2041 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2042 local_irq_restore(flags);
e24fc410 2043 oldpage = NULL;
49e22585
CL
2044 pobjects = 0;
2045 pages = 0;
8028dcea 2046 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2047 }
2048 }
2049
2050 pages++;
2051 pobjects += page->objects - page->inuse;
2052
2053 page->pages = pages;
2054 page->pobjects = pobjects;
2055 page->next = oldpage;
2056
d0e0ac97
CG
2057 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2058 != oldpage);
345c905d 2059#endif
49e22585
CL
2060}
2061
dfb4f096 2062static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2063{
84e554e6 2064 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2065 deactivate_slab(s, c->page, c->freelist);
2066
2067 c->tid = next_tid(c->tid);
2068 c->page = NULL;
2069 c->freelist = NULL;
81819f0f
CL
2070}
2071
2072/*
2073 * Flush cpu slab.
6446faa2 2074 *
81819f0f
CL
2075 * Called from IPI handler with interrupts disabled.
2076 */
0c710013 2077static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2078{
9dfc6e68 2079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2080
49e22585
CL
2081 if (likely(c)) {
2082 if (c->page)
2083 flush_slab(s, c);
2084
59a09917 2085 unfreeze_partials(s, c);
49e22585 2086 }
81819f0f
CL
2087}
2088
2089static void flush_cpu_slab(void *d)
2090{
2091 struct kmem_cache *s = d;
81819f0f 2092
dfb4f096 2093 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2094}
2095
a8364d55
GBY
2096static bool has_cpu_slab(int cpu, void *info)
2097{
2098 struct kmem_cache *s = info;
2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2100
02e1a9cd 2101 return c->page || c->partial;
a8364d55
GBY
2102}
2103
81819f0f
CL
2104static void flush_all(struct kmem_cache *s)
2105{
a8364d55 2106 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2107}
2108
dfb4f096
CL
2109/*
2110 * Check if the objects in a per cpu structure fit numa
2111 * locality expectations.
2112 */
57d437d2 2113static inline int node_match(struct page *page, int node)
dfb4f096
CL
2114{
2115#ifdef CONFIG_NUMA
4d7868e6 2116 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2117 return 0;
2118#endif
2119 return 1;
2120}
2121
9a02d699 2122#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2123static int count_free(struct page *page)
2124{
2125 return page->objects - page->inuse;
2126}
2127
9a02d699
DR
2128static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2129{
2130 return atomic_long_read(&n->total_objects);
2131}
2132#endif /* CONFIG_SLUB_DEBUG */
2133
2134#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2135static unsigned long count_partial(struct kmem_cache_node *n,
2136 int (*get_count)(struct page *))
2137{
2138 unsigned long flags;
2139 unsigned long x = 0;
2140 struct page *page;
2141
2142 spin_lock_irqsave(&n->list_lock, flags);
2143 list_for_each_entry(page, &n->partial, lru)
2144 x += get_count(page);
2145 spin_unlock_irqrestore(&n->list_lock, flags);
2146 return x;
2147}
9a02d699 2148#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2149
781b2ba6
PE
2150static noinline void
2151slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2152{
9a02d699
DR
2153#ifdef CONFIG_SLUB_DEBUG
2154 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2155 DEFAULT_RATELIMIT_BURST);
781b2ba6
PE
2156 int node;
2157
9a02d699
DR
2158 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2159 return;
2160
f9f58285 2161 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2162 nid, gfpflags);
f9f58285
FF
2163 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2164 s->name, s->object_size, s->size, oo_order(s->oo),
2165 oo_order(s->min));
781b2ba6 2166
3b0efdfa 2167 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2168 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2169 s->name);
fa5ec8a1 2170
781b2ba6
PE
2171 for_each_online_node(node) {
2172 struct kmem_cache_node *n = get_node(s, node);
2173 unsigned long nr_slabs;
2174 unsigned long nr_objs;
2175 unsigned long nr_free;
2176
2177 if (!n)
2178 continue;
2179
26c02cf0
AB
2180 nr_free = count_partial(n, count_free);
2181 nr_slabs = node_nr_slabs(n);
2182 nr_objs = node_nr_objs(n);
781b2ba6 2183
f9f58285 2184 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2185 node, nr_slabs, nr_objs, nr_free);
2186 }
9a02d699 2187#endif
781b2ba6
PE
2188}
2189
497b66f2
CL
2190static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2191 int node, struct kmem_cache_cpu **pc)
2192{
6faa6833 2193 void *freelist;
188fd063
CL
2194 struct kmem_cache_cpu *c = *pc;
2195 struct page *page;
497b66f2 2196
188fd063 2197 freelist = get_partial(s, flags, node, c);
497b66f2 2198
188fd063
CL
2199 if (freelist)
2200 return freelist;
2201
2202 page = new_slab(s, flags, node);
497b66f2
CL
2203 if (page) {
2204 c = __this_cpu_ptr(s->cpu_slab);
2205 if (c->page)
2206 flush_slab(s, c);
2207
2208 /*
2209 * No other reference to the page yet so we can
2210 * muck around with it freely without cmpxchg
2211 */
6faa6833 2212 freelist = page->freelist;
497b66f2
CL
2213 page->freelist = NULL;
2214
2215 stat(s, ALLOC_SLAB);
497b66f2
CL
2216 c->page = page;
2217 *pc = c;
2218 } else
6faa6833 2219 freelist = NULL;
497b66f2 2220
6faa6833 2221 return freelist;
497b66f2
CL
2222}
2223
072bb0aa
MG
2224static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2225{
2226 if (unlikely(PageSlabPfmemalloc(page)))
2227 return gfp_pfmemalloc_allowed(gfpflags);
2228
2229 return true;
2230}
2231
213eeb9f 2232/*
d0e0ac97
CG
2233 * Check the page->freelist of a page and either transfer the freelist to the
2234 * per cpu freelist or deactivate the page.
213eeb9f
CL
2235 *
2236 * The page is still frozen if the return value is not NULL.
2237 *
2238 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2239 *
2240 * This function must be called with interrupt disabled.
213eeb9f
CL
2241 */
2242static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2243{
2244 struct page new;
2245 unsigned long counters;
2246 void *freelist;
2247
2248 do {
2249 freelist = page->freelist;
2250 counters = page->counters;
6faa6833 2251
213eeb9f 2252 new.counters = counters;
a0132ac0 2253 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2254
2255 new.inuse = page->objects;
2256 new.frozen = freelist != NULL;
2257
d24ac77f 2258 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2259 freelist, counters,
2260 NULL, new.counters,
2261 "get_freelist"));
2262
2263 return freelist;
2264}
2265
81819f0f 2266/*
894b8788
CL
2267 * Slow path. The lockless freelist is empty or we need to perform
2268 * debugging duties.
2269 *
894b8788
CL
2270 * Processing is still very fast if new objects have been freed to the
2271 * regular freelist. In that case we simply take over the regular freelist
2272 * as the lockless freelist and zap the regular freelist.
81819f0f 2273 *
894b8788
CL
2274 * If that is not working then we fall back to the partial lists. We take the
2275 * first element of the freelist as the object to allocate now and move the
2276 * rest of the freelist to the lockless freelist.
81819f0f 2277 *
894b8788 2278 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2279 * we need to allocate a new slab. This is the slowest path since it involves
2280 * a call to the page allocator and the setup of a new slab.
81819f0f 2281 */
ce71e27c
EGM
2282static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2283 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2284{
6faa6833 2285 void *freelist;
f6e7def7 2286 struct page *page;
8a5ec0ba
CL
2287 unsigned long flags;
2288
2289 local_irq_save(flags);
2290#ifdef CONFIG_PREEMPT
2291 /*
2292 * We may have been preempted and rescheduled on a different
2293 * cpu before disabling interrupts. Need to reload cpu area
2294 * pointer.
2295 */
2296 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2297#endif
81819f0f 2298
f6e7def7
CL
2299 page = c->page;
2300 if (!page)
81819f0f 2301 goto new_slab;
49e22585 2302redo:
6faa6833 2303
57d437d2 2304 if (unlikely(!node_match(page, node))) {
e36a2652 2305 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2306 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2307 c->page = NULL;
2308 c->freelist = NULL;
fc59c053
CL
2309 goto new_slab;
2310 }
6446faa2 2311
072bb0aa
MG
2312 /*
2313 * By rights, we should be searching for a slab page that was
2314 * PFMEMALLOC but right now, we are losing the pfmemalloc
2315 * information when the page leaves the per-cpu allocator
2316 */
2317 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2318 deactivate_slab(s, page, c->freelist);
2319 c->page = NULL;
2320 c->freelist = NULL;
2321 goto new_slab;
2322 }
2323
73736e03 2324 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2325 freelist = c->freelist;
2326 if (freelist)
73736e03 2327 goto load_freelist;
03e404af 2328
f6e7def7 2329 freelist = get_freelist(s, page);
6446faa2 2330
6faa6833 2331 if (!freelist) {
03e404af
CL
2332 c->page = NULL;
2333 stat(s, DEACTIVATE_BYPASS);
fc59c053 2334 goto new_slab;
03e404af 2335 }
6446faa2 2336
84e554e6 2337 stat(s, ALLOC_REFILL);
6446faa2 2338
894b8788 2339load_freelist:
507effea
CL
2340 /*
2341 * freelist is pointing to the list of objects to be used.
2342 * page is pointing to the page from which the objects are obtained.
2343 * That page must be frozen for per cpu allocations to work.
2344 */
a0132ac0 2345 VM_BUG_ON(!c->page->frozen);
6faa6833 2346 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2347 c->tid = next_tid(c->tid);
2348 local_irq_restore(flags);
6faa6833 2349 return freelist;
81819f0f 2350
81819f0f 2351new_slab:
2cfb7455 2352
49e22585 2353 if (c->partial) {
f6e7def7
CL
2354 page = c->page = c->partial;
2355 c->partial = page->next;
49e22585
CL
2356 stat(s, CPU_PARTIAL_ALLOC);
2357 c->freelist = NULL;
2358 goto redo;
81819f0f
CL
2359 }
2360
188fd063 2361 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2362
f4697436 2363 if (unlikely(!freelist)) {
9a02d699 2364 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2365 local_irq_restore(flags);
2366 return NULL;
81819f0f 2367 }
2cfb7455 2368
f6e7def7 2369 page = c->page;
5091b74a 2370 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2371 goto load_freelist;
2cfb7455 2372
497b66f2 2373 /* Only entered in the debug case */
d0e0ac97
CG
2374 if (kmem_cache_debug(s) &&
2375 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2376 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2377
f6e7def7 2378 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2379 c->page = NULL;
2380 c->freelist = NULL;
a71ae47a 2381 local_irq_restore(flags);
6faa6833 2382 return freelist;
894b8788
CL
2383}
2384
2385/*
2386 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2387 * have the fastpath folded into their functions. So no function call
2388 * overhead for requests that can be satisfied on the fastpath.
2389 *
2390 * The fastpath works by first checking if the lockless freelist can be used.
2391 * If not then __slab_alloc is called for slow processing.
2392 *
2393 * Otherwise we can simply pick the next object from the lockless free list.
2394 */
2b847c3c 2395static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2396 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2397{
894b8788 2398 void **object;
dfb4f096 2399 struct kmem_cache_cpu *c;
57d437d2 2400 struct page *page;
8a5ec0ba 2401 unsigned long tid;
1f84260c 2402
c016b0bd 2403 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2404 return NULL;
1f84260c 2405
d79923fa 2406 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2407redo:
8a5ec0ba
CL
2408 /*
2409 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2410 * enabled. We may switch back and forth between cpus while
2411 * reading from one cpu area. That does not matter as long
2412 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2413 *
2414 * Preemption is disabled for the retrieval of the tid because that
2415 * must occur from the current processor. We cannot allow rescheduling
2416 * on a different processor between the determination of the pointer
2417 * and the retrieval of the tid.
8a5ec0ba 2418 */
7cccd80b 2419 preempt_disable();
9dfc6e68 2420 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2421
8a5ec0ba
CL
2422 /*
2423 * The transaction ids are globally unique per cpu and per operation on
2424 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2425 * occurs on the right processor and that there was no operation on the
2426 * linked list in between.
2427 */
2428 tid = c->tid;
7cccd80b 2429 preempt_enable();
8a5ec0ba 2430
9dfc6e68 2431 object = c->freelist;
57d437d2 2432 page = c->page;
8eae1492 2433 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2434 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2435 stat(s, ALLOC_SLOWPATH);
2436 } else {
0ad9500e
ED
2437 void *next_object = get_freepointer_safe(s, object);
2438
8a5ec0ba 2439 /*
25985edc 2440 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2441 * operation and if we are on the right processor.
2442 *
d0e0ac97
CG
2443 * The cmpxchg does the following atomically (without lock
2444 * semantics!)
8a5ec0ba
CL
2445 * 1. Relocate first pointer to the current per cpu area.
2446 * 2. Verify that tid and freelist have not been changed
2447 * 3. If they were not changed replace tid and freelist
2448 *
d0e0ac97
CG
2449 * Since this is without lock semantics the protection is only
2450 * against code executing on this cpu *not* from access by
2451 * other cpus.
8a5ec0ba 2452 */
933393f5 2453 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2454 s->cpu_slab->freelist, s->cpu_slab->tid,
2455 object, tid,
0ad9500e 2456 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2457
2458 note_cmpxchg_failure("slab_alloc", s, tid);
2459 goto redo;
2460 }
0ad9500e 2461 prefetch_freepointer(s, next_object);
84e554e6 2462 stat(s, ALLOC_FASTPATH);
894b8788 2463 }
8a5ec0ba 2464
74e2134f 2465 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2466 memset(object, 0, s->object_size);
d07dbea4 2467
c016b0bd 2468 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2469
894b8788 2470 return object;
81819f0f
CL
2471}
2472
2b847c3c
EG
2473static __always_inline void *slab_alloc(struct kmem_cache *s,
2474 gfp_t gfpflags, unsigned long addr)
2475{
2476 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2477}
2478
81819f0f
CL
2479void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2480{
2b847c3c 2481 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2482
d0e0ac97
CG
2483 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2484 s->size, gfpflags);
5b882be4
EGM
2485
2486 return ret;
81819f0f
CL
2487}
2488EXPORT_SYMBOL(kmem_cache_alloc);
2489
0f24f128 2490#ifdef CONFIG_TRACING
4a92379b
RK
2491void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2492{
2b847c3c 2493 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2494 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2495 return ret;
2496}
2497EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2498#endif
2499
81819f0f
CL
2500#ifdef CONFIG_NUMA
2501void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2502{
2b847c3c 2503 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2504
ca2b84cb 2505 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2506 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2507
2508 return ret;
81819f0f
CL
2509}
2510EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2511
0f24f128 2512#ifdef CONFIG_TRACING
4a92379b 2513void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2514 gfp_t gfpflags,
4a92379b 2515 int node, size_t size)
5b882be4 2516{
2b847c3c 2517 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2518
2519 trace_kmalloc_node(_RET_IP_, ret,
2520 size, s->size, gfpflags, node);
2521 return ret;
5b882be4 2522}
4a92379b 2523EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2524#endif
5d1f57e4 2525#endif
5b882be4 2526
81819f0f 2527/*
894b8788
CL
2528 * Slow patch handling. This may still be called frequently since objects
2529 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2530 *
894b8788
CL
2531 * So we still attempt to reduce cache line usage. Just take the slab
2532 * lock and free the item. If there is no additional partial page
2533 * handling required then we can return immediately.
81819f0f 2534 */
894b8788 2535static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2536 void *x, unsigned long addr)
81819f0f
CL
2537{
2538 void *prior;
2539 void **object = (void *)x;
2cfb7455 2540 int was_frozen;
2cfb7455
CL
2541 struct page new;
2542 unsigned long counters;
2543 struct kmem_cache_node *n = NULL;
61728d1e 2544 unsigned long uninitialized_var(flags);
81819f0f 2545
8a5ec0ba 2546 stat(s, FREE_SLOWPATH);
81819f0f 2547
19c7ff9e
CL
2548 if (kmem_cache_debug(s) &&
2549 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2550 return;
6446faa2 2551
2cfb7455 2552 do {
837d678d
JK
2553 if (unlikely(n)) {
2554 spin_unlock_irqrestore(&n->list_lock, flags);
2555 n = NULL;
2556 }
2cfb7455
CL
2557 prior = page->freelist;
2558 counters = page->counters;
2559 set_freepointer(s, object, prior);
2560 new.counters = counters;
2561 was_frozen = new.frozen;
2562 new.inuse--;
837d678d 2563 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2564
c65c1877 2565 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2566
2567 /*
d0e0ac97
CG
2568 * Slab was on no list before and will be
2569 * partially empty
2570 * We can defer the list move and instead
2571 * freeze it.
49e22585
CL
2572 */
2573 new.frozen = 1;
2574
c65c1877 2575 } else { /* Needs to be taken off a list */
49e22585
CL
2576
2577 n = get_node(s, page_to_nid(page));
2578 /*
2579 * Speculatively acquire the list_lock.
2580 * If the cmpxchg does not succeed then we may
2581 * drop the list_lock without any processing.
2582 *
2583 * Otherwise the list_lock will synchronize with
2584 * other processors updating the list of slabs.
2585 */
2586 spin_lock_irqsave(&n->list_lock, flags);
2587
2588 }
2cfb7455 2589 }
81819f0f 2590
2cfb7455
CL
2591 } while (!cmpxchg_double_slab(s, page,
2592 prior, counters,
2593 object, new.counters,
2594 "__slab_free"));
81819f0f 2595
2cfb7455 2596 if (likely(!n)) {
49e22585
CL
2597
2598 /*
2599 * If we just froze the page then put it onto the
2600 * per cpu partial list.
2601 */
8028dcea 2602 if (new.frozen && !was_frozen) {
49e22585 2603 put_cpu_partial(s, page, 1);
8028dcea
AS
2604 stat(s, CPU_PARTIAL_FREE);
2605 }
49e22585 2606 /*
2cfb7455
CL
2607 * The list lock was not taken therefore no list
2608 * activity can be necessary.
2609 */
2610 if (was_frozen)
2611 stat(s, FREE_FROZEN);
80f08c19 2612 return;
2cfb7455 2613 }
81819f0f 2614
837d678d
JK
2615 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2616 goto slab_empty;
2617
81819f0f 2618 /*
837d678d
JK
2619 * Objects left in the slab. If it was not on the partial list before
2620 * then add it.
81819f0f 2621 */
345c905d
JK
2622 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2623 if (kmem_cache_debug(s))
c65c1877 2624 remove_full(s, n, page);
837d678d
JK
2625 add_partial(n, page, DEACTIVATE_TO_TAIL);
2626 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2627 }
80f08c19 2628 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2629 return;
2630
2631slab_empty:
a973e9dd 2632 if (prior) {
81819f0f 2633 /*
6fbabb20 2634 * Slab on the partial list.
81819f0f 2635 */
5cc6eee8 2636 remove_partial(n, page);
84e554e6 2637 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2638 } else {
6fbabb20 2639 /* Slab must be on the full list */
c65c1877
PZ
2640 remove_full(s, n, page);
2641 }
2cfb7455 2642
80f08c19 2643 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2644 stat(s, FREE_SLAB);
81819f0f 2645 discard_slab(s, page);
81819f0f
CL
2646}
2647
894b8788
CL
2648/*
2649 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2650 * can perform fastpath freeing without additional function calls.
2651 *
2652 * The fastpath is only possible if we are freeing to the current cpu slab
2653 * of this processor. This typically the case if we have just allocated
2654 * the item before.
2655 *
2656 * If fastpath is not possible then fall back to __slab_free where we deal
2657 * with all sorts of special processing.
2658 */
06428780 2659static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2660 struct page *page, void *x, unsigned long addr)
894b8788
CL
2661{
2662 void **object = (void *)x;
dfb4f096 2663 struct kmem_cache_cpu *c;
8a5ec0ba 2664 unsigned long tid;
1f84260c 2665
c016b0bd
CL
2666 slab_free_hook(s, x);
2667
8a5ec0ba
CL
2668redo:
2669 /*
2670 * Determine the currently cpus per cpu slab.
2671 * The cpu may change afterward. However that does not matter since
2672 * data is retrieved via this pointer. If we are on the same cpu
2673 * during the cmpxchg then the free will succedd.
2674 */
7cccd80b 2675 preempt_disable();
9dfc6e68 2676 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2677
8a5ec0ba 2678 tid = c->tid;
7cccd80b 2679 preempt_enable();
c016b0bd 2680
442b06bc 2681 if (likely(page == c->page)) {
ff12059e 2682 set_freepointer(s, object, c->freelist);
8a5ec0ba 2683
933393f5 2684 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2685 s->cpu_slab->freelist, s->cpu_slab->tid,
2686 c->freelist, tid,
2687 object, next_tid(tid)))) {
2688
2689 note_cmpxchg_failure("slab_free", s, tid);
2690 goto redo;
2691 }
84e554e6 2692 stat(s, FREE_FASTPATH);
894b8788 2693 } else
ff12059e 2694 __slab_free(s, page, x, addr);
894b8788 2695
894b8788
CL
2696}
2697
81819f0f
CL
2698void kmem_cache_free(struct kmem_cache *s, void *x)
2699{
b9ce5ef4
GC
2700 s = cache_from_obj(s, x);
2701 if (!s)
79576102 2702 return;
b9ce5ef4 2703 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2704 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2705}
2706EXPORT_SYMBOL(kmem_cache_free);
2707
81819f0f 2708/*
672bba3a
CL
2709 * Object placement in a slab is made very easy because we always start at
2710 * offset 0. If we tune the size of the object to the alignment then we can
2711 * get the required alignment by putting one properly sized object after
2712 * another.
81819f0f
CL
2713 *
2714 * Notice that the allocation order determines the sizes of the per cpu
2715 * caches. Each processor has always one slab available for allocations.
2716 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2717 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2718 * locking overhead.
81819f0f
CL
2719 */
2720
2721/*
2722 * Mininum / Maximum order of slab pages. This influences locking overhead
2723 * and slab fragmentation. A higher order reduces the number of partial slabs
2724 * and increases the number of allocations possible without having to
2725 * take the list_lock.
2726 */
2727static int slub_min_order;
114e9e89 2728static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2729static int slub_min_objects;
81819f0f
CL
2730
2731/*
2732 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2733 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2734 */
2735static int slub_nomerge;
2736
81819f0f
CL
2737/*
2738 * Calculate the order of allocation given an slab object size.
2739 *
672bba3a
CL
2740 * The order of allocation has significant impact on performance and other
2741 * system components. Generally order 0 allocations should be preferred since
2742 * order 0 does not cause fragmentation in the page allocator. Larger objects
2743 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2744 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2745 * would be wasted.
2746 *
2747 * In order to reach satisfactory performance we must ensure that a minimum
2748 * number of objects is in one slab. Otherwise we may generate too much
2749 * activity on the partial lists which requires taking the list_lock. This is
2750 * less a concern for large slabs though which are rarely used.
81819f0f 2751 *
672bba3a
CL
2752 * slub_max_order specifies the order where we begin to stop considering the
2753 * number of objects in a slab as critical. If we reach slub_max_order then
2754 * we try to keep the page order as low as possible. So we accept more waste
2755 * of space in favor of a small page order.
81819f0f 2756 *
672bba3a
CL
2757 * Higher order allocations also allow the placement of more objects in a
2758 * slab and thereby reduce object handling overhead. If the user has
2759 * requested a higher mininum order then we start with that one instead of
2760 * the smallest order which will fit the object.
81819f0f 2761 */
5e6d444e 2762static inline int slab_order(int size, int min_objects,
ab9a0f19 2763 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2764{
2765 int order;
2766 int rem;
6300ea75 2767 int min_order = slub_min_order;
81819f0f 2768
ab9a0f19 2769 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2770 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2771
6300ea75 2772 for (order = max(min_order,
5e6d444e
CL
2773 fls(min_objects * size - 1) - PAGE_SHIFT);
2774 order <= max_order; order++) {
81819f0f 2775
5e6d444e 2776 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2777
ab9a0f19 2778 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2779 continue;
2780
ab9a0f19 2781 rem = (slab_size - reserved) % size;
81819f0f 2782
5e6d444e 2783 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2784 break;
2785
2786 }
672bba3a 2787
81819f0f
CL
2788 return order;
2789}
2790
ab9a0f19 2791static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2792{
2793 int order;
2794 int min_objects;
2795 int fraction;
e8120ff1 2796 int max_objects;
5e6d444e
CL
2797
2798 /*
2799 * Attempt to find best configuration for a slab. This
2800 * works by first attempting to generate a layout with
2801 * the best configuration and backing off gradually.
2802 *
2803 * First we reduce the acceptable waste in a slab. Then
2804 * we reduce the minimum objects required in a slab.
2805 */
2806 min_objects = slub_min_objects;
9b2cd506
CL
2807 if (!min_objects)
2808 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2809 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2810 min_objects = min(min_objects, max_objects);
2811
5e6d444e 2812 while (min_objects > 1) {
c124f5b5 2813 fraction = 16;
5e6d444e
CL
2814 while (fraction >= 4) {
2815 order = slab_order(size, min_objects,
ab9a0f19 2816 slub_max_order, fraction, reserved);
5e6d444e
CL
2817 if (order <= slub_max_order)
2818 return order;
2819 fraction /= 2;
2820 }
5086c389 2821 min_objects--;
5e6d444e
CL
2822 }
2823
2824 /*
2825 * We were unable to place multiple objects in a slab. Now
2826 * lets see if we can place a single object there.
2827 */
ab9a0f19 2828 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2829 if (order <= slub_max_order)
2830 return order;
2831
2832 /*
2833 * Doh this slab cannot be placed using slub_max_order.
2834 */
ab9a0f19 2835 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2836 if (order < MAX_ORDER)
5e6d444e
CL
2837 return order;
2838 return -ENOSYS;
2839}
2840
5595cffc 2841static void
4053497d 2842init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2843{
2844 n->nr_partial = 0;
81819f0f
CL
2845 spin_lock_init(&n->list_lock);
2846 INIT_LIST_HEAD(&n->partial);
8ab1372f 2847#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2848 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2849 atomic_long_set(&n->total_objects, 0);
643b1138 2850 INIT_LIST_HEAD(&n->full);
8ab1372f 2851#endif
81819f0f
CL
2852}
2853
55136592 2854static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2855{
6c182dc0 2856 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2857 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2858
8a5ec0ba 2859 /*
d4d84fef
CM
2860 * Must align to double word boundary for the double cmpxchg
2861 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2862 */
d4d84fef
CM
2863 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2864 2 * sizeof(void *));
8a5ec0ba
CL
2865
2866 if (!s->cpu_slab)
2867 return 0;
2868
2869 init_kmem_cache_cpus(s);
4c93c355 2870
8a5ec0ba 2871 return 1;
4c93c355 2872}
4c93c355 2873
51df1142
CL
2874static struct kmem_cache *kmem_cache_node;
2875
81819f0f
CL
2876/*
2877 * No kmalloc_node yet so do it by hand. We know that this is the first
2878 * slab on the node for this slabcache. There are no concurrent accesses
2879 * possible.
2880 *
721ae22a
ZYW
2881 * Note that this function only works on the kmem_cache_node
2882 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2883 * memory on a fresh node that has no slab structures yet.
81819f0f 2884 */
55136592 2885static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2886{
2887 struct page *page;
2888 struct kmem_cache_node *n;
2889
51df1142 2890 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2891
51df1142 2892 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2893
2894 BUG_ON(!page);
a2f92ee7 2895 if (page_to_nid(page) != node) {
f9f58285
FF
2896 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2897 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2898 }
2899
81819f0f
CL
2900 n = page->freelist;
2901 BUG_ON(!n);
51df1142 2902 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2903 page->inuse = 1;
8cb0a506 2904 page->frozen = 0;
51df1142 2905 kmem_cache_node->node[node] = n;
8ab1372f 2906#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2907 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2908 init_tracking(kmem_cache_node, n);
8ab1372f 2909#endif
4053497d 2910 init_kmem_cache_node(n);
51df1142 2911 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2912
67b6c900 2913 /*
1e4dd946
SR
2914 * No locks need to be taken here as it has just been
2915 * initialized and there is no concurrent access.
67b6c900 2916 */
1e4dd946 2917 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2918}
2919
2920static void free_kmem_cache_nodes(struct kmem_cache *s)
2921{
2922 int node;
2923
f64dc58c 2924 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2925 struct kmem_cache_node *n = s->node[node];
51df1142 2926
73367bd8 2927 if (n)
51df1142
CL
2928 kmem_cache_free(kmem_cache_node, n);
2929
81819f0f
CL
2930 s->node[node] = NULL;
2931 }
2932}
2933
55136592 2934static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2935{
2936 int node;
81819f0f 2937
f64dc58c 2938 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2939 struct kmem_cache_node *n;
2940
73367bd8 2941 if (slab_state == DOWN) {
55136592 2942 early_kmem_cache_node_alloc(node);
73367bd8
AD
2943 continue;
2944 }
51df1142 2945 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2946 GFP_KERNEL, node);
81819f0f 2947
73367bd8
AD
2948 if (!n) {
2949 free_kmem_cache_nodes(s);
2950 return 0;
81819f0f 2951 }
73367bd8 2952
81819f0f 2953 s->node[node] = n;
4053497d 2954 init_kmem_cache_node(n);
81819f0f
CL
2955 }
2956 return 1;
2957}
81819f0f 2958
c0bdb232 2959static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2960{
2961 if (min < MIN_PARTIAL)
2962 min = MIN_PARTIAL;
2963 else if (min > MAX_PARTIAL)
2964 min = MAX_PARTIAL;
2965 s->min_partial = min;
2966}
2967
81819f0f
CL
2968/*
2969 * calculate_sizes() determines the order and the distribution of data within
2970 * a slab object.
2971 */
06b285dc 2972static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2973{
2974 unsigned long flags = s->flags;
3b0efdfa 2975 unsigned long size = s->object_size;
834f3d11 2976 int order;
81819f0f 2977
d8b42bf5
CL
2978 /*
2979 * Round up object size to the next word boundary. We can only
2980 * place the free pointer at word boundaries and this determines
2981 * the possible location of the free pointer.
2982 */
2983 size = ALIGN(size, sizeof(void *));
2984
2985#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2986 /*
2987 * Determine if we can poison the object itself. If the user of
2988 * the slab may touch the object after free or before allocation
2989 * then we should never poison the object itself.
2990 */
2991 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2992 !s->ctor)
81819f0f
CL
2993 s->flags |= __OBJECT_POISON;
2994 else
2995 s->flags &= ~__OBJECT_POISON;
2996
81819f0f
CL
2997
2998 /*
672bba3a 2999 * If we are Redzoning then check if there is some space between the
81819f0f 3000 * end of the object and the free pointer. If not then add an
672bba3a 3001 * additional word to have some bytes to store Redzone information.
81819f0f 3002 */
3b0efdfa 3003 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3004 size += sizeof(void *);
41ecc55b 3005#endif
81819f0f
CL
3006
3007 /*
672bba3a
CL
3008 * With that we have determined the number of bytes in actual use
3009 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3010 */
3011 s->inuse = size;
3012
3013 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3014 s->ctor)) {
81819f0f
CL
3015 /*
3016 * Relocate free pointer after the object if it is not
3017 * permitted to overwrite the first word of the object on
3018 * kmem_cache_free.
3019 *
3020 * This is the case if we do RCU, have a constructor or
3021 * destructor or are poisoning the objects.
3022 */
3023 s->offset = size;
3024 size += sizeof(void *);
3025 }
3026
c12b3c62 3027#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3028 if (flags & SLAB_STORE_USER)
3029 /*
3030 * Need to store information about allocs and frees after
3031 * the object.
3032 */
3033 size += 2 * sizeof(struct track);
3034
be7b3fbc 3035 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3036 /*
3037 * Add some empty padding so that we can catch
3038 * overwrites from earlier objects rather than let
3039 * tracking information or the free pointer be
0211a9c8 3040 * corrupted if a user writes before the start
81819f0f
CL
3041 * of the object.
3042 */
3043 size += sizeof(void *);
41ecc55b 3044#endif
672bba3a 3045
81819f0f
CL
3046 /*
3047 * SLUB stores one object immediately after another beginning from
3048 * offset 0. In order to align the objects we have to simply size
3049 * each object to conform to the alignment.
3050 */
45906855 3051 size = ALIGN(size, s->align);
81819f0f 3052 s->size = size;
06b285dc
CL
3053 if (forced_order >= 0)
3054 order = forced_order;
3055 else
ab9a0f19 3056 order = calculate_order(size, s->reserved);
81819f0f 3057
834f3d11 3058 if (order < 0)
81819f0f
CL
3059 return 0;
3060
b7a49f0d 3061 s->allocflags = 0;
834f3d11 3062 if (order)
b7a49f0d
CL
3063 s->allocflags |= __GFP_COMP;
3064
3065 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3066 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3067
3068 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3069 s->allocflags |= __GFP_RECLAIMABLE;
3070
81819f0f
CL
3071 /*
3072 * Determine the number of objects per slab
3073 */
ab9a0f19
LJ
3074 s->oo = oo_make(order, size, s->reserved);
3075 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3076 if (oo_objects(s->oo) > oo_objects(s->max))
3077 s->max = s->oo;
81819f0f 3078
834f3d11 3079 return !!oo_objects(s->oo);
81819f0f
CL
3080}
3081
8a13a4cc 3082static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3083{
8a13a4cc 3084 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3085 s->reserved = 0;
81819f0f 3086
da9a638c
LJ
3087 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3088 s->reserved = sizeof(struct rcu_head);
81819f0f 3089
06b285dc 3090 if (!calculate_sizes(s, -1))
81819f0f 3091 goto error;
3de47213
DR
3092 if (disable_higher_order_debug) {
3093 /*
3094 * Disable debugging flags that store metadata if the min slab
3095 * order increased.
3096 */
3b0efdfa 3097 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3098 s->flags &= ~DEBUG_METADATA_FLAGS;
3099 s->offset = 0;
3100 if (!calculate_sizes(s, -1))
3101 goto error;
3102 }
3103 }
81819f0f 3104
2565409f
HC
3105#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3106 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3107 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3108 /* Enable fast mode */
3109 s->flags |= __CMPXCHG_DOUBLE;
3110#endif
3111
3b89d7d8
DR
3112 /*
3113 * The larger the object size is, the more pages we want on the partial
3114 * list to avoid pounding the page allocator excessively.
3115 */
49e22585
CL
3116 set_min_partial(s, ilog2(s->size) / 2);
3117
3118 /*
3119 * cpu_partial determined the maximum number of objects kept in the
3120 * per cpu partial lists of a processor.
3121 *
3122 * Per cpu partial lists mainly contain slabs that just have one
3123 * object freed. If they are used for allocation then they can be
3124 * filled up again with minimal effort. The slab will never hit the
3125 * per node partial lists and therefore no locking will be required.
3126 *
3127 * This setting also determines
3128 *
3129 * A) The number of objects from per cpu partial slabs dumped to the
3130 * per node list when we reach the limit.
9f264904 3131 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3132 * per node list when we run out of per cpu objects. We only fetch
3133 * 50% to keep some capacity around for frees.
49e22585 3134 */
345c905d 3135 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3136 s->cpu_partial = 0;
3137 else if (s->size >= PAGE_SIZE)
49e22585
CL
3138 s->cpu_partial = 2;
3139 else if (s->size >= 1024)
3140 s->cpu_partial = 6;
3141 else if (s->size >= 256)
3142 s->cpu_partial = 13;
3143 else
3144 s->cpu_partial = 30;
3145
81819f0f 3146#ifdef CONFIG_NUMA
e2cb96b7 3147 s->remote_node_defrag_ratio = 1000;
81819f0f 3148#endif
55136592 3149 if (!init_kmem_cache_nodes(s))
dfb4f096 3150 goto error;
81819f0f 3151
55136592 3152 if (alloc_kmem_cache_cpus(s))
278b1bb1 3153 return 0;
ff12059e 3154
4c93c355 3155 free_kmem_cache_nodes(s);
81819f0f
CL
3156error:
3157 if (flags & SLAB_PANIC)
3158 panic("Cannot create slab %s size=%lu realsize=%u "
3159 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3160 s->name, (unsigned long)s->size, s->size,
3161 oo_order(s->oo), s->offset, flags);
278b1bb1 3162 return -EINVAL;
81819f0f 3163}
81819f0f 3164
33b12c38
CL
3165static void list_slab_objects(struct kmem_cache *s, struct page *page,
3166 const char *text)
3167{
3168#ifdef CONFIG_SLUB_DEBUG
3169 void *addr = page_address(page);
3170 void *p;
a5dd5c11
NK
3171 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3172 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3173 if (!map)
3174 return;
945cf2b6 3175 slab_err(s, page, text, s->name);
33b12c38 3176 slab_lock(page);
33b12c38 3177
5f80b13a 3178 get_map(s, page, map);
33b12c38
CL
3179 for_each_object(p, s, addr, page->objects) {
3180
3181 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3182 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3183 print_tracking(s, p);
3184 }
3185 }
3186 slab_unlock(page);
bbd7d57b 3187 kfree(map);
33b12c38
CL
3188#endif
3189}
3190
81819f0f 3191/*
599870b1 3192 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3193 * This is called from kmem_cache_close(). We must be the last thread
3194 * using the cache and therefore we do not need to lock anymore.
81819f0f 3195 */
599870b1 3196static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3197{
81819f0f
CL
3198 struct page *page, *h;
3199
33b12c38 3200 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3201 if (!page->inuse) {
1e4dd946 3202 __remove_partial(n, page);
81819f0f 3203 discard_slab(s, page);
33b12c38
CL
3204 } else {
3205 list_slab_objects(s, page,
945cf2b6 3206 "Objects remaining in %s on kmem_cache_close()");
599870b1 3207 }
33b12c38 3208 }
81819f0f
CL
3209}
3210
3211/*
672bba3a 3212 * Release all resources used by a slab cache.
81819f0f 3213 */
0c710013 3214static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3215{
3216 int node;
3217
3218 flush_all(s);
81819f0f 3219 /* Attempt to free all objects */
f64dc58c 3220 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3221 struct kmem_cache_node *n = get_node(s, node);
3222
599870b1
CL
3223 free_partial(s, n);
3224 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3225 return 1;
3226 }
945cf2b6 3227 free_percpu(s->cpu_slab);
81819f0f
CL
3228 free_kmem_cache_nodes(s);
3229 return 0;
3230}
3231
945cf2b6 3232int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3233{
41a21285 3234 return kmem_cache_close(s);
81819f0f 3235}
81819f0f
CL
3236
3237/********************************************************************
3238 * Kmalloc subsystem
3239 *******************************************************************/
3240
81819f0f
CL
3241static int __init setup_slub_min_order(char *str)
3242{
06428780 3243 get_option(&str, &slub_min_order);
81819f0f
CL
3244
3245 return 1;
3246}
3247
3248__setup("slub_min_order=", setup_slub_min_order);
3249
3250static int __init setup_slub_max_order(char *str)
3251{
06428780 3252 get_option(&str, &slub_max_order);
818cf590 3253 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3254
3255 return 1;
3256}
3257
3258__setup("slub_max_order=", setup_slub_max_order);
3259
3260static int __init setup_slub_min_objects(char *str)
3261{
06428780 3262 get_option(&str, &slub_min_objects);
81819f0f
CL
3263
3264 return 1;
3265}
3266
3267__setup("slub_min_objects=", setup_slub_min_objects);
3268
3269static int __init setup_slub_nomerge(char *str)
3270{
3271 slub_nomerge = 1;
3272 return 1;
3273}
3274
3275__setup("slub_nomerge", setup_slub_nomerge);
3276
81819f0f
CL
3277void *__kmalloc(size_t size, gfp_t flags)
3278{
aadb4bc4 3279 struct kmem_cache *s;
5b882be4 3280 void *ret;
81819f0f 3281
95a05b42 3282 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3283 return kmalloc_large(size, flags);
aadb4bc4 3284
2c59dd65 3285 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3286
3287 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3288 return s;
3289
2b847c3c 3290 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3291
ca2b84cb 3292 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3293
3294 return ret;
81819f0f
CL
3295}
3296EXPORT_SYMBOL(__kmalloc);
3297
5d1f57e4 3298#ifdef CONFIG_NUMA
f619cfe1
CL
3299static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3300{
b1eeab67 3301 struct page *page;
e4f7c0b4 3302 void *ptr = NULL;
f619cfe1 3303
d79923fa 3304 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3305 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3306 if (page)
e4f7c0b4
CM
3307 ptr = page_address(page);
3308
d56791b3 3309 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3310 return ptr;
f619cfe1
CL
3311}
3312
81819f0f
CL
3313void *__kmalloc_node(size_t size, gfp_t flags, int node)
3314{
aadb4bc4 3315 struct kmem_cache *s;
5b882be4 3316 void *ret;
81819f0f 3317
95a05b42 3318 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3319 ret = kmalloc_large_node(size, flags, node);
3320
ca2b84cb
EGM
3321 trace_kmalloc_node(_RET_IP_, ret,
3322 size, PAGE_SIZE << get_order(size),
3323 flags, node);
5b882be4
EGM
3324
3325 return ret;
3326 }
aadb4bc4 3327
2c59dd65 3328 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3329
3330 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3331 return s;
3332
2b847c3c 3333 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3334
ca2b84cb 3335 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3336
3337 return ret;
81819f0f
CL
3338}
3339EXPORT_SYMBOL(__kmalloc_node);
3340#endif
3341
3342size_t ksize(const void *object)
3343{
272c1d21 3344 struct page *page;
81819f0f 3345
ef8b4520 3346 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3347 return 0;
3348
294a80a8 3349 page = virt_to_head_page(object);
294a80a8 3350
76994412
PE
3351 if (unlikely(!PageSlab(page))) {
3352 WARN_ON(!PageCompound(page));
294a80a8 3353 return PAGE_SIZE << compound_order(page);
76994412 3354 }
81819f0f 3355
1b4f59e3 3356 return slab_ksize(page->slab_cache);
81819f0f 3357}
b1aabecd 3358EXPORT_SYMBOL(ksize);
81819f0f
CL
3359
3360void kfree(const void *x)
3361{
81819f0f 3362 struct page *page;
5bb983b0 3363 void *object = (void *)x;
81819f0f 3364
2121db74
PE
3365 trace_kfree(_RET_IP_, x);
3366
2408c550 3367 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3368 return;
3369
b49af68f 3370 page = virt_to_head_page(x);
aadb4bc4 3371 if (unlikely(!PageSlab(page))) {
0937502a 3372 BUG_ON(!PageCompound(page));
d56791b3 3373 kfree_hook(x);
d79923fa 3374 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3375 return;
3376 }
1b4f59e3 3377 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3378}
3379EXPORT_SYMBOL(kfree);
3380
2086d26a 3381/*
672bba3a
CL
3382 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3383 * the remaining slabs by the number of items in use. The slabs with the
3384 * most items in use come first. New allocations will then fill those up
3385 * and thus they can be removed from the partial lists.
3386 *
3387 * The slabs with the least items are placed last. This results in them
3388 * being allocated from last increasing the chance that the last objects
3389 * are freed in them.
2086d26a
CL
3390 */
3391int kmem_cache_shrink(struct kmem_cache *s)
3392{
3393 int node;
3394 int i;
3395 struct kmem_cache_node *n;
3396 struct page *page;
3397 struct page *t;
205ab99d 3398 int objects = oo_objects(s->max);
2086d26a 3399 struct list_head *slabs_by_inuse =
834f3d11 3400 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3401 unsigned long flags;
3402
3403 if (!slabs_by_inuse)
3404 return -ENOMEM;
3405
3406 flush_all(s);
f64dc58c 3407 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3408 n = get_node(s, node);
3409
3410 if (!n->nr_partial)
3411 continue;
3412
834f3d11 3413 for (i = 0; i < objects; i++)
2086d26a
CL
3414 INIT_LIST_HEAD(slabs_by_inuse + i);
3415
3416 spin_lock_irqsave(&n->list_lock, flags);
3417
3418 /*
672bba3a 3419 * Build lists indexed by the items in use in each slab.
2086d26a 3420 *
672bba3a
CL
3421 * Note that concurrent frees may occur while we hold the
3422 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3423 */
3424 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3425 list_move(&page->lru, slabs_by_inuse + page->inuse);
3426 if (!page->inuse)
3427 n->nr_partial--;
2086d26a
CL
3428 }
3429
2086d26a 3430 /*
672bba3a
CL
3431 * Rebuild the partial list with the slabs filled up most
3432 * first and the least used slabs at the end.
2086d26a 3433 */
69cb8e6b 3434 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3435 list_splice(slabs_by_inuse + i, n->partial.prev);
3436
2086d26a 3437 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3438
3439 /* Release empty slabs */
3440 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3441 discard_slab(s, page);
2086d26a
CL
3442 }
3443
3444 kfree(slabs_by_inuse);
3445 return 0;
3446}
3447EXPORT_SYMBOL(kmem_cache_shrink);
3448
b9049e23
YG
3449static int slab_mem_going_offline_callback(void *arg)
3450{
3451 struct kmem_cache *s;
3452
18004c5d 3453 mutex_lock(&slab_mutex);
b9049e23
YG
3454 list_for_each_entry(s, &slab_caches, list)
3455 kmem_cache_shrink(s);
18004c5d 3456 mutex_unlock(&slab_mutex);
b9049e23
YG
3457
3458 return 0;
3459}
3460
3461static void slab_mem_offline_callback(void *arg)
3462{
3463 struct kmem_cache_node *n;
3464 struct kmem_cache *s;
3465 struct memory_notify *marg = arg;
3466 int offline_node;
3467
b9d5ab25 3468 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3469
3470 /*
3471 * If the node still has available memory. we need kmem_cache_node
3472 * for it yet.
3473 */
3474 if (offline_node < 0)
3475 return;
3476
18004c5d 3477 mutex_lock(&slab_mutex);
b9049e23
YG
3478 list_for_each_entry(s, &slab_caches, list) {
3479 n = get_node(s, offline_node);
3480 if (n) {
3481 /*
3482 * if n->nr_slabs > 0, slabs still exist on the node
3483 * that is going down. We were unable to free them,
c9404c9c 3484 * and offline_pages() function shouldn't call this
b9049e23
YG
3485 * callback. So, we must fail.
3486 */
0f389ec6 3487 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3488
3489 s->node[offline_node] = NULL;
8de66a0c 3490 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3491 }
3492 }
18004c5d 3493 mutex_unlock(&slab_mutex);
b9049e23
YG
3494}
3495
3496static int slab_mem_going_online_callback(void *arg)
3497{
3498 struct kmem_cache_node *n;
3499 struct kmem_cache *s;
3500 struct memory_notify *marg = arg;
b9d5ab25 3501 int nid = marg->status_change_nid_normal;
b9049e23
YG
3502 int ret = 0;
3503
3504 /*
3505 * If the node's memory is already available, then kmem_cache_node is
3506 * already created. Nothing to do.
3507 */
3508 if (nid < 0)
3509 return 0;
3510
3511 /*
0121c619 3512 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3513 * allocate a kmem_cache_node structure in order to bring the node
3514 * online.
3515 */
18004c5d 3516 mutex_lock(&slab_mutex);
b9049e23
YG
3517 list_for_each_entry(s, &slab_caches, list) {
3518 /*
3519 * XXX: kmem_cache_alloc_node will fallback to other nodes
3520 * since memory is not yet available from the node that
3521 * is brought up.
3522 */
8de66a0c 3523 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3524 if (!n) {
3525 ret = -ENOMEM;
3526 goto out;
3527 }
4053497d 3528 init_kmem_cache_node(n);
b9049e23
YG
3529 s->node[nid] = n;
3530 }
3531out:
18004c5d 3532 mutex_unlock(&slab_mutex);
b9049e23
YG
3533 return ret;
3534}
3535
3536static int slab_memory_callback(struct notifier_block *self,
3537 unsigned long action, void *arg)
3538{
3539 int ret = 0;
3540
3541 switch (action) {
3542 case MEM_GOING_ONLINE:
3543 ret = slab_mem_going_online_callback(arg);
3544 break;
3545 case MEM_GOING_OFFLINE:
3546 ret = slab_mem_going_offline_callback(arg);
3547 break;
3548 case MEM_OFFLINE:
3549 case MEM_CANCEL_ONLINE:
3550 slab_mem_offline_callback(arg);
3551 break;
3552 case MEM_ONLINE:
3553 case MEM_CANCEL_OFFLINE:
3554 break;
3555 }
dc19f9db
KH
3556 if (ret)
3557 ret = notifier_from_errno(ret);
3558 else
3559 ret = NOTIFY_OK;
b9049e23
YG
3560 return ret;
3561}
3562
3ac38faa
AM
3563static struct notifier_block slab_memory_callback_nb = {
3564 .notifier_call = slab_memory_callback,
3565 .priority = SLAB_CALLBACK_PRI,
3566};
b9049e23 3567
81819f0f
CL
3568/********************************************************************
3569 * Basic setup of slabs
3570 *******************************************************************/
3571
51df1142
CL
3572/*
3573 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3574 * the page allocator. Allocate them properly then fix up the pointers
3575 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3576 */
3577
dffb4d60 3578static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3579{
3580 int node;
dffb4d60 3581 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3582
dffb4d60 3583 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3584
7d557b3c
GC
3585 /*
3586 * This runs very early, and only the boot processor is supposed to be
3587 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3588 * IPIs around.
3589 */
3590 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3591 for_each_node_state(node, N_NORMAL_MEMORY) {
3592 struct kmem_cache_node *n = get_node(s, node);
3593 struct page *p;
3594
3595 if (n) {
3596 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3597 p->slab_cache = s;
51df1142 3598
607bf324 3599#ifdef CONFIG_SLUB_DEBUG
51df1142 3600 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3601 p->slab_cache = s;
51df1142
CL
3602#endif
3603 }
3604 }
dffb4d60
CL
3605 list_add(&s->list, &slab_caches);
3606 return s;
51df1142
CL
3607}
3608
81819f0f
CL
3609void __init kmem_cache_init(void)
3610{
dffb4d60
CL
3611 static __initdata struct kmem_cache boot_kmem_cache,
3612 boot_kmem_cache_node;
51df1142 3613
fc8d8620
SG
3614 if (debug_guardpage_minorder())
3615 slub_max_order = 0;
3616
dffb4d60
CL
3617 kmem_cache_node = &boot_kmem_cache_node;
3618 kmem_cache = &boot_kmem_cache;
51df1142 3619
dffb4d60
CL
3620 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3621 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3622
3ac38faa 3623 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3624
3625 /* Able to allocate the per node structures */
3626 slab_state = PARTIAL;
3627
dffb4d60
CL
3628 create_boot_cache(kmem_cache, "kmem_cache",
3629 offsetof(struct kmem_cache, node) +
3630 nr_node_ids * sizeof(struct kmem_cache_node *),
3631 SLAB_HWCACHE_ALIGN);
8a13a4cc 3632
dffb4d60 3633 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3634
51df1142
CL
3635 /*
3636 * Allocate kmem_cache_node properly from the kmem_cache slab.
3637 * kmem_cache_node is separately allocated so no need to
3638 * update any list pointers.
3639 */
dffb4d60 3640 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3641
3642 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3643 create_kmalloc_caches(0);
81819f0f
CL
3644
3645#ifdef CONFIG_SMP
3646 register_cpu_notifier(&slab_notifier);
9dfc6e68 3647#endif
81819f0f 3648
f9f58285 3649 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3650 cache_line_size(),
81819f0f
CL
3651 slub_min_order, slub_max_order, slub_min_objects,
3652 nr_cpu_ids, nr_node_ids);
3653}
3654
7e85ee0c
PE
3655void __init kmem_cache_init_late(void)
3656{
7e85ee0c
PE
3657}
3658
81819f0f
CL
3659/*
3660 * Find a mergeable slab cache
3661 */
3662static int slab_unmergeable(struct kmem_cache *s)
3663{
3664 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3665 return 1;
3666
a44cb944
VD
3667 if (!is_root_cache(s))
3668 return 1;
3669
c59def9f 3670 if (s->ctor)
81819f0f
CL
3671 return 1;
3672
8ffa6875
CL
3673 /*
3674 * We may have set a slab to be unmergeable during bootstrap.
3675 */
3676 if (s->refcount < 0)
3677 return 1;
3678
81819f0f
CL
3679 return 0;
3680}
3681
a44cb944
VD
3682static struct kmem_cache *find_mergeable(size_t size, size_t align,
3683 unsigned long flags, const char *name, void (*ctor)(void *))
81819f0f 3684{
5b95a4ac 3685 struct kmem_cache *s;
81819f0f
CL
3686
3687 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3688 return NULL;
3689
c59def9f 3690 if (ctor)
81819f0f
CL
3691 return NULL;
3692
3693 size = ALIGN(size, sizeof(void *));
3694 align = calculate_alignment(flags, align, size);
3695 size = ALIGN(size, align);
ba0268a8 3696 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3697
5b95a4ac 3698 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3699 if (slab_unmergeable(s))
3700 continue;
3701
3702 if (size > s->size)
3703 continue;
3704
ba0268a8 3705 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
a44cb944 3706 continue;
81819f0f
CL
3707 /*
3708 * Check if alignment is compatible.
3709 * Courtesy of Adrian Drzewiecki
3710 */
06428780 3711 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3712 continue;
3713
3714 if (s->size - size >= sizeof(void *))
3715 continue;
3716
3717 return s;
3718 }
3719 return NULL;
3720}
3721
2633d7a0 3722struct kmem_cache *
a44cb944
VD
3723__kmem_cache_alias(const char *name, size_t size, size_t align,
3724 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3725{
3726 struct kmem_cache *s;
3727
a44cb944 3728 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3729 if (s) {
84d0ddd6
VD
3730 int i;
3731 struct kmem_cache *c;
3732
81819f0f 3733 s->refcount++;
84d0ddd6 3734
81819f0f
CL
3735 /*
3736 * Adjust the object sizes so that we clear
3737 * the complete object on kzalloc.
3738 */
3b0efdfa 3739 s->object_size = max(s->object_size, (int)size);
81819f0f 3740 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3741
84d0ddd6
VD
3742 for_each_memcg_cache_index(i) {
3743 c = cache_from_memcg_idx(s, i);
3744 if (!c)
3745 continue;
3746 c->object_size = s->object_size;
3747 c->inuse = max_t(int, c->inuse,
3748 ALIGN(size, sizeof(void *)));
3749 }
3750
7b8f3b66 3751 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3752 s->refcount--;
cbb79694 3753 s = NULL;
7b8f3b66 3754 }
a0e1d1be 3755 }
6446faa2 3756
cbb79694
CL
3757 return s;
3758}
84c1cf62 3759
8a13a4cc 3760int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3761{
aac3a166
PE
3762 int err;
3763
3764 err = kmem_cache_open(s, flags);
3765 if (err)
3766 return err;
20cea968 3767
45530c44
CL
3768 /* Mutex is not taken during early boot */
3769 if (slab_state <= UP)
3770 return 0;
3771
107dab5c 3772 memcg_propagate_slab_attrs(s);
aac3a166 3773 err = sysfs_slab_add(s);
aac3a166
PE
3774 if (err)
3775 kmem_cache_close(s);
20cea968 3776
aac3a166 3777 return err;
81819f0f 3778}
81819f0f 3779
81819f0f 3780#ifdef CONFIG_SMP
81819f0f 3781/*
672bba3a
CL
3782 * Use the cpu notifier to insure that the cpu slabs are flushed when
3783 * necessary.
81819f0f 3784 */
0db0628d 3785static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3786 unsigned long action, void *hcpu)
3787{
3788 long cpu = (long)hcpu;
5b95a4ac
CL
3789 struct kmem_cache *s;
3790 unsigned long flags;
81819f0f
CL
3791
3792 switch (action) {
3793 case CPU_UP_CANCELED:
8bb78442 3794 case CPU_UP_CANCELED_FROZEN:
81819f0f 3795 case CPU_DEAD:
8bb78442 3796 case CPU_DEAD_FROZEN:
18004c5d 3797 mutex_lock(&slab_mutex);
5b95a4ac
CL
3798 list_for_each_entry(s, &slab_caches, list) {
3799 local_irq_save(flags);
3800 __flush_cpu_slab(s, cpu);
3801 local_irq_restore(flags);
3802 }
18004c5d 3803 mutex_unlock(&slab_mutex);
81819f0f
CL
3804 break;
3805 default:
3806 break;
3807 }
3808 return NOTIFY_OK;
3809}
3810
0db0628d 3811static struct notifier_block slab_notifier = {
3adbefee 3812 .notifier_call = slab_cpuup_callback
06428780 3813};
81819f0f
CL
3814
3815#endif
3816
ce71e27c 3817void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3818{
aadb4bc4 3819 struct kmem_cache *s;
94b528d0 3820 void *ret;
aadb4bc4 3821
95a05b42 3822 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3823 return kmalloc_large(size, gfpflags);
3824
2c59dd65 3825 s = kmalloc_slab(size, gfpflags);
81819f0f 3826
2408c550 3827 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3828 return s;
81819f0f 3829
2b847c3c 3830 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3831
25985edc 3832 /* Honor the call site pointer we received. */
ca2b84cb 3833 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3834
3835 return ret;
81819f0f
CL
3836}
3837
5d1f57e4 3838#ifdef CONFIG_NUMA
81819f0f 3839void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3840 int node, unsigned long caller)
81819f0f 3841{
aadb4bc4 3842 struct kmem_cache *s;
94b528d0 3843 void *ret;
aadb4bc4 3844
95a05b42 3845 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3846 ret = kmalloc_large_node(size, gfpflags, node);
3847
3848 trace_kmalloc_node(caller, ret,
3849 size, PAGE_SIZE << get_order(size),
3850 gfpflags, node);
3851
3852 return ret;
3853 }
eada35ef 3854
2c59dd65 3855 s = kmalloc_slab(size, gfpflags);
81819f0f 3856
2408c550 3857 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3858 return s;
81819f0f 3859
2b847c3c 3860 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3861
25985edc 3862 /* Honor the call site pointer we received. */
ca2b84cb 3863 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3864
3865 return ret;
81819f0f 3866}
5d1f57e4 3867#endif
81819f0f 3868
ab4d5ed5 3869#ifdef CONFIG_SYSFS
205ab99d
CL
3870static int count_inuse(struct page *page)
3871{
3872 return page->inuse;
3873}
3874
3875static int count_total(struct page *page)
3876{
3877 return page->objects;
3878}
ab4d5ed5 3879#endif
205ab99d 3880
ab4d5ed5 3881#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3882static int validate_slab(struct kmem_cache *s, struct page *page,
3883 unsigned long *map)
53e15af0
CL
3884{
3885 void *p;
a973e9dd 3886 void *addr = page_address(page);
53e15af0
CL
3887
3888 if (!check_slab(s, page) ||
3889 !on_freelist(s, page, NULL))
3890 return 0;
3891
3892 /* Now we know that a valid freelist exists */
39b26464 3893 bitmap_zero(map, page->objects);
53e15af0 3894
5f80b13a
CL
3895 get_map(s, page, map);
3896 for_each_object(p, s, addr, page->objects) {
3897 if (test_bit(slab_index(p, s, addr), map))
3898 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3899 return 0;
53e15af0
CL
3900 }
3901
224a88be 3902 for_each_object(p, s, addr, page->objects)
7656c72b 3903 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3904 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3905 return 0;
3906 return 1;
3907}
3908
434e245d
CL
3909static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3910 unsigned long *map)
53e15af0 3911{
881db7fb
CL
3912 slab_lock(page);
3913 validate_slab(s, page, map);
3914 slab_unlock(page);
53e15af0
CL
3915}
3916
434e245d
CL
3917static int validate_slab_node(struct kmem_cache *s,
3918 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3919{
3920 unsigned long count = 0;
3921 struct page *page;
3922 unsigned long flags;
3923
3924 spin_lock_irqsave(&n->list_lock, flags);
3925
3926 list_for_each_entry(page, &n->partial, lru) {
434e245d 3927 validate_slab_slab(s, page, map);
53e15af0
CL
3928 count++;
3929 }
3930 if (count != n->nr_partial)
f9f58285
FF
3931 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3932 s->name, count, n->nr_partial);
53e15af0
CL
3933
3934 if (!(s->flags & SLAB_STORE_USER))
3935 goto out;
3936
3937 list_for_each_entry(page, &n->full, lru) {
434e245d 3938 validate_slab_slab(s, page, map);
53e15af0
CL
3939 count++;
3940 }
3941 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3942 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3943 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3944
3945out:
3946 spin_unlock_irqrestore(&n->list_lock, flags);
3947 return count;
3948}
3949
434e245d 3950static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3951{
3952 int node;
3953 unsigned long count = 0;
205ab99d 3954 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3955 sizeof(unsigned long), GFP_KERNEL);
3956
3957 if (!map)
3958 return -ENOMEM;
53e15af0
CL
3959
3960 flush_all(s);
f64dc58c 3961 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3962 struct kmem_cache_node *n = get_node(s, node);
3963
434e245d 3964 count += validate_slab_node(s, n, map);
53e15af0 3965 }
434e245d 3966 kfree(map);
53e15af0
CL
3967 return count;
3968}
88a420e4 3969/*
672bba3a 3970 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3971 * and freed.
3972 */
3973
3974struct location {
3975 unsigned long count;
ce71e27c 3976 unsigned long addr;
45edfa58
CL
3977 long long sum_time;
3978 long min_time;
3979 long max_time;
3980 long min_pid;
3981 long max_pid;
174596a0 3982 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3983 nodemask_t nodes;
88a420e4
CL
3984};
3985
3986struct loc_track {
3987 unsigned long max;
3988 unsigned long count;
3989 struct location *loc;
3990};
3991
3992static void free_loc_track(struct loc_track *t)
3993{
3994 if (t->max)
3995 free_pages((unsigned long)t->loc,
3996 get_order(sizeof(struct location) * t->max));
3997}
3998
68dff6a9 3999static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4000{
4001 struct location *l;
4002 int order;
4003
88a420e4
CL
4004 order = get_order(sizeof(struct location) * max);
4005
68dff6a9 4006 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4007 if (!l)
4008 return 0;
4009
4010 if (t->count) {
4011 memcpy(l, t->loc, sizeof(struct location) * t->count);
4012 free_loc_track(t);
4013 }
4014 t->max = max;
4015 t->loc = l;
4016 return 1;
4017}
4018
4019static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4020 const struct track *track)
88a420e4
CL
4021{
4022 long start, end, pos;
4023 struct location *l;
ce71e27c 4024 unsigned long caddr;
45edfa58 4025 unsigned long age = jiffies - track->when;
88a420e4
CL
4026
4027 start = -1;
4028 end = t->count;
4029
4030 for ( ; ; ) {
4031 pos = start + (end - start + 1) / 2;
4032
4033 /*
4034 * There is nothing at "end". If we end up there
4035 * we need to add something to before end.
4036 */
4037 if (pos == end)
4038 break;
4039
4040 caddr = t->loc[pos].addr;
45edfa58
CL
4041 if (track->addr == caddr) {
4042
4043 l = &t->loc[pos];
4044 l->count++;
4045 if (track->when) {
4046 l->sum_time += age;
4047 if (age < l->min_time)
4048 l->min_time = age;
4049 if (age > l->max_time)
4050 l->max_time = age;
4051
4052 if (track->pid < l->min_pid)
4053 l->min_pid = track->pid;
4054 if (track->pid > l->max_pid)
4055 l->max_pid = track->pid;
4056
174596a0
RR
4057 cpumask_set_cpu(track->cpu,
4058 to_cpumask(l->cpus));
45edfa58
CL
4059 }
4060 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4061 return 1;
4062 }
4063
45edfa58 4064 if (track->addr < caddr)
88a420e4
CL
4065 end = pos;
4066 else
4067 start = pos;
4068 }
4069
4070 /*
672bba3a 4071 * Not found. Insert new tracking element.
88a420e4 4072 */
68dff6a9 4073 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4074 return 0;
4075
4076 l = t->loc + pos;
4077 if (pos < t->count)
4078 memmove(l + 1, l,
4079 (t->count - pos) * sizeof(struct location));
4080 t->count++;
4081 l->count = 1;
45edfa58
CL
4082 l->addr = track->addr;
4083 l->sum_time = age;
4084 l->min_time = age;
4085 l->max_time = age;
4086 l->min_pid = track->pid;
4087 l->max_pid = track->pid;
174596a0
RR
4088 cpumask_clear(to_cpumask(l->cpus));
4089 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4090 nodes_clear(l->nodes);
4091 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4092 return 1;
4093}
4094
4095static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4096 struct page *page, enum track_item alloc,
a5dd5c11 4097 unsigned long *map)
88a420e4 4098{
a973e9dd 4099 void *addr = page_address(page);
88a420e4
CL
4100 void *p;
4101
39b26464 4102 bitmap_zero(map, page->objects);
5f80b13a 4103 get_map(s, page, map);
88a420e4 4104
224a88be 4105 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4106 if (!test_bit(slab_index(p, s, addr), map))
4107 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4108}
4109
4110static int list_locations(struct kmem_cache *s, char *buf,
4111 enum track_item alloc)
4112{
e374d483 4113 int len = 0;
88a420e4 4114 unsigned long i;
68dff6a9 4115 struct loc_track t = { 0, 0, NULL };
88a420e4 4116 int node;
bbd7d57b
ED
4117 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4118 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4119
bbd7d57b
ED
4120 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4121 GFP_TEMPORARY)) {
4122 kfree(map);
68dff6a9 4123 return sprintf(buf, "Out of memory\n");
bbd7d57b 4124 }
88a420e4
CL
4125 /* Push back cpu slabs */
4126 flush_all(s);
4127
f64dc58c 4128 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4129 struct kmem_cache_node *n = get_node(s, node);
4130 unsigned long flags;
4131 struct page *page;
4132
9e86943b 4133 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4134 continue;
4135
4136 spin_lock_irqsave(&n->list_lock, flags);
4137 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4138 process_slab(&t, s, page, alloc, map);
88a420e4 4139 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4140 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4141 spin_unlock_irqrestore(&n->list_lock, flags);
4142 }
4143
4144 for (i = 0; i < t.count; i++) {
45edfa58 4145 struct location *l = &t.loc[i];
88a420e4 4146
9c246247 4147 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4148 break;
e374d483 4149 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4150
4151 if (l->addr)
62c70bce 4152 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4153 else
e374d483 4154 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4155
4156 if (l->sum_time != l->min_time) {
e374d483 4157 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4158 l->min_time,
4159 (long)div_u64(l->sum_time, l->count),
4160 l->max_time);
45edfa58 4161 } else
e374d483 4162 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4163 l->min_time);
4164
4165 if (l->min_pid != l->max_pid)
e374d483 4166 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4167 l->min_pid, l->max_pid);
4168 else
e374d483 4169 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4170 l->min_pid);
4171
174596a0
RR
4172 if (num_online_cpus() > 1 &&
4173 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4174 len < PAGE_SIZE - 60) {
4175 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4176 len += cpulist_scnprintf(buf + len,
4177 PAGE_SIZE - len - 50,
174596a0 4178 to_cpumask(l->cpus));
45edfa58
CL
4179 }
4180
62bc62a8 4181 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4182 len < PAGE_SIZE - 60) {
4183 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4184 len += nodelist_scnprintf(buf + len,
4185 PAGE_SIZE - len - 50,
4186 l->nodes);
45edfa58
CL
4187 }
4188
e374d483 4189 len += sprintf(buf + len, "\n");
88a420e4
CL
4190 }
4191
4192 free_loc_track(&t);
bbd7d57b 4193 kfree(map);
88a420e4 4194 if (!t.count)
e374d483
HH
4195 len += sprintf(buf, "No data\n");
4196 return len;
88a420e4 4197}
ab4d5ed5 4198#endif
88a420e4 4199
a5a84755
CL
4200#ifdef SLUB_RESILIENCY_TEST
4201static void resiliency_test(void)
4202{
4203 u8 *p;
4204
95a05b42 4205 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4206
f9f58285
FF
4207 pr_err("SLUB resiliency testing\n");
4208 pr_err("-----------------------\n");
4209 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4210
4211 p = kzalloc(16, GFP_KERNEL);
4212 p[16] = 0x12;
f9f58285
FF
4213 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4214 p + 16);
a5a84755
CL
4215
4216 validate_slab_cache(kmalloc_caches[4]);
4217
4218 /* Hmmm... The next two are dangerous */
4219 p = kzalloc(32, GFP_KERNEL);
4220 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4221 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4222 p);
4223 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4224
4225 validate_slab_cache(kmalloc_caches[5]);
4226 p = kzalloc(64, GFP_KERNEL);
4227 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4228 *p = 0x56;
f9f58285
FF
4229 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4230 p);
4231 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4232 validate_slab_cache(kmalloc_caches[6]);
4233
f9f58285 4234 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4235 p = kzalloc(128, GFP_KERNEL);
4236 kfree(p);
4237 *p = 0x78;
f9f58285 4238 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4239 validate_slab_cache(kmalloc_caches[7]);
4240
4241 p = kzalloc(256, GFP_KERNEL);
4242 kfree(p);
4243 p[50] = 0x9a;
f9f58285 4244 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4245 validate_slab_cache(kmalloc_caches[8]);
4246
4247 p = kzalloc(512, GFP_KERNEL);
4248 kfree(p);
4249 p[512] = 0xab;
f9f58285 4250 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4251 validate_slab_cache(kmalloc_caches[9]);
4252}
4253#else
4254#ifdef CONFIG_SYSFS
4255static void resiliency_test(void) {};
4256#endif
4257#endif
4258
ab4d5ed5 4259#ifdef CONFIG_SYSFS
81819f0f 4260enum slab_stat_type {
205ab99d
CL
4261 SL_ALL, /* All slabs */
4262 SL_PARTIAL, /* Only partially allocated slabs */
4263 SL_CPU, /* Only slabs used for cpu caches */
4264 SL_OBJECTS, /* Determine allocated objects not slabs */
4265 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4266};
4267
205ab99d 4268#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4269#define SO_PARTIAL (1 << SL_PARTIAL)
4270#define SO_CPU (1 << SL_CPU)
4271#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4272#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4273
62e5c4b4
CG
4274static ssize_t show_slab_objects(struct kmem_cache *s,
4275 char *buf, unsigned long flags)
81819f0f
CL
4276{
4277 unsigned long total = 0;
81819f0f
CL
4278 int node;
4279 int x;
4280 unsigned long *nodes;
81819f0f 4281
e35e1a97 4282 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4283 if (!nodes)
4284 return -ENOMEM;
81819f0f 4285
205ab99d
CL
4286 if (flags & SO_CPU) {
4287 int cpu;
81819f0f 4288
205ab99d 4289 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4290 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4291 cpu);
ec3ab083 4292 int node;
49e22585 4293 struct page *page;
dfb4f096 4294
bc6697d8 4295 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4296 if (!page)
4297 continue;
205ab99d 4298
ec3ab083
CL
4299 node = page_to_nid(page);
4300 if (flags & SO_TOTAL)
4301 x = page->objects;
4302 else if (flags & SO_OBJECTS)
4303 x = page->inuse;
4304 else
4305 x = 1;
49e22585 4306
ec3ab083
CL
4307 total += x;
4308 nodes[node] += x;
4309
4310 page = ACCESS_ONCE(c->partial);
49e22585 4311 if (page) {
8afb1474
LZ
4312 node = page_to_nid(page);
4313 if (flags & SO_TOTAL)
4314 WARN_ON_ONCE(1);
4315 else if (flags & SO_OBJECTS)
4316 WARN_ON_ONCE(1);
4317 else
4318 x = page->pages;
bc6697d8
ED
4319 total += x;
4320 nodes[node] += x;
49e22585 4321 }
81819f0f
CL
4322 }
4323 }
4324
04d94879 4325 lock_memory_hotplug();
ab4d5ed5 4326#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4327 if (flags & SO_ALL) {
4328 for_each_node_state(node, N_NORMAL_MEMORY) {
4329 struct kmem_cache_node *n = get_node(s, node);
4330
d0e0ac97
CG
4331 if (flags & SO_TOTAL)
4332 x = atomic_long_read(&n->total_objects);
4333 else if (flags & SO_OBJECTS)
4334 x = atomic_long_read(&n->total_objects) -
4335 count_partial(n, count_free);
81819f0f 4336 else
205ab99d 4337 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4338 total += x;
4339 nodes[node] += x;
4340 }
4341
ab4d5ed5
CL
4342 } else
4343#endif
4344 if (flags & SO_PARTIAL) {
205ab99d
CL
4345 for_each_node_state(node, N_NORMAL_MEMORY) {
4346 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4347
205ab99d
CL
4348 if (flags & SO_TOTAL)
4349 x = count_partial(n, count_total);
4350 else if (flags & SO_OBJECTS)
4351 x = count_partial(n, count_inuse);
81819f0f 4352 else
205ab99d 4353 x = n->nr_partial;
81819f0f
CL
4354 total += x;
4355 nodes[node] += x;
4356 }
4357 }
81819f0f
CL
4358 x = sprintf(buf, "%lu", total);
4359#ifdef CONFIG_NUMA
f64dc58c 4360 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4361 if (nodes[node])
4362 x += sprintf(buf + x, " N%d=%lu",
4363 node, nodes[node]);
4364#endif
04d94879 4365 unlock_memory_hotplug();
81819f0f
CL
4366 kfree(nodes);
4367 return x + sprintf(buf + x, "\n");
4368}
4369
ab4d5ed5 4370#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4371static int any_slab_objects(struct kmem_cache *s)
4372{
4373 int node;
81819f0f 4374
dfb4f096 4375 for_each_online_node(node) {
81819f0f
CL
4376 struct kmem_cache_node *n = get_node(s, node);
4377
dfb4f096
CL
4378 if (!n)
4379 continue;
4380
4ea33e2d 4381 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4382 return 1;
4383 }
4384 return 0;
4385}
ab4d5ed5 4386#endif
81819f0f
CL
4387
4388#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4389#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4390
4391struct slab_attribute {
4392 struct attribute attr;
4393 ssize_t (*show)(struct kmem_cache *s, char *buf);
4394 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4395};
4396
4397#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4398 static struct slab_attribute _name##_attr = \
4399 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4400
4401#define SLAB_ATTR(_name) \
4402 static struct slab_attribute _name##_attr = \
ab067e99 4403 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4404
81819f0f
CL
4405static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4406{
4407 return sprintf(buf, "%d\n", s->size);
4408}
4409SLAB_ATTR_RO(slab_size);
4410
4411static ssize_t align_show(struct kmem_cache *s, char *buf)
4412{
4413 return sprintf(buf, "%d\n", s->align);
4414}
4415SLAB_ATTR_RO(align);
4416
4417static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4418{
3b0efdfa 4419 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4420}
4421SLAB_ATTR_RO(object_size);
4422
4423static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4424{
834f3d11 4425 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4426}
4427SLAB_ATTR_RO(objs_per_slab);
4428
06b285dc
CL
4429static ssize_t order_store(struct kmem_cache *s,
4430 const char *buf, size_t length)
4431{
0121c619
CL
4432 unsigned long order;
4433 int err;
4434
3dbb95f7 4435 err = kstrtoul(buf, 10, &order);
0121c619
CL
4436 if (err)
4437 return err;
06b285dc
CL
4438
4439 if (order > slub_max_order || order < slub_min_order)
4440 return -EINVAL;
4441
4442 calculate_sizes(s, order);
4443 return length;
4444}
4445
81819f0f
CL
4446static ssize_t order_show(struct kmem_cache *s, char *buf)
4447{
834f3d11 4448 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4449}
06b285dc 4450SLAB_ATTR(order);
81819f0f 4451
73d342b1
DR
4452static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4453{
4454 return sprintf(buf, "%lu\n", s->min_partial);
4455}
4456
4457static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4458 size_t length)
4459{
4460 unsigned long min;
4461 int err;
4462
3dbb95f7 4463 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4464 if (err)
4465 return err;
4466
c0bdb232 4467 set_min_partial(s, min);
73d342b1
DR
4468 return length;
4469}
4470SLAB_ATTR(min_partial);
4471
49e22585
CL
4472static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4473{
4474 return sprintf(buf, "%u\n", s->cpu_partial);
4475}
4476
4477static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4478 size_t length)
4479{
4480 unsigned long objects;
4481 int err;
4482
3dbb95f7 4483 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4484 if (err)
4485 return err;
345c905d 4486 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4487 return -EINVAL;
49e22585
CL
4488
4489 s->cpu_partial = objects;
4490 flush_all(s);
4491 return length;
4492}
4493SLAB_ATTR(cpu_partial);
4494
81819f0f
CL
4495static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4496{
62c70bce
JP
4497 if (!s->ctor)
4498 return 0;
4499 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4500}
4501SLAB_ATTR_RO(ctor);
4502
81819f0f
CL
4503static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4504{
4505 return sprintf(buf, "%d\n", s->refcount - 1);
4506}
4507SLAB_ATTR_RO(aliases);
4508
81819f0f
CL
4509static ssize_t partial_show(struct kmem_cache *s, char *buf)
4510{
d9acf4b7 4511 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4512}
4513SLAB_ATTR_RO(partial);
4514
4515static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4516{
d9acf4b7 4517 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4518}
4519SLAB_ATTR_RO(cpu_slabs);
4520
4521static ssize_t objects_show(struct kmem_cache *s, char *buf)
4522{
205ab99d 4523 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4524}
4525SLAB_ATTR_RO(objects);
4526
205ab99d
CL
4527static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4528{
4529 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4530}
4531SLAB_ATTR_RO(objects_partial);
4532
49e22585
CL
4533static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4534{
4535 int objects = 0;
4536 int pages = 0;
4537 int cpu;
4538 int len;
4539
4540 for_each_online_cpu(cpu) {
4541 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4542
4543 if (page) {
4544 pages += page->pages;
4545 objects += page->pobjects;
4546 }
4547 }
4548
4549 len = sprintf(buf, "%d(%d)", objects, pages);
4550
4551#ifdef CONFIG_SMP
4552 for_each_online_cpu(cpu) {
4553 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4554
4555 if (page && len < PAGE_SIZE - 20)
4556 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4557 page->pobjects, page->pages);
4558 }
4559#endif
4560 return len + sprintf(buf + len, "\n");
4561}
4562SLAB_ATTR_RO(slabs_cpu_partial);
4563
a5a84755
CL
4564static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4565{
4566 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4567}
4568
4569static ssize_t reclaim_account_store(struct kmem_cache *s,
4570 const char *buf, size_t length)
4571{
4572 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4573 if (buf[0] == '1')
4574 s->flags |= SLAB_RECLAIM_ACCOUNT;
4575 return length;
4576}
4577SLAB_ATTR(reclaim_account);
4578
4579static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4580{
4581 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4582}
4583SLAB_ATTR_RO(hwcache_align);
4584
4585#ifdef CONFIG_ZONE_DMA
4586static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4587{
4588 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4589}
4590SLAB_ATTR_RO(cache_dma);
4591#endif
4592
4593static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4594{
4595 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4596}
4597SLAB_ATTR_RO(destroy_by_rcu);
4598
ab9a0f19
LJ
4599static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4600{
4601 return sprintf(buf, "%d\n", s->reserved);
4602}
4603SLAB_ATTR_RO(reserved);
4604
ab4d5ed5 4605#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4606static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4607{
4608 return show_slab_objects(s, buf, SO_ALL);
4609}
4610SLAB_ATTR_RO(slabs);
4611
205ab99d
CL
4612static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4613{
4614 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4615}
4616SLAB_ATTR_RO(total_objects);
4617
81819f0f
CL
4618static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4619{
4620 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4621}
4622
4623static ssize_t sanity_checks_store(struct kmem_cache *s,
4624 const char *buf, size_t length)
4625{
4626 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4627 if (buf[0] == '1') {
4628 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4629 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4630 }
81819f0f
CL
4631 return length;
4632}
4633SLAB_ATTR(sanity_checks);
4634
4635static ssize_t trace_show(struct kmem_cache *s, char *buf)
4636{
4637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4638}
4639
4640static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4641 size_t length)
4642{
4643 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4644 if (buf[0] == '1') {
4645 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4646 s->flags |= SLAB_TRACE;
b789ef51 4647 }
81819f0f
CL
4648 return length;
4649}
4650SLAB_ATTR(trace);
4651
81819f0f
CL
4652static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4653{
4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4655}
4656
4657static ssize_t red_zone_store(struct kmem_cache *s,
4658 const char *buf, size_t length)
4659{
4660 if (any_slab_objects(s))
4661 return -EBUSY;
4662
4663 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4664 if (buf[0] == '1') {
4665 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4666 s->flags |= SLAB_RED_ZONE;
b789ef51 4667 }
06b285dc 4668 calculate_sizes(s, -1);
81819f0f
CL
4669 return length;
4670}
4671SLAB_ATTR(red_zone);
4672
4673static ssize_t poison_show(struct kmem_cache *s, char *buf)
4674{
4675 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4676}
4677
4678static ssize_t poison_store(struct kmem_cache *s,
4679 const char *buf, size_t length)
4680{
4681 if (any_slab_objects(s))
4682 return -EBUSY;
4683
4684 s->flags &= ~SLAB_POISON;
b789ef51
CL
4685 if (buf[0] == '1') {
4686 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4687 s->flags |= SLAB_POISON;
b789ef51 4688 }
06b285dc 4689 calculate_sizes(s, -1);
81819f0f
CL
4690 return length;
4691}
4692SLAB_ATTR(poison);
4693
4694static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4695{
4696 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4697}
4698
4699static ssize_t store_user_store(struct kmem_cache *s,
4700 const char *buf, size_t length)
4701{
4702 if (any_slab_objects(s))
4703 return -EBUSY;
4704
4705 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4706 if (buf[0] == '1') {
4707 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4708 s->flags |= SLAB_STORE_USER;
b789ef51 4709 }
06b285dc 4710 calculate_sizes(s, -1);
81819f0f
CL
4711 return length;
4712}
4713SLAB_ATTR(store_user);
4714
53e15af0
CL
4715static ssize_t validate_show(struct kmem_cache *s, char *buf)
4716{
4717 return 0;
4718}
4719
4720static ssize_t validate_store(struct kmem_cache *s,
4721 const char *buf, size_t length)
4722{
434e245d
CL
4723 int ret = -EINVAL;
4724
4725 if (buf[0] == '1') {
4726 ret = validate_slab_cache(s);
4727 if (ret >= 0)
4728 ret = length;
4729 }
4730 return ret;
53e15af0
CL
4731}
4732SLAB_ATTR(validate);
a5a84755
CL
4733
4734static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4735{
4736 if (!(s->flags & SLAB_STORE_USER))
4737 return -ENOSYS;
4738 return list_locations(s, buf, TRACK_ALLOC);
4739}
4740SLAB_ATTR_RO(alloc_calls);
4741
4742static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4743{
4744 if (!(s->flags & SLAB_STORE_USER))
4745 return -ENOSYS;
4746 return list_locations(s, buf, TRACK_FREE);
4747}
4748SLAB_ATTR_RO(free_calls);
4749#endif /* CONFIG_SLUB_DEBUG */
4750
4751#ifdef CONFIG_FAILSLAB
4752static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4753{
4754 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4755}
4756
4757static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4758 size_t length)
4759{
4760 s->flags &= ~SLAB_FAILSLAB;
4761 if (buf[0] == '1')
4762 s->flags |= SLAB_FAILSLAB;
4763 return length;
4764}
4765SLAB_ATTR(failslab);
ab4d5ed5 4766#endif
53e15af0 4767
2086d26a
CL
4768static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4769{
4770 return 0;
4771}
4772
4773static ssize_t shrink_store(struct kmem_cache *s,
4774 const char *buf, size_t length)
4775{
4776 if (buf[0] == '1') {
4777 int rc = kmem_cache_shrink(s);
4778
4779 if (rc)
4780 return rc;
4781 } else
4782 return -EINVAL;
4783 return length;
4784}
4785SLAB_ATTR(shrink);
4786
81819f0f 4787#ifdef CONFIG_NUMA
9824601e 4788static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4789{
9824601e 4790 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4791}
4792
9824601e 4793static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4794 const char *buf, size_t length)
4795{
0121c619
CL
4796 unsigned long ratio;
4797 int err;
4798
3dbb95f7 4799 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4800 if (err)
4801 return err;
4802
e2cb96b7 4803 if (ratio <= 100)
0121c619 4804 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4805
81819f0f
CL
4806 return length;
4807}
9824601e 4808SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4809#endif
4810
8ff12cfc 4811#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4812static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4813{
4814 unsigned long sum = 0;
4815 int cpu;
4816 int len;
4817 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4818
4819 if (!data)
4820 return -ENOMEM;
4821
4822 for_each_online_cpu(cpu) {
9dfc6e68 4823 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4824
4825 data[cpu] = x;
4826 sum += x;
4827 }
4828
4829 len = sprintf(buf, "%lu", sum);
4830
50ef37b9 4831#ifdef CONFIG_SMP
8ff12cfc
CL
4832 for_each_online_cpu(cpu) {
4833 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4834 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4835 }
50ef37b9 4836#endif
8ff12cfc
CL
4837 kfree(data);
4838 return len + sprintf(buf + len, "\n");
4839}
4840
78eb00cc
DR
4841static void clear_stat(struct kmem_cache *s, enum stat_item si)
4842{
4843 int cpu;
4844
4845 for_each_online_cpu(cpu)
9dfc6e68 4846 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4847}
4848
8ff12cfc
CL
4849#define STAT_ATTR(si, text) \
4850static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4851{ \
4852 return show_stat(s, buf, si); \
4853} \
78eb00cc
DR
4854static ssize_t text##_store(struct kmem_cache *s, \
4855 const char *buf, size_t length) \
4856{ \
4857 if (buf[0] != '0') \
4858 return -EINVAL; \
4859 clear_stat(s, si); \
4860 return length; \
4861} \
4862SLAB_ATTR(text); \
8ff12cfc
CL
4863
4864STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4865STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4866STAT_ATTR(FREE_FASTPATH, free_fastpath);
4867STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4868STAT_ATTR(FREE_FROZEN, free_frozen);
4869STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4870STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4871STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4872STAT_ATTR(ALLOC_SLAB, alloc_slab);
4873STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4874STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4875STAT_ATTR(FREE_SLAB, free_slab);
4876STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4877STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4878STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4879STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4880STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4881STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4882STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4883STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4884STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4885STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4886STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4887STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4888STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4889STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4890#endif
4891
06428780 4892static struct attribute *slab_attrs[] = {
81819f0f
CL
4893 &slab_size_attr.attr,
4894 &object_size_attr.attr,
4895 &objs_per_slab_attr.attr,
4896 &order_attr.attr,
73d342b1 4897 &min_partial_attr.attr,
49e22585 4898 &cpu_partial_attr.attr,
81819f0f 4899 &objects_attr.attr,
205ab99d 4900 &objects_partial_attr.attr,
81819f0f
CL
4901 &partial_attr.attr,
4902 &cpu_slabs_attr.attr,
4903 &ctor_attr.attr,
81819f0f
CL
4904 &aliases_attr.attr,
4905 &align_attr.attr,
81819f0f
CL
4906 &hwcache_align_attr.attr,
4907 &reclaim_account_attr.attr,
4908 &destroy_by_rcu_attr.attr,
a5a84755 4909 &shrink_attr.attr,
ab9a0f19 4910 &reserved_attr.attr,
49e22585 4911 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4912#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4913 &total_objects_attr.attr,
4914 &slabs_attr.attr,
4915 &sanity_checks_attr.attr,
4916 &trace_attr.attr,
81819f0f
CL
4917 &red_zone_attr.attr,
4918 &poison_attr.attr,
4919 &store_user_attr.attr,
53e15af0 4920 &validate_attr.attr,
88a420e4
CL
4921 &alloc_calls_attr.attr,
4922 &free_calls_attr.attr,
ab4d5ed5 4923#endif
81819f0f
CL
4924#ifdef CONFIG_ZONE_DMA
4925 &cache_dma_attr.attr,
4926#endif
4927#ifdef CONFIG_NUMA
9824601e 4928 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4929#endif
4930#ifdef CONFIG_SLUB_STATS
4931 &alloc_fastpath_attr.attr,
4932 &alloc_slowpath_attr.attr,
4933 &free_fastpath_attr.attr,
4934 &free_slowpath_attr.attr,
4935 &free_frozen_attr.attr,
4936 &free_add_partial_attr.attr,
4937 &free_remove_partial_attr.attr,
4938 &alloc_from_partial_attr.attr,
4939 &alloc_slab_attr.attr,
4940 &alloc_refill_attr.attr,
e36a2652 4941 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4942 &free_slab_attr.attr,
4943 &cpuslab_flush_attr.attr,
4944 &deactivate_full_attr.attr,
4945 &deactivate_empty_attr.attr,
4946 &deactivate_to_head_attr.attr,
4947 &deactivate_to_tail_attr.attr,
4948 &deactivate_remote_frees_attr.attr,
03e404af 4949 &deactivate_bypass_attr.attr,
65c3376a 4950 &order_fallback_attr.attr,
b789ef51
CL
4951 &cmpxchg_double_fail_attr.attr,
4952 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4953 &cpu_partial_alloc_attr.attr,
4954 &cpu_partial_free_attr.attr,
8028dcea
AS
4955 &cpu_partial_node_attr.attr,
4956 &cpu_partial_drain_attr.attr,
81819f0f 4957#endif
4c13dd3b
DM
4958#ifdef CONFIG_FAILSLAB
4959 &failslab_attr.attr,
4960#endif
4961
81819f0f
CL
4962 NULL
4963};
4964
4965static struct attribute_group slab_attr_group = {
4966 .attrs = slab_attrs,
4967};
4968
4969static ssize_t slab_attr_show(struct kobject *kobj,
4970 struct attribute *attr,
4971 char *buf)
4972{
4973 struct slab_attribute *attribute;
4974 struct kmem_cache *s;
4975 int err;
4976
4977 attribute = to_slab_attr(attr);
4978 s = to_slab(kobj);
4979
4980 if (!attribute->show)
4981 return -EIO;
4982
4983 err = attribute->show(s, buf);
4984
4985 return err;
4986}
4987
4988static ssize_t slab_attr_store(struct kobject *kobj,
4989 struct attribute *attr,
4990 const char *buf, size_t len)
4991{
4992 struct slab_attribute *attribute;
4993 struct kmem_cache *s;
4994 int err;
4995
4996 attribute = to_slab_attr(attr);
4997 s = to_slab(kobj);
4998
4999 if (!attribute->store)
5000 return -EIO;
5001
5002 err = attribute->store(s, buf, len);
107dab5c
GC
5003#ifdef CONFIG_MEMCG_KMEM
5004 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5005 int i;
81819f0f 5006
107dab5c
GC
5007 mutex_lock(&slab_mutex);
5008 if (s->max_attr_size < len)
5009 s->max_attr_size = len;
5010
ebe945c2
GC
5011 /*
5012 * This is a best effort propagation, so this function's return
5013 * value will be determined by the parent cache only. This is
5014 * basically because not all attributes will have a well
5015 * defined semantics for rollbacks - most of the actions will
5016 * have permanent effects.
5017 *
5018 * Returning the error value of any of the children that fail
5019 * is not 100 % defined, in the sense that users seeing the
5020 * error code won't be able to know anything about the state of
5021 * the cache.
5022 *
5023 * Only returning the error code for the parent cache at least
5024 * has well defined semantics. The cache being written to
5025 * directly either failed or succeeded, in which case we loop
5026 * through the descendants with best-effort propagation.
5027 */
107dab5c 5028 for_each_memcg_cache_index(i) {
2ade4de8 5029 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5030 if (c)
5031 attribute->store(c, buf, len);
5032 }
5033 mutex_unlock(&slab_mutex);
5034 }
5035#endif
81819f0f
CL
5036 return err;
5037}
5038
107dab5c
GC
5039static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5040{
5041#ifdef CONFIG_MEMCG_KMEM
5042 int i;
5043 char *buffer = NULL;
93030d83 5044 struct kmem_cache *root_cache;
107dab5c 5045
93030d83 5046 if (is_root_cache(s))
107dab5c
GC
5047 return;
5048
93030d83
VD
5049 root_cache = s->memcg_params->root_cache;
5050
107dab5c
GC
5051 /*
5052 * This mean this cache had no attribute written. Therefore, no point
5053 * in copying default values around
5054 */
93030d83 5055 if (!root_cache->max_attr_size)
107dab5c
GC
5056 return;
5057
5058 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5059 char mbuf[64];
5060 char *buf;
5061 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5062
5063 if (!attr || !attr->store || !attr->show)
5064 continue;
5065
5066 /*
5067 * It is really bad that we have to allocate here, so we will
5068 * do it only as a fallback. If we actually allocate, though,
5069 * we can just use the allocated buffer until the end.
5070 *
5071 * Most of the slub attributes will tend to be very small in
5072 * size, but sysfs allows buffers up to a page, so they can
5073 * theoretically happen.
5074 */
5075 if (buffer)
5076 buf = buffer;
93030d83 5077 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5078 buf = mbuf;
5079 else {
5080 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5081 if (WARN_ON(!buffer))
5082 continue;
5083 buf = buffer;
5084 }
5085
93030d83 5086 attr->show(root_cache, buf);
107dab5c
GC
5087 attr->store(s, buf, strlen(buf));
5088 }
5089
5090 if (buffer)
5091 free_page((unsigned long)buffer);
5092#endif
5093}
5094
41a21285
CL
5095static void kmem_cache_release(struct kobject *k)
5096{
5097 slab_kmem_cache_release(to_slab(k));
5098}
5099
52cf25d0 5100static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5101 .show = slab_attr_show,
5102 .store = slab_attr_store,
5103};
5104
5105static struct kobj_type slab_ktype = {
5106 .sysfs_ops = &slab_sysfs_ops,
41a21285 5107 .release = kmem_cache_release,
81819f0f
CL
5108};
5109
5110static int uevent_filter(struct kset *kset, struct kobject *kobj)
5111{
5112 struct kobj_type *ktype = get_ktype(kobj);
5113
5114 if (ktype == &slab_ktype)
5115 return 1;
5116 return 0;
5117}
5118
9cd43611 5119static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5120 .filter = uevent_filter,
5121};
5122
27c3a314 5123static struct kset *slab_kset;
81819f0f 5124
9a41707b
VD
5125static inline struct kset *cache_kset(struct kmem_cache *s)
5126{
5127#ifdef CONFIG_MEMCG_KMEM
5128 if (!is_root_cache(s))
5129 return s->memcg_params->root_cache->memcg_kset;
5130#endif
5131 return slab_kset;
5132}
5133
81819f0f
CL
5134#define ID_STR_LENGTH 64
5135
5136/* Create a unique string id for a slab cache:
6446faa2
CL
5137 *
5138 * Format :[flags-]size
81819f0f
CL
5139 */
5140static char *create_unique_id(struct kmem_cache *s)
5141{
5142 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5143 char *p = name;
5144
5145 BUG_ON(!name);
5146
5147 *p++ = ':';
5148 /*
5149 * First flags affecting slabcache operations. We will only
5150 * get here for aliasable slabs so we do not need to support
5151 * too many flags. The flags here must cover all flags that
5152 * are matched during merging to guarantee that the id is
5153 * unique.
5154 */
5155 if (s->flags & SLAB_CACHE_DMA)
5156 *p++ = 'd';
5157 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5158 *p++ = 'a';
5159 if (s->flags & SLAB_DEBUG_FREE)
5160 *p++ = 'F';
5a896d9e
VN
5161 if (!(s->flags & SLAB_NOTRACK))
5162 *p++ = 't';
81819f0f
CL
5163 if (p != name + 1)
5164 *p++ = '-';
5165 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5166
5167#ifdef CONFIG_MEMCG_KMEM
5168 if (!is_root_cache(s))
d0e0ac97
CG
5169 p += sprintf(p, "-%08d",
5170 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5171#endif
5172
81819f0f
CL
5173 BUG_ON(p > name + ID_STR_LENGTH - 1);
5174 return name;
5175}
5176
5177static int sysfs_slab_add(struct kmem_cache *s)
5178{
5179 int err;
5180 const char *name;
45530c44 5181 int unmergeable = slab_unmergeable(s);
81819f0f 5182
81819f0f
CL
5183 if (unmergeable) {
5184 /*
5185 * Slabcache can never be merged so we can use the name proper.
5186 * This is typically the case for debug situations. In that
5187 * case we can catch duplicate names easily.
5188 */
27c3a314 5189 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5190 name = s->name;
5191 } else {
5192 /*
5193 * Create a unique name for the slab as a target
5194 * for the symlinks.
5195 */
5196 name = create_unique_id(s);
5197 }
5198
9a41707b 5199 s->kobj.kset = cache_kset(s);
26e4f205 5200 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5201 if (err)
5202 goto out_put_kobj;
81819f0f
CL
5203
5204 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5205 if (err)
5206 goto out_del_kobj;
9a41707b
VD
5207
5208#ifdef CONFIG_MEMCG_KMEM
5209 if (is_root_cache(s)) {
5210 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5211 if (!s->memcg_kset) {
54b6a731
DJ
5212 err = -ENOMEM;
5213 goto out_del_kobj;
9a41707b
VD
5214 }
5215 }
5216#endif
5217
81819f0f
CL
5218 kobject_uevent(&s->kobj, KOBJ_ADD);
5219 if (!unmergeable) {
5220 /* Setup first alias */
5221 sysfs_slab_alias(s, s->name);
81819f0f 5222 }
54b6a731
DJ
5223out:
5224 if (!unmergeable)
5225 kfree(name);
5226 return err;
5227out_del_kobj:
5228 kobject_del(&s->kobj);
5229out_put_kobj:
5230 kobject_put(&s->kobj);
5231 goto out;
81819f0f
CL
5232}
5233
41a21285 5234void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5235{
97d06609 5236 if (slab_state < FULL)
2bce6485
CL
5237 /*
5238 * Sysfs has not been setup yet so no need to remove the
5239 * cache from sysfs.
5240 */
5241 return;
5242
9a41707b
VD
5243#ifdef CONFIG_MEMCG_KMEM
5244 kset_unregister(s->memcg_kset);
5245#endif
81819f0f
CL
5246 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5247 kobject_del(&s->kobj);
151c602f 5248 kobject_put(&s->kobj);
81819f0f
CL
5249}
5250
5251/*
5252 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5253 * available lest we lose that information.
81819f0f
CL
5254 */
5255struct saved_alias {
5256 struct kmem_cache *s;
5257 const char *name;
5258 struct saved_alias *next;
5259};
5260
5af328a5 5261static struct saved_alias *alias_list;
81819f0f
CL
5262
5263static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5264{
5265 struct saved_alias *al;
5266
97d06609 5267 if (slab_state == FULL) {
81819f0f
CL
5268 /*
5269 * If we have a leftover link then remove it.
5270 */
27c3a314
GKH
5271 sysfs_remove_link(&slab_kset->kobj, name);
5272 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5273 }
5274
5275 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5276 if (!al)
5277 return -ENOMEM;
5278
5279 al->s = s;
5280 al->name = name;
5281 al->next = alias_list;
5282 alias_list = al;
5283 return 0;
5284}
5285
5286static int __init slab_sysfs_init(void)
5287{
5b95a4ac 5288 struct kmem_cache *s;
81819f0f
CL
5289 int err;
5290
18004c5d 5291 mutex_lock(&slab_mutex);
2bce6485 5292
0ff21e46 5293 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5294 if (!slab_kset) {
18004c5d 5295 mutex_unlock(&slab_mutex);
f9f58285 5296 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5297 return -ENOSYS;
5298 }
5299
97d06609 5300 slab_state = FULL;
26a7bd03 5301
5b95a4ac 5302 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5303 err = sysfs_slab_add(s);
5d540fb7 5304 if (err)
f9f58285
FF
5305 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5306 s->name);
26a7bd03 5307 }
81819f0f
CL
5308
5309 while (alias_list) {
5310 struct saved_alias *al = alias_list;
5311
5312 alias_list = alias_list->next;
5313 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5314 if (err)
f9f58285
FF
5315 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5316 al->name);
81819f0f
CL
5317 kfree(al);
5318 }
5319
18004c5d 5320 mutex_unlock(&slab_mutex);
81819f0f
CL
5321 resiliency_test();
5322 return 0;
5323}
5324
5325__initcall(slab_sysfs_init);
ab4d5ed5 5326#endif /* CONFIG_SYSFS */
57ed3eda
PE
5327
5328/*
5329 * The /proc/slabinfo ABI
5330 */
158a9624 5331#ifdef CONFIG_SLABINFO
0d7561c6 5332void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5333{
57ed3eda 5334 unsigned long nr_slabs = 0;
205ab99d
CL
5335 unsigned long nr_objs = 0;
5336 unsigned long nr_free = 0;
57ed3eda
PE
5337 int node;
5338
57ed3eda
PE
5339 for_each_online_node(node) {
5340 struct kmem_cache_node *n = get_node(s, node);
5341
5342 if (!n)
5343 continue;
5344
c17fd13e
WL
5345 nr_slabs += node_nr_slabs(n);
5346 nr_objs += node_nr_objs(n);
205ab99d 5347 nr_free += count_partial(n, count_free);
57ed3eda
PE
5348 }
5349
0d7561c6
GC
5350 sinfo->active_objs = nr_objs - nr_free;
5351 sinfo->num_objs = nr_objs;
5352 sinfo->active_slabs = nr_slabs;
5353 sinfo->num_slabs = nr_slabs;
5354 sinfo->objects_per_slab = oo_objects(s->oo);
5355 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5356}
5357
0d7561c6 5358void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5359{
7b3c3a50
AD
5360}
5361
b7454ad3
GC
5362ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5363 size_t count, loff_t *ppos)
7b3c3a50 5364{
b7454ad3 5365 return -EIO;
7b3c3a50 5366}
158a9624 5367#endif /* CONFIG_SLABINFO */