]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
page allocator: get the pageblock migratetype without disabling interrupts
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
06f22f13 23#include <linux/kmemleak.h>
81819f0f
CL
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f
CL
31
32/*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
5577bd8a 110#ifdef CONFIG_SLUB_DEBUG
8a38082d 111#define SLABDEBUG 1
5577bd8a
CL
112#else
113#define SLABDEBUG 0
114#endif
115
81819f0f
CL
116/*
117 * Issues still to be resolved:
118 *
81819f0f
CL
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
81819f0f
CL
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
2086d26a
CL
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
76be8950 131#define MIN_PARTIAL 5
e95eed57 132
2086d26a
CL
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
81819f0f
CL
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
672bba3a 142
81819f0f
CL
143/*
144 * Set of flags that will prevent slab merging
145 */
146#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
148
149#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_CACHE_DMA)
151
152#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 153#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 157#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
158#endif
159
210b5c06
CG
160#define OO_SHIFT 16
161#define OO_MASK ((1 << OO_SHIFT) - 1)
162#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163
81819f0f 164/* Internal SLUB flags */
1ceef402
CL
165#define __OBJECT_POISON 0x80000000 /* Poison object */
166#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
167
168static int kmem_size = sizeof(struct kmem_cache);
169
170#ifdef CONFIG_SMP
171static struct notifier_block slab_notifier;
172#endif
173
174static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 177 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
178 SYSFS /* Sysfs up */
179} slab_state = DOWN;
180
7e85ee0c
PE
181/*
182 * The slab allocator is initialized with interrupts disabled. Therefore, make
183 * sure early boot allocations don't accidentally enable interrupts.
184 */
185static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
186
81819f0f
CL
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
f6acb635 203#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
214 kfree(s);
215}
8ff12cfc 216
81819f0f
CL
217#endif
218
8ff12cfc
CL
219static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
220{
221#ifdef CONFIG_SLUB_STATS
222 c->stat[si]++;
223#endif
224}
225
81819f0f
CL
226/********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
229
230int slab_is_available(void)
231{
232 return slab_state >= UP;
233}
234
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
237#ifdef CONFIG_NUMA
238 return s->node[node];
239#else
240 return &s->local_node;
241#endif
242}
243
dfb4f096
CL
244static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
245{
4c93c355
CL
246#ifdef CONFIG_SMP
247 return s->cpu_slab[cpu];
248#else
249 return &s->cpu_slab;
250#endif
dfb4f096
CL
251}
252
6446faa2 253/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
254static inline int check_valid_pointer(struct kmem_cache *s,
255 struct page *page, const void *object)
256{
257 void *base;
258
a973e9dd 259 if (!object)
02cbc874
CL
260 return 1;
261
a973e9dd 262 base = page_address(page);
39b26464 263 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
264 (object - base) % s->size) {
265 return 0;
266 }
267
268 return 1;
269}
270
7656c72b
CL
271/*
272 * Slow version of get and set free pointer.
273 *
274 * This version requires touching the cache lines of kmem_cache which
275 * we avoid to do in the fast alloc free paths. There we obtain the offset
276 * from the page struct.
277 */
278static inline void *get_freepointer(struct kmem_cache *s, void *object)
279{
280 return *(void **)(object + s->offset);
281}
282
283static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
284{
285 *(void **)(object + s->offset) = fp;
286}
287
288/* Loop over all objects in a slab */
224a88be
CL
289#define for_each_object(__p, __s, __addr, __objects) \
290 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
291 __p += (__s)->size)
292
293/* Scan freelist */
294#define for_each_free_object(__p, __s, __free) \
a973e9dd 295 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
296
297/* Determine object index from a given position */
298static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
299{
300 return (p - addr) / s->size;
301}
302
834f3d11
CL
303static inline struct kmem_cache_order_objects oo_make(int order,
304 unsigned long size)
305{
306 struct kmem_cache_order_objects x = {
210b5c06 307 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
308 };
309
310 return x;
311}
312
313static inline int oo_order(struct kmem_cache_order_objects x)
314{
210b5c06 315 return x.x >> OO_SHIFT;
834f3d11
CL
316}
317
318static inline int oo_objects(struct kmem_cache_order_objects x)
319{
210b5c06 320 return x.x & OO_MASK;
834f3d11
CL
321}
322
41ecc55b
CL
323#ifdef CONFIG_SLUB_DEBUG
324/*
325 * Debug settings:
326 */
f0630fff
CL
327#ifdef CONFIG_SLUB_DEBUG_ON
328static int slub_debug = DEBUG_DEFAULT_FLAGS;
329#else
41ecc55b 330static int slub_debug;
f0630fff 331#endif
41ecc55b
CL
332
333static char *slub_debug_slabs;
334
81819f0f
CL
335/*
336 * Object debugging
337 */
338static void print_section(char *text, u8 *addr, unsigned int length)
339{
340 int i, offset;
341 int newline = 1;
342 char ascii[17];
343
344 ascii[16] = 0;
345
346 for (i = 0; i < length; i++) {
347 if (newline) {
24922684 348 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
349 newline = 0;
350 }
06428780 351 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
352 offset = i % 16;
353 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
354 if (offset == 15) {
06428780 355 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
356 newline = 1;
357 }
358 }
359 if (!newline) {
360 i %= 16;
361 while (i < 16) {
06428780 362 printk(KERN_CONT " ");
81819f0f
CL
363 ascii[i] = ' ';
364 i++;
365 }
06428780 366 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
367 }
368}
369
81819f0f
CL
370static struct track *get_track(struct kmem_cache *s, void *object,
371 enum track_item alloc)
372{
373 struct track *p;
374
375 if (s->offset)
376 p = object + s->offset + sizeof(void *);
377 else
378 p = object + s->inuse;
379
380 return p + alloc;
381}
382
383static void set_track(struct kmem_cache *s, void *object,
ce71e27c 384 enum track_item alloc, unsigned long addr)
81819f0f 385{
1a00df4a 386 struct track *p = get_track(s, object, alloc);
81819f0f 387
81819f0f
CL
388 if (addr) {
389 p->addr = addr;
390 p->cpu = smp_processor_id();
88e4ccf2 391 p->pid = current->pid;
81819f0f
CL
392 p->when = jiffies;
393 } else
394 memset(p, 0, sizeof(struct track));
395}
396
81819f0f
CL
397static void init_tracking(struct kmem_cache *s, void *object)
398{
24922684
CL
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
401
ce71e27c
EGM
402 set_track(s, object, TRACK_FREE, 0UL);
403 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
404}
405
406static void print_track(const char *s, struct track *t)
407{
408 if (!t->addr)
409 return;
410
7daf705f 411 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 412 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
413}
414
415static void print_tracking(struct kmem_cache *s, void *object)
416{
417 if (!(s->flags & SLAB_STORE_USER))
418 return;
419
420 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
421 print_track("Freed", get_track(s, object, TRACK_FREE));
422}
423
424static void print_page_info(struct page *page)
425{
39b26464
CL
426 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
427 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
428
429}
430
431static void slab_bug(struct kmem_cache *s, char *fmt, ...)
432{
433 va_list args;
434 char buf[100];
435
436 va_start(args, fmt);
437 vsnprintf(buf, sizeof(buf), fmt, args);
438 va_end(args);
439 printk(KERN_ERR "========================================"
440 "=====================================\n");
441 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
442 printk(KERN_ERR "----------------------------------------"
443 "-------------------------------------\n\n");
81819f0f
CL
444}
445
24922684
CL
446static void slab_fix(struct kmem_cache *s, char *fmt, ...)
447{
448 va_list args;
449 char buf[100];
450
451 va_start(args, fmt);
452 vsnprintf(buf, sizeof(buf), fmt, args);
453 va_end(args);
454 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
455}
456
457static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
458{
459 unsigned int off; /* Offset of last byte */
a973e9dd 460 u8 *addr = page_address(page);
24922684
CL
461
462 print_tracking(s, p);
463
464 print_page_info(page);
465
466 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
467 p, p - addr, get_freepointer(s, p));
468
469 if (p > addr + 16)
470 print_section("Bytes b4", p - 16, 16);
471
0ebd652b 472 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
473
474 if (s->flags & SLAB_RED_ZONE)
475 print_section("Redzone", p + s->objsize,
476 s->inuse - s->objsize);
477
81819f0f
CL
478 if (s->offset)
479 off = s->offset + sizeof(void *);
480 else
481 off = s->inuse;
482
24922684 483 if (s->flags & SLAB_STORE_USER)
81819f0f 484 off += 2 * sizeof(struct track);
81819f0f
CL
485
486 if (off != s->size)
487 /* Beginning of the filler is the free pointer */
24922684
CL
488 print_section("Padding", p + off, s->size - off);
489
490 dump_stack();
81819f0f
CL
491}
492
493static void object_err(struct kmem_cache *s, struct page *page,
494 u8 *object, char *reason)
495{
3dc50637 496 slab_bug(s, "%s", reason);
24922684 497 print_trailer(s, page, object);
81819f0f
CL
498}
499
24922684 500static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
501{
502 va_list args;
503 char buf[100];
504
24922684
CL
505 va_start(args, fmt);
506 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 507 va_end(args);
3dc50637 508 slab_bug(s, "%s", buf);
24922684 509 print_page_info(page);
81819f0f
CL
510 dump_stack();
511}
512
513static void init_object(struct kmem_cache *s, void *object, int active)
514{
515 u8 *p = object;
516
517 if (s->flags & __OBJECT_POISON) {
518 memset(p, POISON_FREE, s->objsize - 1);
06428780 519 p[s->objsize - 1] = POISON_END;
81819f0f
CL
520 }
521
522 if (s->flags & SLAB_RED_ZONE)
523 memset(p + s->objsize,
524 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
525 s->inuse - s->objsize);
526}
527
24922684 528static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
529{
530 while (bytes) {
531 if (*start != (u8)value)
24922684 532 return start;
81819f0f
CL
533 start++;
534 bytes--;
535 }
24922684
CL
536 return NULL;
537}
538
539static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
540 void *from, void *to)
541{
542 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
543 memset(from, data, to - from);
544}
545
546static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
547 u8 *object, char *what,
06428780 548 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
549{
550 u8 *fault;
551 u8 *end;
552
553 fault = check_bytes(start, value, bytes);
554 if (!fault)
555 return 1;
556
557 end = start + bytes;
558 while (end > fault && end[-1] == value)
559 end--;
560
561 slab_bug(s, "%s overwritten", what);
562 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
563 fault, end - 1, fault[0], value);
564 print_trailer(s, page, object);
565
566 restore_bytes(s, what, value, fault, end);
567 return 0;
81819f0f
CL
568}
569
81819f0f
CL
570/*
571 * Object layout:
572 *
573 * object address
574 * Bytes of the object to be managed.
575 * If the freepointer may overlay the object then the free
576 * pointer is the first word of the object.
672bba3a 577 *
81819f0f
CL
578 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
579 * 0xa5 (POISON_END)
580 *
581 * object + s->objsize
582 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
583 * Padding is extended by another word if Redzoning is enabled and
584 * objsize == inuse.
585 *
81819f0f
CL
586 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
587 * 0xcc (RED_ACTIVE) for objects in use.
588 *
589 * object + s->inuse
672bba3a
CL
590 * Meta data starts here.
591 *
81819f0f
CL
592 * A. Free pointer (if we cannot overwrite object on free)
593 * B. Tracking data for SLAB_STORE_USER
672bba3a 594 * C. Padding to reach required alignment boundary or at mininum
6446faa2 595 * one word if debugging is on to be able to detect writes
672bba3a
CL
596 * before the word boundary.
597 *
598 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
599 *
600 * object + s->size
672bba3a 601 * Nothing is used beyond s->size.
81819f0f 602 *
672bba3a
CL
603 * If slabcaches are merged then the objsize and inuse boundaries are mostly
604 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
605 * may be used with merged slabcaches.
606 */
607
81819f0f
CL
608static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
609{
610 unsigned long off = s->inuse; /* The end of info */
611
612 if (s->offset)
613 /* Freepointer is placed after the object. */
614 off += sizeof(void *);
615
616 if (s->flags & SLAB_STORE_USER)
617 /* We also have user information there */
618 off += 2 * sizeof(struct track);
619
620 if (s->size == off)
621 return 1;
622
24922684
CL
623 return check_bytes_and_report(s, page, p, "Object padding",
624 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
625}
626
39b26464 627/* Check the pad bytes at the end of a slab page */
81819f0f
CL
628static int slab_pad_check(struct kmem_cache *s, struct page *page)
629{
24922684
CL
630 u8 *start;
631 u8 *fault;
632 u8 *end;
633 int length;
634 int remainder;
81819f0f
CL
635
636 if (!(s->flags & SLAB_POISON))
637 return 1;
638
a973e9dd 639 start = page_address(page);
834f3d11 640 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
641 end = start + length;
642 remainder = length % s->size;
81819f0f
CL
643 if (!remainder)
644 return 1;
645
39b26464 646 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
647 if (!fault)
648 return 1;
649 while (end > fault && end[-1] == POISON_INUSE)
650 end--;
651
652 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 653 print_section("Padding", end - remainder, remainder);
24922684
CL
654
655 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
656 return 0;
81819f0f
CL
657}
658
659static int check_object(struct kmem_cache *s, struct page *page,
660 void *object, int active)
661{
662 u8 *p = object;
663 u8 *endobject = object + s->objsize;
664
665 if (s->flags & SLAB_RED_ZONE) {
666 unsigned int red =
667 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
668
24922684
CL
669 if (!check_bytes_and_report(s, page, object, "Redzone",
670 endobject, red, s->inuse - s->objsize))
81819f0f 671 return 0;
81819f0f 672 } else {
3adbefee
IM
673 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
674 check_bytes_and_report(s, page, p, "Alignment padding",
675 endobject, POISON_INUSE, s->inuse - s->objsize);
676 }
81819f0f
CL
677 }
678
679 if (s->flags & SLAB_POISON) {
680 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
681 (!check_bytes_and_report(s, page, p, "Poison", p,
682 POISON_FREE, s->objsize - 1) ||
683 !check_bytes_and_report(s, page, p, "Poison",
06428780 684 p + s->objsize - 1, POISON_END, 1)))
81819f0f 685 return 0;
81819f0f
CL
686 /*
687 * check_pad_bytes cleans up on its own.
688 */
689 check_pad_bytes(s, page, p);
690 }
691
692 if (!s->offset && active)
693 /*
694 * Object and freepointer overlap. Cannot check
695 * freepointer while object is allocated.
696 */
697 return 1;
698
699 /* Check free pointer validity */
700 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
701 object_err(s, page, p, "Freepointer corrupt");
702 /*
9f6c708e 703 * No choice but to zap it and thus lose the remainder
81819f0f 704 * of the free objects in this slab. May cause
672bba3a 705 * another error because the object count is now wrong.
81819f0f 706 */
a973e9dd 707 set_freepointer(s, p, NULL);
81819f0f
CL
708 return 0;
709 }
710 return 1;
711}
712
713static int check_slab(struct kmem_cache *s, struct page *page)
714{
39b26464
CL
715 int maxobj;
716
81819f0f
CL
717 VM_BUG_ON(!irqs_disabled());
718
719 if (!PageSlab(page)) {
24922684 720 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
721 return 0;
722 }
39b26464
CL
723
724 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
725 if (page->objects > maxobj) {
726 slab_err(s, page, "objects %u > max %u",
727 s->name, page->objects, maxobj);
728 return 0;
729 }
730 if (page->inuse > page->objects) {
24922684 731 slab_err(s, page, "inuse %u > max %u",
39b26464 732 s->name, page->inuse, page->objects);
81819f0f
CL
733 return 0;
734 }
735 /* Slab_pad_check fixes things up after itself */
736 slab_pad_check(s, page);
737 return 1;
738}
739
740/*
672bba3a
CL
741 * Determine if a certain object on a page is on the freelist. Must hold the
742 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
743 */
744static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
745{
746 int nr = 0;
747 void *fp = page->freelist;
748 void *object = NULL;
224a88be 749 unsigned long max_objects;
81819f0f 750
39b26464 751 while (fp && nr <= page->objects) {
81819f0f
CL
752 if (fp == search)
753 return 1;
754 if (!check_valid_pointer(s, page, fp)) {
755 if (object) {
756 object_err(s, page, object,
757 "Freechain corrupt");
a973e9dd 758 set_freepointer(s, object, NULL);
81819f0f
CL
759 break;
760 } else {
24922684 761 slab_err(s, page, "Freepointer corrupt");
a973e9dd 762 page->freelist = NULL;
39b26464 763 page->inuse = page->objects;
24922684 764 slab_fix(s, "Freelist cleared");
81819f0f
CL
765 return 0;
766 }
767 break;
768 }
769 object = fp;
770 fp = get_freepointer(s, object);
771 nr++;
772 }
773
224a88be 774 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
775 if (max_objects > MAX_OBJS_PER_PAGE)
776 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
777
778 if (page->objects != max_objects) {
779 slab_err(s, page, "Wrong number of objects. Found %d but "
780 "should be %d", page->objects, max_objects);
781 page->objects = max_objects;
782 slab_fix(s, "Number of objects adjusted.");
783 }
39b26464 784 if (page->inuse != page->objects - nr) {
70d71228 785 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
786 "counted were %d", page->inuse, page->objects - nr);
787 page->inuse = page->objects - nr;
24922684 788 slab_fix(s, "Object count adjusted.");
81819f0f
CL
789 }
790 return search == NULL;
791}
792
0121c619
CL
793static void trace(struct kmem_cache *s, struct page *page, void *object,
794 int alloc)
3ec09742
CL
795{
796 if (s->flags & SLAB_TRACE) {
797 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
798 s->name,
799 alloc ? "alloc" : "free",
800 object, page->inuse,
801 page->freelist);
802
803 if (!alloc)
804 print_section("Object", (void *)object, s->objsize);
805
806 dump_stack();
807 }
808}
809
643b1138 810/*
672bba3a 811 * Tracking of fully allocated slabs for debugging purposes.
643b1138 812 */
e95eed57 813static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 814{
643b1138
CL
815 spin_lock(&n->list_lock);
816 list_add(&page->lru, &n->full);
817 spin_unlock(&n->list_lock);
818}
819
820static void remove_full(struct kmem_cache *s, struct page *page)
821{
822 struct kmem_cache_node *n;
823
824 if (!(s->flags & SLAB_STORE_USER))
825 return;
826
827 n = get_node(s, page_to_nid(page));
828
829 spin_lock(&n->list_lock);
830 list_del(&page->lru);
831 spin_unlock(&n->list_lock);
832}
833
0f389ec6
CL
834/* Tracking of the number of slabs for debugging purposes */
835static inline unsigned long slabs_node(struct kmem_cache *s, int node)
836{
837 struct kmem_cache_node *n = get_node(s, node);
838
839 return atomic_long_read(&n->nr_slabs);
840}
841
205ab99d 842static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
843{
844 struct kmem_cache_node *n = get_node(s, node);
845
846 /*
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
851 */
205ab99d 852 if (!NUMA_BUILD || n) {
0f389ec6 853 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
854 atomic_long_add(objects, &n->total_objects);
855 }
0f389ec6 856}
205ab99d 857static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
858{
859 struct kmem_cache_node *n = get_node(s, node);
860
861 atomic_long_dec(&n->nr_slabs);
205ab99d 862 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
863}
864
865/* Object debug checks for alloc/free paths */
3ec09742
CL
866static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 void *object)
868{
869 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 return;
871
872 init_object(s, object, 0);
873 init_tracking(s, object);
874}
875
876static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 877 void *object, unsigned long addr)
81819f0f
CL
878{
879 if (!check_slab(s, page))
880 goto bad;
881
d692ef6d 882 if (!on_freelist(s, page, object)) {
24922684 883 object_err(s, page, object, "Object already allocated");
70d71228 884 goto bad;
81819f0f
CL
885 }
886
887 if (!check_valid_pointer(s, page, object)) {
888 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 889 goto bad;
81819f0f
CL
890 }
891
d692ef6d 892 if (!check_object(s, page, object, 0))
81819f0f 893 goto bad;
81819f0f 894
3ec09742
CL
895 /* Success perform special debug activities for allocs */
896 if (s->flags & SLAB_STORE_USER)
897 set_track(s, object, TRACK_ALLOC, addr);
898 trace(s, page, object, 1);
899 init_object(s, object, 1);
81819f0f 900 return 1;
3ec09742 901
81819f0f
CL
902bad:
903 if (PageSlab(page)) {
904 /*
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
672bba3a 907 * as used avoids touching the remaining objects.
81819f0f 908 */
24922684 909 slab_fix(s, "Marking all objects used");
39b26464 910 page->inuse = page->objects;
a973e9dd 911 page->freelist = NULL;
81819f0f
CL
912 }
913 return 0;
914}
915
3ec09742 916static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 917 void *object, unsigned long addr)
81819f0f
CL
918{
919 if (!check_slab(s, page))
920 goto fail;
921
922 if (!check_valid_pointer(s, page, object)) {
70d71228 923 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
924 goto fail;
925 }
926
927 if (on_freelist(s, page, object)) {
24922684 928 object_err(s, page, object, "Object already free");
81819f0f
CL
929 goto fail;
930 }
931
932 if (!check_object(s, page, object, 1))
933 return 0;
934
935 if (unlikely(s != page->slab)) {
3adbefee 936 if (!PageSlab(page)) {
70d71228
CL
937 slab_err(s, page, "Attempt to free object(0x%p) "
938 "outside of slab", object);
3adbefee 939 } else if (!page->slab) {
81819f0f 940 printk(KERN_ERR
70d71228 941 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 942 object);
70d71228 943 dump_stack();
06428780 944 } else
24922684
CL
945 object_err(s, page, object,
946 "page slab pointer corrupt.");
81819f0f
CL
947 goto fail;
948 }
3ec09742
CL
949
950 /* Special debug activities for freeing objects */
8a38082d 951 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
952 remove_full(s, page);
953 if (s->flags & SLAB_STORE_USER)
954 set_track(s, object, TRACK_FREE, addr);
955 trace(s, page, object, 0);
956 init_object(s, object, 0);
81819f0f 957 return 1;
3ec09742 958
81819f0f 959fail:
24922684 960 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
961 return 0;
962}
963
41ecc55b
CL
964static int __init setup_slub_debug(char *str)
965{
f0630fff
CL
966 slub_debug = DEBUG_DEFAULT_FLAGS;
967 if (*str++ != '=' || !*str)
968 /*
969 * No options specified. Switch on full debugging.
970 */
971 goto out;
972
973 if (*str == ',')
974 /*
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
977 */
978 goto check_slabs;
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
06428780 990 for (; *str && *str != ','; str++) {
f0630fff
CL
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
06428780 1009 "unknown. skipped\n", *str);
f0630fff 1010 }
41ecc55b
CL
1011 }
1012
f0630fff 1013check_slabs:
41ecc55b
CL
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
f0630fff 1016out:
41ecc55b
CL
1017 return 1;
1018}
1019
1020__setup("slub_debug", setup_slub_debug);
1021
ba0268a8
CL
1022static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
51cc5068 1024 void (*ctor)(void *))
41ecc55b
CL
1025{
1026 /*
e153362a 1027 * Enable debugging if selected on the kernel commandline.
41ecc55b 1028 */
e153362a
CL
1029 if (slub_debug && (!slub_debug_slabs ||
1030 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 flags |= slub_debug;
ba0268a8
CL
1032
1033 return flags;
41ecc55b
CL
1034}
1035#else
3ec09742
CL
1036static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
41ecc55b 1038
3ec09742 1039static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1040 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1041
3ec09742 1042static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1043 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1044
41ecc55b
CL
1045static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
3ec09742 1049static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1050static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
51cc5068 1052 void (*ctor)(void *))
ba0268a8
CL
1053{
1054 return flags;
1055}
41ecc55b 1056#define slub_debug 0
0f389ec6
CL
1057
1058static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 { return 0; }
205ab99d
CL
1060static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
41ecc55b 1064#endif
205ab99d 1065
81819f0f
CL
1066/*
1067 * Slab allocation and freeing
1068 */
65c3376a
CL
1069static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071{
1072 int order = oo_order(oo);
1073
1074 if (node == -1)
1075 return alloc_pages(flags, order);
1076 else
1077 return alloc_pages_node(node, flags, order);
1078}
1079
81819f0f
CL
1080static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1081{
06428780 1082 struct page *page;
834f3d11 1083 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1084
b7a49f0d 1085 flags |= s->allocflags;
e12ba74d 1086
65c3376a
CL
1087 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1088 oo);
1089 if (unlikely(!page)) {
1090 oo = s->min;
1091 /*
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1094 */
1095 page = alloc_slab_page(flags, node, oo);
1096 if (!page)
1097 return NULL;
81819f0f 1098
65c3376a
CL
1099 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1100 }
834f3d11 1101 page->objects = oo_objects(oo);
81819f0f
CL
1102 mod_zone_page_state(page_zone(page),
1103 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1104 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1105 1 << oo_order(oo));
81819f0f
CL
1106
1107 return page;
1108}
1109
1110static void setup_object(struct kmem_cache *s, struct page *page,
1111 void *object)
1112{
3ec09742 1113 setup_object_debug(s, page, object);
4f104934 1114 if (unlikely(s->ctor))
51cc5068 1115 s->ctor(object);
81819f0f
CL
1116}
1117
1118static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1119{
1120 struct page *page;
81819f0f 1121 void *start;
81819f0f
CL
1122 void *last;
1123 void *p;
1124
6cb06229 1125 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1126
6cb06229
CL
1127 page = allocate_slab(s,
1128 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1129 if (!page)
1130 goto out;
1131
205ab99d 1132 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1133 page->slab = s;
1134 page->flags |= 1 << PG_slab;
1135 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1136 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1137 __SetPageSlubDebug(page);
81819f0f
CL
1138
1139 start = page_address(page);
81819f0f
CL
1140
1141 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1142 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1143
1144 last = start;
224a88be 1145 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1149 }
1150 setup_object(s, page, last);
a973e9dd 1151 set_freepointer(s, last, NULL);
81819f0f
CL
1152
1153 page->freelist = start;
1154 page->inuse = 0;
1155out:
81819f0f
CL
1156 return page;
1157}
1158
1159static void __free_slab(struct kmem_cache *s, struct page *page)
1160{
834f3d11
CL
1161 int order = compound_order(page);
1162 int pages = 1 << order;
81819f0f 1163
8a38082d 1164 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1165 void *p;
1166
1167 slab_pad_check(s, page);
224a88be
CL
1168 for_each_object(p, s, page_address(page),
1169 page->objects)
81819f0f 1170 check_object(s, page, p, 0);
8a38082d 1171 __ClearPageSlubDebug(page);
81819f0f
CL
1172 }
1173
1174 mod_zone_page_state(page_zone(page),
1175 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1176 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1177 -pages);
81819f0f 1178
49bd5221
CL
1179 __ClearPageSlab(page);
1180 reset_page_mapcount(page);
1eb5ac64
NP
1181 if (current->reclaim_state)
1182 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1183 __free_pages(page, order);
81819f0f
CL
1184}
1185
1186static void rcu_free_slab(struct rcu_head *h)
1187{
1188 struct page *page;
1189
1190 page = container_of((struct list_head *)h, struct page, lru);
1191 __free_slab(page->slab, page);
1192}
1193
1194static void free_slab(struct kmem_cache *s, struct page *page)
1195{
1196 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1197 /*
1198 * RCU free overloads the RCU head over the LRU
1199 */
1200 struct rcu_head *head = (void *)&page->lru;
1201
1202 call_rcu(head, rcu_free_slab);
1203 } else
1204 __free_slab(s, page);
1205}
1206
1207static void discard_slab(struct kmem_cache *s, struct page *page)
1208{
205ab99d 1209 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1210 free_slab(s, page);
1211}
1212
1213/*
1214 * Per slab locking using the pagelock
1215 */
1216static __always_inline void slab_lock(struct page *page)
1217{
1218 bit_spin_lock(PG_locked, &page->flags);
1219}
1220
1221static __always_inline void slab_unlock(struct page *page)
1222{
a76d3546 1223 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1224}
1225
1226static __always_inline int slab_trylock(struct page *page)
1227{
1228 int rc = 1;
1229
1230 rc = bit_spin_trylock(PG_locked, &page->flags);
1231 return rc;
1232}
1233
1234/*
1235 * Management of partially allocated slabs
1236 */
7c2e132c
CL
1237static void add_partial(struct kmem_cache_node *n,
1238 struct page *page, int tail)
81819f0f 1239{
e95eed57
CL
1240 spin_lock(&n->list_lock);
1241 n->nr_partial++;
7c2e132c
CL
1242 if (tail)
1243 list_add_tail(&page->lru, &n->partial);
1244 else
1245 list_add(&page->lru, &n->partial);
81819f0f
CL
1246 spin_unlock(&n->list_lock);
1247}
1248
0121c619 1249static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1250{
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1257}
1258
1259/*
672bba3a 1260 * Lock slab and remove from the partial list.
81819f0f 1261 *
672bba3a 1262 * Must hold list_lock.
81819f0f 1263 */
0121c619
CL
1264static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1265 struct page *page)
81819f0f
CL
1266{
1267 if (slab_trylock(page)) {
1268 list_del(&page->lru);
1269 n->nr_partial--;
8a38082d 1270 __SetPageSlubFrozen(page);
81819f0f
CL
1271 return 1;
1272 }
1273 return 0;
1274}
1275
1276/*
672bba3a 1277 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1278 */
1279static struct page *get_partial_node(struct kmem_cache_node *n)
1280{
1281 struct page *page;
1282
1283 /*
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1286 * partial slab and there is none available then get_partials()
1287 * will return NULL.
81819f0f
CL
1288 */
1289 if (!n || !n->nr_partial)
1290 return NULL;
1291
1292 spin_lock(&n->list_lock);
1293 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1294 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1295 goto out;
1296 page = NULL;
1297out:
1298 spin_unlock(&n->list_lock);
1299 return page;
1300}
1301
1302/*
672bba3a 1303 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1304 */
1305static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1306{
1307#ifdef CONFIG_NUMA
1308 struct zonelist *zonelist;
dd1a239f 1309 struct zoneref *z;
54a6eb5c
MG
1310 struct zone *zone;
1311 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1312 struct page *page;
1313
1314 /*
672bba3a
CL
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1319 *
672bba3a
CL
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
81819f0f 1324 *
6446faa2 1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
81819f0f 1331 */
9824601e
CL
1332 if (!s->remote_node_defrag_ratio ||
1333 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1334 return NULL;
1335
0e88460d 1336 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1337 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1338 struct kmem_cache_node *n;
1339
54a6eb5c 1340 n = get_node(s, zone_to_nid(zone));
81819f0f 1341
54a6eb5c 1342 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1343 n->nr_partial > s->min_partial) {
81819f0f
CL
1344 page = get_partial_node(n);
1345 if (page)
1346 return page;
1347 }
1348 }
1349#endif
1350 return NULL;
1351}
1352
1353/*
1354 * Get a partial page, lock it and return it.
1355 */
1356static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
1359 int searchnode = (node == -1) ? numa_node_id() : node;
1360
1361 page = get_partial_node(get_node(s, searchnode));
1362 if (page || (flags & __GFP_THISNODE))
1363 return page;
1364
1365 return get_any_partial(s, flags);
1366}
1367
1368/*
1369 * Move a page back to the lists.
1370 *
1371 * Must be called with the slab lock held.
1372 *
1373 * On exit the slab lock will have been dropped.
1374 */
7c2e132c 1375static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1376{
e95eed57 1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1378 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1379
8a38082d 1380 __ClearPageSlubFrozen(page);
81819f0f 1381 if (page->inuse) {
e95eed57 1382
a973e9dd 1383 if (page->freelist) {
7c2e132c 1384 add_partial(n, page, tail);
8ff12cfc
CL
1385 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1386 } else {
1387 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1388 if (SLABDEBUG && PageSlubDebug(page) &&
1389 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1390 add_full(n, page);
1391 }
81819f0f
CL
1392 slab_unlock(page);
1393 } else {
8ff12cfc 1394 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1395 if (n->nr_partial < s->min_partial) {
e95eed57 1396 /*
672bba3a
CL
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
6446faa2
CL
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1402 *
0121c619
CL
1403 * kmem_cache_shrink can reclaim any empty slabs from
1404 * the partial list.
e95eed57 1405 */
7c2e132c 1406 add_partial(n, page, 1);
e95eed57
CL
1407 slab_unlock(page);
1408 } else {
1409 slab_unlock(page);
8ff12cfc 1410 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1411 discard_slab(s, page);
1412 }
81819f0f
CL
1413 }
1414}
1415
1416/*
1417 * Remove the cpu slab
1418 */
dfb4f096 1419static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1420{
dfb4f096 1421 struct page *page = c->page;
7c2e132c 1422 int tail = 1;
8ff12cfc 1423
b773ad73 1424 if (page->freelist)
8ff12cfc 1425 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1426 /*
6446faa2 1427 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1428 * because both freelists are empty. So this is unlikely
1429 * to occur.
1430 */
a973e9dd 1431 while (unlikely(c->freelist)) {
894b8788
CL
1432 void **object;
1433
7c2e132c
CL
1434 tail = 0; /* Hot objects. Put the slab first */
1435
894b8788 1436 /* Retrieve object from cpu_freelist */
dfb4f096 1437 object = c->freelist;
b3fba8da 1438 c->freelist = c->freelist[c->offset];
894b8788
CL
1439
1440 /* And put onto the regular freelist */
b3fba8da 1441 object[c->offset] = page->freelist;
894b8788
CL
1442 page->freelist = object;
1443 page->inuse--;
1444 }
dfb4f096 1445 c->page = NULL;
7c2e132c 1446 unfreeze_slab(s, page, tail);
81819f0f
CL
1447}
1448
dfb4f096 1449static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1450{
8ff12cfc 1451 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1452 slab_lock(c->page);
1453 deactivate_slab(s, c);
81819f0f
CL
1454}
1455
1456/*
1457 * Flush cpu slab.
6446faa2 1458 *
81819f0f
CL
1459 * Called from IPI handler with interrupts disabled.
1460 */
0c710013 1461static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1462{
dfb4f096 1463 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1464
dfb4f096
CL
1465 if (likely(c && c->page))
1466 flush_slab(s, c);
81819f0f
CL
1467}
1468
1469static void flush_cpu_slab(void *d)
1470{
1471 struct kmem_cache *s = d;
81819f0f 1472
dfb4f096 1473 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1474}
1475
1476static void flush_all(struct kmem_cache *s)
1477{
15c8b6c1 1478 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1479}
1480
dfb4f096
CL
1481/*
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1484 */
1485static inline int node_match(struct kmem_cache_cpu *c, int node)
1486{
1487#ifdef CONFIG_NUMA
1488 if (node != -1 && c->node != node)
1489 return 0;
1490#endif
1491 return 1;
1492}
1493
81819f0f 1494/*
894b8788
CL
1495 * Slow path. The lockless freelist is empty or we need to perform
1496 * debugging duties.
1497 *
1498 * Interrupts are disabled.
81819f0f 1499 *
894b8788
CL
1500 * Processing is still very fast if new objects have been freed to the
1501 * regular freelist. In that case we simply take over the regular freelist
1502 * as the lockless freelist and zap the regular freelist.
81819f0f 1503 *
894b8788
CL
1504 * If that is not working then we fall back to the partial lists. We take the
1505 * first element of the freelist as the object to allocate now and move the
1506 * rest of the freelist to the lockless freelist.
81819f0f 1507 *
894b8788 1508 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1509 * we need to allocate a new slab. This is the slowest path since it involves
1510 * a call to the page allocator and the setup of a new slab.
81819f0f 1511 */
ce71e27c
EGM
1512static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1513 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1514{
81819f0f 1515 void **object;
dfb4f096 1516 struct page *new;
81819f0f 1517
e72e9c23
LT
1518 /* We handle __GFP_ZERO in the caller */
1519 gfpflags &= ~__GFP_ZERO;
1520
dfb4f096 1521 if (!c->page)
81819f0f
CL
1522 goto new_slab;
1523
dfb4f096
CL
1524 slab_lock(c->page);
1525 if (unlikely(!node_match(c, node)))
81819f0f 1526 goto another_slab;
6446faa2 1527
8ff12cfc 1528 stat(c, ALLOC_REFILL);
6446faa2 1529
894b8788 1530load_freelist:
dfb4f096 1531 object = c->page->freelist;
a973e9dd 1532 if (unlikely(!object))
81819f0f 1533 goto another_slab;
8a38082d 1534 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1535 goto debug;
1536
b3fba8da 1537 c->freelist = object[c->offset];
39b26464 1538 c->page->inuse = c->page->objects;
a973e9dd 1539 c->page->freelist = NULL;
dfb4f096 1540 c->node = page_to_nid(c->page);
1f84260c 1541unlock_out:
dfb4f096 1542 slab_unlock(c->page);
8ff12cfc 1543 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1544 return object;
1545
1546another_slab:
dfb4f096 1547 deactivate_slab(s, c);
81819f0f
CL
1548
1549new_slab:
dfb4f096
CL
1550 new = get_partial(s, gfpflags, node);
1551 if (new) {
1552 c->page = new;
8ff12cfc 1553 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1554 goto load_freelist;
81819f0f
CL
1555 }
1556
b811c202
CL
1557 if (gfpflags & __GFP_WAIT)
1558 local_irq_enable();
1559
dfb4f096 1560 new = new_slab(s, gfpflags, node);
b811c202
CL
1561
1562 if (gfpflags & __GFP_WAIT)
1563 local_irq_disable();
1564
dfb4f096
CL
1565 if (new) {
1566 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1567 stat(c, ALLOC_SLAB);
05aa3450 1568 if (c->page)
dfb4f096 1569 flush_slab(s, c);
dfb4f096 1570 slab_lock(new);
8a38082d 1571 __SetPageSlubFrozen(new);
dfb4f096 1572 c->page = new;
4b6f0750 1573 goto load_freelist;
81819f0f 1574 }
71c7a06f 1575 return NULL;
81819f0f 1576debug:
dfb4f096 1577 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1578 goto another_slab;
894b8788 1579
dfb4f096 1580 c->page->inuse++;
b3fba8da 1581 c->page->freelist = object[c->offset];
ee3c72a1 1582 c->node = -1;
1f84260c 1583 goto unlock_out;
894b8788
CL
1584}
1585
1586/*
1587 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1588 * have the fastpath folded into their functions. So no function call
1589 * overhead for requests that can be satisfied on the fastpath.
1590 *
1591 * The fastpath works by first checking if the lockless freelist can be used.
1592 * If not then __slab_alloc is called for slow processing.
1593 *
1594 * Otherwise we can simply pick the next object from the lockless free list.
1595 */
06428780 1596static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1597 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1598{
894b8788 1599 void **object;
dfb4f096 1600 struct kmem_cache_cpu *c;
1f84260c 1601 unsigned long flags;
bdb21928 1602 unsigned int objsize;
1f84260c 1603
7e85ee0c
PE
1604 gfpflags &= slab_gfp_mask;
1605
cf40bd16 1606 lockdep_trace_alloc(gfpflags);
89124d70 1607 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1608
773ff60e
AM
1609 if (should_failslab(s->objsize, gfpflags))
1610 return NULL;
1f84260c 1611
894b8788 1612 local_irq_save(flags);
dfb4f096 1613 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1614 objsize = c->objsize;
a973e9dd 1615 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1616
dfb4f096 1617 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1618
1619 else {
dfb4f096 1620 object = c->freelist;
b3fba8da 1621 c->freelist = object[c->offset];
8ff12cfc 1622 stat(c, ALLOC_FASTPATH);
894b8788
CL
1623 }
1624 local_irq_restore(flags);
d07dbea4
CL
1625
1626 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1627 memset(object, 0, objsize);
d07dbea4 1628
06f22f13 1629 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
894b8788 1630 return object;
81819f0f
CL
1631}
1632
1633void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1634{
5b882be4
EGM
1635 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1636
ca2b84cb 1637 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1638
1639 return ret;
81819f0f
CL
1640}
1641EXPORT_SYMBOL(kmem_cache_alloc);
1642
5b882be4
EGM
1643#ifdef CONFIG_KMEMTRACE
1644void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1645{
1646 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1647}
1648EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1649#endif
1650
81819f0f
CL
1651#ifdef CONFIG_NUMA
1652void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1653{
5b882be4
EGM
1654 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1655
ca2b84cb
EGM
1656 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1657 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1658
1659 return ret;
81819f0f
CL
1660}
1661EXPORT_SYMBOL(kmem_cache_alloc_node);
1662#endif
1663
5b882be4
EGM
1664#ifdef CONFIG_KMEMTRACE
1665void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1666 gfp_t gfpflags,
1667 int node)
1668{
1669 return slab_alloc(s, gfpflags, node, _RET_IP_);
1670}
1671EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1672#endif
1673
81819f0f 1674/*
894b8788
CL
1675 * Slow patch handling. This may still be called frequently since objects
1676 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1677 *
894b8788
CL
1678 * So we still attempt to reduce cache line usage. Just take the slab
1679 * lock and free the item. If there is no additional partial page
1680 * handling required then we can return immediately.
81819f0f 1681 */
894b8788 1682static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1683 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1684{
1685 void *prior;
1686 void **object = (void *)x;
8ff12cfc 1687 struct kmem_cache_cpu *c;
81819f0f 1688
8ff12cfc
CL
1689 c = get_cpu_slab(s, raw_smp_processor_id());
1690 stat(c, FREE_SLOWPATH);
81819f0f
CL
1691 slab_lock(page);
1692
8a38082d 1693 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1694 goto debug;
6446faa2 1695
81819f0f 1696checks_ok:
b3fba8da 1697 prior = object[offset] = page->freelist;
81819f0f
CL
1698 page->freelist = object;
1699 page->inuse--;
1700
8a38082d 1701 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1702 stat(c, FREE_FROZEN);
81819f0f 1703 goto out_unlock;
8ff12cfc 1704 }
81819f0f
CL
1705
1706 if (unlikely(!page->inuse))
1707 goto slab_empty;
1708
1709 /*
6446faa2 1710 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1711 * then add it.
1712 */
a973e9dd 1713 if (unlikely(!prior)) {
7c2e132c 1714 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1715 stat(c, FREE_ADD_PARTIAL);
1716 }
81819f0f
CL
1717
1718out_unlock:
1719 slab_unlock(page);
81819f0f
CL
1720 return;
1721
1722slab_empty:
a973e9dd 1723 if (prior) {
81819f0f 1724 /*
672bba3a 1725 * Slab still on the partial list.
81819f0f
CL
1726 */
1727 remove_partial(s, page);
8ff12cfc
CL
1728 stat(c, FREE_REMOVE_PARTIAL);
1729 }
81819f0f 1730 slab_unlock(page);
8ff12cfc 1731 stat(c, FREE_SLAB);
81819f0f 1732 discard_slab(s, page);
81819f0f
CL
1733 return;
1734
1735debug:
3ec09742 1736 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1737 goto out_unlock;
77c5e2d0 1738 goto checks_ok;
81819f0f
CL
1739}
1740
894b8788
CL
1741/*
1742 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1743 * can perform fastpath freeing without additional function calls.
1744 *
1745 * The fastpath is only possible if we are freeing to the current cpu slab
1746 * of this processor. This typically the case if we have just allocated
1747 * the item before.
1748 *
1749 * If fastpath is not possible then fall back to __slab_free where we deal
1750 * with all sorts of special processing.
1751 */
06428780 1752static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1753 struct page *page, void *x, unsigned long addr)
894b8788
CL
1754{
1755 void **object = (void *)x;
dfb4f096 1756 struct kmem_cache_cpu *c;
1f84260c
CL
1757 unsigned long flags;
1758
06f22f13 1759 kmemleak_free_recursive(x, s->flags);
894b8788 1760 local_irq_save(flags);
dfb4f096 1761 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1762 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1763 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1764 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1765 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1766 object[c->offset] = c->freelist;
dfb4f096 1767 c->freelist = object;
8ff12cfc 1768 stat(c, FREE_FASTPATH);
894b8788 1769 } else
b3fba8da 1770 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1771
1772 local_irq_restore(flags);
1773}
1774
81819f0f
CL
1775void kmem_cache_free(struct kmem_cache *s, void *x)
1776{
77c5e2d0 1777 struct page *page;
81819f0f 1778
b49af68f 1779 page = virt_to_head_page(x);
81819f0f 1780
ce71e27c 1781 slab_free(s, page, x, _RET_IP_);
5b882be4 1782
ca2b84cb 1783 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1784}
1785EXPORT_SYMBOL(kmem_cache_free);
1786
e9beef18 1787/* Figure out on which slab page the object resides */
81819f0f
CL
1788static struct page *get_object_page(const void *x)
1789{
b49af68f 1790 struct page *page = virt_to_head_page(x);
81819f0f
CL
1791
1792 if (!PageSlab(page))
1793 return NULL;
1794
1795 return page;
1796}
1797
1798/*
672bba3a
CL
1799 * Object placement in a slab is made very easy because we always start at
1800 * offset 0. If we tune the size of the object to the alignment then we can
1801 * get the required alignment by putting one properly sized object after
1802 * another.
81819f0f
CL
1803 *
1804 * Notice that the allocation order determines the sizes of the per cpu
1805 * caches. Each processor has always one slab available for allocations.
1806 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1807 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1808 * locking overhead.
81819f0f
CL
1809 */
1810
1811/*
1812 * Mininum / Maximum order of slab pages. This influences locking overhead
1813 * and slab fragmentation. A higher order reduces the number of partial slabs
1814 * and increases the number of allocations possible without having to
1815 * take the list_lock.
1816 */
1817static int slub_min_order;
114e9e89 1818static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1819static int slub_min_objects;
81819f0f
CL
1820
1821/*
1822 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1823 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1824 */
1825static int slub_nomerge;
1826
81819f0f
CL
1827/*
1828 * Calculate the order of allocation given an slab object size.
1829 *
672bba3a
CL
1830 * The order of allocation has significant impact on performance and other
1831 * system components. Generally order 0 allocations should be preferred since
1832 * order 0 does not cause fragmentation in the page allocator. Larger objects
1833 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1834 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1835 * would be wasted.
1836 *
1837 * In order to reach satisfactory performance we must ensure that a minimum
1838 * number of objects is in one slab. Otherwise we may generate too much
1839 * activity on the partial lists which requires taking the list_lock. This is
1840 * less a concern for large slabs though which are rarely used.
81819f0f 1841 *
672bba3a
CL
1842 * slub_max_order specifies the order where we begin to stop considering the
1843 * number of objects in a slab as critical. If we reach slub_max_order then
1844 * we try to keep the page order as low as possible. So we accept more waste
1845 * of space in favor of a small page order.
81819f0f 1846 *
672bba3a
CL
1847 * Higher order allocations also allow the placement of more objects in a
1848 * slab and thereby reduce object handling overhead. If the user has
1849 * requested a higher mininum order then we start with that one instead of
1850 * the smallest order which will fit the object.
81819f0f 1851 */
5e6d444e
CL
1852static inline int slab_order(int size, int min_objects,
1853 int max_order, int fract_leftover)
81819f0f
CL
1854{
1855 int order;
1856 int rem;
6300ea75 1857 int min_order = slub_min_order;
81819f0f 1858
210b5c06
CG
1859 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1860 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1861
6300ea75 1862 for (order = max(min_order,
5e6d444e
CL
1863 fls(min_objects * size - 1) - PAGE_SHIFT);
1864 order <= max_order; order++) {
81819f0f 1865
5e6d444e 1866 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1867
5e6d444e 1868 if (slab_size < min_objects * size)
81819f0f
CL
1869 continue;
1870
1871 rem = slab_size % size;
1872
5e6d444e 1873 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1874 break;
1875
1876 }
672bba3a 1877
81819f0f
CL
1878 return order;
1879}
1880
5e6d444e
CL
1881static inline int calculate_order(int size)
1882{
1883 int order;
1884 int min_objects;
1885 int fraction;
e8120ff1 1886 int max_objects;
5e6d444e
CL
1887
1888 /*
1889 * Attempt to find best configuration for a slab. This
1890 * works by first attempting to generate a layout with
1891 * the best configuration and backing off gradually.
1892 *
1893 * First we reduce the acceptable waste in a slab. Then
1894 * we reduce the minimum objects required in a slab.
1895 */
1896 min_objects = slub_min_objects;
9b2cd506
CL
1897 if (!min_objects)
1898 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1899 max_objects = (PAGE_SIZE << slub_max_order)/size;
1900 min_objects = min(min_objects, max_objects);
1901
5e6d444e 1902 while (min_objects > 1) {
c124f5b5 1903 fraction = 16;
5e6d444e
CL
1904 while (fraction >= 4) {
1905 order = slab_order(size, min_objects,
1906 slub_max_order, fraction);
1907 if (order <= slub_max_order)
1908 return order;
1909 fraction /= 2;
1910 }
e8120ff1 1911 min_objects --;
5e6d444e
CL
1912 }
1913
1914 /*
1915 * We were unable to place multiple objects in a slab. Now
1916 * lets see if we can place a single object there.
1917 */
1918 order = slab_order(size, 1, slub_max_order, 1);
1919 if (order <= slub_max_order)
1920 return order;
1921
1922 /*
1923 * Doh this slab cannot be placed using slub_max_order.
1924 */
1925 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 1926 if (order < MAX_ORDER)
5e6d444e
CL
1927 return order;
1928 return -ENOSYS;
1929}
1930
81819f0f 1931/*
672bba3a 1932 * Figure out what the alignment of the objects will be.
81819f0f
CL
1933 */
1934static unsigned long calculate_alignment(unsigned long flags,
1935 unsigned long align, unsigned long size)
1936{
1937 /*
6446faa2
CL
1938 * If the user wants hardware cache aligned objects then follow that
1939 * suggestion if the object is sufficiently large.
81819f0f 1940 *
6446faa2
CL
1941 * The hardware cache alignment cannot override the specified
1942 * alignment though. If that is greater then use it.
81819f0f 1943 */
b6210386
NP
1944 if (flags & SLAB_HWCACHE_ALIGN) {
1945 unsigned long ralign = cache_line_size();
1946 while (size <= ralign / 2)
1947 ralign /= 2;
1948 align = max(align, ralign);
1949 }
81819f0f
CL
1950
1951 if (align < ARCH_SLAB_MINALIGN)
b6210386 1952 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1953
1954 return ALIGN(align, sizeof(void *));
1955}
1956
dfb4f096
CL
1957static void init_kmem_cache_cpu(struct kmem_cache *s,
1958 struct kmem_cache_cpu *c)
1959{
1960 c->page = NULL;
a973e9dd 1961 c->freelist = NULL;
dfb4f096 1962 c->node = 0;
42a9fdbb
CL
1963 c->offset = s->offset / sizeof(void *);
1964 c->objsize = s->objsize;
62f75532
PE
1965#ifdef CONFIG_SLUB_STATS
1966 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967#endif
dfb4f096
CL
1968}
1969
5595cffc
PE
1970static void
1971init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1972{
1973 n->nr_partial = 0;
81819f0f
CL
1974 spin_lock_init(&n->list_lock);
1975 INIT_LIST_HEAD(&n->partial);
8ab1372f 1976#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1977 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1978 atomic_long_set(&n->total_objects, 0);
643b1138 1979 INIT_LIST_HEAD(&n->full);
8ab1372f 1980#endif
81819f0f
CL
1981}
1982
4c93c355
CL
1983#ifdef CONFIG_SMP
1984/*
1985 * Per cpu array for per cpu structures.
1986 *
1987 * The per cpu array places all kmem_cache_cpu structures from one processor
1988 * close together meaning that it becomes possible that multiple per cpu
1989 * structures are contained in one cacheline. This may be particularly
1990 * beneficial for the kmalloc caches.
1991 *
1992 * A desktop system typically has around 60-80 slabs. With 100 here we are
1993 * likely able to get per cpu structures for all caches from the array defined
1994 * here. We must be able to cover all kmalloc caches during bootstrap.
1995 *
1996 * If the per cpu array is exhausted then fall back to kmalloc
1997 * of individual cachelines. No sharing is possible then.
1998 */
1999#define NR_KMEM_CACHE_CPU 100
2000
2001static DEFINE_PER_CPU(struct kmem_cache_cpu,
2002 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2003
2004static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2005static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2006
2007static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2008 int cpu, gfp_t flags)
2009{
2010 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2011
2012 if (c)
2013 per_cpu(kmem_cache_cpu_free, cpu) =
2014 (void *)c->freelist;
2015 else {
2016 /* Table overflow: So allocate ourselves */
2017 c = kmalloc_node(
2018 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2019 flags, cpu_to_node(cpu));
2020 if (!c)
2021 return NULL;
2022 }
2023
2024 init_kmem_cache_cpu(s, c);
2025 return c;
2026}
2027
2028static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2029{
2030 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2031 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2032 kfree(c);
2033 return;
2034 }
2035 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2036 per_cpu(kmem_cache_cpu_free, cpu) = c;
2037}
2038
2039static void free_kmem_cache_cpus(struct kmem_cache *s)
2040{
2041 int cpu;
2042
2043 for_each_online_cpu(cpu) {
2044 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2045
2046 if (c) {
2047 s->cpu_slab[cpu] = NULL;
2048 free_kmem_cache_cpu(c, cpu);
2049 }
2050 }
2051}
2052
2053static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2054{
2055 int cpu;
2056
2057 for_each_online_cpu(cpu) {
2058 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2059
2060 if (c)
2061 continue;
2062
2063 c = alloc_kmem_cache_cpu(s, cpu, flags);
2064 if (!c) {
2065 free_kmem_cache_cpus(s);
2066 return 0;
2067 }
2068 s->cpu_slab[cpu] = c;
2069 }
2070 return 1;
2071}
2072
2073/*
2074 * Initialize the per cpu array.
2075 */
2076static void init_alloc_cpu_cpu(int cpu)
2077{
2078 int i;
2079
174596a0 2080 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2081 return;
2082
2083 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2084 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2085
174596a0 2086 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2087}
2088
2089static void __init init_alloc_cpu(void)
2090{
2091 int cpu;
2092
2093 for_each_online_cpu(cpu)
2094 init_alloc_cpu_cpu(cpu);
2095 }
2096
2097#else
2098static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2099static inline void init_alloc_cpu(void) {}
2100
2101static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2102{
2103 init_kmem_cache_cpu(s, &s->cpu_slab);
2104 return 1;
2105}
2106#endif
2107
81819f0f
CL
2108#ifdef CONFIG_NUMA
2109/*
2110 * No kmalloc_node yet so do it by hand. We know that this is the first
2111 * slab on the node for this slabcache. There are no concurrent accesses
2112 * possible.
2113 *
2114 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2115 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116 * memory on a fresh node that has no slab structures yet.
81819f0f 2117 */
0094de92 2118static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2119{
2120 struct page *page;
2121 struct kmem_cache_node *n;
ba84c73c 2122 unsigned long flags;
81819f0f
CL
2123
2124 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2125
a2f92ee7 2126 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2127
2128 BUG_ON(!page);
a2f92ee7
CL
2129 if (page_to_nid(page) != node) {
2130 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2131 "node %d\n", node);
2132 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2133 "in order to be able to continue\n");
2134 }
2135
81819f0f
CL
2136 n = page->freelist;
2137 BUG_ON(!n);
2138 page->freelist = get_freepointer(kmalloc_caches, n);
2139 page->inuse++;
2140 kmalloc_caches->node[node] = n;
8ab1372f 2141#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2142 init_object(kmalloc_caches, n, 1);
2143 init_tracking(kmalloc_caches, n);
8ab1372f 2144#endif
5595cffc 2145 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2146 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2147
ba84c73c 2148 /*
2149 * lockdep requires consistent irq usage for each lock
2150 * so even though there cannot be a race this early in
2151 * the boot sequence, we still disable irqs.
2152 */
2153 local_irq_save(flags);
7c2e132c 2154 add_partial(n, page, 0);
ba84c73c 2155 local_irq_restore(flags);
81819f0f
CL
2156}
2157
2158static void free_kmem_cache_nodes(struct kmem_cache *s)
2159{
2160 int node;
2161
f64dc58c 2162 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2163 struct kmem_cache_node *n = s->node[node];
2164 if (n && n != &s->local_node)
2165 kmem_cache_free(kmalloc_caches, n);
2166 s->node[node] = NULL;
2167 }
2168}
2169
2170static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171{
2172 int node;
2173 int local_node;
2174
2175 if (slab_state >= UP)
2176 local_node = page_to_nid(virt_to_page(s));
2177 else
2178 local_node = 0;
2179
f64dc58c 2180 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2181 struct kmem_cache_node *n;
2182
2183 if (local_node == node)
2184 n = &s->local_node;
2185 else {
2186 if (slab_state == DOWN) {
0094de92 2187 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2188 continue;
2189 }
2190 n = kmem_cache_alloc_node(kmalloc_caches,
2191 gfpflags, node);
2192
2193 if (!n) {
2194 free_kmem_cache_nodes(s);
2195 return 0;
2196 }
2197
2198 }
2199 s->node[node] = n;
5595cffc 2200 init_kmem_cache_node(n, s);
81819f0f
CL
2201 }
2202 return 1;
2203}
2204#else
2205static void free_kmem_cache_nodes(struct kmem_cache *s)
2206{
2207}
2208
2209static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2210{
5595cffc 2211 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2212 return 1;
2213}
2214#endif
2215
c0bdb232 2216static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2217{
2218 if (min < MIN_PARTIAL)
2219 min = MIN_PARTIAL;
2220 else if (min > MAX_PARTIAL)
2221 min = MAX_PARTIAL;
2222 s->min_partial = min;
2223}
2224
81819f0f
CL
2225/*
2226 * calculate_sizes() determines the order and the distribution of data within
2227 * a slab object.
2228 */
06b285dc 2229static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2230{
2231 unsigned long flags = s->flags;
2232 unsigned long size = s->objsize;
2233 unsigned long align = s->align;
834f3d11 2234 int order;
81819f0f 2235
d8b42bf5
CL
2236 /*
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2240 */
2241 size = ALIGN(size, sizeof(void *));
2242
2243#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2244 /*
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2248 */
2249 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2250 !s->ctor)
81819f0f
CL
2251 s->flags |= __OBJECT_POISON;
2252 else
2253 s->flags &= ~__OBJECT_POISON;
2254
81819f0f
CL
2255
2256 /*
672bba3a 2257 * If we are Redzoning then check if there is some space between the
81819f0f 2258 * end of the object and the free pointer. If not then add an
672bba3a 2259 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2260 */
2261 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 size += sizeof(void *);
41ecc55b 2263#endif
81819f0f
CL
2264
2265 /*
672bba3a
CL
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2268 */
2269 s->inuse = size;
2270
2271 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2272 s->ctor)) {
81819f0f
CL
2273 /*
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2276 * kmem_cache_free.
2277 *
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2280 */
2281 s->offset = size;
2282 size += sizeof(void *);
2283 }
2284
c12b3c62 2285#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2286 if (flags & SLAB_STORE_USER)
2287 /*
2288 * Need to store information about allocs and frees after
2289 * the object.
2290 */
2291 size += 2 * sizeof(struct track);
2292
be7b3fbc 2293 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2294 /*
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
0211a9c8 2298 * corrupted if a user writes before the start
81819f0f
CL
2299 * of the object.
2300 */
2301 size += sizeof(void *);
41ecc55b 2302#endif
672bba3a 2303
81819f0f
CL
2304 /*
2305 * Determine the alignment based on various parameters that the
65c02d4c
CL
2306 * user specified and the dynamic determination of cache line size
2307 * on bootup.
81819f0f
CL
2308 */
2309 align = calculate_alignment(flags, align, s->objsize);
2310
2311 /*
2312 * SLUB stores one object immediately after another beginning from
2313 * offset 0. In order to align the objects we have to simply size
2314 * each object to conform to the alignment.
2315 */
2316 size = ALIGN(size, align);
2317 s->size = size;
06b285dc
CL
2318 if (forced_order >= 0)
2319 order = forced_order;
2320 else
2321 order = calculate_order(size);
81819f0f 2322
834f3d11 2323 if (order < 0)
81819f0f
CL
2324 return 0;
2325
b7a49f0d 2326 s->allocflags = 0;
834f3d11 2327 if (order)
b7a49f0d
CL
2328 s->allocflags |= __GFP_COMP;
2329
2330 if (s->flags & SLAB_CACHE_DMA)
2331 s->allocflags |= SLUB_DMA;
2332
2333 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2334 s->allocflags |= __GFP_RECLAIMABLE;
2335
81819f0f
CL
2336 /*
2337 * Determine the number of objects per slab
2338 */
834f3d11 2339 s->oo = oo_make(order, size);
65c3376a 2340 s->min = oo_make(get_order(size), size);
205ab99d
CL
2341 if (oo_objects(s->oo) > oo_objects(s->max))
2342 s->max = s->oo;
81819f0f 2343
834f3d11 2344 return !!oo_objects(s->oo);
81819f0f
CL
2345
2346}
2347
81819f0f
CL
2348static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2349 const char *name, size_t size,
2350 size_t align, unsigned long flags,
51cc5068 2351 void (*ctor)(void *))
81819f0f
CL
2352{
2353 memset(s, 0, kmem_size);
2354 s->name = name;
2355 s->ctor = ctor;
81819f0f 2356 s->objsize = size;
81819f0f 2357 s->align = align;
ba0268a8 2358 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2359
06b285dc 2360 if (!calculate_sizes(s, -1))
81819f0f
CL
2361 goto error;
2362
3b89d7d8
DR
2363 /*
2364 * The larger the object size is, the more pages we want on the partial
2365 * list to avoid pounding the page allocator excessively.
2366 */
c0bdb232 2367 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2368 s->refcount = 1;
2369#ifdef CONFIG_NUMA
e2cb96b7 2370 s->remote_node_defrag_ratio = 1000;
81819f0f 2371#endif
dfb4f096
CL
2372 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2373 goto error;
81819f0f 2374
dfb4f096 2375 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2376 return 1;
4c93c355 2377 free_kmem_cache_nodes(s);
81819f0f
CL
2378error:
2379 if (flags & SLAB_PANIC)
2380 panic("Cannot create slab %s size=%lu realsize=%u "
2381 "order=%u offset=%u flags=%lx\n",
834f3d11 2382 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2383 s->offset, flags);
2384 return 0;
2385}
81819f0f
CL
2386
2387/*
2388 * Check if a given pointer is valid
2389 */
2390int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2391{
06428780 2392 struct page *page;
81819f0f
CL
2393
2394 page = get_object_page(object);
2395
2396 if (!page || s != page->slab)
2397 /* No slab or wrong slab */
2398 return 0;
2399
abcd08a6 2400 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2401 return 0;
2402
2403 /*
2404 * We could also check if the object is on the slabs freelist.
2405 * But this would be too expensive and it seems that the main
6446faa2 2406 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2407 * to a certain slab.
2408 */
2409 return 1;
2410}
2411EXPORT_SYMBOL(kmem_ptr_validate);
2412
2413/*
2414 * Determine the size of a slab object
2415 */
2416unsigned int kmem_cache_size(struct kmem_cache *s)
2417{
2418 return s->objsize;
2419}
2420EXPORT_SYMBOL(kmem_cache_size);
2421
2422const char *kmem_cache_name(struct kmem_cache *s)
2423{
2424 return s->name;
2425}
2426EXPORT_SYMBOL(kmem_cache_name);
2427
33b12c38
CL
2428static void list_slab_objects(struct kmem_cache *s, struct page *page,
2429 const char *text)
2430{
2431#ifdef CONFIG_SLUB_DEBUG
2432 void *addr = page_address(page);
2433 void *p;
2434 DECLARE_BITMAP(map, page->objects);
2435
2436 bitmap_zero(map, page->objects);
2437 slab_err(s, page, "%s", text);
2438 slab_lock(page);
2439 for_each_free_object(p, s, page->freelist)
2440 set_bit(slab_index(p, s, addr), map);
2441
2442 for_each_object(p, s, addr, page->objects) {
2443
2444 if (!test_bit(slab_index(p, s, addr), map)) {
2445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2446 p, p - addr);
2447 print_tracking(s, p);
2448 }
2449 }
2450 slab_unlock(page);
2451#endif
2452}
2453
81819f0f 2454/*
599870b1 2455 * Attempt to free all partial slabs on a node.
81819f0f 2456 */
599870b1 2457static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2458{
81819f0f
CL
2459 unsigned long flags;
2460 struct page *page, *h;
2461
2462 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2463 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2464 if (!page->inuse) {
2465 list_del(&page->lru);
2466 discard_slab(s, page);
599870b1 2467 n->nr_partial--;
33b12c38
CL
2468 } else {
2469 list_slab_objects(s, page,
2470 "Objects remaining on kmem_cache_close()");
599870b1 2471 }
33b12c38 2472 }
81819f0f 2473 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2474}
2475
2476/*
672bba3a 2477 * Release all resources used by a slab cache.
81819f0f 2478 */
0c710013 2479static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2480{
2481 int node;
2482
2483 flush_all(s);
2484
2485 /* Attempt to free all objects */
4c93c355 2486 free_kmem_cache_cpus(s);
f64dc58c 2487 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2488 struct kmem_cache_node *n = get_node(s, node);
2489
599870b1
CL
2490 free_partial(s, n);
2491 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2492 return 1;
2493 }
2494 free_kmem_cache_nodes(s);
2495 return 0;
2496}
2497
2498/*
2499 * Close a cache and release the kmem_cache structure
2500 * (must be used for caches created using kmem_cache_create)
2501 */
2502void kmem_cache_destroy(struct kmem_cache *s)
2503{
2504 down_write(&slub_lock);
2505 s->refcount--;
2506 if (!s->refcount) {
2507 list_del(&s->list);
a0e1d1be 2508 up_write(&slub_lock);
d629d819
PE
2509 if (kmem_cache_close(s)) {
2510 printk(KERN_ERR "SLUB %s: %s called for cache that "
2511 "still has objects.\n", s->name, __func__);
2512 dump_stack();
2513 }
81819f0f 2514 sysfs_slab_remove(s);
a0e1d1be
CL
2515 } else
2516 up_write(&slub_lock);
81819f0f
CL
2517}
2518EXPORT_SYMBOL(kmem_cache_destroy);
2519
2520/********************************************************************
2521 * Kmalloc subsystem
2522 *******************************************************************/
2523
ffadd4d0 2524struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2525EXPORT_SYMBOL(kmalloc_caches);
2526
81819f0f
CL
2527static int __init setup_slub_min_order(char *str)
2528{
06428780 2529 get_option(&str, &slub_min_order);
81819f0f
CL
2530
2531 return 1;
2532}
2533
2534__setup("slub_min_order=", setup_slub_min_order);
2535
2536static int __init setup_slub_max_order(char *str)
2537{
06428780 2538 get_option(&str, &slub_max_order);
818cf590 2539 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2540
2541 return 1;
2542}
2543
2544__setup("slub_max_order=", setup_slub_max_order);
2545
2546static int __init setup_slub_min_objects(char *str)
2547{
06428780 2548 get_option(&str, &slub_min_objects);
81819f0f
CL
2549
2550 return 1;
2551}
2552
2553__setup("slub_min_objects=", setup_slub_min_objects);
2554
2555static int __init setup_slub_nomerge(char *str)
2556{
2557 slub_nomerge = 1;
2558 return 1;
2559}
2560
2561__setup("slub_nomerge", setup_slub_nomerge);
2562
81819f0f
CL
2563static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2564 const char *name, int size, gfp_t gfp_flags)
2565{
2566 unsigned int flags = 0;
2567
2568 if (gfp_flags & SLUB_DMA)
2569 flags = SLAB_CACHE_DMA;
2570
83b519e8
PE
2571 /*
2572 * This function is called with IRQs disabled during early-boot on
2573 * single CPU so there's no need to take slub_lock here.
2574 */
81819f0f 2575 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2576 flags, NULL))
81819f0f
CL
2577 goto panic;
2578
2579 list_add(&s->list, &slab_caches);
83b519e8 2580
81819f0f
CL
2581 if (sysfs_slab_add(s))
2582 goto panic;
2583 return s;
2584
2585panic:
2586 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2587}
2588
2e443fd0 2589#ifdef CONFIG_ZONE_DMA
ffadd4d0 2590static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2591
2592static void sysfs_add_func(struct work_struct *w)
2593{
2594 struct kmem_cache *s;
2595
2596 down_write(&slub_lock);
2597 list_for_each_entry(s, &slab_caches, list) {
2598 if (s->flags & __SYSFS_ADD_DEFERRED) {
2599 s->flags &= ~__SYSFS_ADD_DEFERRED;
2600 sysfs_slab_add(s);
2601 }
2602 }
2603 up_write(&slub_lock);
2604}
2605
2606static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2607
2e443fd0
CL
2608static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2609{
2610 struct kmem_cache *s;
2e443fd0
CL
2611 char *text;
2612 size_t realsize;
2613
2614 s = kmalloc_caches_dma[index];
2615 if (s)
2616 return s;
2617
2618 /* Dynamically create dma cache */
1ceef402
CL
2619 if (flags & __GFP_WAIT)
2620 down_write(&slub_lock);
2621 else {
2622 if (!down_write_trylock(&slub_lock))
2623 goto out;
2624 }
2625
2626 if (kmalloc_caches_dma[index])
2627 goto unlock_out;
2e443fd0 2628
7b55f620 2629 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2630 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2631 (unsigned int)realsize);
1ceef402
CL
2632 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2633
2634 if (!s || !text || !kmem_cache_open(s, flags, text,
2635 realsize, ARCH_KMALLOC_MINALIGN,
2636 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2637 kfree(s);
2638 kfree(text);
2639 goto unlock_out;
dfce8648 2640 }
1ceef402
CL
2641
2642 list_add(&s->list, &slab_caches);
2643 kmalloc_caches_dma[index] = s;
2644
2645 schedule_work(&sysfs_add_work);
2646
2647unlock_out:
dfce8648 2648 up_write(&slub_lock);
1ceef402 2649out:
dfce8648 2650 return kmalloc_caches_dma[index];
2e443fd0
CL
2651}
2652#endif
2653
f1b26339
CL
2654/*
2655 * Conversion table for small slabs sizes / 8 to the index in the
2656 * kmalloc array. This is necessary for slabs < 192 since we have non power
2657 * of two cache sizes there. The size of larger slabs can be determined using
2658 * fls.
2659 */
2660static s8 size_index[24] = {
2661 3, /* 8 */
2662 4, /* 16 */
2663 5, /* 24 */
2664 5, /* 32 */
2665 6, /* 40 */
2666 6, /* 48 */
2667 6, /* 56 */
2668 6, /* 64 */
2669 1, /* 72 */
2670 1, /* 80 */
2671 1, /* 88 */
2672 1, /* 96 */
2673 7, /* 104 */
2674 7, /* 112 */
2675 7, /* 120 */
2676 7, /* 128 */
2677 2, /* 136 */
2678 2, /* 144 */
2679 2, /* 152 */
2680 2, /* 160 */
2681 2, /* 168 */
2682 2, /* 176 */
2683 2, /* 184 */
2684 2 /* 192 */
2685};
2686
81819f0f
CL
2687static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2688{
f1b26339 2689 int index;
81819f0f 2690
f1b26339
CL
2691 if (size <= 192) {
2692 if (!size)
2693 return ZERO_SIZE_PTR;
81819f0f 2694
f1b26339 2695 index = size_index[(size - 1) / 8];
aadb4bc4 2696 } else
f1b26339 2697 index = fls(size - 1);
81819f0f
CL
2698
2699#ifdef CONFIG_ZONE_DMA
f1b26339 2700 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2701 return dma_kmalloc_cache(index, flags);
f1b26339 2702
81819f0f
CL
2703#endif
2704 return &kmalloc_caches[index];
2705}
2706
2707void *__kmalloc(size_t size, gfp_t flags)
2708{
aadb4bc4 2709 struct kmem_cache *s;
5b882be4 2710 void *ret;
81819f0f 2711
ffadd4d0 2712 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2713 return kmalloc_large(size, flags);
aadb4bc4
CL
2714
2715 s = get_slab(size, flags);
2716
2717 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2718 return s;
2719
5b882be4
EGM
2720 ret = slab_alloc(s, flags, -1, _RET_IP_);
2721
ca2b84cb 2722 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2723
2724 return ret;
81819f0f
CL
2725}
2726EXPORT_SYMBOL(__kmalloc);
2727
f619cfe1
CL
2728static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2729{
2730 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2731 get_order(size));
2732
2733 if (page)
2734 return page_address(page);
2735 else
2736 return NULL;
2737}
2738
81819f0f
CL
2739#ifdef CONFIG_NUMA
2740void *__kmalloc_node(size_t size, gfp_t flags, int node)
2741{
aadb4bc4 2742 struct kmem_cache *s;
5b882be4 2743 void *ret;
81819f0f 2744
057685cf 2745 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2746 ret = kmalloc_large_node(size, flags, node);
2747
ca2b84cb
EGM
2748 trace_kmalloc_node(_RET_IP_, ret,
2749 size, PAGE_SIZE << get_order(size),
2750 flags, node);
5b882be4
EGM
2751
2752 return ret;
2753 }
aadb4bc4
CL
2754
2755 s = get_slab(size, flags);
2756
2757 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2758 return s;
2759
5b882be4
EGM
2760 ret = slab_alloc(s, flags, node, _RET_IP_);
2761
ca2b84cb 2762 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2763
2764 return ret;
81819f0f
CL
2765}
2766EXPORT_SYMBOL(__kmalloc_node);
2767#endif
2768
2769size_t ksize(const void *object)
2770{
272c1d21 2771 struct page *page;
81819f0f
CL
2772 struct kmem_cache *s;
2773
ef8b4520 2774 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2775 return 0;
2776
294a80a8 2777 page = virt_to_head_page(object);
294a80a8 2778
76994412
PE
2779 if (unlikely(!PageSlab(page))) {
2780 WARN_ON(!PageCompound(page));
294a80a8 2781 return PAGE_SIZE << compound_order(page);
76994412 2782 }
81819f0f 2783 s = page->slab;
81819f0f 2784
ae20bfda 2785#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2786 /*
2787 * Debugging requires use of the padding between object
2788 * and whatever may come after it.
2789 */
2790 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2791 return s->objsize;
2792
ae20bfda 2793#endif
81819f0f
CL
2794 /*
2795 * If we have the need to store the freelist pointer
2796 * back there or track user information then we can
2797 * only use the space before that information.
2798 */
2799 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2800 return s->inuse;
81819f0f
CL
2801 /*
2802 * Else we can use all the padding etc for the allocation
2803 */
2804 return s->size;
2805}
b1aabecd 2806EXPORT_SYMBOL(ksize);
81819f0f
CL
2807
2808void kfree(const void *x)
2809{
81819f0f 2810 struct page *page;
5bb983b0 2811 void *object = (void *)x;
81819f0f 2812
2121db74
PE
2813 trace_kfree(_RET_IP_, x);
2814
2408c550 2815 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2816 return;
2817
b49af68f 2818 page = virt_to_head_page(x);
aadb4bc4 2819 if (unlikely(!PageSlab(page))) {
0937502a 2820 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2821 put_page(page);
2822 return;
2823 }
ce71e27c 2824 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2825}
2826EXPORT_SYMBOL(kfree);
2827
2086d26a 2828/*
672bba3a
CL
2829 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2830 * the remaining slabs by the number of items in use. The slabs with the
2831 * most items in use come first. New allocations will then fill those up
2832 * and thus they can be removed from the partial lists.
2833 *
2834 * The slabs with the least items are placed last. This results in them
2835 * being allocated from last increasing the chance that the last objects
2836 * are freed in them.
2086d26a
CL
2837 */
2838int kmem_cache_shrink(struct kmem_cache *s)
2839{
2840 int node;
2841 int i;
2842 struct kmem_cache_node *n;
2843 struct page *page;
2844 struct page *t;
205ab99d 2845 int objects = oo_objects(s->max);
2086d26a 2846 struct list_head *slabs_by_inuse =
834f3d11 2847 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2848 unsigned long flags;
2849
2850 if (!slabs_by_inuse)
2851 return -ENOMEM;
2852
2853 flush_all(s);
f64dc58c 2854 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2855 n = get_node(s, node);
2856
2857 if (!n->nr_partial)
2858 continue;
2859
834f3d11 2860 for (i = 0; i < objects; i++)
2086d26a
CL
2861 INIT_LIST_HEAD(slabs_by_inuse + i);
2862
2863 spin_lock_irqsave(&n->list_lock, flags);
2864
2865 /*
672bba3a 2866 * Build lists indexed by the items in use in each slab.
2086d26a 2867 *
672bba3a
CL
2868 * Note that concurrent frees may occur while we hold the
2869 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2870 */
2871 list_for_each_entry_safe(page, t, &n->partial, lru) {
2872 if (!page->inuse && slab_trylock(page)) {
2873 /*
2874 * Must hold slab lock here because slab_free
2875 * may have freed the last object and be
2876 * waiting to release the slab.
2877 */
2878 list_del(&page->lru);
2879 n->nr_partial--;
2880 slab_unlock(page);
2881 discard_slab(s, page);
2882 } else {
fcda3d89
CL
2883 list_move(&page->lru,
2884 slabs_by_inuse + page->inuse);
2086d26a
CL
2885 }
2886 }
2887
2086d26a 2888 /*
672bba3a
CL
2889 * Rebuild the partial list with the slabs filled up most
2890 * first and the least used slabs at the end.
2086d26a 2891 */
834f3d11 2892 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2893 list_splice(slabs_by_inuse + i, n->partial.prev);
2894
2086d26a
CL
2895 spin_unlock_irqrestore(&n->list_lock, flags);
2896 }
2897
2898 kfree(slabs_by_inuse);
2899 return 0;
2900}
2901EXPORT_SYMBOL(kmem_cache_shrink);
2902
b9049e23
YG
2903#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2904static int slab_mem_going_offline_callback(void *arg)
2905{
2906 struct kmem_cache *s;
2907
2908 down_read(&slub_lock);
2909 list_for_each_entry(s, &slab_caches, list)
2910 kmem_cache_shrink(s);
2911 up_read(&slub_lock);
2912
2913 return 0;
2914}
2915
2916static void slab_mem_offline_callback(void *arg)
2917{
2918 struct kmem_cache_node *n;
2919 struct kmem_cache *s;
2920 struct memory_notify *marg = arg;
2921 int offline_node;
2922
2923 offline_node = marg->status_change_nid;
2924
2925 /*
2926 * If the node still has available memory. we need kmem_cache_node
2927 * for it yet.
2928 */
2929 if (offline_node < 0)
2930 return;
2931
2932 down_read(&slub_lock);
2933 list_for_each_entry(s, &slab_caches, list) {
2934 n = get_node(s, offline_node);
2935 if (n) {
2936 /*
2937 * if n->nr_slabs > 0, slabs still exist on the node
2938 * that is going down. We were unable to free them,
2939 * and offline_pages() function shoudn't call this
2940 * callback. So, we must fail.
2941 */
0f389ec6 2942 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2943
2944 s->node[offline_node] = NULL;
2945 kmem_cache_free(kmalloc_caches, n);
2946 }
2947 }
2948 up_read(&slub_lock);
2949}
2950
2951static int slab_mem_going_online_callback(void *arg)
2952{
2953 struct kmem_cache_node *n;
2954 struct kmem_cache *s;
2955 struct memory_notify *marg = arg;
2956 int nid = marg->status_change_nid;
2957 int ret = 0;
2958
2959 /*
2960 * If the node's memory is already available, then kmem_cache_node is
2961 * already created. Nothing to do.
2962 */
2963 if (nid < 0)
2964 return 0;
2965
2966 /*
0121c619 2967 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2968 * allocate a kmem_cache_node structure in order to bring the node
2969 * online.
2970 */
2971 down_read(&slub_lock);
2972 list_for_each_entry(s, &slab_caches, list) {
2973 /*
2974 * XXX: kmem_cache_alloc_node will fallback to other nodes
2975 * since memory is not yet available from the node that
2976 * is brought up.
2977 */
2978 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2979 if (!n) {
2980 ret = -ENOMEM;
2981 goto out;
2982 }
5595cffc 2983 init_kmem_cache_node(n, s);
b9049e23
YG
2984 s->node[nid] = n;
2985 }
2986out:
2987 up_read(&slub_lock);
2988 return ret;
2989}
2990
2991static int slab_memory_callback(struct notifier_block *self,
2992 unsigned long action, void *arg)
2993{
2994 int ret = 0;
2995
2996 switch (action) {
2997 case MEM_GOING_ONLINE:
2998 ret = slab_mem_going_online_callback(arg);
2999 break;
3000 case MEM_GOING_OFFLINE:
3001 ret = slab_mem_going_offline_callback(arg);
3002 break;
3003 case MEM_OFFLINE:
3004 case MEM_CANCEL_ONLINE:
3005 slab_mem_offline_callback(arg);
3006 break;
3007 case MEM_ONLINE:
3008 case MEM_CANCEL_OFFLINE:
3009 break;
3010 }
dc19f9db
KH
3011 if (ret)
3012 ret = notifier_from_errno(ret);
3013 else
3014 ret = NOTIFY_OK;
b9049e23
YG
3015 return ret;
3016}
3017
3018#endif /* CONFIG_MEMORY_HOTPLUG */
3019
81819f0f
CL
3020/********************************************************************
3021 * Basic setup of slabs
3022 *******************************************************************/
3023
3024void __init kmem_cache_init(void)
3025{
3026 int i;
4b356be0 3027 int caches = 0;
81819f0f 3028
4c93c355
CL
3029 init_alloc_cpu();
3030
81819f0f
CL
3031#ifdef CONFIG_NUMA
3032 /*
3033 * Must first have the slab cache available for the allocations of the
672bba3a 3034 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3035 * kmem_cache_open for slab_state == DOWN.
3036 */
3037 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3038 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3039 kmalloc_caches[0].refcount = -1;
4b356be0 3040 caches++;
b9049e23 3041
0c40ba4f 3042 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3043#endif
3044
3045 /* Able to allocate the per node structures */
3046 slab_state = PARTIAL;
3047
3048 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3049 if (KMALLOC_MIN_SIZE <= 64) {
3050 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3051 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3052 caches++;
4b356be0 3053 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3054 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3055 caches++;
3056 }
81819f0f 3057
ffadd4d0 3058 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3059 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3060 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3061 caches++;
3062 }
81819f0f 3063
f1b26339
CL
3064
3065 /*
3066 * Patch up the size_index table if we have strange large alignment
3067 * requirements for the kmalloc array. This is only the case for
6446faa2 3068 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3069 *
3070 * Largest permitted alignment is 256 bytes due to the way we
3071 * handle the index determination for the smaller caches.
3072 *
3073 * Make sure that nothing crazy happens if someone starts tinkering
3074 * around with ARCH_KMALLOC_MINALIGN
3075 */
3076 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3077 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3078
12ad6843 3079 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3080 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3081
41d54d3b
CL
3082 if (KMALLOC_MIN_SIZE == 128) {
3083 /*
3084 * The 192 byte sized cache is not used if the alignment
3085 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3086 * instead.
3087 */
3088 for (i = 128 + 8; i <= 192; i += 8)
3089 size_index[(i - 1) / 8] = 8;
3090 }
3091
81819f0f
CL
3092 slab_state = UP;
3093
3094 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3095 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3096 kmalloc_caches[i]. name =
83b519e8 3097 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3098
3099#ifdef CONFIG_SMP
3100 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3101 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3102 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3103#else
3104 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3105#endif
3106
3adbefee
IM
3107 printk(KERN_INFO
3108 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3109 " CPUs=%d, Nodes=%d\n",
3110 caches, cache_line_size(),
81819f0f
CL
3111 slub_min_order, slub_max_order, slub_min_objects,
3112 nr_cpu_ids, nr_node_ids);
3113}
3114
7e85ee0c
PE
3115void __init kmem_cache_init_late(void)
3116{
3117 /*
3118 * Interrupts are enabled now so all GFP allocations are safe.
3119 */
3120 slab_gfp_mask = __GFP_BITS_MASK;
3121}
3122
81819f0f
CL
3123/*
3124 * Find a mergeable slab cache
3125 */
3126static int slab_unmergeable(struct kmem_cache *s)
3127{
3128 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3129 return 1;
3130
c59def9f 3131 if (s->ctor)
81819f0f
CL
3132 return 1;
3133
8ffa6875
CL
3134 /*
3135 * We may have set a slab to be unmergeable during bootstrap.
3136 */
3137 if (s->refcount < 0)
3138 return 1;
3139
81819f0f
CL
3140 return 0;
3141}
3142
3143static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3144 size_t align, unsigned long flags, const char *name,
51cc5068 3145 void (*ctor)(void *))
81819f0f 3146{
5b95a4ac 3147 struct kmem_cache *s;
81819f0f
CL
3148
3149 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3150 return NULL;
3151
c59def9f 3152 if (ctor)
81819f0f
CL
3153 return NULL;
3154
3155 size = ALIGN(size, sizeof(void *));
3156 align = calculate_alignment(flags, align, size);
3157 size = ALIGN(size, align);
ba0268a8 3158 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3159
5b95a4ac 3160 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3161 if (slab_unmergeable(s))
3162 continue;
3163
3164 if (size > s->size)
3165 continue;
3166
ba0268a8 3167 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3168 continue;
3169 /*
3170 * Check if alignment is compatible.
3171 * Courtesy of Adrian Drzewiecki
3172 */
06428780 3173 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3174 continue;
3175
3176 if (s->size - size >= sizeof(void *))
3177 continue;
3178
3179 return s;
3180 }
3181 return NULL;
3182}
3183
3184struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3185 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3186{
3187 struct kmem_cache *s;
3188
3189 down_write(&slub_lock);
ba0268a8 3190 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3191 if (s) {
42a9fdbb
CL
3192 int cpu;
3193
81819f0f
CL
3194 s->refcount++;
3195 /*
3196 * Adjust the object sizes so that we clear
3197 * the complete object on kzalloc.
3198 */
3199 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3200
3201 /*
3202 * And then we need to update the object size in the
3203 * per cpu structures
3204 */
3205 for_each_online_cpu(cpu)
3206 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3207
81819f0f 3208 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3209 up_write(&slub_lock);
6446faa2 3210
7b8f3b66
DR
3211 if (sysfs_slab_alias(s, name)) {
3212 down_write(&slub_lock);
3213 s->refcount--;
3214 up_write(&slub_lock);
81819f0f 3215 goto err;
7b8f3b66 3216 }
a0e1d1be
CL
3217 return s;
3218 }
6446faa2 3219
a0e1d1be
CL
3220 s = kmalloc(kmem_size, GFP_KERNEL);
3221 if (s) {
3222 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3223 size, align, flags, ctor)) {
81819f0f 3224 list_add(&s->list, &slab_caches);
a0e1d1be 3225 up_write(&slub_lock);
7b8f3b66
DR
3226 if (sysfs_slab_add(s)) {
3227 down_write(&slub_lock);
3228 list_del(&s->list);
3229 up_write(&slub_lock);
3230 kfree(s);
a0e1d1be 3231 goto err;
7b8f3b66 3232 }
a0e1d1be
CL
3233 return s;
3234 }
3235 kfree(s);
81819f0f
CL
3236 }
3237 up_write(&slub_lock);
81819f0f
CL
3238
3239err:
81819f0f
CL
3240 if (flags & SLAB_PANIC)
3241 panic("Cannot create slabcache %s\n", name);
3242 else
3243 s = NULL;
3244 return s;
3245}
3246EXPORT_SYMBOL(kmem_cache_create);
3247
81819f0f 3248#ifdef CONFIG_SMP
81819f0f 3249/*
672bba3a
CL
3250 * Use the cpu notifier to insure that the cpu slabs are flushed when
3251 * necessary.
81819f0f
CL
3252 */
3253static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3254 unsigned long action, void *hcpu)
3255{
3256 long cpu = (long)hcpu;
5b95a4ac
CL
3257 struct kmem_cache *s;
3258 unsigned long flags;
81819f0f
CL
3259
3260 switch (action) {
4c93c355
CL
3261 case CPU_UP_PREPARE:
3262 case CPU_UP_PREPARE_FROZEN:
3263 init_alloc_cpu_cpu(cpu);
3264 down_read(&slub_lock);
3265 list_for_each_entry(s, &slab_caches, list)
3266 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3267 GFP_KERNEL);
3268 up_read(&slub_lock);
3269 break;
3270
81819f0f 3271 case CPU_UP_CANCELED:
8bb78442 3272 case CPU_UP_CANCELED_FROZEN:
81819f0f 3273 case CPU_DEAD:
8bb78442 3274 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3275 down_read(&slub_lock);
3276 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3277 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3278
5b95a4ac
CL
3279 local_irq_save(flags);
3280 __flush_cpu_slab(s, cpu);
3281 local_irq_restore(flags);
4c93c355
CL
3282 free_kmem_cache_cpu(c, cpu);
3283 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3284 }
3285 up_read(&slub_lock);
81819f0f
CL
3286 break;
3287 default:
3288 break;
3289 }
3290 return NOTIFY_OK;
3291}
3292
06428780 3293static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3294 .notifier_call = slab_cpuup_callback
06428780 3295};
81819f0f
CL
3296
3297#endif
3298
ce71e27c 3299void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3300{
aadb4bc4 3301 struct kmem_cache *s;
94b528d0 3302 void *ret;
aadb4bc4 3303
ffadd4d0 3304 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3305 return kmalloc_large(size, gfpflags);
3306
aadb4bc4 3307 s = get_slab(size, gfpflags);
81819f0f 3308
2408c550 3309 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3310 return s;
81819f0f 3311
94b528d0
EGM
3312 ret = slab_alloc(s, gfpflags, -1, caller);
3313
3314 /* Honor the call site pointer we recieved. */
ca2b84cb 3315 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3316
3317 return ret;
81819f0f
CL
3318}
3319
3320void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3321 int node, unsigned long caller)
81819f0f 3322{
aadb4bc4 3323 struct kmem_cache *s;
94b528d0 3324 void *ret;
aadb4bc4 3325
ffadd4d0 3326 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3327 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3328
aadb4bc4 3329 s = get_slab(size, gfpflags);
81819f0f 3330
2408c550 3331 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3332 return s;
81819f0f 3333
94b528d0
EGM
3334 ret = slab_alloc(s, gfpflags, node, caller);
3335
3336 /* Honor the call site pointer we recieved. */
ca2b84cb 3337 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3338
3339 return ret;
81819f0f
CL
3340}
3341
f6acb635 3342#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3343static unsigned long count_partial(struct kmem_cache_node *n,
3344 int (*get_count)(struct page *))
5b06c853
CL
3345{
3346 unsigned long flags;
3347 unsigned long x = 0;
3348 struct page *page;
3349
3350 spin_lock_irqsave(&n->list_lock, flags);
3351 list_for_each_entry(page, &n->partial, lru)
205ab99d 3352 x += get_count(page);
5b06c853
CL
3353 spin_unlock_irqrestore(&n->list_lock, flags);
3354 return x;
3355}
205ab99d
CL
3356
3357static int count_inuse(struct page *page)
3358{
3359 return page->inuse;
3360}
3361
3362static int count_total(struct page *page)
3363{
3364 return page->objects;
3365}
3366
3367static int count_free(struct page *page)
3368{
3369 return page->objects - page->inuse;
3370}
5b06c853 3371
434e245d
CL
3372static int validate_slab(struct kmem_cache *s, struct page *page,
3373 unsigned long *map)
53e15af0
CL
3374{
3375 void *p;
a973e9dd 3376 void *addr = page_address(page);
53e15af0
CL
3377
3378 if (!check_slab(s, page) ||
3379 !on_freelist(s, page, NULL))
3380 return 0;
3381
3382 /* Now we know that a valid freelist exists */
39b26464 3383 bitmap_zero(map, page->objects);
53e15af0 3384
7656c72b
CL
3385 for_each_free_object(p, s, page->freelist) {
3386 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3387 if (!check_object(s, page, p, 0))
3388 return 0;
3389 }
3390
224a88be 3391 for_each_object(p, s, addr, page->objects)
7656c72b 3392 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3393 if (!check_object(s, page, p, 1))
3394 return 0;
3395 return 1;
3396}
3397
434e245d
CL
3398static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3399 unsigned long *map)
53e15af0
CL
3400{
3401 if (slab_trylock(page)) {
434e245d 3402 validate_slab(s, page, map);
53e15af0
CL
3403 slab_unlock(page);
3404 } else
3405 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3406 s->name, page);
3407
3408 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3409 if (!PageSlubDebug(page))
3410 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3411 "on slab 0x%p\n", s->name, page);
3412 } else {
8a38082d
AW
3413 if (PageSlubDebug(page))
3414 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3415 "slab 0x%p\n", s->name, page);
3416 }
3417}
3418
434e245d
CL
3419static int validate_slab_node(struct kmem_cache *s,
3420 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3421{
3422 unsigned long count = 0;
3423 struct page *page;
3424 unsigned long flags;
3425
3426 spin_lock_irqsave(&n->list_lock, flags);
3427
3428 list_for_each_entry(page, &n->partial, lru) {
434e245d 3429 validate_slab_slab(s, page, map);
53e15af0
CL
3430 count++;
3431 }
3432 if (count != n->nr_partial)
3433 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3434 "counter=%ld\n", s->name, count, n->nr_partial);
3435
3436 if (!(s->flags & SLAB_STORE_USER))
3437 goto out;
3438
3439 list_for_each_entry(page, &n->full, lru) {
434e245d 3440 validate_slab_slab(s, page, map);
53e15af0
CL
3441 count++;
3442 }
3443 if (count != atomic_long_read(&n->nr_slabs))
3444 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3445 "counter=%ld\n", s->name, count,
3446 atomic_long_read(&n->nr_slabs));
3447
3448out:
3449 spin_unlock_irqrestore(&n->list_lock, flags);
3450 return count;
3451}
3452
434e245d 3453static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3454{
3455 int node;
3456 unsigned long count = 0;
205ab99d 3457 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3458 sizeof(unsigned long), GFP_KERNEL);
3459
3460 if (!map)
3461 return -ENOMEM;
53e15af0
CL
3462
3463 flush_all(s);
f64dc58c 3464 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3465 struct kmem_cache_node *n = get_node(s, node);
3466
434e245d 3467 count += validate_slab_node(s, n, map);
53e15af0 3468 }
434e245d 3469 kfree(map);
53e15af0
CL
3470 return count;
3471}
3472
b3459709
CL
3473#ifdef SLUB_RESILIENCY_TEST
3474static void resiliency_test(void)
3475{
3476 u8 *p;
3477
3478 printk(KERN_ERR "SLUB resiliency testing\n");
3479 printk(KERN_ERR "-----------------------\n");
3480 printk(KERN_ERR "A. Corruption after allocation\n");
3481
3482 p = kzalloc(16, GFP_KERNEL);
3483 p[16] = 0x12;
3484 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3485 " 0x12->0x%p\n\n", p + 16);
3486
3487 validate_slab_cache(kmalloc_caches + 4);
3488
3489 /* Hmmm... The next two are dangerous */
3490 p = kzalloc(32, GFP_KERNEL);
3491 p[32 + sizeof(void *)] = 0x34;
3492 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3493 " 0x34 -> -0x%p\n", p);
3494 printk(KERN_ERR
3495 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3496
3497 validate_slab_cache(kmalloc_caches + 5);
3498 p = kzalloc(64, GFP_KERNEL);
3499 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3500 *p = 0x56;
3501 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3502 p);
3adbefee
IM
3503 printk(KERN_ERR
3504 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3505 validate_slab_cache(kmalloc_caches + 6);
3506
3507 printk(KERN_ERR "\nB. Corruption after free\n");
3508 p = kzalloc(128, GFP_KERNEL);
3509 kfree(p);
3510 *p = 0x78;
3511 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3512 validate_slab_cache(kmalloc_caches + 7);
3513
3514 p = kzalloc(256, GFP_KERNEL);
3515 kfree(p);
3516 p[50] = 0x9a;
3adbefee
IM
3517 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3518 p);
b3459709
CL
3519 validate_slab_cache(kmalloc_caches + 8);
3520
3521 p = kzalloc(512, GFP_KERNEL);
3522 kfree(p);
3523 p[512] = 0xab;
3524 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3525 validate_slab_cache(kmalloc_caches + 9);
3526}
3527#else
3528static void resiliency_test(void) {};
3529#endif
3530
88a420e4 3531/*
672bba3a 3532 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3533 * and freed.
3534 */
3535
3536struct location {
3537 unsigned long count;
ce71e27c 3538 unsigned long addr;
45edfa58
CL
3539 long long sum_time;
3540 long min_time;
3541 long max_time;
3542 long min_pid;
3543 long max_pid;
174596a0 3544 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3545 nodemask_t nodes;
88a420e4
CL
3546};
3547
3548struct loc_track {
3549 unsigned long max;
3550 unsigned long count;
3551 struct location *loc;
3552};
3553
3554static void free_loc_track(struct loc_track *t)
3555{
3556 if (t->max)
3557 free_pages((unsigned long)t->loc,
3558 get_order(sizeof(struct location) * t->max));
3559}
3560
68dff6a9 3561static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3562{
3563 struct location *l;
3564 int order;
3565
88a420e4
CL
3566 order = get_order(sizeof(struct location) * max);
3567
68dff6a9 3568 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3569 if (!l)
3570 return 0;
3571
3572 if (t->count) {
3573 memcpy(l, t->loc, sizeof(struct location) * t->count);
3574 free_loc_track(t);
3575 }
3576 t->max = max;
3577 t->loc = l;
3578 return 1;
3579}
3580
3581static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3582 const struct track *track)
88a420e4
CL
3583{
3584 long start, end, pos;
3585 struct location *l;
ce71e27c 3586 unsigned long caddr;
45edfa58 3587 unsigned long age = jiffies - track->when;
88a420e4
CL
3588
3589 start = -1;
3590 end = t->count;
3591
3592 for ( ; ; ) {
3593 pos = start + (end - start + 1) / 2;
3594
3595 /*
3596 * There is nothing at "end". If we end up there
3597 * we need to add something to before end.
3598 */
3599 if (pos == end)
3600 break;
3601
3602 caddr = t->loc[pos].addr;
45edfa58
CL
3603 if (track->addr == caddr) {
3604
3605 l = &t->loc[pos];
3606 l->count++;
3607 if (track->when) {
3608 l->sum_time += age;
3609 if (age < l->min_time)
3610 l->min_time = age;
3611 if (age > l->max_time)
3612 l->max_time = age;
3613
3614 if (track->pid < l->min_pid)
3615 l->min_pid = track->pid;
3616 if (track->pid > l->max_pid)
3617 l->max_pid = track->pid;
3618
174596a0
RR
3619 cpumask_set_cpu(track->cpu,
3620 to_cpumask(l->cpus));
45edfa58
CL
3621 }
3622 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3623 return 1;
3624 }
3625
45edfa58 3626 if (track->addr < caddr)
88a420e4
CL
3627 end = pos;
3628 else
3629 start = pos;
3630 }
3631
3632 /*
672bba3a 3633 * Not found. Insert new tracking element.
88a420e4 3634 */
68dff6a9 3635 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3636 return 0;
3637
3638 l = t->loc + pos;
3639 if (pos < t->count)
3640 memmove(l + 1, l,
3641 (t->count - pos) * sizeof(struct location));
3642 t->count++;
3643 l->count = 1;
45edfa58
CL
3644 l->addr = track->addr;
3645 l->sum_time = age;
3646 l->min_time = age;
3647 l->max_time = age;
3648 l->min_pid = track->pid;
3649 l->max_pid = track->pid;
174596a0
RR
3650 cpumask_clear(to_cpumask(l->cpus));
3651 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3652 nodes_clear(l->nodes);
3653 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3654 return 1;
3655}
3656
3657static void process_slab(struct loc_track *t, struct kmem_cache *s,
3658 struct page *page, enum track_item alloc)
3659{
a973e9dd 3660 void *addr = page_address(page);
39b26464 3661 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3662 void *p;
3663
39b26464 3664 bitmap_zero(map, page->objects);
7656c72b
CL
3665 for_each_free_object(p, s, page->freelist)
3666 set_bit(slab_index(p, s, addr), map);
88a420e4 3667
224a88be 3668 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3669 if (!test_bit(slab_index(p, s, addr), map))
3670 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3671}
3672
3673static int list_locations(struct kmem_cache *s, char *buf,
3674 enum track_item alloc)
3675{
e374d483 3676 int len = 0;
88a420e4 3677 unsigned long i;
68dff6a9 3678 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3679 int node;
3680
68dff6a9 3681 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3682 GFP_TEMPORARY))
68dff6a9 3683 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3684
3685 /* Push back cpu slabs */
3686 flush_all(s);
3687
f64dc58c 3688 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3689 struct kmem_cache_node *n = get_node(s, node);
3690 unsigned long flags;
3691 struct page *page;
3692
9e86943b 3693 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3694 continue;
3695
3696 spin_lock_irqsave(&n->list_lock, flags);
3697 list_for_each_entry(page, &n->partial, lru)
3698 process_slab(&t, s, page, alloc);
3699 list_for_each_entry(page, &n->full, lru)
3700 process_slab(&t, s, page, alloc);
3701 spin_unlock_irqrestore(&n->list_lock, flags);
3702 }
3703
3704 for (i = 0; i < t.count; i++) {
45edfa58 3705 struct location *l = &t.loc[i];
88a420e4 3706
9c246247 3707 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3708 break;
e374d483 3709 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3710
3711 if (l->addr)
e374d483 3712 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3713 else
e374d483 3714 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3715
3716 if (l->sum_time != l->min_time) {
e374d483 3717 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3718 l->min_time,
3719 (long)div_u64(l->sum_time, l->count),
3720 l->max_time);
45edfa58 3721 } else
e374d483 3722 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3723 l->min_time);
3724
3725 if (l->min_pid != l->max_pid)
e374d483 3726 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3727 l->min_pid, l->max_pid);
3728 else
e374d483 3729 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3730 l->min_pid);
3731
174596a0
RR
3732 if (num_online_cpus() > 1 &&
3733 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3734 len < PAGE_SIZE - 60) {
3735 len += sprintf(buf + len, " cpus=");
3736 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3737 to_cpumask(l->cpus));
45edfa58
CL
3738 }
3739
84966343 3740 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3741 len < PAGE_SIZE - 60) {
3742 len += sprintf(buf + len, " nodes=");
3743 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3744 l->nodes);
3745 }
3746
e374d483 3747 len += sprintf(buf + len, "\n");
88a420e4
CL
3748 }
3749
3750 free_loc_track(&t);
3751 if (!t.count)
e374d483
HH
3752 len += sprintf(buf, "No data\n");
3753 return len;
88a420e4
CL
3754}
3755
81819f0f 3756enum slab_stat_type {
205ab99d
CL
3757 SL_ALL, /* All slabs */
3758 SL_PARTIAL, /* Only partially allocated slabs */
3759 SL_CPU, /* Only slabs used for cpu caches */
3760 SL_OBJECTS, /* Determine allocated objects not slabs */
3761 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3762};
3763
205ab99d 3764#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3765#define SO_PARTIAL (1 << SL_PARTIAL)
3766#define SO_CPU (1 << SL_CPU)
3767#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3768#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3769
62e5c4b4
CG
3770static ssize_t show_slab_objects(struct kmem_cache *s,
3771 char *buf, unsigned long flags)
81819f0f
CL
3772{
3773 unsigned long total = 0;
81819f0f
CL
3774 int node;
3775 int x;
3776 unsigned long *nodes;
3777 unsigned long *per_cpu;
3778
3779 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3780 if (!nodes)
3781 return -ENOMEM;
81819f0f
CL
3782 per_cpu = nodes + nr_node_ids;
3783
205ab99d
CL
3784 if (flags & SO_CPU) {
3785 int cpu;
81819f0f 3786
205ab99d
CL
3787 for_each_possible_cpu(cpu) {
3788 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3789
205ab99d
CL
3790 if (!c || c->node < 0)
3791 continue;
3792
3793 if (c->page) {
3794 if (flags & SO_TOTAL)
3795 x = c->page->objects;
3796 else if (flags & SO_OBJECTS)
3797 x = c->page->inuse;
81819f0f
CL
3798 else
3799 x = 1;
205ab99d 3800
81819f0f 3801 total += x;
205ab99d 3802 nodes[c->node] += x;
81819f0f 3803 }
205ab99d 3804 per_cpu[c->node]++;
81819f0f
CL
3805 }
3806 }
3807
205ab99d
CL
3808 if (flags & SO_ALL) {
3809 for_each_node_state(node, N_NORMAL_MEMORY) {
3810 struct kmem_cache_node *n = get_node(s, node);
3811
3812 if (flags & SO_TOTAL)
3813 x = atomic_long_read(&n->total_objects);
3814 else if (flags & SO_OBJECTS)
3815 x = atomic_long_read(&n->total_objects) -
3816 count_partial(n, count_free);
81819f0f 3817
81819f0f 3818 else
205ab99d 3819 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3820 total += x;
3821 nodes[node] += x;
3822 }
3823
205ab99d
CL
3824 } else if (flags & SO_PARTIAL) {
3825 for_each_node_state(node, N_NORMAL_MEMORY) {
3826 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3827
205ab99d
CL
3828 if (flags & SO_TOTAL)
3829 x = count_partial(n, count_total);
3830 else if (flags & SO_OBJECTS)
3831 x = count_partial(n, count_inuse);
81819f0f 3832 else
205ab99d 3833 x = n->nr_partial;
81819f0f
CL
3834 total += x;
3835 nodes[node] += x;
3836 }
3837 }
81819f0f
CL
3838 x = sprintf(buf, "%lu", total);
3839#ifdef CONFIG_NUMA
f64dc58c 3840 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3841 if (nodes[node])
3842 x += sprintf(buf + x, " N%d=%lu",
3843 node, nodes[node]);
3844#endif
3845 kfree(nodes);
3846 return x + sprintf(buf + x, "\n");
3847}
3848
3849static int any_slab_objects(struct kmem_cache *s)
3850{
3851 int node;
81819f0f 3852
dfb4f096 3853 for_each_online_node(node) {
81819f0f
CL
3854 struct kmem_cache_node *n = get_node(s, node);
3855
dfb4f096
CL
3856 if (!n)
3857 continue;
3858
4ea33e2d 3859 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3860 return 1;
3861 }
3862 return 0;
3863}
3864
3865#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3866#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3867
3868struct slab_attribute {
3869 struct attribute attr;
3870 ssize_t (*show)(struct kmem_cache *s, char *buf);
3871 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3872};
3873
3874#define SLAB_ATTR_RO(_name) \
3875 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3876
3877#define SLAB_ATTR(_name) \
3878 static struct slab_attribute _name##_attr = \
3879 __ATTR(_name, 0644, _name##_show, _name##_store)
3880
81819f0f
CL
3881static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3882{
3883 return sprintf(buf, "%d\n", s->size);
3884}
3885SLAB_ATTR_RO(slab_size);
3886
3887static ssize_t align_show(struct kmem_cache *s, char *buf)
3888{
3889 return sprintf(buf, "%d\n", s->align);
3890}
3891SLAB_ATTR_RO(align);
3892
3893static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3894{
3895 return sprintf(buf, "%d\n", s->objsize);
3896}
3897SLAB_ATTR_RO(object_size);
3898
3899static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3900{
834f3d11 3901 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3902}
3903SLAB_ATTR_RO(objs_per_slab);
3904
06b285dc
CL
3905static ssize_t order_store(struct kmem_cache *s,
3906 const char *buf, size_t length)
3907{
0121c619
CL
3908 unsigned long order;
3909 int err;
3910
3911 err = strict_strtoul(buf, 10, &order);
3912 if (err)
3913 return err;
06b285dc
CL
3914
3915 if (order > slub_max_order || order < slub_min_order)
3916 return -EINVAL;
3917
3918 calculate_sizes(s, order);
3919 return length;
3920}
3921
81819f0f
CL
3922static ssize_t order_show(struct kmem_cache *s, char *buf)
3923{
834f3d11 3924 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3925}
06b285dc 3926SLAB_ATTR(order);
81819f0f 3927
73d342b1
DR
3928static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3929{
3930 return sprintf(buf, "%lu\n", s->min_partial);
3931}
3932
3933static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3934 size_t length)
3935{
3936 unsigned long min;
3937 int err;
3938
3939 err = strict_strtoul(buf, 10, &min);
3940 if (err)
3941 return err;
3942
c0bdb232 3943 set_min_partial(s, min);
73d342b1
DR
3944 return length;
3945}
3946SLAB_ATTR(min_partial);
3947
81819f0f
CL
3948static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3949{
3950 if (s->ctor) {
3951 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3952
3953 return n + sprintf(buf + n, "\n");
3954 }
3955 return 0;
3956}
3957SLAB_ATTR_RO(ctor);
3958
81819f0f
CL
3959static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3960{
3961 return sprintf(buf, "%d\n", s->refcount - 1);
3962}
3963SLAB_ATTR_RO(aliases);
3964
3965static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3966{
205ab99d 3967 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3968}
3969SLAB_ATTR_RO(slabs);
3970
3971static ssize_t partial_show(struct kmem_cache *s, char *buf)
3972{
d9acf4b7 3973 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3974}
3975SLAB_ATTR_RO(partial);
3976
3977static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3978{
d9acf4b7 3979 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3980}
3981SLAB_ATTR_RO(cpu_slabs);
3982
3983static ssize_t objects_show(struct kmem_cache *s, char *buf)
3984{
205ab99d 3985 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3986}
3987SLAB_ATTR_RO(objects);
3988
205ab99d
CL
3989static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3990{
3991 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3992}
3993SLAB_ATTR_RO(objects_partial);
3994
3995static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3996{
3997 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3998}
3999SLAB_ATTR_RO(total_objects);
4000
81819f0f
CL
4001static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4002{
4003 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4004}
4005
4006static ssize_t sanity_checks_store(struct kmem_cache *s,
4007 const char *buf, size_t length)
4008{
4009 s->flags &= ~SLAB_DEBUG_FREE;
4010 if (buf[0] == '1')
4011 s->flags |= SLAB_DEBUG_FREE;
4012 return length;
4013}
4014SLAB_ATTR(sanity_checks);
4015
4016static ssize_t trace_show(struct kmem_cache *s, char *buf)
4017{
4018 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4019}
4020
4021static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4022 size_t length)
4023{
4024 s->flags &= ~SLAB_TRACE;
4025 if (buf[0] == '1')
4026 s->flags |= SLAB_TRACE;
4027 return length;
4028}
4029SLAB_ATTR(trace);
4030
4031static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4032{
4033 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4034}
4035
4036static ssize_t reclaim_account_store(struct kmem_cache *s,
4037 const char *buf, size_t length)
4038{
4039 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4040 if (buf[0] == '1')
4041 s->flags |= SLAB_RECLAIM_ACCOUNT;
4042 return length;
4043}
4044SLAB_ATTR(reclaim_account);
4045
4046static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4047{
5af60839 4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4049}
4050SLAB_ATTR_RO(hwcache_align);
4051
4052#ifdef CONFIG_ZONE_DMA
4053static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4054{
4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4056}
4057SLAB_ATTR_RO(cache_dma);
4058#endif
4059
4060static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4061{
4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4063}
4064SLAB_ATTR_RO(destroy_by_rcu);
4065
4066static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4067{
4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4069}
4070
4071static ssize_t red_zone_store(struct kmem_cache *s,
4072 const char *buf, size_t length)
4073{
4074 if (any_slab_objects(s))
4075 return -EBUSY;
4076
4077 s->flags &= ~SLAB_RED_ZONE;
4078 if (buf[0] == '1')
4079 s->flags |= SLAB_RED_ZONE;
06b285dc 4080 calculate_sizes(s, -1);
81819f0f
CL
4081 return length;
4082}
4083SLAB_ATTR(red_zone);
4084
4085static ssize_t poison_show(struct kmem_cache *s, char *buf)
4086{
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4088}
4089
4090static ssize_t poison_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4092{
4093 if (any_slab_objects(s))
4094 return -EBUSY;
4095
4096 s->flags &= ~SLAB_POISON;
4097 if (buf[0] == '1')
4098 s->flags |= SLAB_POISON;
06b285dc 4099 calculate_sizes(s, -1);
81819f0f
CL
4100 return length;
4101}
4102SLAB_ATTR(poison);
4103
4104static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4105{
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4107}
4108
4109static ssize_t store_user_store(struct kmem_cache *s,
4110 const char *buf, size_t length)
4111{
4112 if (any_slab_objects(s))
4113 return -EBUSY;
4114
4115 s->flags &= ~SLAB_STORE_USER;
4116 if (buf[0] == '1')
4117 s->flags |= SLAB_STORE_USER;
06b285dc 4118 calculate_sizes(s, -1);
81819f0f
CL
4119 return length;
4120}
4121SLAB_ATTR(store_user);
4122
53e15af0
CL
4123static ssize_t validate_show(struct kmem_cache *s, char *buf)
4124{
4125 return 0;
4126}
4127
4128static ssize_t validate_store(struct kmem_cache *s,
4129 const char *buf, size_t length)
4130{
434e245d
CL
4131 int ret = -EINVAL;
4132
4133 if (buf[0] == '1') {
4134 ret = validate_slab_cache(s);
4135 if (ret >= 0)
4136 ret = length;
4137 }
4138 return ret;
53e15af0
CL
4139}
4140SLAB_ATTR(validate);
4141
2086d26a
CL
4142static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4143{
4144 return 0;
4145}
4146
4147static ssize_t shrink_store(struct kmem_cache *s,
4148 const char *buf, size_t length)
4149{
4150 if (buf[0] == '1') {
4151 int rc = kmem_cache_shrink(s);
4152
4153 if (rc)
4154 return rc;
4155 } else
4156 return -EINVAL;
4157 return length;
4158}
4159SLAB_ATTR(shrink);
4160
88a420e4
CL
4161static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4162{
4163 if (!(s->flags & SLAB_STORE_USER))
4164 return -ENOSYS;
4165 return list_locations(s, buf, TRACK_ALLOC);
4166}
4167SLAB_ATTR_RO(alloc_calls);
4168
4169static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4170{
4171 if (!(s->flags & SLAB_STORE_USER))
4172 return -ENOSYS;
4173 return list_locations(s, buf, TRACK_FREE);
4174}
4175SLAB_ATTR_RO(free_calls);
4176
81819f0f 4177#ifdef CONFIG_NUMA
9824601e 4178static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4179{
9824601e 4180 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4181}
4182
9824601e 4183static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4184 const char *buf, size_t length)
4185{
0121c619
CL
4186 unsigned long ratio;
4187 int err;
4188
4189 err = strict_strtoul(buf, 10, &ratio);
4190 if (err)
4191 return err;
4192
e2cb96b7 4193 if (ratio <= 100)
0121c619 4194 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4195
81819f0f
CL
4196 return length;
4197}
9824601e 4198SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4199#endif
4200
8ff12cfc 4201#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4202static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4203{
4204 unsigned long sum = 0;
4205 int cpu;
4206 int len;
4207 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4208
4209 if (!data)
4210 return -ENOMEM;
4211
4212 for_each_online_cpu(cpu) {
4213 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4214
4215 data[cpu] = x;
4216 sum += x;
4217 }
4218
4219 len = sprintf(buf, "%lu", sum);
4220
50ef37b9 4221#ifdef CONFIG_SMP
8ff12cfc
CL
4222 for_each_online_cpu(cpu) {
4223 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4224 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4225 }
50ef37b9 4226#endif
8ff12cfc
CL
4227 kfree(data);
4228 return len + sprintf(buf + len, "\n");
4229}
4230
4231#define STAT_ATTR(si, text) \
4232static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4233{ \
4234 return show_stat(s, buf, si); \
4235} \
4236SLAB_ATTR_RO(text); \
4237
4238STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4239STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4240STAT_ATTR(FREE_FASTPATH, free_fastpath);
4241STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4242STAT_ATTR(FREE_FROZEN, free_frozen);
4243STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4244STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4245STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4246STAT_ATTR(ALLOC_SLAB, alloc_slab);
4247STAT_ATTR(ALLOC_REFILL, alloc_refill);
4248STAT_ATTR(FREE_SLAB, free_slab);
4249STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4250STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4251STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4252STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4253STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4254STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4255STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4256#endif
4257
06428780 4258static struct attribute *slab_attrs[] = {
81819f0f
CL
4259 &slab_size_attr.attr,
4260 &object_size_attr.attr,
4261 &objs_per_slab_attr.attr,
4262 &order_attr.attr,
73d342b1 4263 &min_partial_attr.attr,
81819f0f 4264 &objects_attr.attr,
205ab99d
CL
4265 &objects_partial_attr.attr,
4266 &total_objects_attr.attr,
81819f0f
CL
4267 &slabs_attr.attr,
4268 &partial_attr.attr,
4269 &cpu_slabs_attr.attr,
4270 &ctor_attr.attr,
81819f0f
CL
4271 &aliases_attr.attr,
4272 &align_attr.attr,
4273 &sanity_checks_attr.attr,
4274 &trace_attr.attr,
4275 &hwcache_align_attr.attr,
4276 &reclaim_account_attr.attr,
4277 &destroy_by_rcu_attr.attr,
4278 &red_zone_attr.attr,
4279 &poison_attr.attr,
4280 &store_user_attr.attr,
53e15af0 4281 &validate_attr.attr,
2086d26a 4282 &shrink_attr.attr,
88a420e4
CL
4283 &alloc_calls_attr.attr,
4284 &free_calls_attr.attr,
81819f0f
CL
4285#ifdef CONFIG_ZONE_DMA
4286 &cache_dma_attr.attr,
4287#endif
4288#ifdef CONFIG_NUMA
9824601e 4289 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4290#endif
4291#ifdef CONFIG_SLUB_STATS
4292 &alloc_fastpath_attr.attr,
4293 &alloc_slowpath_attr.attr,
4294 &free_fastpath_attr.attr,
4295 &free_slowpath_attr.attr,
4296 &free_frozen_attr.attr,
4297 &free_add_partial_attr.attr,
4298 &free_remove_partial_attr.attr,
4299 &alloc_from_partial_attr.attr,
4300 &alloc_slab_attr.attr,
4301 &alloc_refill_attr.attr,
4302 &free_slab_attr.attr,
4303 &cpuslab_flush_attr.attr,
4304 &deactivate_full_attr.attr,
4305 &deactivate_empty_attr.attr,
4306 &deactivate_to_head_attr.attr,
4307 &deactivate_to_tail_attr.attr,
4308 &deactivate_remote_frees_attr.attr,
65c3376a 4309 &order_fallback_attr.attr,
81819f0f
CL
4310#endif
4311 NULL
4312};
4313
4314static struct attribute_group slab_attr_group = {
4315 .attrs = slab_attrs,
4316};
4317
4318static ssize_t slab_attr_show(struct kobject *kobj,
4319 struct attribute *attr,
4320 char *buf)
4321{
4322 struct slab_attribute *attribute;
4323 struct kmem_cache *s;
4324 int err;
4325
4326 attribute = to_slab_attr(attr);
4327 s = to_slab(kobj);
4328
4329 if (!attribute->show)
4330 return -EIO;
4331
4332 err = attribute->show(s, buf);
4333
4334 return err;
4335}
4336
4337static ssize_t slab_attr_store(struct kobject *kobj,
4338 struct attribute *attr,
4339 const char *buf, size_t len)
4340{
4341 struct slab_attribute *attribute;
4342 struct kmem_cache *s;
4343 int err;
4344
4345 attribute = to_slab_attr(attr);
4346 s = to_slab(kobj);
4347
4348 if (!attribute->store)
4349 return -EIO;
4350
4351 err = attribute->store(s, buf, len);
4352
4353 return err;
4354}
4355
151c602f
CL
4356static void kmem_cache_release(struct kobject *kobj)
4357{
4358 struct kmem_cache *s = to_slab(kobj);
4359
4360 kfree(s);
4361}
4362
81819f0f
CL
4363static struct sysfs_ops slab_sysfs_ops = {
4364 .show = slab_attr_show,
4365 .store = slab_attr_store,
4366};
4367
4368static struct kobj_type slab_ktype = {
4369 .sysfs_ops = &slab_sysfs_ops,
151c602f 4370 .release = kmem_cache_release
81819f0f
CL
4371};
4372
4373static int uevent_filter(struct kset *kset, struct kobject *kobj)
4374{
4375 struct kobj_type *ktype = get_ktype(kobj);
4376
4377 if (ktype == &slab_ktype)
4378 return 1;
4379 return 0;
4380}
4381
4382static struct kset_uevent_ops slab_uevent_ops = {
4383 .filter = uevent_filter,
4384};
4385
27c3a314 4386static struct kset *slab_kset;
81819f0f
CL
4387
4388#define ID_STR_LENGTH 64
4389
4390/* Create a unique string id for a slab cache:
6446faa2
CL
4391 *
4392 * Format :[flags-]size
81819f0f
CL
4393 */
4394static char *create_unique_id(struct kmem_cache *s)
4395{
4396 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4397 char *p = name;
4398
4399 BUG_ON(!name);
4400
4401 *p++ = ':';
4402 /*
4403 * First flags affecting slabcache operations. We will only
4404 * get here for aliasable slabs so we do not need to support
4405 * too many flags. The flags here must cover all flags that
4406 * are matched during merging to guarantee that the id is
4407 * unique.
4408 */
4409 if (s->flags & SLAB_CACHE_DMA)
4410 *p++ = 'd';
4411 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4412 *p++ = 'a';
4413 if (s->flags & SLAB_DEBUG_FREE)
4414 *p++ = 'F';
4415 if (p != name + 1)
4416 *p++ = '-';
4417 p += sprintf(p, "%07d", s->size);
4418 BUG_ON(p > name + ID_STR_LENGTH - 1);
4419 return name;
4420}
4421
4422static int sysfs_slab_add(struct kmem_cache *s)
4423{
4424 int err;
4425 const char *name;
4426 int unmergeable;
4427
4428 if (slab_state < SYSFS)
4429 /* Defer until later */
4430 return 0;
4431
4432 unmergeable = slab_unmergeable(s);
4433 if (unmergeable) {
4434 /*
4435 * Slabcache can never be merged so we can use the name proper.
4436 * This is typically the case for debug situations. In that
4437 * case we can catch duplicate names easily.
4438 */
27c3a314 4439 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4440 name = s->name;
4441 } else {
4442 /*
4443 * Create a unique name for the slab as a target
4444 * for the symlinks.
4445 */
4446 name = create_unique_id(s);
4447 }
4448
27c3a314 4449 s->kobj.kset = slab_kset;
1eada11c
GKH
4450 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4451 if (err) {
4452 kobject_put(&s->kobj);
81819f0f 4453 return err;
1eada11c 4454 }
81819f0f
CL
4455
4456 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4457 if (err)
4458 return err;
4459 kobject_uevent(&s->kobj, KOBJ_ADD);
4460 if (!unmergeable) {
4461 /* Setup first alias */
4462 sysfs_slab_alias(s, s->name);
4463 kfree(name);
4464 }
4465 return 0;
4466}
4467
4468static void sysfs_slab_remove(struct kmem_cache *s)
4469{
4470 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4471 kobject_del(&s->kobj);
151c602f 4472 kobject_put(&s->kobj);
81819f0f
CL
4473}
4474
4475/*
4476 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4477 * available lest we lose that information.
81819f0f
CL
4478 */
4479struct saved_alias {
4480 struct kmem_cache *s;
4481 const char *name;
4482 struct saved_alias *next;
4483};
4484
5af328a5 4485static struct saved_alias *alias_list;
81819f0f
CL
4486
4487static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4488{
4489 struct saved_alias *al;
4490
4491 if (slab_state == SYSFS) {
4492 /*
4493 * If we have a leftover link then remove it.
4494 */
27c3a314
GKH
4495 sysfs_remove_link(&slab_kset->kobj, name);
4496 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4497 }
4498
4499 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4500 if (!al)
4501 return -ENOMEM;
4502
4503 al->s = s;
4504 al->name = name;
4505 al->next = alias_list;
4506 alias_list = al;
4507 return 0;
4508}
4509
4510static int __init slab_sysfs_init(void)
4511{
5b95a4ac 4512 struct kmem_cache *s;
81819f0f
CL
4513 int err;
4514
0ff21e46 4515 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4516 if (!slab_kset) {
81819f0f
CL
4517 printk(KERN_ERR "Cannot register slab subsystem.\n");
4518 return -ENOSYS;
4519 }
4520
26a7bd03
CL
4521 slab_state = SYSFS;
4522
5b95a4ac 4523 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4524 err = sysfs_slab_add(s);
5d540fb7
CL
4525 if (err)
4526 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4527 " to sysfs\n", s->name);
26a7bd03 4528 }
81819f0f
CL
4529
4530 while (alias_list) {
4531 struct saved_alias *al = alias_list;
4532
4533 alias_list = alias_list->next;
4534 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4535 if (err)
4536 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4537 " %s to sysfs\n", s->name);
81819f0f
CL
4538 kfree(al);
4539 }
4540
4541 resiliency_test();
4542 return 0;
4543}
4544
4545__initcall(slab_sysfs_init);
81819f0f 4546#endif
57ed3eda
PE
4547
4548/*
4549 * The /proc/slabinfo ABI
4550 */
158a9624 4551#ifdef CONFIG_SLABINFO
57ed3eda
PE
4552static void print_slabinfo_header(struct seq_file *m)
4553{
4554 seq_puts(m, "slabinfo - version: 2.1\n");
4555 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4556 "<objperslab> <pagesperslab>");
4557 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4558 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4559 seq_putc(m, '\n');
4560}
4561
4562static void *s_start(struct seq_file *m, loff_t *pos)
4563{
4564 loff_t n = *pos;
4565
4566 down_read(&slub_lock);
4567 if (!n)
4568 print_slabinfo_header(m);
4569
4570 return seq_list_start(&slab_caches, *pos);
4571}
4572
4573static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4574{
4575 return seq_list_next(p, &slab_caches, pos);
4576}
4577
4578static void s_stop(struct seq_file *m, void *p)
4579{
4580 up_read(&slub_lock);
4581}
4582
4583static int s_show(struct seq_file *m, void *p)
4584{
4585 unsigned long nr_partials = 0;
4586 unsigned long nr_slabs = 0;
4587 unsigned long nr_inuse = 0;
205ab99d
CL
4588 unsigned long nr_objs = 0;
4589 unsigned long nr_free = 0;
57ed3eda
PE
4590 struct kmem_cache *s;
4591 int node;
4592
4593 s = list_entry(p, struct kmem_cache, list);
4594
4595 for_each_online_node(node) {
4596 struct kmem_cache_node *n = get_node(s, node);
4597
4598 if (!n)
4599 continue;
4600
4601 nr_partials += n->nr_partial;
4602 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4603 nr_objs += atomic_long_read(&n->total_objects);
4604 nr_free += count_partial(n, count_free);
57ed3eda
PE
4605 }
4606
205ab99d 4607 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4608
4609 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4610 nr_objs, s->size, oo_objects(s->oo),
4611 (1 << oo_order(s->oo)));
57ed3eda
PE
4612 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4613 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4614 0UL);
4615 seq_putc(m, '\n');
4616 return 0;
4617}
4618
7b3c3a50 4619static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4620 .start = s_start,
4621 .next = s_next,
4622 .stop = s_stop,
4623 .show = s_show,
4624};
4625
7b3c3a50
AD
4626static int slabinfo_open(struct inode *inode, struct file *file)
4627{
4628 return seq_open(file, &slabinfo_op);
4629}
4630
4631static const struct file_operations proc_slabinfo_operations = {
4632 .open = slabinfo_open,
4633 .read = seq_read,
4634 .llseek = seq_lseek,
4635 .release = seq_release,
4636};
4637
4638static int __init slab_proc_init(void)
4639{
4640 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4641 return 0;
4642}
4643module_init(slab_proc_init);
158a9624 4644#endif /* CONFIG_SLABINFO */