]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm/sl[aou]b: Move freeing of kmem_cache structure to common code
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
151c602f
CL
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
84c1cf62 215 kfree(s->name);
151c602f 216}
8ff12cfc 217
81819f0f
CL
218#endif
219
4fdccdfb 220static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
81819f0f
CL
231static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
232{
81819f0f 233 return s->node[node];
81819f0f
CL
234}
235
6446faa2 236/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
237static inline int check_valid_pointer(struct kmem_cache *s,
238 struct page *page, const void *object)
239{
240 void *base;
241
a973e9dd 242 if (!object)
02cbc874
CL
243 return 1;
244
a973e9dd 245 base = page_address(page);
39b26464 246 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
247 (object - base) % s->size) {
248 return 0;
249 }
250
251 return 1;
252}
253
7656c72b
CL
254static inline void *get_freepointer(struct kmem_cache *s, void *object)
255{
256 return *(void **)(object + s->offset);
257}
258
0ad9500e
ED
259static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260{
261 prefetch(object + s->offset);
262}
263
1393d9a1
CL
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266 void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271 p = get_freepointer(s, object);
272#endif
273 return p;
274}
275
7656c72b
CL
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
7656c72b
CL
286/* Determine object index from a given position */
287static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288{
289 return (p - addr) / s->size;
290}
291
d71f606f
MK
292static inline size_t slab_ksize(const struct kmem_cache *s)
293{
294#ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 300 return s->object_size;
d71f606f
MK
301
302#endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314}
315
ab9a0f19
LJ
316static inline int order_objects(int order, unsigned long size, int reserved)
317{
318 return ((PAGE_SIZE << order) - reserved) / size;
319}
320
834f3d11 321static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 322 unsigned long size, int reserved)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
ab9a0f19 325 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
326 };
327
328 return x;
329}
330
331static inline int oo_order(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
336static inline int oo_objects(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
881db7fb
CL
341/*
342 * Per slab locking using the pagelock
343 */
344static __always_inline void slab_lock(struct page *page)
345{
346 bit_spin_lock(PG_locked, &page->flags);
347}
348
349static __always_inline void slab_unlock(struct page *page)
350{
351 __bit_spin_unlock(PG_locked, &page->flags);
352}
353
1d07171c
CL
354/* Interrupts must be disabled (for the fallback code to work right) */
355static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
356 void *freelist_old, unsigned long counters_old,
357 void *freelist_new, unsigned long counters_new,
358 const char *n)
359{
360 VM_BUG_ON(!irqs_disabled());
2565409f
HC
361#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
362 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 363 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 364 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
365 freelist_old, counters_old,
366 freelist_new, counters_new))
367 return 1;
368 } else
369#endif
370 {
371 slab_lock(page);
372 if (page->freelist == freelist_old && page->counters == counters_old) {
373 page->freelist = freelist_new;
374 page->counters = counters_new;
375 slab_unlock(page);
376 return 1;
377 }
378 slab_unlock(page);
379 }
380
381 cpu_relax();
382 stat(s, CMPXCHG_DOUBLE_FAIL);
383
384#ifdef SLUB_DEBUG_CMPXCHG
385 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
386#endif
387
388 return 0;
389}
390
b789ef51
CL
391static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
392 void *freelist_old, unsigned long counters_old,
393 void *freelist_new, unsigned long counters_new,
394 const char *n)
395{
2565409f
HC
396#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
397 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 398 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 399 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
400 freelist_old, counters_old,
401 freelist_new, counters_new))
402 return 1;
403 } else
404#endif
405 {
1d07171c
CL
406 unsigned long flags;
407
408 local_irq_save(flags);
881db7fb 409 slab_lock(page);
b789ef51
CL
410 if (page->freelist == freelist_old && page->counters == counters_old) {
411 page->freelist = freelist_new;
412 page->counters = counters_new;
881db7fb 413 slab_unlock(page);
1d07171c 414 local_irq_restore(flags);
b789ef51
CL
415 return 1;
416 }
881db7fb 417 slab_unlock(page);
1d07171c 418 local_irq_restore(flags);
b789ef51
CL
419 }
420
421 cpu_relax();
422 stat(s, CMPXCHG_DOUBLE_FAIL);
423
424#ifdef SLUB_DEBUG_CMPXCHG
425 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
426#endif
427
428 return 0;
429}
430
41ecc55b 431#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
432/*
433 * Determine a map of object in use on a page.
434 *
881db7fb 435 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
436 * not vanish from under us.
437 */
438static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
439{
440 void *p;
441 void *addr = page_address(page);
442
443 for (p = page->freelist; p; p = get_freepointer(s, p))
444 set_bit(slab_index(p, s, addr), map);
445}
446
41ecc55b
CL
447/*
448 * Debug settings:
449 */
f0630fff
CL
450#ifdef CONFIG_SLUB_DEBUG_ON
451static int slub_debug = DEBUG_DEFAULT_FLAGS;
452#else
41ecc55b 453static int slub_debug;
f0630fff 454#endif
41ecc55b
CL
455
456static char *slub_debug_slabs;
fa5ec8a1 457static int disable_higher_order_debug;
41ecc55b 458
81819f0f
CL
459/*
460 * Object debugging
461 */
462static void print_section(char *text, u8 *addr, unsigned int length)
463{
ffc79d28
SAS
464 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
465 length, 1);
81819f0f
CL
466}
467
81819f0f
CL
468static struct track *get_track(struct kmem_cache *s, void *object,
469 enum track_item alloc)
470{
471 struct track *p;
472
473 if (s->offset)
474 p = object + s->offset + sizeof(void *);
475 else
476 p = object + s->inuse;
477
478 return p + alloc;
479}
480
481static void set_track(struct kmem_cache *s, void *object,
ce71e27c 482 enum track_item alloc, unsigned long addr)
81819f0f 483{
1a00df4a 484 struct track *p = get_track(s, object, alloc);
81819f0f 485
81819f0f 486 if (addr) {
d6543e39
BG
487#ifdef CONFIG_STACKTRACE
488 struct stack_trace trace;
489 int i;
490
491 trace.nr_entries = 0;
492 trace.max_entries = TRACK_ADDRS_COUNT;
493 trace.entries = p->addrs;
494 trace.skip = 3;
495 save_stack_trace(&trace);
496
497 /* See rant in lockdep.c */
498 if (trace.nr_entries != 0 &&
499 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
500 trace.nr_entries--;
501
502 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
503 p->addrs[i] = 0;
504#endif
81819f0f
CL
505 p->addr = addr;
506 p->cpu = smp_processor_id();
88e4ccf2 507 p->pid = current->pid;
81819f0f
CL
508 p->when = jiffies;
509 } else
510 memset(p, 0, sizeof(struct track));
511}
512
81819f0f
CL
513static void init_tracking(struct kmem_cache *s, void *object)
514{
24922684
CL
515 if (!(s->flags & SLAB_STORE_USER))
516 return;
517
ce71e27c
EGM
518 set_track(s, object, TRACK_FREE, 0UL);
519 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
520}
521
522static void print_track(const char *s, struct track *t)
523{
524 if (!t->addr)
525 return;
526
7daf705f 527 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 528 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
529#ifdef CONFIG_STACKTRACE
530 {
531 int i;
532 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
533 if (t->addrs[i])
534 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
535 else
536 break;
537 }
538#endif
24922684
CL
539}
540
541static void print_tracking(struct kmem_cache *s, void *object)
542{
543 if (!(s->flags & SLAB_STORE_USER))
544 return;
545
546 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
547 print_track("Freed", get_track(s, object, TRACK_FREE));
548}
549
550static void print_page_info(struct page *page)
551{
39b26464
CL
552 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
553 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
554
555}
556
557static void slab_bug(struct kmem_cache *s, char *fmt, ...)
558{
559 va_list args;
560 char buf[100];
561
562 va_start(args, fmt);
563 vsnprintf(buf, sizeof(buf), fmt, args);
564 va_end(args);
565 printk(KERN_ERR "========================================"
566 "=====================================\n");
265d47e7 567 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
568 printk(KERN_ERR "----------------------------------------"
569 "-------------------------------------\n\n");
81819f0f
CL
570}
571
24922684
CL
572static void slab_fix(struct kmem_cache *s, char *fmt, ...)
573{
574 va_list args;
575 char buf[100];
576
577 va_start(args, fmt);
578 vsnprintf(buf, sizeof(buf), fmt, args);
579 va_end(args);
580 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
581}
582
583static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
584{
585 unsigned int off; /* Offset of last byte */
a973e9dd 586 u8 *addr = page_address(page);
24922684
CL
587
588 print_tracking(s, p);
589
590 print_page_info(page);
591
592 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
593 p, p - addr, get_freepointer(s, p));
594
595 if (p > addr + 16)
ffc79d28 596 print_section("Bytes b4 ", p - 16, 16);
81819f0f 597
3b0efdfa 598 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 599 PAGE_SIZE));
81819f0f 600 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
601 print_section("Redzone ", p + s->object_size,
602 s->inuse - s->object_size);
81819f0f 603
81819f0f
CL
604 if (s->offset)
605 off = s->offset + sizeof(void *);
606 else
607 off = s->inuse;
608
24922684 609 if (s->flags & SLAB_STORE_USER)
81819f0f 610 off += 2 * sizeof(struct track);
81819f0f
CL
611
612 if (off != s->size)
613 /* Beginning of the filler is the free pointer */
ffc79d28 614 print_section("Padding ", p + off, s->size - off);
24922684
CL
615
616 dump_stack();
81819f0f
CL
617}
618
619static void object_err(struct kmem_cache *s, struct page *page,
620 u8 *object, char *reason)
621{
3dc50637 622 slab_bug(s, "%s", reason);
24922684 623 print_trailer(s, page, object);
81819f0f
CL
624}
625
945cf2b6 626static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
627{
628 va_list args;
629 char buf[100];
630
24922684
CL
631 va_start(args, fmt);
632 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 633 va_end(args);
3dc50637 634 slab_bug(s, "%s", buf);
24922684 635 print_page_info(page);
81819f0f
CL
636 dump_stack();
637}
638
f7cb1933 639static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
640{
641 u8 *p = object;
642
643 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
644 memset(p, POISON_FREE, s->object_size - 1);
645 p[s->object_size - 1] = POISON_END;
81819f0f
CL
646 }
647
648 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 649 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
650}
651
24922684
CL
652static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
653 void *from, void *to)
654{
655 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
656 memset(from, data, to - from);
657}
658
659static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
660 u8 *object, char *what,
06428780 661 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
662{
663 u8 *fault;
664 u8 *end;
665
79824820 666 fault = memchr_inv(start, value, bytes);
24922684
CL
667 if (!fault)
668 return 1;
669
670 end = start + bytes;
671 while (end > fault && end[-1] == value)
672 end--;
673
674 slab_bug(s, "%s overwritten", what);
675 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
676 fault, end - 1, fault[0], value);
677 print_trailer(s, page, object);
678
679 restore_bytes(s, what, value, fault, end);
680 return 0;
81819f0f
CL
681}
682
81819f0f
CL
683/*
684 * Object layout:
685 *
686 * object address
687 * Bytes of the object to be managed.
688 * If the freepointer may overlay the object then the free
689 * pointer is the first word of the object.
672bba3a 690 *
81819f0f
CL
691 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
692 * 0xa5 (POISON_END)
693 *
3b0efdfa 694 * object + s->object_size
81819f0f 695 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 696 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 697 * object_size == inuse.
672bba3a 698 *
81819f0f
CL
699 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
700 * 0xcc (RED_ACTIVE) for objects in use.
701 *
702 * object + s->inuse
672bba3a
CL
703 * Meta data starts here.
704 *
81819f0f
CL
705 * A. Free pointer (if we cannot overwrite object on free)
706 * B. Tracking data for SLAB_STORE_USER
672bba3a 707 * C. Padding to reach required alignment boundary or at mininum
6446faa2 708 * one word if debugging is on to be able to detect writes
672bba3a
CL
709 * before the word boundary.
710 *
711 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
712 *
713 * object + s->size
672bba3a 714 * Nothing is used beyond s->size.
81819f0f 715 *
3b0efdfa 716 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 717 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
718 * may be used with merged slabcaches.
719 */
720
81819f0f
CL
721static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
722{
723 unsigned long off = s->inuse; /* The end of info */
724
725 if (s->offset)
726 /* Freepointer is placed after the object. */
727 off += sizeof(void *);
728
729 if (s->flags & SLAB_STORE_USER)
730 /* We also have user information there */
731 off += 2 * sizeof(struct track);
732
733 if (s->size == off)
734 return 1;
735
24922684
CL
736 return check_bytes_and_report(s, page, p, "Object padding",
737 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
738}
739
39b26464 740/* Check the pad bytes at the end of a slab page */
81819f0f
CL
741static int slab_pad_check(struct kmem_cache *s, struct page *page)
742{
24922684
CL
743 u8 *start;
744 u8 *fault;
745 u8 *end;
746 int length;
747 int remainder;
81819f0f
CL
748
749 if (!(s->flags & SLAB_POISON))
750 return 1;
751
a973e9dd 752 start = page_address(page);
ab9a0f19 753 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
754 end = start + length;
755 remainder = length % s->size;
81819f0f
CL
756 if (!remainder)
757 return 1;
758
79824820 759 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
760 if (!fault)
761 return 1;
762 while (end > fault && end[-1] == POISON_INUSE)
763 end--;
764
765 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 766 print_section("Padding ", end - remainder, remainder);
24922684 767
8a3d271d 768 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 769 return 0;
81819f0f
CL
770}
771
772static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 773 void *object, u8 val)
81819f0f
CL
774{
775 u8 *p = object;
3b0efdfa 776 u8 *endobject = object + s->object_size;
81819f0f
CL
777
778 if (s->flags & SLAB_RED_ZONE) {
24922684 779 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 780 endobject, val, s->inuse - s->object_size))
81819f0f 781 return 0;
81819f0f 782 } else {
3b0efdfa 783 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 784 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 785 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 786 }
81819f0f
CL
787 }
788
789 if (s->flags & SLAB_POISON) {
f7cb1933 790 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 791 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 792 POISON_FREE, s->object_size - 1) ||
24922684 793 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 794 p + s->object_size - 1, POISON_END, 1)))
81819f0f 795 return 0;
81819f0f
CL
796 /*
797 * check_pad_bytes cleans up on its own.
798 */
799 check_pad_bytes(s, page, p);
800 }
801
f7cb1933 802 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
803 /*
804 * Object and freepointer overlap. Cannot check
805 * freepointer while object is allocated.
806 */
807 return 1;
808
809 /* Check free pointer validity */
810 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
811 object_err(s, page, p, "Freepointer corrupt");
812 /*
9f6c708e 813 * No choice but to zap it and thus lose the remainder
81819f0f 814 * of the free objects in this slab. May cause
672bba3a 815 * another error because the object count is now wrong.
81819f0f 816 */
a973e9dd 817 set_freepointer(s, p, NULL);
81819f0f
CL
818 return 0;
819 }
820 return 1;
821}
822
823static int check_slab(struct kmem_cache *s, struct page *page)
824{
39b26464
CL
825 int maxobj;
826
81819f0f
CL
827 VM_BUG_ON(!irqs_disabled());
828
829 if (!PageSlab(page)) {
24922684 830 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
831 return 0;
832 }
39b26464 833
ab9a0f19 834 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
835 if (page->objects > maxobj) {
836 slab_err(s, page, "objects %u > max %u",
837 s->name, page->objects, maxobj);
838 return 0;
839 }
840 if (page->inuse > page->objects) {
24922684 841 slab_err(s, page, "inuse %u > max %u",
39b26464 842 s->name, page->inuse, page->objects);
81819f0f
CL
843 return 0;
844 }
845 /* Slab_pad_check fixes things up after itself */
846 slab_pad_check(s, page);
847 return 1;
848}
849
850/*
672bba3a
CL
851 * Determine if a certain object on a page is on the freelist. Must hold the
852 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
853 */
854static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
855{
856 int nr = 0;
881db7fb 857 void *fp;
81819f0f 858 void *object = NULL;
224a88be 859 unsigned long max_objects;
81819f0f 860
881db7fb 861 fp = page->freelist;
39b26464 862 while (fp && nr <= page->objects) {
81819f0f
CL
863 if (fp == search)
864 return 1;
865 if (!check_valid_pointer(s, page, fp)) {
866 if (object) {
867 object_err(s, page, object,
868 "Freechain corrupt");
a973e9dd 869 set_freepointer(s, object, NULL);
81819f0f
CL
870 break;
871 } else {
24922684 872 slab_err(s, page, "Freepointer corrupt");
a973e9dd 873 page->freelist = NULL;
39b26464 874 page->inuse = page->objects;
24922684 875 slab_fix(s, "Freelist cleared");
81819f0f
CL
876 return 0;
877 }
878 break;
879 }
880 object = fp;
881 fp = get_freepointer(s, object);
882 nr++;
883 }
884
ab9a0f19 885 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
886 if (max_objects > MAX_OBJS_PER_PAGE)
887 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
888
889 if (page->objects != max_objects) {
890 slab_err(s, page, "Wrong number of objects. Found %d but "
891 "should be %d", page->objects, max_objects);
892 page->objects = max_objects;
893 slab_fix(s, "Number of objects adjusted.");
894 }
39b26464 895 if (page->inuse != page->objects - nr) {
70d71228 896 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
897 "counted were %d", page->inuse, page->objects - nr);
898 page->inuse = page->objects - nr;
24922684 899 slab_fix(s, "Object count adjusted.");
81819f0f
CL
900 }
901 return search == NULL;
902}
903
0121c619
CL
904static void trace(struct kmem_cache *s, struct page *page, void *object,
905 int alloc)
3ec09742
CL
906{
907 if (s->flags & SLAB_TRACE) {
908 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
909 s->name,
910 alloc ? "alloc" : "free",
911 object, page->inuse,
912 page->freelist);
913
914 if (!alloc)
3b0efdfa 915 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
916
917 dump_stack();
918 }
919}
920
c016b0bd
CL
921/*
922 * Hooks for other subsystems that check memory allocations. In a typical
923 * production configuration these hooks all should produce no code at all.
924 */
925static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
926{
c1d50836 927 flags &= gfp_allowed_mask;
c016b0bd
CL
928 lockdep_trace_alloc(flags);
929 might_sleep_if(flags & __GFP_WAIT);
930
3b0efdfa 931 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
932}
933
934static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
935{
c1d50836 936 flags &= gfp_allowed_mask;
b3d41885 937 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 938 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
939}
940
941static inline void slab_free_hook(struct kmem_cache *s, void *x)
942{
943 kmemleak_free_recursive(x, s->flags);
c016b0bd 944
d3f661d6
CL
945 /*
946 * Trouble is that we may no longer disable interupts in the fast path
947 * So in order to make the debug calls that expect irqs to be
948 * disabled we need to disable interrupts temporarily.
949 */
950#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
951 {
952 unsigned long flags;
953
954 local_irq_save(flags);
3b0efdfa
CL
955 kmemcheck_slab_free(s, x, s->object_size);
956 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
957 local_irq_restore(flags);
958 }
959#endif
f9b615de 960 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 961 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
962}
963
643b1138 964/*
672bba3a 965 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
966 *
967 * list_lock must be held.
643b1138 968 */
5cc6eee8
CL
969static void add_full(struct kmem_cache *s,
970 struct kmem_cache_node *n, struct page *page)
643b1138 971{
5cc6eee8
CL
972 if (!(s->flags & SLAB_STORE_USER))
973 return;
974
643b1138 975 list_add(&page->lru, &n->full);
643b1138
CL
976}
977
5cc6eee8
CL
978/*
979 * list_lock must be held.
980 */
643b1138
CL
981static void remove_full(struct kmem_cache *s, struct page *page)
982{
643b1138
CL
983 if (!(s->flags & SLAB_STORE_USER))
984 return;
985
643b1138 986 list_del(&page->lru);
643b1138
CL
987}
988
0f389ec6
CL
989/* Tracking of the number of slabs for debugging purposes */
990static inline unsigned long slabs_node(struct kmem_cache *s, int node)
991{
992 struct kmem_cache_node *n = get_node(s, node);
993
994 return atomic_long_read(&n->nr_slabs);
995}
996
26c02cf0
AB
997static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
998{
999 return atomic_long_read(&n->nr_slabs);
1000}
1001
205ab99d 1002static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1003{
1004 struct kmem_cache_node *n = get_node(s, node);
1005
1006 /*
1007 * May be called early in order to allocate a slab for the
1008 * kmem_cache_node structure. Solve the chicken-egg
1009 * dilemma by deferring the increment of the count during
1010 * bootstrap (see early_kmem_cache_node_alloc).
1011 */
7340cc84 1012 if (n) {
0f389ec6 1013 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1014 atomic_long_add(objects, &n->total_objects);
1015 }
0f389ec6 1016}
205ab99d 1017static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1018{
1019 struct kmem_cache_node *n = get_node(s, node);
1020
1021 atomic_long_dec(&n->nr_slabs);
205ab99d 1022 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1023}
1024
1025/* Object debug checks for alloc/free paths */
3ec09742
CL
1026static void setup_object_debug(struct kmem_cache *s, struct page *page,
1027 void *object)
1028{
1029 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1030 return;
1031
f7cb1933 1032 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1033 init_tracking(s, object);
1034}
1035
1537066c 1036static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1037 void *object, unsigned long addr)
81819f0f
CL
1038{
1039 if (!check_slab(s, page))
1040 goto bad;
1041
81819f0f
CL
1042 if (!check_valid_pointer(s, page, object)) {
1043 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1044 goto bad;
81819f0f
CL
1045 }
1046
f7cb1933 1047 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1048 goto bad;
81819f0f 1049
3ec09742
CL
1050 /* Success perform special debug activities for allocs */
1051 if (s->flags & SLAB_STORE_USER)
1052 set_track(s, object, TRACK_ALLOC, addr);
1053 trace(s, page, object, 1);
f7cb1933 1054 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1055 return 1;
3ec09742 1056
81819f0f
CL
1057bad:
1058 if (PageSlab(page)) {
1059 /*
1060 * If this is a slab page then lets do the best we can
1061 * to avoid issues in the future. Marking all objects
672bba3a 1062 * as used avoids touching the remaining objects.
81819f0f 1063 */
24922684 1064 slab_fix(s, "Marking all objects used");
39b26464 1065 page->inuse = page->objects;
a973e9dd 1066 page->freelist = NULL;
81819f0f
CL
1067 }
1068 return 0;
1069}
1070
19c7ff9e
CL
1071static noinline struct kmem_cache_node *free_debug_processing(
1072 struct kmem_cache *s, struct page *page, void *object,
1073 unsigned long addr, unsigned long *flags)
81819f0f 1074{
19c7ff9e 1075 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1076
19c7ff9e 1077 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1078 slab_lock(page);
1079
81819f0f
CL
1080 if (!check_slab(s, page))
1081 goto fail;
1082
1083 if (!check_valid_pointer(s, page, object)) {
70d71228 1084 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1085 goto fail;
1086 }
1087
1088 if (on_freelist(s, page, object)) {
24922684 1089 object_err(s, page, object, "Object already free");
81819f0f
CL
1090 goto fail;
1091 }
1092
f7cb1933 1093 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1094 goto out;
81819f0f
CL
1095
1096 if (unlikely(s != page->slab)) {
3adbefee 1097 if (!PageSlab(page)) {
70d71228
CL
1098 slab_err(s, page, "Attempt to free object(0x%p) "
1099 "outside of slab", object);
3adbefee 1100 } else if (!page->slab) {
81819f0f 1101 printk(KERN_ERR
70d71228 1102 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1103 object);
70d71228 1104 dump_stack();
06428780 1105 } else
24922684
CL
1106 object_err(s, page, object,
1107 "page slab pointer corrupt.");
81819f0f
CL
1108 goto fail;
1109 }
3ec09742 1110
3ec09742
CL
1111 if (s->flags & SLAB_STORE_USER)
1112 set_track(s, object, TRACK_FREE, addr);
1113 trace(s, page, object, 0);
f7cb1933 1114 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1115out:
881db7fb 1116 slab_unlock(page);
19c7ff9e
CL
1117 /*
1118 * Keep node_lock to preserve integrity
1119 * until the object is actually freed
1120 */
1121 return n;
3ec09742 1122
81819f0f 1123fail:
19c7ff9e
CL
1124 slab_unlock(page);
1125 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1126 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1127 return NULL;
81819f0f
CL
1128}
1129
41ecc55b
CL
1130static int __init setup_slub_debug(char *str)
1131{
f0630fff
CL
1132 slub_debug = DEBUG_DEFAULT_FLAGS;
1133 if (*str++ != '=' || !*str)
1134 /*
1135 * No options specified. Switch on full debugging.
1136 */
1137 goto out;
1138
1139 if (*str == ',')
1140 /*
1141 * No options but restriction on slabs. This means full
1142 * debugging for slabs matching a pattern.
1143 */
1144 goto check_slabs;
1145
fa5ec8a1
DR
1146 if (tolower(*str) == 'o') {
1147 /*
1148 * Avoid enabling debugging on caches if its minimum order
1149 * would increase as a result.
1150 */
1151 disable_higher_order_debug = 1;
1152 goto out;
1153 }
1154
f0630fff
CL
1155 slub_debug = 0;
1156 if (*str == '-')
1157 /*
1158 * Switch off all debugging measures.
1159 */
1160 goto out;
1161
1162 /*
1163 * Determine which debug features should be switched on
1164 */
06428780 1165 for (; *str && *str != ','; str++) {
f0630fff
CL
1166 switch (tolower(*str)) {
1167 case 'f':
1168 slub_debug |= SLAB_DEBUG_FREE;
1169 break;
1170 case 'z':
1171 slub_debug |= SLAB_RED_ZONE;
1172 break;
1173 case 'p':
1174 slub_debug |= SLAB_POISON;
1175 break;
1176 case 'u':
1177 slub_debug |= SLAB_STORE_USER;
1178 break;
1179 case 't':
1180 slub_debug |= SLAB_TRACE;
1181 break;
4c13dd3b
DM
1182 case 'a':
1183 slub_debug |= SLAB_FAILSLAB;
1184 break;
f0630fff
CL
1185 default:
1186 printk(KERN_ERR "slub_debug option '%c' "
06428780 1187 "unknown. skipped\n", *str);
f0630fff 1188 }
41ecc55b
CL
1189 }
1190
f0630fff 1191check_slabs:
41ecc55b
CL
1192 if (*str == ',')
1193 slub_debug_slabs = str + 1;
f0630fff 1194out:
41ecc55b
CL
1195 return 1;
1196}
1197
1198__setup("slub_debug", setup_slub_debug);
1199
3b0efdfa 1200static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1201 unsigned long flags, const char *name,
51cc5068 1202 void (*ctor)(void *))
41ecc55b
CL
1203{
1204 /*
e153362a 1205 * Enable debugging if selected on the kernel commandline.
41ecc55b 1206 */
e153362a 1207 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1208 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1209 flags |= slub_debug;
ba0268a8
CL
1210
1211 return flags;
41ecc55b
CL
1212}
1213#else
3ec09742
CL
1214static inline void setup_object_debug(struct kmem_cache *s,
1215 struct page *page, void *object) {}
41ecc55b 1216
3ec09742 1217static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1218 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1219
19c7ff9e
CL
1220static inline struct kmem_cache_node *free_debug_processing(
1221 struct kmem_cache *s, struct page *page, void *object,
1222 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1223
41ecc55b
CL
1224static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1225 { return 1; }
1226static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1227 void *object, u8 val) { return 1; }
5cc6eee8
CL
1228static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1229 struct page *page) {}
2cfb7455 1230static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1231static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1232 unsigned long flags, const char *name,
51cc5068 1233 void (*ctor)(void *))
ba0268a8
CL
1234{
1235 return flags;
1236}
41ecc55b 1237#define slub_debug 0
0f389ec6 1238
fdaa45e9
IM
1239#define disable_higher_order_debug 0
1240
0f389ec6
CL
1241static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1242 { return 0; }
26c02cf0
AB
1243static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1244 { return 0; }
205ab99d
CL
1245static inline void inc_slabs_node(struct kmem_cache *s, int node,
1246 int objects) {}
1247static inline void dec_slabs_node(struct kmem_cache *s, int node,
1248 int objects) {}
7d550c56
CL
1249
1250static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1251 { return 0; }
1252
1253static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1254 void *object) {}
1255
1256static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1257
ab4d5ed5 1258#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1259
81819f0f
CL
1260/*
1261 * Slab allocation and freeing
1262 */
65c3376a
CL
1263static inline struct page *alloc_slab_page(gfp_t flags, int node,
1264 struct kmem_cache_order_objects oo)
1265{
1266 int order = oo_order(oo);
1267
b1eeab67
VN
1268 flags |= __GFP_NOTRACK;
1269
2154a336 1270 if (node == NUMA_NO_NODE)
65c3376a
CL
1271 return alloc_pages(flags, order);
1272 else
6b65aaf3 1273 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1274}
1275
81819f0f
CL
1276static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1277{
06428780 1278 struct page *page;
834f3d11 1279 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1280 gfp_t alloc_gfp;
81819f0f 1281
7e0528da
CL
1282 flags &= gfp_allowed_mask;
1283
1284 if (flags & __GFP_WAIT)
1285 local_irq_enable();
1286
b7a49f0d 1287 flags |= s->allocflags;
e12ba74d 1288
ba52270d
PE
1289 /*
1290 * Let the initial higher-order allocation fail under memory pressure
1291 * so we fall-back to the minimum order allocation.
1292 */
1293 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1294
1295 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1296 if (unlikely(!page)) {
1297 oo = s->min;
1298 /*
1299 * Allocation may have failed due to fragmentation.
1300 * Try a lower order alloc if possible
1301 */
1302 page = alloc_slab_page(flags, node, oo);
81819f0f 1303
7e0528da
CL
1304 if (page)
1305 stat(s, ORDER_FALLBACK);
65c3376a 1306 }
5a896d9e 1307
737b719e 1308 if (kmemcheck_enabled && page
5086c389 1309 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1310 int pages = 1 << oo_order(oo);
1311
1312 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1313
1314 /*
1315 * Objects from caches that have a constructor don't get
1316 * cleared when they're allocated, so we need to do it here.
1317 */
1318 if (s->ctor)
1319 kmemcheck_mark_uninitialized_pages(page, pages);
1320 else
1321 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1322 }
1323
737b719e
DR
1324 if (flags & __GFP_WAIT)
1325 local_irq_disable();
1326 if (!page)
1327 return NULL;
1328
834f3d11 1329 page->objects = oo_objects(oo);
81819f0f
CL
1330 mod_zone_page_state(page_zone(page),
1331 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1332 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1333 1 << oo_order(oo));
81819f0f
CL
1334
1335 return page;
1336}
1337
1338static void setup_object(struct kmem_cache *s, struct page *page,
1339 void *object)
1340{
3ec09742 1341 setup_object_debug(s, page, object);
4f104934 1342 if (unlikely(s->ctor))
51cc5068 1343 s->ctor(object);
81819f0f
CL
1344}
1345
1346static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348 struct page *page;
81819f0f 1349 void *start;
81819f0f
CL
1350 void *last;
1351 void *p;
1352
6cb06229 1353 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1354
6cb06229
CL
1355 page = allocate_slab(s,
1356 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1357 if (!page)
1358 goto out;
1359
205ab99d 1360 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1361 page->slab = s;
c03f94cc 1362 __SetPageSlab(page);
072bb0aa
MG
1363 if (page->pfmemalloc)
1364 SetPageSlabPfmemalloc(page);
81819f0f
CL
1365
1366 start = page_address(page);
81819f0f
CL
1367
1368 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1370
1371 last = start;
224a88be 1372 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1376 }
1377 setup_object(s, page, last);
a973e9dd 1378 set_freepointer(s, last, NULL);
81819f0f
CL
1379
1380 page->freelist = start;
e6e82ea1 1381 page->inuse = page->objects;
8cb0a506 1382 page->frozen = 1;
81819f0f 1383out:
81819f0f
CL
1384 return page;
1385}
1386
1387static void __free_slab(struct kmem_cache *s, struct page *page)
1388{
834f3d11
CL
1389 int order = compound_order(page);
1390 int pages = 1 << order;
81819f0f 1391
af537b0a 1392 if (kmem_cache_debug(s)) {
81819f0f
CL
1393 void *p;
1394
1395 slab_pad_check(s, page);
224a88be
CL
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
f7cb1933 1398 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1399 }
1400
b1eeab67 1401 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1402
81819f0f
CL
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1406 -pages);
81819f0f 1407
072bb0aa 1408 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1409 __ClearPageSlab(page);
1410 reset_page_mapcount(page);
1eb5ac64
NP
1411 if (current->reclaim_state)
1412 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1413 __free_pages(page, order);
81819f0f
CL
1414}
1415
da9a638c
LJ
1416#define need_reserve_slab_rcu \
1417 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1418
81819f0f
CL
1419static void rcu_free_slab(struct rcu_head *h)
1420{
1421 struct page *page;
1422
da9a638c
LJ
1423 if (need_reserve_slab_rcu)
1424 page = virt_to_head_page(h);
1425 else
1426 page = container_of((struct list_head *)h, struct page, lru);
1427
81819f0f
CL
1428 __free_slab(page->slab, page);
1429}
1430
1431static void free_slab(struct kmem_cache *s, struct page *page)
1432{
1433 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1434 struct rcu_head *head;
1435
1436 if (need_reserve_slab_rcu) {
1437 int order = compound_order(page);
1438 int offset = (PAGE_SIZE << order) - s->reserved;
1439
1440 VM_BUG_ON(s->reserved != sizeof(*head));
1441 head = page_address(page) + offset;
1442 } else {
1443 /*
1444 * RCU free overloads the RCU head over the LRU
1445 */
1446 head = (void *)&page->lru;
1447 }
81819f0f
CL
1448
1449 call_rcu(head, rcu_free_slab);
1450 } else
1451 __free_slab(s, page);
1452}
1453
1454static void discard_slab(struct kmem_cache *s, struct page *page)
1455{
205ab99d 1456 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1457 free_slab(s, page);
1458}
1459
1460/*
5cc6eee8
CL
1461 * Management of partially allocated slabs.
1462 *
1463 * list_lock must be held.
81819f0f 1464 */
5cc6eee8 1465static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1466 struct page *page, int tail)
81819f0f 1467{
e95eed57 1468 n->nr_partial++;
136333d1 1469 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1470 list_add_tail(&page->lru, &n->partial);
1471 else
1472 list_add(&page->lru, &n->partial);
81819f0f
CL
1473}
1474
5cc6eee8
CL
1475/*
1476 * list_lock must be held.
1477 */
1478static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1479 struct page *page)
1480{
1481 list_del(&page->lru);
1482 n->nr_partial--;
1483}
1484
81819f0f 1485/*
7ced3719
CL
1486 * Remove slab from the partial list, freeze it and
1487 * return the pointer to the freelist.
81819f0f 1488 *
497b66f2
CL
1489 * Returns a list of objects or NULL if it fails.
1490 *
7ced3719 1491 * Must hold list_lock since we modify the partial list.
81819f0f 1492 */
497b66f2 1493static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1494 struct kmem_cache_node *n, struct page *page,
49e22585 1495 int mode)
81819f0f 1496{
2cfb7455
CL
1497 void *freelist;
1498 unsigned long counters;
1499 struct page new;
1500
2cfb7455
CL
1501 /*
1502 * Zap the freelist and set the frozen bit.
1503 * The old freelist is the list of objects for the
1504 * per cpu allocation list.
1505 */
7ced3719
CL
1506 freelist = page->freelist;
1507 counters = page->counters;
1508 new.counters = counters;
23910c50 1509 if (mode) {
7ced3719 1510 new.inuse = page->objects;
23910c50
PE
1511 new.freelist = NULL;
1512 } else {
1513 new.freelist = freelist;
1514 }
2cfb7455 1515
7ced3719
CL
1516 VM_BUG_ON(new.frozen);
1517 new.frozen = 1;
2cfb7455 1518
7ced3719 1519 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1520 freelist, counters,
02d7633f 1521 new.freelist, new.counters,
7ced3719 1522 "acquire_slab"))
7ced3719 1523 return NULL;
2cfb7455
CL
1524
1525 remove_partial(n, page);
7ced3719 1526 WARN_ON(!freelist);
49e22585 1527 return freelist;
81819f0f
CL
1528}
1529
49e22585
CL
1530static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1531
81819f0f 1532/*
672bba3a 1533 * Try to allocate a partial slab from a specific node.
81819f0f 1534 */
497b66f2 1535static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1536 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1537{
49e22585
CL
1538 struct page *page, *page2;
1539 void *object = NULL;
81819f0f
CL
1540
1541 /*
1542 * Racy check. If we mistakenly see no partial slabs then we
1543 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1544 * partial slab and there is none available then get_partials()
1545 * will return NULL.
81819f0f
CL
1546 */
1547 if (!n || !n->nr_partial)
1548 return NULL;
1549
1550 spin_lock(&n->list_lock);
49e22585 1551 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1552 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1553 int available;
1554
1555 if (!t)
1556 break;
1557
12d79634 1558 if (!object) {
49e22585 1559 c->page = page;
49e22585 1560 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1561 object = t;
1562 available = page->objects - page->inuse;
1563 } else {
49e22585 1564 available = put_cpu_partial(s, page, 0);
8028dcea 1565 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1566 }
1567 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1568 break;
1569
497b66f2 1570 }
81819f0f 1571 spin_unlock(&n->list_lock);
497b66f2 1572 return object;
81819f0f
CL
1573}
1574
1575/*
672bba3a 1576 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1577 */
de3ec035 1578static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1579 struct kmem_cache_cpu *c)
81819f0f
CL
1580{
1581#ifdef CONFIG_NUMA
1582 struct zonelist *zonelist;
dd1a239f 1583 struct zoneref *z;
54a6eb5c
MG
1584 struct zone *zone;
1585 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1586 void *object;
cc9a6c87 1587 unsigned int cpuset_mems_cookie;
81819f0f
CL
1588
1589 /*
672bba3a
CL
1590 * The defrag ratio allows a configuration of the tradeoffs between
1591 * inter node defragmentation and node local allocations. A lower
1592 * defrag_ratio increases the tendency to do local allocations
1593 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1594 *
672bba3a
CL
1595 * If the defrag_ratio is set to 0 then kmalloc() always
1596 * returns node local objects. If the ratio is higher then kmalloc()
1597 * may return off node objects because partial slabs are obtained
1598 * from other nodes and filled up.
81819f0f 1599 *
6446faa2 1600 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1601 * defrag_ratio = 1000) then every (well almost) allocation will
1602 * first attempt to defrag slab caches on other nodes. This means
1603 * scanning over all nodes to look for partial slabs which may be
1604 * expensive if we do it every time we are trying to find a slab
1605 * with available objects.
81819f0f 1606 */
9824601e
CL
1607 if (!s->remote_node_defrag_ratio ||
1608 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1609 return NULL;
1610
cc9a6c87
MG
1611 do {
1612 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1613 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1615 struct kmem_cache_node *n;
1616
1617 n = get_node(s, zone_to_nid(zone));
1618
1619 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1620 n->nr_partial > s->min_partial) {
1621 object = get_partial_node(s, n, c);
1622 if (object) {
1623 /*
1624 * Return the object even if
1625 * put_mems_allowed indicated that
1626 * the cpuset mems_allowed was
1627 * updated in parallel. It's a
1628 * harmless race between the alloc
1629 * and the cpuset update.
1630 */
1631 put_mems_allowed(cpuset_mems_cookie);
1632 return object;
1633 }
c0ff7453 1634 }
81819f0f 1635 }
cc9a6c87 1636 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1637#endif
1638 return NULL;
1639}
1640
1641/*
1642 * Get a partial page, lock it and return it.
1643 */
497b66f2 1644static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1645 struct kmem_cache_cpu *c)
81819f0f 1646{
497b66f2 1647 void *object;
2154a336 1648 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1649
497b66f2
CL
1650 object = get_partial_node(s, get_node(s, searchnode), c);
1651 if (object || node != NUMA_NO_NODE)
1652 return object;
81819f0f 1653
acd19fd1 1654 return get_any_partial(s, flags, c);
81819f0f
CL
1655}
1656
8a5ec0ba
CL
1657#ifdef CONFIG_PREEMPT
1658/*
1659 * Calculate the next globally unique transaction for disambiguiation
1660 * during cmpxchg. The transactions start with the cpu number and are then
1661 * incremented by CONFIG_NR_CPUS.
1662 */
1663#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1664#else
1665/*
1666 * No preemption supported therefore also no need to check for
1667 * different cpus.
1668 */
1669#define TID_STEP 1
1670#endif
1671
1672static inline unsigned long next_tid(unsigned long tid)
1673{
1674 return tid + TID_STEP;
1675}
1676
1677static inline unsigned int tid_to_cpu(unsigned long tid)
1678{
1679 return tid % TID_STEP;
1680}
1681
1682static inline unsigned long tid_to_event(unsigned long tid)
1683{
1684 return tid / TID_STEP;
1685}
1686
1687static inline unsigned int init_tid(int cpu)
1688{
1689 return cpu;
1690}
1691
1692static inline void note_cmpxchg_failure(const char *n,
1693 const struct kmem_cache *s, unsigned long tid)
1694{
1695#ifdef SLUB_DEBUG_CMPXCHG
1696 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1697
1698 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1699
1700#ifdef CONFIG_PREEMPT
1701 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1702 printk("due to cpu change %d -> %d\n",
1703 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1704 else
1705#endif
1706 if (tid_to_event(tid) != tid_to_event(actual_tid))
1707 printk("due to cpu running other code. Event %ld->%ld\n",
1708 tid_to_event(tid), tid_to_event(actual_tid));
1709 else
1710 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1711 actual_tid, tid, next_tid(tid));
1712#endif
4fdccdfb 1713 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1714}
1715
8a5ec0ba
CL
1716void init_kmem_cache_cpus(struct kmem_cache *s)
1717{
8a5ec0ba
CL
1718 int cpu;
1719
1720 for_each_possible_cpu(cpu)
1721 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1722}
2cfb7455 1723
81819f0f
CL
1724/*
1725 * Remove the cpu slab
1726 */
c17dda40 1727static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1728{
2cfb7455 1729 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1730 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1731 int lock = 0;
1732 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1733 void *nextfree;
136333d1 1734 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1735 struct page new;
1736 struct page old;
1737
1738 if (page->freelist) {
84e554e6 1739 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1740 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1741 }
1742
894b8788 1743 /*
2cfb7455
CL
1744 * Stage one: Free all available per cpu objects back
1745 * to the page freelist while it is still frozen. Leave the
1746 * last one.
1747 *
1748 * There is no need to take the list->lock because the page
1749 * is still frozen.
1750 */
1751 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1752 void *prior;
1753 unsigned long counters;
1754
1755 do {
1756 prior = page->freelist;
1757 counters = page->counters;
1758 set_freepointer(s, freelist, prior);
1759 new.counters = counters;
1760 new.inuse--;
1761 VM_BUG_ON(!new.frozen);
1762
1d07171c 1763 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1764 prior, counters,
1765 freelist, new.counters,
1766 "drain percpu freelist"));
1767
1768 freelist = nextfree;
1769 }
1770
894b8788 1771 /*
2cfb7455
CL
1772 * Stage two: Ensure that the page is unfrozen while the
1773 * list presence reflects the actual number of objects
1774 * during unfreeze.
1775 *
1776 * We setup the list membership and then perform a cmpxchg
1777 * with the count. If there is a mismatch then the page
1778 * is not unfrozen but the page is on the wrong list.
1779 *
1780 * Then we restart the process which may have to remove
1781 * the page from the list that we just put it on again
1782 * because the number of objects in the slab may have
1783 * changed.
894b8788 1784 */
2cfb7455 1785redo:
894b8788 1786
2cfb7455
CL
1787 old.freelist = page->freelist;
1788 old.counters = page->counters;
1789 VM_BUG_ON(!old.frozen);
7c2e132c 1790
2cfb7455
CL
1791 /* Determine target state of the slab */
1792 new.counters = old.counters;
1793 if (freelist) {
1794 new.inuse--;
1795 set_freepointer(s, freelist, old.freelist);
1796 new.freelist = freelist;
1797 } else
1798 new.freelist = old.freelist;
1799
1800 new.frozen = 0;
1801
81107188 1802 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1803 m = M_FREE;
1804 else if (new.freelist) {
1805 m = M_PARTIAL;
1806 if (!lock) {
1807 lock = 1;
1808 /*
1809 * Taking the spinlock removes the possiblity
1810 * that acquire_slab() will see a slab page that
1811 * is frozen
1812 */
1813 spin_lock(&n->list_lock);
1814 }
1815 } else {
1816 m = M_FULL;
1817 if (kmem_cache_debug(s) && !lock) {
1818 lock = 1;
1819 /*
1820 * This also ensures that the scanning of full
1821 * slabs from diagnostic functions will not see
1822 * any frozen slabs.
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 }
1827
1828 if (l != m) {
1829
1830 if (l == M_PARTIAL)
1831
1832 remove_partial(n, page);
1833
1834 else if (l == M_FULL)
894b8788 1835
2cfb7455
CL
1836 remove_full(s, page);
1837
1838 if (m == M_PARTIAL) {
1839
1840 add_partial(n, page, tail);
136333d1 1841 stat(s, tail);
2cfb7455
CL
1842
1843 } else if (m == M_FULL) {
894b8788 1844
2cfb7455
CL
1845 stat(s, DEACTIVATE_FULL);
1846 add_full(s, n, page);
1847
1848 }
1849 }
1850
1851 l = m;
1d07171c 1852 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1853 old.freelist, old.counters,
1854 new.freelist, new.counters,
1855 "unfreezing slab"))
1856 goto redo;
1857
2cfb7455
CL
1858 if (lock)
1859 spin_unlock(&n->list_lock);
1860
1861 if (m == M_FREE) {
1862 stat(s, DEACTIVATE_EMPTY);
1863 discard_slab(s, page);
1864 stat(s, FREE_SLAB);
894b8788 1865 }
81819f0f
CL
1866}
1867
d24ac77f
JK
1868/*
1869 * Unfreeze all the cpu partial slabs.
1870 *
1871 * This function must be called with interrupt disabled.
1872 */
49e22585
CL
1873static void unfreeze_partials(struct kmem_cache *s)
1874{
43d77867 1875 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1876 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1877 struct page *page, *discard_page = NULL;
49e22585
CL
1878
1879 while ((page = c->partial)) {
49e22585
CL
1880 struct page new;
1881 struct page old;
1882
1883 c->partial = page->next;
43d77867
JK
1884
1885 n2 = get_node(s, page_to_nid(page));
1886 if (n != n2) {
1887 if (n)
1888 spin_unlock(&n->list_lock);
1889
1890 n = n2;
1891 spin_lock(&n->list_lock);
1892 }
49e22585
CL
1893
1894 do {
1895
1896 old.freelist = page->freelist;
1897 old.counters = page->counters;
1898 VM_BUG_ON(!old.frozen);
1899
1900 new.counters = old.counters;
1901 new.freelist = old.freelist;
1902
1903 new.frozen = 0;
1904
d24ac77f 1905 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1906 old.freelist, old.counters,
1907 new.freelist, new.counters,
1908 "unfreezing slab"));
1909
43d77867 1910 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1911 page->next = discard_page;
1912 discard_page = page;
43d77867
JK
1913 } else {
1914 add_partial(n, page, DEACTIVATE_TO_TAIL);
1915 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1916 }
1917 }
1918
1919 if (n)
1920 spin_unlock(&n->list_lock);
9ada1934
SL
1921
1922 while (discard_page) {
1923 page = discard_page;
1924 discard_page = discard_page->next;
1925
1926 stat(s, DEACTIVATE_EMPTY);
1927 discard_slab(s, page);
1928 stat(s, FREE_SLAB);
1929 }
49e22585
CL
1930}
1931
1932/*
1933 * Put a page that was just frozen (in __slab_free) into a partial page
1934 * slot if available. This is done without interrupts disabled and without
1935 * preemption disabled. The cmpxchg is racy and may put the partial page
1936 * onto a random cpus partial slot.
1937 *
1938 * If we did not find a slot then simply move all the partials to the
1939 * per node partial list.
1940 */
1941int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1942{
1943 struct page *oldpage;
1944 int pages;
1945 int pobjects;
1946
1947 do {
1948 pages = 0;
1949 pobjects = 0;
1950 oldpage = this_cpu_read(s->cpu_slab->partial);
1951
1952 if (oldpage) {
1953 pobjects = oldpage->pobjects;
1954 pages = oldpage->pages;
1955 if (drain && pobjects > s->cpu_partial) {
1956 unsigned long flags;
1957 /*
1958 * partial array is full. Move the existing
1959 * set to the per node partial list.
1960 */
1961 local_irq_save(flags);
1962 unfreeze_partials(s);
1963 local_irq_restore(flags);
e24fc410 1964 oldpage = NULL;
49e22585
CL
1965 pobjects = 0;
1966 pages = 0;
8028dcea 1967 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1968 }
1969 }
1970
1971 pages++;
1972 pobjects += page->objects - page->inuse;
1973
1974 page->pages = pages;
1975 page->pobjects = pobjects;
1976 page->next = oldpage;
1977
933393f5 1978 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1979 return pobjects;
1980}
1981
dfb4f096 1982static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1983{
84e554e6 1984 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1985 deactivate_slab(s, c->page, c->freelist);
1986
1987 c->tid = next_tid(c->tid);
1988 c->page = NULL;
1989 c->freelist = NULL;
81819f0f
CL
1990}
1991
1992/*
1993 * Flush cpu slab.
6446faa2 1994 *
81819f0f
CL
1995 * Called from IPI handler with interrupts disabled.
1996 */
0c710013 1997static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1998{
9dfc6e68 1999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2000
49e22585
CL
2001 if (likely(c)) {
2002 if (c->page)
2003 flush_slab(s, c);
2004
2005 unfreeze_partials(s);
2006 }
81819f0f
CL
2007}
2008
2009static void flush_cpu_slab(void *d)
2010{
2011 struct kmem_cache *s = d;
81819f0f 2012
dfb4f096 2013 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2014}
2015
a8364d55
GBY
2016static bool has_cpu_slab(int cpu, void *info)
2017{
2018 struct kmem_cache *s = info;
2019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2020
02e1a9cd 2021 return c->page || c->partial;
a8364d55
GBY
2022}
2023
81819f0f
CL
2024static void flush_all(struct kmem_cache *s)
2025{
a8364d55 2026 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2027}
2028
dfb4f096
CL
2029/*
2030 * Check if the objects in a per cpu structure fit numa
2031 * locality expectations.
2032 */
57d437d2 2033static inline int node_match(struct page *page, int node)
dfb4f096
CL
2034{
2035#ifdef CONFIG_NUMA
57d437d2 2036 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2037 return 0;
2038#endif
2039 return 1;
2040}
2041
781b2ba6
PE
2042static int count_free(struct page *page)
2043{
2044 return page->objects - page->inuse;
2045}
2046
2047static unsigned long count_partial(struct kmem_cache_node *n,
2048 int (*get_count)(struct page *))
2049{
2050 unsigned long flags;
2051 unsigned long x = 0;
2052 struct page *page;
2053
2054 spin_lock_irqsave(&n->list_lock, flags);
2055 list_for_each_entry(page, &n->partial, lru)
2056 x += get_count(page);
2057 spin_unlock_irqrestore(&n->list_lock, flags);
2058 return x;
2059}
2060
26c02cf0
AB
2061static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2062{
2063#ifdef CONFIG_SLUB_DEBUG
2064 return atomic_long_read(&n->total_objects);
2065#else
2066 return 0;
2067#endif
2068}
2069
781b2ba6
PE
2070static noinline void
2071slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2072{
2073 int node;
2074
2075 printk(KERN_WARNING
2076 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2077 nid, gfpflags);
2078 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2079 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2080 s->size, oo_order(s->oo), oo_order(s->min));
2081
3b0efdfa 2082 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2083 printk(KERN_WARNING " %s debugging increased min order, use "
2084 "slub_debug=O to disable.\n", s->name);
2085
781b2ba6
PE
2086 for_each_online_node(node) {
2087 struct kmem_cache_node *n = get_node(s, node);
2088 unsigned long nr_slabs;
2089 unsigned long nr_objs;
2090 unsigned long nr_free;
2091
2092 if (!n)
2093 continue;
2094
26c02cf0
AB
2095 nr_free = count_partial(n, count_free);
2096 nr_slabs = node_nr_slabs(n);
2097 nr_objs = node_nr_objs(n);
781b2ba6
PE
2098
2099 printk(KERN_WARNING
2100 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2101 node, nr_slabs, nr_objs, nr_free);
2102 }
2103}
2104
497b66f2
CL
2105static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2106 int node, struct kmem_cache_cpu **pc)
2107{
6faa6833 2108 void *freelist;
188fd063
CL
2109 struct kmem_cache_cpu *c = *pc;
2110 struct page *page;
497b66f2 2111
188fd063 2112 freelist = get_partial(s, flags, node, c);
497b66f2 2113
188fd063
CL
2114 if (freelist)
2115 return freelist;
2116
2117 page = new_slab(s, flags, node);
497b66f2
CL
2118 if (page) {
2119 c = __this_cpu_ptr(s->cpu_slab);
2120 if (c->page)
2121 flush_slab(s, c);
2122
2123 /*
2124 * No other reference to the page yet so we can
2125 * muck around with it freely without cmpxchg
2126 */
6faa6833 2127 freelist = page->freelist;
497b66f2
CL
2128 page->freelist = NULL;
2129
2130 stat(s, ALLOC_SLAB);
497b66f2
CL
2131 c->page = page;
2132 *pc = c;
2133 } else
6faa6833 2134 freelist = NULL;
497b66f2 2135
6faa6833 2136 return freelist;
497b66f2
CL
2137}
2138
072bb0aa
MG
2139static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2140{
2141 if (unlikely(PageSlabPfmemalloc(page)))
2142 return gfp_pfmemalloc_allowed(gfpflags);
2143
2144 return true;
2145}
2146
213eeb9f
CL
2147/*
2148 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2149 * or deactivate the page.
2150 *
2151 * The page is still frozen if the return value is not NULL.
2152 *
2153 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2154 *
2155 * This function must be called with interrupt disabled.
213eeb9f
CL
2156 */
2157static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2158{
2159 struct page new;
2160 unsigned long counters;
2161 void *freelist;
2162
2163 do {
2164 freelist = page->freelist;
2165 counters = page->counters;
6faa6833 2166
213eeb9f
CL
2167 new.counters = counters;
2168 VM_BUG_ON(!new.frozen);
2169
2170 new.inuse = page->objects;
2171 new.frozen = freelist != NULL;
2172
d24ac77f 2173 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2174 freelist, counters,
2175 NULL, new.counters,
2176 "get_freelist"));
2177
2178 return freelist;
2179}
2180
81819f0f 2181/*
894b8788
CL
2182 * Slow path. The lockless freelist is empty or we need to perform
2183 * debugging duties.
2184 *
894b8788
CL
2185 * Processing is still very fast if new objects have been freed to the
2186 * regular freelist. In that case we simply take over the regular freelist
2187 * as the lockless freelist and zap the regular freelist.
81819f0f 2188 *
894b8788
CL
2189 * If that is not working then we fall back to the partial lists. We take the
2190 * first element of the freelist as the object to allocate now and move the
2191 * rest of the freelist to the lockless freelist.
81819f0f 2192 *
894b8788 2193 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2194 * we need to allocate a new slab. This is the slowest path since it involves
2195 * a call to the page allocator and the setup of a new slab.
81819f0f 2196 */
ce71e27c
EGM
2197static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2198 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2199{
6faa6833 2200 void *freelist;
f6e7def7 2201 struct page *page;
8a5ec0ba
CL
2202 unsigned long flags;
2203
2204 local_irq_save(flags);
2205#ifdef CONFIG_PREEMPT
2206 /*
2207 * We may have been preempted and rescheduled on a different
2208 * cpu before disabling interrupts. Need to reload cpu area
2209 * pointer.
2210 */
2211 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2212#endif
81819f0f 2213
f6e7def7
CL
2214 page = c->page;
2215 if (!page)
81819f0f 2216 goto new_slab;
49e22585 2217redo:
6faa6833 2218
57d437d2 2219 if (unlikely(!node_match(page, node))) {
e36a2652 2220 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2221 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2222 c->page = NULL;
2223 c->freelist = NULL;
fc59c053
CL
2224 goto new_slab;
2225 }
6446faa2 2226
072bb0aa
MG
2227 /*
2228 * By rights, we should be searching for a slab page that was
2229 * PFMEMALLOC but right now, we are losing the pfmemalloc
2230 * information when the page leaves the per-cpu allocator
2231 */
2232 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2233 deactivate_slab(s, page, c->freelist);
2234 c->page = NULL;
2235 c->freelist = NULL;
2236 goto new_slab;
2237 }
2238
73736e03 2239 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2240 freelist = c->freelist;
2241 if (freelist)
73736e03 2242 goto load_freelist;
03e404af 2243
2cfb7455 2244 stat(s, ALLOC_SLOWPATH);
03e404af 2245
f6e7def7 2246 freelist = get_freelist(s, page);
6446faa2 2247
6faa6833 2248 if (!freelist) {
03e404af
CL
2249 c->page = NULL;
2250 stat(s, DEACTIVATE_BYPASS);
fc59c053 2251 goto new_slab;
03e404af 2252 }
6446faa2 2253
84e554e6 2254 stat(s, ALLOC_REFILL);
6446faa2 2255
894b8788 2256load_freelist:
507effea
CL
2257 /*
2258 * freelist is pointing to the list of objects to be used.
2259 * page is pointing to the page from which the objects are obtained.
2260 * That page must be frozen for per cpu allocations to work.
2261 */
2262 VM_BUG_ON(!c->page->frozen);
6faa6833 2263 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2264 c->tid = next_tid(c->tid);
2265 local_irq_restore(flags);
6faa6833 2266 return freelist;
81819f0f 2267
81819f0f 2268new_slab:
2cfb7455 2269
49e22585 2270 if (c->partial) {
f6e7def7
CL
2271 page = c->page = c->partial;
2272 c->partial = page->next;
49e22585
CL
2273 stat(s, CPU_PARTIAL_ALLOC);
2274 c->freelist = NULL;
2275 goto redo;
81819f0f
CL
2276 }
2277
188fd063 2278 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2279
f4697436
CL
2280 if (unlikely(!freelist)) {
2281 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2282 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2283
f4697436
CL
2284 local_irq_restore(flags);
2285 return NULL;
81819f0f 2286 }
2cfb7455 2287
f6e7def7 2288 page = c->page;
5091b74a 2289 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2290 goto load_freelist;
2cfb7455 2291
497b66f2 2292 /* Only entered in the debug case */
5091b74a 2293 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2294 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2295
f6e7def7 2296 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2297 c->page = NULL;
2298 c->freelist = NULL;
a71ae47a 2299 local_irq_restore(flags);
6faa6833 2300 return freelist;
894b8788
CL
2301}
2302
2303/*
2304 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2305 * have the fastpath folded into their functions. So no function call
2306 * overhead for requests that can be satisfied on the fastpath.
2307 *
2308 * The fastpath works by first checking if the lockless freelist can be used.
2309 * If not then __slab_alloc is called for slow processing.
2310 *
2311 * Otherwise we can simply pick the next object from the lockless free list.
2312 */
06428780 2313static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2314 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2315{
894b8788 2316 void **object;
dfb4f096 2317 struct kmem_cache_cpu *c;
57d437d2 2318 struct page *page;
8a5ec0ba 2319 unsigned long tid;
1f84260c 2320
c016b0bd 2321 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2322 return NULL;
1f84260c 2323
8a5ec0ba 2324redo:
8a5ec0ba
CL
2325
2326 /*
2327 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2328 * enabled. We may switch back and forth between cpus while
2329 * reading from one cpu area. That does not matter as long
2330 * as we end up on the original cpu again when doing the cmpxchg.
2331 */
9dfc6e68 2332 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2333
8a5ec0ba
CL
2334 /*
2335 * The transaction ids are globally unique per cpu and per operation on
2336 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2337 * occurs on the right processor and that there was no operation on the
2338 * linked list in between.
2339 */
2340 tid = c->tid;
2341 barrier();
8a5ec0ba 2342
9dfc6e68 2343 object = c->freelist;
57d437d2 2344 page = c->page;
5091b74a 2345 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2346 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2347
2348 else {
0ad9500e
ED
2349 void *next_object = get_freepointer_safe(s, object);
2350
8a5ec0ba 2351 /*
25985edc 2352 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2353 * operation and if we are on the right processor.
2354 *
2355 * The cmpxchg does the following atomically (without lock semantics!)
2356 * 1. Relocate first pointer to the current per cpu area.
2357 * 2. Verify that tid and freelist have not been changed
2358 * 3. If they were not changed replace tid and freelist
2359 *
2360 * Since this is without lock semantics the protection is only against
2361 * code executing on this cpu *not* from access by other cpus.
2362 */
933393f5 2363 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2364 s->cpu_slab->freelist, s->cpu_slab->tid,
2365 object, tid,
0ad9500e 2366 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2367
2368 note_cmpxchg_failure("slab_alloc", s, tid);
2369 goto redo;
2370 }
0ad9500e 2371 prefetch_freepointer(s, next_object);
84e554e6 2372 stat(s, ALLOC_FASTPATH);
894b8788 2373 }
8a5ec0ba 2374
74e2134f 2375 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2376 memset(object, 0, s->object_size);
d07dbea4 2377
c016b0bd 2378 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2379
894b8788 2380 return object;
81819f0f
CL
2381}
2382
2383void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2384{
2154a336 2385 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2386
3b0efdfa 2387 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2388
2389 return ret;
81819f0f
CL
2390}
2391EXPORT_SYMBOL(kmem_cache_alloc);
2392
0f24f128 2393#ifdef CONFIG_TRACING
4a92379b
RK
2394void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2395{
2396 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2397 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2398 return ret;
2399}
2400EXPORT_SYMBOL(kmem_cache_alloc_trace);
2401
2402void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2403{
4a92379b
RK
2404 void *ret = kmalloc_order(size, flags, order);
2405 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2406 return ret;
5b882be4 2407}
4a92379b 2408EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2409#endif
2410
81819f0f
CL
2411#ifdef CONFIG_NUMA
2412void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2413{
5b882be4
EGM
2414 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2415
ca2b84cb 2416 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2417 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2418
2419 return ret;
81819f0f
CL
2420}
2421EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2422
0f24f128 2423#ifdef CONFIG_TRACING
4a92379b 2424void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2425 gfp_t gfpflags,
4a92379b 2426 int node, size_t size)
5b882be4 2427{
4a92379b
RK
2428 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2429
2430 trace_kmalloc_node(_RET_IP_, ret,
2431 size, s->size, gfpflags, node);
2432 return ret;
5b882be4 2433}
4a92379b 2434EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2435#endif
5d1f57e4 2436#endif
5b882be4 2437
81819f0f 2438/*
894b8788
CL
2439 * Slow patch handling. This may still be called frequently since objects
2440 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2441 *
894b8788
CL
2442 * So we still attempt to reduce cache line usage. Just take the slab
2443 * lock and free the item. If there is no additional partial page
2444 * handling required then we can return immediately.
81819f0f 2445 */
894b8788 2446static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2447 void *x, unsigned long addr)
81819f0f
CL
2448{
2449 void *prior;
2450 void **object = (void *)x;
2cfb7455
CL
2451 int was_frozen;
2452 int inuse;
2453 struct page new;
2454 unsigned long counters;
2455 struct kmem_cache_node *n = NULL;
61728d1e 2456 unsigned long uninitialized_var(flags);
81819f0f 2457
8a5ec0ba 2458 stat(s, FREE_SLOWPATH);
81819f0f 2459
19c7ff9e
CL
2460 if (kmem_cache_debug(s) &&
2461 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2462 return;
6446faa2 2463
2cfb7455
CL
2464 do {
2465 prior = page->freelist;
2466 counters = page->counters;
2467 set_freepointer(s, object, prior);
2468 new.counters = counters;
2469 was_frozen = new.frozen;
2470 new.inuse--;
2471 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2472
2473 if (!kmem_cache_debug(s) && !prior)
2474
2475 /*
2476 * Slab was on no list before and will be partially empty
2477 * We can defer the list move and instead freeze it.
2478 */
2479 new.frozen = 1;
2480
2481 else { /* Needs to be taken off a list */
2482
2483 n = get_node(s, page_to_nid(page));
2484 /*
2485 * Speculatively acquire the list_lock.
2486 * If the cmpxchg does not succeed then we may
2487 * drop the list_lock without any processing.
2488 *
2489 * Otherwise the list_lock will synchronize with
2490 * other processors updating the list of slabs.
2491 */
2492 spin_lock_irqsave(&n->list_lock, flags);
2493
2494 }
2cfb7455
CL
2495 }
2496 inuse = new.inuse;
81819f0f 2497
2cfb7455
CL
2498 } while (!cmpxchg_double_slab(s, page,
2499 prior, counters,
2500 object, new.counters,
2501 "__slab_free"));
81819f0f 2502
2cfb7455 2503 if (likely(!n)) {
49e22585
CL
2504
2505 /*
2506 * If we just froze the page then put it onto the
2507 * per cpu partial list.
2508 */
8028dcea 2509 if (new.frozen && !was_frozen) {
49e22585 2510 put_cpu_partial(s, page, 1);
8028dcea
AS
2511 stat(s, CPU_PARTIAL_FREE);
2512 }
49e22585 2513 /*
2cfb7455
CL
2514 * The list lock was not taken therefore no list
2515 * activity can be necessary.
2516 */
2517 if (was_frozen)
2518 stat(s, FREE_FROZEN);
80f08c19 2519 return;
2cfb7455 2520 }
81819f0f
CL
2521
2522 /*
2cfb7455
CL
2523 * was_frozen may have been set after we acquired the list_lock in
2524 * an earlier loop. So we need to check it here again.
81819f0f 2525 */
2cfb7455
CL
2526 if (was_frozen)
2527 stat(s, FREE_FROZEN);
2528 else {
2529 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2530 goto slab_empty;
81819f0f 2531
2cfb7455
CL
2532 /*
2533 * Objects left in the slab. If it was not on the partial list before
2534 * then add it.
2535 */
2536 if (unlikely(!prior)) {
2537 remove_full(s, page);
136333d1 2538 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2539 stat(s, FREE_ADD_PARTIAL);
2540 }
8ff12cfc 2541 }
80f08c19 2542 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2543 return;
2544
2545slab_empty:
a973e9dd 2546 if (prior) {
81819f0f 2547 /*
6fbabb20 2548 * Slab on the partial list.
81819f0f 2549 */
5cc6eee8 2550 remove_partial(n, page);
84e554e6 2551 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2552 } else
2553 /* Slab must be on the full list */
2554 remove_full(s, page);
2cfb7455 2555
80f08c19 2556 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2557 stat(s, FREE_SLAB);
81819f0f 2558 discard_slab(s, page);
81819f0f
CL
2559}
2560
894b8788
CL
2561/*
2562 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2563 * can perform fastpath freeing without additional function calls.
2564 *
2565 * The fastpath is only possible if we are freeing to the current cpu slab
2566 * of this processor. This typically the case if we have just allocated
2567 * the item before.
2568 *
2569 * If fastpath is not possible then fall back to __slab_free where we deal
2570 * with all sorts of special processing.
2571 */
06428780 2572static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2573 struct page *page, void *x, unsigned long addr)
894b8788
CL
2574{
2575 void **object = (void *)x;
dfb4f096 2576 struct kmem_cache_cpu *c;
8a5ec0ba 2577 unsigned long tid;
1f84260c 2578
c016b0bd
CL
2579 slab_free_hook(s, x);
2580
8a5ec0ba
CL
2581redo:
2582 /*
2583 * Determine the currently cpus per cpu slab.
2584 * The cpu may change afterward. However that does not matter since
2585 * data is retrieved via this pointer. If we are on the same cpu
2586 * during the cmpxchg then the free will succedd.
2587 */
9dfc6e68 2588 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2589
8a5ec0ba
CL
2590 tid = c->tid;
2591 barrier();
c016b0bd 2592
442b06bc 2593 if (likely(page == c->page)) {
ff12059e 2594 set_freepointer(s, object, c->freelist);
8a5ec0ba 2595
933393f5 2596 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2597 s->cpu_slab->freelist, s->cpu_slab->tid,
2598 c->freelist, tid,
2599 object, next_tid(tid)))) {
2600
2601 note_cmpxchg_failure("slab_free", s, tid);
2602 goto redo;
2603 }
84e554e6 2604 stat(s, FREE_FASTPATH);
894b8788 2605 } else
ff12059e 2606 __slab_free(s, page, x, addr);
894b8788 2607
894b8788
CL
2608}
2609
81819f0f
CL
2610void kmem_cache_free(struct kmem_cache *s, void *x)
2611{
77c5e2d0 2612 struct page *page;
81819f0f 2613
b49af68f 2614 page = virt_to_head_page(x);
81819f0f 2615
79576102
CL
2616 if (kmem_cache_debug(s) && page->slab != s) {
2617 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2618 " is from %s\n", page->slab->name, s->name);
2619 WARN_ON_ONCE(1);
2620 return;
2621 }
2622
ce71e27c 2623 slab_free(s, page, x, _RET_IP_);
5b882be4 2624
ca2b84cb 2625 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2626}
2627EXPORT_SYMBOL(kmem_cache_free);
2628
81819f0f 2629/*
672bba3a
CL
2630 * Object placement in a slab is made very easy because we always start at
2631 * offset 0. If we tune the size of the object to the alignment then we can
2632 * get the required alignment by putting one properly sized object after
2633 * another.
81819f0f
CL
2634 *
2635 * Notice that the allocation order determines the sizes of the per cpu
2636 * caches. Each processor has always one slab available for allocations.
2637 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2638 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2639 * locking overhead.
81819f0f
CL
2640 */
2641
2642/*
2643 * Mininum / Maximum order of slab pages. This influences locking overhead
2644 * and slab fragmentation. A higher order reduces the number of partial slabs
2645 * and increases the number of allocations possible without having to
2646 * take the list_lock.
2647 */
2648static int slub_min_order;
114e9e89 2649static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2650static int slub_min_objects;
81819f0f
CL
2651
2652/*
2653 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2654 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2655 */
2656static int slub_nomerge;
2657
81819f0f
CL
2658/*
2659 * Calculate the order of allocation given an slab object size.
2660 *
672bba3a
CL
2661 * The order of allocation has significant impact on performance and other
2662 * system components. Generally order 0 allocations should be preferred since
2663 * order 0 does not cause fragmentation in the page allocator. Larger objects
2664 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2665 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2666 * would be wasted.
2667 *
2668 * In order to reach satisfactory performance we must ensure that a minimum
2669 * number of objects is in one slab. Otherwise we may generate too much
2670 * activity on the partial lists which requires taking the list_lock. This is
2671 * less a concern for large slabs though which are rarely used.
81819f0f 2672 *
672bba3a
CL
2673 * slub_max_order specifies the order where we begin to stop considering the
2674 * number of objects in a slab as critical. If we reach slub_max_order then
2675 * we try to keep the page order as low as possible. So we accept more waste
2676 * of space in favor of a small page order.
81819f0f 2677 *
672bba3a
CL
2678 * Higher order allocations also allow the placement of more objects in a
2679 * slab and thereby reduce object handling overhead. If the user has
2680 * requested a higher mininum order then we start with that one instead of
2681 * the smallest order which will fit the object.
81819f0f 2682 */
5e6d444e 2683static inline int slab_order(int size, int min_objects,
ab9a0f19 2684 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2685{
2686 int order;
2687 int rem;
6300ea75 2688 int min_order = slub_min_order;
81819f0f 2689
ab9a0f19 2690 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2691 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2692
6300ea75 2693 for (order = max(min_order,
5e6d444e
CL
2694 fls(min_objects * size - 1) - PAGE_SHIFT);
2695 order <= max_order; order++) {
81819f0f 2696
5e6d444e 2697 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2698
ab9a0f19 2699 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2700 continue;
2701
ab9a0f19 2702 rem = (slab_size - reserved) % size;
81819f0f 2703
5e6d444e 2704 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2705 break;
2706
2707 }
672bba3a 2708
81819f0f
CL
2709 return order;
2710}
2711
ab9a0f19 2712static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2713{
2714 int order;
2715 int min_objects;
2716 int fraction;
e8120ff1 2717 int max_objects;
5e6d444e
CL
2718
2719 /*
2720 * Attempt to find best configuration for a slab. This
2721 * works by first attempting to generate a layout with
2722 * the best configuration and backing off gradually.
2723 *
2724 * First we reduce the acceptable waste in a slab. Then
2725 * we reduce the minimum objects required in a slab.
2726 */
2727 min_objects = slub_min_objects;
9b2cd506
CL
2728 if (!min_objects)
2729 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2730 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2731 min_objects = min(min_objects, max_objects);
2732
5e6d444e 2733 while (min_objects > 1) {
c124f5b5 2734 fraction = 16;
5e6d444e
CL
2735 while (fraction >= 4) {
2736 order = slab_order(size, min_objects,
ab9a0f19 2737 slub_max_order, fraction, reserved);
5e6d444e
CL
2738 if (order <= slub_max_order)
2739 return order;
2740 fraction /= 2;
2741 }
5086c389 2742 min_objects--;
5e6d444e
CL
2743 }
2744
2745 /*
2746 * We were unable to place multiple objects in a slab. Now
2747 * lets see if we can place a single object there.
2748 */
ab9a0f19 2749 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2750 if (order <= slub_max_order)
2751 return order;
2752
2753 /*
2754 * Doh this slab cannot be placed using slub_max_order.
2755 */
ab9a0f19 2756 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2757 if (order < MAX_ORDER)
5e6d444e
CL
2758 return order;
2759 return -ENOSYS;
2760}
2761
81819f0f 2762/*
672bba3a 2763 * Figure out what the alignment of the objects will be.
81819f0f
CL
2764 */
2765static unsigned long calculate_alignment(unsigned long flags,
2766 unsigned long align, unsigned long size)
2767{
2768 /*
6446faa2
CL
2769 * If the user wants hardware cache aligned objects then follow that
2770 * suggestion if the object is sufficiently large.
81819f0f 2771 *
6446faa2
CL
2772 * The hardware cache alignment cannot override the specified
2773 * alignment though. If that is greater then use it.
81819f0f 2774 */
b6210386
NP
2775 if (flags & SLAB_HWCACHE_ALIGN) {
2776 unsigned long ralign = cache_line_size();
2777 while (size <= ralign / 2)
2778 ralign /= 2;
2779 align = max(align, ralign);
2780 }
81819f0f
CL
2781
2782 if (align < ARCH_SLAB_MINALIGN)
b6210386 2783 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2784
2785 return ALIGN(align, sizeof(void *));
2786}
2787
5595cffc 2788static void
4053497d 2789init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2790{
2791 n->nr_partial = 0;
81819f0f
CL
2792 spin_lock_init(&n->list_lock);
2793 INIT_LIST_HEAD(&n->partial);
8ab1372f 2794#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2795 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2796 atomic_long_set(&n->total_objects, 0);
643b1138 2797 INIT_LIST_HEAD(&n->full);
8ab1372f 2798#endif
81819f0f
CL
2799}
2800
55136592 2801static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2802{
6c182dc0
CL
2803 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2804 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2805
8a5ec0ba 2806 /*
d4d84fef
CM
2807 * Must align to double word boundary for the double cmpxchg
2808 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2809 */
d4d84fef
CM
2810 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2811 2 * sizeof(void *));
8a5ec0ba
CL
2812
2813 if (!s->cpu_slab)
2814 return 0;
2815
2816 init_kmem_cache_cpus(s);
4c93c355 2817
8a5ec0ba 2818 return 1;
4c93c355 2819}
4c93c355 2820
51df1142
CL
2821static struct kmem_cache *kmem_cache_node;
2822
81819f0f
CL
2823/*
2824 * No kmalloc_node yet so do it by hand. We know that this is the first
2825 * slab on the node for this slabcache. There are no concurrent accesses
2826 * possible.
2827 *
2828 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2829 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2830 * memory on a fresh node that has no slab structures yet.
81819f0f 2831 */
55136592 2832static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2833{
2834 struct page *page;
2835 struct kmem_cache_node *n;
2836
51df1142 2837 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2838
51df1142 2839 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2840
2841 BUG_ON(!page);
a2f92ee7
CL
2842 if (page_to_nid(page) != node) {
2843 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2844 "node %d\n", node);
2845 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2846 "in order to be able to continue\n");
2847 }
2848
81819f0f
CL
2849 n = page->freelist;
2850 BUG_ON(!n);
51df1142 2851 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2852 page->inuse = 1;
8cb0a506 2853 page->frozen = 0;
51df1142 2854 kmem_cache_node->node[node] = n;
8ab1372f 2855#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2856 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2857 init_tracking(kmem_cache_node, n);
8ab1372f 2858#endif
4053497d 2859 init_kmem_cache_node(n);
51df1142 2860 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2861
136333d1 2862 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2863}
2864
2865static void free_kmem_cache_nodes(struct kmem_cache *s)
2866{
2867 int node;
2868
f64dc58c 2869 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2870 struct kmem_cache_node *n = s->node[node];
51df1142 2871
73367bd8 2872 if (n)
51df1142
CL
2873 kmem_cache_free(kmem_cache_node, n);
2874
81819f0f
CL
2875 s->node[node] = NULL;
2876 }
2877}
2878
55136592 2879static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2880{
2881 int node;
81819f0f 2882
f64dc58c 2883 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2884 struct kmem_cache_node *n;
2885
73367bd8 2886 if (slab_state == DOWN) {
55136592 2887 early_kmem_cache_node_alloc(node);
73367bd8
AD
2888 continue;
2889 }
51df1142 2890 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2891 GFP_KERNEL, node);
81819f0f 2892
73367bd8
AD
2893 if (!n) {
2894 free_kmem_cache_nodes(s);
2895 return 0;
81819f0f 2896 }
73367bd8 2897
81819f0f 2898 s->node[node] = n;
4053497d 2899 init_kmem_cache_node(n);
81819f0f
CL
2900 }
2901 return 1;
2902}
81819f0f 2903
c0bdb232 2904static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2905{
2906 if (min < MIN_PARTIAL)
2907 min = MIN_PARTIAL;
2908 else if (min > MAX_PARTIAL)
2909 min = MAX_PARTIAL;
2910 s->min_partial = min;
2911}
2912
81819f0f
CL
2913/*
2914 * calculate_sizes() determines the order and the distribution of data within
2915 * a slab object.
2916 */
06b285dc 2917static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2918{
2919 unsigned long flags = s->flags;
3b0efdfa 2920 unsigned long size = s->object_size;
81819f0f 2921 unsigned long align = s->align;
834f3d11 2922 int order;
81819f0f 2923
d8b42bf5
CL
2924 /*
2925 * Round up object size to the next word boundary. We can only
2926 * place the free pointer at word boundaries and this determines
2927 * the possible location of the free pointer.
2928 */
2929 size = ALIGN(size, sizeof(void *));
2930
2931#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2932 /*
2933 * Determine if we can poison the object itself. If the user of
2934 * the slab may touch the object after free or before allocation
2935 * then we should never poison the object itself.
2936 */
2937 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2938 !s->ctor)
81819f0f
CL
2939 s->flags |= __OBJECT_POISON;
2940 else
2941 s->flags &= ~__OBJECT_POISON;
2942
81819f0f
CL
2943
2944 /*
672bba3a 2945 * If we are Redzoning then check if there is some space between the
81819f0f 2946 * end of the object and the free pointer. If not then add an
672bba3a 2947 * additional word to have some bytes to store Redzone information.
81819f0f 2948 */
3b0efdfa 2949 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2950 size += sizeof(void *);
41ecc55b 2951#endif
81819f0f
CL
2952
2953 /*
672bba3a
CL
2954 * With that we have determined the number of bytes in actual use
2955 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2956 */
2957 s->inuse = size;
2958
2959 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2960 s->ctor)) {
81819f0f
CL
2961 /*
2962 * Relocate free pointer after the object if it is not
2963 * permitted to overwrite the first word of the object on
2964 * kmem_cache_free.
2965 *
2966 * This is the case if we do RCU, have a constructor or
2967 * destructor or are poisoning the objects.
2968 */
2969 s->offset = size;
2970 size += sizeof(void *);
2971 }
2972
c12b3c62 2973#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2974 if (flags & SLAB_STORE_USER)
2975 /*
2976 * Need to store information about allocs and frees after
2977 * the object.
2978 */
2979 size += 2 * sizeof(struct track);
2980
be7b3fbc 2981 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2982 /*
2983 * Add some empty padding so that we can catch
2984 * overwrites from earlier objects rather than let
2985 * tracking information or the free pointer be
0211a9c8 2986 * corrupted if a user writes before the start
81819f0f
CL
2987 * of the object.
2988 */
2989 size += sizeof(void *);
41ecc55b 2990#endif
672bba3a 2991
81819f0f
CL
2992 /*
2993 * Determine the alignment based on various parameters that the
65c02d4c
CL
2994 * user specified and the dynamic determination of cache line size
2995 * on bootup.
81819f0f 2996 */
3b0efdfa 2997 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2998 s->align = align;
81819f0f
CL
2999
3000 /*
3001 * SLUB stores one object immediately after another beginning from
3002 * offset 0. In order to align the objects we have to simply size
3003 * each object to conform to the alignment.
3004 */
3005 size = ALIGN(size, align);
3006 s->size = size;
06b285dc
CL
3007 if (forced_order >= 0)
3008 order = forced_order;
3009 else
ab9a0f19 3010 order = calculate_order(size, s->reserved);
81819f0f 3011
834f3d11 3012 if (order < 0)
81819f0f
CL
3013 return 0;
3014
b7a49f0d 3015 s->allocflags = 0;
834f3d11 3016 if (order)
b7a49f0d
CL
3017 s->allocflags |= __GFP_COMP;
3018
3019 if (s->flags & SLAB_CACHE_DMA)
3020 s->allocflags |= SLUB_DMA;
3021
3022 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3023 s->allocflags |= __GFP_RECLAIMABLE;
3024
81819f0f
CL
3025 /*
3026 * Determine the number of objects per slab
3027 */
ab9a0f19
LJ
3028 s->oo = oo_make(order, size, s->reserved);
3029 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3030 if (oo_objects(s->oo) > oo_objects(s->max))
3031 s->max = s->oo;
81819f0f 3032
834f3d11 3033 return !!oo_objects(s->oo);
81819f0f
CL
3034
3035}
3036
55136592 3037static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3038 const char *name, size_t size,
3039 size_t align, unsigned long flags,
51cc5068 3040 void (*ctor)(void *))
81819f0f
CL
3041{
3042 memset(s, 0, kmem_size);
3043 s->name = name;
3044 s->ctor = ctor;
3b0efdfa 3045 s->object_size = size;
81819f0f 3046 s->align = align;
ba0268a8 3047 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3048 s->reserved = 0;
81819f0f 3049
da9a638c
LJ
3050 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3051 s->reserved = sizeof(struct rcu_head);
81819f0f 3052
06b285dc 3053 if (!calculate_sizes(s, -1))
81819f0f 3054 goto error;
3de47213
DR
3055 if (disable_higher_order_debug) {
3056 /*
3057 * Disable debugging flags that store metadata if the min slab
3058 * order increased.
3059 */
3b0efdfa 3060 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3061 s->flags &= ~DEBUG_METADATA_FLAGS;
3062 s->offset = 0;
3063 if (!calculate_sizes(s, -1))
3064 goto error;
3065 }
3066 }
81819f0f 3067
2565409f
HC
3068#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3069 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3070 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3071 /* Enable fast mode */
3072 s->flags |= __CMPXCHG_DOUBLE;
3073#endif
3074
3b89d7d8
DR
3075 /*
3076 * The larger the object size is, the more pages we want on the partial
3077 * list to avoid pounding the page allocator excessively.
3078 */
49e22585
CL
3079 set_min_partial(s, ilog2(s->size) / 2);
3080
3081 /*
3082 * cpu_partial determined the maximum number of objects kept in the
3083 * per cpu partial lists of a processor.
3084 *
3085 * Per cpu partial lists mainly contain slabs that just have one
3086 * object freed. If they are used for allocation then they can be
3087 * filled up again with minimal effort. The slab will never hit the
3088 * per node partial lists and therefore no locking will be required.
3089 *
3090 * This setting also determines
3091 *
3092 * A) The number of objects from per cpu partial slabs dumped to the
3093 * per node list when we reach the limit.
9f264904 3094 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3095 * per node list when we run out of per cpu objects. We only fetch 50%
3096 * to keep some capacity around for frees.
3097 */
8f1e33da
CL
3098 if (kmem_cache_debug(s))
3099 s->cpu_partial = 0;
3100 else if (s->size >= PAGE_SIZE)
49e22585
CL
3101 s->cpu_partial = 2;
3102 else if (s->size >= 1024)
3103 s->cpu_partial = 6;
3104 else if (s->size >= 256)
3105 s->cpu_partial = 13;
3106 else
3107 s->cpu_partial = 30;
3108
81819f0f
CL
3109 s->refcount = 1;
3110#ifdef CONFIG_NUMA
e2cb96b7 3111 s->remote_node_defrag_ratio = 1000;
81819f0f 3112#endif
55136592 3113 if (!init_kmem_cache_nodes(s))
dfb4f096 3114 goto error;
81819f0f 3115
55136592 3116 if (alloc_kmem_cache_cpus(s))
81819f0f 3117 return 1;
ff12059e 3118
4c93c355 3119 free_kmem_cache_nodes(s);
81819f0f
CL
3120error:
3121 if (flags & SLAB_PANIC)
3122 panic("Cannot create slab %s size=%lu realsize=%u "
3123 "order=%u offset=%u flags=%lx\n",
834f3d11 3124 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3125 s->offset, flags);
3126 return 0;
3127}
81819f0f 3128
81819f0f
CL
3129/*
3130 * Determine the size of a slab object
3131 */
3132unsigned int kmem_cache_size(struct kmem_cache *s)
3133{
3b0efdfa 3134 return s->object_size;
81819f0f
CL
3135}
3136EXPORT_SYMBOL(kmem_cache_size);
3137
33b12c38
CL
3138static void list_slab_objects(struct kmem_cache *s, struct page *page,
3139 const char *text)
3140{
3141#ifdef CONFIG_SLUB_DEBUG
3142 void *addr = page_address(page);
3143 void *p;
a5dd5c11
NK
3144 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3145 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3146 if (!map)
3147 return;
945cf2b6 3148 slab_err(s, page, text, s->name);
33b12c38 3149 slab_lock(page);
33b12c38 3150
5f80b13a 3151 get_map(s, page, map);
33b12c38
CL
3152 for_each_object(p, s, addr, page->objects) {
3153
3154 if (!test_bit(slab_index(p, s, addr), map)) {
3155 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3156 p, p - addr);
3157 print_tracking(s, p);
3158 }
3159 }
3160 slab_unlock(page);
bbd7d57b 3161 kfree(map);
33b12c38
CL
3162#endif
3163}
3164
81819f0f 3165/*
599870b1 3166 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3167 * This is called from kmem_cache_close(). We must be the last thread
3168 * using the cache and therefore we do not need to lock anymore.
81819f0f 3169 */
599870b1 3170static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3171{
81819f0f
CL
3172 struct page *page, *h;
3173
33b12c38 3174 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3175 if (!page->inuse) {
5cc6eee8 3176 remove_partial(n, page);
81819f0f 3177 discard_slab(s, page);
33b12c38
CL
3178 } else {
3179 list_slab_objects(s, page,
945cf2b6 3180 "Objects remaining in %s on kmem_cache_close()");
599870b1 3181 }
33b12c38 3182 }
81819f0f
CL
3183}
3184
3185/*
672bba3a 3186 * Release all resources used by a slab cache.
81819f0f 3187 */
0c710013 3188static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3189{
3190 int node;
3191
3192 flush_all(s);
81819f0f 3193 /* Attempt to free all objects */
f64dc58c 3194 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3195 struct kmem_cache_node *n = get_node(s, node);
3196
599870b1
CL
3197 free_partial(s, n);
3198 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3199 return 1;
3200 }
945cf2b6 3201 free_percpu(s->cpu_slab);
81819f0f
CL
3202 free_kmem_cache_nodes(s);
3203 return 0;
3204}
3205
945cf2b6
CL
3206int __kmem_cache_shutdown(struct kmem_cache *s)
3207{
3208 return kmem_cache_close(s);
3209}
3210
3211void __kmem_cache_destroy(struct kmem_cache *s)
3212{
3213 sysfs_slab_remove(s);
81819f0f 3214}
81819f0f
CL
3215
3216/********************************************************************
3217 * Kmalloc subsystem
3218 *******************************************************************/
3219
51df1142 3220struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3221EXPORT_SYMBOL(kmalloc_caches);
3222
55136592 3223#ifdef CONFIG_ZONE_DMA
51df1142 3224static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3225#endif
3226
81819f0f
CL
3227static int __init setup_slub_min_order(char *str)
3228{
06428780 3229 get_option(&str, &slub_min_order);
81819f0f
CL
3230
3231 return 1;
3232}
3233
3234__setup("slub_min_order=", setup_slub_min_order);
3235
3236static int __init setup_slub_max_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_max_order);
818cf590 3239 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3240
3241 return 1;
3242}
3243
3244__setup("slub_max_order=", setup_slub_max_order);
3245
3246static int __init setup_slub_min_objects(char *str)
3247{
06428780 3248 get_option(&str, &slub_min_objects);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_min_objects=", setup_slub_min_objects);
3254
3255static int __init setup_slub_nomerge(char *str)
3256{
3257 slub_nomerge = 1;
3258 return 1;
3259}
3260
3261__setup("slub_nomerge", setup_slub_nomerge);
3262
51df1142
CL
3263static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3264 int size, unsigned int flags)
81819f0f 3265{
51df1142
CL
3266 struct kmem_cache *s;
3267
3268 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3269
83b519e8
PE
3270 /*
3271 * This function is called with IRQs disabled during early-boot on
18004c5d 3272 * single CPU so there's no need to take slab_mutex here.
83b519e8 3273 */
55136592 3274 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3275 flags, NULL))
81819f0f
CL
3276 goto panic;
3277
3278 list_add(&s->list, &slab_caches);
51df1142 3279 return s;
81819f0f
CL
3280
3281panic:
3282 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3283 return NULL;
81819f0f
CL
3284}
3285
f1b26339
CL
3286/*
3287 * Conversion table for small slabs sizes / 8 to the index in the
3288 * kmalloc array. This is necessary for slabs < 192 since we have non power
3289 * of two cache sizes there. The size of larger slabs can be determined using
3290 * fls.
3291 */
3292static s8 size_index[24] = {
3293 3, /* 8 */
3294 4, /* 16 */
3295 5, /* 24 */
3296 5, /* 32 */
3297 6, /* 40 */
3298 6, /* 48 */
3299 6, /* 56 */
3300 6, /* 64 */
3301 1, /* 72 */
3302 1, /* 80 */
3303 1, /* 88 */
3304 1, /* 96 */
3305 7, /* 104 */
3306 7, /* 112 */
3307 7, /* 120 */
3308 7, /* 128 */
3309 2, /* 136 */
3310 2, /* 144 */
3311 2, /* 152 */
3312 2, /* 160 */
3313 2, /* 168 */
3314 2, /* 176 */
3315 2, /* 184 */
3316 2 /* 192 */
3317};
3318
acdfcd04
AK
3319static inline int size_index_elem(size_t bytes)
3320{
3321 return (bytes - 1) / 8;
3322}
3323
81819f0f
CL
3324static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3325{
f1b26339 3326 int index;
81819f0f 3327
f1b26339
CL
3328 if (size <= 192) {
3329 if (!size)
3330 return ZERO_SIZE_PTR;
81819f0f 3331
acdfcd04 3332 index = size_index[size_index_elem(size)];
aadb4bc4 3333 } else
f1b26339 3334 index = fls(size - 1);
81819f0f
CL
3335
3336#ifdef CONFIG_ZONE_DMA
f1b26339 3337 if (unlikely((flags & SLUB_DMA)))
51df1142 3338 return kmalloc_dma_caches[index];
f1b26339 3339
81819f0f 3340#endif
51df1142 3341 return kmalloc_caches[index];
81819f0f
CL
3342}
3343
3344void *__kmalloc(size_t size, gfp_t flags)
3345{
aadb4bc4 3346 struct kmem_cache *s;
5b882be4 3347 void *ret;
81819f0f 3348
ffadd4d0 3349 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3350 return kmalloc_large(size, flags);
aadb4bc4
CL
3351
3352 s = get_slab(size, flags);
3353
3354 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3355 return s;
3356
2154a336 3357 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3358
ca2b84cb 3359 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3360
3361 return ret;
81819f0f
CL
3362}
3363EXPORT_SYMBOL(__kmalloc);
3364
5d1f57e4 3365#ifdef CONFIG_NUMA
f619cfe1
CL
3366static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3367{
b1eeab67 3368 struct page *page;
e4f7c0b4 3369 void *ptr = NULL;
f619cfe1 3370
b1eeab67
VN
3371 flags |= __GFP_COMP | __GFP_NOTRACK;
3372 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3373 if (page)
e4f7c0b4
CM
3374 ptr = page_address(page);
3375
3376 kmemleak_alloc(ptr, size, 1, flags);
3377 return ptr;
f619cfe1
CL
3378}
3379
81819f0f
CL
3380void *__kmalloc_node(size_t size, gfp_t flags, int node)
3381{
aadb4bc4 3382 struct kmem_cache *s;
5b882be4 3383 void *ret;
81819f0f 3384
057685cf 3385 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3386 ret = kmalloc_large_node(size, flags, node);
3387
ca2b84cb
EGM
3388 trace_kmalloc_node(_RET_IP_, ret,
3389 size, PAGE_SIZE << get_order(size),
3390 flags, node);
5b882be4
EGM
3391
3392 return ret;
3393 }
aadb4bc4
CL
3394
3395 s = get_slab(size, flags);
3396
3397 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3398 return s;
3399
5b882be4
EGM
3400 ret = slab_alloc(s, flags, node, _RET_IP_);
3401
ca2b84cb 3402 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3403
3404 return ret;
81819f0f
CL
3405}
3406EXPORT_SYMBOL(__kmalloc_node);
3407#endif
3408
3409size_t ksize(const void *object)
3410{
272c1d21 3411 struct page *page;
81819f0f 3412
ef8b4520 3413 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3414 return 0;
3415
294a80a8 3416 page = virt_to_head_page(object);
294a80a8 3417
76994412
PE
3418 if (unlikely(!PageSlab(page))) {
3419 WARN_ON(!PageCompound(page));
294a80a8 3420 return PAGE_SIZE << compound_order(page);
76994412 3421 }
81819f0f 3422
b3d41885 3423 return slab_ksize(page->slab);
81819f0f 3424}
b1aabecd 3425EXPORT_SYMBOL(ksize);
81819f0f 3426
d18a90dd
BG
3427#ifdef CONFIG_SLUB_DEBUG
3428bool verify_mem_not_deleted(const void *x)
3429{
3430 struct page *page;
3431 void *object = (void *)x;
3432 unsigned long flags;
3433 bool rv;
3434
3435 if (unlikely(ZERO_OR_NULL_PTR(x)))
3436 return false;
3437
3438 local_irq_save(flags);
3439
3440 page = virt_to_head_page(x);
3441 if (unlikely(!PageSlab(page))) {
3442 /* maybe it was from stack? */
3443 rv = true;
3444 goto out_unlock;
3445 }
3446
3447 slab_lock(page);
3448 if (on_freelist(page->slab, page, object)) {
3449 object_err(page->slab, page, object, "Object is on free-list");
3450 rv = false;
3451 } else {
3452 rv = true;
3453 }
3454 slab_unlock(page);
3455
3456out_unlock:
3457 local_irq_restore(flags);
3458 return rv;
3459}
3460EXPORT_SYMBOL(verify_mem_not_deleted);
3461#endif
3462
81819f0f
CL
3463void kfree(const void *x)
3464{
81819f0f 3465 struct page *page;
5bb983b0 3466 void *object = (void *)x;
81819f0f 3467
2121db74
PE
3468 trace_kfree(_RET_IP_, x);
3469
2408c550 3470 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3471 return;
3472
b49af68f 3473 page = virt_to_head_page(x);
aadb4bc4 3474 if (unlikely(!PageSlab(page))) {
0937502a 3475 BUG_ON(!PageCompound(page));
e4f7c0b4 3476 kmemleak_free(x);
d9b7f226 3477 __free_pages(page, compound_order(page));
aadb4bc4
CL
3478 return;
3479 }
ce71e27c 3480 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3481}
3482EXPORT_SYMBOL(kfree);
3483
2086d26a 3484/*
672bba3a
CL
3485 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3486 * the remaining slabs by the number of items in use. The slabs with the
3487 * most items in use come first. New allocations will then fill those up
3488 * and thus they can be removed from the partial lists.
3489 *
3490 * The slabs with the least items are placed last. This results in them
3491 * being allocated from last increasing the chance that the last objects
3492 * are freed in them.
2086d26a
CL
3493 */
3494int kmem_cache_shrink(struct kmem_cache *s)
3495{
3496 int node;
3497 int i;
3498 struct kmem_cache_node *n;
3499 struct page *page;
3500 struct page *t;
205ab99d 3501 int objects = oo_objects(s->max);
2086d26a 3502 struct list_head *slabs_by_inuse =
834f3d11 3503 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3504 unsigned long flags;
3505
3506 if (!slabs_by_inuse)
3507 return -ENOMEM;
3508
3509 flush_all(s);
f64dc58c 3510 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3511 n = get_node(s, node);
3512
3513 if (!n->nr_partial)
3514 continue;
3515
834f3d11 3516 for (i = 0; i < objects; i++)
2086d26a
CL
3517 INIT_LIST_HEAD(slabs_by_inuse + i);
3518
3519 spin_lock_irqsave(&n->list_lock, flags);
3520
3521 /*
672bba3a 3522 * Build lists indexed by the items in use in each slab.
2086d26a 3523 *
672bba3a
CL
3524 * Note that concurrent frees may occur while we hold the
3525 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3526 */
3527 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3528 list_move(&page->lru, slabs_by_inuse + page->inuse);
3529 if (!page->inuse)
3530 n->nr_partial--;
2086d26a
CL
3531 }
3532
2086d26a 3533 /*
672bba3a
CL
3534 * Rebuild the partial list with the slabs filled up most
3535 * first and the least used slabs at the end.
2086d26a 3536 */
69cb8e6b 3537 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3538 list_splice(slabs_by_inuse + i, n->partial.prev);
3539
2086d26a 3540 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3541
3542 /* Release empty slabs */
3543 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3544 discard_slab(s, page);
2086d26a
CL
3545 }
3546
3547 kfree(slabs_by_inuse);
3548 return 0;
3549}
3550EXPORT_SYMBOL(kmem_cache_shrink);
3551
92a5bbc1 3552#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3553static int slab_mem_going_offline_callback(void *arg)
3554{
3555 struct kmem_cache *s;
3556
18004c5d 3557 mutex_lock(&slab_mutex);
b9049e23
YG
3558 list_for_each_entry(s, &slab_caches, list)
3559 kmem_cache_shrink(s);
18004c5d 3560 mutex_unlock(&slab_mutex);
b9049e23
YG
3561
3562 return 0;
3563}
3564
3565static void slab_mem_offline_callback(void *arg)
3566{
3567 struct kmem_cache_node *n;
3568 struct kmem_cache *s;
3569 struct memory_notify *marg = arg;
3570 int offline_node;
3571
3572 offline_node = marg->status_change_nid;
3573
3574 /*
3575 * If the node still has available memory. we need kmem_cache_node
3576 * for it yet.
3577 */
3578 if (offline_node < 0)
3579 return;
3580
18004c5d 3581 mutex_lock(&slab_mutex);
b9049e23
YG
3582 list_for_each_entry(s, &slab_caches, list) {
3583 n = get_node(s, offline_node);
3584 if (n) {
3585 /*
3586 * if n->nr_slabs > 0, slabs still exist on the node
3587 * that is going down. We were unable to free them,
c9404c9c 3588 * and offline_pages() function shouldn't call this
b9049e23
YG
3589 * callback. So, we must fail.
3590 */
0f389ec6 3591 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3592
3593 s->node[offline_node] = NULL;
8de66a0c 3594 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3595 }
3596 }
18004c5d 3597 mutex_unlock(&slab_mutex);
b9049e23
YG
3598}
3599
3600static int slab_mem_going_online_callback(void *arg)
3601{
3602 struct kmem_cache_node *n;
3603 struct kmem_cache *s;
3604 struct memory_notify *marg = arg;
3605 int nid = marg->status_change_nid;
3606 int ret = 0;
3607
3608 /*
3609 * If the node's memory is already available, then kmem_cache_node is
3610 * already created. Nothing to do.
3611 */
3612 if (nid < 0)
3613 return 0;
3614
3615 /*
0121c619 3616 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3617 * allocate a kmem_cache_node structure in order to bring the node
3618 * online.
3619 */
18004c5d 3620 mutex_lock(&slab_mutex);
b9049e23
YG
3621 list_for_each_entry(s, &slab_caches, list) {
3622 /*
3623 * XXX: kmem_cache_alloc_node will fallback to other nodes
3624 * since memory is not yet available from the node that
3625 * is brought up.
3626 */
8de66a0c 3627 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3628 if (!n) {
3629 ret = -ENOMEM;
3630 goto out;
3631 }
4053497d 3632 init_kmem_cache_node(n);
b9049e23
YG
3633 s->node[nid] = n;
3634 }
3635out:
18004c5d 3636 mutex_unlock(&slab_mutex);
b9049e23
YG
3637 return ret;
3638}
3639
3640static int slab_memory_callback(struct notifier_block *self,
3641 unsigned long action, void *arg)
3642{
3643 int ret = 0;
3644
3645 switch (action) {
3646 case MEM_GOING_ONLINE:
3647 ret = slab_mem_going_online_callback(arg);
3648 break;
3649 case MEM_GOING_OFFLINE:
3650 ret = slab_mem_going_offline_callback(arg);
3651 break;
3652 case MEM_OFFLINE:
3653 case MEM_CANCEL_ONLINE:
3654 slab_mem_offline_callback(arg);
3655 break;
3656 case MEM_ONLINE:
3657 case MEM_CANCEL_OFFLINE:
3658 break;
3659 }
dc19f9db
KH
3660 if (ret)
3661 ret = notifier_from_errno(ret);
3662 else
3663 ret = NOTIFY_OK;
b9049e23
YG
3664 return ret;
3665}
3666
3667#endif /* CONFIG_MEMORY_HOTPLUG */
3668
81819f0f
CL
3669/********************************************************************
3670 * Basic setup of slabs
3671 *******************************************************************/
3672
51df1142
CL
3673/*
3674 * Used for early kmem_cache structures that were allocated using
3675 * the page allocator
3676 */
3677
3678static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3679{
3680 int node;
3681
3682 list_add(&s->list, &slab_caches);
3683 s->refcount = -1;
3684
3685 for_each_node_state(node, N_NORMAL_MEMORY) {
3686 struct kmem_cache_node *n = get_node(s, node);
3687 struct page *p;
3688
3689 if (n) {
3690 list_for_each_entry(p, &n->partial, lru)
3691 p->slab = s;
3692
607bf324 3693#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3694 list_for_each_entry(p, &n->full, lru)
3695 p->slab = s;
3696#endif
3697 }
3698 }
3699}
3700
81819f0f
CL
3701void __init kmem_cache_init(void)
3702{
3703 int i;
4b356be0 3704 int caches = 0;
51df1142
CL
3705 struct kmem_cache *temp_kmem_cache;
3706 int order;
51df1142
CL
3707 struct kmem_cache *temp_kmem_cache_node;
3708 unsigned long kmalloc_size;
3709
fc8d8620
SG
3710 if (debug_guardpage_minorder())
3711 slub_max_order = 0;
3712
51df1142
CL
3713 kmem_size = offsetof(struct kmem_cache, node) +
3714 nr_node_ids * sizeof(struct kmem_cache_node *);
3715
3716 /* Allocate two kmem_caches from the page allocator */
3717 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3718 order = get_order(2 * kmalloc_size);
3719 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3720
81819f0f
CL
3721 /*
3722 * Must first have the slab cache available for the allocations of the
672bba3a 3723 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3724 * kmem_cache_open for slab_state == DOWN.
3725 */
51df1142
CL
3726 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3727
3728 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3729 sizeof(struct kmem_cache_node),
3730 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3731
0c40ba4f 3732 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3733
3734 /* Able to allocate the per node structures */
3735 slab_state = PARTIAL;
3736
51df1142
CL
3737 temp_kmem_cache = kmem_cache;
3738 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3739 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3740 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3741 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3742
51df1142
CL
3743 /*
3744 * Allocate kmem_cache_node properly from the kmem_cache slab.
3745 * kmem_cache_node is separately allocated so no need to
3746 * update any list pointers.
3747 */
3748 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3749
51df1142
CL
3750 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3751 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3752
3753 kmem_cache_bootstrap_fixup(kmem_cache_node);
3754
3755 caches++;
51df1142
CL
3756 kmem_cache_bootstrap_fixup(kmem_cache);
3757 caches++;
3758 /* Free temporary boot structure */
3759 free_pages((unsigned long)temp_kmem_cache, order);
3760
3761 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3762
3763 /*
3764 * Patch up the size_index table if we have strange large alignment
3765 * requirements for the kmalloc array. This is only the case for
6446faa2 3766 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3767 *
3768 * Largest permitted alignment is 256 bytes due to the way we
3769 * handle the index determination for the smaller caches.
3770 *
3771 * Make sure that nothing crazy happens if someone starts tinkering
3772 * around with ARCH_KMALLOC_MINALIGN
3773 */
3774 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3775 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3776
acdfcd04
AK
3777 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3778 int elem = size_index_elem(i);
3779 if (elem >= ARRAY_SIZE(size_index))
3780 break;
3781 size_index[elem] = KMALLOC_SHIFT_LOW;
3782 }
f1b26339 3783
acdfcd04
AK
3784 if (KMALLOC_MIN_SIZE == 64) {
3785 /*
3786 * The 96 byte size cache is not used if the alignment
3787 * is 64 byte.
3788 */
3789 for (i = 64 + 8; i <= 96; i += 8)
3790 size_index[size_index_elem(i)] = 7;
3791 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3792 /*
3793 * The 192 byte sized cache is not used if the alignment
3794 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3795 * instead.
3796 */
3797 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3798 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3799 }
3800
51df1142
CL
3801 /* Caches that are not of the two-to-the-power-of size */
3802 if (KMALLOC_MIN_SIZE <= 32) {
3803 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3804 caches++;
3805 }
3806
3807 if (KMALLOC_MIN_SIZE <= 64) {
3808 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3809 caches++;
3810 }
3811
3812 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3813 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3814 caches++;
3815 }
3816
81819f0f
CL
3817 slab_state = UP;
3818
3819 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3820 if (KMALLOC_MIN_SIZE <= 32) {
3821 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3822 BUG_ON(!kmalloc_caches[1]->name);
3823 }
3824
3825 if (KMALLOC_MIN_SIZE <= 64) {
3826 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3827 BUG_ON(!kmalloc_caches[2]->name);
3828 }
3829
d7278bd7
CL
3830 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3831 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3832
3833 BUG_ON(!s);
51df1142 3834 kmalloc_caches[i]->name = s;
d7278bd7 3835 }
81819f0f
CL
3836
3837#ifdef CONFIG_SMP
3838 register_cpu_notifier(&slab_notifier);
9dfc6e68 3839#endif
81819f0f 3840
55136592 3841#ifdef CONFIG_ZONE_DMA
51df1142
CL
3842 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3843 struct kmem_cache *s = kmalloc_caches[i];
55136592 3844
51df1142 3845 if (s && s->size) {
55136592 3846 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3847 "dma-kmalloc-%d", s->object_size);
55136592
CL
3848
3849 BUG_ON(!name);
51df1142 3850 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3851 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3852 }
3853 }
3854#endif
3adbefee
IM
3855 printk(KERN_INFO
3856 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3857 " CPUs=%d, Nodes=%d\n",
3858 caches, cache_line_size(),
81819f0f
CL
3859 slub_min_order, slub_max_order, slub_min_objects,
3860 nr_cpu_ids, nr_node_ids);
3861}
3862
7e85ee0c
PE
3863void __init kmem_cache_init_late(void)
3864{
7e85ee0c
PE
3865}
3866
81819f0f
CL
3867/*
3868 * Find a mergeable slab cache
3869 */
3870static int slab_unmergeable(struct kmem_cache *s)
3871{
3872 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3873 return 1;
3874
c59def9f 3875 if (s->ctor)
81819f0f
CL
3876 return 1;
3877
8ffa6875
CL
3878 /*
3879 * We may have set a slab to be unmergeable during bootstrap.
3880 */
3881 if (s->refcount < 0)
3882 return 1;
3883
81819f0f
CL
3884 return 0;
3885}
3886
3887static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3888 size_t align, unsigned long flags, const char *name,
51cc5068 3889 void (*ctor)(void *))
81819f0f 3890{
5b95a4ac 3891 struct kmem_cache *s;
81819f0f
CL
3892
3893 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3894 return NULL;
3895
c59def9f 3896 if (ctor)
81819f0f
CL
3897 return NULL;
3898
3899 size = ALIGN(size, sizeof(void *));
3900 align = calculate_alignment(flags, align, size);
3901 size = ALIGN(size, align);
ba0268a8 3902 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3903
5b95a4ac 3904 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3905 if (slab_unmergeable(s))
3906 continue;
3907
3908 if (size > s->size)
3909 continue;
3910
ba0268a8 3911 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3912 continue;
3913 /*
3914 * Check if alignment is compatible.
3915 * Courtesy of Adrian Drzewiecki
3916 */
06428780 3917 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3918 continue;
3919
3920 if (s->size - size >= sizeof(void *))
3921 continue;
3922
3923 return s;
3924 }
3925 return NULL;
3926}
3927
039363f3 3928struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3929 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3930{
3931 struct kmem_cache *s;
84c1cf62 3932 char *n;
81819f0f 3933
ba0268a8 3934 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3935 if (s) {
3936 s->refcount++;
3937 /*
3938 * Adjust the object sizes so that we clear
3939 * the complete object on kzalloc.
3940 */
3b0efdfa 3941 s->object_size = max(s->object_size, (int)size);
81819f0f 3942 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3943
7b8f3b66 3944 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3945 s->refcount--;
20cea968 3946 return NULL;
7b8f3b66 3947 }
a0e1d1be
CL
3948 return s;
3949 }
6446faa2 3950
84c1cf62
PE
3951 n = kstrdup(name, GFP_KERNEL);
3952 if (!n)
20cea968 3953 return NULL;
84c1cf62 3954
208c4358 3955 s = kmem_cache_alloc(kmem_cache, GFP_KERNEL);
a0e1d1be 3956 if (s) {
84c1cf62 3957 if (kmem_cache_open(s, n,
c59def9f 3958 size, align, flags, ctor)) {
20cea968
CL
3959 int r;
3960
18004c5d 3961 mutex_unlock(&slab_mutex);
20cea968
CL
3962 r = sysfs_slab_add(s);
3963 mutex_lock(&slab_mutex);
3964
3965 if (!r)
3966 return s;
3967
20cea968 3968 kmem_cache_close(s);
a0e1d1be 3969 }
208c4358 3970 kmem_cache_free(kmem_cache, s);
81819f0f 3971 }
601d39d0 3972 kfree(n);
20cea968 3973 return NULL;
81819f0f 3974}
81819f0f 3975
81819f0f 3976#ifdef CONFIG_SMP
81819f0f 3977/*
672bba3a
CL
3978 * Use the cpu notifier to insure that the cpu slabs are flushed when
3979 * necessary.
81819f0f
CL
3980 */
3981static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3982 unsigned long action, void *hcpu)
3983{
3984 long cpu = (long)hcpu;
5b95a4ac
CL
3985 struct kmem_cache *s;
3986 unsigned long flags;
81819f0f
CL
3987
3988 switch (action) {
3989 case CPU_UP_CANCELED:
8bb78442 3990 case CPU_UP_CANCELED_FROZEN:
81819f0f 3991 case CPU_DEAD:
8bb78442 3992 case CPU_DEAD_FROZEN:
18004c5d 3993 mutex_lock(&slab_mutex);
5b95a4ac
CL
3994 list_for_each_entry(s, &slab_caches, list) {
3995 local_irq_save(flags);
3996 __flush_cpu_slab(s, cpu);
3997 local_irq_restore(flags);
3998 }
18004c5d 3999 mutex_unlock(&slab_mutex);
81819f0f
CL
4000 break;
4001 default:
4002 break;
4003 }
4004 return NOTIFY_OK;
4005}
4006
06428780 4007static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4008 .notifier_call = slab_cpuup_callback
06428780 4009};
81819f0f
CL
4010
4011#endif
4012
ce71e27c 4013void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4014{
aadb4bc4 4015 struct kmem_cache *s;
94b528d0 4016 void *ret;
aadb4bc4 4017
ffadd4d0 4018 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4019 return kmalloc_large(size, gfpflags);
4020
aadb4bc4 4021 s = get_slab(size, gfpflags);
81819f0f 4022
2408c550 4023 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4024 return s;
81819f0f 4025
2154a336 4026 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4027
25985edc 4028 /* Honor the call site pointer we received. */
ca2b84cb 4029 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4030
4031 return ret;
81819f0f
CL
4032}
4033
5d1f57e4 4034#ifdef CONFIG_NUMA
81819f0f 4035void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4036 int node, unsigned long caller)
81819f0f 4037{
aadb4bc4 4038 struct kmem_cache *s;
94b528d0 4039 void *ret;
aadb4bc4 4040
d3e14aa3
XF
4041 if (unlikely(size > SLUB_MAX_SIZE)) {
4042 ret = kmalloc_large_node(size, gfpflags, node);
4043
4044 trace_kmalloc_node(caller, ret,
4045 size, PAGE_SIZE << get_order(size),
4046 gfpflags, node);
4047
4048 return ret;
4049 }
eada35ef 4050
aadb4bc4 4051 s = get_slab(size, gfpflags);
81819f0f 4052
2408c550 4053 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4054 return s;
81819f0f 4055
94b528d0
EGM
4056 ret = slab_alloc(s, gfpflags, node, caller);
4057
25985edc 4058 /* Honor the call site pointer we received. */
ca2b84cb 4059 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4060
4061 return ret;
81819f0f 4062}
5d1f57e4 4063#endif
81819f0f 4064
ab4d5ed5 4065#ifdef CONFIG_SYSFS
205ab99d
CL
4066static int count_inuse(struct page *page)
4067{
4068 return page->inuse;
4069}
4070
4071static int count_total(struct page *page)
4072{
4073 return page->objects;
4074}
ab4d5ed5 4075#endif
205ab99d 4076
ab4d5ed5 4077#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4078static int validate_slab(struct kmem_cache *s, struct page *page,
4079 unsigned long *map)
53e15af0
CL
4080{
4081 void *p;
a973e9dd 4082 void *addr = page_address(page);
53e15af0
CL
4083
4084 if (!check_slab(s, page) ||
4085 !on_freelist(s, page, NULL))
4086 return 0;
4087
4088 /* Now we know that a valid freelist exists */
39b26464 4089 bitmap_zero(map, page->objects);
53e15af0 4090
5f80b13a
CL
4091 get_map(s, page, map);
4092 for_each_object(p, s, addr, page->objects) {
4093 if (test_bit(slab_index(p, s, addr), map))
4094 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4095 return 0;
53e15af0
CL
4096 }
4097
224a88be 4098 for_each_object(p, s, addr, page->objects)
7656c72b 4099 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4100 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4101 return 0;
4102 return 1;
4103}
4104
434e245d
CL
4105static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4106 unsigned long *map)
53e15af0 4107{
881db7fb
CL
4108 slab_lock(page);
4109 validate_slab(s, page, map);
4110 slab_unlock(page);
53e15af0
CL
4111}
4112
434e245d
CL
4113static int validate_slab_node(struct kmem_cache *s,
4114 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4115{
4116 unsigned long count = 0;
4117 struct page *page;
4118 unsigned long flags;
4119
4120 spin_lock_irqsave(&n->list_lock, flags);
4121
4122 list_for_each_entry(page, &n->partial, lru) {
434e245d 4123 validate_slab_slab(s, page, map);
53e15af0
CL
4124 count++;
4125 }
4126 if (count != n->nr_partial)
4127 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4128 "counter=%ld\n", s->name, count, n->nr_partial);
4129
4130 if (!(s->flags & SLAB_STORE_USER))
4131 goto out;
4132
4133 list_for_each_entry(page, &n->full, lru) {
434e245d 4134 validate_slab_slab(s, page, map);
53e15af0
CL
4135 count++;
4136 }
4137 if (count != atomic_long_read(&n->nr_slabs))
4138 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4139 "counter=%ld\n", s->name, count,
4140 atomic_long_read(&n->nr_slabs));
4141
4142out:
4143 spin_unlock_irqrestore(&n->list_lock, flags);
4144 return count;
4145}
4146
434e245d 4147static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4148{
4149 int node;
4150 unsigned long count = 0;
205ab99d 4151 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4152 sizeof(unsigned long), GFP_KERNEL);
4153
4154 if (!map)
4155 return -ENOMEM;
53e15af0
CL
4156
4157 flush_all(s);
f64dc58c 4158 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4159 struct kmem_cache_node *n = get_node(s, node);
4160
434e245d 4161 count += validate_slab_node(s, n, map);
53e15af0 4162 }
434e245d 4163 kfree(map);
53e15af0
CL
4164 return count;
4165}
88a420e4 4166/*
672bba3a 4167 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4168 * and freed.
4169 */
4170
4171struct location {
4172 unsigned long count;
ce71e27c 4173 unsigned long addr;
45edfa58
CL
4174 long long sum_time;
4175 long min_time;
4176 long max_time;
4177 long min_pid;
4178 long max_pid;
174596a0 4179 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4180 nodemask_t nodes;
88a420e4
CL
4181};
4182
4183struct loc_track {
4184 unsigned long max;
4185 unsigned long count;
4186 struct location *loc;
4187};
4188
4189static void free_loc_track(struct loc_track *t)
4190{
4191 if (t->max)
4192 free_pages((unsigned long)t->loc,
4193 get_order(sizeof(struct location) * t->max));
4194}
4195
68dff6a9 4196static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4197{
4198 struct location *l;
4199 int order;
4200
88a420e4
CL
4201 order = get_order(sizeof(struct location) * max);
4202
68dff6a9 4203 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4204 if (!l)
4205 return 0;
4206
4207 if (t->count) {
4208 memcpy(l, t->loc, sizeof(struct location) * t->count);
4209 free_loc_track(t);
4210 }
4211 t->max = max;
4212 t->loc = l;
4213 return 1;
4214}
4215
4216static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4217 const struct track *track)
88a420e4
CL
4218{
4219 long start, end, pos;
4220 struct location *l;
ce71e27c 4221 unsigned long caddr;
45edfa58 4222 unsigned long age = jiffies - track->when;
88a420e4
CL
4223
4224 start = -1;
4225 end = t->count;
4226
4227 for ( ; ; ) {
4228 pos = start + (end - start + 1) / 2;
4229
4230 /*
4231 * There is nothing at "end". If we end up there
4232 * we need to add something to before end.
4233 */
4234 if (pos == end)
4235 break;
4236
4237 caddr = t->loc[pos].addr;
45edfa58
CL
4238 if (track->addr == caddr) {
4239
4240 l = &t->loc[pos];
4241 l->count++;
4242 if (track->when) {
4243 l->sum_time += age;
4244 if (age < l->min_time)
4245 l->min_time = age;
4246 if (age > l->max_time)
4247 l->max_time = age;
4248
4249 if (track->pid < l->min_pid)
4250 l->min_pid = track->pid;
4251 if (track->pid > l->max_pid)
4252 l->max_pid = track->pid;
4253
174596a0
RR
4254 cpumask_set_cpu(track->cpu,
4255 to_cpumask(l->cpus));
45edfa58
CL
4256 }
4257 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4258 return 1;
4259 }
4260
45edfa58 4261 if (track->addr < caddr)
88a420e4
CL
4262 end = pos;
4263 else
4264 start = pos;
4265 }
4266
4267 /*
672bba3a 4268 * Not found. Insert new tracking element.
88a420e4 4269 */
68dff6a9 4270 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4271 return 0;
4272
4273 l = t->loc + pos;
4274 if (pos < t->count)
4275 memmove(l + 1, l,
4276 (t->count - pos) * sizeof(struct location));
4277 t->count++;
4278 l->count = 1;
45edfa58
CL
4279 l->addr = track->addr;
4280 l->sum_time = age;
4281 l->min_time = age;
4282 l->max_time = age;
4283 l->min_pid = track->pid;
4284 l->max_pid = track->pid;
174596a0
RR
4285 cpumask_clear(to_cpumask(l->cpus));
4286 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4287 nodes_clear(l->nodes);
4288 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4289 return 1;
4290}
4291
4292static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4293 struct page *page, enum track_item alloc,
a5dd5c11 4294 unsigned long *map)
88a420e4 4295{
a973e9dd 4296 void *addr = page_address(page);
88a420e4
CL
4297 void *p;
4298
39b26464 4299 bitmap_zero(map, page->objects);
5f80b13a 4300 get_map(s, page, map);
88a420e4 4301
224a88be 4302 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4303 if (!test_bit(slab_index(p, s, addr), map))
4304 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4305}
4306
4307static int list_locations(struct kmem_cache *s, char *buf,
4308 enum track_item alloc)
4309{
e374d483 4310 int len = 0;
88a420e4 4311 unsigned long i;
68dff6a9 4312 struct loc_track t = { 0, 0, NULL };
88a420e4 4313 int node;
bbd7d57b
ED
4314 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4315 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4316
bbd7d57b
ED
4317 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4318 GFP_TEMPORARY)) {
4319 kfree(map);
68dff6a9 4320 return sprintf(buf, "Out of memory\n");
bbd7d57b 4321 }
88a420e4
CL
4322 /* Push back cpu slabs */
4323 flush_all(s);
4324
f64dc58c 4325 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4326 struct kmem_cache_node *n = get_node(s, node);
4327 unsigned long flags;
4328 struct page *page;
4329
9e86943b 4330 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4331 continue;
4332
4333 spin_lock_irqsave(&n->list_lock, flags);
4334 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4335 process_slab(&t, s, page, alloc, map);
88a420e4 4336 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4337 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4338 spin_unlock_irqrestore(&n->list_lock, flags);
4339 }
4340
4341 for (i = 0; i < t.count; i++) {
45edfa58 4342 struct location *l = &t.loc[i];
88a420e4 4343
9c246247 4344 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4345 break;
e374d483 4346 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4347
4348 if (l->addr)
62c70bce 4349 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4350 else
e374d483 4351 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4352
4353 if (l->sum_time != l->min_time) {
e374d483 4354 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4355 l->min_time,
4356 (long)div_u64(l->sum_time, l->count),
4357 l->max_time);
45edfa58 4358 } else
e374d483 4359 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4360 l->min_time);
4361
4362 if (l->min_pid != l->max_pid)
e374d483 4363 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4364 l->min_pid, l->max_pid);
4365 else
e374d483 4366 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4367 l->min_pid);
4368
174596a0
RR
4369 if (num_online_cpus() > 1 &&
4370 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4371 len < PAGE_SIZE - 60) {
4372 len += sprintf(buf + len, " cpus=");
4373 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4374 to_cpumask(l->cpus));
45edfa58
CL
4375 }
4376
62bc62a8 4377 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4378 len < PAGE_SIZE - 60) {
4379 len += sprintf(buf + len, " nodes=");
4380 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4381 l->nodes);
4382 }
4383
e374d483 4384 len += sprintf(buf + len, "\n");
88a420e4
CL
4385 }
4386
4387 free_loc_track(&t);
bbd7d57b 4388 kfree(map);
88a420e4 4389 if (!t.count)
e374d483
HH
4390 len += sprintf(buf, "No data\n");
4391 return len;
88a420e4 4392}
ab4d5ed5 4393#endif
88a420e4 4394
a5a84755
CL
4395#ifdef SLUB_RESILIENCY_TEST
4396static void resiliency_test(void)
4397{
4398 u8 *p;
4399
4400 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4401
4402 printk(KERN_ERR "SLUB resiliency testing\n");
4403 printk(KERN_ERR "-----------------------\n");
4404 printk(KERN_ERR "A. Corruption after allocation\n");
4405
4406 p = kzalloc(16, GFP_KERNEL);
4407 p[16] = 0x12;
4408 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4409 " 0x12->0x%p\n\n", p + 16);
4410
4411 validate_slab_cache(kmalloc_caches[4]);
4412
4413 /* Hmmm... The next two are dangerous */
4414 p = kzalloc(32, GFP_KERNEL);
4415 p[32 + sizeof(void *)] = 0x34;
4416 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4417 " 0x34 -> -0x%p\n", p);
4418 printk(KERN_ERR
4419 "If allocated object is overwritten then not detectable\n\n");
4420
4421 validate_slab_cache(kmalloc_caches[5]);
4422 p = kzalloc(64, GFP_KERNEL);
4423 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4424 *p = 0x56;
4425 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4426 p);
4427 printk(KERN_ERR
4428 "If allocated object is overwritten then not detectable\n\n");
4429 validate_slab_cache(kmalloc_caches[6]);
4430
4431 printk(KERN_ERR "\nB. Corruption after free\n");
4432 p = kzalloc(128, GFP_KERNEL);
4433 kfree(p);
4434 *p = 0x78;
4435 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4436 validate_slab_cache(kmalloc_caches[7]);
4437
4438 p = kzalloc(256, GFP_KERNEL);
4439 kfree(p);
4440 p[50] = 0x9a;
4441 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4442 p);
4443 validate_slab_cache(kmalloc_caches[8]);
4444
4445 p = kzalloc(512, GFP_KERNEL);
4446 kfree(p);
4447 p[512] = 0xab;
4448 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4449 validate_slab_cache(kmalloc_caches[9]);
4450}
4451#else
4452#ifdef CONFIG_SYSFS
4453static void resiliency_test(void) {};
4454#endif
4455#endif
4456
ab4d5ed5 4457#ifdef CONFIG_SYSFS
81819f0f 4458enum slab_stat_type {
205ab99d
CL
4459 SL_ALL, /* All slabs */
4460 SL_PARTIAL, /* Only partially allocated slabs */
4461 SL_CPU, /* Only slabs used for cpu caches */
4462 SL_OBJECTS, /* Determine allocated objects not slabs */
4463 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4464};
4465
205ab99d 4466#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4467#define SO_PARTIAL (1 << SL_PARTIAL)
4468#define SO_CPU (1 << SL_CPU)
4469#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4470#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4471
62e5c4b4
CG
4472static ssize_t show_slab_objects(struct kmem_cache *s,
4473 char *buf, unsigned long flags)
81819f0f
CL
4474{
4475 unsigned long total = 0;
81819f0f
CL
4476 int node;
4477 int x;
4478 unsigned long *nodes;
4479 unsigned long *per_cpu;
4480
4481 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4482 if (!nodes)
4483 return -ENOMEM;
81819f0f
CL
4484 per_cpu = nodes + nr_node_ids;
4485
205ab99d
CL
4486 if (flags & SO_CPU) {
4487 int cpu;
81819f0f 4488
205ab99d 4489 for_each_possible_cpu(cpu) {
9dfc6e68 4490 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4491 int node;
49e22585 4492 struct page *page;
dfb4f096 4493
bc6697d8 4494 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4495 if (!page)
4496 continue;
205ab99d 4497
ec3ab083
CL
4498 node = page_to_nid(page);
4499 if (flags & SO_TOTAL)
4500 x = page->objects;
4501 else if (flags & SO_OBJECTS)
4502 x = page->inuse;
4503 else
4504 x = 1;
49e22585 4505
ec3ab083
CL
4506 total += x;
4507 nodes[node] += x;
4508
4509 page = ACCESS_ONCE(c->partial);
49e22585
CL
4510 if (page) {
4511 x = page->pobjects;
bc6697d8
ED
4512 total += x;
4513 nodes[node] += x;
49e22585 4514 }
ec3ab083 4515
bc6697d8 4516 per_cpu[node]++;
81819f0f
CL
4517 }
4518 }
4519
04d94879 4520 lock_memory_hotplug();
ab4d5ed5 4521#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4522 if (flags & SO_ALL) {
4523 for_each_node_state(node, N_NORMAL_MEMORY) {
4524 struct kmem_cache_node *n = get_node(s, node);
4525
4526 if (flags & SO_TOTAL)
4527 x = atomic_long_read(&n->total_objects);
4528 else if (flags & SO_OBJECTS)
4529 x = atomic_long_read(&n->total_objects) -
4530 count_partial(n, count_free);
81819f0f 4531
81819f0f 4532 else
205ab99d 4533 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4534 total += x;
4535 nodes[node] += x;
4536 }
4537
ab4d5ed5
CL
4538 } else
4539#endif
4540 if (flags & SO_PARTIAL) {
205ab99d
CL
4541 for_each_node_state(node, N_NORMAL_MEMORY) {
4542 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4543
205ab99d
CL
4544 if (flags & SO_TOTAL)
4545 x = count_partial(n, count_total);
4546 else if (flags & SO_OBJECTS)
4547 x = count_partial(n, count_inuse);
81819f0f 4548 else
205ab99d 4549 x = n->nr_partial;
81819f0f
CL
4550 total += x;
4551 nodes[node] += x;
4552 }
4553 }
81819f0f
CL
4554 x = sprintf(buf, "%lu", total);
4555#ifdef CONFIG_NUMA
f64dc58c 4556 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4557 if (nodes[node])
4558 x += sprintf(buf + x, " N%d=%lu",
4559 node, nodes[node]);
4560#endif
04d94879 4561 unlock_memory_hotplug();
81819f0f
CL
4562 kfree(nodes);
4563 return x + sprintf(buf + x, "\n");
4564}
4565
ab4d5ed5 4566#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4567static int any_slab_objects(struct kmem_cache *s)
4568{
4569 int node;
81819f0f 4570
dfb4f096 4571 for_each_online_node(node) {
81819f0f
CL
4572 struct kmem_cache_node *n = get_node(s, node);
4573
dfb4f096
CL
4574 if (!n)
4575 continue;
4576
4ea33e2d 4577 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4578 return 1;
4579 }
4580 return 0;
4581}
ab4d5ed5 4582#endif
81819f0f
CL
4583
4584#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4585#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4586
4587struct slab_attribute {
4588 struct attribute attr;
4589 ssize_t (*show)(struct kmem_cache *s, char *buf);
4590 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4591};
4592
4593#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4594 static struct slab_attribute _name##_attr = \
4595 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4596
4597#define SLAB_ATTR(_name) \
4598 static struct slab_attribute _name##_attr = \
ab067e99 4599 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4600
81819f0f
CL
4601static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", s->size);
4604}
4605SLAB_ATTR_RO(slab_size);
4606
4607static ssize_t align_show(struct kmem_cache *s, char *buf)
4608{
4609 return sprintf(buf, "%d\n", s->align);
4610}
4611SLAB_ATTR_RO(align);
4612
4613static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4614{
3b0efdfa 4615 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4616}
4617SLAB_ATTR_RO(object_size);
4618
4619static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4620{
834f3d11 4621 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4622}
4623SLAB_ATTR_RO(objs_per_slab);
4624
06b285dc
CL
4625static ssize_t order_store(struct kmem_cache *s,
4626 const char *buf, size_t length)
4627{
0121c619
CL
4628 unsigned long order;
4629 int err;
4630
4631 err = strict_strtoul(buf, 10, &order);
4632 if (err)
4633 return err;
06b285dc
CL
4634
4635 if (order > slub_max_order || order < slub_min_order)
4636 return -EINVAL;
4637
4638 calculate_sizes(s, order);
4639 return length;
4640}
4641
81819f0f
CL
4642static ssize_t order_show(struct kmem_cache *s, char *buf)
4643{
834f3d11 4644 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4645}
06b285dc 4646SLAB_ATTR(order);
81819f0f 4647
73d342b1
DR
4648static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4649{
4650 return sprintf(buf, "%lu\n", s->min_partial);
4651}
4652
4653static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4654 size_t length)
4655{
4656 unsigned long min;
4657 int err;
4658
4659 err = strict_strtoul(buf, 10, &min);
4660 if (err)
4661 return err;
4662
c0bdb232 4663 set_min_partial(s, min);
73d342b1
DR
4664 return length;
4665}
4666SLAB_ATTR(min_partial);
4667
49e22585
CL
4668static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4669{
4670 return sprintf(buf, "%u\n", s->cpu_partial);
4671}
4672
4673static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4674 size_t length)
4675{
4676 unsigned long objects;
4677 int err;
4678
4679 err = strict_strtoul(buf, 10, &objects);
4680 if (err)
4681 return err;
74ee4ef1
DR
4682 if (objects && kmem_cache_debug(s))
4683 return -EINVAL;
49e22585
CL
4684
4685 s->cpu_partial = objects;
4686 flush_all(s);
4687 return length;
4688}
4689SLAB_ATTR(cpu_partial);
4690
81819f0f
CL
4691static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4692{
62c70bce
JP
4693 if (!s->ctor)
4694 return 0;
4695 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4696}
4697SLAB_ATTR_RO(ctor);
4698
81819f0f
CL
4699static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4700{
4701 return sprintf(buf, "%d\n", s->refcount - 1);
4702}
4703SLAB_ATTR_RO(aliases);
4704
81819f0f
CL
4705static ssize_t partial_show(struct kmem_cache *s, char *buf)
4706{
d9acf4b7 4707 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4708}
4709SLAB_ATTR_RO(partial);
4710
4711static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4712{
d9acf4b7 4713 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4714}
4715SLAB_ATTR_RO(cpu_slabs);
4716
4717static ssize_t objects_show(struct kmem_cache *s, char *buf)
4718{
205ab99d 4719 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4720}
4721SLAB_ATTR_RO(objects);
4722
205ab99d
CL
4723static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4724{
4725 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4726}
4727SLAB_ATTR_RO(objects_partial);
4728
49e22585
CL
4729static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4730{
4731 int objects = 0;
4732 int pages = 0;
4733 int cpu;
4734 int len;
4735
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4738
4739 if (page) {
4740 pages += page->pages;
4741 objects += page->pobjects;
4742 }
4743 }
4744
4745 len = sprintf(buf, "%d(%d)", objects, pages);
4746
4747#ifdef CONFIG_SMP
4748 for_each_online_cpu(cpu) {
4749 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4750
4751 if (page && len < PAGE_SIZE - 20)
4752 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4753 page->pobjects, page->pages);
4754 }
4755#endif
4756 return len + sprintf(buf + len, "\n");
4757}
4758SLAB_ATTR_RO(slabs_cpu_partial);
4759
a5a84755
CL
4760static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4761{
4762 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4763}
4764
4765static ssize_t reclaim_account_store(struct kmem_cache *s,
4766 const char *buf, size_t length)
4767{
4768 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4769 if (buf[0] == '1')
4770 s->flags |= SLAB_RECLAIM_ACCOUNT;
4771 return length;
4772}
4773SLAB_ATTR(reclaim_account);
4774
4775static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4776{
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4778}
4779SLAB_ATTR_RO(hwcache_align);
4780
4781#ifdef CONFIG_ZONE_DMA
4782static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4783{
4784 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4785}
4786SLAB_ATTR_RO(cache_dma);
4787#endif
4788
4789static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4790{
4791 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4792}
4793SLAB_ATTR_RO(destroy_by_rcu);
4794
ab9a0f19
LJ
4795static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4796{
4797 return sprintf(buf, "%d\n", s->reserved);
4798}
4799SLAB_ATTR_RO(reserved);
4800
ab4d5ed5 4801#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4802static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4803{
4804 return show_slab_objects(s, buf, SO_ALL);
4805}
4806SLAB_ATTR_RO(slabs);
4807
205ab99d
CL
4808static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4809{
4810 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4811}
4812SLAB_ATTR_RO(total_objects);
4813
81819f0f
CL
4814static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4815{
4816 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4817}
4818
4819static ssize_t sanity_checks_store(struct kmem_cache *s,
4820 const char *buf, size_t length)
4821{
4822 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4823 if (buf[0] == '1') {
4824 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4825 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4826 }
81819f0f
CL
4827 return length;
4828}
4829SLAB_ATTR(sanity_checks);
4830
4831static ssize_t trace_show(struct kmem_cache *s, char *buf)
4832{
4833 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4834}
4835
4836static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4837 size_t length)
4838{
4839 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4840 if (buf[0] == '1') {
4841 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4842 s->flags |= SLAB_TRACE;
b789ef51 4843 }
81819f0f
CL
4844 return length;
4845}
4846SLAB_ATTR(trace);
4847
81819f0f
CL
4848static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4849{
4850 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4851}
4852
4853static ssize_t red_zone_store(struct kmem_cache *s,
4854 const char *buf, size_t length)
4855{
4856 if (any_slab_objects(s))
4857 return -EBUSY;
4858
4859 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4860 if (buf[0] == '1') {
4861 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4862 s->flags |= SLAB_RED_ZONE;
b789ef51 4863 }
06b285dc 4864 calculate_sizes(s, -1);
81819f0f
CL
4865 return length;
4866}
4867SLAB_ATTR(red_zone);
4868
4869static ssize_t poison_show(struct kmem_cache *s, char *buf)
4870{
4871 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4872}
4873
4874static ssize_t poison_store(struct kmem_cache *s,
4875 const char *buf, size_t length)
4876{
4877 if (any_slab_objects(s))
4878 return -EBUSY;
4879
4880 s->flags &= ~SLAB_POISON;
b789ef51
CL
4881 if (buf[0] == '1') {
4882 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4883 s->flags |= SLAB_POISON;
b789ef51 4884 }
06b285dc 4885 calculate_sizes(s, -1);
81819f0f
CL
4886 return length;
4887}
4888SLAB_ATTR(poison);
4889
4890static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4891{
4892 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4893}
4894
4895static ssize_t store_user_store(struct kmem_cache *s,
4896 const char *buf, size_t length)
4897{
4898 if (any_slab_objects(s))
4899 return -EBUSY;
4900
4901 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4902 if (buf[0] == '1') {
4903 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4904 s->flags |= SLAB_STORE_USER;
b789ef51 4905 }
06b285dc 4906 calculate_sizes(s, -1);
81819f0f
CL
4907 return length;
4908}
4909SLAB_ATTR(store_user);
4910
53e15af0
CL
4911static ssize_t validate_show(struct kmem_cache *s, char *buf)
4912{
4913 return 0;
4914}
4915
4916static ssize_t validate_store(struct kmem_cache *s,
4917 const char *buf, size_t length)
4918{
434e245d
CL
4919 int ret = -EINVAL;
4920
4921 if (buf[0] == '1') {
4922 ret = validate_slab_cache(s);
4923 if (ret >= 0)
4924 ret = length;
4925 }
4926 return ret;
53e15af0
CL
4927}
4928SLAB_ATTR(validate);
a5a84755
CL
4929
4930static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4931{
4932 if (!(s->flags & SLAB_STORE_USER))
4933 return -ENOSYS;
4934 return list_locations(s, buf, TRACK_ALLOC);
4935}
4936SLAB_ATTR_RO(alloc_calls);
4937
4938static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4939{
4940 if (!(s->flags & SLAB_STORE_USER))
4941 return -ENOSYS;
4942 return list_locations(s, buf, TRACK_FREE);
4943}
4944SLAB_ATTR_RO(free_calls);
4945#endif /* CONFIG_SLUB_DEBUG */
4946
4947#ifdef CONFIG_FAILSLAB
4948static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4949{
4950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4951}
4952
4953static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4954 size_t length)
4955{
4956 s->flags &= ~SLAB_FAILSLAB;
4957 if (buf[0] == '1')
4958 s->flags |= SLAB_FAILSLAB;
4959 return length;
4960}
4961SLAB_ATTR(failslab);
ab4d5ed5 4962#endif
53e15af0 4963
2086d26a
CL
4964static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4965{
4966 return 0;
4967}
4968
4969static ssize_t shrink_store(struct kmem_cache *s,
4970 const char *buf, size_t length)
4971{
4972 if (buf[0] == '1') {
4973 int rc = kmem_cache_shrink(s);
4974
4975 if (rc)
4976 return rc;
4977 } else
4978 return -EINVAL;
4979 return length;
4980}
4981SLAB_ATTR(shrink);
4982
81819f0f 4983#ifdef CONFIG_NUMA
9824601e 4984static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4985{
9824601e 4986 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4987}
4988
9824601e 4989static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4990 const char *buf, size_t length)
4991{
0121c619
CL
4992 unsigned long ratio;
4993 int err;
4994
4995 err = strict_strtoul(buf, 10, &ratio);
4996 if (err)
4997 return err;
4998
e2cb96b7 4999 if (ratio <= 100)
0121c619 5000 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5001
81819f0f
CL
5002 return length;
5003}
9824601e 5004SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5005#endif
5006
8ff12cfc 5007#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5008static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5009{
5010 unsigned long sum = 0;
5011 int cpu;
5012 int len;
5013 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5014
5015 if (!data)
5016 return -ENOMEM;
5017
5018 for_each_online_cpu(cpu) {
9dfc6e68 5019 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5020
5021 data[cpu] = x;
5022 sum += x;
5023 }
5024
5025 len = sprintf(buf, "%lu", sum);
5026
50ef37b9 5027#ifdef CONFIG_SMP
8ff12cfc
CL
5028 for_each_online_cpu(cpu) {
5029 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5030 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5031 }
50ef37b9 5032#endif
8ff12cfc
CL
5033 kfree(data);
5034 return len + sprintf(buf + len, "\n");
5035}
5036
78eb00cc
DR
5037static void clear_stat(struct kmem_cache *s, enum stat_item si)
5038{
5039 int cpu;
5040
5041 for_each_online_cpu(cpu)
9dfc6e68 5042 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5043}
5044
8ff12cfc
CL
5045#define STAT_ATTR(si, text) \
5046static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5047{ \
5048 return show_stat(s, buf, si); \
5049} \
78eb00cc
DR
5050static ssize_t text##_store(struct kmem_cache *s, \
5051 const char *buf, size_t length) \
5052{ \
5053 if (buf[0] != '0') \
5054 return -EINVAL; \
5055 clear_stat(s, si); \
5056 return length; \
5057} \
5058SLAB_ATTR(text); \
8ff12cfc
CL
5059
5060STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5061STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5062STAT_ATTR(FREE_FASTPATH, free_fastpath);
5063STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5064STAT_ATTR(FREE_FROZEN, free_frozen);
5065STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5066STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5067STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5068STAT_ATTR(ALLOC_SLAB, alloc_slab);
5069STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5070STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5071STAT_ATTR(FREE_SLAB, free_slab);
5072STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5073STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5074STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5075STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5076STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5077STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5078STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5079STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5080STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5081STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5082STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5083STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5084STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5085STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5086#endif
5087
06428780 5088static struct attribute *slab_attrs[] = {
81819f0f
CL
5089 &slab_size_attr.attr,
5090 &object_size_attr.attr,
5091 &objs_per_slab_attr.attr,
5092 &order_attr.attr,
73d342b1 5093 &min_partial_attr.attr,
49e22585 5094 &cpu_partial_attr.attr,
81819f0f 5095 &objects_attr.attr,
205ab99d 5096 &objects_partial_attr.attr,
81819f0f
CL
5097 &partial_attr.attr,
5098 &cpu_slabs_attr.attr,
5099 &ctor_attr.attr,
81819f0f
CL
5100 &aliases_attr.attr,
5101 &align_attr.attr,
81819f0f
CL
5102 &hwcache_align_attr.attr,
5103 &reclaim_account_attr.attr,
5104 &destroy_by_rcu_attr.attr,
a5a84755 5105 &shrink_attr.attr,
ab9a0f19 5106 &reserved_attr.attr,
49e22585 5107 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5108#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5109 &total_objects_attr.attr,
5110 &slabs_attr.attr,
5111 &sanity_checks_attr.attr,
5112 &trace_attr.attr,
81819f0f
CL
5113 &red_zone_attr.attr,
5114 &poison_attr.attr,
5115 &store_user_attr.attr,
53e15af0 5116 &validate_attr.attr,
88a420e4
CL
5117 &alloc_calls_attr.attr,
5118 &free_calls_attr.attr,
ab4d5ed5 5119#endif
81819f0f
CL
5120#ifdef CONFIG_ZONE_DMA
5121 &cache_dma_attr.attr,
5122#endif
5123#ifdef CONFIG_NUMA
9824601e 5124 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5125#endif
5126#ifdef CONFIG_SLUB_STATS
5127 &alloc_fastpath_attr.attr,
5128 &alloc_slowpath_attr.attr,
5129 &free_fastpath_attr.attr,
5130 &free_slowpath_attr.attr,
5131 &free_frozen_attr.attr,
5132 &free_add_partial_attr.attr,
5133 &free_remove_partial_attr.attr,
5134 &alloc_from_partial_attr.attr,
5135 &alloc_slab_attr.attr,
5136 &alloc_refill_attr.attr,
e36a2652 5137 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5138 &free_slab_attr.attr,
5139 &cpuslab_flush_attr.attr,
5140 &deactivate_full_attr.attr,
5141 &deactivate_empty_attr.attr,
5142 &deactivate_to_head_attr.attr,
5143 &deactivate_to_tail_attr.attr,
5144 &deactivate_remote_frees_attr.attr,
03e404af 5145 &deactivate_bypass_attr.attr,
65c3376a 5146 &order_fallback_attr.attr,
b789ef51
CL
5147 &cmpxchg_double_fail_attr.attr,
5148 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5149 &cpu_partial_alloc_attr.attr,
5150 &cpu_partial_free_attr.attr,
8028dcea
AS
5151 &cpu_partial_node_attr.attr,
5152 &cpu_partial_drain_attr.attr,
81819f0f 5153#endif
4c13dd3b
DM
5154#ifdef CONFIG_FAILSLAB
5155 &failslab_attr.attr,
5156#endif
5157
81819f0f
CL
5158 NULL
5159};
5160
5161static struct attribute_group slab_attr_group = {
5162 .attrs = slab_attrs,
5163};
5164
5165static ssize_t slab_attr_show(struct kobject *kobj,
5166 struct attribute *attr,
5167 char *buf)
5168{
5169 struct slab_attribute *attribute;
5170 struct kmem_cache *s;
5171 int err;
5172
5173 attribute = to_slab_attr(attr);
5174 s = to_slab(kobj);
5175
5176 if (!attribute->show)
5177 return -EIO;
5178
5179 err = attribute->show(s, buf);
5180
5181 return err;
5182}
5183
5184static ssize_t slab_attr_store(struct kobject *kobj,
5185 struct attribute *attr,
5186 const char *buf, size_t len)
5187{
5188 struct slab_attribute *attribute;
5189 struct kmem_cache *s;
5190 int err;
5191
5192 attribute = to_slab_attr(attr);
5193 s = to_slab(kobj);
5194
5195 if (!attribute->store)
5196 return -EIO;
5197
5198 err = attribute->store(s, buf, len);
5199
5200 return err;
5201}
5202
151c602f
CL
5203static void kmem_cache_release(struct kobject *kobj)
5204{
5205 struct kmem_cache *s = to_slab(kobj);
5206
84c1cf62 5207 kfree(s->name);
151c602f
CL
5208}
5209
52cf25d0 5210static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5211 .show = slab_attr_show,
5212 .store = slab_attr_store,
5213};
5214
5215static struct kobj_type slab_ktype = {
5216 .sysfs_ops = &slab_sysfs_ops,
151c602f 5217 .release = kmem_cache_release
81819f0f
CL
5218};
5219
5220static int uevent_filter(struct kset *kset, struct kobject *kobj)
5221{
5222 struct kobj_type *ktype = get_ktype(kobj);
5223
5224 if (ktype == &slab_ktype)
5225 return 1;
5226 return 0;
5227}
5228
9cd43611 5229static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5230 .filter = uevent_filter,
5231};
5232
27c3a314 5233static struct kset *slab_kset;
81819f0f
CL
5234
5235#define ID_STR_LENGTH 64
5236
5237/* Create a unique string id for a slab cache:
6446faa2
CL
5238 *
5239 * Format :[flags-]size
81819f0f
CL
5240 */
5241static char *create_unique_id(struct kmem_cache *s)
5242{
5243 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5244 char *p = name;
5245
5246 BUG_ON(!name);
5247
5248 *p++ = ':';
5249 /*
5250 * First flags affecting slabcache operations. We will only
5251 * get here for aliasable slabs so we do not need to support
5252 * too many flags. The flags here must cover all flags that
5253 * are matched during merging to guarantee that the id is
5254 * unique.
5255 */
5256 if (s->flags & SLAB_CACHE_DMA)
5257 *p++ = 'd';
5258 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5259 *p++ = 'a';
5260 if (s->flags & SLAB_DEBUG_FREE)
5261 *p++ = 'F';
5a896d9e
VN
5262 if (!(s->flags & SLAB_NOTRACK))
5263 *p++ = 't';
81819f0f
CL
5264 if (p != name + 1)
5265 *p++ = '-';
5266 p += sprintf(p, "%07d", s->size);
5267 BUG_ON(p > name + ID_STR_LENGTH - 1);
5268 return name;
5269}
5270
5271static int sysfs_slab_add(struct kmem_cache *s)
5272{
5273 int err;
5274 const char *name;
5275 int unmergeable;
5276
97d06609 5277 if (slab_state < FULL)
81819f0f
CL
5278 /* Defer until later */
5279 return 0;
5280
5281 unmergeable = slab_unmergeable(s);
5282 if (unmergeable) {
5283 /*
5284 * Slabcache can never be merged so we can use the name proper.
5285 * This is typically the case for debug situations. In that
5286 * case we can catch duplicate names easily.
5287 */
27c3a314 5288 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5289 name = s->name;
5290 } else {
5291 /*
5292 * Create a unique name for the slab as a target
5293 * for the symlinks.
5294 */
5295 name = create_unique_id(s);
5296 }
5297
27c3a314 5298 s->kobj.kset = slab_kset;
1eada11c
GKH
5299 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5300 if (err) {
5301 kobject_put(&s->kobj);
81819f0f 5302 return err;
1eada11c 5303 }
81819f0f
CL
5304
5305 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5306 if (err) {
5307 kobject_del(&s->kobj);
5308 kobject_put(&s->kobj);
81819f0f 5309 return err;
5788d8ad 5310 }
81819f0f
CL
5311 kobject_uevent(&s->kobj, KOBJ_ADD);
5312 if (!unmergeable) {
5313 /* Setup first alias */
5314 sysfs_slab_alias(s, s->name);
5315 kfree(name);
5316 }
5317 return 0;
5318}
5319
5320static void sysfs_slab_remove(struct kmem_cache *s)
5321{
97d06609 5322 if (slab_state < FULL)
2bce6485
CL
5323 /*
5324 * Sysfs has not been setup yet so no need to remove the
5325 * cache from sysfs.
5326 */
5327 return;
5328
81819f0f
CL
5329 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5330 kobject_del(&s->kobj);
151c602f 5331 kobject_put(&s->kobj);
81819f0f
CL
5332}
5333
5334/*
5335 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5336 * available lest we lose that information.
81819f0f
CL
5337 */
5338struct saved_alias {
5339 struct kmem_cache *s;
5340 const char *name;
5341 struct saved_alias *next;
5342};
5343
5af328a5 5344static struct saved_alias *alias_list;
81819f0f
CL
5345
5346static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5347{
5348 struct saved_alias *al;
5349
97d06609 5350 if (slab_state == FULL) {
81819f0f
CL
5351 /*
5352 * If we have a leftover link then remove it.
5353 */
27c3a314
GKH
5354 sysfs_remove_link(&slab_kset->kobj, name);
5355 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5356 }
5357
5358 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5359 if (!al)
5360 return -ENOMEM;
5361
5362 al->s = s;
5363 al->name = name;
5364 al->next = alias_list;
5365 alias_list = al;
5366 return 0;
5367}
5368
5369static int __init slab_sysfs_init(void)
5370{
5b95a4ac 5371 struct kmem_cache *s;
81819f0f
CL
5372 int err;
5373
18004c5d 5374 mutex_lock(&slab_mutex);
2bce6485 5375
0ff21e46 5376 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5377 if (!slab_kset) {
18004c5d 5378 mutex_unlock(&slab_mutex);
81819f0f
CL
5379 printk(KERN_ERR "Cannot register slab subsystem.\n");
5380 return -ENOSYS;
5381 }
5382
97d06609 5383 slab_state = FULL;
26a7bd03 5384
5b95a4ac 5385 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5386 err = sysfs_slab_add(s);
5d540fb7
CL
5387 if (err)
5388 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5389 " to sysfs\n", s->name);
26a7bd03 5390 }
81819f0f
CL
5391
5392 while (alias_list) {
5393 struct saved_alias *al = alias_list;
5394
5395 alias_list = alias_list->next;
5396 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5397 if (err)
5398 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5399 " %s to sysfs\n", al->name);
81819f0f
CL
5400 kfree(al);
5401 }
5402
18004c5d 5403 mutex_unlock(&slab_mutex);
81819f0f
CL
5404 resiliency_test();
5405 return 0;
5406}
5407
5408__initcall(slab_sysfs_init);
ab4d5ed5 5409#endif /* CONFIG_SYSFS */
57ed3eda
PE
5410
5411/*
5412 * The /proc/slabinfo ABI
5413 */
158a9624 5414#ifdef CONFIG_SLABINFO
57ed3eda
PE
5415static void print_slabinfo_header(struct seq_file *m)
5416{
5417 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5418 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5419 "<objperslab> <pagesperslab>");
5420 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5421 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5422 seq_putc(m, '\n');
5423}
5424
5425static void *s_start(struct seq_file *m, loff_t *pos)
5426{
5427 loff_t n = *pos;
5428
18004c5d 5429 mutex_lock(&slab_mutex);
57ed3eda
PE
5430 if (!n)
5431 print_slabinfo_header(m);
5432
5433 return seq_list_start(&slab_caches, *pos);
5434}
5435
5436static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5437{
5438 return seq_list_next(p, &slab_caches, pos);
5439}
5440
5441static void s_stop(struct seq_file *m, void *p)
5442{
18004c5d 5443 mutex_unlock(&slab_mutex);
57ed3eda
PE
5444}
5445
5446static int s_show(struct seq_file *m, void *p)
5447{
5448 unsigned long nr_partials = 0;
5449 unsigned long nr_slabs = 0;
5450 unsigned long nr_inuse = 0;
205ab99d
CL
5451 unsigned long nr_objs = 0;
5452 unsigned long nr_free = 0;
57ed3eda
PE
5453 struct kmem_cache *s;
5454 int node;
5455
5456 s = list_entry(p, struct kmem_cache, list);
5457
5458 for_each_online_node(node) {
5459 struct kmem_cache_node *n = get_node(s, node);
5460
5461 if (!n)
5462 continue;
5463
5464 nr_partials += n->nr_partial;
5465 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5466 nr_objs += atomic_long_read(&n->total_objects);
5467 nr_free += count_partial(n, count_free);
57ed3eda
PE
5468 }
5469
205ab99d 5470 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5471
5472 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5473 nr_objs, s->size, oo_objects(s->oo),
5474 (1 << oo_order(s->oo)));
57ed3eda
PE
5475 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5476 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5477 0UL);
5478 seq_putc(m, '\n');
5479 return 0;
5480}
5481
7b3c3a50 5482static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5483 .start = s_start,
5484 .next = s_next,
5485 .stop = s_stop,
5486 .show = s_show,
5487};
5488
7b3c3a50
AD
5489static int slabinfo_open(struct inode *inode, struct file *file)
5490{
5491 return seq_open(file, &slabinfo_op);
5492}
5493
5494static const struct file_operations proc_slabinfo_operations = {
5495 .open = slabinfo_open,
5496 .read = seq_read,
5497 .llseek = seq_lseek,
5498 .release = seq_release,
5499};
5500
5501static int __init slab_proc_init(void)
5502{
ab067e99 5503 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5504 return 0;
5505}
5506module_init(slab_proc_init);
158a9624 5507#endif /* CONFIG_SLABINFO */