]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm/sl[aou]b: Move sysfs_slab_add to common
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 { return 0; }
db265eca 211static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 212
81819f0f
CL
213#endif
214
4fdccdfb 215static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
216{
217#ifdef CONFIG_SLUB_STATS
84e554e6 218 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
81819f0f
CL
226static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227{
81819f0f 228 return s->node[node];
81819f0f
CL
229}
230
6446faa2 231/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
232static inline int check_valid_pointer(struct kmem_cache *s,
233 struct page *page, const void *object)
234{
235 void *base;
236
a973e9dd 237 if (!object)
02cbc874
CL
238 return 1;
239
a973e9dd 240 base = page_address(page);
39b26464 241 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
242 (object - base) % s->size) {
243 return 0;
244 }
245
246 return 1;
247}
248
7656c72b
CL
249static inline void *get_freepointer(struct kmem_cache *s, void *object)
250{
251 return *(void **)(object + s->offset);
252}
253
0ad9500e
ED
254static void prefetch_freepointer(const struct kmem_cache *s, void *object)
255{
256 prefetch(object + s->offset);
257}
258
1393d9a1
CL
259static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
260{
261 void *p;
262
263#ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
265#else
266 p = get_freepointer(s, object);
267#endif
268 return p;
269}
270
7656c72b
CL
271static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
272{
273 *(void **)(object + s->offset) = fp;
274}
275
276/* Loop over all objects in a slab */
224a88be
CL
277#define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
279 __p += (__s)->size)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
1d07171c
CL
349/* Interrupts must be disabled (for the fallback code to work right) */
350static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
351 void *freelist_old, unsigned long counters_old,
352 void *freelist_new, unsigned long counters_new,
353 const char *n)
354{
355 VM_BUG_ON(!irqs_disabled());
2565409f
HC
356#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 358 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 359 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
360 freelist_old, counters_old,
361 freelist_new, counters_new))
362 return 1;
363 } else
364#endif
365 {
366 slab_lock(page);
367 if (page->freelist == freelist_old && page->counters == counters_old) {
368 page->freelist = freelist_new;
369 page->counters = counters_new;
370 slab_unlock(page);
371 return 1;
372 }
373 slab_unlock(page);
374 }
375
376 cpu_relax();
377 stat(s, CMPXCHG_DOUBLE_FAIL);
378
379#ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
381#endif
382
383 return 0;
384}
385
b789ef51
CL
386static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
387 void *freelist_old, unsigned long counters_old,
388 void *freelist_new, unsigned long counters_new,
389 const char *n)
390{
2565409f
HC
391#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 393 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 394 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
395 freelist_old, counters_old,
396 freelist_new, counters_new))
397 return 1;
398 } else
399#endif
400 {
1d07171c
CL
401 unsigned long flags;
402
403 local_irq_save(flags);
881db7fb 404 slab_lock(page);
b789ef51
CL
405 if (page->freelist == freelist_old && page->counters == counters_old) {
406 page->freelist = freelist_new;
407 page->counters = counters_new;
881db7fb 408 slab_unlock(page);
1d07171c 409 local_irq_restore(flags);
b789ef51
CL
410 return 1;
411 }
881db7fb 412 slab_unlock(page);
1d07171c 413 local_irq_restore(flags);
b789ef51
CL
414 }
415
416 cpu_relax();
417 stat(s, CMPXCHG_DOUBLE_FAIL);
418
419#ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
421#endif
422
423 return 0;
424}
425
41ecc55b 426#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
427/*
428 * Determine a map of object in use on a page.
429 *
881db7fb 430 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
431 * not vanish from under us.
432 */
433static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
434{
435 void *p;
436 void *addr = page_address(page);
437
438 for (p = page->freelist; p; p = get_freepointer(s, p))
439 set_bit(slab_index(p, s, addr), map);
440}
441
41ecc55b
CL
442/*
443 * Debug settings:
444 */
f0630fff
CL
445#ifdef CONFIG_SLUB_DEBUG_ON
446static int slub_debug = DEBUG_DEFAULT_FLAGS;
447#else
41ecc55b 448static int slub_debug;
f0630fff 449#endif
41ecc55b
CL
450
451static char *slub_debug_slabs;
fa5ec8a1 452static int disable_higher_order_debug;
41ecc55b 453
81819f0f
CL
454/*
455 * Object debugging
456 */
457static void print_section(char *text, u8 *addr, unsigned int length)
458{
ffc79d28
SAS
459 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
460 length, 1);
81819f0f
CL
461}
462
81819f0f
CL
463static struct track *get_track(struct kmem_cache *s, void *object,
464 enum track_item alloc)
465{
466 struct track *p;
467
468 if (s->offset)
469 p = object + s->offset + sizeof(void *);
470 else
471 p = object + s->inuse;
472
473 return p + alloc;
474}
475
476static void set_track(struct kmem_cache *s, void *object,
ce71e27c 477 enum track_item alloc, unsigned long addr)
81819f0f 478{
1a00df4a 479 struct track *p = get_track(s, object, alloc);
81819f0f 480
81819f0f 481 if (addr) {
d6543e39
BG
482#ifdef CONFIG_STACKTRACE
483 struct stack_trace trace;
484 int i;
485
486 trace.nr_entries = 0;
487 trace.max_entries = TRACK_ADDRS_COUNT;
488 trace.entries = p->addrs;
489 trace.skip = 3;
490 save_stack_trace(&trace);
491
492 /* See rant in lockdep.c */
493 if (trace.nr_entries != 0 &&
494 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
495 trace.nr_entries--;
496
497 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
498 p->addrs[i] = 0;
499#endif
81819f0f
CL
500 p->addr = addr;
501 p->cpu = smp_processor_id();
88e4ccf2 502 p->pid = current->pid;
81819f0f
CL
503 p->when = jiffies;
504 } else
505 memset(p, 0, sizeof(struct track));
506}
507
81819f0f
CL
508static void init_tracking(struct kmem_cache *s, void *object)
509{
24922684
CL
510 if (!(s->flags & SLAB_STORE_USER))
511 return;
512
ce71e27c
EGM
513 set_track(s, object, TRACK_FREE, 0UL);
514 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
515}
516
517static void print_track(const char *s, struct track *t)
518{
519 if (!t->addr)
520 return;
521
7daf705f 522 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 523 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
524#ifdef CONFIG_STACKTRACE
525 {
526 int i;
527 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
528 if (t->addrs[i])
529 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
530 else
531 break;
532 }
533#endif
24922684
CL
534}
535
536static void print_tracking(struct kmem_cache *s, void *object)
537{
538 if (!(s->flags & SLAB_STORE_USER))
539 return;
540
541 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
542 print_track("Freed", get_track(s, object, TRACK_FREE));
543}
544
545static void print_page_info(struct page *page)
546{
39b26464
CL
547 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
549
550}
551
552static void slab_bug(struct kmem_cache *s, char *fmt, ...)
553{
554 va_list args;
555 char buf[100];
556
557 va_start(args, fmt);
558 vsnprintf(buf, sizeof(buf), fmt, args);
559 va_end(args);
560 printk(KERN_ERR "========================================"
561 "=====================================\n");
265d47e7 562 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
563 printk(KERN_ERR "----------------------------------------"
564 "-------------------------------------\n\n");
81819f0f
CL
565}
566
24922684
CL
567static void slab_fix(struct kmem_cache *s, char *fmt, ...)
568{
569 va_list args;
570 char buf[100];
571
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
574 va_end(args);
575 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
576}
577
578static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
579{
580 unsigned int off; /* Offset of last byte */
a973e9dd 581 u8 *addr = page_address(page);
24922684
CL
582
583 print_tracking(s, p);
584
585 print_page_info(page);
586
587 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
588 p, p - addr, get_freepointer(s, p));
589
590 if (p > addr + 16)
ffc79d28 591 print_section("Bytes b4 ", p - 16, 16);
81819f0f 592
3b0efdfa 593 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 594 PAGE_SIZE));
81819f0f 595 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
596 print_section("Redzone ", p + s->object_size,
597 s->inuse - s->object_size);
81819f0f 598
81819f0f
CL
599 if (s->offset)
600 off = s->offset + sizeof(void *);
601 else
602 off = s->inuse;
603
24922684 604 if (s->flags & SLAB_STORE_USER)
81819f0f 605 off += 2 * sizeof(struct track);
81819f0f
CL
606
607 if (off != s->size)
608 /* Beginning of the filler is the free pointer */
ffc79d28 609 print_section("Padding ", p + off, s->size - off);
24922684
CL
610
611 dump_stack();
81819f0f
CL
612}
613
614static void object_err(struct kmem_cache *s, struct page *page,
615 u8 *object, char *reason)
616{
3dc50637 617 slab_bug(s, "%s", reason);
24922684 618 print_trailer(s, page, object);
81819f0f
CL
619}
620
945cf2b6 621static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
622{
623 va_list args;
624 char buf[100];
625
24922684
CL
626 va_start(args, fmt);
627 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 628 va_end(args);
3dc50637 629 slab_bug(s, "%s", buf);
24922684 630 print_page_info(page);
81819f0f
CL
631 dump_stack();
632}
633
f7cb1933 634static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
635{
636 u8 *p = object;
637
638 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
639 memset(p, POISON_FREE, s->object_size - 1);
640 p[s->object_size - 1] = POISON_END;
81819f0f
CL
641 }
642
643 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 644 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
645}
646
24922684
CL
647static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
648 void *from, void *to)
649{
650 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
651 memset(from, data, to - from);
652}
653
654static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
655 u8 *object, char *what,
06428780 656 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
657{
658 u8 *fault;
659 u8 *end;
660
79824820 661 fault = memchr_inv(start, value, bytes);
24922684
CL
662 if (!fault)
663 return 1;
664
665 end = start + bytes;
666 while (end > fault && end[-1] == value)
667 end--;
668
669 slab_bug(s, "%s overwritten", what);
670 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
671 fault, end - 1, fault[0], value);
672 print_trailer(s, page, object);
673
674 restore_bytes(s, what, value, fault, end);
675 return 0;
81819f0f
CL
676}
677
81819f0f
CL
678/*
679 * Object layout:
680 *
681 * object address
682 * Bytes of the object to be managed.
683 * If the freepointer may overlay the object then the free
684 * pointer is the first word of the object.
672bba3a 685 *
81819f0f
CL
686 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
687 * 0xa5 (POISON_END)
688 *
3b0efdfa 689 * object + s->object_size
81819f0f 690 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 691 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 692 * object_size == inuse.
672bba3a 693 *
81819f0f
CL
694 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
695 * 0xcc (RED_ACTIVE) for objects in use.
696 *
697 * object + s->inuse
672bba3a
CL
698 * Meta data starts here.
699 *
81819f0f
CL
700 * A. Free pointer (if we cannot overwrite object on free)
701 * B. Tracking data for SLAB_STORE_USER
672bba3a 702 * C. Padding to reach required alignment boundary or at mininum
6446faa2 703 * one word if debugging is on to be able to detect writes
672bba3a
CL
704 * before the word boundary.
705 *
706 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
707 *
708 * object + s->size
672bba3a 709 * Nothing is used beyond s->size.
81819f0f 710 *
3b0efdfa 711 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 712 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
713 * may be used with merged slabcaches.
714 */
715
81819f0f
CL
716static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
717{
718 unsigned long off = s->inuse; /* The end of info */
719
720 if (s->offset)
721 /* Freepointer is placed after the object. */
722 off += sizeof(void *);
723
724 if (s->flags & SLAB_STORE_USER)
725 /* We also have user information there */
726 off += 2 * sizeof(struct track);
727
728 if (s->size == off)
729 return 1;
730
24922684
CL
731 return check_bytes_and_report(s, page, p, "Object padding",
732 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
733}
734
39b26464 735/* Check the pad bytes at the end of a slab page */
81819f0f
CL
736static int slab_pad_check(struct kmem_cache *s, struct page *page)
737{
24922684
CL
738 u8 *start;
739 u8 *fault;
740 u8 *end;
741 int length;
742 int remainder;
81819f0f
CL
743
744 if (!(s->flags & SLAB_POISON))
745 return 1;
746
a973e9dd 747 start = page_address(page);
ab9a0f19 748 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
749 end = start + length;
750 remainder = length % s->size;
81819f0f
CL
751 if (!remainder)
752 return 1;
753
79824820 754 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
755 if (!fault)
756 return 1;
757 while (end > fault && end[-1] == POISON_INUSE)
758 end--;
759
760 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 761 print_section("Padding ", end - remainder, remainder);
24922684 762
8a3d271d 763 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 764 return 0;
81819f0f
CL
765}
766
767static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 768 void *object, u8 val)
81819f0f
CL
769{
770 u8 *p = object;
3b0efdfa 771 u8 *endobject = object + s->object_size;
81819f0f
CL
772
773 if (s->flags & SLAB_RED_ZONE) {
24922684 774 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 775 endobject, val, s->inuse - s->object_size))
81819f0f 776 return 0;
81819f0f 777 } else {
3b0efdfa 778 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 779 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 780 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 781 }
81819f0f
CL
782 }
783
784 if (s->flags & SLAB_POISON) {
f7cb1933 785 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 786 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 787 POISON_FREE, s->object_size - 1) ||
24922684 788 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 789 p + s->object_size - 1, POISON_END, 1)))
81819f0f 790 return 0;
81819f0f
CL
791 /*
792 * check_pad_bytes cleans up on its own.
793 */
794 check_pad_bytes(s, page, p);
795 }
796
f7cb1933 797 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
798 /*
799 * Object and freepointer overlap. Cannot check
800 * freepointer while object is allocated.
801 */
802 return 1;
803
804 /* Check free pointer validity */
805 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
806 object_err(s, page, p, "Freepointer corrupt");
807 /*
9f6c708e 808 * No choice but to zap it and thus lose the remainder
81819f0f 809 * of the free objects in this slab. May cause
672bba3a 810 * another error because the object count is now wrong.
81819f0f 811 */
a973e9dd 812 set_freepointer(s, p, NULL);
81819f0f
CL
813 return 0;
814 }
815 return 1;
816}
817
818static int check_slab(struct kmem_cache *s, struct page *page)
819{
39b26464
CL
820 int maxobj;
821
81819f0f
CL
822 VM_BUG_ON(!irqs_disabled());
823
824 if (!PageSlab(page)) {
24922684 825 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
826 return 0;
827 }
39b26464 828
ab9a0f19 829 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
830 if (page->objects > maxobj) {
831 slab_err(s, page, "objects %u > max %u",
832 s->name, page->objects, maxobj);
833 return 0;
834 }
835 if (page->inuse > page->objects) {
24922684 836 slab_err(s, page, "inuse %u > max %u",
39b26464 837 s->name, page->inuse, page->objects);
81819f0f
CL
838 return 0;
839 }
840 /* Slab_pad_check fixes things up after itself */
841 slab_pad_check(s, page);
842 return 1;
843}
844
845/*
672bba3a
CL
846 * Determine if a certain object on a page is on the freelist. Must hold the
847 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
848 */
849static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
850{
851 int nr = 0;
881db7fb 852 void *fp;
81819f0f 853 void *object = NULL;
224a88be 854 unsigned long max_objects;
81819f0f 855
881db7fb 856 fp = page->freelist;
39b26464 857 while (fp && nr <= page->objects) {
81819f0f
CL
858 if (fp == search)
859 return 1;
860 if (!check_valid_pointer(s, page, fp)) {
861 if (object) {
862 object_err(s, page, object,
863 "Freechain corrupt");
a973e9dd 864 set_freepointer(s, object, NULL);
81819f0f
CL
865 break;
866 } else {
24922684 867 slab_err(s, page, "Freepointer corrupt");
a973e9dd 868 page->freelist = NULL;
39b26464 869 page->inuse = page->objects;
24922684 870 slab_fix(s, "Freelist cleared");
81819f0f
CL
871 return 0;
872 }
873 break;
874 }
875 object = fp;
876 fp = get_freepointer(s, object);
877 nr++;
878 }
879
ab9a0f19 880 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
881 if (max_objects > MAX_OBJS_PER_PAGE)
882 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
883
884 if (page->objects != max_objects) {
885 slab_err(s, page, "Wrong number of objects. Found %d but "
886 "should be %d", page->objects, max_objects);
887 page->objects = max_objects;
888 slab_fix(s, "Number of objects adjusted.");
889 }
39b26464 890 if (page->inuse != page->objects - nr) {
70d71228 891 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
892 "counted were %d", page->inuse, page->objects - nr);
893 page->inuse = page->objects - nr;
24922684 894 slab_fix(s, "Object count adjusted.");
81819f0f
CL
895 }
896 return search == NULL;
897}
898
0121c619
CL
899static void trace(struct kmem_cache *s, struct page *page, void *object,
900 int alloc)
3ec09742
CL
901{
902 if (s->flags & SLAB_TRACE) {
903 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
904 s->name,
905 alloc ? "alloc" : "free",
906 object, page->inuse,
907 page->freelist);
908
909 if (!alloc)
3b0efdfa 910 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
911
912 dump_stack();
913 }
914}
915
c016b0bd
CL
916/*
917 * Hooks for other subsystems that check memory allocations. In a typical
918 * production configuration these hooks all should produce no code at all.
919 */
920static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
921{
c1d50836 922 flags &= gfp_allowed_mask;
c016b0bd
CL
923 lockdep_trace_alloc(flags);
924 might_sleep_if(flags & __GFP_WAIT);
925
3b0efdfa 926 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
927}
928
929static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
930{
c1d50836 931 flags &= gfp_allowed_mask;
b3d41885 932 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 933 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
934}
935
936static inline void slab_free_hook(struct kmem_cache *s, void *x)
937{
938 kmemleak_free_recursive(x, s->flags);
c016b0bd 939
d3f661d6
CL
940 /*
941 * Trouble is that we may no longer disable interupts in the fast path
942 * So in order to make the debug calls that expect irqs to be
943 * disabled we need to disable interrupts temporarily.
944 */
945#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
3b0efdfa
CL
950 kmemcheck_slab_free(s, x, s->object_size);
951 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
952 local_irq_restore(flags);
953 }
954#endif
f9b615de 955 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 956 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
957}
958
643b1138 959/*
672bba3a 960 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
961 *
962 * list_lock must be held.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
643b1138 970 list_add(&page->lru, &n->full);
643b1138
CL
971}
972
5cc6eee8
CL
973/*
974 * list_lock must be held.
975 */
643b1138
CL
976static void remove_full(struct kmem_cache *s, struct page *page)
977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
643b1138 981 list_del(&page->lru);
643b1138
CL
982}
983
0f389ec6
CL
984/* Tracking of the number of slabs for debugging purposes */
985static inline unsigned long slabs_node(struct kmem_cache *s, int node)
986{
987 struct kmem_cache_node *n = get_node(s, node);
988
989 return atomic_long_read(&n->nr_slabs);
990}
991
26c02cf0
AB
992static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
993{
994 return atomic_long_read(&n->nr_slabs);
995}
996
205ab99d 997static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
998{
999 struct kmem_cache_node *n = get_node(s, node);
1000
1001 /*
1002 * May be called early in order to allocate a slab for the
1003 * kmem_cache_node structure. Solve the chicken-egg
1004 * dilemma by deferring the increment of the count during
1005 * bootstrap (see early_kmem_cache_node_alloc).
1006 */
7340cc84 1007 if (n) {
0f389ec6 1008 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1009 atomic_long_add(objects, &n->total_objects);
1010 }
0f389ec6 1011}
205ab99d 1012static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1013{
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 atomic_long_dec(&n->nr_slabs);
205ab99d 1017 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1018}
1019
1020/* Object debug checks for alloc/free paths */
3ec09742
CL
1021static void setup_object_debug(struct kmem_cache *s, struct page *page,
1022 void *object)
1023{
1024 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1025 return;
1026
f7cb1933 1027 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1028 init_tracking(s, object);
1029}
1030
1537066c 1031static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f
CL
1090
1091 if (unlikely(s != page->slab)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
3adbefee 1095 } else if (!page->slab) {
81819f0f 1096 printk(KERN_ERR
70d71228 1097 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1098 object);
70d71228 1099 dump_stack();
06428780 1100 } else
24922684
CL
1101 object_err(s, page, object,
1102 "page slab pointer corrupt.");
81819f0f
CL
1103 goto fail;
1104 }
3ec09742 1105
3ec09742
CL
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_FREE, addr);
1108 trace(s, page, object, 0);
f7cb1933 1109 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1110out:
881db7fb 1111 slab_unlock(page);
19c7ff9e
CL
1112 /*
1113 * Keep node_lock to preserve integrity
1114 * until the object is actually freed
1115 */
1116 return n;
3ec09742 1117
81819f0f 1118fail:
19c7ff9e
CL
1119 slab_unlock(page);
1120 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1121 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1122 return NULL;
81819f0f
CL
1123}
1124
41ecc55b
CL
1125static int __init setup_slub_debug(char *str)
1126{
f0630fff
CL
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
fa5ec8a1
DR
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
f0630fff
CL
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
06428780 1160 for (; *str && *str != ','; str++) {
f0630fff
CL
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
4c13dd3b
DM
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
f0630fff
CL
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
06428780 1182 "unknown. skipped\n", *str);
f0630fff 1183 }
41ecc55b
CL
1184 }
1185
f0630fff 1186check_slabs:
41ecc55b
CL
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
f0630fff 1189out:
41ecc55b
CL
1190 return 1;
1191}
1192
1193__setup("slub_debug", setup_slub_debug);
1194
3b0efdfa 1195static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1196 unsigned long flags, const char *name,
51cc5068 1197 void (*ctor)(void *))
41ecc55b
CL
1198{
1199 /*
e153362a 1200 * Enable debugging if selected on the kernel commandline.
41ecc55b 1201 */
e153362a 1202 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
ba0268a8
CL
1205
1206 return flags;
41ecc55b
CL
1207}
1208#else
3ec09742
CL
1209static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
41ecc55b 1211
3ec09742 1212static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1213 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1214
19c7ff9e
CL
1215static inline struct kmem_cache_node *free_debug_processing(
1216 struct kmem_cache *s, struct page *page, void *object,
1217 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1218
41ecc55b
CL
1219static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1220 { return 1; }
1221static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1222 void *object, u8 val) { return 1; }
5cc6eee8
CL
1223static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1224 struct page *page) {}
2cfb7455 1225static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1226static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56
CL
1244
1245static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1246 { return 0; }
1247
1248static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1249 void *object) {}
1250
1251static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1252
ab4d5ed5 1253#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1254
81819f0f
CL
1255/*
1256 * Slab allocation and freeing
1257 */
65c3376a
CL
1258static inline struct page *alloc_slab_page(gfp_t flags, int node,
1259 struct kmem_cache_order_objects oo)
1260{
1261 int order = oo_order(oo);
1262
b1eeab67
VN
1263 flags |= __GFP_NOTRACK;
1264
2154a336 1265 if (node == NUMA_NO_NODE)
65c3376a
CL
1266 return alloc_pages(flags, order);
1267 else
6b65aaf3 1268 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1269}
1270
81819f0f
CL
1271static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1272{
06428780 1273 struct page *page;
834f3d11 1274 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1275 gfp_t alloc_gfp;
81819f0f 1276
7e0528da
CL
1277 flags &= gfp_allowed_mask;
1278
1279 if (flags & __GFP_WAIT)
1280 local_irq_enable();
1281
b7a49f0d 1282 flags |= s->allocflags;
e12ba74d 1283
ba52270d
PE
1284 /*
1285 * Let the initial higher-order allocation fail under memory pressure
1286 * so we fall-back to the minimum order allocation.
1287 */
1288 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1289
1290 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1291 if (unlikely(!page)) {
1292 oo = s->min;
1293 /*
1294 * Allocation may have failed due to fragmentation.
1295 * Try a lower order alloc if possible
1296 */
1297 page = alloc_slab_page(flags, node, oo);
81819f0f 1298
7e0528da
CL
1299 if (page)
1300 stat(s, ORDER_FALLBACK);
65c3376a 1301 }
5a896d9e 1302
737b719e 1303 if (kmemcheck_enabled && page
5086c389 1304 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1305 int pages = 1 << oo_order(oo);
1306
1307 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1308
1309 /*
1310 * Objects from caches that have a constructor don't get
1311 * cleared when they're allocated, so we need to do it here.
1312 */
1313 if (s->ctor)
1314 kmemcheck_mark_uninitialized_pages(page, pages);
1315 else
1316 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1317 }
1318
737b719e
DR
1319 if (flags & __GFP_WAIT)
1320 local_irq_disable();
1321 if (!page)
1322 return NULL;
1323
834f3d11 1324 page->objects = oo_objects(oo);
81819f0f
CL
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1328 1 << oo_order(oo));
81819f0f
CL
1329
1330 return page;
1331}
1332
1333static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335{
3ec09742 1336 setup_object_debug(s, page, object);
4f104934 1337 if (unlikely(s->ctor))
51cc5068 1338 s->ctor(object);
81819f0f
CL
1339}
1340
1341static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342{
1343 struct page *page;
81819f0f 1344 void *start;
81819f0f
CL
1345 void *last;
1346 void *p;
1347
6cb06229 1348 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1349
6cb06229
CL
1350 page = allocate_slab(s,
1351 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1352 if (!page)
1353 goto out;
1354
205ab99d 1355 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1356 page->slab = s;
c03f94cc 1357 __SetPageSlab(page);
072bb0aa
MG
1358 if (page->pfmemalloc)
1359 SetPageSlabPfmemalloc(page);
81819f0f
CL
1360
1361 start = page_address(page);
81819f0f
CL
1362
1363 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1364 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1365
1366 last = start;
224a88be 1367 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1368 setup_object(s, page, last);
1369 set_freepointer(s, last, p);
1370 last = p;
1371 }
1372 setup_object(s, page, last);
a973e9dd 1373 set_freepointer(s, last, NULL);
81819f0f
CL
1374
1375 page->freelist = start;
e6e82ea1 1376 page->inuse = page->objects;
8cb0a506 1377 page->frozen = 1;
81819f0f 1378out:
81819f0f
CL
1379 return page;
1380}
1381
1382static void __free_slab(struct kmem_cache *s, struct page *page)
1383{
834f3d11
CL
1384 int order = compound_order(page);
1385 int pages = 1 << order;
81819f0f 1386
af537b0a 1387 if (kmem_cache_debug(s)) {
81819f0f
CL
1388 void *p;
1389
1390 slab_pad_check(s, page);
224a88be
CL
1391 for_each_object(p, s, page_address(page),
1392 page->objects)
f7cb1933 1393 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1394 }
1395
b1eeab67 1396 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1397
81819f0f
CL
1398 mod_zone_page_state(page_zone(page),
1399 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1400 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1401 -pages);
81819f0f 1402
072bb0aa 1403 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1404 __ClearPageSlab(page);
1405 reset_page_mapcount(page);
1eb5ac64
NP
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1408 __free_pages(page, order);
81819f0f
CL
1409}
1410
da9a638c
LJ
1411#define need_reserve_slab_rcu \
1412 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1413
81819f0f
CL
1414static void rcu_free_slab(struct rcu_head *h)
1415{
1416 struct page *page;
1417
da9a638c
LJ
1418 if (need_reserve_slab_rcu)
1419 page = virt_to_head_page(h);
1420 else
1421 page = container_of((struct list_head *)h, struct page, lru);
1422
81819f0f
CL
1423 __free_slab(page->slab, page);
1424}
1425
1426static void free_slab(struct kmem_cache *s, struct page *page)
1427{
1428 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1429 struct rcu_head *head;
1430
1431 if (need_reserve_slab_rcu) {
1432 int order = compound_order(page);
1433 int offset = (PAGE_SIZE << order) - s->reserved;
1434
1435 VM_BUG_ON(s->reserved != sizeof(*head));
1436 head = page_address(page) + offset;
1437 } else {
1438 /*
1439 * RCU free overloads the RCU head over the LRU
1440 */
1441 head = (void *)&page->lru;
1442 }
81819f0f
CL
1443
1444 call_rcu(head, rcu_free_slab);
1445 } else
1446 __free_slab(s, page);
1447}
1448
1449static void discard_slab(struct kmem_cache *s, struct page *page)
1450{
205ab99d 1451 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1452 free_slab(s, page);
1453}
1454
1455/*
5cc6eee8
CL
1456 * Management of partially allocated slabs.
1457 *
1458 * list_lock must be held.
81819f0f 1459 */
5cc6eee8 1460static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1461 struct page *page, int tail)
81819f0f 1462{
e95eed57 1463 n->nr_partial++;
136333d1 1464 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1465 list_add_tail(&page->lru, &n->partial);
1466 else
1467 list_add(&page->lru, &n->partial);
81819f0f
CL
1468}
1469
5cc6eee8
CL
1470/*
1471 * list_lock must be held.
1472 */
1473static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1474 struct page *page)
1475{
1476 list_del(&page->lru);
1477 n->nr_partial--;
1478}
1479
81819f0f 1480/*
7ced3719
CL
1481 * Remove slab from the partial list, freeze it and
1482 * return the pointer to the freelist.
81819f0f 1483 *
497b66f2
CL
1484 * Returns a list of objects or NULL if it fails.
1485 *
7ced3719 1486 * Must hold list_lock since we modify the partial list.
81819f0f 1487 */
497b66f2 1488static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1489 struct kmem_cache_node *n, struct page *page,
49e22585 1490 int mode)
81819f0f 1491{
2cfb7455
CL
1492 void *freelist;
1493 unsigned long counters;
1494 struct page new;
1495
2cfb7455
CL
1496 /*
1497 * Zap the freelist and set the frozen bit.
1498 * The old freelist is the list of objects for the
1499 * per cpu allocation list.
1500 */
7ced3719
CL
1501 freelist = page->freelist;
1502 counters = page->counters;
1503 new.counters = counters;
23910c50 1504 if (mode) {
7ced3719 1505 new.inuse = page->objects;
23910c50
PE
1506 new.freelist = NULL;
1507 } else {
1508 new.freelist = freelist;
1509 }
2cfb7455 1510
7ced3719
CL
1511 VM_BUG_ON(new.frozen);
1512 new.frozen = 1;
2cfb7455 1513
7ced3719 1514 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1515 freelist, counters,
02d7633f 1516 new.freelist, new.counters,
7ced3719 1517 "acquire_slab"))
7ced3719 1518 return NULL;
2cfb7455
CL
1519
1520 remove_partial(n, page);
7ced3719 1521 WARN_ON(!freelist);
49e22585 1522 return freelist;
81819f0f
CL
1523}
1524
49e22585
CL
1525static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1526
81819f0f 1527/*
672bba3a 1528 * Try to allocate a partial slab from a specific node.
81819f0f 1529 */
497b66f2 1530static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1531 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1532{
49e22585
CL
1533 struct page *page, *page2;
1534 void *object = NULL;
81819f0f
CL
1535
1536 /*
1537 * Racy check. If we mistakenly see no partial slabs then we
1538 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1539 * partial slab and there is none available then get_partials()
1540 * will return NULL.
81819f0f
CL
1541 */
1542 if (!n || !n->nr_partial)
1543 return NULL;
1544
1545 spin_lock(&n->list_lock);
49e22585 1546 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1547 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1548 int available;
1549
1550 if (!t)
1551 break;
1552
12d79634 1553 if (!object) {
49e22585 1554 c->page = page;
49e22585 1555 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1556 object = t;
1557 available = page->objects - page->inuse;
1558 } else {
49e22585 1559 available = put_cpu_partial(s, page, 0);
8028dcea 1560 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1561 }
1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 break;
1564
497b66f2 1565 }
81819f0f 1566 spin_unlock(&n->list_lock);
497b66f2 1567 return object;
81819f0f
CL
1568}
1569
1570/*
672bba3a 1571 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1572 */
de3ec035 1573static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1574 struct kmem_cache_cpu *c)
81819f0f
CL
1575{
1576#ifdef CONFIG_NUMA
1577 struct zonelist *zonelist;
dd1a239f 1578 struct zoneref *z;
54a6eb5c
MG
1579 struct zone *zone;
1580 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1581 void *object;
cc9a6c87 1582 unsigned int cpuset_mems_cookie;
81819f0f
CL
1583
1584 /*
672bba3a
CL
1585 * The defrag ratio allows a configuration of the tradeoffs between
1586 * inter node defragmentation and node local allocations. A lower
1587 * defrag_ratio increases the tendency to do local allocations
1588 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1589 *
672bba3a
CL
1590 * If the defrag_ratio is set to 0 then kmalloc() always
1591 * returns node local objects. If the ratio is higher then kmalloc()
1592 * may return off node objects because partial slabs are obtained
1593 * from other nodes and filled up.
81819f0f 1594 *
6446faa2 1595 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1596 * defrag_ratio = 1000) then every (well almost) allocation will
1597 * first attempt to defrag slab caches on other nodes. This means
1598 * scanning over all nodes to look for partial slabs which may be
1599 * expensive if we do it every time we are trying to find a slab
1600 * with available objects.
81819f0f 1601 */
9824601e
CL
1602 if (!s->remote_node_defrag_ratio ||
1603 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1604 return NULL;
1605
cc9a6c87
MG
1606 do {
1607 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1608 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1609 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1610 struct kmem_cache_node *n;
1611
1612 n = get_node(s, zone_to_nid(zone));
1613
1614 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1615 n->nr_partial > s->min_partial) {
1616 object = get_partial_node(s, n, c);
1617 if (object) {
1618 /*
1619 * Return the object even if
1620 * put_mems_allowed indicated that
1621 * the cpuset mems_allowed was
1622 * updated in parallel. It's a
1623 * harmless race between the alloc
1624 * and the cpuset update.
1625 */
1626 put_mems_allowed(cpuset_mems_cookie);
1627 return object;
1628 }
c0ff7453 1629 }
81819f0f 1630 }
cc9a6c87 1631 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1632#endif
1633 return NULL;
1634}
1635
1636/*
1637 * Get a partial page, lock it and return it.
1638 */
497b66f2 1639static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1640 struct kmem_cache_cpu *c)
81819f0f 1641{
497b66f2 1642 void *object;
2154a336 1643 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1644
497b66f2
CL
1645 object = get_partial_node(s, get_node(s, searchnode), c);
1646 if (object || node != NUMA_NO_NODE)
1647 return object;
81819f0f 1648
acd19fd1 1649 return get_any_partial(s, flags, c);
81819f0f
CL
1650}
1651
8a5ec0ba
CL
1652#ifdef CONFIG_PREEMPT
1653/*
1654 * Calculate the next globally unique transaction for disambiguiation
1655 * during cmpxchg. The transactions start with the cpu number and are then
1656 * incremented by CONFIG_NR_CPUS.
1657 */
1658#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1659#else
1660/*
1661 * No preemption supported therefore also no need to check for
1662 * different cpus.
1663 */
1664#define TID_STEP 1
1665#endif
1666
1667static inline unsigned long next_tid(unsigned long tid)
1668{
1669 return tid + TID_STEP;
1670}
1671
1672static inline unsigned int tid_to_cpu(unsigned long tid)
1673{
1674 return tid % TID_STEP;
1675}
1676
1677static inline unsigned long tid_to_event(unsigned long tid)
1678{
1679 return tid / TID_STEP;
1680}
1681
1682static inline unsigned int init_tid(int cpu)
1683{
1684 return cpu;
1685}
1686
1687static inline void note_cmpxchg_failure(const char *n,
1688 const struct kmem_cache *s, unsigned long tid)
1689{
1690#ifdef SLUB_DEBUG_CMPXCHG
1691 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1692
1693 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1694
1695#ifdef CONFIG_PREEMPT
1696 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1697 printk("due to cpu change %d -> %d\n",
1698 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1699 else
1700#endif
1701 if (tid_to_event(tid) != tid_to_event(actual_tid))
1702 printk("due to cpu running other code. Event %ld->%ld\n",
1703 tid_to_event(tid), tid_to_event(actual_tid));
1704 else
1705 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1706 actual_tid, tid, next_tid(tid));
1707#endif
4fdccdfb 1708 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1709}
1710
8a5ec0ba
CL
1711void init_kmem_cache_cpus(struct kmem_cache *s)
1712{
8a5ec0ba
CL
1713 int cpu;
1714
1715 for_each_possible_cpu(cpu)
1716 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1717}
2cfb7455 1718
81819f0f
CL
1719/*
1720 * Remove the cpu slab
1721 */
c17dda40 1722static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1723{
2cfb7455 1724 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1725 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1726 int lock = 0;
1727 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1728 void *nextfree;
136333d1 1729 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1730 struct page new;
1731 struct page old;
1732
1733 if (page->freelist) {
84e554e6 1734 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1735 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1736 }
1737
894b8788 1738 /*
2cfb7455
CL
1739 * Stage one: Free all available per cpu objects back
1740 * to the page freelist while it is still frozen. Leave the
1741 * last one.
1742 *
1743 * There is no need to take the list->lock because the page
1744 * is still frozen.
1745 */
1746 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1747 void *prior;
1748 unsigned long counters;
1749
1750 do {
1751 prior = page->freelist;
1752 counters = page->counters;
1753 set_freepointer(s, freelist, prior);
1754 new.counters = counters;
1755 new.inuse--;
1756 VM_BUG_ON(!new.frozen);
1757
1d07171c 1758 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1759 prior, counters,
1760 freelist, new.counters,
1761 "drain percpu freelist"));
1762
1763 freelist = nextfree;
1764 }
1765
894b8788 1766 /*
2cfb7455
CL
1767 * Stage two: Ensure that the page is unfrozen while the
1768 * list presence reflects the actual number of objects
1769 * during unfreeze.
1770 *
1771 * We setup the list membership and then perform a cmpxchg
1772 * with the count. If there is a mismatch then the page
1773 * is not unfrozen but the page is on the wrong list.
1774 *
1775 * Then we restart the process which may have to remove
1776 * the page from the list that we just put it on again
1777 * because the number of objects in the slab may have
1778 * changed.
894b8788 1779 */
2cfb7455 1780redo:
894b8788 1781
2cfb7455
CL
1782 old.freelist = page->freelist;
1783 old.counters = page->counters;
1784 VM_BUG_ON(!old.frozen);
7c2e132c 1785
2cfb7455
CL
1786 /* Determine target state of the slab */
1787 new.counters = old.counters;
1788 if (freelist) {
1789 new.inuse--;
1790 set_freepointer(s, freelist, old.freelist);
1791 new.freelist = freelist;
1792 } else
1793 new.freelist = old.freelist;
1794
1795 new.frozen = 0;
1796
81107188 1797 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1798 m = M_FREE;
1799 else if (new.freelist) {
1800 m = M_PARTIAL;
1801 if (!lock) {
1802 lock = 1;
1803 /*
1804 * Taking the spinlock removes the possiblity
1805 * that acquire_slab() will see a slab page that
1806 * is frozen
1807 */
1808 spin_lock(&n->list_lock);
1809 }
1810 } else {
1811 m = M_FULL;
1812 if (kmem_cache_debug(s) && !lock) {
1813 lock = 1;
1814 /*
1815 * This also ensures that the scanning of full
1816 * slabs from diagnostic functions will not see
1817 * any frozen slabs.
1818 */
1819 spin_lock(&n->list_lock);
1820 }
1821 }
1822
1823 if (l != m) {
1824
1825 if (l == M_PARTIAL)
1826
1827 remove_partial(n, page);
1828
1829 else if (l == M_FULL)
894b8788 1830
2cfb7455
CL
1831 remove_full(s, page);
1832
1833 if (m == M_PARTIAL) {
1834
1835 add_partial(n, page, tail);
136333d1 1836 stat(s, tail);
2cfb7455
CL
1837
1838 } else if (m == M_FULL) {
894b8788 1839
2cfb7455
CL
1840 stat(s, DEACTIVATE_FULL);
1841 add_full(s, n, page);
1842
1843 }
1844 }
1845
1846 l = m;
1d07171c 1847 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1848 old.freelist, old.counters,
1849 new.freelist, new.counters,
1850 "unfreezing slab"))
1851 goto redo;
1852
2cfb7455
CL
1853 if (lock)
1854 spin_unlock(&n->list_lock);
1855
1856 if (m == M_FREE) {
1857 stat(s, DEACTIVATE_EMPTY);
1858 discard_slab(s, page);
1859 stat(s, FREE_SLAB);
894b8788 1860 }
81819f0f
CL
1861}
1862
d24ac77f
JK
1863/*
1864 * Unfreeze all the cpu partial slabs.
1865 *
1866 * This function must be called with interrupt disabled.
1867 */
49e22585
CL
1868static void unfreeze_partials(struct kmem_cache *s)
1869{
43d77867 1870 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1871 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1872 struct page *page, *discard_page = NULL;
49e22585
CL
1873
1874 while ((page = c->partial)) {
49e22585
CL
1875 struct page new;
1876 struct page old;
1877
1878 c->partial = page->next;
43d77867
JK
1879
1880 n2 = get_node(s, page_to_nid(page));
1881 if (n != n2) {
1882 if (n)
1883 spin_unlock(&n->list_lock);
1884
1885 n = n2;
1886 spin_lock(&n->list_lock);
1887 }
49e22585
CL
1888
1889 do {
1890
1891 old.freelist = page->freelist;
1892 old.counters = page->counters;
1893 VM_BUG_ON(!old.frozen);
1894
1895 new.counters = old.counters;
1896 new.freelist = old.freelist;
1897
1898 new.frozen = 0;
1899
d24ac77f 1900 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1901 old.freelist, old.counters,
1902 new.freelist, new.counters,
1903 "unfreezing slab"));
1904
43d77867 1905 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1906 page->next = discard_page;
1907 discard_page = page;
43d77867
JK
1908 } else {
1909 add_partial(n, page, DEACTIVATE_TO_TAIL);
1910 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1911 }
1912 }
1913
1914 if (n)
1915 spin_unlock(&n->list_lock);
9ada1934
SL
1916
1917 while (discard_page) {
1918 page = discard_page;
1919 discard_page = discard_page->next;
1920
1921 stat(s, DEACTIVATE_EMPTY);
1922 discard_slab(s, page);
1923 stat(s, FREE_SLAB);
1924 }
49e22585
CL
1925}
1926
1927/*
1928 * Put a page that was just frozen (in __slab_free) into a partial page
1929 * slot if available. This is done without interrupts disabled and without
1930 * preemption disabled. The cmpxchg is racy and may put the partial page
1931 * onto a random cpus partial slot.
1932 *
1933 * If we did not find a slot then simply move all the partials to the
1934 * per node partial list.
1935 */
1936int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1937{
1938 struct page *oldpage;
1939 int pages;
1940 int pobjects;
1941
1942 do {
1943 pages = 0;
1944 pobjects = 0;
1945 oldpage = this_cpu_read(s->cpu_slab->partial);
1946
1947 if (oldpage) {
1948 pobjects = oldpage->pobjects;
1949 pages = oldpage->pages;
1950 if (drain && pobjects > s->cpu_partial) {
1951 unsigned long flags;
1952 /*
1953 * partial array is full. Move the existing
1954 * set to the per node partial list.
1955 */
1956 local_irq_save(flags);
1957 unfreeze_partials(s);
1958 local_irq_restore(flags);
e24fc410 1959 oldpage = NULL;
49e22585
CL
1960 pobjects = 0;
1961 pages = 0;
8028dcea 1962 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1963 }
1964 }
1965
1966 pages++;
1967 pobjects += page->objects - page->inuse;
1968
1969 page->pages = pages;
1970 page->pobjects = pobjects;
1971 page->next = oldpage;
1972
933393f5 1973 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1974 return pobjects;
1975}
1976
dfb4f096 1977static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1978{
84e554e6 1979 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1980 deactivate_slab(s, c->page, c->freelist);
1981
1982 c->tid = next_tid(c->tid);
1983 c->page = NULL;
1984 c->freelist = NULL;
81819f0f
CL
1985}
1986
1987/*
1988 * Flush cpu slab.
6446faa2 1989 *
81819f0f
CL
1990 * Called from IPI handler with interrupts disabled.
1991 */
0c710013 1992static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1993{
9dfc6e68 1994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1995
49e22585
CL
1996 if (likely(c)) {
1997 if (c->page)
1998 flush_slab(s, c);
1999
2000 unfreeze_partials(s);
2001 }
81819f0f
CL
2002}
2003
2004static void flush_cpu_slab(void *d)
2005{
2006 struct kmem_cache *s = d;
81819f0f 2007
dfb4f096 2008 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2009}
2010
a8364d55
GBY
2011static bool has_cpu_slab(int cpu, void *info)
2012{
2013 struct kmem_cache *s = info;
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
02e1a9cd 2016 return c->page || c->partial;
a8364d55
GBY
2017}
2018
81819f0f
CL
2019static void flush_all(struct kmem_cache *s)
2020{
a8364d55 2021 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2022}
2023
dfb4f096
CL
2024/*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
57d437d2 2028static inline int node_match(struct page *page, int node)
dfb4f096
CL
2029{
2030#ifdef CONFIG_NUMA
57d437d2 2031 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2032 return 0;
2033#endif
2034 return 1;
2035}
2036
781b2ba6
PE
2037static int count_free(struct page *page)
2038{
2039 return page->objects - page->inuse;
2040}
2041
2042static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044{
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054}
2055
26c02cf0
AB
2056static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057{
2058#ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060#else
2061 return 0;
2062#endif
2063}
2064
781b2ba6
PE
2065static noinline void
2066slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067{
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2074 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
3b0efdfa 2077 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
781b2ba6
PE
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
26c02cf0
AB
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
781b2ba6
PE
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098}
2099
497b66f2
CL
2100static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102{
6faa6833 2103 void *freelist;
188fd063
CL
2104 struct kmem_cache_cpu *c = *pc;
2105 struct page *page;
497b66f2 2106
188fd063 2107 freelist = get_partial(s, flags, node, c);
497b66f2 2108
188fd063
CL
2109 if (freelist)
2110 return freelist;
2111
2112 page = new_slab(s, flags, node);
497b66f2
CL
2113 if (page) {
2114 c = __this_cpu_ptr(s->cpu_slab);
2115 if (c->page)
2116 flush_slab(s, c);
2117
2118 /*
2119 * No other reference to the page yet so we can
2120 * muck around with it freely without cmpxchg
2121 */
6faa6833 2122 freelist = page->freelist;
497b66f2
CL
2123 page->freelist = NULL;
2124
2125 stat(s, ALLOC_SLAB);
497b66f2
CL
2126 c->page = page;
2127 *pc = c;
2128 } else
6faa6833 2129 freelist = NULL;
497b66f2 2130
6faa6833 2131 return freelist;
497b66f2
CL
2132}
2133
072bb0aa
MG
2134static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2135{
2136 if (unlikely(PageSlabPfmemalloc(page)))
2137 return gfp_pfmemalloc_allowed(gfpflags);
2138
2139 return true;
2140}
2141
213eeb9f
CL
2142/*
2143 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2144 * or deactivate the page.
2145 *
2146 * The page is still frozen if the return value is not NULL.
2147 *
2148 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2149 *
2150 * This function must be called with interrupt disabled.
213eeb9f
CL
2151 */
2152static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2153{
2154 struct page new;
2155 unsigned long counters;
2156 void *freelist;
2157
2158 do {
2159 freelist = page->freelist;
2160 counters = page->counters;
6faa6833 2161
213eeb9f
CL
2162 new.counters = counters;
2163 VM_BUG_ON(!new.frozen);
2164
2165 new.inuse = page->objects;
2166 new.frozen = freelist != NULL;
2167
d24ac77f 2168 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2169 freelist, counters,
2170 NULL, new.counters,
2171 "get_freelist"));
2172
2173 return freelist;
2174}
2175
81819f0f 2176/*
894b8788
CL
2177 * Slow path. The lockless freelist is empty or we need to perform
2178 * debugging duties.
2179 *
894b8788
CL
2180 * Processing is still very fast if new objects have been freed to the
2181 * regular freelist. In that case we simply take over the regular freelist
2182 * as the lockless freelist and zap the regular freelist.
81819f0f 2183 *
894b8788
CL
2184 * If that is not working then we fall back to the partial lists. We take the
2185 * first element of the freelist as the object to allocate now and move the
2186 * rest of the freelist to the lockless freelist.
81819f0f 2187 *
894b8788 2188 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2189 * we need to allocate a new slab. This is the slowest path since it involves
2190 * a call to the page allocator and the setup of a new slab.
81819f0f 2191 */
ce71e27c
EGM
2192static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2193 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2194{
6faa6833 2195 void *freelist;
f6e7def7 2196 struct page *page;
8a5ec0ba
CL
2197 unsigned long flags;
2198
2199 local_irq_save(flags);
2200#ifdef CONFIG_PREEMPT
2201 /*
2202 * We may have been preempted and rescheduled on a different
2203 * cpu before disabling interrupts. Need to reload cpu area
2204 * pointer.
2205 */
2206 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2207#endif
81819f0f 2208
f6e7def7
CL
2209 page = c->page;
2210 if (!page)
81819f0f 2211 goto new_slab;
49e22585 2212redo:
6faa6833 2213
57d437d2 2214 if (unlikely(!node_match(page, node))) {
e36a2652 2215 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2216 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2217 c->page = NULL;
2218 c->freelist = NULL;
fc59c053
CL
2219 goto new_slab;
2220 }
6446faa2 2221
072bb0aa
MG
2222 /*
2223 * By rights, we should be searching for a slab page that was
2224 * PFMEMALLOC but right now, we are losing the pfmemalloc
2225 * information when the page leaves the per-cpu allocator
2226 */
2227 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2228 deactivate_slab(s, page, c->freelist);
2229 c->page = NULL;
2230 c->freelist = NULL;
2231 goto new_slab;
2232 }
2233
73736e03 2234 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2235 freelist = c->freelist;
2236 if (freelist)
73736e03 2237 goto load_freelist;
03e404af 2238
2cfb7455 2239 stat(s, ALLOC_SLOWPATH);
03e404af 2240
f6e7def7 2241 freelist = get_freelist(s, page);
6446faa2 2242
6faa6833 2243 if (!freelist) {
03e404af
CL
2244 c->page = NULL;
2245 stat(s, DEACTIVATE_BYPASS);
fc59c053 2246 goto new_slab;
03e404af 2247 }
6446faa2 2248
84e554e6 2249 stat(s, ALLOC_REFILL);
6446faa2 2250
894b8788 2251load_freelist:
507effea
CL
2252 /*
2253 * freelist is pointing to the list of objects to be used.
2254 * page is pointing to the page from which the objects are obtained.
2255 * That page must be frozen for per cpu allocations to work.
2256 */
2257 VM_BUG_ON(!c->page->frozen);
6faa6833 2258 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2259 c->tid = next_tid(c->tid);
2260 local_irq_restore(flags);
6faa6833 2261 return freelist;
81819f0f 2262
81819f0f 2263new_slab:
2cfb7455 2264
49e22585 2265 if (c->partial) {
f6e7def7
CL
2266 page = c->page = c->partial;
2267 c->partial = page->next;
49e22585
CL
2268 stat(s, CPU_PARTIAL_ALLOC);
2269 c->freelist = NULL;
2270 goto redo;
81819f0f
CL
2271 }
2272
188fd063 2273 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2274
f4697436
CL
2275 if (unlikely(!freelist)) {
2276 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2277 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2278
f4697436
CL
2279 local_irq_restore(flags);
2280 return NULL;
81819f0f 2281 }
2cfb7455 2282
f6e7def7 2283 page = c->page;
5091b74a 2284 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2285 goto load_freelist;
2cfb7455 2286
497b66f2 2287 /* Only entered in the debug case */
5091b74a 2288 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2289 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2290
f6e7def7 2291 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2292 c->page = NULL;
2293 c->freelist = NULL;
a71ae47a 2294 local_irq_restore(flags);
6faa6833 2295 return freelist;
894b8788
CL
2296}
2297
2298/*
2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300 * have the fastpath folded into their functions. So no function call
2301 * overhead for requests that can be satisfied on the fastpath.
2302 *
2303 * The fastpath works by first checking if the lockless freelist can be used.
2304 * If not then __slab_alloc is called for slow processing.
2305 *
2306 * Otherwise we can simply pick the next object from the lockless free list.
2307 */
06428780 2308static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2309 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2310{
894b8788 2311 void **object;
dfb4f096 2312 struct kmem_cache_cpu *c;
57d437d2 2313 struct page *page;
8a5ec0ba 2314 unsigned long tid;
1f84260c 2315
c016b0bd 2316 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2317 return NULL;
1f84260c 2318
8a5ec0ba 2319redo:
8a5ec0ba
CL
2320
2321 /*
2322 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2323 * enabled. We may switch back and forth between cpus while
2324 * reading from one cpu area. That does not matter as long
2325 * as we end up on the original cpu again when doing the cmpxchg.
2326 */
9dfc6e68 2327 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2328
8a5ec0ba
CL
2329 /*
2330 * The transaction ids are globally unique per cpu and per operation on
2331 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2332 * occurs on the right processor and that there was no operation on the
2333 * linked list in between.
2334 */
2335 tid = c->tid;
2336 barrier();
8a5ec0ba 2337
9dfc6e68 2338 object = c->freelist;
57d437d2 2339 page = c->page;
5091b74a 2340 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2341 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2342
2343 else {
0ad9500e
ED
2344 void *next_object = get_freepointer_safe(s, object);
2345
8a5ec0ba 2346 /*
25985edc 2347 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2348 * operation and if we are on the right processor.
2349 *
2350 * The cmpxchg does the following atomically (without lock semantics!)
2351 * 1. Relocate first pointer to the current per cpu area.
2352 * 2. Verify that tid and freelist have not been changed
2353 * 3. If they were not changed replace tid and freelist
2354 *
2355 * Since this is without lock semantics the protection is only against
2356 * code executing on this cpu *not* from access by other cpus.
2357 */
933393f5 2358 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2359 s->cpu_slab->freelist, s->cpu_slab->tid,
2360 object, tid,
0ad9500e 2361 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2362
2363 note_cmpxchg_failure("slab_alloc", s, tid);
2364 goto redo;
2365 }
0ad9500e 2366 prefetch_freepointer(s, next_object);
84e554e6 2367 stat(s, ALLOC_FASTPATH);
894b8788 2368 }
8a5ec0ba 2369
74e2134f 2370 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2371 memset(object, 0, s->object_size);
d07dbea4 2372
c016b0bd 2373 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2374
894b8788 2375 return object;
81819f0f
CL
2376}
2377
2378void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2379{
2154a336 2380 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2381
3b0efdfa 2382 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2383
2384 return ret;
81819f0f
CL
2385}
2386EXPORT_SYMBOL(kmem_cache_alloc);
2387
0f24f128 2388#ifdef CONFIG_TRACING
4a92379b
RK
2389void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2390{
2391 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2392 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2393 return ret;
2394}
2395EXPORT_SYMBOL(kmem_cache_alloc_trace);
2396
2397void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2398{
4a92379b
RK
2399 void *ret = kmalloc_order(size, flags, order);
2400 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2401 return ret;
5b882be4 2402}
4a92379b 2403EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2404#endif
2405
81819f0f
CL
2406#ifdef CONFIG_NUMA
2407void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2408{
5b882be4
EGM
2409 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2410
ca2b84cb 2411 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2412 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2413
2414 return ret;
81819f0f
CL
2415}
2416EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2417
0f24f128 2418#ifdef CONFIG_TRACING
4a92379b 2419void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2420 gfp_t gfpflags,
4a92379b 2421 int node, size_t size)
5b882be4 2422{
4a92379b
RK
2423 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2424
2425 trace_kmalloc_node(_RET_IP_, ret,
2426 size, s->size, gfpflags, node);
2427 return ret;
5b882be4 2428}
4a92379b 2429EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2430#endif
5d1f57e4 2431#endif
5b882be4 2432
81819f0f 2433/*
894b8788
CL
2434 * Slow patch handling. This may still be called frequently since objects
2435 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2436 *
894b8788
CL
2437 * So we still attempt to reduce cache line usage. Just take the slab
2438 * lock and free the item. If there is no additional partial page
2439 * handling required then we can return immediately.
81819f0f 2440 */
894b8788 2441static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2442 void *x, unsigned long addr)
81819f0f
CL
2443{
2444 void *prior;
2445 void **object = (void *)x;
2cfb7455
CL
2446 int was_frozen;
2447 int inuse;
2448 struct page new;
2449 unsigned long counters;
2450 struct kmem_cache_node *n = NULL;
61728d1e 2451 unsigned long uninitialized_var(flags);
81819f0f 2452
8a5ec0ba 2453 stat(s, FREE_SLOWPATH);
81819f0f 2454
19c7ff9e
CL
2455 if (kmem_cache_debug(s) &&
2456 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2457 return;
6446faa2 2458
2cfb7455
CL
2459 do {
2460 prior = page->freelist;
2461 counters = page->counters;
2462 set_freepointer(s, object, prior);
2463 new.counters = counters;
2464 was_frozen = new.frozen;
2465 new.inuse--;
2466 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2467
2468 if (!kmem_cache_debug(s) && !prior)
2469
2470 /*
2471 * Slab was on no list before and will be partially empty
2472 * We can defer the list move and instead freeze it.
2473 */
2474 new.frozen = 1;
2475
2476 else { /* Needs to be taken off a list */
2477
2478 n = get_node(s, page_to_nid(page));
2479 /*
2480 * Speculatively acquire the list_lock.
2481 * If the cmpxchg does not succeed then we may
2482 * drop the list_lock without any processing.
2483 *
2484 * Otherwise the list_lock will synchronize with
2485 * other processors updating the list of slabs.
2486 */
2487 spin_lock_irqsave(&n->list_lock, flags);
2488
2489 }
2cfb7455
CL
2490 }
2491 inuse = new.inuse;
81819f0f 2492
2cfb7455
CL
2493 } while (!cmpxchg_double_slab(s, page,
2494 prior, counters,
2495 object, new.counters,
2496 "__slab_free"));
81819f0f 2497
2cfb7455 2498 if (likely(!n)) {
49e22585
CL
2499
2500 /*
2501 * If we just froze the page then put it onto the
2502 * per cpu partial list.
2503 */
8028dcea 2504 if (new.frozen && !was_frozen) {
49e22585 2505 put_cpu_partial(s, page, 1);
8028dcea
AS
2506 stat(s, CPU_PARTIAL_FREE);
2507 }
49e22585 2508 /*
2cfb7455
CL
2509 * The list lock was not taken therefore no list
2510 * activity can be necessary.
2511 */
2512 if (was_frozen)
2513 stat(s, FREE_FROZEN);
80f08c19 2514 return;
2cfb7455 2515 }
81819f0f
CL
2516
2517 /*
2cfb7455
CL
2518 * was_frozen may have been set after we acquired the list_lock in
2519 * an earlier loop. So we need to check it here again.
81819f0f 2520 */
2cfb7455
CL
2521 if (was_frozen)
2522 stat(s, FREE_FROZEN);
2523 else {
2524 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2525 goto slab_empty;
81819f0f 2526
2cfb7455
CL
2527 /*
2528 * Objects left in the slab. If it was not on the partial list before
2529 * then add it.
2530 */
2531 if (unlikely(!prior)) {
2532 remove_full(s, page);
136333d1 2533 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2534 stat(s, FREE_ADD_PARTIAL);
2535 }
8ff12cfc 2536 }
80f08c19 2537 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2538 return;
2539
2540slab_empty:
a973e9dd 2541 if (prior) {
81819f0f 2542 /*
6fbabb20 2543 * Slab on the partial list.
81819f0f 2544 */
5cc6eee8 2545 remove_partial(n, page);
84e554e6 2546 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2547 } else
2548 /* Slab must be on the full list */
2549 remove_full(s, page);
2cfb7455 2550
80f08c19 2551 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2552 stat(s, FREE_SLAB);
81819f0f 2553 discard_slab(s, page);
81819f0f
CL
2554}
2555
894b8788
CL
2556/*
2557 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2558 * can perform fastpath freeing without additional function calls.
2559 *
2560 * The fastpath is only possible if we are freeing to the current cpu slab
2561 * of this processor. This typically the case if we have just allocated
2562 * the item before.
2563 *
2564 * If fastpath is not possible then fall back to __slab_free where we deal
2565 * with all sorts of special processing.
2566 */
06428780 2567static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2568 struct page *page, void *x, unsigned long addr)
894b8788
CL
2569{
2570 void **object = (void *)x;
dfb4f096 2571 struct kmem_cache_cpu *c;
8a5ec0ba 2572 unsigned long tid;
1f84260c 2573
c016b0bd
CL
2574 slab_free_hook(s, x);
2575
8a5ec0ba
CL
2576redo:
2577 /*
2578 * Determine the currently cpus per cpu slab.
2579 * The cpu may change afterward. However that does not matter since
2580 * data is retrieved via this pointer. If we are on the same cpu
2581 * during the cmpxchg then the free will succedd.
2582 */
9dfc6e68 2583 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2584
8a5ec0ba
CL
2585 tid = c->tid;
2586 barrier();
c016b0bd 2587
442b06bc 2588 if (likely(page == c->page)) {
ff12059e 2589 set_freepointer(s, object, c->freelist);
8a5ec0ba 2590
933393f5 2591 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2592 s->cpu_slab->freelist, s->cpu_slab->tid,
2593 c->freelist, tid,
2594 object, next_tid(tid)))) {
2595
2596 note_cmpxchg_failure("slab_free", s, tid);
2597 goto redo;
2598 }
84e554e6 2599 stat(s, FREE_FASTPATH);
894b8788 2600 } else
ff12059e 2601 __slab_free(s, page, x, addr);
894b8788 2602
894b8788
CL
2603}
2604
81819f0f
CL
2605void kmem_cache_free(struct kmem_cache *s, void *x)
2606{
77c5e2d0 2607 struct page *page;
81819f0f 2608
b49af68f 2609 page = virt_to_head_page(x);
81819f0f 2610
79576102
CL
2611 if (kmem_cache_debug(s) && page->slab != s) {
2612 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2613 " is from %s\n", page->slab->name, s->name);
2614 WARN_ON_ONCE(1);
2615 return;
2616 }
2617
ce71e27c 2618 slab_free(s, page, x, _RET_IP_);
5b882be4 2619
ca2b84cb 2620 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2621}
2622EXPORT_SYMBOL(kmem_cache_free);
2623
81819f0f 2624/*
672bba3a
CL
2625 * Object placement in a slab is made very easy because we always start at
2626 * offset 0. If we tune the size of the object to the alignment then we can
2627 * get the required alignment by putting one properly sized object after
2628 * another.
81819f0f
CL
2629 *
2630 * Notice that the allocation order determines the sizes of the per cpu
2631 * caches. Each processor has always one slab available for allocations.
2632 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2633 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2634 * locking overhead.
81819f0f
CL
2635 */
2636
2637/*
2638 * Mininum / Maximum order of slab pages. This influences locking overhead
2639 * and slab fragmentation. A higher order reduces the number of partial slabs
2640 * and increases the number of allocations possible without having to
2641 * take the list_lock.
2642 */
2643static int slub_min_order;
114e9e89 2644static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2645static int slub_min_objects;
81819f0f
CL
2646
2647/*
2648 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2649 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2650 */
2651static int slub_nomerge;
2652
81819f0f
CL
2653/*
2654 * Calculate the order of allocation given an slab object size.
2655 *
672bba3a
CL
2656 * The order of allocation has significant impact on performance and other
2657 * system components. Generally order 0 allocations should be preferred since
2658 * order 0 does not cause fragmentation in the page allocator. Larger objects
2659 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2660 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2661 * would be wasted.
2662 *
2663 * In order to reach satisfactory performance we must ensure that a minimum
2664 * number of objects is in one slab. Otherwise we may generate too much
2665 * activity on the partial lists which requires taking the list_lock. This is
2666 * less a concern for large slabs though which are rarely used.
81819f0f 2667 *
672bba3a
CL
2668 * slub_max_order specifies the order where we begin to stop considering the
2669 * number of objects in a slab as critical. If we reach slub_max_order then
2670 * we try to keep the page order as low as possible. So we accept more waste
2671 * of space in favor of a small page order.
81819f0f 2672 *
672bba3a
CL
2673 * Higher order allocations also allow the placement of more objects in a
2674 * slab and thereby reduce object handling overhead. If the user has
2675 * requested a higher mininum order then we start with that one instead of
2676 * the smallest order which will fit the object.
81819f0f 2677 */
5e6d444e 2678static inline int slab_order(int size, int min_objects,
ab9a0f19 2679 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2680{
2681 int order;
2682 int rem;
6300ea75 2683 int min_order = slub_min_order;
81819f0f 2684
ab9a0f19 2685 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2686 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2687
6300ea75 2688 for (order = max(min_order,
5e6d444e
CL
2689 fls(min_objects * size - 1) - PAGE_SHIFT);
2690 order <= max_order; order++) {
81819f0f 2691
5e6d444e 2692 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2693
ab9a0f19 2694 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2695 continue;
2696
ab9a0f19 2697 rem = (slab_size - reserved) % size;
81819f0f 2698
5e6d444e 2699 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2700 break;
2701
2702 }
672bba3a 2703
81819f0f
CL
2704 return order;
2705}
2706
ab9a0f19 2707static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2708{
2709 int order;
2710 int min_objects;
2711 int fraction;
e8120ff1 2712 int max_objects;
5e6d444e
CL
2713
2714 /*
2715 * Attempt to find best configuration for a slab. This
2716 * works by first attempting to generate a layout with
2717 * the best configuration and backing off gradually.
2718 *
2719 * First we reduce the acceptable waste in a slab. Then
2720 * we reduce the minimum objects required in a slab.
2721 */
2722 min_objects = slub_min_objects;
9b2cd506
CL
2723 if (!min_objects)
2724 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2725 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2726 min_objects = min(min_objects, max_objects);
2727
5e6d444e 2728 while (min_objects > 1) {
c124f5b5 2729 fraction = 16;
5e6d444e
CL
2730 while (fraction >= 4) {
2731 order = slab_order(size, min_objects,
ab9a0f19 2732 slub_max_order, fraction, reserved);
5e6d444e
CL
2733 if (order <= slub_max_order)
2734 return order;
2735 fraction /= 2;
2736 }
5086c389 2737 min_objects--;
5e6d444e
CL
2738 }
2739
2740 /*
2741 * We were unable to place multiple objects in a slab. Now
2742 * lets see if we can place a single object there.
2743 */
ab9a0f19 2744 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2745 if (order <= slub_max_order)
2746 return order;
2747
2748 /*
2749 * Doh this slab cannot be placed using slub_max_order.
2750 */
ab9a0f19 2751 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2752 if (order < MAX_ORDER)
5e6d444e
CL
2753 return order;
2754 return -ENOSYS;
2755}
2756
81819f0f 2757/*
672bba3a 2758 * Figure out what the alignment of the objects will be.
81819f0f
CL
2759 */
2760static unsigned long calculate_alignment(unsigned long flags,
2761 unsigned long align, unsigned long size)
2762{
2763 /*
6446faa2
CL
2764 * If the user wants hardware cache aligned objects then follow that
2765 * suggestion if the object is sufficiently large.
81819f0f 2766 *
6446faa2
CL
2767 * The hardware cache alignment cannot override the specified
2768 * alignment though. If that is greater then use it.
81819f0f 2769 */
b6210386
NP
2770 if (flags & SLAB_HWCACHE_ALIGN) {
2771 unsigned long ralign = cache_line_size();
2772 while (size <= ralign / 2)
2773 ralign /= 2;
2774 align = max(align, ralign);
2775 }
81819f0f
CL
2776
2777 if (align < ARCH_SLAB_MINALIGN)
b6210386 2778 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2779
2780 return ALIGN(align, sizeof(void *));
2781}
2782
5595cffc 2783static void
4053497d 2784init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2785{
2786 n->nr_partial = 0;
81819f0f
CL
2787 spin_lock_init(&n->list_lock);
2788 INIT_LIST_HEAD(&n->partial);
8ab1372f 2789#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2790 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2791 atomic_long_set(&n->total_objects, 0);
643b1138 2792 INIT_LIST_HEAD(&n->full);
8ab1372f 2793#endif
81819f0f
CL
2794}
2795
55136592 2796static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2797{
6c182dc0
CL
2798 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2799 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2800
8a5ec0ba 2801 /*
d4d84fef
CM
2802 * Must align to double word boundary for the double cmpxchg
2803 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2804 */
d4d84fef
CM
2805 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2806 2 * sizeof(void *));
8a5ec0ba
CL
2807
2808 if (!s->cpu_slab)
2809 return 0;
2810
2811 init_kmem_cache_cpus(s);
4c93c355 2812
8a5ec0ba 2813 return 1;
4c93c355 2814}
4c93c355 2815
51df1142
CL
2816static struct kmem_cache *kmem_cache_node;
2817
81819f0f
CL
2818/*
2819 * No kmalloc_node yet so do it by hand. We know that this is the first
2820 * slab on the node for this slabcache. There are no concurrent accesses
2821 * possible.
2822 *
2823 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2824 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2825 * memory on a fresh node that has no slab structures yet.
81819f0f 2826 */
55136592 2827static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2828{
2829 struct page *page;
2830 struct kmem_cache_node *n;
2831
51df1142 2832 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2833
51df1142 2834 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2835
2836 BUG_ON(!page);
a2f92ee7
CL
2837 if (page_to_nid(page) != node) {
2838 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2839 "node %d\n", node);
2840 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2841 "in order to be able to continue\n");
2842 }
2843
81819f0f
CL
2844 n = page->freelist;
2845 BUG_ON(!n);
51df1142 2846 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2847 page->inuse = 1;
8cb0a506 2848 page->frozen = 0;
51df1142 2849 kmem_cache_node->node[node] = n;
8ab1372f 2850#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2851 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2852 init_tracking(kmem_cache_node, n);
8ab1372f 2853#endif
4053497d 2854 init_kmem_cache_node(n);
51df1142 2855 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2856
136333d1 2857 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2858}
2859
2860static void free_kmem_cache_nodes(struct kmem_cache *s)
2861{
2862 int node;
2863
f64dc58c 2864 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2865 struct kmem_cache_node *n = s->node[node];
51df1142 2866
73367bd8 2867 if (n)
51df1142
CL
2868 kmem_cache_free(kmem_cache_node, n);
2869
81819f0f
CL
2870 s->node[node] = NULL;
2871 }
2872}
2873
55136592 2874static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2875{
2876 int node;
81819f0f 2877
f64dc58c 2878 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2879 struct kmem_cache_node *n;
2880
73367bd8 2881 if (slab_state == DOWN) {
55136592 2882 early_kmem_cache_node_alloc(node);
73367bd8
AD
2883 continue;
2884 }
51df1142 2885 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2886 GFP_KERNEL, node);
81819f0f 2887
73367bd8
AD
2888 if (!n) {
2889 free_kmem_cache_nodes(s);
2890 return 0;
81819f0f 2891 }
73367bd8 2892
81819f0f 2893 s->node[node] = n;
4053497d 2894 init_kmem_cache_node(n);
81819f0f
CL
2895 }
2896 return 1;
2897}
81819f0f 2898
c0bdb232 2899static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2900{
2901 if (min < MIN_PARTIAL)
2902 min = MIN_PARTIAL;
2903 else if (min > MAX_PARTIAL)
2904 min = MAX_PARTIAL;
2905 s->min_partial = min;
2906}
2907
81819f0f
CL
2908/*
2909 * calculate_sizes() determines the order and the distribution of data within
2910 * a slab object.
2911 */
06b285dc 2912static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2913{
2914 unsigned long flags = s->flags;
3b0efdfa 2915 unsigned long size = s->object_size;
81819f0f 2916 unsigned long align = s->align;
834f3d11 2917 int order;
81819f0f 2918
d8b42bf5
CL
2919 /*
2920 * Round up object size to the next word boundary. We can only
2921 * place the free pointer at word boundaries and this determines
2922 * the possible location of the free pointer.
2923 */
2924 size = ALIGN(size, sizeof(void *));
2925
2926#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2927 /*
2928 * Determine if we can poison the object itself. If the user of
2929 * the slab may touch the object after free or before allocation
2930 * then we should never poison the object itself.
2931 */
2932 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2933 !s->ctor)
81819f0f
CL
2934 s->flags |= __OBJECT_POISON;
2935 else
2936 s->flags &= ~__OBJECT_POISON;
2937
81819f0f
CL
2938
2939 /*
672bba3a 2940 * If we are Redzoning then check if there is some space between the
81819f0f 2941 * end of the object and the free pointer. If not then add an
672bba3a 2942 * additional word to have some bytes to store Redzone information.
81819f0f 2943 */
3b0efdfa 2944 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2945 size += sizeof(void *);
41ecc55b 2946#endif
81819f0f
CL
2947
2948 /*
672bba3a
CL
2949 * With that we have determined the number of bytes in actual use
2950 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2951 */
2952 s->inuse = size;
2953
2954 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2955 s->ctor)) {
81819f0f
CL
2956 /*
2957 * Relocate free pointer after the object if it is not
2958 * permitted to overwrite the first word of the object on
2959 * kmem_cache_free.
2960 *
2961 * This is the case if we do RCU, have a constructor or
2962 * destructor or are poisoning the objects.
2963 */
2964 s->offset = size;
2965 size += sizeof(void *);
2966 }
2967
c12b3c62 2968#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2969 if (flags & SLAB_STORE_USER)
2970 /*
2971 * Need to store information about allocs and frees after
2972 * the object.
2973 */
2974 size += 2 * sizeof(struct track);
2975
be7b3fbc 2976 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2977 /*
2978 * Add some empty padding so that we can catch
2979 * overwrites from earlier objects rather than let
2980 * tracking information or the free pointer be
0211a9c8 2981 * corrupted if a user writes before the start
81819f0f
CL
2982 * of the object.
2983 */
2984 size += sizeof(void *);
41ecc55b 2985#endif
672bba3a 2986
81819f0f
CL
2987 /*
2988 * Determine the alignment based on various parameters that the
65c02d4c
CL
2989 * user specified and the dynamic determination of cache line size
2990 * on bootup.
81819f0f 2991 */
3b0efdfa 2992 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2993 s->align = align;
81819f0f
CL
2994
2995 /*
2996 * SLUB stores one object immediately after another beginning from
2997 * offset 0. In order to align the objects we have to simply size
2998 * each object to conform to the alignment.
2999 */
3000 size = ALIGN(size, align);
3001 s->size = size;
06b285dc
CL
3002 if (forced_order >= 0)
3003 order = forced_order;
3004 else
ab9a0f19 3005 order = calculate_order(size, s->reserved);
81819f0f 3006
834f3d11 3007 if (order < 0)
81819f0f
CL
3008 return 0;
3009
b7a49f0d 3010 s->allocflags = 0;
834f3d11 3011 if (order)
b7a49f0d
CL
3012 s->allocflags |= __GFP_COMP;
3013
3014 if (s->flags & SLAB_CACHE_DMA)
3015 s->allocflags |= SLUB_DMA;
3016
3017 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3018 s->allocflags |= __GFP_RECLAIMABLE;
3019
81819f0f
CL
3020 /*
3021 * Determine the number of objects per slab
3022 */
ab9a0f19
LJ
3023 s->oo = oo_make(order, size, s->reserved);
3024 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3025 if (oo_objects(s->oo) > oo_objects(s->max))
3026 s->max = s->oo;
81819f0f 3027
834f3d11 3028 return !!oo_objects(s->oo);
81819f0f
CL
3029
3030}
3031
55136592 3032static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3033 const char *name, size_t size,
3034 size_t align, unsigned long flags,
51cc5068 3035 void (*ctor)(void *))
81819f0f
CL
3036{
3037 memset(s, 0, kmem_size);
3038 s->name = name;
3039 s->ctor = ctor;
3b0efdfa 3040 s->object_size = size;
81819f0f 3041 s->align = align;
ba0268a8 3042 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3043 s->reserved = 0;
81819f0f 3044
da9a638c
LJ
3045 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3046 s->reserved = sizeof(struct rcu_head);
81819f0f 3047
06b285dc 3048 if (!calculate_sizes(s, -1))
81819f0f 3049 goto error;
3de47213
DR
3050 if (disable_higher_order_debug) {
3051 /*
3052 * Disable debugging flags that store metadata if the min slab
3053 * order increased.
3054 */
3b0efdfa 3055 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3056 s->flags &= ~DEBUG_METADATA_FLAGS;
3057 s->offset = 0;
3058 if (!calculate_sizes(s, -1))
3059 goto error;
3060 }
3061 }
81819f0f 3062
2565409f
HC
3063#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3064 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3065 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3066 /* Enable fast mode */
3067 s->flags |= __CMPXCHG_DOUBLE;
3068#endif
3069
3b89d7d8
DR
3070 /*
3071 * The larger the object size is, the more pages we want on the partial
3072 * list to avoid pounding the page allocator excessively.
3073 */
49e22585
CL
3074 set_min_partial(s, ilog2(s->size) / 2);
3075
3076 /*
3077 * cpu_partial determined the maximum number of objects kept in the
3078 * per cpu partial lists of a processor.
3079 *
3080 * Per cpu partial lists mainly contain slabs that just have one
3081 * object freed. If they are used for allocation then they can be
3082 * filled up again with minimal effort. The slab will never hit the
3083 * per node partial lists and therefore no locking will be required.
3084 *
3085 * This setting also determines
3086 *
3087 * A) The number of objects from per cpu partial slabs dumped to the
3088 * per node list when we reach the limit.
9f264904 3089 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3090 * per node list when we run out of per cpu objects. We only fetch 50%
3091 * to keep some capacity around for frees.
3092 */
8f1e33da
CL
3093 if (kmem_cache_debug(s))
3094 s->cpu_partial = 0;
3095 else if (s->size >= PAGE_SIZE)
49e22585
CL
3096 s->cpu_partial = 2;
3097 else if (s->size >= 1024)
3098 s->cpu_partial = 6;
3099 else if (s->size >= 256)
3100 s->cpu_partial = 13;
3101 else
3102 s->cpu_partial = 30;
3103
81819f0f
CL
3104 s->refcount = 1;
3105#ifdef CONFIG_NUMA
e2cb96b7 3106 s->remote_node_defrag_ratio = 1000;
81819f0f 3107#endif
55136592 3108 if (!init_kmem_cache_nodes(s))
dfb4f096 3109 goto error;
81819f0f 3110
55136592 3111 if (alloc_kmem_cache_cpus(s))
81819f0f 3112 return 1;
ff12059e 3113
4c93c355 3114 free_kmem_cache_nodes(s);
81819f0f
CL
3115error:
3116 if (flags & SLAB_PANIC)
3117 panic("Cannot create slab %s size=%lu realsize=%u "
3118 "order=%u offset=%u flags=%lx\n",
834f3d11 3119 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3120 s->offset, flags);
3121 return 0;
3122}
81819f0f 3123
81819f0f
CL
3124/*
3125 * Determine the size of a slab object
3126 */
3127unsigned int kmem_cache_size(struct kmem_cache *s)
3128{
3b0efdfa 3129 return s->object_size;
81819f0f
CL
3130}
3131EXPORT_SYMBOL(kmem_cache_size);
3132
33b12c38
CL
3133static void list_slab_objects(struct kmem_cache *s, struct page *page,
3134 const char *text)
3135{
3136#ifdef CONFIG_SLUB_DEBUG
3137 void *addr = page_address(page);
3138 void *p;
a5dd5c11
NK
3139 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3140 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3141 if (!map)
3142 return;
945cf2b6 3143 slab_err(s, page, text, s->name);
33b12c38 3144 slab_lock(page);
33b12c38 3145
5f80b13a 3146 get_map(s, page, map);
33b12c38
CL
3147 for_each_object(p, s, addr, page->objects) {
3148
3149 if (!test_bit(slab_index(p, s, addr), map)) {
3150 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3151 p, p - addr);
3152 print_tracking(s, p);
3153 }
3154 }
3155 slab_unlock(page);
bbd7d57b 3156 kfree(map);
33b12c38
CL
3157#endif
3158}
3159
81819f0f 3160/*
599870b1 3161 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3162 * This is called from kmem_cache_close(). We must be the last thread
3163 * using the cache and therefore we do not need to lock anymore.
81819f0f 3164 */
599870b1 3165static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3166{
81819f0f
CL
3167 struct page *page, *h;
3168
33b12c38 3169 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3170 if (!page->inuse) {
5cc6eee8 3171 remove_partial(n, page);
81819f0f 3172 discard_slab(s, page);
33b12c38
CL
3173 } else {
3174 list_slab_objects(s, page,
945cf2b6 3175 "Objects remaining in %s on kmem_cache_close()");
599870b1 3176 }
33b12c38 3177 }
81819f0f
CL
3178}
3179
3180/*
672bba3a 3181 * Release all resources used by a slab cache.
81819f0f 3182 */
0c710013 3183static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3184{
3185 int node;
3186
3187 flush_all(s);
81819f0f 3188 /* Attempt to free all objects */
f64dc58c 3189 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3190 struct kmem_cache_node *n = get_node(s, node);
3191
599870b1
CL
3192 free_partial(s, n);
3193 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3194 return 1;
3195 }
945cf2b6 3196 free_percpu(s->cpu_slab);
81819f0f
CL
3197 free_kmem_cache_nodes(s);
3198 return 0;
3199}
3200
945cf2b6
CL
3201int __kmem_cache_shutdown(struct kmem_cache *s)
3202{
12c3667f 3203 int rc = kmem_cache_close(s);
945cf2b6 3204
12c3667f
CL
3205 if (!rc)
3206 sysfs_slab_remove(s);
3207
3208 return rc;
81819f0f 3209}
81819f0f
CL
3210
3211/********************************************************************
3212 * Kmalloc subsystem
3213 *******************************************************************/
3214
51df1142 3215struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3216EXPORT_SYMBOL(kmalloc_caches);
3217
55136592 3218#ifdef CONFIG_ZONE_DMA
51df1142 3219static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3220#endif
3221
81819f0f
CL
3222static int __init setup_slub_min_order(char *str)
3223{
06428780 3224 get_option(&str, &slub_min_order);
81819f0f
CL
3225
3226 return 1;
3227}
3228
3229__setup("slub_min_order=", setup_slub_min_order);
3230
3231static int __init setup_slub_max_order(char *str)
3232{
06428780 3233 get_option(&str, &slub_max_order);
818cf590 3234 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3235
3236 return 1;
3237}
3238
3239__setup("slub_max_order=", setup_slub_max_order);
3240
3241static int __init setup_slub_min_objects(char *str)
3242{
06428780 3243 get_option(&str, &slub_min_objects);
81819f0f
CL
3244
3245 return 1;
3246}
3247
3248__setup("slub_min_objects=", setup_slub_min_objects);
3249
3250static int __init setup_slub_nomerge(char *str)
3251{
3252 slub_nomerge = 1;
3253 return 1;
3254}
3255
3256__setup("slub_nomerge", setup_slub_nomerge);
3257
51df1142
CL
3258static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3259 int size, unsigned int flags)
81819f0f 3260{
51df1142
CL
3261 struct kmem_cache *s;
3262
3263 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3264
83b519e8
PE
3265 /*
3266 * This function is called with IRQs disabled during early-boot on
18004c5d 3267 * single CPU so there's no need to take slab_mutex here.
83b519e8 3268 */
55136592 3269 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3270 flags, NULL))
81819f0f
CL
3271 goto panic;
3272
3273 list_add(&s->list, &slab_caches);
51df1142 3274 return s;
81819f0f
CL
3275
3276panic:
3277 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3278 return NULL;
81819f0f
CL
3279}
3280
f1b26339
CL
3281/*
3282 * Conversion table for small slabs sizes / 8 to the index in the
3283 * kmalloc array. This is necessary for slabs < 192 since we have non power
3284 * of two cache sizes there. The size of larger slabs can be determined using
3285 * fls.
3286 */
3287static s8 size_index[24] = {
3288 3, /* 8 */
3289 4, /* 16 */
3290 5, /* 24 */
3291 5, /* 32 */
3292 6, /* 40 */
3293 6, /* 48 */
3294 6, /* 56 */
3295 6, /* 64 */
3296 1, /* 72 */
3297 1, /* 80 */
3298 1, /* 88 */
3299 1, /* 96 */
3300 7, /* 104 */
3301 7, /* 112 */
3302 7, /* 120 */
3303 7, /* 128 */
3304 2, /* 136 */
3305 2, /* 144 */
3306 2, /* 152 */
3307 2, /* 160 */
3308 2, /* 168 */
3309 2, /* 176 */
3310 2, /* 184 */
3311 2 /* 192 */
3312};
3313
acdfcd04
AK
3314static inline int size_index_elem(size_t bytes)
3315{
3316 return (bytes - 1) / 8;
3317}
3318
81819f0f
CL
3319static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3320{
f1b26339 3321 int index;
81819f0f 3322
f1b26339
CL
3323 if (size <= 192) {
3324 if (!size)
3325 return ZERO_SIZE_PTR;
81819f0f 3326
acdfcd04 3327 index = size_index[size_index_elem(size)];
aadb4bc4 3328 } else
f1b26339 3329 index = fls(size - 1);
81819f0f
CL
3330
3331#ifdef CONFIG_ZONE_DMA
f1b26339 3332 if (unlikely((flags & SLUB_DMA)))
51df1142 3333 return kmalloc_dma_caches[index];
f1b26339 3334
81819f0f 3335#endif
51df1142 3336 return kmalloc_caches[index];
81819f0f
CL
3337}
3338
3339void *__kmalloc(size_t size, gfp_t flags)
3340{
aadb4bc4 3341 struct kmem_cache *s;
5b882be4 3342 void *ret;
81819f0f 3343
ffadd4d0 3344 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3345 return kmalloc_large(size, flags);
aadb4bc4
CL
3346
3347 s = get_slab(size, flags);
3348
3349 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3350 return s;
3351
2154a336 3352 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3353
ca2b84cb 3354 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3355
3356 return ret;
81819f0f
CL
3357}
3358EXPORT_SYMBOL(__kmalloc);
3359
5d1f57e4 3360#ifdef CONFIG_NUMA
f619cfe1
CL
3361static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3362{
b1eeab67 3363 struct page *page;
e4f7c0b4 3364 void *ptr = NULL;
f619cfe1 3365
b1eeab67
VN
3366 flags |= __GFP_COMP | __GFP_NOTRACK;
3367 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3368 if (page)
e4f7c0b4
CM
3369 ptr = page_address(page);
3370
3371 kmemleak_alloc(ptr, size, 1, flags);
3372 return ptr;
f619cfe1
CL
3373}
3374
81819f0f
CL
3375void *__kmalloc_node(size_t size, gfp_t flags, int node)
3376{
aadb4bc4 3377 struct kmem_cache *s;
5b882be4 3378 void *ret;
81819f0f 3379
057685cf 3380 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3381 ret = kmalloc_large_node(size, flags, node);
3382
ca2b84cb
EGM
3383 trace_kmalloc_node(_RET_IP_, ret,
3384 size, PAGE_SIZE << get_order(size),
3385 flags, node);
5b882be4
EGM
3386
3387 return ret;
3388 }
aadb4bc4
CL
3389
3390 s = get_slab(size, flags);
3391
3392 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3393 return s;
3394
5b882be4
EGM
3395 ret = slab_alloc(s, flags, node, _RET_IP_);
3396
ca2b84cb 3397 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3398
3399 return ret;
81819f0f
CL
3400}
3401EXPORT_SYMBOL(__kmalloc_node);
3402#endif
3403
3404size_t ksize(const void *object)
3405{
272c1d21 3406 struct page *page;
81819f0f 3407
ef8b4520 3408 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3409 return 0;
3410
294a80a8 3411 page = virt_to_head_page(object);
294a80a8 3412
76994412
PE
3413 if (unlikely(!PageSlab(page))) {
3414 WARN_ON(!PageCompound(page));
294a80a8 3415 return PAGE_SIZE << compound_order(page);
76994412 3416 }
81819f0f 3417
b3d41885 3418 return slab_ksize(page->slab);
81819f0f 3419}
b1aabecd 3420EXPORT_SYMBOL(ksize);
81819f0f 3421
d18a90dd
BG
3422#ifdef CONFIG_SLUB_DEBUG
3423bool verify_mem_not_deleted(const void *x)
3424{
3425 struct page *page;
3426 void *object = (void *)x;
3427 unsigned long flags;
3428 bool rv;
3429
3430 if (unlikely(ZERO_OR_NULL_PTR(x)))
3431 return false;
3432
3433 local_irq_save(flags);
3434
3435 page = virt_to_head_page(x);
3436 if (unlikely(!PageSlab(page))) {
3437 /* maybe it was from stack? */
3438 rv = true;
3439 goto out_unlock;
3440 }
3441
3442 slab_lock(page);
3443 if (on_freelist(page->slab, page, object)) {
3444 object_err(page->slab, page, object, "Object is on free-list");
3445 rv = false;
3446 } else {
3447 rv = true;
3448 }
3449 slab_unlock(page);
3450
3451out_unlock:
3452 local_irq_restore(flags);
3453 return rv;
3454}
3455EXPORT_SYMBOL(verify_mem_not_deleted);
3456#endif
3457
81819f0f
CL
3458void kfree(const void *x)
3459{
81819f0f 3460 struct page *page;
5bb983b0 3461 void *object = (void *)x;
81819f0f 3462
2121db74
PE
3463 trace_kfree(_RET_IP_, x);
3464
2408c550 3465 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3466 return;
3467
b49af68f 3468 page = virt_to_head_page(x);
aadb4bc4 3469 if (unlikely(!PageSlab(page))) {
0937502a 3470 BUG_ON(!PageCompound(page));
e4f7c0b4 3471 kmemleak_free(x);
d9b7f226 3472 __free_pages(page, compound_order(page));
aadb4bc4
CL
3473 return;
3474 }
ce71e27c 3475 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3476}
3477EXPORT_SYMBOL(kfree);
3478
2086d26a 3479/*
672bba3a
CL
3480 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3481 * the remaining slabs by the number of items in use. The slabs with the
3482 * most items in use come first. New allocations will then fill those up
3483 * and thus they can be removed from the partial lists.
3484 *
3485 * The slabs with the least items are placed last. This results in them
3486 * being allocated from last increasing the chance that the last objects
3487 * are freed in them.
2086d26a
CL
3488 */
3489int kmem_cache_shrink(struct kmem_cache *s)
3490{
3491 int node;
3492 int i;
3493 struct kmem_cache_node *n;
3494 struct page *page;
3495 struct page *t;
205ab99d 3496 int objects = oo_objects(s->max);
2086d26a 3497 struct list_head *slabs_by_inuse =
834f3d11 3498 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3499 unsigned long flags;
3500
3501 if (!slabs_by_inuse)
3502 return -ENOMEM;
3503
3504 flush_all(s);
f64dc58c 3505 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3506 n = get_node(s, node);
3507
3508 if (!n->nr_partial)
3509 continue;
3510
834f3d11 3511 for (i = 0; i < objects; i++)
2086d26a
CL
3512 INIT_LIST_HEAD(slabs_by_inuse + i);
3513
3514 spin_lock_irqsave(&n->list_lock, flags);
3515
3516 /*
672bba3a 3517 * Build lists indexed by the items in use in each slab.
2086d26a 3518 *
672bba3a
CL
3519 * Note that concurrent frees may occur while we hold the
3520 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3521 */
3522 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3523 list_move(&page->lru, slabs_by_inuse + page->inuse);
3524 if (!page->inuse)
3525 n->nr_partial--;
2086d26a
CL
3526 }
3527
2086d26a 3528 /*
672bba3a
CL
3529 * Rebuild the partial list with the slabs filled up most
3530 * first and the least used slabs at the end.
2086d26a 3531 */
69cb8e6b 3532 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3533 list_splice(slabs_by_inuse + i, n->partial.prev);
3534
2086d26a 3535 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3536
3537 /* Release empty slabs */
3538 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3539 discard_slab(s, page);
2086d26a
CL
3540 }
3541
3542 kfree(slabs_by_inuse);
3543 return 0;
3544}
3545EXPORT_SYMBOL(kmem_cache_shrink);
3546
92a5bbc1 3547#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3548static int slab_mem_going_offline_callback(void *arg)
3549{
3550 struct kmem_cache *s;
3551
18004c5d 3552 mutex_lock(&slab_mutex);
b9049e23
YG
3553 list_for_each_entry(s, &slab_caches, list)
3554 kmem_cache_shrink(s);
18004c5d 3555 mutex_unlock(&slab_mutex);
b9049e23
YG
3556
3557 return 0;
3558}
3559
3560static void slab_mem_offline_callback(void *arg)
3561{
3562 struct kmem_cache_node *n;
3563 struct kmem_cache *s;
3564 struct memory_notify *marg = arg;
3565 int offline_node;
3566
3567 offline_node = marg->status_change_nid;
3568
3569 /*
3570 * If the node still has available memory. we need kmem_cache_node
3571 * for it yet.
3572 */
3573 if (offline_node < 0)
3574 return;
3575
18004c5d 3576 mutex_lock(&slab_mutex);
b9049e23
YG
3577 list_for_each_entry(s, &slab_caches, list) {
3578 n = get_node(s, offline_node);
3579 if (n) {
3580 /*
3581 * if n->nr_slabs > 0, slabs still exist on the node
3582 * that is going down. We were unable to free them,
c9404c9c 3583 * and offline_pages() function shouldn't call this
b9049e23
YG
3584 * callback. So, we must fail.
3585 */
0f389ec6 3586 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3587
3588 s->node[offline_node] = NULL;
8de66a0c 3589 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3590 }
3591 }
18004c5d 3592 mutex_unlock(&slab_mutex);
b9049e23
YG
3593}
3594
3595static int slab_mem_going_online_callback(void *arg)
3596{
3597 struct kmem_cache_node *n;
3598 struct kmem_cache *s;
3599 struct memory_notify *marg = arg;
3600 int nid = marg->status_change_nid;
3601 int ret = 0;
3602
3603 /*
3604 * If the node's memory is already available, then kmem_cache_node is
3605 * already created. Nothing to do.
3606 */
3607 if (nid < 0)
3608 return 0;
3609
3610 /*
0121c619 3611 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3612 * allocate a kmem_cache_node structure in order to bring the node
3613 * online.
3614 */
18004c5d 3615 mutex_lock(&slab_mutex);
b9049e23
YG
3616 list_for_each_entry(s, &slab_caches, list) {
3617 /*
3618 * XXX: kmem_cache_alloc_node will fallback to other nodes
3619 * since memory is not yet available from the node that
3620 * is brought up.
3621 */
8de66a0c 3622 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3623 if (!n) {
3624 ret = -ENOMEM;
3625 goto out;
3626 }
4053497d 3627 init_kmem_cache_node(n);
b9049e23
YG
3628 s->node[nid] = n;
3629 }
3630out:
18004c5d 3631 mutex_unlock(&slab_mutex);
b9049e23
YG
3632 return ret;
3633}
3634
3635static int slab_memory_callback(struct notifier_block *self,
3636 unsigned long action, void *arg)
3637{
3638 int ret = 0;
3639
3640 switch (action) {
3641 case MEM_GOING_ONLINE:
3642 ret = slab_mem_going_online_callback(arg);
3643 break;
3644 case MEM_GOING_OFFLINE:
3645 ret = slab_mem_going_offline_callback(arg);
3646 break;
3647 case MEM_OFFLINE:
3648 case MEM_CANCEL_ONLINE:
3649 slab_mem_offline_callback(arg);
3650 break;
3651 case MEM_ONLINE:
3652 case MEM_CANCEL_OFFLINE:
3653 break;
3654 }
dc19f9db
KH
3655 if (ret)
3656 ret = notifier_from_errno(ret);
3657 else
3658 ret = NOTIFY_OK;
b9049e23
YG
3659 return ret;
3660}
3661
3662#endif /* CONFIG_MEMORY_HOTPLUG */
3663
81819f0f
CL
3664/********************************************************************
3665 * Basic setup of slabs
3666 *******************************************************************/
3667
51df1142
CL
3668/*
3669 * Used for early kmem_cache structures that were allocated using
3670 * the page allocator
3671 */
3672
3673static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3674{
3675 int node;
3676
3677 list_add(&s->list, &slab_caches);
3678 s->refcount = -1;
3679
3680 for_each_node_state(node, N_NORMAL_MEMORY) {
3681 struct kmem_cache_node *n = get_node(s, node);
3682 struct page *p;
3683
3684 if (n) {
3685 list_for_each_entry(p, &n->partial, lru)
3686 p->slab = s;
3687
607bf324 3688#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3689 list_for_each_entry(p, &n->full, lru)
3690 p->slab = s;
3691#endif
3692 }
3693 }
3694}
3695
81819f0f
CL
3696void __init kmem_cache_init(void)
3697{
3698 int i;
4b356be0 3699 int caches = 0;
51df1142
CL
3700 struct kmem_cache *temp_kmem_cache;
3701 int order;
51df1142
CL
3702 struct kmem_cache *temp_kmem_cache_node;
3703 unsigned long kmalloc_size;
3704
fc8d8620
SG
3705 if (debug_guardpage_minorder())
3706 slub_max_order = 0;
3707
51df1142 3708 kmem_size = offsetof(struct kmem_cache, node) +
cbb79694 3709 nr_node_ids * sizeof(struct kmem_cache_node *);
51df1142
CL
3710
3711 /* Allocate two kmem_caches from the page allocator */
3712 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3713 order = get_order(2 * kmalloc_size);
3714 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3715
81819f0f
CL
3716 /*
3717 * Must first have the slab cache available for the allocations of the
672bba3a 3718 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3719 * kmem_cache_open for slab_state == DOWN.
3720 */
51df1142
CL
3721 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3722
3723 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3724 sizeof(struct kmem_cache_node),
3725 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3726
0c40ba4f 3727 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3728
3729 /* Able to allocate the per node structures */
3730 slab_state = PARTIAL;
3731
51df1142
CL
3732 temp_kmem_cache = kmem_cache;
3733 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3734 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3735 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3736 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3737
51df1142
CL
3738 /*
3739 * Allocate kmem_cache_node properly from the kmem_cache slab.
3740 * kmem_cache_node is separately allocated so no need to
3741 * update any list pointers.
3742 */
3743 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3744
51df1142
CL
3745 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3746 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3747
3748 kmem_cache_bootstrap_fixup(kmem_cache_node);
3749
3750 caches++;
51df1142
CL
3751 kmem_cache_bootstrap_fixup(kmem_cache);
3752 caches++;
3753 /* Free temporary boot structure */
3754 free_pages((unsigned long)temp_kmem_cache, order);
3755
3756 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3757
3758 /*
3759 * Patch up the size_index table if we have strange large alignment
3760 * requirements for the kmalloc array. This is only the case for
6446faa2 3761 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3762 *
3763 * Largest permitted alignment is 256 bytes due to the way we
3764 * handle the index determination for the smaller caches.
3765 *
3766 * Make sure that nothing crazy happens if someone starts tinkering
3767 * around with ARCH_KMALLOC_MINALIGN
3768 */
3769 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3770 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3771
acdfcd04
AK
3772 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3773 int elem = size_index_elem(i);
3774 if (elem >= ARRAY_SIZE(size_index))
3775 break;
3776 size_index[elem] = KMALLOC_SHIFT_LOW;
3777 }
f1b26339 3778
acdfcd04
AK
3779 if (KMALLOC_MIN_SIZE == 64) {
3780 /*
3781 * The 96 byte size cache is not used if the alignment
3782 * is 64 byte.
3783 */
3784 for (i = 64 + 8; i <= 96; i += 8)
3785 size_index[size_index_elem(i)] = 7;
3786 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3787 /*
3788 * The 192 byte sized cache is not used if the alignment
3789 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3790 * instead.
3791 */
3792 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3793 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3794 }
3795
51df1142
CL
3796 /* Caches that are not of the two-to-the-power-of size */
3797 if (KMALLOC_MIN_SIZE <= 32) {
3798 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3799 caches++;
3800 }
3801
3802 if (KMALLOC_MIN_SIZE <= 64) {
3803 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3804 caches++;
3805 }
3806
3807 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3808 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3809 caches++;
3810 }
3811
81819f0f
CL
3812 slab_state = UP;
3813
3814 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3815 if (KMALLOC_MIN_SIZE <= 32) {
3816 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3817 BUG_ON(!kmalloc_caches[1]->name);
3818 }
3819
3820 if (KMALLOC_MIN_SIZE <= 64) {
3821 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3822 BUG_ON(!kmalloc_caches[2]->name);
3823 }
3824
d7278bd7
CL
3825 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3826 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3827
3828 BUG_ON(!s);
51df1142 3829 kmalloc_caches[i]->name = s;
d7278bd7 3830 }
81819f0f
CL
3831
3832#ifdef CONFIG_SMP
3833 register_cpu_notifier(&slab_notifier);
9dfc6e68 3834#endif
81819f0f 3835
55136592 3836#ifdef CONFIG_ZONE_DMA
51df1142
CL
3837 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3838 struct kmem_cache *s = kmalloc_caches[i];
55136592 3839
51df1142 3840 if (s && s->size) {
55136592 3841 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3842 "dma-kmalloc-%d", s->object_size);
55136592
CL
3843
3844 BUG_ON(!name);
51df1142 3845 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3846 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3847 }
3848 }
3849#endif
3adbefee
IM
3850 printk(KERN_INFO
3851 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3852 " CPUs=%d, Nodes=%d\n",
3853 caches, cache_line_size(),
81819f0f
CL
3854 slub_min_order, slub_max_order, slub_min_objects,
3855 nr_cpu_ids, nr_node_ids);
3856}
3857
7e85ee0c
PE
3858void __init kmem_cache_init_late(void)
3859{
7e85ee0c
PE
3860}
3861
81819f0f
CL
3862/*
3863 * Find a mergeable slab cache
3864 */
3865static int slab_unmergeable(struct kmem_cache *s)
3866{
3867 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3868 return 1;
3869
c59def9f 3870 if (s->ctor)
81819f0f
CL
3871 return 1;
3872
8ffa6875
CL
3873 /*
3874 * We may have set a slab to be unmergeable during bootstrap.
3875 */
3876 if (s->refcount < 0)
3877 return 1;
3878
81819f0f
CL
3879 return 0;
3880}
3881
3882static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3883 size_t align, unsigned long flags, const char *name,
51cc5068 3884 void (*ctor)(void *))
81819f0f 3885{
5b95a4ac 3886 struct kmem_cache *s;
81819f0f
CL
3887
3888 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3889 return NULL;
3890
c59def9f 3891 if (ctor)
81819f0f
CL
3892 return NULL;
3893
3894 size = ALIGN(size, sizeof(void *));
3895 align = calculate_alignment(flags, align, size);
3896 size = ALIGN(size, align);
ba0268a8 3897 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3898
5b95a4ac 3899 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3900 if (slab_unmergeable(s))
3901 continue;
3902
3903 if (size > s->size)
3904 continue;
3905
ba0268a8 3906 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3907 continue;
3908 /*
3909 * Check if alignment is compatible.
3910 * Courtesy of Adrian Drzewiecki
3911 */
06428780 3912 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3913 continue;
3914
3915 if (s->size - size >= sizeof(void *))
3916 continue;
3917
3918 return s;
3919 }
3920 return NULL;
3921}
3922
cbb79694 3923struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
51cc5068 3924 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3925{
3926 struct kmem_cache *s;
3927
ba0268a8 3928 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3929 if (s) {
3930 s->refcount++;
3931 /*
3932 * Adjust the object sizes so that we clear
3933 * the complete object on kzalloc.
3934 */
3b0efdfa 3935 s->object_size = max(s->object_size, (int)size);
81819f0f 3936 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3937
7b8f3b66 3938 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3939 s->refcount--;
cbb79694 3940 s = NULL;
7b8f3b66 3941 }
a0e1d1be 3942 }
6446faa2 3943
cbb79694
CL
3944 return s;
3945}
3946
3947struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3948 size_t align, unsigned long flags, void (*ctor)(void *))
3949{
3950 struct kmem_cache *s;
3951
208c4358 3952 s = kmem_cache_alloc(kmem_cache, GFP_KERNEL);
a0e1d1be 3953 if (s) {
db265eca 3954 if (kmem_cache_open(s, name,
c59def9f 3955 size, align, flags, ctor)) {
96d17b7b 3956 return s;
a0e1d1be 3957 }
208c4358 3958 kmem_cache_free(kmem_cache, s);
81819f0f 3959 }
20cea968 3960 return NULL;
81819f0f 3961}
81819f0f 3962
81819f0f 3963#ifdef CONFIG_SMP
81819f0f 3964/*
672bba3a
CL
3965 * Use the cpu notifier to insure that the cpu slabs are flushed when
3966 * necessary.
81819f0f
CL
3967 */
3968static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3969 unsigned long action, void *hcpu)
3970{
3971 long cpu = (long)hcpu;
5b95a4ac
CL
3972 struct kmem_cache *s;
3973 unsigned long flags;
81819f0f
CL
3974
3975 switch (action) {
3976 case CPU_UP_CANCELED:
8bb78442 3977 case CPU_UP_CANCELED_FROZEN:
81819f0f 3978 case CPU_DEAD:
8bb78442 3979 case CPU_DEAD_FROZEN:
18004c5d 3980 mutex_lock(&slab_mutex);
5b95a4ac
CL
3981 list_for_each_entry(s, &slab_caches, list) {
3982 local_irq_save(flags);
3983 __flush_cpu_slab(s, cpu);
3984 local_irq_restore(flags);
3985 }
18004c5d 3986 mutex_unlock(&slab_mutex);
81819f0f
CL
3987 break;
3988 default:
3989 break;
3990 }
3991 return NOTIFY_OK;
3992}
3993
06428780 3994static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3995 .notifier_call = slab_cpuup_callback
06428780 3996};
81819f0f
CL
3997
3998#endif
3999
ce71e27c 4000void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4001{
aadb4bc4 4002 struct kmem_cache *s;
94b528d0 4003 void *ret;
aadb4bc4 4004
ffadd4d0 4005 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4006 return kmalloc_large(size, gfpflags);
4007
aadb4bc4 4008 s = get_slab(size, gfpflags);
81819f0f 4009
2408c550 4010 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4011 return s;
81819f0f 4012
2154a336 4013 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4014
25985edc 4015 /* Honor the call site pointer we received. */
ca2b84cb 4016 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4017
4018 return ret;
81819f0f
CL
4019}
4020
5d1f57e4 4021#ifdef CONFIG_NUMA
81819f0f 4022void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4023 int node, unsigned long caller)
81819f0f 4024{
aadb4bc4 4025 struct kmem_cache *s;
94b528d0 4026 void *ret;
aadb4bc4 4027
d3e14aa3
XF
4028 if (unlikely(size > SLUB_MAX_SIZE)) {
4029 ret = kmalloc_large_node(size, gfpflags, node);
4030
4031 trace_kmalloc_node(caller, ret,
4032 size, PAGE_SIZE << get_order(size),
4033 gfpflags, node);
4034
4035 return ret;
4036 }
eada35ef 4037
aadb4bc4 4038 s = get_slab(size, gfpflags);
81819f0f 4039
2408c550 4040 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4041 return s;
81819f0f 4042
94b528d0
EGM
4043 ret = slab_alloc(s, gfpflags, node, caller);
4044
25985edc 4045 /* Honor the call site pointer we received. */
ca2b84cb 4046 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4047
4048 return ret;
81819f0f 4049}
5d1f57e4 4050#endif
81819f0f 4051
ab4d5ed5 4052#ifdef CONFIG_SYSFS
205ab99d
CL
4053static int count_inuse(struct page *page)
4054{
4055 return page->inuse;
4056}
4057
4058static int count_total(struct page *page)
4059{
4060 return page->objects;
4061}
ab4d5ed5 4062#endif
205ab99d 4063
ab4d5ed5 4064#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4065static int validate_slab(struct kmem_cache *s, struct page *page,
4066 unsigned long *map)
53e15af0
CL
4067{
4068 void *p;
a973e9dd 4069 void *addr = page_address(page);
53e15af0
CL
4070
4071 if (!check_slab(s, page) ||
4072 !on_freelist(s, page, NULL))
4073 return 0;
4074
4075 /* Now we know that a valid freelist exists */
39b26464 4076 bitmap_zero(map, page->objects);
53e15af0 4077
5f80b13a
CL
4078 get_map(s, page, map);
4079 for_each_object(p, s, addr, page->objects) {
4080 if (test_bit(slab_index(p, s, addr), map))
4081 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4082 return 0;
53e15af0
CL
4083 }
4084
224a88be 4085 for_each_object(p, s, addr, page->objects)
7656c72b 4086 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4087 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4088 return 0;
4089 return 1;
4090}
4091
434e245d
CL
4092static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4093 unsigned long *map)
53e15af0 4094{
881db7fb
CL
4095 slab_lock(page);
4096 validate_slab(s, page, map);
4097 slab_unlock(page);
53e15af0
CL
4098}
4099
434e245d
CL
4100static int validate_slab_node(struct kmem_cache *s,
4101 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4102{
4103 unsigned long count = 0;
4104 struct page *page;
4105 unsigned long flags;
4106
4107 spin_lock_irqsave(&n->list_lock, flags);
4108
4109 list_for_each_entry(page, &n->partial, lru) {
434e245d 4110 validate_slab_slab(s, page, map);
53e15af0
CL
4111 count++;
4112 }
4113 if (count != n->nr_partial)
4114 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4115 "counter=%ld\n", s->name, count, n->nr_partial);
4116
4117 if (!(s->flags & SLAB_STORE_USER))
4118 goto out;
4119
4120 list_for_each_entry(page, &n->full, lru) {
434e245d 4121 validate_slab_slab(s, page, map);
53e15af0
CL
4122 count++;
4123 }
4124 if (count != atomic_long_read(&n->nr_slabs))
4125 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4126 "counter=%ld\n", s->name, count,
4127 atomic_long_read(&n->nr_slabs));
4128
4129out:
4130 spin_unlock_irqrestore(&n->list_lock, flags);
4131 return count;
4132}
4133
434e245d 4134static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4135{
4136 int node;
4137 unsigned long count = 0;
205ab99d 4138 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4139 sizeof(unsigned long), GFP_KERNEL);
4140
4141 if (!map)
4142 return -ENOMEM;
53e15af0
CL
4143
4144 flush_all(s);
f64dc58c 4145 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4146 struct kmem_cache_node *n = get_node(s, node);
4147
434e245d 4148 count += validate_slab_node(s, n, map);
53e15af0 4149 }
434e245d 4150 kfree(map);
53e15af0
CL
4151 return count;
4152}
88a420e4 4153/*
672bba3a 4154 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4155 * and freed.
4156 */
4157
4158struct location {
4159 unsigned long count;
ce71e27c 4160 unsigned long addr;
45edfa58
CL
4161 long long sum_time;
4162 long min_time;
4163 long max_time;
4164 long min_pid;
4165 long max_pid;
174596a0 4166 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4167 nodemask_t nodes;
88a420e4
CL
4168};
4169
4170struct loc_track {
4171 unsigned long max;
4172 unsigned long count;
4173 struct location *loc;
4174};
4175
4176static void free_loc_track(struct loc_track *t)
4177{
4178 if (t->max)
4179 free_pages((unsigned long)t->loc,
4180 get_order(sizeof(struct location) * t->max));
4181}
4182
68dff6a9 4183static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4184{
4185 struct location *l;
4186 int order;
4187
88a420e4
CL
4188 order = get_order(sizeof(struct location) * max);
4189
68dff6a9 4190 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4191 if (!l)
4192 return 0;
4193
4194 if (t->count) {
4195 memcpy(l, t->loc, sizeof(struct location) * t->count);
4196 free_loc_track(t);
4197 }
4198 t->max = max;
4199 t->loc = l;
4200 return 1;
4201}
4202
4203static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4204 const struct track *track)
88a420e4
CL
4205{
4206 long start, end, pos;
4207 struct location *l;
ce71e27c 4208 unsigned long caddr;
45edfa58 4209 unsigned long age = jiffies - track->when;
88a420e4
CL
4210
4211 start = -1;
4212 end = t->count;
4213
4214 for ( ; ; ) {
4215 pos = start + (end - start + 1) / 2;
4216
4217 /*
4218 * There is nothing at "end". If we end up there
4219 * we need to add something to before end.
4220 */
4221 if (pos == end)
4222 break;
4223
4224 caddr = t->loc[pos].addr;
45edfa58
CL
4225 if (track->addr == caddr) {
4226
4227 l = &t->loc[pos];
4228 l->count++;
4229 if (track->when) {
4230 l->sum_time += age;
4231 if (age < l->min_time)
4232 l->min_time = age;
4233 if (age > l->max_time)
4234 l->max_time = age;
4235
4236 if (track->pid < l->min_pid)
4237 l->min_pid = track->pid;
4238 if (track->pid > l->max_pid)
4239 l->max_pid = track->pid;
4240
174596a0
RR
4241 cpumask_set_cpu(track->cpu,
4242 to_cpumask(l->cpus));
45edfa58
CL
4243 }
4244 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4245 return 1;
4246 }
4247
45edfa58 4248 if (track->addr < caddr)
88a420e4
CL
4249 end = pos;
4250 else
4251 start = pos;
4252 }
4253
4254 /*
672bba3a 4255 * Not found. Insert new tracking element.
88a420e4 4256 */
68dff6a9 4257 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4258 return 0;
4259
4260 l = t->loc + pos;
4261 if (pos < t->count)
4262 memmove(l + 1, l,
4263 (t->count - pos) * sizeof(struct location));
4264 t->count++;
4265 l->count = 1;
45edfa58
CL
4266 l->addr = track->addr;
4267 l->sum_time = age;
4268 l->min_time = age;
4269 l->max_time = age;
4270 l->min_pid = track->pid;
4271 l->max_pid = track->pid;
174596a0
RR
4272 cpumask_clear(to_cpumask(l->cpus));
4273 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4274 nodes_clear(l->nodes);
4275 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4276 return 1;
4277}
4278
4279static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4280 struct page *page, enum track_item alloc,
a5dd5c11 4281 unsigned long *map)
88a420e4 4282{
a973e9dd 4283 void *addr = page_address(page);
88a420e4
CL
4284 void *p;
4285
39b26464 4286 bitmap_zero(map, page->objects);
5f80b13a 4287 get_map(s, page, map);
88a420e4 4288
224a88be 4289 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4290 if (!test_bit(slab_index(p, s, addr), map))
4291 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4292}
4293
4294static int list_locations(struct kmem_cache *s, char *buf,
4295 enum track_item alloc)
4296{
e374d483 4297 int len = 0;
88a420e4 4298 unsigned long i;
68dff6a9 4299 struct loc_track t = { 0, 0, NULL };
88a420e4 4300 int node;
bbd7d57b
ED
4301 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4302 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4303
bbd7d57b
ED
4304 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4305 GFP_TEMPORARY)) {
4306 kfree(map);
68dff6a9 4307 return sprintf(buf, "Out of memory\n");
bbd7d57b 4308 }
88a420e4
CL
4309 /* Push back cpu slabs */
4310 flush_all(s);
4311
f64dc58c 4312 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4313 struct kmem_cache_node *n = get_node(s, node);
4314 unsigned long flags;
4315 struct page *page;
4316
9e86943b 4317 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4318 continue;
4319
4320 spin_lock_irqsave(&n->list_lock, flags);
4321 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4322 process_slab(&t, s, page, alloc, map);
88a420e4 4323 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4324 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4325 spin_unlock_irqrestore(&n->list_lock, flags);
4326 }
4327
4328 for (i = 0; i < t.count; i++) {
45edfa58 4329 struct location *l = &t.loc[i];
88a420e4 4330
9c246247 4331 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4332 break;
e374d483 4333 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4334
4335 if (l->addr)
62c70bce 4336 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4337 else
e374d483 4338 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4339
4340 if (l->sum_time != l->min_time) {
e374d483 4341 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4342 l->min_time,
4343 (long)div_u64(l->sum_time, l->count),
4344 l->max_time);
45edfa58 4345 } else
e374d483 4346 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4347 l->min_time);
4348
4349 if (l->min_pid != l->max_pid)
e374d483 4350 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4351 l->min_pid, l->max_pid);
4352 else
e374d483 4353 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4354 l->min_pid);
4355
174596a0
RR
4356 if (num_online_cpus() > 1 &&
4357 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4358 len < PAGE_SIZE - 60) {
4359 len += sprintf(buf + len, " cpus=");
4360 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4361 to_cpumask(l->cpus));
45edfa58
CL
4362 }
4363
62bc62a8 4364 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4365 len < PAGE_SIZE - 60) {
4366 len += sprintf(buf + len, " nodes=");
4367 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4368 l->nodes);
4369 }
4370
e374d483 4371 len += sprintf(buf + len, "\n");
88a420e4
CL
4372 }
4373
4374 free_loc_track(&t);
bbd7d57b 4375 kfree(map);
88a420e4 4376 if (!t.count)
e374d483
HH
4377 len += sprintf(buf, "No data\n");
4378 return len;
88a420e4 4379}
ab4d5ed5 4380#endif
88a420e4 4381
a5a84755
CL
4382#ifdef SLUB_RESILIENCY_TEST
4383static void resiliency_test(void)
4384{
4385 u8 *p;
4386
4387 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4388
4389 printk(KERN_ERR "SLUB resiliency testing\n");
4390 printk(KERN_ERR "-----------------------\n");
4391 printk(KERN_ERR "A. Corruption after allocation\n");
4392
4393 p = kzalloc(16, GFP_KERNEL);
4394 p[16] = 0x12;
4395 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4396 " 0x12->0x%p\n\n", p + 16);
4397
4398 validate_slab_cache(kmalloc_caches[4]);
4399
4400 /* Hmmm... The next two are dangerous */
4401 p = kzalloc(32, GFP_KERNEL);
4402 p[32 + sizeof(void *)] = 0x34;
4403 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4404 " 0x34 -> -0x%p\n", p);
4405 printk(KERN_ERR
4406 "If allocated object is overwritten then not detectable\n\n");
4407
4408 validate_slab_cache(kmalloc_caches[5]);
4409 p = kzalloc(64, GFP_KERNEL);
4410 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4411 *p = 0x56;
4412 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4413 p);
4414 printk(KERN_ERR
4415 "If allocated object is overwritten then not detectable\n\n");
4416 validate_slab_cache(kmalloc_caches[6]);
4417
4418 printk(KERN_ERR "\nB. Corruption after free\n");
4419 p = kzalloc(128, GFP_KERNEL);
4420 kfree(p);
4421 *p = 0x78;
4422 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4423 validate_slab_cache(kmalloc_caches[7]);
4424
4425 p = kzalloc(256, GFP_KERNEL);
4426 kfree(p);
4427 p[50] = 0x9a;
4428 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4429 p);
4430 validate_slab_cache(kmalloc_caches[8]);
4431
4432 p = kzalloc(512, GFP_KERNEL);
4433 kfree(p);
4434 p[512] = 0xab;
4435 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4436 validate_slab_cache(kmalloc_caches[9]);
4437}
4438#else
4439#ifdef CONFIG_SYSFS
4440static void resiliency_test(void) {};
4441#endif
4442#endif
4443
ab4d5ed5 4444#ifdef CONFIG_SYSFS
81819f0f 4445enum slab_stat_type {
205ab99d
CL
4446 SL_ALL, /* All slabs */
4447 SL_PARTIAL, /* Only partially allocated slabs */
4448 SL_CPU, /* Only slabs used for cpu caches */
4449 SL_OBJECTS, /* Determine allocated objects not slabs */
4450 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4451};
4452
205ab99d 4453#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4454#define SO_PARTIAL (1 << SL_PARTIAL)
4455#define SO_CPU (1 << SL_CPU)
4456#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4457#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4458
62e5c4b4
CG
4459static ssize_t show_slab_objects(struct kmem_cache *s,
4460 char *buf, unsigned long flags)
81819f0f
CL
4461{
4462 unsigned long total = 0;
81819f0f
CL
4463 int node;
4464 int x;
4465 unsigned long *nodes;
4466 unsigned long *per_cpu;
4467
4468 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4469 if (!nodes)
4470 return -ENOMEM;
81819f0f
CL
4471 per_cpu = nodes + nr_node_ids;
4472
205ab99d
CL
4473 if (flags & SO_CPU) {
4474 int cpu;
81819f0f 4475
205ab99d 4476 for_each_possible_cpu(cpu) {
9dfc6e68 4477 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4478 int node;
49e22585 4479 struct page *page;
dfb4f096 4480
bc6697d8 4481 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4482 if (!page)
4483 continue;
205ab99d 4484
ec3ab083
CL
4485 node = page_to_nid(page);
4486 if (flags & SO_TOTAL)
4487 x = page->objects;
4488 else if (flags & SO_OBJECTS)
4489 x = page->inuse;
4490 else
4491 x = 1;
49e22585 4492
ec3ab083
CL
4493 total += x;
4494 nodes[node] += x;
4495
4496 page = ACCESS_ONCE(c->partial);
49e22585
CL
4497 if (page) {
4498 x = page->pobjects;
bc6697d8
ED
4499 total += x;
4500 nodes[node] += x;
49e22585 4501 }
ec3ab083 4502
bc6697d8 4503 per_cpu[node]++;
81819f0f
CL
4504 }
4505 }
4506
04d94879 4507 lock_memory_hotplug();
ab4d5ed5 4508#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4509 if (flags & SO_ALL) {
4510 for_each_node_state(node, N_NORMAL_MEMORY) {
4511 struct kmem_cache_node *n = get_node(s, node);
4512
4513 if (flags & SO_TOTAL)
4514 x = atomic_long_read(&n->total_objects);
4515 else if (flags & SO_OBJECTS)
4516 x = atomic_long_read(&n->total_objects) -
4517 count_partial(n, count_free);
81819f0f 4518
81819f0f 4519 else
205ab99d 4520 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4521 total += x;
4522 nodes[node] += x;
4523 }
4524
ab4d5ed5
CL
4525 } else
4526#endif
4527 if (flags & SO_PARTIAL) {
205ab99d
CL
4528 for_each_node_state(node, N_NORMAL_MEMORY) {
4529 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4530
205ab99d
CL
4531 if (flags & SO_TOTAL)
4532 x = count_partial(n, count_total);
4533 else if (flags & SO_OBJECTS)
4534 x = count_partial(n, count_inuse);
81819f0f 4535 else
205ab99d 4536 x = n->nr_partial;
81819f0f
CL
4537 total += x;
4538 nodes[node] += x;
4539 }
4540 }
81819f0f
CL
4541 x = sprintf(buf, "%lu", total);
4542#ifdef CONFIG_NUMA
f64dc58c 4543 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4544 if (nodes[node])
4545 x += sprintf(buf + x, " N%d=%lu",
4546 node, nodes[node]);
4547#endif
04d94879 4548 unlock_memory_hotplug();
81819f0f
CL
4549 kfree(nodes);
4550 return x + sprintf(buf + x, "\n");
4551}
4552
ab4d5ed5 4553#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4554static int any_slab_objects(struct kmem_cache *s)
4555{
4556 int node;
81819f0f 4557
dfb4f096 4558 for_each_online_node(node) {
81819f0f
CL
4559 struct kmem_cache_node *n = get_node(s, node);
4560
dfb4f096
CL
4561 if (!n)
4562 continue;
4563
4ea33e2d 4564 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4565 return 1;
4566 }
4567 return 0;
4568}
ab4d5ed5 4569#endif
81819f0f
CL
4570
4571#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4572#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4573
4574struct slab_attribute {
4575 struct attribute attr;
4576 ssize_t (*show)(struct kmem_cache *s, char *buf);
4577 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4578};
4579
4580#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4581 static struct slab_attribute _name##_attr = \
4582 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4583
4584#define SLAB_ATTR(_name) \
4585 static struct slab_attribute _name##_attr = \
ab067e99 4586 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4587
81819f0f
CL
4588static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4589{
4590 return sprintf(buf, "%d\n", s->size);
4591}
4592SLAB_ATTR_RO(slab_size);
4593
4594static ssize_t align_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", s->align);
4597}
4598SLAB_ATTR_RO(align);
4599
4600static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4601{
3b0efdfa 4602 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4603}
4604SLAB_ATTR_RO(object_size);
4605
4606static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4607{
834f3d11 4608 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4609}
4610SLAB_ATTR_RO(objs_per_slab);
4611
06b285dc
CL
4612static ssize_t order_store(struct kmem_cache *s,
4613 const char *buf, size_t length)
4614{
0121c619
CL
4615 unsigned long order;
4616 int err;
4617
4618 err = strict_strtoul(buf, 10, &order);
4619 if (err)
4620 return err;
06b285dc
CL
4621
4622 if (order > slub_max_order || order < slub_min_order)
4623 return -EINVAL;
4624
4625 calculate_sizes(s, order);
4626 return length;
4627}
4628
81819f0f
CL
4629static ssize_t order_show(struct kmem_cache *s, char *buf)
4630{
834f3d11 4631 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4632}
06b285dc 4633SLAB_ATTR(order);
81819f0f 4634
73d342b1
DR
4635static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4636{
4637 return sprintf(buf, "%lu\n", s->min_partial);
4638}
4639
4640static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4641 size_t length)
4642{
4643 unsigned long min;
4644 int err;
4645
4646 err = strict_strtoul(buf, 10, &min);
4647 if (err)
4648 return err;
4649
c0bdb232 4650 set_min_partial(s, min);
73d342b1
DR
4651 return length;
4652}
4653SLAB_ATTR(min_partial);
4654
49e22585
CL
4655static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4656{
4657 return sprintf(buf, "%u\n", s->cpu_partial);
4658}
4659
4660static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4661 size_t length)
4662{
4663 unsigned long objects;
4664 int err;
4665
4666 err = strict_strtoul(buf, 10, &objects);
4667 if (err)
4668 return err;
74ee4ef1
DR
4669 if (objects && kmem_cache_debug(s))
4670 return -EINVAL;
49e22585
CL
4671
4672 s->cpu_partial = objects;
4673 flush_all(s);
4674 return length;
4675}
4676SLAB_ATTR(cpu_partial);
4677
81819f0f
CL
4678static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4679{
62c70bce
JP
4680 if (!s->ctor)
4681 return 0;
4682 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4683}
4684SLAB_ATTR_RO(ctor);
4685
81819f0f
CL
4686static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4687{
4688 return sprintf(buf, "%d\n", s->refcount - 1);
4689}
4690SLAB_ATTR_RO(aliases);
4691
81819f0f
CL
4692static ssize_t partial_show(struct kmem_cache *s, char *buf)
4693{
d9acf4b7 4694 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4695}
4696SLAB_ATTR_RO(partial);
4697
4698static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4699{
d9acf4b7 4700 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4701}
4702SLAB_ATTR_RO(cpu_slabs);
4703
4704static ssize_t objects_show(struct kmem_cache *s, char *buf)
4705{
205ab99d 4706 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4707}
4708SLAB_ATTR_RO(objects);
4709
205ab99d
CL
4710static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4711{
4712 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4713}
4714SLAB_ATTR_RO(objects_partial);
4715
49e22585
CL
4716static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4717{
4718 int objects = 0;
4719 int pages = 0;
4720 int cpu;
4721 int len;
4722
4723 for_each_online_cpu(cpu) {
4724 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4725
4726 if (page) {
4727 pages += page->pages;
4728 objects += page->pobjects;
4729 }
4730 }
4731
4732 len = sprintf(buf, "%d(%d)", objects, pages);
4733
4734#ifdef CONFIG_SMP
4735 for_each_online_cpu(cpu) {
4736 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4737
4738 if (page && len < PAGE_SIZE - 20)
4739 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4740 page->pobjects, page->pages);
4741 }
4742#endif
4743 return len + sprintf(buf + len, "\n");
4744}
4745SLAB_ATTR_RO(slabs_cpu_partial);
4746
a5a84755
CL
4747static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4748{
4749 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4750}
4751
4752static ssize_t reclaim_account_store(struct kmem_cache *s,
4753 const char *buf, size_t length)
4754{
4755 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4756 if (buf[0] == '1')
4757 s->flags |= SLAB_RECLAIM_ACCOUNT;
4758 return length;
4759}
4760SLAB_ATTR(reclaim_account);
4761
4762static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4763{
4764 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4765}
4766SLAB_ATTR_RO(hwcache_align);
4767
4768#ifdef CONFIG_ZONE_DMA
4769static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4770{
4771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4772}
4773SLAB_ATTR_RO(cache_dma);
4774#endif
4775
4776static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4777{
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4779}
4780SLAB_ATTR_RO(destroy_by_rcu);
4781
ab9a0f19
LJ
4782static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4783{
4784 return sprintf(buf, "%d\n", s->reserved);
4785}
4786SLAB_ATTR_RO(reserved);
4787
ab4d5ed5 4788#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4789static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4790{
4791 return show_slab_objects(s, buf, SO_ALL);
4792}
4793SLAB_ATTR_RO(slabs);
4794
205ab99d
CL
4795static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4796{
4797 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4798}
4799SLAB_ATTR_RO(total_objects);
4800
81819f0f
CL
4801static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4802{
4803 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4804}
4805
4806static ssize_t sanity_checks_store(struct kmem_cache *s,
4807 const char *buf, size_t length)
4808{
4809 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4810 if (buf[0] == '1') {
4811 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4812 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4813 }
81819f0f
CL
4814 return length;
4815}
4816SLAB_ATTR(sanity_checks);
4817
4818static ssize_t trace_show(struct kmem_cache *s, char *buf)
4819{
4820 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4821}
4822
4823static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4824 size_t length)
4825{
4826 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4827 if (buf[0] == '1') {
4828 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4829 s->flags |= SLAB_TRACE;
b789ef51 4830 }
81819f0f
CL
4831 return length;
4832}
4833SLAB_ATTR(trace);
4834
81819f0f
CL
4835static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4836{
4837 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4838}
4839
4840static ssize_t red_zone_store(struct kmem_cache *s,
4841 const char *buf, size_t length)
4842{
4843 if (any_slab_objects(s))
4844 return -EBUSY;
4845
4846 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4847 if (buf[0] == '1') {
4848 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4849 s->flags |= SLAB_RED_ZONE;
b789ef51 4850 }
06b285dc 4851 calculate_sizes(s, -1);
81819f0f
CL
4852 return length;
4853}
4854SLAB_ATTR(red_zone);
4855
4856static ssize_t poison_show(struct kmem_cache *s, char *buf)
4857{
4858 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4859}
4860
4861static ssize_t poison_store(struct kmem_cache *s,
4862 const char *buf, size_t length)
4863{
4864 if (any_slab_objects(s))
4865 return -EBUSY;
4866
4867 s->flags &= ~SLAB_POISON;
b789ef51
CL
4868 if (buf[0] == '1') {
4869 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4870 s->flags |= SLAB_POISON;
b789ef51 4871 }
06b285dc 4872 calculate_sizes(s, -1);
81819f0f
CL
4873 return length;
4874}
4875SLAB_ATTR(poison);
4876
4877static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4878{
4879 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4880}
4881
4882static ssize_t store_user_store(struct kmem_cache *s,
4883 const char *buf, size_t length)
4884{
4885 if (any_slab_objects(s))
4886 return -EBUSY;
4887
4888 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4889 if (buf[0] == '1') {
4890 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4891 s->flags |= SLAB_STORE_USER;
b789ef51 4892 }
06b285dc 4893 calculate_sizes(s, -1);
81819f0f
CL
4894 return length;
4895}
4896SLAB_ATTR(store_user);
4897
53e15af0
CL
4898static ssize_t validate_show(struct kmem_cache *s, char *buf)
4899{
4900 return 0;
4901}
4902
4903static ssize_t validate_store(struct kmem_cache *s,
4904 const char *buf, size_t length)
4905{
434e245d
CL
4906 int ret = -EINVAL;
4907
4908 if (buf[0] == '1') {
4909 ret = validate_slab_cache(s);
4910 if (ret >= 0)
4911 ret = length;
4912 }
4913 return ret;
53e15af0
CL
4914}
4915SLAB_ATTR(validate);
a5a84755
CL
4916
4917static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4918{
4919 if (!(s->flags & SLAB_STORE_USER))
4920 return -ENOSYS;
4921 return list_locations(s, buf, TRACK_ALLOC);
4922}
4923SLAB_ATTR_RO(alloc_calls);
4924
4925static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4926{
4927 if (!(s->flags & SLAB_STORE_USER))
4928 return -ENOSYS;
4929 return list_locations(s, buf, TRACK_FREE);
4930}
4931SLAB_ATTR_RO(free_calls);
4932#endif /* CONFIG_SLUB_DEBUG */
4933
4934#ifdef CONFIG_FAILSLAB
4935static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4936{
4937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4938}
4939
4940static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4941 size_t length)
4942{
4943 s->flags &= ~SLAB_FAILSLAB;
4944 if (buf[0] == '1')
4945 s->flags |= SLAB_FAILSLAB;
4946 return length;
4947}
4948SLAB_ATTR(failslab);
ab4d5ed5 4949#endif
53e15af0 4950
2086d26a
CL
4951static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4952{
4953 return 0;
4954}
4955
4956static ssize_t shrink_store(struct kmem_cache *s,
4957 const char *buf, size_t length)
4958{
4959 if (buf[0] == '1') {
4960 int rc = kmem_cache_shrink(s);
4961
4962 if (rc)
4963 return rc;
4964 } else
4965 return -EINVAL;
4966 return length;
4967}
4968SLAB_ATTR(shrink);
4969
81819f0f 4970#ifdef CONFIG_NUMA
9824601e 4971static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4972{
9824601e 4973 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4974}
4975
9824601e 4976static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4977 const char *buf, size_t length)
4978{
0121c619
CL
4979 unsigned long ratio;
4980 int err;
4981
4982 err = strict_strtoul(buf, 10, &ratio);
4983 if (err)
4984 return err;
4985
e2cb96b7 4986 if (ratio <= 100)
0121c619 4987 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4988
81819f0f
CL
4989 return length;
4990}
9824601e 4991SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4992#endif
4993
8ff12cfc 4994#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4995static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4996{
4997 unsigned long sum = 0;
4998 int cpu;
4999 int len;
5000 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5001
5002 if (!data)
5003 return -ENOMEM;
5004
5005 for_each_online_cpu(cpu) {
9dfc6e68 5006 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5007
5008 data[cpu] = x;
5009 sum += x;
5010 }
5011
5012 len = sprintf(buf, "%lu", sum);
5013
50ef37b9 5014#ifdef CONFIG_SMP
8ff12cfc
CL
5015 for_each_online_cpu(cpu) {
5016 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5017 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5018 }
50ef37b9 5019#endif
8ff12cfc
CL
5020 kfree(data);
5021 return len + sprintf(buf + len, "\n");
5022}
5023
78eb00cc
DR
5024static void clear_stat(struct kmem_cache *s, enum stat_item si)
5025{
5026 int cpu;
5027
5028 for_each_online_cpu(cpu)
9dfc6e68 5029 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5030}
5031
8ff12cfc
CL
5032#define STAT_ATTR(si, text) \
5033static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5034{ \
5035 return show_stat(s, buf, si); \
5036} \
78eb00cc
DR
5037static ssize_t text##_store(struct kmem_cache *s, \
5038 const char *buf, size_t length) \
5039{ \
5040 if (buf[0] != '0') \
5041 return -EINVAL; \
5042 clear_stat(s, si); \
5043 return length; \
5044} \
5045SLAB_ATTR(text); \
8ff12cfc
CL
5046
5047STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5048STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5049STAT_ATTR(FREE_FASTPATH, free_fastpath);
5050STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5051STAT_ATTR(FREE_FROZEN, free_frozen);
5052STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5053STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5054STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5055STAT_ATTR(ALLOC_SLAB, alloc_slab);
5056STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5057STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5058STAT_ATTR(FREE_SLAB, free_slab);
5059STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5060STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5061STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5062STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5063STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5064STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5065STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5066STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5067STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5068STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5069STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5070STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5071STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5072STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5073#endif
5074
06428780 5075static struct attribute *slab_attrs[] = {
81819f0f
CL
5076 &slab_size_attr.attr,
5077 &object_size_attr.attr,
5078 &objs_per_slab_attr.attr,
5079 &order_attr.attr,
73d342b1 5080 &min_partial_attr.attr,
49e22585 5081 &cpu_partial_attr.attr,
81819f0f 5082 &objects_attr.attr,
205ab99d 5083 &objects_partial_attr.attr,
81819f0f
CL
5084 &partial_attr.attr,
5085 &cpu_slabs_attr.attr,
5086 &ctor_attr.attr,
81819f0f
CL
5087 &aliases_attr.attr,
5088 &align_attr.attr,
81819f0f
CL
5089 &hwcache_align_attr.attr,
5090 &reclaim_account_attr.attr,
5091 &destroy_by_rcu_attr.attr,
a5a84755 5092 &shrink_attr.attr,
ab9a0f19 5093 &reserved_attr.attr,
49e22585 5094 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5095#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5096 &total_objects_attr.attr,
5097 &slabs_attr.attr,
5098 &sanity_checks_attr.attr,
5099 &trace_attr.attr,
81819f0f
CL
5100 &red_zone_attr.attr,
5101 &poison_attr.attr,
5102 &store_user_attr.attr,
53e15af0 5103 &validate_attr.attr,
88a420e4
CL
5104 &alloc_calls_attr.attr,
5105 &free_calls_attr.attr,
ab4d5ed5 5106#endif
81819f0f
CL
5107#ifdef CONFIG_ZONE_DMA
5108 &cache_dma_attr.attr,
5109#endif
5110#ifdef CONFIG_NUMA
9824601e 5111 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5112#endif
5113#ifdef CONFIG_SLUB_STATS
5114 &alloc_fastpath_attr.attr,
5115 &alloc_slowpath_attr.attr,
5116 &free_fastpath_attr.attr,
5117 &free_slowpath_attr.attr,
5118 &free_frozen_attr.attr,
5119 &free_add_partial_attr.attr,
5120 &free_remove_partial_attr.attr,
5121 &alloc_from_partial_attr.attr,
5122 &alloc_slab_attr.attr,
5123 &alloc_refill_attr.attr,
e36a2652 5124 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5125 &free_slab_attr.attr,
5126 &cpuslab_flush_attr.attr,
5127 &deactivate_full_attr.attr,
5128 &deactivate_empty_attr.attr,
5129 &deactivate_to_head_attr.attr,
5130 &deactivate_to_tail_attr.attr,
5131 &deactivate_remote_frees_attr.attr,
03e404af 5132 &deactivate_bypass_attr.attr,
65c3376a 5133 &order_fallback_attr.attr,
b789ef51
CL
5134 &cmpxchg_double_fail_attr.attr,
5135 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5136 &cpu_partial_alloc_attr.attr,
5137 &cpu_partial_free_attr.attr,
8028dcea
AS
5138 &cpu_partial_node_attr.attr,
5139 &cpu_partial_drain_attr.attr,
81819f0f 5140#endif
4c13dd3b
DM
5141#ifdef CONFIG_FAILSLAB
5142 &failslab_attr.attr,
5143#endif
5144
81819f0f
CL
5145 NULL
5146};
5147
5148static struct attribute_group slab_attr_group = {
5149 .attrs = slab_attrs,
5150};
5151
5152static ssize_t slab_attr_show(struct kobject *kobj,
5153 struct attribute *attr,
5154 char *buf)
5155{
5156 struct slab_attribute *attribute;
5157 struct kmem_cache *s;
5158 int err;
5159
5160 attribute = to_slab_attr(attr);
5161 s = to_slab(kobj);
5162
5163 if (!attribute->show)
5164 return -EIO;
5165
5166 err = attribute->show(s, buf);
5167
5168 return err;
5169}
5170
5171static ssize_t slab_attr_store(struct kobject *kobj,
5172 struct attribute *attr,
5173 const char *buf, size_t len)
5174{
5175 struct slab_attribute *attribute;
5176 struct kmem_cache *s;
5177 int err;
5178
5179 attribute = to_slab_attr(attr);
5180 s = to_slab(kobj);
5181
5182 if (!attribute->store)
5183 return -EIO;
5184
5185 err = attribute->store(s, buf, len);
5186
5187 return err;
5188}
5189
52cf25d0 5190static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5191 .show = slab_attr_show,
5192 .store = slab_attr_store,
5193};
5194
5195static struct kobj_type slab_ktype = {
5196 .sysfs_ops = &slab_sysfs_ops,
5197};
5198
5199static int uevent_filter(struct kset *kset, struct kobject *kobj)
5200{
5201 struct kobj_type *ktype = get_ktype(kobj);
5202
5203 if (ktype == &slab_ktype)
5204 return 1;
5205 return 0;
5206}
5207
9cd43611 5208static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5209 .filter = uevent_filter,
5210};
5211
27c3a314 5212static struct kset *slab_kset;
81819f0f
CL
5213
5214#define ID_STR_LENGTH 64
5215
5216/* Create a unique string id for a slab cache:
6446faa2
CL
5217 *
5218 * Format :[flags-]size
81819f0f
CL
5219 */
5220static char *create_unique_id(struct kmem_cache *s)
5221{
5222 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5223 char *p = name;
5224
5225 BUG_ON(!name);
5226
5227 *p++ = ':';
5228 /*
5229 * First flags affecting slabcache operations. We will only
5230 * get here for aliasable slabs so we do not need to support
5231 * too many flags. The flags here must cover all flags that
5232 * are matched during merging to guarantee that the id is
5233 * unique.
5234 */
5235 if (s->flags & SLAB_CACHE_DMA)
5236 *p++ = 'd';
5237 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5238 *p++ = 'a';
5239 if (s->flags & SLAB_DEBUG_FREE)
5240 *p++ = 'F';
5a896d9e
VN
5241 if (!(s->flags & SLAB_NOTRACK))
5242 *p++ = 't';
81819f0f
CL
5243 if (p != name + 1)
5244 *p++ = '-';
5245 p += sprintf(p, "%07d", s->size);
5246 BUG_ON(p > name + ID_STR_LENGTH - 1);
5247 return name;
5248}
5249
96d17b7b 5250int sysfs_slab_add(struct kmem_cache *s)
81819f0f
CL
5251{
5252 int err;
5253 const char *name;
5254 int unmergeable;
5255
97d06609 5256 if (slab_state < FULL)
81819f0f
CL
5257 /* Defer until later */
5258 return 0;
5259
5260 unmergeable = slab_unmergeable(s);
5261 if (unmergeable) {
5262 /*
5263 * Slabcache can never be merged so we can use the name proper.
5264 * This is typically the case for debug situations. In that
5265 * case we can catch duplicate names easily.
5266 */
27c3a314 5267 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5268 name = s->name;
5269 } else {
5270 /*
5271 * Create a unique name for the slab as a target
5272 * for the symlinks.
5273 */
5274 name = create_unique_id(s);
5275 }
5276
27c3a314 5277 s->kobj.kset = slab_kset;
1eada11c
GKH
5278 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5279 if (err) {
5280 kobject_put(&s->kobj);
81819f0f 5281 return err;
1eada11c 5282 }
81819f0f
CL
5283
5284 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5285 if (err) {
5286 kobject_del(&s->kobj);
5287 kobject_put(&s->kobj);
81819f0f 5288 return err;
5788d8ad 5289 }
81819f0f
CL
5290 kobject_uevent(&s->kobj, KOBJ_ADD);
5291 if (!unmergeable) {
5292 /* Setup first alias */
5293 sysfs_slab_alias(s, s->name);
5294 kfree(name);
5295 }
5296 return 0;
5297}
5298
5299static void sysfs_slab_remove(struct kmem_cache *s)
5300{
97d06609 5301 if (slab_state < FULL)
2bce6485
CL
5302 /*
5303 * Sysfs has not been setup yet so no need to remove the
5304 * cache from sysfs.
5305 */
5306 return;
5307
81819f0f
CL
5308 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5309 kobject_del(&s->kobj);
151c602f 5310 kobject_put(&s->kobj);
81819f0f
CL
5311}
5312
5313/*
5314 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5315 * available lest we lose that information.
81819f0f
CL
5316 */
5317struct saved_alias {
5318 struct kmem_cache *s;
5319 const char *name;
5320 struct saved_alias *next;
5321};
5322
5af328a5 5323static struct saved_alias *alias_list;
81819f0f
CL
5324
5325static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5326{
5327 struct saved_alias *al;
5328
97d06609 5329 if (slab_state == FULL) {
81819f0f
CL
5330 /*
5331 * If we have a leftover link then remove it.
5332 */
27c3a314
GKH
5333 sysfs_remove_link(&slab_kset->kobj, name);
5334 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5335 }
5336
5337 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5338 if (!al)
5339 return -ENOMEM;
5340
5341 al->s = s;
5342 al->name = name;
5343 al->next = alias_list;
5344 alias_list = al;
5345 return 0;
5346}
5347
5348static int __init slab_sysfs_init(void)
5349{
5b95a4ac 5350 struct kmem_cache *s;
81819f0f
CL
5351 int err;
5352
18004c5d 5353 mutex_lock(&slab_mutex);
2bce6485 5354
0ff21e46 5355 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5356 if (!slab_kset) {
18004c5d 5357 mutex_unlock(&slab_mutex);
81819f0f
CL
5358 printk(KERN_ERR "Cannot register slab subsystem.\n");
5359 return -ENOSYS;
5360 }
5361
97d06609 5362 slab_state = FULL;
26a7bd03 5363
5b95a4ac 5364 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5365 err = sysfs_slab_add(s);
5d540fb7
CL
5366 if (err)
5367 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5368 " to sysfs\n", s->name);
26a7bd03 5369 }
81819f0f
CL
5370
5371 while (alias_list) {
5372 struct saved_alias *al = alias_list;
5373
5374 alias_list = alias_list->next;
5375 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5376 if (err)
5377 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5378 " %s to sysfs\n", al->name);
81819f0f
CL
5379 kfree(al);
5380 }
5381
18004c5d 5382 mutex_unlock(&slab_mutex);
81819f0f
CL
5383 resiliency_test();
5384 return 0;
5385}
5386
5387__initcall(slab_sysfs_init);
ab4d5ed5 5388#endif /* CONFIG_SYSFS */
57ed3eda
PE
5389
5390/*
5391 * The /proc/slabinfo ABI
5392 */
158a9624 5393#ifdef CONFIG_SLABINFO
57ed3eda
PE
5394static void print_slabinfo_header(struct seq_file *m)
5395{
5396 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5397 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5398 "<objperslab> <pagesperslab>");
5399 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5400 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5401 seq_putc(m, '\n');
5402}
5403
5404static void *s_start(struct seq_file *m, loff_t *pos)
5405{
5406 loff_t n = *pos;
5407
18004c5d 5408 mutex_lock(&slab_mutex);
57ed3eda
PE
5409 if (!n)
5410 print_slabinfo_header(m);
5411
5412 return seq_list_start(&slab_caches, *pos);
5413}
5414
5415static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5416{
5417 return seq_list_next(p, &slab_caches, pos);
5418}
5419
5420static void s_stop(struct seq_file *m, void *p)
5421{
18004c5d 5422 mutex_unlock(&slab_mutex);
57ed3eda
PE
5423}
5424
5425static int s_show(struct seq_file *m, void *p)
5426{
5427 unsigned long nr_partials = 0;
5428 unsigned long nr_slabs = 0;
5429 unsigned long nr_inuse = 0;
205ab99d
CL
5430 unsigned long nr_objs = 0;
5431 unsigned long nr_free = 0;
57ed3eda
PE
5432 struct kmem_cache *s;
5433 int node;
5434
5435 s = list_entry(p, struct kmem_cache, list);
5436
5437 for_each_online_node(node) {
5438 struct kmem_cache_node *n = get_node(s, node);
5439
5440 if (!n)
5441 continue;
5442
5443 nr_partials += n->nr_partial;
5444 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5445 nr_objs += atomic_long_read(&n->total_objects);
5446 nr_free += count_partial(n, count_free);
57ed3eda
PE
5447 }
5448
205ab99d 5449 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5450
5451 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5452 nr_objs, s->size, oo_objects(s->oo),
5453 (1 << oo_order(s->oo)));
57ed3eda
PE
5454 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5455 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5456 0UL);
5457 seq_putc(m, '\n');
5458 return 0;
5459}
5460
7b3c3a50 5461static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5462 .start = s_start,
5463 .next = s_next,
5464 .stop = s_stop,
5465 .show = s_show,
5466};
5467
7b3c3a50
AD
5468static int slabinfo_open(struct inode *inode, struct file *file)
5469{
5470 return seq_open(file, &slabinfo_op);
5471}
5472
5473static const struct file_operations proc_slabinfo_operations = {
5474 .open = slabinfo_open,
5475 .read = seq_read,
5476 .llseek = seq_lseek,
5477 .release = seq_release,
5478};
5479
5480static int __init slab_proc_init(void)
5481{
ab067e99 5482 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5483 return 0;
5484}
5485module_init(slab_proc_init);
158a9624 5486#endif /* CONFIG_SLABINFO */