]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/slub.c
slub: automatically reserve bytes at the end of slab
[mirror_ubuntu-kernels.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
84e554e6 220static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
274/* Scan freelist */
275#define for_each_free_object(__p, __s, __free) \
a973e9dd 276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
277
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
ab9a0f19
LJ
284static inline int order_objects(int order, unsigned long size, int reserved)
285{
286 return ((PAGE_SIZE << order) - reserved) / size;
287}
288
834f3d11 289static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 290 unsigned long size, int reserved)
834f3d11
CL
291{
292 struct kmem_cache_order_objects x = {
ab9a0f19 293 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x >> OO_SHIFT;
834f3d11
CL
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x & OO_MASK;
834f3d11
CL
307}
308
41ecc55b
CL
309#ifdef CONFIG_SLUB_DEBUG
310/*
311 * Debug settings:
312 */
f0630fff
CL
313#ifdef CONFIG_SLUB_DEBUG_ON
314static int slub_debug = DEBUG_DEFAULT_FLAGS;
315#else
41ecc55b 316static int slub_debug;
f0630fff 317#endif
41ecc55b
CL
318
319static char *slub_debug_slabs;
fa5ec8a1 320static int disable_higher_order_debug;
41ecc55b 321
81819f0f
CL
322/*
323 * Object debugging
324 */
325static void print_section(char *text, u8 *addr, unsigned int length)
326{
327 int i, offset;
328 int newline = 1;
329 char ascii[17];
330
331 ascii[16] = 0;
332
333 for (i = 0; i < length; i++) {
334 if (newline) {
24922684 335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
336 newline = 0;
337 }
06428780 338 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
339 offset = i % 16;
340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341 if (offset == 15) {
06428780 342 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
343 newline = 1;
344 }
345 }
346 if (!newline) {
347 i %= 16;
348 while (i < 16) {
06428780 349 printk(KERN_CONT " ");
81819f0f
CL
350 ascii[i] = ' ';
351 i++;
352 }
06428780 353 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
354 }
355}
356
81819f0f
CL
357static struct track *get_track(struct kmem_cache *s, void *object,
358 enum track_item alloc)
359{
360 struct track *p;
361
362 if (s->offset)
363 p = object + s->offset + sizeof(void *);
364 else
365 p = object + s->inuse;
366
367 return p + alloc;
368}
369
370static void set_track(struct kmem_cache *s, void *object,
ce71e27c 371 enum track_item alloc, unsigned long addr)
81819f0f 372{
1a00df4a 373 struct track *p = get_track(s, object, alloc);
81819f0f 374
81819f0f
CL
375 if (addr) {
376 p->addr = addr;
377 p->cpu = smp_processor_id();
88e4ccf2 378 p->pid = current->pid;
81819f0f
CL
379 p->when = jiffies;
380 } else
381 memset(p, 0, sizeof(struct track));
382}
383
81819f0f
CL
384static void init_tracking(struct kmem_cache *s, void *object)
385{
24922684
CL
386 if (!(s->flags & SLAB_STORE_USER))
387 return;
388
ce71e27c
EGM
389 set_track(s, object, TRACK_FREE, 0UL);
390 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
391}
392
393static void print_track(const char *s, struct track *t)
394{
395 if (!t->addr)
396 return;
397
7daf705f 398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
400}
401
402static void print_tracking(struct kmem_cache *s, void *object)
403{
404 if (!(s->flags & SLAB_STORE_USER))
405 return;
406
407 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408 print_track("Freed", get_track(s, object, TRACK_FREE));
409}
410
411static void print_page_info(struct page *page)
412{
39b26464
CL
413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
415
416}
417
418static void slab_bug(struct kmem_cache *s, char *fmt, ...)
419{
420 va_list args;
421 char buf[100];
422
423 va_start(args, fmt);
424 vsnprintf(buf, sizeof(buf), fmt, args);
425 va_end(args);
426 printk(KERN_ERR "========================================"
427 "=====================================\n");
428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429 printk(KERN_ERR "----------------------------------------"
430 "-------------------------------------\n\n");
81819f0f
CL
431}
432
24922684
CL
433static void slab_fix(struct kmem_cache *s, char *fmt, ...)
434{
435 va_list args;
436 char buf[100];
437
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
442}
443
444static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
445{
446 unsigned int off; /* Offset of last byte */
a973e9dd 447 u8 *addr = page_address(page);
24922684
CL
448
449 print_tracking(s, p);
450
451 print_page_info(page);
452
453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 p, p - addr, get_freepointer(s, p));
455
456 if (p > addr + 16)
457 print_section("Bytes b4", p - 16, 16);
458
0ebd652b 459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
460
461 if (s->flags & SLAB_RED_ZONE)
462 print_section("Redzone", p + s->objsize,
463 s->inuse - s->objsize);
464
81819f0f
CL
465 if (s->offset)
466 off = s->offset + sizeof(void *);
467 else
468 off = s->inuse;
469
24922684 470 if (s->flags & SLAB_STORE_USER)
81819f0f 471 off += 2 * sizeof(struct track);
81819f0f
CL
472
473 if (off != s->size)
474 /* Beginning of the filler is the free pointer */
24922684
CL
475 print_section("Padding", p + off, s->size - off);
476
477 dump_stack();
81819f0f
CL
478}
479
480static void object_err(struct kmem_cache *s, struct page *page,
481 u8 *object, char *reason)
482{
3dc50637 483 slab_bug(s, "%s", reason);
24922684 484 print_trailer(s, page, object);
81819f0f
CL
485}
486
24922684 487static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
488{
489 va_list args;
490 char buf[100];
491
24922684
CL
492 va_start(args, fmt);
493 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 494 va_end(args);
3dc50637 495 slab_bug(s, "%s", buf);
24922684 496 print_page_info(page);
81819f0f
CL
497 dump_stack();
498}
499
f7cb1933 500static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
501{
502 u8 *p = object;
503
504 if (s->flags & __OBJECT_POISON) {
505 memset(p, POISON_FREE, s->objsize - 1);
06428780 506 p[s->objsize - 1] = POISON_END;
81819f0f
CL
507 }
508
509 if (s->flags & SLAB_RED_ZONE)
f7cb1933 510 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
511}
512
24922684 513static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
514{
515 while (bytes) {
516 if (*start != (u8)value)
24922684 517 return start;
81819f0f
CL
518 start++;
519 bytes--;
520 }
24922684
CL
521 return NULL;
522}
523
524static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
525 void *from, void *to)
526{
527 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
528 memset(from, data, to - from);
529}
530
531static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
532 u8 *object, char *what,
06428780 533 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
534{
535 u8 *fault;
536 u8 *end;
537
538 fault = check_bytes(start, value, bytes);
539 if (!fault)
540 return 1;
541
542 end = start + bytes;
543 while (end > fault && end[-1] == value)
544 end--;
545
546 slab_bug(s, "%s overwritten", what);
547 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
548 fault, end - 1, fault[0], value);
549 print_trailer(s, page, object);
550
551 restore_bytes(s, what, value, fault, end);
552 return 0;
81819f0f
CL
553}
554
81819f0f
CL
555/*
556 * Object layout:
557 *
558 * object address
559 * Bytes of the object to be managed.
560 * If the freepointer may overlay the object then the free
561 * pointer is the first word of the object.
672bba3a 562 *
81819f0f
CL
563 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
564 * 0xa5 (POISON_END)
565 *
566 * object + s->objsize
567 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
568 * Padding is extended by another word if Redzoning is enabled and
569 * objsize == inuse.
570 *
81819f0f
CL
571 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
572 * 0xcc (RED_ACTIVE) for objects in use.
573 *
574 * object + s->inuse
672bba3a
CL
575 * Meta data starts here.
576 *
81819f0f
CL
577 * A. Free pointer (if we cannot overwrite object on free)
578 * B. Tracking data for SLAB_STORE_USER
672bba3a 579 * C. Padding to reach required alignment boundary or at mininum
6446faa2 580 * one word if debugging is on to be able to detect writes
672bba3a
CL
581 * before the word boundary.
582 *
583 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
584 *
585 * object + s->size
672bba3a 586 * Nothing is used beyond s->size.
81819f0f 587 *
672bba3a
CL
588 * If slabcaches are merged then the objsize and inuse boundaries are mostly
589 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
590 * may be used with merged slabcaches.
591 */
592
81819f0f
CL
593static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
594{
595 unsigned long off = s->inuse; /* The end of info */
596
597 if (s->offset)
598 /* Freepointer is placed after the object. */
599 off += sizeof(void *);
600
601 if (s->flags & SLAB_STORE_USER)
602 /* We also have user information there */
603 off += 2 * sizeof(struct track);
604
605 if (s->size == off)
606 return 1;
607
24922684
CL
608 return check_bytes_and_report(s, page, p, "Object padding",
609 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
610}
611
39b26464 612/* Check the pad bytes at the end of a slab page */
81819f0f
CL
613static int slab_pad_check(struct kmem_cache *s, struct page *page)
614{
24922684
CL
615 u8 *start;
616 u8 *fault;
617 u8 *end;
618 int length;
619 int remainder;
81819f0f
CL
620
621 if (!(s->flags & SLAB_POISON))
622 return 1;
623
a973e9dd 624 start = page_address(page);
ab9a0f19 625 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
626 end = start + length;
627 remainder = length % s->size;
81819f0f
CL
628 if (!remainder)
629 return 1;
630
39b26464 631 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
632 if (!fault)
633 return 1;
634 while (end > fault && end[-1] == POISON_INUSE)
635 end--;
636
637 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 638 print_section("Padding", end - remainder, remainder);
24922684 639
8a3d271d 640 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 641 return 0;
81819f0f
CL
642}
643
644static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 645 void *object, u8 val)
81819f0f
CL
646{
647 u8 *p = object;
648 u8 *endobject = object + s->objsize;
649
650 if (s->flags & SLAB_RED_ZONE) {
24922684 651 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 652 endobject, val, s->inuse - s->objsize))
81819f0f 653 return 0;
81819f0f 654 } else {
3adbefee
IM
655 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
656 check_bytes_and_report(s, page, p, "Alignment padding",
657 endobject, POISON_INUSE, s->inuse - s->objsize);
658 }
81819f0f
CL
659 }
660
661 if (s->flags & SLAB_POISON) {
f7cb1933 662 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
663 (!check_bytes_and_report(s, page, p, "Poison", p,
664 POISON_FREE, s->objsize - 1) ||
665 !check_bytes_and_report(s, page, p, "Poison",
06428780 666 p + s->objsize - 1, POISON_END, 1)))
81819f0f 667 return 0;
81819f0f
CL
668 /*
669 * check_pad_bytes cleans up on its own.
670 */
671 check_pad_bytes(s, page, p);
672 }
673
f7cb1933 674 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
675 /*
676 * Object and freepointer overlap. Cannot check
677 * freepointer while object is allocated.
678 */
679 return 1;
680
681 /* Check free pointer validity */
682 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
683 object_err(s, page, p, "Freepointer corrupt");
684 /*
9f6c708e 685 * No choice but to zap it and thus lose the remainder
81819f0f 686 * of the free objects in this slab. May cause
672bba3a 687 * another error because the object count is now wrong.
81819f0f 688 */
a973e9dd 689 set_freepointer(s, p, NULL);
81819f0f
CL
690 return 0;
691 }
692 return 1;
693}
694
695static int check_slab(struct kmem_cache *s, struct page *page)
696{
39b26464
CL
697 int maxobj;
698
81819f0f
CL
699 VM_BUG_ON(!irqs_disabled());
700
701 if (!PageSlab(page)) {
24922684 702 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
703 return 0;
704 }
39b26464 705
ab9a0f19 706 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
707 if (page->objects > maxobj) {
708 slab_err(s, page, "objects %u > max %u",
709 s->name, page->objects, maxobj);
710 return 0;
711 }
712 if (page->inuse > page->objects) {
24922684 713 slab_err(s, page, "inuse %u > max %u",
39b26464 714 s->name, page->inuse, page->objects);
81819f0f
CL
715 return 0;
716 }
717 /* Slab_pad_check fixes things up after itself */
718 slab_pad_check(s, page);
719 return 1;
720}
721
722/*
672bba3a
CL
723 * Determine if a certain object on a page is on the freelist. Must hold the
724 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
725 */
726static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
727{
728 int nr = 0;
729 void *fp = page->freelist;
730 void *object = NULL;
224a88be 731 unsigned long max_objects;
81819f0f 732
39b26464 733 while (fp && nr <= page->objects) {
81819f0f
CL
734 if (fp == search)
735 return 1;
736 if (!check_valid_pointer(s, page, fp)) {
737 if (object) {
738 object_err(s, page, object,
739 "Freechain corrupt");
a973e9dd 740 set_freepointer(s, object, NULL);
81819f0f
CL
741 break;
742 } else {
24922684 743 slab_err(s, page, "Freepointer corrupt");
a973e9dd 744 page->freelist = NULL;
39b26464 745 page->inuse = page->objects;
24922684 746 slab_fix(s, "Freelist cleared");
81819f0f
CL
747 return 0;
748 }
749 break;
750 }
751 object = fp;
752 fp = get_freepointer(s, object);
753 nr++;
754 }
755
ab9a0f19 756 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
757 if (max_objects > MAX_OBJS_PER_PAGE)
758 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
759
760 if (page->objects != max_objects) {
761 slab_err(s, page, "Wrong number of objects. Found %d but "
762 "should be %d", page->objects, max_objects);
763 page->objects = max_objects;
764 slab_fix(s, "Number of objects adjusted.");
765 }
39b26464 766 if (page->inuse != page->objects - nr) {
70d71228 767 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
768 "counted were %d", page->inuse, page->objects - nr);
769 page->inuse = page->objects - nr;
24922684 770 slab_fix(s, "Object count adjusted.");
81819f0f
CL
771 }
772 return search == NULL;
773}
774
0121c619
CL
775static void trace(struct kmem_cache *s, struct page *page, void *object,
776 int alloc)
3ec09742
CL
777{
778 if (s->flags & SLAB_TRACE) {
779 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
780 s->name,
781 alloc ? "alloc" : "free",
782 object, page->inuse,
783 page->freelist);
784
785 if (!alloc)
786 print_section("Object", (void *)object, s->objsize);
787
788 dump_stack();
789 }
790}
791
c016b0bd
CL
792/*
793 * Hooks for other subsystems that check memory allocations. In a typical
794 * production configuration these hooks all should produce no code at all.
795 */
796static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
797{
c1d50836 798 flags &= gfp_allowed_mask;
c016b0bd
CL
799 lockdep_trace_alloc(flags);
800 might_sleep_if(flags & __GFP_WAIT);
801
802 return should_failslab(s->objsize, flags, s->flags);
803}
804
805static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
806{
c1d50836 807 flags &= gfp_allowed_mask;
c016b0bd
CL
808 kmemcheck_slab_alloc(s, flags, object, s->objsize);
809 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
810}
811
812static inline void slab_free_hook(struct kmem_cache *s, void *x)
813{
814 kmemleak_free_recursive(x, s->flags);
815}
816
817static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
818{
819 kmemcheck_slab_free(s, object, s->objsize);
820 debug_check_no_locks_freed(object, s->objsize);
821 if (!(s->flags & SLAB_DEBUG_OBJECTS))
822 debug_check_no_obj_freed(object, s->objsize);
823}
824
643b1138 825/*
672bba3a 826 * Tracking of fully allocated slabs for debugging purposes.
643b1138 827 */
e95eed57 828static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 829{
643b1138
CL
830 spin_lock(&n->list_lock);
831 list_add(&page->lru, &n->full);
832 spin_unlock(&n->list_lock);
833}
834
835static void remove_full(struct kmem_cache *s, struct page *page)
836{
837 struct kmem_cache_node *n;
838
839 if (!(s->flags & SLAB_STORE_USER))
840 return;
841
842 n = get_node(s, page_to_nid(page));
843
844 spin_lock(&n->list_lock);
845 list_del(&page->lru);
846 spin_unlock(&n->list_lock);
847}
848
0f389ec6
CL
849/* Tracking of the number of slabs for debugging purposes */
850static inline unsigned long slabs_node(struct kmem_cache *s, int node)
851{
852 struct kmem_cache_node *n = get_node(s, node);
853
854 return atomic_long_read(&n->nr_slabs);
855}
856
26c02cf0
AB
857static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
858{
859 return atomic_long_read(&n->nr_slabs);
860}
861
205ab99d 862static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
863{
864 struct kmem_cache_node *n = get_node(s, node);
865
866 /*
867 * May be called early in order to allocate a slab for the
868 * kmem_cache_node structure. Solve the chicken-egg
869 * dilemma by deferring the increment of the count during
870 * bootstrap (see early_kmem_cache_node_alloc).
871 */
7340cc84 872 if (n) {
0f389ec6 873 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
874 atomic_long_add(objects, &n->total_objects);
875 }
0f389ec6 876}
205ab99d 877static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
878{
879 struct kmem_cache_node *n = get_node(s, node);
880
881 atomic_long_dec(&n->nr_slabs);
205ab99d 882 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
883}
884
885/* Object debug checks for alloc/free paths */
3ec09742
CL
886static void setup_object_debug(struct kmem_cache *s, struct page *page,
887 void *object)
888{
889 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
890 return;
891
f7cb1933 892 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
893 init_tracking(s, object);
894}
895
1537066c 896static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 897 void *object, unsigned long addr)
81819f0f
CL
898{
899 if (!check_slab(s, page))
900 goto bad;
901
d692ef6d 902 if (!on_freelist(s, page, object)) {
24922684 903 object_err(s, page, object, "Object already allocated");
70d71228 904 goto bad;
81819f0f
CL
905 }
906
907 if (!check_valid_pointer(s, page, object)) {
908 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 909 goto bad;
81819f0f
CL
910 }
911
f7cb1933 912 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 913 goto bad;
81819f0f 914
3ec09742
CL
915 /* Success perform special debug activities for allocs */
916 if (s->flags & SLAB_STORE_USER)
917 set_track(s, object, TRACK_ALLOC, addr);
918 trace(s, page, object, 1);
f7cb1933 919 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 920 return 1;
3ec09742 921
81819f0f
CL
922bad:
923 if (PageSlab(page)) {
924 /*
925 * If this is a slab page then lets do the best we can
926 * to avoid issues in the future. Marking all objects
672bba3a 927 * as used avoids touching the remaining objects.
81819f0f 928 */
24922684 929 slab_fix(s, "Marking all objects used");
39b26464 930 page->inuse = page->objects;
a973e9dd 931 page->freelist = NULL;
81819f0f
CL
932 }
933 return 0;
934}
935
1537066c
CL
936static noinline int free_debug_processing(struct kmem_cache *s,
937 struct page *page, void *object, unsigned long addr)
81819f0f
CL
938{
939 if (!check_slab(s, page))
940 goto fail;
941
942 if (!check_valid_pointer(s, page, object)) {
70d71228 943 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
944 goto fail;
945 }
946
947 if (on_freelist(s, page, object)) {
24922684 948 object_err(s, page, object, "Object already free");
81819f0f
CL
949 goto fail;
950 }
951
f7cb1933 952 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
953 return 0;
954
955 if (unlikely(s != page->slab)) {
3adbefee 956 if (!PageSlab(page)) {
70d71228
CL
957 slab_err(s, page, "Attempt to free object(0x%p) "
958 "outside of slab", object);
3adbefee 959 } else if (!page->slab) {
81819f0f 960 printk(KERN_ERR
70d71228 961 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 962 object);
70d71228 963 dump_stack();
06428780 964 } else
24922684
CL
965 object_err(s, page, object,
966 "page slab pointer corrupt.");
81819f0f
CL
967 goto fail;
968 }
3ec09742
CL
969
970 /* Special debug activities for freeing objects */
8a38082d 971 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
972 remove_full(s, page);
973 if (s->flags & SLAB_STORE_USER)
974 set_track(s, object, TRACK_FREE, addr);
975 trace(s, page, object, 0);
f7cb1933 976 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 977 return 1;
3ec09742 978
81819f0f 979fail:
24922684 980 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
981 return 0;
982}
983
41ecc55b
CL
984static int __init setup_slub_debug(char *str)
985{
f0630fff
CL
986 slub_debug = DEBUG_DEFAULT_FLAGS;
987 if (*str++ != '=' || !*str)
988 /*
989 * No options specified. Switch on full debugging.
990 */
991 goto out;
992
993 if (*str == ',')
994 /*
995 * No options but restriction on slabs. This means full
996 * debugging for slabs matching a pattern.
997 */
998 goto check_slabs;
999
fa5ec8a1
DR
1000 if (tolower(*str) == 'o') {
1001 /*
1002 * Avoid enabling debugging on caches if its minimum order
1003 * would increase as a result.
1004 */
1005 disable_higher_order_debug = 1;
1006 goto out;
1007 }
1008
f0630fff
CL
1009 slub_debug = 0;
1010 if (*str == '-')
1011 /*
1012 * Switch off all debugging measures.
1013 */
1014 goto out;
1015
1016 /*
1017 * Determine which debug features should be switched on
1018 */
06428780 1019 for (; *str && *str != ','; str++) {
f0630fff
CL
1020 switch (tolower(*str)) {
1021 case 'f':
1022 slub_debug |= SLAB_DEBUG_FREE;
1023 break;
1024 case 'z':
1025 slub_debug |= SLAB_RED_ZONE;
1026 break;
1027 case 'p':
1028 slub_debug |= SLAB_POISON;
1029 break;
1030 case 'u':
1031 slub_debug |= SLAB_STORE_USER;
1032 break;
1033 case 't':
1034 slub_debug |= SLAB_TRACE;
1035 break;
4c13dd3b
DM
1036 case 'a':
1037 slub_debug |= SLAB_FAILSLAB;
1038 break;
f0630fff
CL
1039 default:
1040 printk(KERN_ERR "slub_debug option '%c' "
06428780 1041 "unknown. skipped\n", *str);
f0630fff 1042 }
41ecc55b
CL
1043 }
1044
f0630fff 1045check_slabs:
41ecc55b
CL
1046 if (*str == ',')
1047 slub_debug_slabs = str + 1;
f0630fff 1048out:
41ecc55b
CL
1049 return 1;
1050}
1051
1052__setup("slub_debug", setup_slub_debug);
1053
ba0268a8
CL
1054static unsigned long kmem_cache_flags(unsigned long objsize,
1055 unsigned long flags, const char *name,
51cc5068 1056 void (*ctor)(void *))
41ecc55b
CL
1057{
1058 /*
e153362a 1059 * Enable debugging if selected on the kernel commandline.
41ecc55b 1060 */
e153362a 1061 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1062 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1063 flags |= slub_debug;
ba0268a8
CL
1064
1065 return flags;
41ecc55b
CL
1066}
1067#else
3ec09742
CL
1068static inline void setup_object_debug(struct kmem_cache *s,
1069 struct page *page, void *object) {}
41ecc55b 1070
3ec09742 1071static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1072 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1073
3ec09742 1074static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1075 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1076
41ecc55b
CL
1077static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1078 { return 1; }
1079static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1080 void *object, u8 val) { return 1; }
3ec09742 1081static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1082static inline unsigned long kmem_cache_flags(unsigned long objsize,
1083 unsigned long flags, const char *name,
51cc5068 1084 void (*ctor)(void *))
ba0268a8
CL
1085{
1086 return flags;
1087}
41ecc55b 1088#define slub_debug 0
0f389ec6 1089
fdaa45e9
IM
1090#define disable_higher_order_debug 0
1091
0f389ec6
CL
1092static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1093 { return 0; }
26c02cf0
AB
1094static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1095 { return 0; }
205ab99d
CL
1096static inline void inc_slabs_node(struct kmem_cache *s, int node,
1097 int objects) {}
1098static inline void dec_slabs_node(struct kmem_cache *s, int node,
1099 int objects) {}
7d550c56
CL
1100
1101static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1102 { return 0; }
1103
1104static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1105 void *object) {}
1106
1107static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1108
1109static inline void slab_free_hook_irq(struct kmem_cache *s,
1110 void *object) {}
1111
ab4d5ed5 1112#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1113
81819f0f
CL
1114/*
1115 * Slab allocation and freeing
1116 */
65c3376a
CL
1117static inline struct page *alloc_slab_page(gfp_t flags, int node,
1118 struct kmem_cache_order_objects oo)
1119{
1120 int order = oo_order(oo);
1121
b1eeab67
VN
1122 flags |= __GFP_NOTRACK;
1123
2154a336 1124 if (node == NUMA_NO_NODE)
65c3376a
CL
1125 return alloc_pages(flags, order);
1126 else
6b65aaf3 1127 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1128}
1129
81819f0f
CL
1130static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1131{
06428780 1132 struct page *page;
834f3d11 1133 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1134 gfp_t alloc_gfp;
81819f0f 1135
b7a49f0d 1136 flags |= s->allocflags;
e12ba74d 1137
ba52270d
PE
1138 /*
1139 * Let the initial higher-order allocation fail under memory pressure
1140 * so we fall-back to the minimum order allocation.
1141 */
1142 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1143
1144 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1145 if (unlikely(!page)) {
1146 oo = s->min;
1147 /*
1148 * Allocation may have failed due to fragmentation.
1149 * Try a lower order alloc if possible
1150 */
1151 page = alloc_slab_page(flags, node, oo);
1152 if (!page)
1153 return NULL;
81819f0f 1154
84e554e6 1155 stat(s, ORDER_FALLBACK);
65c3376a 1156 }
5a896d9e
VN
1157
1158 if (kmemcheck_enabled
5086c389 1159 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1160 int pages = 1 << oo_order(oo);
1161
1162 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1163
1164 /*
1165 * Objects from caches that have a constructor don't get
1166 * cleared when they're allocated, so we need to do it here.
1167 */
1168 if (s->ctor)
1169 kmemcheck_mark_uninitialized_pages(page, pages);
1170 else
1171 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1172 }
1173
834f3d11 1174 page->objects = oo_objects(oo);
81819f0f
CL
1175 mod_zone_page_state(page_zone(page),
1176 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1177 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1178 1 << oo_order(oo));
81819f0f
CL
1179
1180 return page;
1181}
1182
1183static void setup_object(struct kmem_cache *s, struct page *page,
1184 void *object)
1185{
3ec09742 1186 setup_object_debug(s, page, object);
4f104934 1187 if (unlikely(s->ctor))
51cc5068 1188 s->ctor(object);
81819f0f
CL
1189}
1190
1191static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1192{
1193 struct page *page;
81819f0f 1194 void *start;
81819f0f
CL
1195 void *last;
1196 void *p;
1197
6cb06229 1198 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1199
6cb06229
CL
1200 page = allocate_slab(s,
1201 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1202 if (!page)
1203 goto out;
1204
205ab99d 1205 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1206 page->slab = s;
1207 page->flags |= 1 << PG_slab;
81819f0f
CL
1208
1209 start = page_address(page);
81819f0f
CL
1210
1211 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1212 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1213
1214 last = start;
224a88be 1215 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1216 setup_object(s, page, last);
1217 set_freepointer(s, last, p);
1218 last = p;
1219 }
1220 setup_object(s, page, last);
a973e9dd 1221 set_freepointer(s, last, NULL);
81819f0f
CL
1222
1223 page->freelist = start;
1224 page->inuse = 0;
1225out:
81819f0f
CL
1226 return page;
1227}
1228
1229static void __free_slab(struct kmem_cache *s, struct page *page)
1230{
834f3d11
CL
1231 int order = compound_order(page);
1232 int pages = 1 << order;
81819f0f 1233
af537b0a 1234 if (kmem_cache_debug(s)) {
81819f0f
CL
1235 void *p;
1236
1237 slab_pad_check(s, page);
224a88be
CL
1238 for_each_object(p, s, page_address(page),
1239 page->objects)
f7cb1933 1240 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1241 }
1242
b1eeab67 1243 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1244
81819f0f
CL
1245 mod_zone_page_state(page_zone(page),
1246 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1247 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1248 -pages);
81819f0f 1249
49bd5221
CL
1250 __ClearPageSlab(page);
1251 reset_page_mapcount(page);
1eb5ac64
NP
1252 if (current->reclaim_state)
1253 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1254 __free_pages(page, order);
81819f0f
CL
1255}
1256
1257static void rcu_free_slab(struct rcu_head *h)
1258{
1259 struct page *page;
1260
1261 page = container_of((struct list_head *)h, struct page, lru);
1262 __free_slab(page->slab, page);
1263}
1264
1265static void free_slab(struct kmem_cache *s, struct page *page)
1266{
1267 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1268 /*
1269 * RCU free overloads the RCU head over the LRU
1270 */
1271 struct rcu_head *head = (void *)&page->lru;
1272
1273 call_rcu(head, rcu_free_slab);
1274 } else
1275 __free_slab(s, page);
1276}
1277
1278static void discard_slab(struct kmem_cache *s, struct page *page)
1279{
205ab99d 1280 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1281 free_slab(s, page);
1282}
1283
1284/*
1285 * Per slab locking using the pagelock
1286 */
1287static __always_inline void slab_lock(struct page *page)
1288{
1289 bit_spin_lock(PG_locked, &page->flags);
1290}
1291
1292static __always_inline void slab_unlock(struct page *page)
1293{
a76d3546 1294 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1295}
1296
1297static __always_inline int slab_trylock(struct page *page)
1298{
1299 int rc = 1;
1300
1301 rc = bit_spin_trylock(PG_locked, &page->flags);
1302 return rc;
1303}
1304
1305/*
1306 * Management of partially allocated slabs
1307 */
7c2e132c
CL
1308static void add_partial(struct kmem_cache_node *n,
1309 struct page *page, int tail)
81819f0f 1310{
e95eed57
CL
1311 spin_lock(&n->list_lock);
1312 n->nr_partial++;
7c2e132c
CL
1313 if (tail)
1314 list_add_tail(&page->lru, &n->partial);
1315 else
1316 list_add(&page->lru, &n->partial);
81819f0f
CL
1317 spin_unlock(&n->list_lock);
1318}
1319
62e346a8
CL
1320static inline void __remove_partial(struct kmem_cache_node *n,
1321 struct page *page)
1322{
1323 list_del(&page->lru);
1324 n->nr_partial--;
1325}
1326
0121c619 1327static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1328{
1329 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1330
1331 spin_lock(&n->list_lock);
62e346a8 1332 __remove_partial(n, page);
81819f0f
CL
1333 spin_unlock(&n->list_lock);
1334}
1335
1336/*
672bba3a 1337 * Lock slab and remove from the partial list.
81819f0f 1338 *
672bba3a 1339 * Must hold list_lock.
81819f0f 1340 */
0121c619
CL
1341static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1342 struct page *page)
81819f0f
CL
1343{
1344 if (slab_trylock(page)) {
62e346a8 1345 __remove_partial(n, page);
8a38082d 1346 __SetPageSlubFrozen(page);
81819f0f
CL
1347 return 1;
1348 }
1349 return 0;
1350}
1351
1352/*
672bba3a 1353 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1354 */
1355static struct page *get_partial_node(struct kmem_cache_node *n)
1356{
1357 struct page *page;
1358
1359 /*
1360 * Racy check. If we mistakenly see no partial slabs then we
1361 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1362 * partial slab and there is none available then get_partials()
1363 * will return NULL.
81819f0f
CL
1364 */
1365 if (!n || !n->nr_partial)
1366 return NULL;
1367
1368 spin_lock(&n->list_lock);
1369 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1370 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1371 goto out;
1372 page = NULL;
1373out:
1374 spin_unlock(&n->list_lock);
1375 return page;
1376}
1377
1378/*
672bba3a 1379 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1380 */
1381static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1382{
1383#ifdef CONFIG_NUMA
1384 struct zonelist *zonelist;
dd1a239f 1385 struct zoneref *z;
54a6eb5c
MG
1386 struct zone *zone;
1387 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1388 struct page *page;
1389
1390 /*
672bba3a
CL
1391 * The defrag ratio allows a configuration of the tradeoffs between
1392 * inter node defragmentation and node local allocations. A lower
1393 * defrag_ratio increases the tendency to do local allocations
1394 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1395 *
672bba3a
CL
1396 * If the defrag_ratio is set to 0 then kmalloc() always
1397 * returns node local objects. If the ratio is higher then kmalloc()
1398 * may return off node objects because partial slabs are obtained
1399 * from other nodes and filled up.
81819f0f 1400 *
6446faa2 1401 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1402 * defrag_ratio = 1000) then every (well almost) allocation will
1403 * first attempt to defrag slab caches on other nodes. This means
1404 * scanning over all nodes to look for partial slabs which may be
1405 * expensive if we do it every time we are trying to find a slab
1406 * with available objects.
81819f0f 1407 */
9824601e
CL
1408 if (!s->remote_node_defrag_ratio ||
1409 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1410 return NULL;
1411
c0ff7453 1412 get_mems_allowed();
0e88460d 1413 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1414 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1415 struct kmem_cache_node *n;
1416
54a6eb5c 1417 n = get_node(s, zone_to_nid(zone));
81819f0f 1418
54a6eb5c 1419 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1420 n->nr_partial > s->min_partial) {
81819f0f 1421 page = get_partial_node(n);
c0ff7453
MX
1422 if (page) {
1423 put_mems_allowed();
81819f0f 1424 return page;
c0ff7453 1425 }
81819f0f
CL
1426 }
1427 }
c0ff7453 1428 put_mems_allowed();
81819f0f
CL
1429#endif
1430 return NULL;
1431}
1432
1433/*
1434 * Get a partial page, lock it and return it.
1435 */
1436static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1437{
1438 struct page *page;
2154a336 1439 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1440
1441 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1442 if (page || node != -1)
81819f0f
CL
1443 return page;
1444
1445 return get_any_partial(s, flags);
1446}
1447
1448/*
1449 * Move a page back to the lists.
1450 *
1451 * Must be called with the slab lock held.
1452 *
1453 * On exit the slab lock will have been dropped.
1454 */
7c2e132c 1455static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1456 __releases(bitlock)
81819f0f 1457{
e95eed57
CL
1458 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1459
8a38082d 1460 __ClearPageSlubFrozen(page);
81819f0f 1461 if (page->inuse) {
e95eed57 1462
a973e9dd 1463 if (page->freelist) {
7c2e132c 1464 add_partial(n, page, tail);
84e554e6 1465 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1466 } else {
84e554e6 1467 stat(s, DEACTIVATE_FULL);
af537b0a 1468 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1469 add_full(n, page);
1470 }
81819f0f
CL
1471 slab_unlock(page);
1472 } else {
84e554e6 1473 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1474 if (n->nr_partial < s->min_partial) {
e95eed57 1475 /*
672bba3a
CL
1476 * Adding an empty slab to the partial slabs in order
1477 * to avoid page allocator overhead. This slab needs
1478 * to come after the other slabs with objects in
6446faa2
CL
1479 * so that the others get filled first. That way the
1480 * size of the partial list stays small.
1481 *
0121c619
CL
1482 * kmem_cache_shrink can reclaim any empty slabs from
1483 * the partial list.
e95eed57 1484 */
7c2e132c 1485 add_partial(n, page, 1);
e95eed57
CL
1486 slab_unlock(page);
1487 } else {
1488 slab_unlock(page);
84e554e6 1489 stat(s, FREE_SLAB);
e95eed57
CL
1490 discard_slab(s, page);
1491 }
81819f0f
CL
1492 }
1493}
1494
1495/*
1496 * Remove the cpu slab
1497 */
dfb4f096 1498static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1499 __releases(bitlock)
81819f0f 1500{
dfb4f096 1501 struct page *page = c->page;
7c2e132c 1502 int tail = 1;
8ff12cfc 1503
b773ad73 1504 if (page->freelist)
84e554e6 1505 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1506 /*
6446faa2 1507 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1508 * because both freelists are empty. So this is unlikely
1509 * to occur.
1510 */
a973e9dd 1511 while (unlikely(c->freelist)) {
894b8788
CL
1512 void **object;
1513
7c2e132c
CL
1514 tail = 0; /* Hot objects. Put the slab first */
1515
894b8788 1516 /* Retrieve object from cpu_freelist */
dfb4f096 1517 object = c->freelist;
ff12059e 1518 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1519
1520 /* And put onto the regular freelist */
ff12059e 1521 set_freepointer(s, object, page->freelist);
894b8788
CL
1522 page->freelist = object;
1523 page->inuse--;
1524 }
dfb4f096 1525 c->page = NULL;
7c2e132c 1526 unfreeze_slab(s, page, tail);
81819f0f
CL
1527}
1528
dfb4f096 1529static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1530{
84e554e6 1531 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1532 slab_lock(c->page);
1533 deactivate_slab(s, c);
81819f0f
CL
1534}
1535
1536/*
1537 * Flush cpu slab.
6446faa2 1538 *
81819f0f
CL
1539 * Called from IPI handler with interrupts disabled.
1540 */
0c710013 1541static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1542{
9dfc6e68 1543 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1544
dfb4f096
CL
1545 if (likely(c && c->page))
1546 flush_slab(s, c);
81819f0f
CL
1547}
1548
1549static void flush_cpu_slab(void *d)
1550{
1551 struct kmem_cache *s = d;
81819f0f 1552
dfb4f096 1553 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1554}
1555
1556static void flush_all(struct kmem_cache *s)
1557{
15c8b6c1 1558 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1559}
1560
dfb4f096
CL
1561/*
1562 * Check if the objects in a per cpu structure fit numa
1563 * locality expectations.
1564 */
1565static inline int node_match(struct kmem_cache_cpu *c, int node)
1566{
1567#ifdef CONFIG_NUMA
2154a336 1568 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1569 return 0;
1570#endif
1571 return 1;
1572}
1573
781b2ba6
PE
1574static int count_free(struct page *page)
1575{
1576 return page->objects - page->inuse;
1577}
1578
1579static unsigned long count_partial(struct kmem_cache_node *n,
1580 int (*get_count)(struct page *))
1581{
1582 unsigned long flags;
1583 unsigned long x = 0;
1584 struct page *page;
1585
1586 spin_lock_irqsave(&n->list_lock, flags);
1587 list_for_each_entry(page, &n->partial, lru)
1588 x += get_count(page);
1589 spin_unlock_irqrestore(&n->list_lock, flags);
1590 return x;
1591}
1592
26c02cf0
AB
1593static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1594{
1595#ifdef CONFIG_SLUB_DEBUG
1596 return atomic_long_read(&n->total_objects);
1597#else
1598 return 0;
1599#endif
1600}
1601
781b2ba6
PE
1602static noinline void
1603slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1604{
1605 int node;
1606
1607 printk(KERN_WARNING
1608 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1609 nid, gfpflags);
1610 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1611 "default order: %d, min order: %d\n", s->name, s->objsize,
1612 s->size, oo_order(s->oo), oo_order(s->min));
1613
fa5ec8a1
DR
1614 if (oo_order(s->min) > get_order(s->objsize))
1615 printk(KERN_WARNING " %s debugging increased min order, use "
1616 "slub_debug=O to disable.\n", s->name);
1617
781b2ba6
PE
1618 for_each_online_node(node) {
1619 struct kmem_cache_node *n = get_node(s, node);
1620 unsigned long nr_slabs;
1621 unsigned long nr_objs;
1622 unsigned long nr_free;
1623
1624 if (!n)
1625 continue;
1626
26c02cf0
AB
1627 nr_free = count_partial(n, count_free);
1628 nr_slabs = node_nr_slabs(n);
1629 nr_objs = node_nr_objs(n);
781b2ba6
PE
1630
1631 printk(KERN_WARNING
1632 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1633 node, nr_slabs, nr_objs, nr_free);
1634 }
1635}
1636
81819f0f 1637/*
894b8788
CL
1638 * Slow path. The lockless freelist is empty or we need to perform
1639 * debugging duties.
1640 *
1641 * Interrupts are disabled.
81819f0f 1642 *
894b8788
CL
1643 * Processing is still very fast if new objects have been freed to the
1644 * regular freelist. In that case we simply take over the regular freelist
1645 * as the lockless freelist and zap the regular freelist.
81819f0f 1646 *
894b8788
CL
1647 * If that is not working then we fall back to the partial lists. We take the
1648 * first element of the freelist as the object to allocate now and move the
1649 * rest of the freelist to the lockless freelist.
81819f0f 1650 *
894b8788 1651 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1652 * we need to allocate a new slab. This is the slowest path since it involves
1653 * a call to the page allocator and the setup of a new slab.
81819f0f 1654 */
ce71e27c
EGM
1655static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1656 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1657{
81819f0f 1658 void **object;
dfb4f096 1659 struct page *new;
81819f0f 1660
e72e9c23
LT
1661 /* We handle __GFP_ZERO in the caller */
1662 gfpflags &= ~__GFP_ZERO;
1663
dfb4f096 1664 if (!c->page)
81819f0f
CL
1665 goto new_slab;
1666
dfb4f096
CL
1667 slab_lock(c->page);
1668 if (unlikely(!node_match(c, node)))
81819f0f 1669 goto another_slab;
6446faa2 1670
84e554e6 1671 stat(s, ALLOC_REFILL);
6446faa2 1672
894b8788 1673load_freelist:
dfb4f096 1674 object = c->page->freelist;
a973e9dd 1675 if (unlikely(!object))
81819f0f 1676 goto another_slab;
af537b0a 1677 if (kmem_cache_debug(s))
81819f0f
CL
1678 goto debug;
1679
ff12059e 1680 c->freelist = get_freepointer(s, object);
39b26464 1681 c->page->inuse = c->page->objects;
a973e9dd 1682 c->page->freelist = NULL;
dfb4f096 1683 c->node = page_to_nid(c->page);
1f84260c 1684unlock_out:
dfb4f096 1685 slab_unlock(c->page);
84e554e6 1686 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1687 return object;
1688
1689another_slab:
dfb4f096 1690 deactivate_slab(s, c);
81819f0f
CL
1691
1692new_slab:
dfb4f096
CL
1693 new = get_partial(s, gfpflags, node);
1694 if (new) {
1695 c->page = new;
84e554e6 1696 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1697 goto load_freelist;
81819f0f
CL
1698 }
1699
c1d50836 1700 gfpflags &= gfp_allowed_mask;
b811c202
CL
1701 if (gfpflags & __GFP_WAIT)
1702 local_irq_enable();
1703
dfb4f096 1704 new = new_slab(s, gfpflags, node);
b811c202
CL
1705
1706 if (gfpflags & __GFP_WAIT)
1707 local_irq_disable();
1708
dfb4f096 1709 if (new) {
9dfc6e68 1710 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1711 stat(s, ALLOC_SLAB);
05aa3450 1712 if (c->page)
dfb4f096 1713 flush_slab(s, c);
dfb4f096 1714 slab_lock(new);
8a38082d 1715 __SetPageSlubFrozen(new);
dfb4f096 1716 c->page = new;
4b6f0750 1717 goto load_freelist;
81819f0f 1718 }
95f85989
PE
1719 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1720 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1721 return NULL;
81819f0f 1722debug:
dfb4f096 1723 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1724 goto another_slab;
894b8788 1725
dfb4f096 1726 c->page->inuse++;
ff12059e 1727 c->page->freelist = get_freepointer(s, object);
15b7c514 1728 c->node = NUMA_NO_NODE;
1f84260c 1729 goto unlock_out;
894b8788
CL
1730}
1731
1732/*
1733 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1734 * have the fastpath folded into their functions. So no function call
1735 * overhead for requests that can be satisfied on the fastpath.
1736 *
1737 * The fastpath works by first checking if the lockless freelist can be used.
1738 * If not then __slab_alloc is called for slow processing.
1739 *
1740 * Otherwise we can simply pick the next object from the lockless free list.
1741 */
06428780 1742static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1743 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1744{
894b8788 1745 void **object;
dfb4f096 1746 struct kmem_cache_cpu *c;
1f84260c
CL
1747 unsigned long flags;
1748
c016b0bd 1749 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1750 return NULL;
1f84260c 1751
894b8788 1752 local_irq_save(flags);
9dfc6e68
CL
1753 c = __this_cpu_ptr(s->cpu_slab);
1754 object = c->freelist;
9dfc6e68 1755 if (unlikely(!object || !node_match(c, node)))
894b8788 1756
dfb4f096 1757 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1758
1759 else {
ff12059e 1760 c->freelist = get_freepointer(s, object);
84e554e6 1761 stat(s, ALLOC_FASTPATH);
894b8788
CL
1762 }
1763 local_irq_restore(flags);
d07dbea4 1764
74e2134f 1765 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1766 memset(object, 0, s->objsize);
d07dbea4 1767
c016b0bd 1768 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1769
894b8788 1770 return object;
81819f0f
CL
1771}
1772
1773void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1774{
2154a336 1775 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1776
ca2b84cb 1777 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1778
1779 return ret;
81819f0f
CL
1780}
1781EXPORT_SYMBOL(kmem_cache_alloc);
1782
0f24f128 1783#ifdef CONFIG_TRACING
4a92379b
RK
1784void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1785{
1786 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1787 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1788 return ret;
1789}
1790EXPORT_SYMBOL(kmem_cache_alloc_trace);
1791
1792void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1793{
4a92379b
RK
1794 void *ret = kmalloc_order(size, flags, order);
1795 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1796 return ret;
5b882be4 1797}
4a92379b 1798EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1799#endif
1800
81819f0f
CL
1801#ifdef CONFIG_NUMA
1802void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1803{
5b882be4
EGM
1804 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1805
ca2b84cb
EGM
1806 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1807 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1808
1809 return ret;
81819f0f
CL
1810}
1811EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 1812
0f24f128 1813#ifdef CONFIG_TRACING
4a92379b 1814void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 1815 gfp_t gfpflags,
4a92379b 1816 int node, size_t size)
5b882be4 1817{
4a92379b
RK
1818 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1819
1820 trace_kmalloc_node(_RET_IP_, ret,
1821 size, s->size, gfpflags, node);
1822 return ret;
5b882be4 1823}
4a92379b 1824EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 1825#endif
5d1f57e4 1826#endif
5b882be4 1827
81819f0f 1828/*
894b8788
CL
1829 * Slow patch handling. This may still be called frequently since objects
1830 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1831 *
894b8788
CL
1832 * So we still attempt to reduce cache line usage. Just take the slab
1833 * lock and free the item. If there is no additional partial page
1834 * handling required then we can return immediately.
81819f0f 1835 */
894b8788 1836static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1837 void *x, unsigned long addr)
81819f0f
CL
1838{
1839 void *prior;
1840 void **object = (void *)x;
81819f0f 1841
84e554e6 1842 stat(s, FREE_SLOWPATH);
81819f0f
CL
1843 slab_lock(page);
1844
af537b0a 1845 if (kmem_cache_debug(s))
81819f0f 1846 goto debug;
6446faa2 1847
81819f0f 1848checks_ok:
ff12059e
CL
1849 prior = page->freelist;
1850 set_freepointer(s, object, prior);
81819f0f
CL
1851 page->freelist = object;
1852 page->inuse--;
1853
8a38082d 1854 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1855 stat(s, FREE_FROZEN);
81819f0f 1856 goto out_unlock;
8ff12cfc 1857 }
81819f0f
CL
1858
1859 if (unlikely(!page->inuse))
1860 goto slab_empty;
1861
1862 /*
6446faa2 1863 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1864 * then add it.
1865 */
a973e9dd 1866 if (unlikely(!prior)) {
7c2e132c 1867 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1868 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1869 }
81819f0f
CL
1870
1871out_unlock:
1872 slab_unlock(page);
81819f0f
CL
1873 return;
1874
1875slab_empty:
a973e9dd 1876 if (prior) {
81819f0f 1877 /*
672bba3a 1878 * Slab still on the partial list.
81819f0f
CL
1879 */
1880 remove_partial(s, page);
84e554e6 1881 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1882 }
81819f0f 1883 slab_unlock(page);
84e554e6 1884 stat(s, FREE_SLAB);
81819f0f 1885 discard_slab(s, page);
81819f0f
CL
1886 return;
1887
1888debug:
3ec09742 1889 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1890 goto out_unlock;
77c5e2d0 1891 goto checks_ok;
81819f0f
CL
1892}
1893
894b8788
CL
1894/*
1895 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1896 * can perform fastpath freeing without additional function calls.
1897 *
1898 * The fastpath is only possible if we are freeing to the current cpu slab
1899 * of this processor. This typically the case if we have just allocated
1900 * the item before.
1901 *
1902 * If fastpath is not possible then fall back to __slab_free where we deal
1903 * with all sorts of special processing.
1904 */
06428780 1905static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1906 struct page *page, void *x, unsigned long addr)
894b8788
CL
1907{
1908 void **object = (void *)x;
dfb4f096 1909 struct kmem_cache_cpu *c;
1f84260c
CL
1910 unsigned long flags;
1911
c016b0bd
CL
1912 slab_free_hook(s, x);
1913
894b8788 1914 local_irq_save(flags);
9dfc6e68 1915 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1916
1917 slab_free_hook_irq(s, x);
1918
15b7c514 1919 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 1920 set_freepointer(s, object, c->freelist);
dfb4f096 1921 c->freelist = object;
84e554e6 1922 stat(s, FREE_FASTPATH);
894b8788 1923 } else
ff12059e 1924 __slab_free(s, page, x, addr);
894b8788
CL
1925
1926 local_irq_restore(flags);
1927}
1928
81819f0f
CL
1929void kmem_cache_free(struct kmem_cache *s, void *x)
1930{
77c5e2d0 1931 struct page *page;
81819f0f 1932
b49af68f 1933 page = virt_to_head_page(x);
81819f0f 1934
ce71e27c 1935 slab_free(s, page, x, _RET_IP_);
5b882be4 1936
ca2b84cb 1937 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1938}
1939EXPORT_SYMBOL(kmem_cache_free);
1940
81819f0f 1941/*
672bba3a
CL
1942 * Object placement in a slab is made very easy because we always start at
1943 * offset 0. If we tune the size of the object to the alignment then we can
1944 * get the required alignment by putting one properly sized object after
1945 * another.
81819f0f
CL
1946 *
1947 * Notice that the allocation order determines the sizes of the per cpu
1948 * caches. Each processor has always one slab available for allocations.
1949 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1950 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1951 * locking overhead.
81819f0f
CL
1952 */
1953
1954/*
1955 * Mininum / Maximum order of slab pages. This influences locking overhead
1956 * and slab fragmentation. A higher order reduces the number of partial slabs
1957 * and increases the number of allocations possible without having to
1958 * take the list_lock.
1959 */
1960static int slub_min_order;
114e9e89 1961static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1962static int slub_min_objects;
81819f0f
CL
1963
1964/*
1965 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1966 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1967 */
1968static int slub_nomerge;
1969
81819f0f
CL
1970/*
1971 * Calculate the order of allocation given an slab object size.
1972 *
672bba3a
CL
1973 * The order of allocation has significant impact on performance and other
1974 * system components. Generally order 0 allocations should be preferred since
1975 * order 0 does not cause fragmentation in the page allocator. Larger objects
1976 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1977 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1978 * would be wasted.
1979 *
1980 * In order to reach satisfactory performance we must ensure that a minimum
1981 * number of objects is in one slab. Otherwise we may generate too much
1982 * activity on the partial lists which requires taking the list_lock. This is
1983 * less a concern for large slabs though which are rarely used.
81819f0f 1984 *
672bba3a
CL
1985 * slub_max_order specifies the order where we begin to stop considering the
1986 * number of objects in a slab as critical. If we reach slub_max_order then
1987 * we try to keep the page order as low as possible. So we accept more waste
1988 * of space in favor of a small page order.
81819f0f 1989 *
672bba3a
CL
1990 * Higher order allocations also allow the placement of more objects in a
1991 * slab and thereby reduce object handling overhead. If the user has
1992 * requested a higher mininum order then we start with that one instead of
1993 * the smallest order which will fit the object.
81819f0f 1994 */
5e6d444e 1995static inline int slab_order(int size, int min_objects,
ab9a0f19 1996 int max_order, int fract_leftover, int reserved)
81819f0f
CL
1997{
1998 int order;
1999 int rem;
6300ea75 2000 int min_order = slub_min_order;
81819f0f 2001
ab9a0f19 2002 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2003 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2004
6300ea75 2005 for (order = max(min_order,
5e6d444e
CL
2006 fls(min_objects * size - 1) - PAGE_SHIFT);
2007 order <= max_order; order++) {
81819f0f 2008
5e6d444e 2009 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2010
ab9a0f19 2011 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2012 continue;
2013
ab9a0f19 2014 rem = (slab_size - reserved) % size;
81819f0f 2015
5e6d444e 2016 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2017 break;
2018
2019 }
672bba3a 2020
81819f0f
CL
2021 return order;
2022}
2023
ab9a0f19 2024static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2025{
2026 int order;
2027 int min_objects;
2028 int fraction;
e8120ff1 2029 int max_objects;
5e6d444e
CL
2030
2031 /*
2032 * Attempt to find best configuration for a slab. This
2033 * works by first attempting to generate a layout with
2034 * the best configuration and backing off gradually.
2035 *
2036 * First we reduce the acceptable waste in a slab. Then
2037 * we reduce the minimum objects required in a slab.
2038 */
2039 min_objects = slub_min_objects;
9b2cd506
CL
2040 if (!min_objects)
2041 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2042 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2043 min_objects = min(min_objects, max_objects);
2044
5e6d444e 2045 while (min_objects > 1) {
c124f5b5 2046 fraction = 16;
5e6d444e
CL
2047 while (fraction >= 4) {
2048 order = slab_order(size, min_objects,
ab9a0f19 2049 slub_max_order, fraction, reserved);
5e6d444e
CL
2050 if (order <= slub_max_order)
2051 return order;
2052 fraction /= 2;
2053 }
5086c389 2054 min_objects--;
5e6d444e
CL
2055 }
2056
2057 /*
2058 * We were unable to place multiple objects in a slab. Now
2059 * lets see if we can place a single object there.
2060 */
ab9a0f19 2061 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2062 if (order <= slub_max_order)
2063 return order;
2064
2065 /*
2066 * Doh this slab cannot be placed using slub_max_order.
2067 */
ab9a0f19 2068 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2069 if (order < MAX_ORDER)
5e6d444e
CL
2070 return order;
2071 return -ENOSYS;
2072}
2073
81819f0f 2074/*
672bba3a 2075 * Figure out what the alignment of the objects will be.
81819f0f
CL
2076 */
2077static unsigned long calculate_alignment(unsigned long flags,
2078 unsigned long align, unsigned long size)
2079{
2080 /*
6446faa2
CL
2081 * If the user wants hardware cache aligned objects then follow that
2082 * suggestion if the object is sufficiently large.
81819f0f 2083 *
6446faa2
CL
2084 * The hardware cache alignment cannot override the specified
2085 * alignment though. If that is greater then use it.
81819f0f 2086 */
b6210386
NP
2087 if (flags & SLAB_HWCACHE_ALIGN) {
2088 unsigned long ralign = cache_line_size();
2089 while (size <= ralign / 2)
2090 ralign /= 2;
2091 align = max(align, ralign);
2092 }
81819f0f
CL
2093
2094 if (align < ARCH_SLAB_MINALIGN)
b6210386 2095 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2096
2097 return ALIGN(align, sizeof(void *));
2098}
2099
5595cffc
PE
2100static void
2101init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2102{
2103 n->nr_partial = 0;
81819f0f
CL
2104 spin_lock_init(&n->list_lock);
2105 INIT_LIST_HEAD(&n->partial);
8ab1372f 2106#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2107 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2108 atomic_long_set(&n->total_objects, 0);
643b1138 2109 INIT_LIST_HEAD(&n->full);
8ab1372f 2110#endif
81819f0f
CL
2111}
2112
55136592 2113static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2114{
6c182dc0
CL
2115 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2116 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2117
6c182dc0 2118 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2119
6c182dc0 2120 return s->cpu_slab != NULL;
4c93c355 2121}
4c93c355 2122
51df1142
CL
2123static struct kmem_cache *kmem_cache_node;
2124
81819f0f
CL
2125/*
2126 * No kmalloc_node yet so do it by hand. We know that this is the first
2127 * slab on the node for this slabcache. There are no concurrent accesses
2128 * possible.
2129 *
2130 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2131 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2132 * memory on a fresh node that has no slab structures yet.
81819f0f 2133 */
55136592 2134static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2135{
2136 struct page *page;
2137 struct kmem_cache_node *n;
ba84c73c 2138 unsigned long flags;
81819f0f 2139
51df1142 2140 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2141
51df1142 2142 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2143
2144 BUG_ON(!page);
a2f92ee7
CL
2145 if (page_to_nid(page) != node) {
2146 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2147 "node %d\n", node);
2148 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2149 "in order to be able to continue\n");
2150 }
2151
81819f0f
CL
2152 n = page->freelist;
2153 BUG_ON(!n);
51df1142 2154 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2155 page->inuse++;
51df1142 2156 kmem_cache_node->node[node] = n;
8ab1372f 2157#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2158 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2159 init_tracking(kmem_cache_node, n);
8ab1372f 2160#endif
51df1142
CL
2161 init_kmem_cache_node(n, kmem_cache_node);
2162 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2163
ba84c73c 2164 /*
2165 * lockdep requires consistent irq usage for each lock
2166 * so even though there cannot be a race this early in
2167 * the boot sequence, we still disable irqs.
2168 */
2169 local_irq_save(flags);
7c2e132c 2170 add_partial(n, page, 0);
ba84c73c 2171 local_irq_restore(flags);
81819f0f
CL
2172}
2173
2174static void free_kmem_cache_nodes(struct kmem_cache *s)
2175{
2176 int node;
2177
f64dc58c 2178 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2179 struct kmem_cache_node *n = s->node[node];
51df1142 2180
73367bd8 2181 if (n)
51df1142
CL
2182 kmem_cache_free(kmem_cache_node, n);
2183
81819f0f
CL
2184 s->node[node] = NULL;
2185 }
2186}
2187
55136592 2188static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2189{
2190 int node;
81819f0f 2191
f64dc58c 2192 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2193 struct kmem_cache_node *n;
2194
73367bd8 2195 if (slab_state == DOWN) {
55136592 2196 early_kmem_cache_node_alloc(node);
73367bd8
AD
2197 continue;
2198 }
51df1142 2199 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2200 GFP_KERNEL, node);
81819f0f 2201
73367bd8
AD
2202 if (!n) {
2203 free_kmem_cache_nodes(s);
2204 return 0;
81819f0f 2205 }
73367bd8 2206
81819f0f 2207 s->node[node] = n;
5595cffc 2208 init_kmem_cache_node(n, s);
81819f0f
CL
2209 }
2210 return 1;
2211}
81819f0f 2212
c0bdb232 2213static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2214{
2215 if (min < MIN_PARTIAL)
2216 min = MIN_PARTIAL;
2217 else if (min > MAX_PARTIAL)
2218 min = MAX_PARTIAL;
2219 s->min_partial = min;
2220}
2221
81819f0f
CL
2222/*
2223 * calculate_sizes() determines the order and the distribution of data within
2224 * a slab object.
2225 */
06b285dc 2226static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2227{
2228 unsigned long flags = s->flags;
2229 unsigned long size = s->objsize;
2230 unsigned long align = s->align;
834f3d11 2231 int order;
81819f0f 2232
d8b42bf5
CL
2233 /*
2234 * Round up object size to the next word boundary. We can only
2235 * place the free pointer at word boundaries and this determines
2236 * the possible location of the free pointer.
2237 */
2238 size = ALIGN(size, sizeof(void *));
2239
2240#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2241 /*
2242 * Determine if we can poison the object itself. If the user of
2243 * the slab may touch the object after free or before allocation
2244 * then we should never poison the object itself.
2245 */
2246 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2247 !s->ctor)
81819f0f
CL
2248 s->flags |= __OBJECT_POISON;
2249 else
2250 s->flags &= ~__OBJECT_POISON;
2251
81819f0f
CL
2252
2253 /*
672bba3a 2254 * If we are Redzoning then check if there is some space between the
81819f0f 2255 * end of the object and the free pointer. If not then add an
672bba3a 2256 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2257 */
2258 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2259 size += sizeof(void *);
41ecc55b 2260#endif
81819f0f
CL
2261
2262 /*
672bba3a
CL
2263 * With that we have determined the number of bytes in actual use
2264 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2265 */
2266 s->inuse = size;
2267
2268 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2269 s->ctor)) {
81819f0f
CL
2270 /*
2271 * Relocate free pointer after the object if it is not
2272 * permitted to overwrite the first word of the object on
2273 * kmem_cache_free.
2274 *
2275 * This is the case if we do RCU, have a constructor or
2276 * destructor or are poisoning the objects.
2277 */
2278 s->offset = size;
2279 size += sizeof(void *);
2280 }
2281
c12b3c62 2282#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2283 if (flags & SLAB_STORE_USER)
2284 /*
2285 * Need to store information about allocs and frees after
2286 * the object.
2287 */
2288 size += 2 * sizeof(struct track);
2289
be7b3fbc 2290 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2291 /*
2292 * Add some empty padding so that we can catch
2293 * overwrites from earlier objects rather than let
2294 * tracking information or the free pointer be
0211a9c8 2295 * corrupted if a user writes before the start
81819f0f
CL
2296 * of the object.
2297 */
2298 size += sizeof(void *);
41ecc55b 2299#endif
672bba3a 2300
81819f0f
CL
2301 /*
2302 * Determine the alignment based on various parameters that the
65c02d4c
CL
2303 * user specified and the dynamic determination of cache line size
2304 * on bootup.
81819f0f
CL
2305 */
2306 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2307 s->align = align;
81819f0f
CL
2308
2309 /*
2310 * SLUB stores one object immediately after another beginning from
2311 * offset 0. In order to align the objects we have to simply size
2312 * each object to conform to the alignment.
2313 */
2314 size = ALIGN(size, align);
2315 s->size = size;
06b285dc
CL
2316 if (forced_order >= 0)
2317 order = forced_order;
2318 else
ab9a0f19 2319 order = calculate_order(size, s->reserved);
81819f0f 2320
834f3d11 2321 if (order < 0)
81819f0f
CL
2322 return 0;
2323
b7a49f0d 2324 s->allocflags = 0;
834f3d11 2325 if (order)
b7a49f0d
CL
2326 s->allocflags |= __GFP_COMP;
2327
2328 if (s->flags & SLAB_CACHE_DMA)
2329 s->allocflags |= SLUB_DMA;
2330
2331 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2332 s->allocflags |= __GFP_RECLAIMABLE;
2333
81819f0f
CL
2334 /*
2335 * Determine the number of objects per slab
2336 */
ab9a0f19
LJ
2337 s->oo = oo_make(order, size, s->reserved);
2338 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2339 if (oo_objects(s->oo) > oo_objects(s->max))
2340 s->max = s->oo;
81819f0f 2341
834f3d11 2342 return !!oo_objects(s->oo);
81819f0f
CL
2343
2344}
2345
55136592 2346static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2347 const char *name, size_t size,
2348 size_t align, unsigned long flags,
51cc5068 2349 void (*ctor)(void *))
81819f0f
CL
2350{
2351 memset(s, 0, kmem_size);
2352 s->name = name;
2353 s->ctor = ctor;
81819f0f 2354 s->objsize = size;
81819f0f 2355 s->align = align;
ba0268a8 2356 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2357 s->reserved = 0;
81819f0f 2358
06b285dc 2359 if (!calculate_sizes(s, -1))
81819f0f 2360 goto error;
3de47213
DR
2361 if (disable_higher_order_debug) {
2362 /*
2363 * Disable debugging flags that store metadata if the min slab
2364 * order increased.
2365 */
2366 if (get_order(s->size) > get_order(s->objsize)) {
2367 s->flags &= ~DEBUG_METADATA_FLAGS;
2368 s->offset = 0;
2369 if (!calculate_sizes(s, -1))
2370 goto error;
2371 }
2372 }
81819f0f 2373
3b89d7d8
DR
2374 /*
2375 * The larger the object size is, the more pages we want on the partial
2376 * list to avoid pounding the page allocator excessively.
2377 */
c0bdb232 2378 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2379 s->refcount = 1;
2380#ifdef CONFIG_NUMA
e2cb96b7 2381 s->remote_node_defrag_ratio = 1000;
81819f0f 2382#endif
55136592 2383 if (!init_kmem_cache_nodes(s))
dfb4f096 2384 goto error;
81819f0f 2385
55136592 2386 if (alloc_kmem_cache_cpus(s))
81819f0f 2387 return 1;
ff12059e 2388
4c93c355 2389 free_kmem_cache_nodes(s);
81819f0f
CL
2390error:
2391 if (flags & SLAB_PANIC)
2392 panic("Cannot create slab %s size=%lu realsize=%u "
2393 "order=%u offset=%u flags=%lx\n",
834f3d11 2394 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2395 s->offset, flags);
2396 return 0;
2397}
81819f0f 2398
81819f0f
CL
2399/*
2400 * Determine the size of a slab object
2401 */
2402unsigned int kmem_cache_size(struct kmem_cache *s)
2403{
2404 return s->objsize;
2405}
2406EXPORT_SYMBOL(kmem_cache_size);
2407
2408const char *kmem_cache_name(struct kmem_cache *s)
2409{
2410 return s->name;
2411}
2412EXPORT_SYMBOL(kmem_cache_name);
2413
33b12c38
CL
2414static void list_slab_objects(struct kmem_cache *s, struct page *page,
2415 const char *text)
2416{
2417#ifdef CONFIG_SLUB_DEBUG
2418 void *addr = page_address(page);
2419 void *p;
a5dd5c11
NK
2420 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2421 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2422 if (!map)
2423 return;
33b12c38
CL
2424 slab_err(s, page, "%s", text);
2425 slab_lock(page);
2426 for_each_free_object(p, s, page->freelist)
2427 set_bit(slab_index(p, s, addr), map);
2428
2429 for_each_object(p, s, addr, page->objects) {
2430
2431 if (!test_bit(slab_index(p, s, addr), map)) {
2432 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2433 p, p - addr);
2434 print_tracking(s, p);
2435 }
2436 }
2437 slab_unlock(page);
bbd7d57b 2438 kfree(map);
33b12c38
CL
2439#endif
2440}
2441
81819f0f 2442/*
599870b1 2443 * Attempt to free all partial slabs on a node.
81819f0f 2444 */
599870b1 2445static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2446{
81819f0f
CL
2447 unsigned long flags;
2448 struct page *page, *h;
2449
2450 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2451 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2452 if (!page->inuse) {
62e346a8 2453 __remove_partial(n, page);
81819f0f 2454 discard_slab(s, page);
33b12c38
CL
2455 } else {
2456 list_slab_objects(s, page,
2457 "Objects remaining on kmem_cache_close()");
599870b1 2458 }
33b12c38 2459 }
81819f0f 2460 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2461}
2462
2463/*
672bba3a 2464 * Release all resources used by a slab cache.
81819f0f 2465 */
0c710013 2466static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2467{
2468 int node;
2469
2470 flush_all(s);
9dfc6e68 2471 free_percpu(s->cpu_slab);
81819f0f 2472 /* Attempt to free all objects */
f64dc58c 2473 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2474 struct kmem_cache_node *n = get_node(s, node);
2475
599870b1
CL
2476 free_partial(s, n);
2477 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2478 return 1;
2479 }
2480 free_kmem_cache_nodes(s);
2481 return 0;
2482}
2483
2484/*
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2487 */
2488void kmem_cache_destroy(struct kmem_cache *s)
2489{
2490 down_write(&slub_lock);
2491 s->refcount--;
2492 if (!s->refcount) {
2493 list_del(&s->list);
d629d819
PE
2494 if (kmem_cache_close(s)) {
2495 printk(KERN_ERR "SLUB %s: %s called for cache that "
2496 "still has objects.\n", s->name, __func__);
2497 dump_stack();
2498 }
d76b1590
ED
2499 if (s->flags & SLAB_DESTROY_BY_RCU)
2500 rcu_barrier();
81819f0f 2501 sysfs_slab_remove(s);
2bce6485
CL
2502 }
2503 up_write(&slub_lock);
81819f0f
CL
2504}
2505EXPORT_SYMBOL(kmem_cache_destroy);
2506
2507/********************************************************************
2508 * Kmalloc subsystem
2509 *******************************************************************/
2510
51df1142 2511struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2512EXPORT_SYMBOL(kmalloc_caches);
2513
51df1142
CL
2514static struct kmem_cache *kmem_cache;
2515
55136592 2516#ifdef CONFIG_ZONE_DMA
51df1142 2517static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2518#endif
2519
81819f0f
CL
2520static int __init setup_slub_min_order(char *str)
2521{
06428780 2522 get_option(&str, &slub_min_order);
81819f0f
CL
2523
2524 return 1;
2525}
2526
2527__setup("slub_min_order=", setup_slub_min_order);
2528
2529static int __init setup_slub_max_order(char *str)
2530{
06428780 2531 get_option(&str, &slub_max_order);
818cf590 2532 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2533
2534 return 1;
2535}
2536
2537__setup("slub_max_order=", setup_slub_max_order);
2538
2539static int __init setup_slub_min_objects(char *str)
2540{
06428780 2541 get_option(&str, &slub_min_objects);
81819f0f
CL
2542
2543 return 1;
2544}
2545
2546__setup("slub_min_objects=", setup_slub_min_objects);
2547
2548static int __init setup_slub_nomerge(char *str)
2549{
2550 slub_nomerge = 1;
2551 return 1;
2552}
2553
2554__setup("slub_nomerge", setup_slub_nomerge);
2555
51df1142
CL
2556static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2557 int size, unsigned int flags)
81819f0f 2558{
51df1142
CL
2559 struct kmem_cache *s;
2560
2561 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2562
83b519e8
PE
2563 /*
2564 * This function is called with IRQs disabled during early-boot on
2565 * single CPU so there's no need to take slub_lock here.
2566 */
55136592 2567 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2568 flags, NULL))
81819f0f
CL
2569 goto panic;
2570
2571 list_add(&s->list, &slab_caches);
51df1142 2572 return s;
81819f0f
CL
2573
2574panic:
2575 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2576 return NULL;
81819f0f
CL
2577}
2578
f1b26339
CL
2579/*
2580 * Conversion table for small slabs sizes / 8 to the index in the
2581 * kmalloc array. This is necessary for slabs < 192 since we have non power
2582 * of two cache sizes there. The size of larger slabs can be determined using
2583 * fls.
2584 */
2585static s8 size_index[24] = {
2586 3, /* 8 */
2587 4, /* 16 */
2588 5, /* 24 */
2589 5, /* 32 */
2590 6, /* 40 */
2591 6, /* 48 */
2592 6, /* 56 */
2593 6, /* 64 */
2594 1, /* 72 */
2595 1, /* 80 */
2596 1, /* 88 */
2597 1, /* 96 */
2598 7, /* 104 */
2599 7, /* 112 */
2600 7, /* 120 */
2601 7, /* 128 */
2602 2, /* 136 */
2603 2, /* 144 */
2604 2, /* 152 */
2605 2, /* 160 */
2606 2, /* 168 */
2607 2, /* 176 */
2608 2, /* 184 */
2609 2 /* 192 */
2610};
2611
acdfcd04
AK
2612static inline int size_index_elem(size_t bytes)
2613{
2614 return (bytes - 1) / 8;
2615}
2616
81819f0f
CL
2617static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2618{
f1b26339 2619 int index;
81819f0f 2620
f1b26339
CL
2621 if (size <= 192) {
2622 if (!size)
2623 return ZERO_SIZE_PTR;
81819f0f 2624
acdfcd04 2625 index = size_index[size_index_elem(size)];
aadb4bc4 2626 } else
f1b26339 2627 index = fls(size - 1);
81819f0f
CL
2628
2629#ifdef CONFIG_ZONE_DMA
f1b26339 2630 if (unlikely((flags & SLUB_DMA)))
51df1142 2631 return kmalloc_dma_caches[index];
f1b26339 2632
81819f0f 2633#endif
51df1142 2634 return kmalloc_caches[index];
81819f0f
CL
2635}
2636
2637void *__kmalloc(size_t size, gfp_t flags)
2638{
aadb4bc4 2639 struct kmem_cache *s;
5b882be4 2640 void *ret;
81819f0f 2641
ffadd4d0 2642 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2643 return kmalloc_large(size, flags);
aadb4bc4
CL
2644
2645 s = get_slab(size, flags);
2646
2647 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2648 return s;
2649
2154a336 2650 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2651
ca2b84cb 2652 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2653
2654 return ret;
81819f0f
CL
2655}
2656EXPORT_SYMBOL(__kmalloc);
2657
5d1f57e4 2658#ifdef CONFIG_NUMA
f619cfe1
CL
2659static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2660{
b1eeab67 2661 struct page *page;
e4f7c0b4 2662 void *ptr = NULL;
f619cfe1 2663
b1eeab67
VN
2664 flags |= __GFP_COMP | __GFP_NOTRACK;
2665 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2666 if (page)
e4f7c0b4
CM
2667 ptr = page_address(page);
2668
2669 kmemleak_alloc(ptr, size, 1, flags);
2670 return ptr;
f619cfe1
CL
2671}
2672
81819f0f
CL
2673void *__kmalloc_node(size_t size, gfp_t flags, int node)
2674{
aadb4bc4 2675 struct kmem_cache *s;
5b882be4 2676 void *ret;
81819f0f 2677
057685cf 2678 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2679 ret = kmalloc_large_node(size, flags, node);
2680
ca2b84cb
EGM
2681 trace_kmalloc_node(_RET_IP_, ret,
2682 size, PAGE_SIZE << get_order(size),
2683 flags, node);
5b882be4
EGM
2684
2685 return ret;
2686 }
aadb4bc4
CL
2687
2688 s = get_slab(size, flags);
2689
2690 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2691 return s;
2692
5b882be4
EGM
2693 ret = slab_alloc(s, flags, node, _RET_IP_);
2694
ca2b84cb 2695 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2696
2697 return ret;
81819f0f
CL
2698}
2699EXPORT_SYMBOL(__kmalloc_node);
2700#endif
2701
2702size_t ksize(const void *object)
2703{
272c1d21 2704 struct page *page;
81819f0f
CL
2705 struct kmem_cache *s;
2706
ef8b4520 2707 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2708 return 0;
2709
294a80a8 2710 page = virt_to_head_page(object);
294a80a8 2711
76994412
PE
2712 if (unlikely(!PageSlab(page))) {
2713 WARN_ON(!PageCompound(page));
294a80a8 2714 return PAGE_SIZE << compound_order(page);
76994412 2715 }
81819f0f 2716 s = page->slab;
81819f0f 2717
ae20bfda 2718#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2719 /*
2720 * Debugging requires use of the padding between object
2721 * and whatever may come after it.
2722 */
2723 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2724 return s->objsize;
2725
ae20bfda 2726#endif
81819f0f
CL
2727 /*
2728 * If we have the need to store the freelist pointer
2729 * back there or track user information then we can
2730 * only use the space before that information.
2731 */
2732 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2733 return s->inuse;
81819f0f
CL
2734 /*
2735 * Else we can use all the padding etc for the allocation
2736 */
2737 return s->size;
2738}
b1aabecd 2739EXPORT_SYMBOL(ksize);
81819f0f
CL
2740
2741void kfree(const void *x)
2742{
81819f0f 2743 struct page *page;
5bb983b0 2744 void *object = (void *)x;
81819f0f 2745
2121db74
PE
2746 trace_kfree(_RET_IP_, x);
2747
2408c550 2748 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2749 return;
2750
b49af68f 2751 page = virt_to_head_page(x);
aadb4bc4 2752 if (unlikely(!PageSlab(page))) {
0937502a 2753 BUG_ON(!PageCompound(page));
e4f7c0b4 2754 kmemleak_free(x);
aadb4bc4
CL
2755 put_page(page);
2756 return;
2757 }
ce71e27c 2758 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2759}
2760EXPORT_SYMBOL(kfree);
2761
2086d26a 2762/*
672bba3a
CL
2763 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2764 * the remaining slabs by the number of items in use. The slabs with the
2765 * most items in use come first. New allocations will then fill those up
2766 * and thus they can be removed from the partial lists.
2767 *
2768 * The slabs with the least items are placed last. This results in them
2769 * being allocated from last increasing the chance that the last objects
2770 * are freed in them.
2086d26a
CL
2771 */
2772int kmem_cache_shrink(struct kmem_cache *s)
2773{
2774 int node;
2775 int i;
2776 struct kmem_cache_node *n;
2777 struct page *page;
2778 struct page *t;
205ab99d 2779 int objects = oo_objects(s->max);
2086d26a 2780 struct list_head *slabs_by_inuse =
834f3d11 2781 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2782 unsigned long flags;
2783
2784 if (!slabs_by_inuse)
2785 return -ENOMEM;
2786
2787 flush_all(s);
f64dc58c 2788 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2789 n = get_node(s, node);
2790
2791 if (!n->nr_partial)
2792 continue;
2793
834f3d11 2794 for (i = 0; i < objects; i++)
2086d26a
CL
2795 INIT_LIST_HEAD(slabs_by_inuse + i);
2796
2797 spin_lock_irqsave(&n->list_lock, flags);
2798
2799 /*
672bba3a 2800 * Build lists indexed by the items in use in each slab.
2086d26a 2801 *
672bba3a
CL
2802 * Note that concurrent frees may occur while we hold the
2803 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2804 */
2805 list_for_each_entry_safe(page, t, &n->partial, lru) {
2806 if (!page->inuse && slab_trylock(page)) {
2807 /*
2808 * Must hold slab lock here because slab_free
2809 * may have freed the last object and be
2810 * waiting to release the slab.
2811 */
62e346a8 2812 __remove_partial(n, page);
2086d26a
CL
2813 slab_unlock(page);
2814 discard_slab(s, page);
2815 } else {
fcda3d89
CL
2816 list_move(&page->lru,
2817 slabs_by_inuse + page->inuse);
2086d26a
CL
2818 }
2819 }
2820
2086d26a 2821 /*
672bba3a
CL
2822 * Rebuild the partial list with the slabs filled up most
2823 * first and the least used slabs at the end.
2086d26a 2824 */
834f3d11 2825 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2826 list_splice(slabs_by_inuse + i, n->partial.prev);
2827
2086d26a
CL
2828 spin_unlock_irqrestore(&n->list_lock, flags);
2829 }
2830
2831 kfree(slabs_by_inuse);
2832 return 0;
2833}
2834EXPORT_SYMBOL(kmem_cache_shrink);
2835
92a5bbc1 2836#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
2837static int slab_mem_going_offline_callback(void *arg)
2838{
2839 struct kmem_cache *s;
2840
2841 down_read(&slub_lock);
2842 list_for_each_entry(s, &slab_caches, list)
2843 kmem_cache_shrink(s);
2844 up_read(&slub_lock);
2845
2846 return 0;
2847}
2848
2849static void slab_mem_offline_callback(void *arg)
2850{
2851 struct kmem_cache_node *n;
2852 struct kmem_cache *s;
2853 struct memory_notify *marg = arg;
2854 int offline_node;
2855
2856 offline_node = marg->status_change_nid;
2857
2858 /*
2859 * If the node still has available memory. we need kmem_cache_node
2860 * for it yet.
2861 */
2862 if (offline_node < 0)
2863 return;
2864
2865 down_read(&slub_lock);
2866 list_for_each_entry(s, &slab_caches, list) {
2867 n = get_node(s, offline_node);
2868 if (n) {
2869 /*
2870 * if n->nr_slabs > 0, slabs still exist on the node
2871 * that is going down. We were unable to free them,
c9404c9c 2872 * and offline_pages() function shouldn't call this
b9049e23
YG
2873 * callback. So, we must fail.
2874 */
0f389ec6 2875 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2876
2877 s->node[offline_node] = NULL;
8de66a0c 2878 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2879 }
2880 }
2881 up_read(&slub_lock);
2882}
2883
2884static int slab_mem_going_online_callback(void *arg)
2885{
2886 struct kmem_cache_node *n;
2887 struct kmem_cache *s;
2888 struct memory_notify *marg = arg;
2889 int nid = marg->status_change_nid;
2890 int ret = 0;
2891
2892 /*
2893 * If the node's memory is already available, then kmem_cache_node is
2894 * already created. Nothing to do.
2895 */
2896 if (nid < 0)
2897 return 0;
2898
2899 /*
0121c619 2900 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2901 * allocate a kmem_cache_node structure in order to bring the node
2902 * online.
2903 */
2904 down_read(&slub_lock);
2905 list_for_each_entry(s, &slab_caches, list) {
2906 /*
2907 * XXX: kmem_cache_alloc_node will fallback to other nodes
2908 * since memory is not yet available from the node that
2909 * is brought up.
2910 */
8de66a0c 2911 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2912 if (!n) {
2913 ret = -ENOMEM;
2914 goto out;
2915 }
5595cffc 2916 init_kmem_cache_node(n, s);
b9049e23
YG
2917 s->node[nid] = n;
2918 }
2919out:
2920 up_read(&slub_lock);
2921 return ret;
2922}
2923
2924static int slab_memory_callback(struct notifier_block *self,
2925 unsigned long action, void *arg)
2926{
2927 int ret = 0;
2928
2929 switch (action) {
2930 case MEM_GOING_ONLINE:
2931 ret = slab_mem_going_online_callback(arg);
2932 break;
2933 case MEM_GOING_OFFLINE:
2934 ret = slab_mem_going_offline_callback(arg);
2935 break;
2936 case MEM_OFFLINE:
2937 case MEM_CANCEL_ONLINE:
2938 slab_mem_offline_callback(arg);
2939 break;
2940 case MEM_ONLINE:
2941 case MEM_CANCEL_OFFLINE:
2942 break;
2943 }
dc19f9db
KH
2944 if (ret)
2945 ret = notifier_from_errno(ret);
2946 else
2947 ret = NOTIFY_OK;
b9049e23
YG
2948 return ret;
2949}
2950
2951#endif /* CONFIG_MEMORY_HOTPLUG */
2952
81819f0f
CL
2953/********************************************************************
2954 * Basic setup of slabs
2955 *******************************************************************/
2956
51df1142
CL
2957/*
2958 * Used for early kmem_cache structures that were allocated using
2959 * the page allocator
2960 */
2961
2962static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2963{
2964 int node;
2965
2966 list_add(&s->list, &slab_caches);
2967 s->refcount = -1;
2968
2969 for_each_node_state(node, N_NORMAL_MEMORY) {
2970 struct kmem_cache_node *n = get_node(s, node);
2971 struct page *p;
2972
2973 if (n) {
2974 list_for_each_entry(p, &n->partial, lru)
2975 p->slab = s;
2976
2977#ifdef CONFIG_SLAB_DEBUG
2978 list_for_each_entry(p, &n->full, lru)
2979 p->slab = s;
2980#endif
2981 }
2982 }
2983}
2984
81819f0f
CL
2985void __init kmem_cache_init(void)
2986{
2987 int i;
4b356be0 2988 int caches = 0;
51df1142
CL
2989 struct kmem_cache *temp_kmem_cache;
2990 int order;
51df1142
CL
2991 struct kmem_cache *temp_kmem_cache_node;
2992 unsigned long kmalloc_size;
2993
2994 kmem_size = offsetof(struct kmem_cache, node) +
2995 nr_node_ids * sizeof(struct kmem_cache_node *);
2996
2997 /* Allocate two kmem_caches from the page allocator */
2998 kmalloc_size = ALIGN(kmem_size, cache_line_size());
2999 order = get_order(2 * kmalloc_size);
3000 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3001
81819f0f
CL
3002 /*
3003 * Must first have the slab cache available for the allocations of the
672bba3a 3004 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3005 * kmem_cache_open for slab_state == DOWN.
3006 */
51df1142
CL
3007 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3008
3009 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3010 sizeof(struct kmem_cache_node),
3011 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3012
0c40ba4f 3013 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3014
3015 /* Able to allocate the per node structures */
3016 slab_state = PARTIAL;
3017
51df1142
CL
3018 temp_kmem_cache = kmem_cache;
3019 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3020 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3021 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3022 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3023
51df1142
CL
3024 /*
3025 * Allocate kmem_cache_node properly from the kmem_cache slab.
3026 * kmem_cache_node is separately allocated so no need to
3027 * update any list pointers.
3028 */
3029 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3030
51df1142
CL
3031 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3032 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3033
3034 kmem_cache_bootstrap_fixup(kmem_cache_node);
3035
3036 caches++;
51df1142
CL
3037 kmem_cache_bootstrap_fixup(kmem_cache);
3038 caches++;
3039 /* Free temporary boot structure */
3040 free_pages((unsigned long)temp_kmem_cache, order);
3041
3042 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3043
3044 /*
3045 * Patch up the size_index table if we have strange large alignment
3046 * requirements for the kmalloc array. This is only the case for
6446faa2 3047 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3048 *
3049 * Largest permitted alignment is 256 bytes due to the way we
3050 * handle the index determination for the smaller caches.
3051 *
3052 * Make sure that nothing crazy happens if someone starts tinkering
3053 * around with ARCH_KMALLOC_MINALIGN
3054 */
3055 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3056 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3057
acdfcd04
AK
3058 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3059 int elem = size_index_elem(i);
3060 if (elem >= ARRAY_SIZE(size_index))
3061 break;
3062 size_index[elem] = KMALLOC_SHIFT_LOW;
3063 }
f1b26339 3064
acdfcd04
AK
3065 if (KMALLOC_MIN_SIZE == 64) {
3066 /*
3067 * The 96 byte size cache is not used if the alignment
3068 * is 64 byte.
3069 */
3070 for (i = 64 + 8; i <= 96; i += 8)
3071 size_index[size_index_elem(i)] = 7;
3072 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3073 /*
3074 * The 192 byte sized cache is not used if the alignment
3075 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3076 * instead.
3077 */
3078 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3079 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3080 }
3081
51df1142
CL
3082 /* Caches that are not of the two-to-the-power-of size */
3083 if (KMALLOC_MIN_SIZE <= 32) {
3084 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3085 caches++;
3086 }
3087
3088 if (KMALLOC_MIN_SIZE <= 64) {
3089 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3090 caches++;
3091 }
3092
3093 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3094 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3095 caches++;
3096 }
3097
81819f0f
CL
3098 slab_state = UP;
3099
3100 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3101 if (KMALLOC_MIN_SIZE <= 32) {
3102 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3103 BUG_ON(!kmalloc_caches[1]->name);
3104 }
3105
3106 if (KMALLOC_MIN_SIZE <= 64) {
3107 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3108 BUG_ON(!kmalloc_caches[2]->name);
3109 }
3110
d7278bd7
CL
3111 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3112 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3113
3114 BUG_ON(!s);
51df1142 3115 kmalloc_caches[i]->name = s;
d7278bd7 3116 }
81819f0f
CL
3117
3118#ifdef CONFIG_SMP
3119 register_cpu_notifier(&slab_notifier);
9dfc6e68 3120#endif
81819f0f 3121
55136592 3122#ifdef CONFIG_ZONE_DMA
51df1142
CL
3123 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3124 struct kmem_cache *s = kmalloc_caches[i];
55136592 3125
51df1142 3126 if (s && s->size) {
55136592
CL
3127 char *name = kasprintf(GFP_NOWAIT,
3128 "dma-kmalloc-%d", s->objsize);
3129
3130 BUG_ON(!name);
51df1142
CL
3131 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3132 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3133 }
3134 }
3135#endif
3adbefee
IM
3136 printk(KERN_INFO
3137 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3138 " CPUs=%d, Nodes=%d\n",
3139 caches, cache_line_size(),
81819f0f
CL
3140 slub_min_order, slub_max_order, slub_min_objects,
3141 nr_cpu_ids, nr_node_ids);
3142}
3143
7e85ee0c
PE
3144void __init kmem_cache_init_late(void)
3145{
7e85ee0c
PE
3146}
3147
81819f0f
CL
3148/*
3149 * Find a mergeable slab cache
3150 */
3151static int slab_unmergeable(struct kmem_cache *s)
3152{
3153 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3154 return 1;
3155
c59def9f 3156 if (s->ctor)
81819f0f
CL
3157 return 1;
3158
8ffa6875
CL
3159 /*
3160 * We may have set a slab to be unmergeable during bootstrap.
3161 */
3162 if (s->refcount < 0)
3163 return 1;
3164
81819f0f
CL
3165 return 0;
3166}
3167
3168static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3169 size_t align, unsigned long flags, const char *name,
51cc5068 3170 void (*ctor)(void *))
81819f0f 3171{
5b95a4ac 3172 struct kmem_cache *s;
81819f0f
CL
3173
3174 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3175 return NULL;
3176
c59def9f 3177 if (ctor)
81819f0f
CL
3178 return NULL;
3179
3180 size = ALIGN(size, sizeof(void *));
3181 align = calculate_alignment(flags, align, size);
3182 size = ALIGN(size, align);
ba0268a8 3183 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3184
5b95a4ac 3185 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3186 if (slab_unmergeable(s))
3187 continue;
3188
3189 if (size > s->size)
3190 continue;
3191
ba0268a8 3192 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3193 continue;
3194 /*
3195 * Check if alignment is compatible.
3196 * Courtesy of Adrian Drzewiecki
3197 */
06428780 3198 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3199 continue;
3200
3201 if (s->size - size >= sizeof(void *))
3202 continue;
3203
3204 return s;
3205 }
3206 return NULL;
3207}
3208
3209struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3210 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3211{
3212 struct kmem_cache *s;
84c1cf62 3213 char *n;
81819f0f 3214
fe1ff49d
BH
3215 if (WARN_ON(!name))
3216 return NULL;
3217
81819f0f 3218 down_write(&slub_lock);
ba0268a8 3219 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3220 if (s) {
3221 s->refcount++;
3222 /*
3223 * Adjust the object sizes so that we clear
3224 * the complete object on kzalloc.
3225 */
3226 s->objsize = max(s->objsize, (int)size);
3227 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3228
7b8f3b66 3229 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3230 s->refcount--;
81819f0f 3231 goto err;
7b8f3b66 3232 }
2bce6485 3233 up_write(&slub_lock);
a0e1d1be
CL
3234 return s;
3235 }
6446faa2 3236
84c1cf62
PE
3237 n = kstrdup(name, GFP_KERNEL);
3238 if (!n)
3239 goto err;
3240
a0e1d1be
CL
3241 s = kmalloc(kmem_size, GFP_KERNEL);
3242 if (s) {
84c1cf62 3243 if (kmem_cache_open(s, n,
c59def9f 3244 size, align, flags, ctor)) {
81819f0f 3245 list_add(&s->list, &slab_caches);
7b8f3b66 3246 if (sysfs_slab_add(s)) {
7b8f3b66 3247 list_del(&s->list);
84c1cf62 3248 kfree(n);
7b8f3b66 3249 kfree(s);
a0e1d1be 3250 goto err;
7b8f3b66 3251 }
2bce6485 3252 up_write(&slub_lock);
a0e1d1be
CL
3253 return s;
3254 }
84c1cf62 3255 kfree(n);
a0e1d1be 3256 kfree(s);
81819f0f 3257 }
68cee4f1 3258err:
81819f0f 3259 up_write(&slub_lock);
81819f0f 3260
81819f0f
CL
3261 if (flags & SLAB_PANIC)
3262 panic("Cannot create slabcache %s\n", name);
3263 else
3264 s = NULL;
3265 return s;
3266}
3267EXPORT_SYMBOL(kmem_cache_create);
3268
81819f0f 3269#ifdef CONFIG_SMP
81819f0f 3270/*
672bba3a
CL
3271 * Use the cpu notifier to insure that the cpu slabs are flushed when
3272 * necessary.
81819f0f
CL
3273 */
3274static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3275 unsigned long action, void *hcpu)
3276{
3277 long cpu = (long)hcpu;
5b95a4ac
CL
3278 struct kmem_cache *s;
3279 unsigned long flags;
81819f0f
CL
3280
3281 switch (action) {
3282 case CPU_UP_CANCELED:
8bb78442 3283 case CPU_UP_CANCELED_FROZEN:
81819f0f 3284 case CPU_DEAD:
8bb78442 3285 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3286 down_read(&slub_lock);
3287 list_for_each_entry(s, &slab_caches, list) {
3288 local_irq_save(flags);
3289 __flush_cpu_slab(s, cpu);
3290 local_irq_restore(flags);
3291 }
3292 up_read(&slub_lock);
81819f0f
CL
3293 break;
3294 default:
3295 break;
3296 }
3297 return NOTIFY_OK;
3298}
3299
06428780 3300static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3301 .notifier_call = slab_cpuup_callback
06428780 3302};
81819f0f
CL
3303
3304#endif
3305
ce71e27c 3306void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3307{
aadb4bc4 3308 struct kmem_cache *s;
94b528d0 3309 void *ret;
aadb4bc4 3310
ffadd4d0 3311 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3312 return kmalloc_large(size, gfpflags);
3313
aadb4bc4 3314 s = get_slab(size, gfpflags);
81819f0f 3315
2408c550 3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3317 return s;
81819f0f 3318
2154a336 3319 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3320
3321 /* Honor the call site pointer we recieved. */
ca2b84cb 3322 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3323
3324 return ret;
81819f0f
CL
3325}
3326
5d1f57e4 3327#ifdef CONFIG_NUMA
81819f0f 3328void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3329 int node, unsigned long caller)
81819f0f 3330{
aadb4bc4 3331 struct kmem_cache *s;
94b528d0 3332 void *ret;
aadb4bc4 3333
d3e14aa3
XF
3334 if (unlikely(size > SLUB_MAX_SIZE)) {
3335 ret = kmalloc_large_node(size, gfpflags, node);
3336
3337 trace_kmalloc_node(caller, ret,
3338 size, PAGE_SIZE << get_order(size),
3339 gfpflags, node);
3340
3341 return ret;
3342 }
eada35ef 3343
aadb4bc4 3344 s = get_slab(size, gfpflags);
81819f0f 3345
2408c550 3346 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3347 return s;
81819f0f 3348
94b528d0
EGM
3349 ret = slab_alloc(s, gfpflags, node, caller);
3350
3351 /* Honor the call site pointer we recieved. */
ca2b84cb 3352 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3353
3354 return ret;
81819f0f 3355}
5d1f57e4 3356#endif
81819f0f 3357
ab4d5ed5 3358#ifdef CONFIG_SYSFS
205ab99d
CL
3359static int count_inuse(struct page *page)
3360{
3361 return page->inuse;
3362}
3363
3364static int count_total(struct page *page)
3365{
3366 return page->objects;
3367}
ab4d5ed5 3368#endif
205ab99d 3369
ab4d5ed5 3370#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3371static int validate_slab(struct kmem_cache *s, struct page *page,
3372 unsigned long *map)
53e15af0
CL
3373{
3374 void *p;
a973e9dd 3375 void *addr = page_address(page);
53e15af0
CL
3376
3377 if (!check_slab(s, page) ||
3378 !on_freelist(s, page, NULL))
3379 return 0;
3380
3381 /* Now we know that a valid freelist exists */
39b26464 3382 bitmap_zero(map, page->objects);
53e15af0 3383
7656c72b
CL
3384 for_each_free_object(p, s, page->freelist) {
3385 set_bit(slab_index(p, s, addr), map);
37d57443 3386 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
53e15af0
CL
3387 return 0;
3388 }
3389
224a88be 3390 for_each_object(p, s, addr, page->objects)
7656c72b 3391 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3392 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3393 return 0;
3394 return 1;
3395}
3396
434e245d
CL
3397static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3398 unsigned long *map)
53e15af0
CL
3399{
3400 if (slab_trylock(page)) {
434e245d 3401 validate_slab(s, page, map);
53e15af0
CL
3402 slab_unlock(page);
3403 } else
3404 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3405 s->name, page);
53e15af0
CL
3406}
3407
434e245d
CL
3408static int validate_slab_node(struct kmem_cache *s,
3409 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3410{
3411 unsigned long count = 0;
3412 struct page *page;
3413 unsigned long flags;
3414
3415 spin_lock_irqsave(&n->list_lock, flags);
3416
3417 list_for_each_entry(page, &n->partial, lru) {
434e245d 3418 validate_slab_slab(s, page, map);
53e15af0
CL
3419 count++;
3420 }
3421 if (count != n->nr_partial)
3422 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3423 "counter=%ld\n", s->name, count, n->nr_partial);
3424
3425 if (!(s->flags & SLAB_STORE_USER))
3426 goto out;
3427
3428 list_for_each_entry(page, &n->full, lru) {
434e245d 3429 validate_slab_slab(s, page, map);
53e15af0
CL
3430 count++;
3431 }
3432 if (count != atomic_long_read(&n->nr_slabs))
3433 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3434 "counter=%ld\n", s->name, count,
3435 atomic_long_read(&n->nr_slabs));
3436
3437out:
3438 spin_unlock_irqrestore(&n->list_lock, flags);
3439 return count;
3440}
3441
434e245d 3442static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3443{
3444 int node;
3445 unsigned long count = 0;
205ab99d 3446 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3447 sizeof(unsigned long), GFP_KERNEL);
3448
3449 if (!map)
3450 return -ENOMEM;
53e15af0
CL
3451
3452 flush_all(s);
f64dc58c 3453 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3454 struct kmem_cache_node *n = get_node(s, node);
3455
434e245d 3456 count += validate_slab_node(s, n, map);
53e15af0 3457 }
434e245d 3458 kfree(map);
53e15af0
CL
3459 return count;
3460}
88a420e4 3461/*
672bba3a 3462 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3463 * and freed.
3464 */
3465
3466struct location {
3467 unsigned long count;
ce71e27c 3468 unsigned long addr;
45edfa58
CL
3469 long long sum_time;
3470 long min_time;
3471 long max_time;
3472 long min_pid;
3473 long max_pid;
174596a0 3474 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3475 nodemask_t nodes;
88a420e4
CL
3476};
3477
3478struct loc_track {
3479 unsigned long max;
3480 unsigned long count;
3481 struct location *loc;
3482};
3483
3484static void free_loc_track(struct loc_track *t)
3485{
3486 if (t->max)
3487 free_pages((unsigned long)t->loc,
3488 get_order(sizeof(struct location) * t->max));
3489}
3490
68dff6a9 3491static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3492{
3493 struct location *l;
3494 int order;
3495
88a420e4
CL
3496 order = get_order(sizeof(struct location) * max);
3497
68dff6a9 3498 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3499 if (!l)
3500 return 0;
3501
3502 if (t->count) {
3503 memcpy(l, t->loc, sizeof(struct location) * t->count);
3504 free_loc_track(t);
3505 }
3506 t->max = max;
3507 t->loc = l;
3508 return 1;
3509}
3510
3511static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3512 const struct track *track)
88a420e4
CL
3513{
3514 long start, end, pos;
3515 struct location *l;
ce71e27c 3516 unsigned long caddr;
45edfa58 3517 unsigned long age = jiffies - track->when;
88a420e4
CL
3518
3519 start = -1;
3520 end = t->count;
3521
3522 for ( ; ; ) {
3523 pos = start + (end - start + 1) / 2;
3524
3525 /*
3526 * There is nothing at "end". If we end up there
3527 * we need to add something to before end.
3528 */
3529 if (pos == end)
3530 break;
3531
3532 caddr = t->loc[pos].addr;
45edfa58
CL
3533 if (track->addr == caddr) {
3534
3535 l = &t->loc[pos];
3536 l->count++;
3537 if (track->when) {
3538 l->sum_time += age;
3539 if (age < l->min_time)
3540 l->min_time = age;
3541 if (age > l->max_time)
3542 l->max_time = age;
3543
3544 if (track->pid < l->min_pid)
3545 l->min_pid = track->pid;
3546 if (track->pid > l->max_pid)
3547 l->max_pid = track->pid;
3548
174596a0
RR
3549 cpumask_set_cpu(track->cpu,
3550 to_cpumask(l->cpus));
45edfa58
CL
3551 }
3552 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3553 return 1;
3554 }
3555
45edfa58 3556 if (track->addr < caddr)
88a420e4
CL
3557 end = pos;
3558 else
3559 start = pos;
3560 }
3561
3562 /*
672bba3a 3563 * Not found. Insert new tracking element.
88a420e4 3564 */
68dff6a9 3565 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3566 return 0;
3567
3568 l = t->loc + pos;
3569 if (pos < t->count)
3570 memmove(l + 1, l,
3571 (t->count - pos) * sizeof(struct location));
3572 t->count++;
3573 l->count = 1;
45edfa58
CL
3574 l->addr = track->addr;
3575 l->sum_time = age;
3576 l->min_time = age;
3577 l->max_time = age;
3578 l->min_pid = track->pid;
3579 l->max_pid = track->pid;
174596a0
RR
3580 cpumask_clear(to_cpumask(l->cpus));
3581 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3582 nodes_clear(l->nodes);
3583 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3584 return 1;
3585}
3586
3587static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3588 struct page *page, enum track_item alloc,
a5dd5c11 3589 unsigned long *map)
88a420e4 3590{
a973e9dd 3591 void *addr = page_address(page);
88a420e4
CL
3592 void *p;
3593
39b26464 3594 bitmap_zero(map, page->objects);
7656c72b
CL
3595 for_each_free_object(p, s, page->freelist)
3596 set_bit(slab_index(p, s, addr), map);
88a420e4 3597
224a88be 3598 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3599 if (!test_bit(slab_index(p, s, addr), map))
3600 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3601}
3602
3603static int list_locations(struct kmem_cache *s, char *buf,
3604 enum track_item alloc)
3605{
e374d483 3606 int len = 0;
88a420e4 3607 unsigned long i;
68dff6a9 3608 struct loc_track t = { 0, 0, NULL };
88a420e4 3609 int node;
bbd7d57b
ED
3610 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3611 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3612
bbd7d57b
ED
3613 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3614 GFP_TEMPORARY)) {
3615 kfree(map);
68dff6a9 3616 return sprintf(buf, "Out of memory\n");
bbd7d57b 3617 }
88a420e4
CL
3618 /* Push back cpu slabs */
3619 flush_all(s);
3620
f64dc58c 3621 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3622 struct kmem_cache_node *n = get_node(s, node);
3623 unsigned long flags;
3624 struct page *page;
3625
9e86943b 3626 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3627 continue;
3628
3629 spin_lock_irqsave(&n->list_lock, flags);
3630 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3631 process_slab(&t, s, page, alloc, map);
88a420e4 3632 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3633 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3634 spin_unlock_irqrestore(&n->list_lock, flags);
3635 }
3636
3637 for (i = 0; i < t.count; i++) {
45edfa58 3638 struct location *l = &t.loc[i];
88a420e4 3639
9c246247 3640 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3641 break;
e374d483 3642 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3643
3644 if (l->addr)
62c70bce 3645 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3646 else
e374d483 3647 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3648
3649 if (l->sum_time != l->min_time) {
e374d483 3650 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3651 l->min_time,
3652 (long)div_u64(l->sum_time, l->count),
3653 l->max_time);
45edfa58 3654 } else
e374d483 3655 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3656 l->min_time);
3657
3658 if (l->min_pid != l->max_pid)
e374d483 3659 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3660 l->min_pid, l->max_pid);
3661 else
e374d483 3662 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3663 l->min_pid);
3664
174596a0
RR
3665 if (num_online_cpus() > 1 &&
3666 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3667 len < PAGE_SIZE - 60) {
3668 len += sprintf(buf + len, " cpus=");
3669 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3670 to_cpumask(l->cpus));
45edfa58
CL
3671 }
3672
62bc62a8 3673 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3674 len < PAGE_SIZE - 60) {
3675 len += sprintf(buf + len, " nodes=");
3676 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3677 l->nodes);
3678 }
3679
e374d483 3680 len += sprintf(buf + len, "\n");
88a420e4
CL
3681 }
3682
3683 free_loc_track(&t);
bbd7d57b 3684 kfree(map);
88a420e4 3685 if (!t.count)
e374d483
HH
3686 len += sprintf(buf, "No data\n");
3687 return len;
88a420e4 3688}
ab4d5ed5 3689#endif
88a420e4 3690
a5a84755
CL
3691#ifdef SLUB_RESILIENCY_TEST
3692static void resiliency_test(void)
3693{
3694 u8 *p;
3695
3696 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3697
3698 printk(KERN_ERR "SLUB resiliency testing\n");
3699 printk(KERN_ERR "-----------------------\n");
3700 printk(KERN_ERR "A. Corruption after allocation\n");
3701
3702 p = kzalloc(16, GFP_KERNEL);
3703 p[16] = 0x12;
3704 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3705 " 0x12->0x%p\n\n", p + 16);
3706
3707 validate_slab_cache(kmalloc_caches[4]);
3708
3709 /* Hmmm... The next two are dangerous */
3710 p = kzalloc(32, GFP_KERNEL);
3711 p[32 + sizeof(void *)] = 0x34;
3712 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3713 " 0x34 -> -0x%p\n", p);
3714 printk(KERN_ERR
3715 "If allocated object is overwritten then not detectable\n\n");
3716
3717 validate_slab_cache(kmalloc_caches[5]);
3718 p = kzalloc(64, GFP_KERNEL);
3719 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3720 *p = 0x56;
3721 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3722 p);
3723 printk(KERN_ERR
3724 "If allocated object is overwritten then not detectable\n\n");
3725 validate_slab_cache(kmalloc_caches[6]);
3726
3727 printk(KERN_ERR "\nB. Corruption after free\n");
3728 p = kzalloc(128, GFP_KERNEL);
3729 kfree(p);
3730 *p = 0x78;
3731 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3732 validate_slab_cache(kmalloc_caches[7]);
3733
3734 p = kzalloc(256, GFP_KERNEL);
3735 kfree(p);
3736 p[50] = 0x9a;
3737 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3738 p);
3739 validate_slab_cache(kmalloc_caches[8]);
3740
3741 p = kzalloc(512, GFP_KERNEL);
3742 kfree(p);
3743 p[512] = 0xab;
3744 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3745 validate_slab_cache(kmalloc_caches[9]);
3746}
3747#else
3748#ifdef CONFIG_SYSFS
3749static void resiliency_test(void) {};
3750#endif
3751#endif
3752
ab4d5ed5 3753#ifdef CONFIG_SYSFS
81819f0f 3754enum slab_stat_type {
205ab99d
CL
3755 SL_ALL, /* All slabs */
3756 SL_PARTIAL, /* Only partially allocated slabs */
3757 SL_CPU, /* Only slabs used for cpu caches */
3758 SL_OBJECTS, /* Determine allocated objects not slabs */
3759 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3760};
3761
205ab99d 3762#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3763#define SO_PARTIAL (1 << SL_PARTIAL)
3764#define SO_CPU (1 << SL_CPU)
3765#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3766#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3767
62e5c4b4
CG
3768static ssize_t show_slab_objects(struct kmem_cache *s,
3769 char *buf, unsigned long flags)
81819f0f
CL
3770{
3771 unsigned long total = 0;
81819f0f
CL
3772 int node;
3773 int x;
3774 unsigned long *nodes;
3775 unsigned long *per_cpu;
3776
3777 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3778 if (!nodes)
3779 return -ENOMEM;
81819f0f
CL
3780 per_cpu = nodes + nr_node_ids;
3781
205ab99d
CL
3782 if (flags & SO_CPU) {
3783 int cpu;
81819f0f 3784
205ab99d 3785 for_each_possible_cpu(cpu) {
9dfc6e68 3786 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3787
205ab99d
CL
3788 if (!c || c->node < 0)
3789 continue;
3790
3791 if (c->page) {
3792 if (flags & SO_TOTAL)
3793 x = c->page->objects;
3794 else if (flags & SO_OBJECTS)
3795 x = c->page->inuse;
81819f0f
CL
3796 else
3797 x = 1;
205ab99d 3798
81819f0f 3799 total += x;
205ab99d 3800 nodes[c->node] += x;
81819f0f 3801 }
205ab99d 3802 per_cpu[c->node]++;
81819f0f
CL
3803 }
3804 }
3805
04d94879 3806 lock_memory_hotplug();
ab4d5ed5 3807#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3808 if (flags & SO_ALL) {
3809 for_each_node_state(node, N_NORMAL_MEMORY) {
3810 struct kmem_cache_node *n = get_node(s, node);
3811
3812 if (flags & SO_TOTAL)
3813 x = atomic_long_read(&n->total_objects);
3814 else if (flags & SO_OBJECTS)
3815 x = atomic_long_read(&n->total_objects) -
3816 count_partial(n, count_free);
81819f0f 3817
81819f0f 3818 else
205ab99d 3819 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3820 total += x;
3821 nodes[node] += x;
3822 }
3823
ab4d5ed5
CL
3824 } else
3825#endif
3826 if (flags & SO_PARTIAL) {
205ab99d
CL
3827 for_each_node_state(node, N_NORMAL_MEMORY) {
3828 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3829
205ab99d
CL
3830 if (flags & SO_TOTAL)
3831 x = count_partial(n, count_total);
3832 else if (flags & SO_OBJECTS)
3833 x = count_partial(n, count_inuse);
81819f0f 3834 else
205ab99d 3835 x = n->nr_partial;
81819f0f
CL
3836 total += x;
3837 nodes[node] += x;
3838 }
3839 }
81819f0f
CL
3840 x = sprintf(buf, "%lu", total);
3841#ifdef CONFIG_NUMA
f64dc58c 3842 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3843 if (nodes[node])
3844 x += sprintf(buf + x, " N%d=%lu",
3845 node, nodes[node]);
3846#endif
04d94879 3847 unlock_memory_hotplug();
81819f0f
CL
3848 kfree(nodes);
3849 return x + sprintf(buf + x, "\n");
3850}
3851
ab4d5ed5 3852#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3853static int any_slab_objects(struct kmem_cache *s)
3854{
3855 int node;
81819f0f 3856
dfb4f096 3857 for_each_online_node(node) {
81819f0f
CL
3858 struct kmem_cache_node *n = get_node(s, node);
3859
dfb4f096
CL
3860 if (!n)
3861 continue;
3862
4ea33e2d 3863 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3864 return 1;
3865 }
3866 return 0;
3867}
ab4d5ed5 3868#endif
81819f0f
CL
3869
3870#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3871#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3872
3873struct slab_attribute {
3874 struct attribute attr;
3875 ssize_t (*show)(struct kmem_cache *s, char *buf);
3876 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3877};
3878
3879#define SLAB_ATTR_RO(_name) \
3880 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3881
3882#define SLAB_ATTR(_name) \
3883 static struct slab_attribute _name##_attr = \
3884 __ATTR(_name, 0644, _name##_show, _name##_store)
3885
81819f0f
CL
3886static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3887{
3888 return sprintf(buf, "%d\n", s->size);
3889}
3890SLAB_ATTR_RO(slab_size);
3891
3892static ssize_t align_show(struct kmem_cache *s, char *buf)
3893{
3894 return sprintf(buf, "%d\n", s->align);
3895}
3896SLAB_ATTR_RO(align);
3897
3898static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3899{
3900 return sprintf(buf, "%d\n", s->objsize);
3901}
3902SLAB_ATTR_RO(object_size);
3903
3904static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3905{
834f3d11 3906 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3907}
3908SLAB_ATTR_RO(objs_per_slab);
3909
06b285dc
CL
3910static ssize_t order_store(struct kmem_cache *s,
3911 const char *buf, size_t length)
3912{
0121c619
CL
3913 unsigned long order;
3914 int err;
3915
3916 err = strict_strtoul(buf, 10, &order);
3917 if (err)
3918 return err;
06b285dc
CL
3919
3920 if (order > slub_max_order || order < slub_min_order)
3921 return -EINVAL;
3922
3923 calculate_sizes(s, order);
3924 return length;
3925}
3926
81819f0f
CL
3927static ssize_t order_show(struct kmem_cache *s, char *buf)
3928{
834f3d11 3929 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3930}
06b285dc 3931SLAB_ATTR(order);
81819f0f 3932
73d342b1
DR
3933static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3934{
3935 return sprintf(buf, "%lu\n", s->min_partial);
3936}
3937
3938static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3939 size_t length)
3940{
3941 unsigned long min;
3942 int err;
3943
3944 err = strict_strtoul(buf, 10, &min);
3945 if (err)
3946 return err;
3947
c0bdb232 3948 set_min_partial(s, min);
73d342b1
DR
3949 return length;
3950}
3951SLAB_ATTR(min_partial);
3952
81819f0f
CL
3953static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3954{
62c70bce
JP
3955 if (!s->ctor)
3956 return 0;
3957 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
3958}
3959SLAB_ATTR_RO(ctor);
3960
81819f0f
CL
3961static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3962{
3963 return sprintf(buf, "%d\n", s->refcount - 1);
3964}
3965SLAB_ATTR_RO(aliases);
3966
81819f0f
CL
3967static ssize_t partial_show(struct kmem_cache *s, char *buf)
3968{
d9acf4b7 3969 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3970}
3971SLAB_ATTR_RO(partial);
3972
3973static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3974{
d9acf4b7 3975 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3976}
3977SLAB_ATTR_RO(cpu_slabs);
3978
3979static ssize_t objects_show(struct kmem_cache *s, char *buf)
3980{
205ab99d 3981 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3982}
3983SLAB_ATTR_RO(objects);
3984
205ab99d
CL
3985static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3986{
3987 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3988}
3989SLAB_ATTR_RO(objects_partial);
3990
a5a84755
CL
3991static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3992{
3993 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3994}
3995
3996static ssize_t reclaim_account_store(struct kmem_cache *s,
3997 const char *buf, size_t length)
3998{
3999 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4000 if (buf[0] == '1')
4001 s->flags |= SLAB_RECLAIM_ACCOUNT;
4002 return length;
4003}
4004SLAB_ATTR(reclaim_account);
4005
4006static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4007{
4008 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4009}
4010SLAB_ATTR_RO(hwcache_align);
4011
4012#ifdef CONFIG_ZONE_DMA
4013static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4014{
4015 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4016}
4017SLAB_ATTR_RO(cache_dma);
4018#endif
4019
4020static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4021{
4022 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4023}
4024SLAB_ATTR_RO(destroy_by_rcu);
4025
ab9a0f19
LJ
4026static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4027{
4028 return sprintf(buf, "%d\n", s->reserved);
4029}
4030SLAB_ATTR_RO(reserved);
4031
ab4d5ed5 4032#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4033static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4034{
4035 return show_slab_objects(s, buf, SO_ALL);
4036}
4037SLAB_ATTR_RO(slabs);
4038
205ab99d
CL
4039static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4040{
4041 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4042}
4043SLAB_ATTR_RO(total_objects);
4044
81819f0f
CL
4045static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4046{
4047 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4048}
4049
4050static ssize_t sanity_checks_store(struct kmem_cache *s,
4051 const char *buf, size_t length)
4052{
4053 s->flags &= ~SLAB_DEBUG_FREE;
4054 if (buf[0] == '1')
4055 s->flags |= SLAB_DEBUG_FREE;
4056 return length;
4057}
4058SLAB_ATTR(sanity_checks);
4059
4060static ssize_t trace_show(struct kmem_cache *s, char *buf)
4061{
4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4063}
4064
4065static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4066 size_t length)
4067{
4068 s->flags &= ~SLAB_TRACE;
4069 if (buf[0] == '1')
4070 s->flags |= SLAB_TRACE;
4071 return length;
4072}
4073SLAB_ATTR(trace);
4074
81819f0f
CL
4075static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4076{
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4078}
4079
4080static ssize_t red_zone_store(struct kmem_cache *s,
4081 const char *buf, size_t length)
4082{
4083 if (any_slab_objects(s))
4084 return -EBUSY;
4085
4086 s->flags &= ~SLAB_RED_ZONE;
4087 if (buf[0] == '1')
4088 s->flags |= SLAB_RED_ZONE;
06b285dc 4089 calculate_sizes(s, -1);
81819f0f
CL
4090 return length;
4091}
4092SLAB_ATTR(red_zone);
4093
4094static ssize_t poison_show(struct kmem_cache *s, char *buf)
4095{
4096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4097}
4098
4099static ssize_t poison_store(struct kmem_cache *s,
4100 const char *buf, size_t length)
4101{
4102 if (any_slab_objects(s))
4103 return -EBUSY;
4104
4105 s->flags &= ~SLAB_POISON;
4106 if (buf[0] == '1')
4107 s->flags |= SLAB_POISON;
06b285dc 4108 calculate_sizes(s, -1);
81819f0f
CL
4109 return length;
4110}
4111SLAB_ATTR(poison);
4112
4113static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4114{
4115 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4116}
4117
4118static ssize_t store_user_store(struct kmem_cache *s,
4119 const char *buf, size_t length)
4120{
4121 if (any_slab_objects(s))
4122 return -EBUSY;
4123
4124 s->flags &= ~SLAB_STORE_USER;
4125 if (buf[0] == '1')
4126 s->flags |= SLAB_STORE_USER;
06b285dc 4127 calculate_sizes(s, -1);
81819f0f
CL
4128 return length;
4129}
4130SLAB_ATTR(store_user);
4131
53e15af0
CL
4132static ssize_t validate_show(struct kmem_cache *s, char *buf)
4133{
4134 return 0;
4135}
4136
4137static ssize_t validate_store(struct kmem_cache *s,
4138 const char *buf, size_t length)
4139{
434e245d
CL
4140 int ret = -EINVAL;
4141
4142 if (buf[0] == '1') {
4143 ret = validate_slab_cache(s);
4144 if (ret >= 0)
4145 ret = length;
4146 }
4147 return ret;
53e15af0
CL
4148}
4149SLAB_ATTR(validate);
a5a84755
CL
4150
4151static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4152{
4153 if (!(s->flags & SLAB_STORE_USER))
4154 return -ENOSYS;
4155 return list_locations(s, buf, TRACK_ALLOC);
4156}
4157SLAB_ATTR_RO(alloc_calls);
4158
4159static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4160{
4161 if (!(s->flags & SLAB_STORE_USER))
4162 return -ENOSYS;
4163 return list_locations(s, buf, TRACK_FREE);
4164}
4165SLAB_ATTR_RO(free_calls);
4166#endif /* CONFIG_SLUB_DEBUG */
4167
4168#ifdef CONFIG_FAILSLAB
4169static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4170{
4171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4172}
4173
4174static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4175 size_t length)
4176{
4177 s->flags &= ~SLAB_FAILSLAB;
4178 if (buf[0] == '1')
4179 s->flags |= SLAB_FAILSLAB;
4180 return length;
4181}
4182SLAB_ATTR(failslab);
ab4d5ed5 4183#endif
53e15af0 4184
2086d26a
CL
4185static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4186{
4187 return 0;
4188}
4189
4190static ssize_t shrink_store(struct kmem_cache *s,
4191 const char *buf, size_t length)
4192{
4193 if (buf[0] == '1') {
4194 int rc = kmem_cache_shrink(s);
4195
4196 if (rc)
4197 return rc;
4198 } else
4199 return -EINVAL;
4200 return length;
4201}
4202SLAB_ATTR(shrink);
4203
81819f0f 4204#ifdef CONFIG_NUMA
9824601e 4205static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4206{
9824601e 4207 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4208}
4209
9824601e 4210static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4211 const char *buf, size_t length)
4212{
0121c619
CL
4213 unsigned long ratio;
4214 int err;
4215
4216 err = strict_strtoul(buf, 10, &ratio);
4217 if (err)
4218 return err;
4219
e2cb96b7 4220 if (ratio <= 100)
0121c619 4221 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4222
81819f0f
CL
4223 return length;
4224}
9824601e 4225SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4226#endif
4227
8ff12cfc 4228#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4229static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4230{
4231 unsigned long sum = 0;
4232 int cpu;
4233 int len;
4234 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4235
4236 if (!data)
4237 return -ENOMEM;
4238
4239 for_each_online_cpu(cpu) {
9dfc6e68 4240 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4241
4242 data[cpu] = x;
4243 sum += x;
4244 }
4245
4246 len = sprintf(buf, "%lu", sum);
4247
50ef37b9 4248#ifdef CONFIG_SMP
8ff12cfc
CL
4249 for_each_online_cpu(cpu) {
4250 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4251 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4252 }
50ef37b9 4253#endif
8ff12cfc
CL
4254 kfree(data);
4255 return len + sprintf(buf + len, "\n");
4256}
4257
78eb00cc
DR
4258static void clear_stat(struct kmem_cache *s, enum stat_item si)
4259{
4260 int cpu;
4261
4262 for_each_online_cpu(cpu)
9dfc6e68 4263 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4264}
4265
8ff12cfc
CL
4266#define STAT_ATTR(si, text) \
4267static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4268{ \
4269 return show_stat(s, buf, si); \
4270} \
78eb00cc
DR
4271static ssize_t text##_store(struct kmem_cache *s, \
4272 const char *buf, size_t length) \
4273{ \
4274 if (buf[0] != '0') \
4275 return -EINVAL; \
4276 clear_stat(s, si); \
4277 return length; \
4278} \
4279SLAB_ATTR(text); \
8ff12cfc
CL
4280
4281STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4282STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4283STAT_ATTR(FREE_FASTPATH, free_fastpath);
4284STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4285STAT_ATTR(FREE_FROZEN, free_frozen);
4286STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4287STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4288STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4289STAT_ATTR(ALLOC_SLAB, alloc_slab);
4290STAT_ATTR(ALLOC_REFILL, alloc_refill);
4291STAT_ATTR(FREE_SLAB, free_slab);
4292STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4293STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4294STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4295STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4296STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4297STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4298STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4299#endif
4300
06428780 4301static struct attribute *slab_attrs[] = {
81819f0f
CL
4302 &slab_size_attr.attr,
4303 &object_size_attr.attr,
4304 &objs_per_slab_attr.attr,
4305 &order_attr.attr,
73d342b1 4306 &min_partial_attr.attr,
81819f0f 4307 &objects_attr.attr,
205ab99d 4308 &objects_partial_attr.attr,
81819f0f
CL
4309 &partial_attr.attr,
4310 &cpu_slabs_attr.attr,
4311 &ctor_attr.attr,
81819f0f
CL
4312 &aliases_attr.attr,
4313 &align_attr.attr,
81819f0f
CL
4314 &hwcache_align_attr.attr,
4315 &reclaim_account_attr.attr,
4316 &destroy_by_rcu_attr.attr,
a5a84755 4317 &shrink_attr.attr,
ab9a0f19 4318 &reserved_attr.attr,
ab4d5ed5 4319#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4320 &total_objects_attr.attr,
4321 &slabs_attr.attr,
4322 &sanity_checks_attr.attr,
4323 &trace_attr.attr,
81819f0f
CL
4324 &red_zone_attr.attr,
4325 &poison_attr.attr,
4326 &store_user_attr.attr,
53e15af0 4327 &validate_attr.attr,
88a420e4
CL
4328 &alloc_calls_attr.attr,
4329 &free_calls_attr.attr,
ab4d5ed5 4330#endif
81819f0f
CL
4331#ifdef CONFIG_ZONE_DMA
4332 &cache_dma_attr.attr,
4333#endif
4334#ifdef CONFIG_NUMA
9824601e 4335 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4336#endif
4337#ifdef CONFIG_SLUB_STATS
4338 &alloc_fastpath_attr.attr,
4339 &alloc_slowpath_attr.attr,
4340 &free_fastpath_attr.attr,
4341 &free_slowpath_attr.attr,
4342 &free_frozen_attr.attr,
4343 &free_add_partial_attr.attr,
4344 &free_remove_partial_attr.attr,
4345 &alloc_from_partial_attr.attr,
4346 &alloc_slab_attr.attr,
4347 &alloc_refill_attr.attr,
4348 &free_slab_attr.attr,
4349 &cpuslab_flush_attr.attr,
4350 &deactivate_full_attr.attr,
4351 &deactivate_empty_attr.attr,
4352 &deactivate_to_head_attr.attr,
4353 &deactivate_to_tail_attr.attr,
4354 &deactivate_remote_frees_attr.attr,
65c3376a 4355 &order_fallback_attr.attr,
81819f0f 4356#endif
4c13dd3b
DM
4357#ifdef CONFIG_FAILSLAB
4358 &failslab_attr.attr,
4359#endif
4360
81819f0f
CL
4361 NULL
4362};
4363
4364static struct attribute_group slab_attr_group = {
4365 .attrs = slab_attrs,
4366};
4367
4368static ssize_t slab_attr_show(struct kobject *kobj,
4369 struct attribute *attr,
4370 char *buf)
4371{
4372 struct slab_attribute *attribute;
4373 struct kmem_cache *s;
4374 int err;
4375
4376 attribute = to_slab_attr(attr);
4377 s = to_slab(kobj);
4378
4379 if (!attribute->show)
4380 return -EIO;
4381
4382 err = attribute->show(s, buf);
4383
4384 return err;
4385}
4386
4387static ssize_t slab_attr_store(struct kobject *kobj,
4388 struct attribute *attr,
4389 const char *buf, size_t len)
4390{
4391 struct slab_attribute *attribute;
4392 struct kmem_cache *s;
4393 int err;
4394
4395 attribute = to_slab_attr(attr);
4396 s = to_slab(kobj);
4397
4398 if (!attribute->store)
4399 return -EIO;
4400
4401 err = attribute->store(s, buf, len);
4402
4403 return err;
4404}
4405
151c602f
CL
4406static void kmem_cache_release(struct kobject *kobj)
4407{
4408 struct kmem_cache *s = to_slab(kobj);
4409
84c1cf62 4410 kfree(s->name);
151c602f
CL
4411 kfree(s);
4412}
4413
52cf25d0 4414static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4415 .show = slab_attr_show,
4416 .store = slab_attr_store,
4417};
4418
4419static struct kobj_type slab_ktype = {
4420 .sysfs_ops = &slab_sysfs_ops,
151c602f 4421 .release = kmem_cache_release
81819f0f
CL
4422};
4423
4424static int uevent_filter(struct kset *kset, struct kobject *kobj)
4425{
4426 struct kobj_type *ktype = get_ktype(kobj);
4427
4428 if (ktype == &slab_ktype)
4429 return 1;
4430 return 0;
4431}
4432
9cd43611 4433static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4434 .filter = uevent_filter,
4435};
4436
27c3a314 4437static struct kset *slab_kset;
81819f0f
CL
4438
4439#define ID_STR_LENGTH 64
4440
4441/* Create a unique string id for a slab cache:
6446faa2
CL
4442 *
4443 * Format :[flags-]size
81819f0f
CL
4444 */
4445static char *create_unique_id(struct kmem_cache *s)
4446{
4447 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4448 char *p = name;
4449
4450 BUG_ON(!name);
4451
4452 *p++ = ':';
4453 /*
4454 * First flags affecting slabcache operations. We will only
4455 * get here for aliasable slabs so we do not need to support
4456 * too many flags. The flags here must cover all flags that
4457 * are matched during merging to guarantee that the id is
4458 * unique.
4459 */
4460 if (s->flags & SLAB_CACHE_DMA)
4461 *p++ = 'd';
4462 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4463 *p++ = 'a';
4464 if (s->flags & SLAB_DEBUG_FREE)
4465 *p++ = 'F';
5a896d9e
VN
4466 if (!(s->flags & SLAB_NOTRACK))
4467 *p++ = 't';
81819f0f
CL
4468 if (p != name + 1)
4469 *p++ = '-';
4470 p += sprintf(p, "%07d", s->size);
4471 BUG_ON(p > name + ID_STR_LENGTH - 1);
4472 return name;
4473}
4474
4475static int sysfs_slab_add(struct kmem_cache *s)
4476{
4477 int err;
4478 const char *name;
4479 int unmergeable;
4480
4481 if (slab_state < SYSFS)
4482 /* Defer until later */
4483 return 0;
4484
4485 unmergeable = slab_unmergeable(s);
4486 if (unmergeable) {
4487 /*
4488 * Slabcache can never be merged so we can use the name proper.
4489 * This is typically the case for debug situations. In that
4490 * case we can catch duplicate names easily.
4491 */
27c3a314 4492 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4493 name = s->name;
4494 } else {
4495 /*
4496 * Create a unique name for the slab as a target
4497 * for the symlinks.
4498 */
4499 name = create_unique_id(s);
4500 }
4501
27c3a314 4502 s->kobj.kset = slab_kset;
1eada11c
GKH
4503 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4504 if (err) {
4505 kobject_put(&s->kobj);
81819f0f 4506 return err;
1eada11c 4507 }
81819f0f
CL
4508
4509 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4510 if (err) {
4511 kobject_del(&s->kobj);
4512 kobject_put(&s->kobj);
81819f0f 4513 return err;
5788d8ad 4514 }
81819f0f
CL
4515 kobject_uevent(&s->kobj, KOBJ_ADD);
4516 if (!unmergeable) {
4517 /* Setup first alias */
4518 sysfs_slab_alias(s, s->name);
4519 kfree(name);
4520 }
4521 return 0;
4522}
4523
4524static void sysfs_slab_remove(struct kmem_cache *s)
4525{
2bce6485
CL
4526 if (slab_state < SYSFS)
4527 /*
4528 * Sysfs has not been setup yet so no need to remove the
4529 * cache from sysfs.
4530 */
4531 return;
4532
81819f0f
CL
4533 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4534 kobject_del(&s->kobj);
151c602f 4535 kobject_put(&s->kobj);
81819f0f
CL
4536}
4537
4538/*
4539 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4540 * available lest we lose that information.
81819f0f
CL
4541 */
4542struct saved_alias {
4543 struct kmem_cache *s;
4544 const char *name;
4545 struct saved_alias *next;
4546};
4547
5af328a5 4548static struct saved_alias *alias_list;
81819f0f
CL
4549
4550static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4551{
4552 struct saved_alias *al;
4553
4554 if (slab_state == SYSFS) {
4555 /*
4556 * If we have a leftover link then remove it.
4557 */
27c3a314
GKH
4558 sysfs_remove_link(&slab_kset->kobj, name);
4559 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4560 }
4561
4562 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4563 if (!al)
4564 return -ENOMEM;
4565
4566 al->s = s;
4567 al->name = name;
4568 al->next = alias_list;
4569 alias_list = al;
4570 return 0;
4571}
4572
4573static int __init slab_sysfs_init(void)
4574{
5b95a4ac 4575 struct kmem_cache *s;
81819f0f
CL
4576 int err;
4577
2bce6485
CL
4578 down_write(&slub_lock);
4579
0ff21e46 4580 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4581 if (!slab_kset) {
2bce6485 4582 up_write(&slub_lock);
81819f0f
CL
4583 printk(KERN_ERR "Cannot register slab subsystem.\n");
4584 return -ENOSYS;
4585 }
4586
26a7bd03
CL
4587 slab_state = SYSFS;
4588
5b95a4ac 4589 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4590 err = sysfs_slab_add(s);
5d540fb7
CL
4591 if (err)
4592 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4593 " to sysfs\n", s->name);
26a7bd03 4594 }
81819f0f
CL
4595
4596 while (alias_list) {
4597 struct saved_alias *al = alias_list;
4598
4599 alias_list = alias_list->next;
4600 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4601 if (err)
4602 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4603 " %s to sysfs\n", s->name);
81819f0f
CL
4604 kfree(al);
4605 }
4606
2bce6485 4607 up_write(&slub_lock);
81819f0f
CL
4608 resiliency_test();
4609 return 0;
4610}
4611
4612__initcall(slab_sysfs_init);
ab4d5ed5 4613#endif /* CONFIG_SYSFS */
57ed3eda
PE
4614
4615/*
4616 * The /proc/slabinfo ABI
4617 */
158a9624 4618#ifdef CONFIG_SLABINFO
57ed3eda
PE
4619static void print_slabinfo_header(struct seq_file *m)
4620{
4621 seq_puts(m, "slabinfo - version: 2.1\n");
4622 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4623 "<objperslab> <pagesperslab>");
4624 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4625 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4626 seq_putc(m, '\n');
4627}
4628
4629static void *s_start(struct seq_file *m, loff_t *pos)
4630{
4631 loff_t n = *pos;
4632
4633 down_read(&slub_lock);
4634 if (!n)
4635 print_slabinfo_header(m);
4636
4637 return seq_list_start(&slab_caches, *pos);
4638}
4639
4640static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4641{
4642 return seq_list_next(p, &slab_caches, pos);
4643}
4644
4645static void s_stop(struct seq_file *m, void *p)
4646{
4647 up_read(&slub_lock);
4648}
4649
4650static int s_show(struct seq_file *m, void *p)
4651{
4652 unsigned long nr_partials = 0;
4653 unsigned long nr_slabs = 0;
4654 unsigned long nr_inuse = 0;
205ab99d
CL
4655 unsigned long nr_objs = 0;
4656 unsigned long nr_free = 0;
57ed3eda
PE
4657 struct kmem_cache *s;
4658 int node;
4659
4660 s = list_entry(p, struct kmem_cache, list);
4661
4662 for_each_online_node(node) {
4663 struct kmem_cache_node *n = get_node(s, node);
4664
4665 if (!n)
4666 continue;
4667
4668 nr_partials += n->nr_partial;
4669 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4670 nr_objs += atomic_long_read(&n->total_objects);
4671 nr_free += count_partial(n, count_free);
57ed3eda
PE
4672 }
4673
205ab99d 4674 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4675
4676 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4677 nr_objs, s->size, oo_objects(s->oo),
4678 (1 << oo_order(s->oo)));
57ed3eda
PE
4679 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4680 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4681 0UL);
4682 seq_putc(m, '\n');
4683 return 0;
4684}
4685
7b3c3a50 4686static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4687 .start = s_start,
4688 .next = s_next,
4689 .stop = s_stop,
4690 .show = s_show,
4691};
4692
7b3c3a50
AD
4693static int slabinfo_open(struct inode *inode, struct file *file)
4694{
4695 return seq_open(file, &slabinfo_op);
4696}
4697
4698static const struct file_operations proc_slabinfo_operations = {
4699 .open = slabinfo_open,
4700 .read = seq_read,
4701 .llseek = seq_lseek,
4702 .release = seq_release,
4703};
4704
4705static int __init slab_proc_init(void)
4706{
cf5d1131 4707 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4708 return 0;
4709}
4710module_init(slab_proc_init);
158a9624 4711#endif /* CONFIG_SLABINFO */