]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
mm/slub.c: update comments
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
922d566c
JK
291 if (!debug_pagealloc_enabled())
292 return get_freepointer(s, object);
293
2482ddec
KC
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
442/*
443 * Determine a map of object in use on a page.
444 *
881db7fb 445 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
446 * not vanish from under us.
447 */
448static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
449{
450 void *p;
451 void *addr = page_address(page);
452
453 for (p = page->freelist; p; p = get_freepointer(s, p))
454 set_bit(slab_index(p, s, addr), map);
455}
456
870b1fbb 457static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
458{
459 if (s->flags & SLAB_RED_ZONE)
460 return s->size - s->red_left_pad;
461
462 return s->size;
463}
464
465static inline void *restore_red_left(struct kmem_cache *s, void *p)
466{
467 if (s->flags & SLAB_RED_ZONE)
468 p -= s->red_left_pad;
469
470 return p;
471}
472
41ecc55b
CL
473/*
474 * Debug settings:
475 */
89d3c87e 476#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 477static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 478#else
d50112ed 479static slab_flags_t slub_debug;
f0630fff 480#endif
41ecc55b
CL
481
482static char *slub_debug_slabs;
fa5ec8a1 483static int disable_higher_order_debug;
41ecc55b 484
a79316c6
AR
485/*
486 * slub is about to manipulate internal object metadata. This memory lies
487 * outside the range of the allocated object, so accessing it would normally
488 * be reported by kasan as a bounds error. metadata_access_enable() is used
489 * to tell kasan that these accesses are OK.
490 */
491static inline void metadata_access_enable(void)
492{
493 kasan_disable_current();
494}
495
496static inline void metadata_access_disable(void)
497{
498 kasan_enable_current();
499}
500
81819f0f
CL
501/*
502 * Object debugging
503 */
d86bd1be
JK
504
505/* Verify that a pointer has an address that is valid within a slab page */
506static inline int check_valid_pointer(struct kmem_cache *s,
507 struct page *page, void *object)
508{
509 void *base;
510
511 if (!object)
512 return 1;
513
514 base = page_address(page);
338cfaad 515 object = kasan_reset_tag(object);
d86bd1be
JK
516 object = restore_red_left(s, object);
517 if (object < base || object >= base + page->objects * s->size ||
518 (object - base) % s->size) {
519 return 0;
520 }
521
522 return 1;
523}
524
aa2efd5e
DT
525static void print_section(char *level, char *text, u8 *addr,
526 unsigned int length)
81819f0f 527{
a79316c6 528 metadata_access_enable();
aa2efd5e 529 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 530 length, 1);
a79316c6 531 metadata_access_disable();
81819f0f
CL
532}
533
81819f0f
CL
534static struct track *get_track(struct kmem_cache *s, void *object,
535 enum track_item alloc)
536{
537 struct track *p;
538
539 if (s->offset)
540 p = object + s->offset + sizeof(void *);
541 else
542 p = object + s->inuse;
543
544 return p + alloc;
545}
546
547static void set_track(struct kmem_cache *s, void *object,
ce71e27c 548 enum track_item alloc, unsigned long addr)
81819f0f 549{
1a00df4a 550 struct track *p = get_track(s, object, alloc);
81819f0f 551
81819f0f 552 if (addr) {
d6543e39 553#ifdef CONFIG_STACKTRACE
79716799 554 unsigned int nr_entries;
d6543e39 555
a79316c6 556 metadata_access_enable();
79716799 557 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 558 metadata_access_disable();
d6543e39 559
79716799
TG
560 if (nr_entries < TRACK_ADDRS_COUNT)
561 p->addrs[nr_entries] = 0;
d6543e39 562#endif
81819f0f
CL
563 p->addr = addr;
564 p->cpu = smp_processor_id();
88e4ccf2 565 p->pid = current->pid;
81819f0f 566 p->when = jiffies;
b8ca7ff7 567 } else {
81819f0f 568 memset(p, 0, sizeof(struct track));
b8ca7ff7 569 }
81819f0f
CL
570}
571
81819f0f
CL
572static void init_tracking(struct kmem_cache *s, void *object)
573{
24922684
CL
574 if (!(s->flags & SLAB_STORE_USER))
575 return;
576
ce71e27c
EGM
577 set_track(s, object, TRACK_FREE, 0UL);
578 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
579}
580
86609d33 581static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
582{
583 if (!t->addr)
584 return;
585
f9f58285 586 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 587 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
588#ifdef CONFIG_STACKTRACE
589 {
590 int i;
591 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
592 if (t->addrs[i])
f9f58285 593 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
594 else
595 break;
596 }
597#endif
24922684
CL
598}
599
600static void print_tracking(struct kmem_cache *s, void *object)
601{
86609d33 602 unsigned long pr_time = jiffies;
24922684
CL
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
86609d33
CP
606 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
607 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
608}
609
610static void print_page_info(struct page *page)
611{
f9f58285 612 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 613 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
614
615}
616
617static void slab_bug(struct kmem_cache *s, char *fmt, ...)
618{
ecc42fbe 619 struct va_format vaf;
24922684 620 va_list args;
24922684
CL
621
622 va_start(args, fmt);
ecc42fbe
FF
623 vaf.fmt = fmt;
624 vaf.va = &args;
f9f58285 625 pr_err("=============================================================================\n");
ecc42fbe 626 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 627 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 628
373d4d09 629 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 630 va_end(args);
81819f0f
CL
631}
632
24922684
CL
633static void slab_fix(struct kmem_cache *s, char *fmt, ...)
634{
ecc42fbe 635 struct va_format vaf;
24922684 636 va_list args;
24922684
CL
637
638 va_start(args, fmt);
ecc42fbe
FF
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 642 va_end(args);
24922684
CL
643}
644
645static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
646{
647 unsigned int off; /* Offset of last byte */
a973e9dd 648 u8 *addr = page_address(page);
24922684
CL
649
650 print_tracking(s, p);
651
652 print_page_info(page);
653
f9f58285
FF
654 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
655 p, p - addr, get_freepointer(s, p));
24922684 656
d86bd1be 657 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
658 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
659 s->red_left_pad);
d86bd1be 660 else if (p > addr + 16)
aa2efd5e 661 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 662
aa2efd5e 663 print_section(KERN_ERR, "Object ", p,
1b473f29 664 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 665 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 666 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 667 s->inuse - s->object_size);
81819f0f 668
81819f0f
CL
669 if (s->offset)
670 off = s->offset + sizeof(void *);
671 else
672 off = s->inuse;
673
24922684 674 if (s->flags & SLAB_STORE_USER)
81819f0f 675 off += 2 * sizeof(struct track);
81819f0f 676
80a9201a
AP
677 off += kasan_metadata_size(s);
678
d86bd1be 679 if (off != size_from_object(s))
81819f0f 680 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
681 print_section(KERN_ERR, "Padding ", p + off,
682 size_from_object(s) - off);
24922684
CL
683
684 dump_stack();
81819f0f
CL
685}
686
75c66def 687void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
688 u8 *object, char *reason)
689{
3dc50637 690 slab_bug(s, "%s", reason);
24922684 691 print_trailer(s, page, object);
81819f0f
CL
692}
693
a38965bf 694static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 695 const char *fmt, ...)
81819f0f
CL
696{
697 va_list args;
698 char buf[100];
699
24922684
CL
700 va_start(args, fmt);
701 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 702 va_end(args);
3dc50637 703 slab_bug(s, "%s", buf);
24922684 704 print_page_info(page);
81819f0f
CL
705 dump_stack();
706}
707
f7cb1933 708static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
709{
710 u8 *p = object;
711
d86bd1be
JK
712 if (s->flags & SLAB_RED_ZONE)
713 memset(p - s->red_left_pad, val, s->red_left_pad);
714
81819f0f 715 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
716 memset(p, POISON_FREE, s->object_size - 1);
717 p[s->object_size - 1] = POISON_END;
81819f0f
CL
718 }
719
720 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 721 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
722}
723
24922684
CL
724static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
725 void *from, void *to)
726{
727 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
728 memset(from, data, to - from);
729}
730
731static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
732 u8 *object, char *what,
06428780 733 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
734{
735 u8 *fault;
736 u8 *end;
e1b70dd1 737 u8 *addr = page_address(page);
24922684 738
a79316c6 739 metadata_access_enable();
79824820 740 fault = memchr_inv(start, value, bytes);
a79316c6 741 metadata_access_disable();
24922684
CL
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
750 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault - addr,
752 fault[0], value);
24922684
CL
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
81819f0f
CL
757}
758
81819f0f
CL
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
672bba3a 766 *
81819f0f
CL
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
3b0efdfa 770 * object + s->object_size
81819f0f 771 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 772 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 773 * object_size == inuse.
672bba3a 774 *
81819f0f
CL
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
672bba3a
CL
779 * Meta data starts here.
780 *
81819f0f
CL
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
672bba3a 783 * C. Padding to reach required alignment boundary or at mininum
6446faa2 784 * one word if debugging is on to be able to detect writes
672bba3a
CL
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
788 *
789 * object + s->size
672bba3a 790 * Nothing is used beyond s->size.
81819f0f 791 *
3b0efdfa 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 793 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
794 * may be used with merged slabcaches.
795 */
796
81819f0f
CL
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
80a9201a
AP
809 off += kasan_metadata_size(s);
810
d86bd1be 811 if (size_from_object(s) == off)
81819f0f
CL
812 return 1;
813
24922684 814 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 815 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
816}
817
39b26464 818/* Check the pad bytes at the end of a slab page */
81819f0f
CL
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
24922684
CL
821 u8 *start;
822 u8 *fault;
823 u8 *end;
5d682681 824 u8 *pad;
24922684
CL
825 int length;
826 int remainder;
81819f0f
CL
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
a973e9dd 831 start = page_address(page);
a50b854e 832 length = page_size(page);
39b26464
CL
833 end = start + length;
834 remainder = length % s->size;
81819f0f
CL
835 if (!remainder)
836 return 1;
837
5d682681 838 pad = end - remainder;
a79316c6 839 metadata_access_enable();
5d682681 840 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 841 metadata_access_disable();
24922684
CL
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
e1b70dd1
MC
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
848 fault, end - 1, fault - start);
5d682681 849 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 850
5d682681 851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 852 return 0;
81819f0f
CL
853}
854
855static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 856 void *object, u8 val)
81819f0f
CL
857{
858 u8 *p = object;
3b0efdfa 859 u8 *endobject = object + s->object_size;
81819f0f
CL
860
861 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
862 if (!check_bytes_and_report(s, page, object, "Redzone",
863 object - s->red_left_pad, val, s->red_left_pad))
864 return 0;
865
24922684 866 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 867 endobject, val, s->inuse - s->object_size))
81819f0f 868 return 0;
81819f0f 869 } else {
3b0efdfa 870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 871 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
872 endobject, POISON_INUSE,
873 s->inuse - s->object_size);
3adbefee 874 }
81819f0f
CL
875 }
876
877 if (s->flags & SLAB_POISON) {
f7cb1933 878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 879 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 880 POISON_FREE, s->object_size - 1) ||
24922684 881 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 882 p + s->object_size - 1, POISON_END, 1)))
81819f0f 883 return 0;
81819f0f
CL
884 /*
885 * check_pad_bytes cleans up on its own.
886 */
887 check_pad_bytes(s, page, p);
888 }
889
f7cb1933 890 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
891 /*
892 * Object and freepointer overlap. Cannot check
893 * freepointer while object is allocated.
894 */
895 return 1;
896
897 /* Check free pointer validity */
898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 object_err(s, page, p, "Freepointer corrupt");
900 /*
9f6c708e 901 * No choice but to zap it and thus lose the remainder
81819f0f 902 * of the free objects in this slab. May cause
672bba3a 903 * another error because the object count is now wrong.
81819f0f 904 */
a973e9dd 905 set_freepointer(s, p, NULL);
81819f0f
CL
906 return 0;
907 }
908 return 1;
909}
910
911static int check_slab(struct kmem_cache *s, struct page *page)
912{
39b26464
CL
913 int maxobj;
914
81819f0f
CL
915 VM_BUG_ON(!irqs_disabled());
916
917 if (!PageSlab(page)) {
24922684 918 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
919 return 0;
920 }
39b26464 921
9736d2a9 922 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
923 if (page->objects > maxobj) {
924 slab_err(s, page, "objects %u > max %u",
f6edde9c 925 page->objects, maxobj);
39b26464
CL
926 return 0;
927 }
928 if (page->inuse > page->objects) {
24922684 929 slab_err(s, page, "inuse %u > max %u",
f6edde9c 930 page->inuse, page->objects);
81819f0f
CL
931 return 0;
932 }
933 /* Slab_pad_check fixes things up after itself */
934 slab_pad_check(s, page);
935 return 1;
936}
937
938/*
672bba3a
CL
939 * Determine if a certain object on a page is on the freelist. Must hold the
940 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
941 */
942static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943{
944 int nr = 0;
881db7fb 945 void *fp;
81819f0f 946 void *object = NULL;
f6edde9c 947 int max_objects;
81819f0f 948
881db7fb 949 fp = page->freelist;
39b26464 950 while (fp && nr <= page->objects) {
81819f0f
CL
951 if (fp == search)
952 return 1;
953 if (!check_valid_pointer(s, page, fp)) {
954 if (object) {
955 object_err(s, page, object,
956 "Freechain corrupt");
a973e9dd 957 set_freepointer(s, object, NULL);
81819f0f 958 } else {
24922684 959 slab_err(s, page, "Freepointer corrupt");
a973e9dd 960 page->freelist = NULL;
39b26464 961 page->inuse = page->objects;
24922684 962 slab_fix(s, "Freelist cleared");
81819f0f
CL
963 return 0;
964 }
965 break;
966 }
967 object = fp;
968 fp = get_freepointer(s, object);
969 nr++;
970 }
971
9736d2a9 972 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
973 if (max_objects > MAX_OBJS_PER_PAGE)
974 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
975
976 if (page->objects != max_objects) {
756a025f
JP
977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 page->objects, max_objects);
224a88be
CL
979 page->objects = max_objects;
980 slab_fix(s, "Number of objects adjusted.");
981 }
39b26464 982 if (page->inuse != page->objects - nr) {
756a025f
JP
983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 page->inuse, page->objects - nr);
39b26464 985 page->inuse = page->objects - nr;
24922684 986 slab_fix(s, "Object count adjusted.");
81819f0f
CL
987 }
988 return search == NULL;
989}
990
0121c619
CL
991static void trace(struct kmem_cache *s, struct page *page, void *object,
992 int alloc)
3ec09742
CL
993{
994 if (s->flags & SLAB_TRACE) {
f9f58285 995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
996 s->name,
997 alloc ? "alloc" : "free",
998 object, page->inuse,
999 page->freelist);
1000
1001 if (!alloc)
aa2efd5e 1002 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1003 s->object_size);
3ec09742
CL
1004
1005 dump_stack();
1006 }
1007}
1008
643b1138 1009/*
672bba3a 1010 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1011 */
5cc6eee8
CL
1012static void add_full(struct kmem_cache *s,
1013 struct kmem_cache_node *n, struct page *page)
643b1138 1014{
5cc6eee8
CL
1015 if (!(s->flags & SLAB_STORE_USER))
1016 return;
1017
255d0884 1018 lockdep_assert_held(&n->list_lock);
916ac052 1019 list_add(&page->slab_list, &n->full);
643b1138
CL
1020}
1021
c65c1877 1022static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1023{
643b1138
CL
1024 if (!(s->flags & SLAB_STORE_USER))
1025 return;
1026
255d0884 1027 lockdep_assert_held(&n->list_lock);
916ac052 1028 list_del(&page->slab_list);
643b1138
CL
1029}
1030
0f389ec6
CL
1031/* Tracking of the number of slabs for debugging purposes */
1032static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033{
1034 struct kmem_cache_node *n = get_node(s, node);
1035
1036 return atomic_long_read(&n->nr_slabs);
1037}
1038
26c02cf0
AB
1039static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040{
1041 return atomic_long_read(&n->nr_slabs);
1042}
1043
205ab99d 1044static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1045{
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 /*
1049 * May be called early in order to allocate a slab for the
1050 * kmem_cache_node structure. Solve the chicken-egg
1051 * dilemma by deferring the increment of the count during
1052 * bootstrap (see early_kmem_cache_node_alloc).
1053 */
338b2642 1054 if (likely(n)) {
0f389ec6 1055 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1056 atomic_long_add(objects, &n->total_objects);
1057 }
0f389ec6 1058}
205ab99d 1059static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1060{
1061 struct kmem_cache_node *n = get_node(s, node);
1062
1063 atomic_long_dec(&n->nr_slabs);
205ab99d 1064 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1065}
1066
1067/* Object debug checks for alloc/free paths */
3ec09742
CL
1068static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 void *object)
1070{
1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 return;
1073
f7cb1933 1074 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1075 init_tracking(s, object);
1076}
1077
a50b854e
MWO
1078static
1079void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1080{
1081 if (!(s->flags & SLAB_POISON))
1082 return;
1083
1084 metadata_access_enable();
a50b854e 1085 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1086 metadata_access_disable();
1087}
1088
becfda68 1089static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1090 struct page *page, void *object)
81819f0f
CL
1091{
1092 if (!check_slab(s, page))
becfda68 1093 return 0;
81819f0f 1094
81819f0f
CL
1095 if (!check_valid_pointer(s, page, object)) {
1096 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1097 return 0;
81819f0f
CL
1098 }
1099
f7cb1933 1100 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1101 return 0;
1102
1103 return 1;
1104}
1105
1106static noinline int alloc_debug_processing(struct kmem_cache *s,
1107 struct page *page,
1108 void *object, unsigned long addr)
1109{
1110 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1111 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1112 goto bad;
1113 }
81819f0f 1114
3ec09742
CL
1115 /* Success perform special debug activities for allocs */
1116 if (s->flags & SLAB_STORE_USER)
1117 set_track(s, object, TRACK_ALLOC, addr);
1118 trace(s, page, object, 1);
f7cb1933 1119 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1120 return 1;
3ec09742 1121
81819f0f
CL
1122bad:
1123 if (PageSlab(page)) {
1124 /*
1125 * If this is a slab page then lets do the best we can
1126 * to avoid issues in the future. Marking all objects
672bba3a 1127 * as used avoids touching the remaining objects.
81819f0f 1128 */
24922684 1129 slab_fix(s, "Marking all objects used");
39b26464 1130 page->inuse = page->objects;
a973e9dd 1131 page->freelist = NULL;
81819f0f
CL
1132 }
1133 return 0;
1134}
1135
becfda68
LA
1136static inline int free_consistency_checks(struct kmem_cache *s,
1137 struct page *page, void *object, unsigned long addr)
81819f0f 1138{
81819f0f 1139 if (!check_valid_pointer(s, page, object)) {
70d71228 1140 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1141 return 0;
81819f0f
CL
1142 }
1143
1144 if (on_freelist(s, page, object)) {
24922684 1145 object_err(s, page, object, "Object already free");
becfda68 1146 return 0;
81819f0f
CL
1147 }
1148
f7cb1933 1149 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1150 return 0;
81819f0f 1151
1b4f59e3 1152 if (unlikely(s != page->slab_cache)) {
3adbefee 1153 if (!PageSlab(page)) {
756a025f
JP
1154 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1155 object);
1b4f59e3 1156 } else if (!page->slab_cache) {
f9f58285
FF
1157 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1158 object);
70d71228 1159 dump_stack();
06428780 1160 } else
24922684
CL
1161 object_err(s, page, object,
1162 "page slab pointer corrupt.");
becfda68
LA
1163 return 0;
1164 }
1165 return 1;
1166}
1167
1168/* Supports checking bulk free of a constructed freelist */
1169static noinline int free_debug_processing(
1170 struct kmem_cache *s, struct page *page,
1171 void *head, void *tail, int bulk_cnt,
1172 unsigned long addr)
1173{
1174 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1175 void *object = head;
1176 int cnt = 0;
1177 unsigned long uninitialized_var(flags);
1178 int ret = 0;
1179
1180 spin_lock_irqsave(&n->list_lock, flags);
1181 slab_lock(page);
1182
1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 if (!check_slab(s, page))
1185 goto out;
1186 }
1187
1188next_object:
1189 cnt++;
1190
1191 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1192 if (!free_consistency_checks(s, page, object, addr))
1193 goto out;
81819f0f 1194 }
3ec09742 1195
3ec09742
CL
1196 if (s->flags & SLAB_STORE_USER)
1197 set_track(s, object, TRACK_FREE, addr);
1198 trace(s, page, object, 0);
81084651 1199 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1200 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1201
1202 /* Reached end of constructed freelist yet? */
1203 if (object != tail) {
1204 object = get_freepointer(s, object);
1205 goto next_object;
1206 }
804aa132
LA
1207 ret = 1;
1208
5c2e4bbb 1209out:
81084651
JDB
1210 if (cnt != bulk_cnt)
1211 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1212 bulk_cnt, cnt);
1213
881db7fb 1214 slab_unlock(page);
282acb43 1215 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1216 if (!ret)
1217 slab_fix(s, "Object at 0x%p not freed", object);
1218 return ret;
81819f0f
CL
1219}
1220
41ecc55b
CL
1221static int __init setup_slub_debug(char *str)
1222{
f0630fff
CL
1223 slub_debug = DEBUG_DEFAULT_FLAGS;
1224 if (*str++ != '=' || !*str)
1225 /*
1226 * No options specified. Switch on full debugging.
1227 */
1228 goto out;
1229
1230 if (*str == ',')
1231 /*
1232 * No options but restriction on slabs. This means full
1233 * debugging for slabs matching a pattern.
1234 */
1235 goto check_slabs;
1236
1237 slub_debug = 0;
1238 if (*str == '-')
1239 /*
1240 * Switch off all debugging measures.
1241 */
1242 goto out;
1243
1244 /*
1245 * Determine which debug features should be switched on
1246 */
06428780 1247 for (; *str && *str != ','; str++) {
f0630fff
CL
1248 switch (tolower(*str)) {
1249 case 'f':
becfda68 1250 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1251 break;
1252 case 'z':
1253 slub_debug |= SLAB_RED_ZONE;
1254 break;
1255 case 'p':
1256 slub_debug |= SLAB_POISON;
1257 break;
1258 case 'u':
1259 slub_debug |= SLAB_STORE_USER;
1260 break;
1261 case 't':
1262 slub_debug |= SLAB_TRACE;
1263 break;
4c13dd3b
DM
1264 case 'a':
1265 slub_debug |= SLAB_FAILSLAB;
1266 break;
08303a73
CA
1267 case 'o':
1268 /*
1269 * Avoid enabling debugging on caches if its minimum
1270 * order would increase as a result.
1271 */
1272 disable_higher_order_debug = 1;
1273 break;
f0630fff 1274 default:
f9f58285
FF
1275 pr_err("slub_debug option '%c' unknown. skipped\n",
1276 *str);
f0630fff 1277 }
41ecc55b
CL
1278 }
1279
f0630fff 1280check_slabs:
41ecc55b
CL
1281 if (*str == ',')
1282 slub_debug_slabs = str + 1;
f0630fff 1283out:
6471384a
AP
1284 if ((static_branch_unlikely(&init_on_alloc) ||
1285 static_branch_unlikely(&init_on_free)) &&
1286 (slub_debug & SLAB_POISON))
1287 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1288 return 1;
1289}
1290
1291__setup("slub_debug", setup_slub_debug);
1292
c5fd3ca0
AT
1293/*
1294 * kmem_cache_flags - apply debugging options to the cache
1295 * @object_size: the size of an object without meta data
1296 * @flags: flags to set
1297 * @name: name of the cache
1298 * @ctor: constructor function
1299 *
1300 * Debug option(s) are applied to @flags. In addition to the debug
1301 * option(s), if a slab name (or multiple) is specified i.e.
1302 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1303 * then only the select slabs will receive the debug option(s).
1304 */
0293d1fd 1305slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1306 slab_flags_t flags, const char *name,
51cc5068 1307 void (*ctor)(void *))
41ecc55b 1308{
c5fd3ca0
AT
1309 char *iter;
1310 size_t len;
1311
1312 /* If slub_debug = 0, it folds into the if conditional. */
1313 if (!slub_debug_slabs)
1314 return flags | slub_debug;
1315
1316 len = strlen(name);
1317 iter = slub_debug_slabs;
1318 while (*iter) {
1319 char *end, *glob;
1320 size_t cmplen;
1321
9cf3a8d8 1322 end = strchrnul(iter, ',');
c5fd3ca0
AT
1323
1324 glob = strnchr(iter, end - iter, '*');
1325 if (glob)
1326 cmplen = glob - iter;
1327 else
1328 cmplen = max_t(size_t, len, (end - iter));
1329
1330 if (!strncmp(name, iter, cmplen)) {
1331 flags |= slub_debug;
1332 break;
1333 }
1334
1335 if (!*end)
1336 break;
1337 iter = end + 1;
1338 }
ba0268a8
CL
1339
1340 return flags;
41ecc55b 1341}
b4a64718 1342#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1343static inline void setup_object_debug(struct kmem_cache *s,
1344 struct page *page, void *object) {}
a50b854e
MWO
1345static inline
1346void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1347
3ec09742 1348static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1349 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1350
282acb43 1351static inline int free_debug_processing(
81084651
JDB
1352 struct kmem_cache *s, struct page *page,
1353 void *head, void *tail, int bulk_cnt,
282acb43 1354 unsigned long addr) { return 0; }
41ecc55b 1355
41ecc55b
CL
1356static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1357 { return 1; }
1358static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1359 void *object, u8 val) { return 1; }
5cc6eee8
CL
1360static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 struct page *page) {}
c65c1877
PZ
1362static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1363 struct page *page) {}
0293d1fd 1364slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1365 slab_flags_t flags, const char *name,
51cc5068 1366 void (*ctor)(void *))
ba0268a8
CL
1367{
1368 return flags;
1369}
41ecc55b 1370#define slub_debug 0
0f389ec6 1371
fdaa45e9
IM
1372#define disable_higher_order_debug 0
1373
0f389ec6
CL
1374static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1375 { return 0; }
26c02cf0
AB
1376static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 { return 0; }
205ab99d
CL
1378static inline void inc_slabs_node(struct kmem_cache *s, int node,
1379 int objects) {}
1380static inline void dec_slabs_node(struct kmem_cache *s, int node,
1381 int objects) {}
7d550c56 1382
02e72cc6
AR
1383#endif /* CONFIG_SLUB_DEBUG */
1384
1385/*
1386 * Hooks for other subsystems that check memory allocations. In a typical
1387 * production configuration these hooks all should produce no code at all.
1388 */
0116523c 1389static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1390{
53128245 1391 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1392 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1393 kmemleak_alloc(ptr, size, 1, flags);
53128245 1394 return ptr;
d56791b3
RB
1395}
1396
ee3ce779 1397static __always_inline void kfree_hook(void *x)
d56791b3
RB
1398{
1399 kmemleak_free(x);
ee3ce779 1400 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1401}
1402
c3895391 1403static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1404{
1405 kmemleak_free_recursive(x, s->flags);
7d550c56 1406
02e72cc6
AR
1407 /*
1408 * Trouble is that we may no longer disable interrupts in the fast path
1409 * So in order to make the debug calls that expect irqs to be
1410 * disabled we need to disable interrupts temporarily.
1411 */
4675ff05 1412#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1413 {
1414 unsigned long flags;
1415
1416 local_irq_save(flags);
02e72cc6
AR
1417 debug_check_no_locks_freed(x, s->object_size);
1418 local_irq_restore(flags);
1419 }
1420#endif
1421 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1422 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1423
c3895391
AK
1424 /* KASAN might put x into memory quarantine, delaying its reuse */
1425 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1426}
205ab99d 1427
c3895391
AK
1428static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1429 void **head, void **tail)
81084651 1430{
6471384a
AP
1431
1432 void *object;
1433 void *next = *head;
1434 void *old_tail = *tail ? *tail : *head;
1435 int rsize;
1436
aea4df4c
LA
1437 /* Head and tail of the reconstructed freelist */
1438 *head = NULL;
1439 *tail = NULL;
1b7e816f 1440
aea4df4c
LA
1441 do {
1442 object = next;
1443 next = get_freepointer(s, object);
1444
1445 if (slab_want_init_on_free(s)) {
6471384a
AP
1446 /*
1447 * Clear the object and the metadata, but don't touch
1448 * the redzone.
1449 */
1450 memset(object, 0, s->object_size);
1451 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1452 : 0;
1453 memset((char *)object + s->inuse, 0,
1454 s->size - s->inuse - rsize);
81084651 1455
aea4df4c 1456 }
c3895391
AK
1457 /* If object's reuse doesn't have to be delayed */
1458 if (!slab_free_hook(s, object)) {
1459 /* Move object to the new freelist */
1460 set_freepointer(s, object, *head);
1461 *head = object;
1462 if (!*tail)
1463 *tail = object;
1464 }
1465 } while (object != old_tail);
1466
1467 if (*head == *tail)
1468 *tail = NULL;
1469
1470 return *head != NULL;
81084651
JDB
1471}
1472
4d176711 1473static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1474 void *object)
1475{
1476 setup_object_debug(s, page, object);
4d176711 1477 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1478 if (unlikely(s->ctor)) {
1479 kasan_unpoison_object_data(s, object);
1480 s->ctor(object);
1481 kasan_poison_object_data(s, object);
1482 }
4d176711 1483 return object;
588f8ba9
TG
1484}
1485
81819f0f
CL
1486/*
1487 * Slab allocation and freeing
1488 */
5dfb4175
VD
1489static inline struct page *alloc_slab_page(struct kmem_cache *s,
1490 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1491{
5dfb4175 1492 struct page *page;
19af27af 1493 unsigned int order = oo_order(oo);
65c3376a 1494
2154a336 1495 if (node == NUMA_NO_NODE)
5dfb4175 1496 page = alloc_pages(flags, order);
65c3376a 1497 else
96db800f 1498 page = __alloc_pages_node(node, flags, order);
5dfb4175 1499
6cea1d56 1500 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1501 __free_pages(page, order);
1502 page = NULL;
1503 }
5dfb4175
VD
1504
1505 return page;
65c3376a
CL
1506}
1507
210e7a43
TG
1508#ifdef CONFIG_SLAB_FREELIST_RANDOM
1509/* Pre-initialize the random sequence cache */
1510static int init_cache_random_seq(struct kmem_cache *s)
1511{
19af27af 1512 unsigned int count = oo_objects(s->oo);
210e7a43 1513 int err;
210e7a43 1514
a810007a
SR
1515 /* Bailout if already initialised */
1516 if (s->random_seq)
1517 return 0;
1518
210e7a43
TG
1519 err = cache_random_seq_create(s, count, GFP_KERNEL);
1520 if (err) {
1521 pr_err("SLUB: Unable to initialize free list for %s\n",
1522 s->name);
1523 return err;
1524 }
1525
1526 /* Transform to an offset on the set of pages */
1527 if (s->random_seq) {
19af27af
AD
1528 unsigned int i;
1529
210e7a43
TG
1530 for (i = 0; i < count; i++)
1531 s->random_seq[i] *= s->size;
1532 }
1533 return 0;
1534}
1535
1536/* Initialize each random sequence freelist per cache */
1537static void __init init_freelist_randomization(void)
1538{
1539 struct kmem_cache *s;
1540
1541 mutex_lock(&slab_mutex);
1542
1543 list_for_each_entry(s, &slab_caches, list)
1544 init_cache_random_seq(s);
1545
1546 mutex_unlock(&slab_mutex);
1547}
1548
1549/* Get the next entry on the pre-computed freelist randomized */
1550static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1551 unsigned long *pos, void *start,
1552 unsigned long page_limit,
1553 unsigned long freelist_count)
1554{
1555 unsigned int idx;
1556
1557 /*
1558 * If the target page allocation failed, the number of objects on the
1559 * page might be smaller than the usual size defined by the cache.
1560 */
1561 do {
1562 idx = s->random_seq[*pos];
1563 *pos += 1;
1564 if (*pos >= freelist_count)
1565 *pos = 0;
1566 } while (unlikely(idx >= page_limit));
1567
1568 return (char *)start + idx;
1569}
1570
1571/* Shuffle the single linked freelist based on a random pre-computed sequence */
1572static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1573{
1574 void *start;
1575 void *cur;
1576 void *next;
1577 unsigned long idx, pos, page_limit, freelist_count;
1578
1579 if (page->objects < 2 || !s->random_seq)
1580 return false;
1581
1582 freelist_count = oo_objects(s->oo);
1583 pos = get_random_int() % freelist_count;
1584
1585 page_limit = page->objects * s->size;
1586 start = fixup_red_left(s, page_address(page));
1587
1588 /* First entry is used as the base of the freelist */
1589 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1590 freelist_count);
4d176711 1591 cur = setup_object(s, page, cur);
210e7a43
TG
1592 page->freelist = cur;
1593
1594 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1595 next = next_freelist_entry(s, page, &pos, start, page_limit,
1596 freelist_count);
4d176711 1597 next = setup_object(s, page, next);
210e7a43
TG
1598 set_freepointer(s, cur, next);
1599 cur = next;
1600 }
210e7a43
TG
1601 set_freepointer(s, cur, NULL);
1602
1603 return true;
1604}
1605#else
1606static inline int init_cache_random_seq(struct kmem_cache *s)
1607{
1608 return 0;
1609}
1610static inline void init_freelist_randomization(void) { }
1611static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1612{
1613 return false;
1614}
1615#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1616
81819f0f
CL
1617static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1618{
06428780 1619 struct page *page;
834f3d11 1620 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1621 gfp_t alloc_gfp;
4d176711 1622 void *start, *p, *next;
a50b854e 1623 int idx;
210e7a43 1624 bool shuffle;
81819f0f 1625
7e0528da
CL
1626 flags &= gfp_allowed_mask;
1627
d0164adc 1628 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1629 local_irq_enable();
1630
b7a49f0d 1631 flags |= s->allocflags;
e12ba74d 1632
ba52270d
PE
1633 /*
1634 * Let the initial higher-order allocation fail under memory pressure
1635 * so we fall-back to the minimum order allocation.
1636 */
1637 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1638 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1639 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1640
5dfb4175 1641 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1642 if (unlikely(!page)) {
1643 oo = s->min;
80c3a998 1644 alloc_gfp = flags;
65c3376a
CL
1645 /*
1646 * Allocation may have failed due to fragmentation.
1647 * Try a lower order alloc if possible
1648 */
5dfb4175 1649 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1650 if (unlikely(!page))
1651 goto out;
1652 stat(s, ORDER_FALLBACK);
65c3376a 1653 }
5a896d9e 1654
834f3d11 1655 page->objects = oo_objects(oo);
81819f0f 1656
1b4f59e3 1657 page->slab_cache = s;
c03f94cc 1658 __SetPageSlab(page);
2f064f34 1659 if (page_is_pfmemalloc(page))
072bb0aa 1660 SetPageSlabPfmemalloc(page);
81819f0f 1661
a7101224 1662 kasan_poison_slab(page);
81819f0f 1663
a7101224 1664 start = page_address(page);
81819f0f 1665
a50b854e 1666 setup_page_debug(s, page, start);
0316bec2 1667
210e7a43
TG
1668 shuffle = shuffle_freelist(s, page);
1669
1670 if (!shuffle) {
4d176711
AK
1671 start = fixup_red_left(s, start);
1672 start = setup_object(s, page, start);
1673 page->freelist = start;
18e50661
AK
1674 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1675 next = p + s->size;
1676 next = setup_object(s, page, next);
1677 set_freepointer(s, p, next);
1678 p = next;
1679 }
1680 set_freepointer(s, p, NULL);
81819f0f 1681 }
81819f0f 1682
e6e82ea1 1683 page->inuse = page->objects;
8cb0a506 1684 page->frozen = 1;
588f8ba9 1685
81819f0f 1686out:
d0164adc 1687 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1688 local_irq_disable();
1689 if (!page)
1690 return NULL;
1691
588f8ba9
TG
1692 inc_slabs_node(s, page_to_nid(page), page->objects);
1693
81819f0f
CL
1694 return page;
1695}
1696
588f8ba9
TG
1697static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1698{
1699 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1700 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1701 flags &= ~GFP_SLAB_BUG_MASK;
1702 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1703 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1704 dump_stack();
588f8ba9
TG
1705 }
1706
1707 return allocate_slab(s,
1708 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1709}
1710
81819f0f
CL
1711static void __free_slab(struct kmem_cache *s, struct page *page)
1712{
834f3d11
CL
1713 int order = compound_order(page);
1714 int pages = 1 << order;
81819f0f 1715
becfda68 1716 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1717 void *p;
1718
1719 slab_pad_check(s, page);
224a88be
CL
1720 for_each_object(p, s, page_address(page),
1721 page->objects)
f7cb1933 1722 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1723 }
1724
072bb0aa 1725 __ClearPageSlabPfmemalloc(page);
49bd5221 1726 __ClearPageSlab(page);
1f458cbf 1727
d4fc5069 1728 page->mapping = NULL;
1eb5ac64
NP
1729 if (current->reclaim_state)
1730 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1731 uncharge_slab_page(page, order, s);
27ee57c9 1732 __free_pages(page, order);
81819f0f
CL
1733}
1734
1735static void rcu_free_slab(struct rcu_head *h)
1736{
bf68c214 1737 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1738
1b4f59e3 1739 __free_slab(page->slab_cache, page);
81819f0f
CL
1740}
1741
1742static void free_slab(struct kmem_cache *s, struct page *page)
1743{
5f0d5a3a 1744 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1745 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1746 } else
1747 __free_slab(s, page);
1748}
1749
1750static void discard_slab(struct kmem_cache *s, struct page *page)
1751{
205ab99d 1752 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1753 free_slab(s, page);
1754}
1755
1756/*
5cc6eee8 1757 * Management of partially allocated slabs.
81819f0f 1758 */
1e4dd946
SR
1759static inline void
1760__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1761{
e95eed57 1762 n->nr_partial++;
136333d1 1763 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1764 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1765 else
916ac052 1766 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1767}
1768
1e4dd946
SR
1769static inline void add_partial(struct kmem_cache_node *n,
1770 struct page *page, int tail)
62e346a8 1771{
c65c1877 1772 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1773 __add_partial(n, page, tail);
1774}
c65c1877 1775
1e4dd946
SR
1776static inline void remove_partial(struct kmem_cache_node *n,
1777 struct page *page)
1778{
1779 lockdep_assert_held(&n->list_lock);
916ac052 1780 list_del(&page->slab_list);
52b4b950 1781 n->nr_partial--;
1e4dd946
SR
1782}
1783
81819f0f 1784/*
7ced3719
CL
1785 * Remove slab from the partial list, freeze it and
1786 * return the pointer to the freelist.
81819f0f 1787 *
497b66f2 1788 * Returns a list of objects or NULL if it fails.
81819f0f 1789 */
497b66f2 1790static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1791 struct kmem_cache_node *n, struct page *page,
633b0764 1792 int mode, int *objects)
81819f0f 1793{
2cfb7455
CL
1794 void *freelist;
1795 unsigned long counters;
1796 struct page new;
1797
c65c1877
PZ
1798 lockdep_assert_held(&n->list_lock);
1799
2cfb7455
CL
1800 /*
1801 * Zap the freelist and set the frozen bit.
1802 * The old freelist is the list of objects for the
1803 * per cpu allocation list.
1804 */
7ced3719
CL
1805 freelist = page->freelist;
1806 counters = page->counters;
1807 new.counters = counters;
633b0764 1808 *objects = new.objects - new.inuse;
23910c50 1809 if (mode) {
7ced3719 1810 new.inuse = page->objects;
23910c50
PE
1811 new.freelist = NULL;
1812 } else {
1813 new.freelist = freelist;
1814 }
2cfb7455 1815
a0132ac0 1816 VM_BUG_ON(new.frozen);
7ced3719 1817 new.frozen = 1;
2cfb7455 1818
7ced3719 1819 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1820 freelist, counters,
02d7633f 1821 new.freelist, new.counters,
7ced3719 1822 "acquire_slab"))
7ced3719 1823 return NULL;
2cfb7455
CL
1824
1825 remove_partial(n, page);
7ced3719 1826 WARN_ON(!freelist);
49e22585 1827 return freelist;
81819f0f
CL
1828}
1829
633b0764 1830static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1831static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1832
81819f0f 1833/*
672bba3a 1834 * Try to allocate a partial slab from a specific node.
81819f0f 1835 */
8ba00bb6
JK
1836static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1837 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1838{
49e22585
CL
1839 struct page *page, *page2;
1840 void *object = NULL;
e5d9998f 1841 unsigned int available = 0;
633b0764 1842 int objects;
81819f0f
CL
1843
1844 /*
1845 * Racy check. If we mistakenly see no partial slabs then we
1846 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1847 * partial slab and there is none available then get_partials()
1848 * will return NULL.
81819f0f
CL
1849 */
1850 if (!n || !n->nr_partial)
1851 return NULL;
1852
1853 spin_lock(&n->list_lock);
916ac052 1854 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1855 void *t;
49e22585 1856
8ba00bb6
JK
1857 if (!pfmemalloc_match(page, flags))
1858 continue;
1859
633b0764 1860 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1861 if (!t)
1862 break;
1863
633b0764 1864 available += objects;
12d79634 1865 if (!object) {
49e22585 1866 c->page = page;
49e22585 1867 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1868 object = t;
49e22585 1869 } else {
633b0764 1870 put_cpu_partial(s, page, 0);
8028dcea 1871 stat(s, CPU_PARTIAL_NODE);
49e22585 1872 }
345c905d 1873 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1874 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1875 break;
1876
497b66f2 1877 }
81819f0f 1878 spin_unlock(&n->list_lock);
497b66f2 1879 return object;
81819f0f
CL
1880}
1881
1882/*
672bba3a 1883 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1884 */
de3ec035 1885static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1886 struct kmem_cache_cpu *c)
81819f0f
CL
1887{
1888#ifdef CONFIG_NUMA
1889 struct zonelist *zonelist;
dd1a239f 1890 struct zoneref *z;
54a6eb5c
MG
1891 struct zone *zone;
1892 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1893 void *object;
cc9a6c87 1894 unsigned int cpuset_mems_cookie;
81819f0f
CL
1895
1896 /*
672bba3a
CL
1897 * The defrag ratio allows a configuration of the tradeoffs between
1898 * inter node defragmentation and node local allocations. A lower
1899 * defrag_ratio increases the tendency to do local allocations
1900 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1901 *
672bba3a
CL
1902 * If the defrag_ratio is set to 0 then kmalloc() always
1903 * returns node local objects. If the ratio is higher then kmalloc()
1904 * may return off node objects because partial slabs are obtained
1905 * from other nodes and filled up.
81819f0f 1906 *
43efd3ea
LP
1907 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1908 * (which makes defrag_ratio = 1000) then every (well almost)
1909 * allocation will first attempt to defrag slab caches on other nodes.
1910 * This means scanning over all nodes to look for partial slabs which
1911 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1912 * with available objects.
81819f0f 1913 */
9824601e
CL
1914 if (!s->remote_node_defrag_ratio ||
1915 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1916 return NULL;
1917
cc9a6c87 1918 do {
d26914d1 1919 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1920 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1921 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1922 struct kmem_cache_node *n;
1923
1924 n = get_node(s, zone_to_nid(zone));
1925
dee2f8aa 1926 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1927 n->nr_partial > s->min_partial) {
8ba00bb6 1928 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1929 if (object) {
1930 /*
d26914d1
MG
1931 * Don't check read_mems_allowed_retry()
1932 * here - if mems_allowed was updated in
1933 * parallel, that was a harmless race
1934 * between allocation and the cpuset
1935 * update
cc9a6c87 1936 */
cc9a6c87
MG
1937 return object;
1938 }
c0ff7453 1939 }
81819f0f 1940 }
d26914d1 1941 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1942#endif /* CONFIG_NUMA */
81819f0f
CL
1943 return NULL;
1944}
1945
1946/*
1947 * Get a partial page, lock it and return it.
1948 */
497b66f2 1949static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1950 struct kmem_cache_cpu *c)
81819f0f 1951{
497b66f2 1952 void *object;
a561ce00
JK
1953 int searchnode = node;
1954
1955 if (node == NUMA_NO_NODE)
1956 searchnode = numa_mem_id();
1957 else if (!node_present_pages(node))
1958 searchnode = node_to_mem_node(node);
81819f0f 1959
8ba00bb6 1960 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1961 if (object || node != NUMA_NO_NODE)
1962 return object;
81819f0f 1963
acd19fd1 1964 return get_any_partial(s, flags, c);
81819f0f
CL
1965}
1966
8a5ec0ba
CL
1967#ifdef CONFIG_PREEMPT
1968/*
1969 * Calculate the next globally unique transaction for disambiguiation
1970 * during cmpxchg. The transactions start with the cpu number and are then
1971 * incremented by CONFIG_NR_CPUS.
1972 */
1973#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1974#else
1975/*
1976 * No preemption supported therefore also no need to check for
1977 * different cpus.
1978 */
1979#define TID_STEP 1
1980#endif
1981
1982static inline unsigned long next_tid(unsigned long tid)
1983{
1984 return tid + TID_STEP;
1985}
1986
9d5f0be0 1987#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
1988static inline unsigned int tid_to_cpu(unsigned long tid)
1989{
1990 return tid % TID_STEP;
1991}
1992
1993static inline unsigned long tid_to_event(unsigned long tid)
1994{
1995 return tid / TID_STEP;
1996}
9d5f0be0 1997#endif
8a5ec0ba
CL
1998
1999static inline unsigned int init_tid(int cpu)
2000{
2001 return cpu;
2002}
2003
2004static inline void note_cmpxchg_failure(const char *n,
2005 const struct kmem_cache *s, unsigned long tid)
2006{
2007#ifdef SLUB_DEBUG_CMPXCHG
2008 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2009
f9f58285 2010 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2011
2012#ifdef CONFIG_PREEMPT
2013 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2014 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2015 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2016 else
2017#endif
2018 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2019 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2020 tid_to_event(tid), tid_to_event(actual_tid));
2021 else
f9f58285 2022 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2023 actual_tid, tid, next_tid(tid));
2024#endif
4fdccdfb 2025 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2026}
2027
788e1aad 2028static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2029{
8a5ec0ba
CL
2030 int cpu;
2031
2032 for_each_possible_cpu(cpu)
2033 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2034}
2cfb7455 2035
81819f0f
CL
2036/*
2037 * Remove the cpu slab
2038 */
d0e0ac97 2039static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2040 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2041{
2cfb7455 2042 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2043 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2044 int lock = 0;
2045 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2046 void *nextfree;
136333d1 2047 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2048 struct page new;
2049 struct page old;
2050
2051 if (page->freelist) {
84e554e6 2052 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2053 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2054 }
2055
894b8788 2056 /*
2cfb7455
CL
2057 * Stage one: Free all available per cpu objects back
2058 * to the page freelist while it is still frozen. Leave the
2059 * last one.
2060 *
2061 * There is no need to take the list->lock because the page
2062 * is still frozen.
2063 */
2064 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2065 void *prior;
2066 unsigned long counters;
2067
2068 do {
2069 prior = page->freelist;
2070 counters = page->counters;
2071 set_freepointer(s, freelist, prior);
2072 new.counters = counters;
2073 new.inuse--;
a0132ac0 2074 VM_BUG_ON(!new.frozen);
2cfb7455 2075
1d07171c 2076 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2077 prior, counters,
2078 freelist, new.counters,
2079 "drain percpu freelist"));
2080
2081 freelist = nextfree;
2082 }
2083
894b8788 2084 /*
2cfb7455
CL
2085 * Stage two: Ensure that the page is unfrozen while the
2086 * list presence reflects the actual number of objects
2087 * during unfreeze.
2088 *
2089 * We setup the list membership and then perform a cmpxchg
2090 * with the count. If there is a mismatch then the page
2091 * is not unfrozen but the page is on the wrong list.
2092 *
2093 * Then we restart the process which may have to remove
2094 * the page from the list that we just put it on again
2095 * because the number of objects in the slab may have
2096 * changed.
894b8788 2097 */
2cfb7455 2098redo:
894b8788 2099
2cfb7455
CL
2100 old.freelist = page->freelist;
2101 old.counters = page->counters;
a0132ac0 2102 VM_BUG_ON(!old.frozen);
7c2e132c 2103
2cfb7455
CL
2104 /* Determine target state of the slab */
2105 new.counters = old.counters;
2106 if (freelist) {
2107 new.inuse--;
2108 set_freepointer(s, freelist, old.freelist);
2109 new.freelist = freelist;
2110 } else
2111 new.freelist = old.freelist;
2112
2113 new.frozen = 0;
2114
8a5b20ae 2115 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2116 m = M_FREE;
2117 else if (new.freelist) {
2118 m = M_PARTIAL;
2119 if (!lock) {
2120 lock = 1;
2121 /*
8bb4e7a2 2122 * Taking the spinlock removes the possibility
2cfb7455
CL
2123 * that acquire_slab() will see a slab page that
2124 * is frozen
2125 */
2126 spin_lock(&n->list_lock);
2127 }
2128 } else {
2129 m = M_FULL;
2130 if (kmem_cache_debug(s) && !lock) {
2131 lock = 1;
2132 /*
2133 * This also ensures that the scanning of full
2134 * slabs from diagnostic functions will not see
2135 * any frozen slabs.
2136 */
2137 spin_lock(&n->list_lock);
2138 }
2139 }
2140
2141 if (l != m) {
2cfb7455 2142 if (l == M_PARTIAL)
2cfb7455 2143 remove_partial(n, page);
2cfb7455 2144 else if (l == M_FULL)
c65c1877 2145 remove_full(s, n, page);
2cfb7455 2146
88349a28 2147 if (m == M_PARTIAL)
2cfb7455 2148 add_partial(n, page, tail);
88349a28 2149 else if (m == M_FULL)
2cfb7455 2150 add_full(s, n, page);
2cfb7455
CL
2151 }
2152
2153 l = m;
1d07171c 2154 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2155 old.freelist, old.counters,
2156 new.freelist, new.counters,
2157 "unfreezing slab"))
2158 goto redo;
2159
2cfb7455
CL
2160 if (lock)
2161 spin_unlock(&n->list_lock);
2162
88349a28
WY
2163 if (m == M_PARTIAL)
2164 stat(s, tail);
2165 else if (m == M_FULL)
2166 stat(s, DEACTIVATE_FULL);
2167 else if (m == M_FREE) {
2cfb7455
CL
2168 stat(s, DEACTIVATE_EMPTY);
2169 discard_slab(s, page);
2170 stat(s, FREE_SLAB);
894b8788 2171 }
d4ff6d35
WY
2172
2173 c->page = NULL;
2174 c->freelist = NULL;
81819f0f
CL
2175}
2176
d24ac77f
JK
2177/*
2178 * Unfreeze all the cpu partial slabs.
2179 *
59a09917
CL
2180 * This function must be called with interrupts disabled
2181 * for the cpu using c (or some other guarantee must be there
2182 * to guarantee no concurrent accesses).
d24ac77f 2183 */
59a09917
CL
2184static void unfreeze_partials(struct kmem_cache *s,
2185 struct kmem_cache_cpu *c)
49e22585 2186{
345c905d 2187#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2188 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2189 struct page *page, *discard_page = NULL;
49e22585
CL
2190
2191 while ((page = c->partial)) {
49e22585
CL
2192 struct page new;
2193 struct page old;
2194
2195 c->partial = page->next;
43d77867
JK
2196
2197 n2 = get_node(s, page_to_nid(page));
2198 if (n != n2) {
2199 if (n)
2200 spin_unlock(&n->list_lock);
2201
2202 n = n2;
2203 spin_lock(&n->list_lock);
2204 }
49e22585
CL
2205
2206 do {
2207
2208 old.freelist = page->freelist;
2209 old.counters = page->counters;
a0132ac0 2210 VM_BUG_ON(!old.frozen);
49e22585
CL
2211
2212 new.counters = old.counters;
2213 new.freelist = old.freelist;
2214
2215 new.frozen = 0;
2216
d24ac77f 2217 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2218 old.freelist, old.counters,
2219 new.freelist, new.counters,
2220 "unfreezing slab"));
2221
8a5b20ae 2222 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2223 page->next = discard_page;
2224 discard_page = page;
43d77867
JK
2225 } else {
2226 add_partial(n, page, DEACTIVATE_TO_TAIL);
2227 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2228 }
2229 }
2230
2231 if (n)
2232 spin_unlock(&n->list_lock);
9ada1934
SL
2233
2234 while (discard_page) {
2235 page = discard_page;
2236 discard_page = discard_page->next;
2237
2238 stat(s, DEACTIVATE_EMPTY);
2239 discard_slab(s, page);
2240 stat(s, FREE_SLAB);
2241 }
6dfd1b65 2242#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2243}
2244
2245/*
9234bae9
WY
2246 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2247 * partial page slot if available.
49e22585
CL
2248 *
2249 * If we did not find a slot then simply move all the partials to the
2250 * per node partial list.
2251 */
633b0764 2252static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2253{
345c905d 2254#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2255 struct page *oldpage;
2256 int pages;
2257 int pobjects;
2258
d6e0b7fa 2259 preempt_disable();
49e22585
CL
2260 do {
2261 pages = 0;
2262 pobjects = 0;
2263 oldpage = this_cpu_read(s->cpu_slab->partial);
2264
2265 if (oldpage) {
2266 pobjects = oldpage->pobjects;
2267 pages = oldpage->pages;
2268 if (drain && pobjects > s->cpu_partial) {
2269 unsigned long flags;
2270 /*
2271 * partial array is full. Move the existing
2272 * set to the per node partial list.
2273 */
2274 local_irq_save(flags);
59a09917 2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2276 local_irq_restore(flags);
e24fc410 2277 oldpage = NULL;
49e22585
CL
2278 pobjects = 0;
2279 pages = 0;
8028dcea 2280 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2281 }
2282 }
2283
2284 pages++;
2285 pobjects += page->objects - page->inuse;
2286
2287 page->pages = pages;
2288 page->pobjects = pobjects;
2289 page->next = oldpage;
2290
d0e0ac97
CG
2291 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2292 != oldpage);
d6e0b7fa
VD
2293 if (unlikely(!s->cpu_partial)) {
2294 unsigned long flags;
2295
2296 local_irq_save(flags);
2297 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2298 local_irq_restore(flags);
2299 }
2300 preempt_enable();
6dfd1b65 2301#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2302}
2303
dfb4f096 2304static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2305{
84e554e6 2306 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2307 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2308
2309 c->tid = next_tid(c->tid);
81819f0f
CL
2310}
2311
2312/*
2313 * Flush cpu slab.
6446faa2 2314 *
81819f0f
CL
2315 * Called from IPI handler with interrupts disabled.
2316 */
0c710013 2317static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2318{
9dfc6e68 2319 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2320
1265ef2d
WY
2321 if (c->page)
2322 flush_slab(s, c);
49e22585 2323
1265ef2d 2324 unfreeze_partials(s, c);
81819f0f
CL
2325}
2326
2327static void flush_cpu_slab(void *d)
2328{
2329 struct kmem_cache *s = d;
81819f0f 2330
dfb4f096 2331 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2332}
2333
a8364d55
GBY
2334static bool has_cpu_slab(int cpu, void *info)
2335{
2336 struct kmem_cache *s = info;
2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338
a93cf07b 2339 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2340}
2341
81819f0f
CL
2342static void flush_all(struct kmem_cache *s)
2343{
a8364d55 2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2345}
2346
a96a87bf
SAS
2347/*
2348 * Use the cpu notifier to insure that the cpu slabs are flushed when
2349 * necessary.
2350 */
2351static int slub_cpu_dead(unsigned int cpu)
2352{
2353 struct kmem_cache *s;
2354 unsigned long flags;
2355
2356 mutex_lock(&slab_mutex);
2357 list_for_each_entry(s, &slab_caches, list) {
2358 local_irq_save(flags);
2359 __flush_cpu_slab(s, cpu);
2360 local_irq_restore(flags);
2361 }
2362 mutex_unlock(&slab_mutex);
2363 return 0;
2364}
2365
dfb4f096
CL
2366/*
2367 * Check if the objects in a per cpu structure fit numa
2368 * locality expectations.
2369 */
57d437d2 2370static inline int node_match(struct page *page, int node)
dfb4f096
CL
2371{
2372#ifdef CONFIG_NUMA
6159d0f5 2373 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2374 return 0;
2375#endif
2376 return 1;
2377}
2378
9a02d699 2379#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2380static int count_free(struct page *page)
2381{
2382 return page->objects - page->inuse;
2383}
2384
9a02d699
DR
2385static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2386{
2387 return atomic_long_read(&n->total_objects);
2388}
2389#endif /* CONFIG_SLUB_DEBUG */
2390
2391#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2392static unsigned long count_partial(struct kmem_cache_node *n,
2393 int (*get_count)(struct page *))
2394{
2395 unsigned long flags;
2396 unsigned long x = 0;
2397 struct page *page;
2398
2399 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2400 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2401 x += get_count(page);
2402 spin_unlock_irqrestore(&n->list_lock, flags);
2403 return x;
2404}
9a02d699 2405#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2406
781b2ba6
PE
2407static noinline void
2408slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2409{
9a02d699
DR
2410#ifdef CONFIG_SLUB_DEBUG
2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 DEFAULT_RATELIMIT_BURST);
781b2ba6 2413 int node;
fa45dc25 2414 struct kmem_cache_node *n;
781b2ba6 2415
9a02d699
DR
2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 return;
2418
5b3810e5
VB
2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 nid, gfpflags, &gfpflags);
19af27af 2421 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2422 s->name, s->object_size, s->size, oo_order(s->oo),
2423 oo_order(s->min));
781b2ba6 2424
3b0efdfa 2425 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2427 s->name);
fa5ec8a1 2428
fa45dc25 2429 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2430 unsigned long nr_slabs;
2431 unsigned long nr_objs;
2432 unsigned long nr_free;
2433
26c02cf0
AB
2434 nr_free = count_partial(n, count_free);
2435 nr_slabs = node_nr_slabs(n);
2436 nr_objs = node_nr_objs(n);
781b2ba6 2437
f9f58285 2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2439 node, nr_slabs, nr_objs, nr_free);
2440 }
9a02d699 2441#endif
781b2ba6
PE
2442}
2443
497b66f2
CL
2444static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 int node, struct kmem_cache_cpu **pc)
2446{
6faa6833 2447 void *freelist;
188fd063
CL
2448 struct kmem_cache_cpu *c = *pc;
2449 struct page *page;
497b66f2 2450
128227e7
MW
2451 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2452
188fd063 2453 freelist = get_partial(s, flags, node, c);
497b66f2 2454
188fd063
CL
2455 if (freelist)
2456 return freelist;
2457
2458 page = new_slab(s, flags, node);
497b66f2 2459 if (page) {
7c8e0181 2460 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2461 if (c->page)
2462 flush_slab(s, c);
2463
2464 /*
2465 * No other reference to the page yet so we can
2466 * muck around with it freely without cmpxchg
2467 */
6faa6833 2468 freelist = page->freelist;
497b66f2
CL
2469 page->freelist = NULL;
2470
2471 stat(s, ALLOC_SLAB);
497b66f2
CL
2472 c->page = page;
2473 *pc = c;
edde82b6 2474 }
497b66f2 2475
6faa6833 2476 return freelist;
497b66f2
CL
2477}
2478
072bb0aa
MG
2479static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2480{
2481 if (unlikely(PageSlabPfmemalloc(page)))
2482 return gfp_pfmemalloc_allowed(gfpflags);
2483
2484 return true;
2485}
2486
213eeb9f 2487/*
d0e0ac97
CG
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
213eeb9f
CL
2490 *
2491 * The page is still frozen if the return value is not NULL.
2492 *
2493 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2494 *
2495 * This function must be called with interrupt disabled.
213eeb9f
CL
2496 */
2497static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2498{
2499 struct page new;
2500 unsigned long counters;
2501 void *freelist;
2502
2503 do {
2504 freelist = page->freelist;
2505 counters = page->counters;
6faa6833 2506
213eeb9f 2507 new.counters = counters;
a0132ac0 2508 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2509
2510 new.inuse = page->objects;
2511 new.frozen = freelist != NULL;
2512
d24ac77f 2513 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2514 freelist, counters,
2515 NULL, new.counters,
2516 "get_freelist"));
2517
2518 return freelist;
2519}
2520
81819f0f 2521/*
894b8788
CL
2522 * Slow path. The lockless freelist is empty or we need to perform
2523 * debugging duties.
2524 *
894b8788
CL
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
81819f0f 2528 *
894b8788
CL
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
81819f0f 2532 *
894b8788 2533 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2536 *
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
81819f0f 2539 */
a380a3c7 2540static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2541 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2542{
6faa6833 2543 void *freelist;
f6e7def7 2544 struct page *page;
81819f0f 2545
f6e7def7
CL
2546 page = c->page;
2547 if (!page)
81819f0f 2548 goto new_slab;
49e22585 2549redo:
6faa6833 2550
57d437d2 2551 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2552 int searchnode = node;
2553
2554 if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 searchnode = node_to_mem_node(node);
2556
2557 if (unlikely(!node_match(page, searchnode))) {
2558 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2559 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2560 goto new_slab;
2561 }
fc59c053 2562 }
6446faa2 2563
072bb0aa
MG
2564 /*
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2568 */
2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2570 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2571 goto new_slab;
2572 }
2573
73736e03 2574 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2575 freelist = c->freelist;
2576 if (freelist)
73736e03 2577 goto load_freelist;
03e404af 2578
f6e7def7 2579 freelist = get_freelist(s, page);
6446faa2 2580
6faa6833 2581 if (!freelist) {
03e404af
CL
2582 c->page = NULL;
2583 stat(s, DEACTIVATE_BYPASS);
fc59c053 2584 goto new_slab;
03e404af 2585 }
6446faa2 2586
84e554e6 2587 stat(s, ALLOC_REFILL);
6446faa2 2588
894b8788 2589load_freelist:
507effea
CL
2590 /*
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2594 */
a0132ac0 2595 VM_BUG_ON(!c->page->frozen);
6faa6833 2596 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2597 c->tid = next_tid(c->tid);
6faa6833 2598 return freelist;
81819f0f 2599
81819f0f 2600new_slab:
2cfb7455 2601
a93cf07b
WY
2602 if (slub_percpu_partial(c)) {
2603 page = c->page = slub_percpu_partial(c);
2604 slub_set_percpu_partial(c, page);
49e22585 2605 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2606 goto redo;
81819f0f
CL
2607 }
2608
188fd063 2609 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2610
f4697436 2611 if (unlikely(!freelist)) {
9a02d699 2612 slab_out_of_memory(s, gfpflags, node);
f4697436 2613 return NULL;
81819f0f 2614 }
2cfb7455 2615
f6e7def7 2616 page = c->page;
5091b74a 2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2618 goto load_freelist;
2cfb7455 2619
497b66f2 2620 /* Only entered in the debug case */
d0e0ac97
CG
2621 if (kmem_cache_debug(s) &&
2622 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2623 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2624
d4ff6d35 2625 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2626 return freelist;
894b8788
CL
2627}
2628
a380a3c7
CL
2629/*
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2632 */
2633static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 unsigned long addr, struct kmem_cache_cpu *c)
2635{
2636 void *p;
2637 unsigned long flags;
2638
2639 local_irq_save(flags);
2640#ifdef CONFIG_PREEMPT
2641 /*
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2644 * pointer.
2645 */
2646 c = this_cpu_ptr(s->cpu_slab);
2647#endif
2648
2649 p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 local_irq_restore(flags);
2651 return p;
2652}
2653
0f181f9f
AP
2654/*
2655 * If the object has been wiped upon free, make sure it's fully initialized by
2656 * zeroing out freelist pointer.
2657 */
2658static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2659 void *obj)
2660{
2661 if (unlikely(slab_want_init_on_free(s)) && obj)
2662 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2663}
2664
894b8788
CL
2665/*
2666 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2667 * have the fastpath folded into their functions. So no function call
2668 * overhead for requests that can be satisfied on the fastpath.
2669 *
2670 * The fastpath works by first checking if the lockless freelist can be used.
2671 * If not then __slab_alloc is called for slow processing.
2672 *
2673 * Otherwise we can simply pick the next object from the lockless free list.
2674 */
2b847c3c 2675static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2676 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2677{
03ec0ed5 2678 void *object;
dfb4f096 2679 struct kmem_cache_cpu *c;
57d437d2 2680 struct page *page;
8a5ec0ba 2681 unsigned long tid;
1f84260c 2682
8135be5a
VD
2683 s = slab_pre_alloc_hook(s, gfpflags);
2684 if (!s)
773ff60e 2685 return NULL;
8a5ec0ba 2686redo:
8a5ec0ba
CL
2687 /*
2688 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2689 * enabled. We may switch back and forth between cpus while
2690 * reading from one cpu area. That does not matter as long
2691 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2692 *
9aabf810
JK
2693 * We should guarantee that tid and kmem_cache are retrieved on
2694 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2695 * to check if it is matched or not.
8a5ec0ba 2696 */
9aabf810
JK
2697 do {
2698 tid = this_cpu_read(s->cpu_slab->tid);
2699 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2700 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2701 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2702
2703 /*
2704 * Irqless object alloc/free algorithm used here depends on sequence
2705 * of fetching cpu_slab's data. tid should be fetched before anything
2706 * on c to guarantee that object and page associated with previous tid
2707 * won't be used with current tid. If we fetch tid first, object and
2708 * page could be one associated with next tid and our alloc/free
2709 * request will be failed. In this case, we will retry. So, no problem.
2710 */
2711 barrier();
8a5ec0ba 2712
8a5ec0ba
CL
2713 /*
2714 * The transaction ids are globally unique per cpu and per operation on
2715 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2716 * occurs on the right processor and that there was no operation on the
2717 * linked list in between.
2718 */
8a5ec0ba 2719
9dfc6e68 2720 object = c->freelist;
57d437d2 2721 page = c->page;
8eae1492 2722 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2723 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2724 stat(s, ALLOC_SLOWPATH);
2725 } else {
0ad9500e
ED
2726 void *next_object = get_freepointer_safe(s, object);
2727
8a5ec0ba 2728 /*
25985edc 2729 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2730 * operation and if we are on the right processor.
2731 *
d0e0ac97
CG
2732 * The cmpxchg does the following atomically (without lock
2733 * semantics!)
8a5ec0ba
CL
2734 * 1. Relocate first pointer to the current per cpu area.
2735 * 2. Verify that tid and freelist have not been changed
2736 * 3. If they were not changed replace tid and freelist
2737 *
d0e0ac97
CG
2738 * Since this is without lock semantics the protection is only
2739 * against code executing on this cpu *not* from access by
2740 * other cpus.
8a5ec0ba 2741 */
933393f5 2742 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2743 s->cpu_slab->freelist, s->cpu_slab->tid,
2744 object, tid,
0ad9500e 2745 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2746
2747 note_cmpxchg_failure("slab_alloc", s, tid);
2748 goto redo;
2749 }
0ad9500e 2750 prefetch_freepointer(s, next_object);
84e554e6 2751 stat(s, ALLOC_FASTPATH);
894b8788 2752 }
0f181f9f
AP
2753
2754 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2755
6471384a 2756 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2757 memset(object, 0, s->object_size);
d07dbea4 2758
03ec0ed5 2759 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2760
894b8788 2761 return object;
81819f0f
CL
2762}
2763
2b847c3c
EG
2764static __always_inline void *slab_alloc(struct kmem_cache *s,
2765 gfp_t gfpflags, unsigned long addr)
2766{
2767 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2768}
2769
81819f0f
CL
2770void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2771{
2b847c3c 2772 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2773
d0e0ac97
CG
2774 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2775 s->size, gfpflags);
5b882be4
EGM
2776
2777 return ret;
81819f0f
CL
2778}
2779EXPORT_SYMBOL(kmem_cache_alloc);
2780
0f24f128 2781#ifdef CONFIG_TRACING
4a92379b
RK
2782void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2783{
2b847c3c 2784 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2785 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2786 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2787 return ret;
2788}
2789EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2790#endif
2791
81819f0f
CL
2792#ifdef CONFIG_NUMA
2793void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2794{
2b847c3c 2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2796
ca2b84cb 2797 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2798 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2799
2800 return ret;
81819f0f
CL
2801}
2802EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2803
0f24f128 2804#ifdef CONFIG_TRACING
4a92379b 2805void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2806 gfp_t gfpflags,
4a92379b 2807 int node, size_t size)
5b882be4 2808{
2b847c3c 2809 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2810
2811 trace_kmalloc_node(_RET_IP_, ret,
2812 size, s->size, gfpflags, node);
0316bec2 2813
0116523c 2814 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2815 return ret;
5b882be4 2816}
4a92379b 2817EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2818#endif
6dfd1b65 2819#endif /* CONFIG_NUMA */
5b882be4 2820
81819f0f 2821/*
94e4d712 2822 * Slow path handling. This may still be called frequently since objects
894b8788 2823 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2824 *
894b8788
CL
2825 * So we still attempt to reduce cache line usage. Just take the slab
2826 * lock and free the item. If there is no additional partial page
2827 * handling required then we can return immediately.
81819f0f 2828 */
894b8788 2829static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2830 void *head, void *tail, int cnt,
2831 unsigned long addr)
2832
81819f0f
CL
2833{
2834 void *prior;
2cfb7455 2835 int was_frozen;
2cfb7455
CL
2836 struct page new;
2837 unsigned long counters;
2838 struct kmem_cache_node *n = NULL;
61728d1e 2839 unsigned long uninitialized_var(flags);
81819f0f 2840
8a5ec0ba 2841 stat(s, FREE_SLOWPATH);
81819f0f 2842
19c7ff9e 2843 if (kmem_cache_debug(s) &&
282acb43 2844 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2845 return;
6446faa2 2846
2cfb7455 2847 do {
837d678d
JK
2848 if (unlikely(n)) {
2849 spin_unlock_irqrestore(&n->list_lock, flags);
2850 n = NULL;
2851 }
2cfb7455
CL
2852 prior = page->freelist;
2853 counters = page->counters;
81084651 2854 set_freepointer(s, tail, prior);
2cfb7455
CL
2855 new.counters = counters;
2856 was_frozen = new.frozen;
81084651 2857 new.inuse -= cnt;
837d678d 2858 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2859
c65c1877 2860 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2861
2862 /*
d0e0ac97
CG
2863 * Slab was on no list before and will be
2864 * partially empty
2865 * We can defer the list move and instead
2866 * freeze it.
49e22585
CL
2867 */
2868 new.frozen = 1;
2869
c65c1877 2870 } else { /* Needs to be taken off a list */
49e22585 2871
b455def2 2872 n = get_node(s, page_to_nid(page));
49e22585
CL
2873 /*
2874 * Speculatively acquire the list_lock.
2875 * If the cmpxchg does not succeed then we may
2876 * drop the list_lock without any processing.
2877 *
2878 * Otherwise the list_lock will synchronize with
2879 * other processors updating the list of slabs.
2880 */
2881 spin_lock_irqsave(&n->list_lock, flags);
2882
2883 }
2cfb7455 2884 }
81819f0f 2885
2cfb7455
CL
2886 } while (!cmpxchg_double_slab(s, page,
2887 prior, counters,
81084651 2888 head, new.counters,
2cfb7455 2889 "__slab_free"));
81819f0f 2890
2cfb7455 2891 if (likely(!n)) {
49e22585
CL
2892
2893 /*
2894 * If we just froze the page then put it onto the
2895 * per cpu partial list.
2896 */
8028dcea 2897 if (new.frozen && !was_frozen) {
49e22585 2898 put_cpu_partial(s, page, 1);
8028dcea
AS
2899 stat(s, CPU_PARTIAL_FREE);
2900 }
49e22585 2901 /*
2cfb7455
CL
2902 * The list lock was not taken therefore no list
2903 * activity can be necessary.
2904 */
b455def2
L
2905 if (was_frozen)
2906 stat(s, FREE_FROZEN);
2907 return;
2908 }
81819f0f 2909
8a5b20ae 2910 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2911 goto slab_empty;
2912
81819f0f 2913 /*
837d678d
JK
2914 * Objects left in the slab. If it was not on the partial list before
2915 * then add it.
81819f0f 2916 */
345c905d 2917 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2918 remove_full(s, n, page);
837d678d
JK
2919 add_partial(n, page, DEACTIVATE_TO_TAIL);
2920 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2921 }
80f08c19 2922 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2923 return;
2924
2925slab_empty:
a973e9dd 2926 if (prior) {
81819f0f 2927 /*
6fbabb20 2928 * Slab on the partial list.
81819f0f 2929 */
5cc6eee8 2930 remove_partial(n, page);
84e554e6 2931 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2932 } else {
6fbabb20 2933 /* Slab must be on the full list */
c65c1877
PZ
2934 remove_full(s, n, page);
2935 }
2cfb7455 2936
80f08c19 2937 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2938 stat(s, FREE_SLAB);
81819f0f 2939 discard_slab(s, page);
81819f0f
CL
2940}
2941
894b8788
CL
2942/*
2943 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2944 * can perform fastpath freeing without additional function calls.
2945 *
2946 * The fastpath is only possible if we are freeing to the current cpu slab
2947 * of this processor. This typically the case if we have just allocated
2948 * the item before.
2949 *
2950 * If fastpath is not possible then fall back to __slab_free where we deal
2951 * with all sorts of special processing.
81084651
JDB
2952 *
2953 * Bulk free of a freelist with several objects (all pointing to the
2954 * same page) possible by specifying head and tail ptr, plus objects
2955 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2956 */
80a9201a
AP
2957static __always_inline void do_slab_free(struct kmem_cache *s,
2958 struct page *page, void *head, void *tail,
2959 int cnt, unsigned long addr)
894b8788 2960{
81084651 2961 void *tail_obj = tail ? : head;
dfb4f096 2962 struct kmem_cache_cpu *c;
8a5ec0ba 2963 unsigned long tid;
8a5ec0ba
CL
2964redo:
2965 /*
2966 * Determine the currently cpus per cpu slab.
2967 * The cpu may change afterward. However that does not matter since
2968 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2969 * during the cmpxchg then the free will succeed.
8a5ec0ba 2970 */
9aabf810
JK
2971 do {
2972 tid = this_cpu_read(s->cpu_slab->tid);
2973 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2974 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2975 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2976
9aabf810
JK
2977 /* Same with comment on barrier() in slab_alloc_node() */
2978 barrier();
c016b0bd 2979
442b06bc 2980 if (likely(page == c->page)) {
81084651 2981 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2982
933393f5 2983 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2984 s->cpu_slab->freelist, s->cpu_slab->tid,
2985 c->freelist, tid,
81084651 2986 head, next_tid(tid)))) {
8a5ec0ba
CL
2987
2988 note_cmpxchg_failure("slab_free", s, tid);
2989 goto redo;
2990 }
84e554e6 2991 stat(s, FREE_FASTPATH);
894b8788 2992 } else
81084651 2993 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2994
894b8788
CL
2995}
2996
80a9201a
AP
2997static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2998 void *head, void *tail, int cnt,
2999 unsigned long addr)
3000{
80a9201a 3001 /*
c3895391
AK
3002 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3003 * to remove objects, whose reuse must be delayed.
80a9201a 3004 */
c3895391
AK
3005 if (slab_free_freelist_hook(s, &head, &tail))
3006 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3007}
3008
2bd926b4 3009#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3010void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3011{
3012 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3013}
3014#endif
3015
81819f0f
CL
3016void kmem_cache_free(struct kmem_cache *s, void *x)
3017{
b9ce5ef4
GC
3018 s = cache_from_obj(s, x);
3019 if (!s)
79576102 3020 return;
81084651 3021 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3022 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3023}
3024EXPORT_SYMBOL(kmem_cache_free);
3025
d0ecd894 3026struct detached_freelist {
fbd02630 3027 struct page *page;
d0ecd894
JDB
3028 void *tail;
3029 void *freelist;
3030 int cnt;
376bf125 3031 struct kmem_cache *s;
d0ecd894 3032};
fbd02630 3033
d0ecd894
JDB
3034/*
3035 * This function progressively scans the array with free objects (with
3036 * a limited look ahead) and extract objects belonging to the same
3037 * page. It builds a detached freelist directly within the given
3038 * page/objects. This can happen without any need for
3039 * synchronization, because the objects are owned by running process.
3040 * The freelist is build up as a single linked list in the objects.
3041 * The idea is, that this detached freelist can then be bulk
3042 * transferred to the real freelist(s), but only requiring a single
3043 * synchronization primitive. Look ahead in the array is limited due
3044 * to performance reasons.
3045 */
376bf125
JDB
3046static inline
3047int build_detached_freelist(struct kmem_cache *s, size_t size,
3048 void **p, struct detached_freelist *df)
d0ecd894
JDB
3049{
3050 size_t first_skipped_index = 0;
3051 int lookahead = 3;
3052 void *object;
ca257195 3053 struct page *page;
fbd02630 3054
d0ecd894
JDB
3055 /* Always re-init detached_freelist */
3056 df->page = NULL;
fbd02630 3057
d0ecd894
JDB
3058 do {
3059 object = p[--size];
ca257195 3060 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3061 } while (!object && size);
3eed034d 3062
d0ecd894
JDB
3063 if (!object)
3064 return 0;
fbd02630 3065
ca257195
JDB
3066 page = virt_to_head_page(object);
3067 if (!s) {
3068 /* Handle kalloc'ed objects */
3069 if (unlikely(!PageSlab(page))) {
3070 BUG_ON(!PageCompound(page));
3071 kfree_hook(object);
4949148a 3072 __free_pages(page, compound_order(page));
ca257195
JDB
3073 p[size] = NULL; /* mark object processed */
3074 return size;
3075 }
3076 /* Derive kmem_cache from object */
3077 df->s = page->slab_cache;
3078 } else {
3079 df->s = cache_from_obj(s, object); /* Support for memcg */
3080 }
376bf125 3081
d0ecd894 3082 /* Start new detached freelist */
ca257195 3083 df->page = page;
376bf125 3084 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3085 df->tail = object;
3086 df->freelist = object;
3087 p[size] = NULL; /* mark object processed */
3088 df->cnt = 1;
3089
3090 while (size) {
3091 object = p[--size];
3092 if (!object)
3093 continue; /* Skip processed objects */
3094
3095 /* df->page is always set at this point */
3096 if (df->page == virt_to_head_page(object)) {
3097 /* Opportunity build freelist */
376bf125 3098 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3099 df->freelist = object;
3100 df->cnt++;
3101 p[size] = NULL; /* mark object processed */
3102
3103 continue;
fbd02630 3104 }
d0ecd894
JDB
3105
3106 /* Limit look ahead search */
3107 if (!--lookahead)
3108 break;
3109
3110 if (!first_skipped_index)
3111 first_skipped_index = size + 1;
fbd02630 3112 }
d0ecd894
JDB
3113
3114 return first_skipped_index;
3115}
3116
d0ecd894 3117/* Note that interrupts must be enabled when calling this function. */
376bf125 3118void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3119{
3120 if (WARN_ON(!size))
3121 return;
3122
3123 do {
3124 struct detached_freelist df;
3125
3126 size = build_detached_freelist(s, size, p, &df);
84582c8a 3127 if (!df.page)
d0ecd894
JDB
3128 continue;
3129
376bf125 3130 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3131 } while (likely(size));
484748f0
CL
3132}
3133EXPORT_SYMBOL(kmem_cache_free_bulk);
3134
994eb764 3135/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3136int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3137 void **p)
484748f0 3138{
994eb764
JDB
3139 struct kmem_cache_cpu *c;
3140 int i;
3141
03ec0ed5
JDB
3142 /* memcg and kmem_cache debug support */
3143 s = slab_pre_alloc_hook(s, flags);
3144 if (unlikely(!s))
3145 return false;
994eb764
JDB
3146 /*
3147 * Drain objects in the per cpu slab, while disabling local
3148 * IRQs, which protects against PREEMPT and interrupts
3149 * handlers invoking normal fastpath.
3150 */
3151 local_irq_disable();
3152 c = this_cpu_ptr(s->cpu_slab);
3153
3154 for (i = 0; i < size; i++) {
3155 void *object = c->freelist;
3156
ebe909e0 3157 if (unlikely(!object)) {
ebe909e0
JDB
3158 /*
3159 * Invoking slow path likely have side-effect
3160 * of re-populating per CPU c->freelist
3161 */
87098373 3162 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3163 _RET_IP_, c);
87098373
CL
3164 if (unlikely(!p[i]))
3165 goto error;
3166
ebe909e0 3167 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3168 maybe_wipe_obj_freeptr(s, p[i]);
3169
ebe909e0
JDB
3170 continue; /* goto for-loop */
3171 }
994eb764
JDB
3172 c->freelist = get_freepointer(s, object);
3173 p[i] = object;
0f181f9f 3174 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3175 }
3176 c->tid = next_tid(c->tid);
3177 local_irq_enable();
3178
3179 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3180 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3181 int j;
3182
3183 for (j = 0; j < i; j++)
3184 memset(p[j], 0, s->object_size);
3185 }
3186
03ec0ed5
JDB
3187 /* memcg and kmem_cache debug support */
3188 slab_post_alloc_hook(s, flags, size, p);
865762a8 3189 return i;
87098373 3190error:
87098373 3191 local_irq_enable();
03ec0ed5
JDB
3192 slab_post_alloc_hook(s, flags, i, p);
3193 __kmem_cache_free_bulk(s, i, p);
865762a8 3194 return 0;
484748f0
CL
3195}
3196EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3197
3198
81819f0f 3199/*
672bba3a
CL
3200 * Object placement in a slab is made very easy because we always start at
3201 * offset 0. If we tune the size of the object to the alignment then we can
3202 * get the required alignment by putting one properly sized object after
3203 * another.
81819f0f
CL
3204 *
3205 * Notice that the allocation order determines the sizes of the per cpu
3206 * caches. Each processor has always one slab available for allocations.
3207 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3208 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3209 * locking overhead.
81819f0f
CL
3210 */
3211
3212/*
3213 * Mininum / Maximum order of slab pages. This influences locking overhead
3214 * and slab fragmentation. A higher order reduces the number of partial slabs
3215 * and increases the number of allocations possible without having to
3216 * take the list_lock.
3217 */
19af27af
AD
3218static unsigned int slub_min_order;
3219static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3220static unsigned int slub_min_objects;
81819f0f 3221
81819f0f
CL
3222/*
3223 * Calculate the order of allocation given an slab object size.
3224 *
672bba3a
CL
3225 * The order of allocation has significant impact on performance and other
3226 * system components. Generally order 0 allocations should be preferred since
3227 * order 0 does not cause fragmentation in the page allocator. Larger objects
3228 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3229 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3230 * would be wasted.
3231 *
3232 * In order to reach satisfactory performance we must ensure that a minimum
3233 * number of objects is in one slab. Otherwise we may generate too much
3234 * activity on the partial lists which requires taking the list_lock. This is
3235 * less a concern for large slabs though which are rarely used.
81819f0f 3236 *
672bba3a
CL
3237 * slub_max_order specifies the order where we begin to stop considering the
3238 * number of objects in a slab as critical. If we reach slub_max_order then
3239 * we try to keep the page order as low as possible. So we accept more waste
3240 * of space in favor of a small page order.
81819f0f 3241 *
672bba3a
CL
3242 * Higher order allocations also allow the placement of more objects in a
3243 * slab and thereby reduce object handling overhead. If the user has
3244 * requested a higher mininum order then we start with that one instead of
3245 * the smallest order which will fit the object.
81819f0f 3246 */
19af27af
AD
3247static inline unsigned int slab_order(unsigned int size,
3248 unsigned int min_objects, unsigned int max_order,
9736d2a9 3249 unsigned int fract_leftover)
81819f0f 3250{
19af27af
AD
3251 unsigned int min_order = slub_min_order;
3252 unsigned int order;
81819f0f 3253
9736d2a9 3254 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3255 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3256
9736d2a9 3257 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3258 order <= max_order; order++) {
81819f0f 3259
19af27af
AD
3260 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3261 unsigned int rem;
81819f0f 3262
9736d2a9 3263 rem = slab_size % size;
81819f0f 3264
5e6d444e 3265 if (rem <= slab_size / fract_leftover)
81819f0f 3266 break;
81819f0f 3267 }
672bba3a 3268
81819f0f
CL
3269 return order;
3270}
3271
9736d2a9 3272static inline int calculate_order(unsigned int size)
5e6d444e 3273{
19af27af
AD
3274 unsigned int order;
3275 unsigned int min_objects;
3276 unsigned int max_objects;
5e6d444e
CL
3277
3278 /*
3279 * Attempt to find best configuration for a slab. This
3280 * works by first attempting to generate a layout with
3281 * the best configuration and backing off gradually.
3282 *
422ff4d7 3283 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3284 * we reduce the minimum objects required in a slab.
3285 */
3286 min_objects = slub_min_objects;
9b2cd506
CL
3287 if (!min_objects)
3288 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3289 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3290 min_objects = min(min_objects, max_objects);
3291
5e6d444e 3292 while (min_objects > 1) {
19af27af
AD
3293 unsigned int fraction;
3294
c124f5b5 3295 fraction = 16;
5e6d444e
CL
3296 while (fraction >= 4) {
3297 order = slab_order(size, min_objects,
9736d2a9 3298 slub_max_order, fraction);
5e6d444e
CL
3299 if (order <= slub_max_order)
3300 return order;
3301 fraction /= 2;
3302 }
5086c389 3303 min_objects--;
5e6d444e
CL
3304 }
3305
3306 /*
3307 * We were unable to place multiple objects in a slab. Now
3308 * lets see if we can place a single object there.
3309 */
9736d2a9 3310 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3311 if (order <= slub_max_order)
3312 return order;
3313
3314 /*
3315 * Doh this slab cannot be placed using slub_max_order.
3316 */
9736d2a9 3317 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3318 if (order < MAX_ORDER)
5e6d444e
CL
3319 return order;
3320 return -ENOSYS;
3321}
3322
5595cffc 3323static void
4053497d 3324init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3325{
3326 n->nr_partial = 0;
81819f0f
CL
3327 spin_lock_init(&n->list_lock);
3328 INIT_LIST_HEAD(&n->partial);
8ab1372f 3329#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3330 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3331 atomic_long_set(&n->total_objects, 0);
643b1138 3332 INIT_LIST_HEAD(&n->full);
8ab1372f 3333#endif
81819f0f
CL
3334}
3335
55136592 3336static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3337{
6c182dc0 3338 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3339 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3340
8a5ec0ba 3341 /*
d4d84fef
CM
3342 * Must align to double word boundary for the double cmpxchg
3343 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3344 */
d4d84fef
CM
3345 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3346 2 * sizeof(void *));
8a5ec0ba
CL
3347
3348 if (!s->cpu_slab)
3349 return 0;
3350
3351 init_kmem_cache_cpus(s);
4c93c355 3352
8a5ec0ba 3353 return 1;
4c93c355 3354}
4c93c355 3355
51df1142
CL
3356static struct kmem_cache *kmem_cache_node;
3357
81819f0f
CL
3358/*
3359 * No kmalloc_node yet so do it by hand. We know that this is the first
3360 * slab on the node for this slabcache. There are no concurrent accesses
3361 * possible.
3362 *
721ae22a
ZYW
3363 * Note that this function only works on the kmem_cache_node
3364 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3365 * memory on a fresh node that has no slab structures yet.
81819f0f 3366 */
55136592 3367static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3368{
3369 struct page *page;
3370 struct kmem_cache_node *n;
3371
51df1142 3372 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3373
51df1142 3374 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3375
3376 BUG_ON(!page);
a2f92ee7 3377 if (page_to_nid(page) != node) {
f9f58285
FF
3378 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3379 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3380 }
3381
81819f0f
CL
3382 n = page->freelist;
3383 BUG_ON(!n);
8ab1372f 3384#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3385 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3386 init_tracking(kmem_cache_node, n);
8ab1372f 3387#endif
12b22386 3388 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3389 GFP_KERNEL);
12b22386
AK
3390 page->freelist = get_freepointer(kmem_cache_node, n);
3391 page->inuse = 1;
3392 page->frozen = 0;
3393 kmem_cache_node->node[node] = n;
4053497d 3394 init_kmem_cache_node(n);
51df1142 3395 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3396
67b6c900 3397 /*
1e4dd946
SR
3398 * No locks need to be taken here as it has just been
3399 * initialized and there is no concurrent access.
67b6c900 3400 */
1e4dd946 3401 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3402}
3403
3404static void free_kmem_cache_nodes(struct kmem_cache *s)
3405{
3406 int node;
fa45dc25 3407 struct kmem_cache_node *n;
81819f0f 3408
fa45dc25 3409 for_each_kmem_cache_node(s, node, n) {
81819f0f 3410 s->node[node] = NULL;
ea37df54 3411 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3412 }
3413}
3414
52b4b950
DS
3415void __kmem_cache_release(struct kmem_cache *s)
3416{
210e7a43 3417 cache_random_seq_destroy(s);
52b4b950
DS
3418 free_percpu(s->cpu_slab);
3419 free_kmem_cache_nodes(s);
3420}
3421
55136592 3422static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3423{
3424 int node;
81819f0f 3425
f64dc58c 3426 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3427 struct kmem_cache_node *n;
3428
73367bd8 3429 if (slab_state == DOWN) {
55136592 3430 early_kmem_cache_node_alloc(node);
73367bd8
AD
3431 continue;
3432 }
51df1142 3433 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3434 GFP_KERNEL, node);
81819f0f 3435
73367bd8
AD
3436 if (!n) {
3437 free_kmem_cache_nodes(s);
3438 return 0;
81819f0f 3439 }
73367bd8 3440
4053497d 3441 init_kmem_cache_node(n);
ea37df54 3442 s->node[node] = n;
81819f0f
CL
3443 }
3444 return 1;
3445}
81819f0f 3446
c0bdb232 3447static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3448{
3449 if (min < MIN_PARTIAL)
3450 min = MIN_PARTIAL;
3451 else if (min > MAX_PARTIAL)
3452 min = MAX_PARTIAL;
3453 s->min_partial = min;
3454}
3455
e6d0e1dc
WY
3456static void set_cpu_partial(struct kmem_cache *s)
3457{
3458#ifdef CONFIG_SLUB_CPU_PARTIAL
3459 /*
3460 * cpu_partial determined the maximum number of objects kept in the
3461 * per cpu partial lists of a processor.
3462 *
3463 * Per cpu partial lists mainly contain slabs that just have one
3464 * object freed. If they are used for allocation then they can be
3465 * filled up again with minimal effort. The slab will never hit the
3466 * per node partial lists and therefore no locking will be required.
3467 *
3468 * This setting also determines
3469 *
3470 * A) The number of objects from per cpu partial slabs dumped to the
3471 * per node list when we reach the limit.
3472 * B) The number of objects in cpu partial slabs to extract from the
3473 * per node list when we run out of per cpu objects. We only fetch
3474 * 50% to keep some capacity around for frees.
3475 */
3476 if (!kmem_cache_has_cpu_partial(s))
3477 s->cpu_partial = 0;
3478 else if (s->size >= PAGE_SIZE)
3479 s->cpu_partial = 2;
3480 else if (s->size >= 1024)
3481 s->cpu_partial = 6;
3482 else if (s->size >= 256)
3483 s->cpu_partial = 13;
3484 else
3485 s->cpu_partial = 30;
3486#endif
3487}
3488
81819f0f
CL
3489/*
3490 * calculate_sizes() determines the order and the distribution of data within
3491 * a slab object.
3492 */
06b285dc 3493static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3494{
d50112ed 3495 slab_flags_t flags = s->flags;
be4a7988 3496 unsigned int size = s->object_size;
19af27af 3497 unsigned int order;
81819f0f 3498
d8b42bf5
CL
3499 /*
3500 * Round up object size to the next word boundary. We can only
3501 * place the free pointer at word boundaries and this determines
3502 * the possible location of the free pointer.
3503 */
3504 size = ALIGN(size, sizeof(void *));
3505
3506#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3507 /*
3508 * Determine if we can poison the object itself. If the user of
3509 * the slab may touch the object after free or before allocation
3510 * then we should never poison the object itself.
3511 */
5f0d5a3a 3512 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3513 !s->ctor)
81819f0f
CL
3514 s->flags |= __OBJECT_POISON;
3515 else
3516 s->flags &= ~__OBJECT_POISON;
3517
81819f0f
CL
3518
3519 /*
672bba3a 3520 * If we are Redzoning then check if there is some space between the
81819f0f 3521 * end of the object and the free pointer. If not then add an
672bba3a 3522 * additional word to have some bytes to store Redzone information.
81819f0f 3523 */
3b0efdfa 3524 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3525 size += sizeof(void *);
41ecc55b 3526#endif
81819f0f
CL
3527
3528 /*
672bba3a
CL
3529 * With that we have determined the number of bytes in actual use
3530 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3531 */
3532 s->inuse = size;
3533
5f0d5a3a 3534 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3535 s->ctor)) {
81819f0f
CL
3536 /*
3537 * Relocate free pointer after the object if it is not
3538 * permitted to overwrite the first word of the object on
3539 * kmem_cache_free.
3540 *
3541 * This is the case if we do RCU, have a constructor or
3542 * destructor or are poisoning the objects.
3543 */
3544 s->offset = size;
3545 size += sizeof(void *);
3546 }
3547
c12b3c62 3548#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3549 if (flags & SLAB_STORE_USER)
3550 /*
3551 * Need to store information about allocs and frees after
3552 * the object.
3553 */
3554 size += 2 * sizeof(struct track);
80a9201a 3555#endif
81819f0f 3556
80a9201a
AP
3557 kasan_cache_create(s, &size, &s->flags);
3558#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3559 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3560 /*
3561 * Add some empty padding so that we can catch
3562 * overwrites from earlier objects rather than let
3563 * tracking information or the free pointer be
0211a9c8 3564 * corrupted if a user writes before the start
81819f0f
CL
3565 * of the object.
3566 */
3567 size += sizeof(void *);
d86bd1be
JK
3568
3569 s->red_left_pad = sizeof(void *);
3570 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3571 size += s->red_left_pad;
3572 }
41ecc55b 3573#endif
672bba3a 3574
81819f0f
CL
3575 /*
3576 * SLUB stores one object immediately after another beginning from
3577 * offset 0. In order to align the objects we have to simply size
3578 * each object to conform to the alignment.
3579 */
45906855 3580 size = ALIGN(size, s->align);
81819f0f 3581 s->size = size;
06b285dc
CL
3582 if (forced_order >= 0)
3583 order = forced_order;
3584 else
9736d2a9 3585 order = calculate_order(size);
81819f0f 3586
19af27af 3587 if ((int)order < 0)
81819f0f
CL
3588 return 0;
3589
b7a49f0d 3590 s->allocflags = 0;
834f3d11 3591 if (order)
b7a49f0d
CL
3592 s->allocflags |= __GFP_COMP;
3593
3594 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3595 s->allocflags |= GFP_DMA;
b7a49f0d 3596
6d6ea1e9
NB
3597 if (s->flags & SLAB_CACHE_DMA32)
3598 s->allocflags |= GFP_DMA32;
3599
b7a49f0d
CL
3600 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3601 s->allocflags |= __GFP_RECLAIMABLE;
3602
81819f0f
CL
3603 /*
3604 * Determine the number of objects per slab
3605 */
9736d2a9
MW
3606 s->oo = oo_make(order, size);
3607 s->min = oo_make(get_order(size), size);
205ab99d
CL
3608 if (oo_objects(s->oo) > oo_objects(s->max))
3609 s->max = s->oo;
81819f0f 3610
834f3d11 3611 return !!oo_objects(s->oo);
81819f0f
CL
3612}
3613
d50112ed 3614static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3615{
8a13a4cc 3616 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3617#ifdef CONFIG_SLAB_FREELIST_HARDENED
3618 s->random = get_random_long();
3619#endif
81819f0f 3620
06b285dc 3621 if (!calculate_sizes(s, -1))
81819f0f 3622 goto error;
3de47213
DR
3623 if (disable_higher_order_debug) {
3624 /*
3625 * Disable debugging flags that store metadata if the min slab
3626 * order increased.
3627 */
3b0efdfa 3628 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3629 s->flags &= ~DEBUG_METADATA_FLAGS;
3630 s->offset = 0;
3631 if (!calculate_sizes(s, -1))
3632 goto error;
3633 }
3634 }
81819f0f 3635
2565409f
HC
3636#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3637 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3638 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3639 /* Enable fast mode */
3640 s->flags |= __CMPXCHG_DOUBLE;
3641#endif
3642
3b89d7d8
DR
3643 /*
3644 * The larger the object size is, the more pages we want on the partial
3645 * list to avoid pounding the page allocator excessively.
3646 */
49e22585
CL
3647 set_min_partial(s, ilog2(s->size) / 2);
3648
e6d0e1dc 3649 set_cpu_partial(s);
49e22585 3650
81819f0f 3651#ifdef CONFIG_NUMA
e2cb96b7 3652 s->remote_node_defrag_ratio = 1000;
81819f0f 3653#endif
210e7a43
TG
3654
3655 /* Initialize the pre-computed randomized freelist if slab is up */
3656 if (slab_state >= UP) {
3657 if (init_cache_random_seq(s))
3658 goto error;
3659 }
3660
55136592 3661 if (!init_kmem_cache_nodes(s))
dfb4f096 3662 goto error;
81819f0f 3663
55136592 3664 if (alloc_kmem_cache_cpus(s))
278b1bb1 3665 return 0;
ff12059e 3666
4c93c355 3667 free_kmem_cache_nodes(s);
81819f0f 3668error:
278b1bb1 3669 return -EINVAL;
81819f0f 3670}
81819f0f 3671
33b12c38
CL
3672static void list_slab_objects(struct kmem_cache *s, struct page *page,
3673 const char *text)
3674{
3675#ifdef CONFIG_SLUB_DEBUG
3676 void *addr = page_address(page);
3677 void *p;
0684e652 3678 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3679 if (!map)
3680 return;
945cf2b6 3681 slab_err(s, page, text, s->name);
33b12c38 3682 slab_lock(page);
33b12c38 3683
5f80b13a 3684 get_map(s, page, map);
33b12c38
CL
3685 for_each_object(p, s, addr, page->objects) {
3686
3687 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3688 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3689 print_tracking(s, p);
3690 }
3691 }
3692 slab_unlock(page);
0684e652 3693 bitmap_free(map);
33b12c38
CL
3694#endif
3695}
3696
81819f0f 3697/*
599870b1 3698 * Attempt to free all partial slabs on a node.
52b4b950
DS
3699 * This is called from __kmem_cache_shutdown(). We must take list_lock
3700 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3701 */
599870b1 3702static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3703{
60398923 3704 LIST_HEAD(discard);
81819f0f
CL
3705 struct page *page, *h;
3706
52b4b950
DS
3707 BUG_ON(irqs_disabled());
3708 spin_lock_irq(&n->list_lock);
916ac052 3709 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3710 if (!page->inuse) {
52b4b950 3711 remove_partial(n, page);
916ac052 3712 list_add(&page->slab_list, &discard);
33b12c38
CL
3713 } else {
3714 list_slab_objects(s, page,
52b4b950 3715 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3716 }
33b12c38 3717 }
52b4b950 3718 spin_unlock_irq(&n->list_lock);
60398923 3719
916ac052 3720 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3721 discard_slab(s, page);
81819f0f
CL
3722}
3723
f9e13c0a
SB
3724bool __kmem_cache_empty(struct kmem_cache *s)
3725{
3726 int node;
3727 struct kmem_cache_node *n;
3728
3729 for_each_kmem_cache_node(s, node, n)
3730 if (n->nr_partial || slabs_node(s, node))
3731 return false;
3732 return true;
3733}
3734
81819f0f 3735/*
672bba3a 3736 * Release all resources used by a slab cache.
81819f0f 3737 */
52b4b950 3738int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3739{
3740 int node;
fa45dc25 3741 struct kmem_cache_node *n;
81819f0f
CL
3742
3743 flush_all(s);
81819f0f 3744 /* Attempt to free all objects */
fa45dc25 3745 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3746 free_partial(s, n);
3747 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3748 return 1;
3749 }
bf5eb3de 3750 sysfs_slab_remove(s);
81819f0f
CL
3751 return 0;
3752}
3753
81819f0f
CL
3754/********************************************************************
3755 * Kmalloc subsystem
3756 *******************************************************************/
3757
81819f0f
CL
3758static int __init setup_slub_min_order(char *str)
3759{
19af27af 3760 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3761
3762 return 1;
3763}
3764
3765__setup("slub_min_order=", setup_slub_min_order);
3766
3767static int __init setup_slub_max_order(char *str)
3768{
19af27af
AD
3769 get_option(&str, (int *)&slub_max_order);
3770 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3771
3772 return 1;
3773}
3774
3775__setup("slub_max_order=", setup_slub_max_order);
3776
3777static int __init setup_slub_min_objects(char *str)
3778{
19af27af 3779 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3780
3781 return 1;
3782}
3783
3784__setup("slub_min_objects=", setup_slub_min_objects);
3785
81819f0f
CL
3786void *__kmalloc(size_t size, gfp_t flags)
3787{
aadb4bc4 3788 struct kmem_cache *s;
5b882be4 3789 void *ret;
81819f0f 3790
95a05b42 3791 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3792 return kmalloc_large(size, flags);
aadb4bc4 3793
2c59dd65 3794 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3795
3796 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3797 return s;
3798
2b847c3c 3799 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3800
ca2b84cb 3801 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3802
0116523c 3803 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3804
5b882be4 3805 return ret;
81819f0f
CL
3806}
3807EXPORT_SYMBOL(__kmalloc);
3808
5d1f57e4 3809#ifdef CONFIG_NUMA
f619cfe1
CL
3810static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3811{
b1eeab67 3812 struct page *page;
e4f7c0b4 3813 void *ptr = NULL;
6a486c0a 3814 unsigned int order = get_order(size);
f619cfe1 3815
75f296d9 3816 flags |= __GFP_COMP;
6a486c0a
VB
3817 page = alloc_pages_node(node, flags, order);
3818 if (page) {
e4f7c0b4 3819 ptr = page_address(page);
6a486c0a
VB
3820 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3821 1 << order);
3822 }
e4f7c0b4 3823
0116523c 3824 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3825}
3826
81819f0f
CL
3827void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828{
aadb4bc4 3829 struct kmem_cache *s;
5b882be4 3830 void *ret;
81819f0f 3831
95a05b42 3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3833 ret = kmalloc_large_node(size, flags, node);
3834
ca2b84cb
EGM
3835 trace_kmalloc_node(_RET_IP_, ret,
3836 size, PAGE_SIZE << get_order(size),
3837 flags, node);
5b882be4
EGM
3838
3839 return ret;
3840 }
aadb4bc4 3841
2c59dd65 3842 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3843
3844 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3845 return s;
3846
2b847c3c 3847 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3848
ca2b84cb 3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3850
0116523c 3851 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3852
5b882be4 3853 return ret;
81819f0f
CL
3854}
3855EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3856#endif /* CONFIG_NUMA */
81819f0f 3857
ed18adc1
KC
3858#ifdef CONFIG_HARDENED_USERCOPY
3859/*
afcc90f8
KC
3860 * Rejects incorrectly sized objects and objects that are to be copied
3861 * to/from userspace but do not fall entirely within the containing slab
3862 * cache's usercopy region.
ed18adc1
KC
3863 *
3864 * Returns NULL if check passes, otherwise const char * to name of cache
3865 * to indicate an error.
3866 */
f4e6e289
KC
3867void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 bool to_user)
ed18adc1
KC
3869{
3870 struct kmem_cache *s;
44065b2e 3871 unsigned int offset;
ed18adc1
KC
3872 size_t object_size;
3873
96fedce2
AK
3874 ptr = kasan_reset_tag(ptr);
3875
ed18adc1
KC
3876 /* Find object and usable object size. */
3877 s = page->slab_cache;
ed18adc1
KC
3878
3879 /* Reject impossible pointers. */
3880 if (ptr < page_address(page))
f4e6e289
KC
3881 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 to_user, 0, n);
ed18adc1
KC
3883
3884 /* Find offset within object. */
3885 offset = (ptr - page_address(page)) % s->size;
3886
3887 /* Adjust for redzone and reject if within the redzone. */
3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 if (offset < s->red_left_pad)
f4e6e289
KC
3890 usercopy_abort("SLUB object in left red zone",
3891 s->name, to_user, offset, n);
ed18adc1
KC
3892 offset -= s->red_left_pad;
3893 }
3894
afcc90f8
KC
3895 /* Allow address range falling entirely within usercopy region. */
3896 if (offset >= s->useroffset &&
3897 offset - s->useroffset <= s->usersize &&
3898 n <= s->useroffset - offset + s->usersize)
f4e6e289 3899 return;
ed18adc1 3900
afcc90f8
KC
3901 /*
3902 * If the copy is still within the allocated object, produce
3903 * a warning instead of rejecting the copy. This is intended
3904 * to be a temporary method to find any missing usercopy
3905 * whitelists.
3906 */
3907 object_size = slab_ksize(s);
2d891fbc
KC
3908 if (usercopy_fallback &&
3909 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3910 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 return;
3912 }
ed18adc1 3913
f4e6e289 3914 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3915}
3916#endif /* CONFIG_HARDENED_USERCOPY */
3917
10d1f8cb 3918size_t __ksize(const void *object)
81819f0f 3919{
272c1d21 3920 struct page *page;
81819f0f 3921
ef8b4520 3922 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3923 return 0;
3924
294a80a8 3925 page = virt_to_head_page(object);
294a80a8 3926
76994412
PE
3927 if (unlikely(!PageSlab(page))) {
3928 WARN_ON(!PageCompound(page));
a50b854e 3929 return page_size(page);
76994412 3930 }
81819f0f 3931
1b4f59e3 3932 return slab_ksize(page->slab_cache);
81819f0f 3933}
10d1f8cb 3934EXPORT_SYMBOL(__ksize);
81819f0f
CL
3935
3936void kfree(const void *x)
3937{
81819f0f 3938 struct page *page;
5bb983b0 3939 void *object = (void *)x;
81819f0f 3940
2121db74
PE
3941 trace_kfree(_RET_IP_, x);
3942
2408c550 3943 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3944 return;
3945
b49af68f 3946 page = virt_to_head_page(x);
aadb4bc4 3947 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
3948 unsigned int order = compound_order(page);
3949
0937502a 3950 BUG_ON(!PageCompound(page));
47adccce 3951 kfree_hook(object);
6a486c0a
VB
3952 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3953 -(1 << order));
3954 __free_pages(page, order);
aadb4bc4
CL
3955 return;
3956 }
81084651 3957 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3958}
3959EXPORT_SYMBOL(kfree);
3960
832f37f5
VD
3961#define SHRINK_PROMOTE_MAX 32
3962
2086d26a 3963/*
832f37f5
VD
3964 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965 * up most to the head of the partial lists. New allocations will then
3966 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3967 *
3968 * The slabs with the least items are placed last. This results in them
3969 * being allocated from last increasing the chance that the last objects
3970 * are freed in them.
2086d26a 3971 */
c9fc5864 3972int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3973{
3974 int node;
3975 int i;
3976 struct kmem_cache_node *n;
3977 struct page *page;
3978 struct page *t;
832f37f5
VD
3979 struct list_head discard;
3980 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3981 unsigned long flags;
ce3712d7 3982 int ret = 0;
2086d26a 3983
2086d26a 3984 flush_all(s);
fa45dc25 3985 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3986 INIT_LIST_HEAD(&discard);
3987 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3989
3990 spin_lock_irqsave(&n->list_lock, flags);
3991
3992 /*
832f37f5 3993 * Build lists of slabs to discard or promote.
2086d26a 3994 *
672bba3a
CL
3995 * Note that concurrent frees may occur while we hold the
3996 * list_lock. page->inuse here is the upper limit.
2086d26a 3997 */
916ac052 3998 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
3999 int free = page->objects - page->inuse;
4000
4001 /* Do not reread page->inuse */
4002 barrier();
4003
4004 /* We do not keep full slabs on the list */
4005 BUG_ON(free <= 0);
4006
4007 if (free == page->objects) {
916ac052 4008 list_move(&page->slab_list, &discard);
69cb8e6b 4009 n->nr_partial--;
832f37f5 4010 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4011 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4012 }
4013
2086d26a 4014 /*
832f37f5
VD
4015 * Promote the slabs filled up most to the head of the
4016 * partial list.
2086d26a 4017 */
832f37f5
VD
4018 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 list_splice(promote + i, &n->partial);
2086d26a 4020
2086d26a 4021 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4022
4023 /* Release empty slabs */
916ac052 4024 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4025 discard_slab(s, page);
ce3712d7
VD
4026
4027 if (slabs_node(s, node))
4028 ret = 1;
2086d26a
CL
4029 }
4030
ce3712d7 4031 return ret;
2086d26a 4032}
2086d26a 4033
c9fc5864 4034#ifdef CONFIG_MEMCG
43486694 4035void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4036{
50862ce7
TH
4037 /*
4038 * Called with all the locks held after a sched RCU grace period.
4039 * Even if @s becomes empty after shrinking, we can't know that @s
4040 * doesn't have allocations already in-flight and thus can't
4041 * destroy @s until the associated memcg is released.
4042 *
4043 * However, let's remove the sysfs files for empty caches here.
4044 * Each cache has a lot of interface files which aren't
4045 * particularly useful for empty draining caches; otherwise, we can
4046 * easily end up with millions of unnecessary sysfs files on
4047 * systems which have a lot of memory and transient cgroups.
4048 */
4049 if (!__kmem_cache_shrink(s))
4050 sysfs_slab_remove(s);
01fb58bc
TH
4051}
4052
c9fc5864
TH
4053void __kmemcg_cache_deactivate(struct kmem_cache *s)
4054{
4055 /*
4056 * Disable empty slabs caching. Used to avoid pinning offline
4057 * memory cgroups by kmem pages that can be freed.
4058 */
e6d0e1dc 4059 slub_set_cpu_partial(s, 0);
c9fc5864 4060 s->min_partial = 0;
c9fc5864 4061}
6dfd1b65 4062#endif /* CONFIG_MEMCG */
c9fc5864 4063
b9049e23
YG
4064static int slab_mem_going_offline_callback(void *arg)
4065{
4066 struct kmem_cache *s;
4067
18004c5d 4068 mutex_lock(&slab_mutex);
b9049e23 4069 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4070 __kmem_cache_shrink(s);
18004c5d 4071 mutex_unlock(&slab_mutex);
b9049e23
YG
4072
4073 return 0;
4074}
4075
4076static void slab_mem_offline_callback(void *arg)
4077{
4078 struct kmem_cache_node *n;
4079 struct kmem_cache *s;
4080 struct memory_notify *marg = arg;
4081 int offline_node;
4082
b9d5ab25 4083 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4084
4085 /*
4086 * If the node still has available memory. we need kmem_cache_node
4087 * for it yet.
4088 */
4089 if (offline_node < 0)
4090 return;
4091
18004c5d 4092 mutex_lock(&slab_mutex);
b9049e23
YG
4093 list_for_each_entry(s, &slab_caches, list) {
4094 n = get_node(s, offline_node);
4095 if (n) {
4096 /*
4097 * if n->nr_slabs > 0, slabs still exist on the node
4098 * that is going down. We were unable to free them,
c9404c9c 4099 * and offline_pages() function shouldn't call this
b9049e23
YG
4100 * callback. So, we must fail.
4101 */
0f389ec6 4102 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4103
4104 s->node[offline_node] = NULL;
8de66a0c 4105 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4106 }
4107 }
18004c5d 4108 mutex_unlock(&slab_mutex);
b9049e23
YG
4109}
4110
4111static int slab_mem_going_online_callback(void *arg)
4112{
4113 struct kmem_cache_node *n;
4114 struct kmem_cache *s;
4115 struct memory_notify *marg = arg;
b9d5ab25 4116 int nid = marg->status_change_nid_normal;
b9049e23
YG
4117 int ret = 0;
4118
4119 /*
4120 * If the node's memory is already available, then kmem_cache_node is
4121 * already created. Nothing to do.
4122 */
4123 if (nid < 0)
4124 return 0;
4125
4126 /*
0121c619 4127 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4128 * allocate a kmem_cache_node structure in order to bring the node
4129 * online.
4130 */
18004c5d 4131 mutex_lock(&slab_mutex);
b9049e23
YG
4132 list_for_each_entry(s, &slab_caches, list) {
4133 /*
4134 * XXX: kmem_cache_alloc_node will fallback to other nodes
4135 * since memory is not yet available from the node that
4136 * is brought up.
4137 */
8de66a0c 4138 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4139 if (!n) {
4140 ret = -ENOMEM;
4141 goto out;
4142 }
4053497d 4143 init_kmem_cache_node(n);
b9049e23
YG
4144 s->node[nid] = n;
4145 }
4146out:
18004c5d 4147 mutex_unlock(&slab_mutex);
b9049e23
YG
4148 return ret;
4149}
4150
4151static int slab_memory_callback(struct notifier_block *self,
4152 unsigned long action, void *arg)
4153{
4154 int ret = 0;
4155
4156 switch (action) {
4157 case MEM_GOING_ONLINE:
4158 ret = slab_mem_going_online_callback(arg);
4159 break;
4160 case MEM_GOING_OFFLINE:
4161 ret = slab_mem_going_offline_callback(arg);
4162 break;
4163 case MEM_OFFLINE:
4164 case MEM_CANCEL_ONLINE:
4165 slab_mem_offline_callback(arg);
4166 break;
4167 case MEM_ONLINE:
4168 case MEM_CANCEL_OFFLINE:
4169 break;
4170 }
dc19f9db
KH
4171 if (ret)
4172 ret = notifier_from_errno(ret);
4173 else
4174 ret = NOTIFY_OK;
b9049e23
YG
4175 return ret;
4176}
4177
3ac38faa
AM
4178static struct notifier_block slab_memory_callback_nb = {
4179 .notifier_call = slab_memory_callback,
4180 .priority = SLAB_CALLBACK_PRI,
4181};
b9049e23 4182
81819f0f
CL
4183/********************************************************************
4184 * Basic setup of slabs
4185 *******************************************************************/
4186
51df1142
CL
4187/*
4188 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4189 * the page allocator. Allocate them properly then fix up the pointers
4190 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4191 */
4192
dffb4d60 4193static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4194{
4195 int node;
dffb4d60 4196 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4197 struct kmem_cache_node *n;
51df1142 4198
dffb4d60 4199 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4200
7d557b3c
GC
4201 /*
4202 * This runs very early, and only the boot processor is supposed to be
4203 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4204 * IPIs around.
4205 */
4206 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4207 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4208 struct page *p;
4209
916ac052 4210 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4211 p->slab_cache = s;
51df1142 4212
607bf324 4213#ifdef CONFIG_SLUB_DEBUG
916ac052 4214 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4215 p->slab_cache = s;
51df1142 4216#endif
51df1142 4217 }
f7ce3190 4218 slab_init_memcg_params(s);
dffb4d60 4219 list_add(&s->list, &slab_caches);
c03914b7 4220 memcg_link_cache(s, NULL);
dffb4d60 4221 return s;
51df1142
CL
4222}
4223
81819f0f
CL
4224void __init kmem_cache_init(void)
4225{
dffb4d60
CL
4226 static __initdata struct kmem_cache boot_kmem_cache,
4227 boot_kmem_cache_node;
51df1142 4228
fc8d8620
SG
4229 if (debug_guardpage_minorder())
4230 slub_max_order = 0;
4231
dffb4d60
CL
4232 kmem_cache_node = &boot_kmem_cache_node;
4233 kmem_cache = &boot_kmem_cache;
51df1142 4234
dffb4d60 4235 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4236 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4237
3ac38faa 4238 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4239
4240 /* Able to allocate the per node structures */
4241 slab_state = PARTIAL;
4242
dffb4d60
CL
4243 create_boot_cache(kmem_cache, "kmem_cache",
4244 offsetof(struct kmem_cache, node) +
4245 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4246 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4247
dffb4d60 4248 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4249 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4250
4251 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4252 setup_kmalloc_cache_index_table();
f97d5f63 4253 create_kmalloc_caches(0);
81819f0f 4254
210e7a43
TG
4255 /* Setup random freelists for each cache */
4256 init_freelist_randomization();
4257
a96a87bf
SAS
4258 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4259 slub_cpu_dead);
81819f0f 4260
b9726c26 4261 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4262 cache_line_size(),
81819f0f
CL
4263 slub_min_order, slub_max_order, slub_min_objects,
4264 nr_cpu_ids, nr_node_ids);
4265}
4266
7e85ee0c
PE
4267void __init kmem_cache_init_late(void)
4268{
7e85ee0c
PE
4269}
4270
2633d7a0 4271struct kmem_cache *
f4957d5b 4272__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4273 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4274{
426589f5 4275 struct kmem_cache *s, *c;
81819f0f 4276
a44cb944 4277 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4278 if (s) {
4279 s->refcount++;
84d0ddd6 4280
81819f0f
CL
4281 /*
4282 * Adjust the object sizes so that we clear
4283 * the complete object on kzalloc.
4284 */
1b473f29 4285 s->object_size = max(s->object_size, size);
52ee6d74 4286 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4287
426589f5 4288 for_each_memcg_cache(c, s) {
84d0ddd6 4289 c->object_size = s->object_size;
52ee6d74 4290 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4291 }
4292
7b8f3b66 4293 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4294 s->refcount--;
cbb79694 4295 s = NULL;
7b8f3b66 4296 }
a0e1d1be 4297 }
6446faa2 4298
cbb79694
CL
4299 return s;
4300}
84c1cf62 4301
d50112ed 4302int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4303{
aac3a166
PE
4304 int err;
4305
4306 err = kmem_cache_open(s, flags);
4307 if (err)
4308 return err;
20cea968 4309
45530c44
CL
4310 /* Mutex is not taken during early boot */
4311 if (slab_state <= UP)
4312 return 0;
4313
107dab5c 4314 memcg_propagate_slab_attrs(s);
aac3a166 4315 err = sysfs_slab_add(s);
aac3a166 4316 if (err)
52b4b950 4317 __kmem_cache_release(s);
20cea968 4318
aac3a166 4319 return err;
81819f0f 4320}
81819f0f 4321
ce71e27c 4322void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4323{
aadb4bc4 4324 struct kmem_cache *s;
94b528d0 4325 void *ret;
aadb4bc4 4326
95a05b42 4327 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4328 return kmalloc_large(size, gfpflags);
4329
2c59dd65 4330 s = kmalloc_slab(size, gfpflags);
81819f0f 4331
2408c550 4332 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4333 return s;
81819f0f 4334
2b847c3c 4335 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4336
25985edc 4337 /* Honor the call site pointer we received. */
ca2b84cb 4338 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4339
4340 return ret;
81819f0f
CL
4341}
4342
5d1f57e4 4343#ifdef CONFIG_NUMA
81819f0f 4344void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4345 int node, unsigned long caller)
81819f0f 4346{
aadb4bc4 4347 struct kmem_cache *s;
94b528d0 4348 void *ret;
aadb4bc4 4349
95a05b42 4350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4351 ret = kmalloc_large_node(size, gfpflags, node);
4352
4353 trace_kmalloc_node(caller, ret,
4354 size, PAGE_SIZE << get_order(size),
4355 gfpflags, node);
4356
4357 return ret;
4358 }
eada35ef 4359
2c59dd65 4360 s = kmalloc_slab(size, gfpflags);
81819f0f 4361
2408c550 4362 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4363 return s;
81819f0f 4364
2b847c3c 4365 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4366
25985edc 4367 /* Honor the call site pointer we received. */
ca2b84cb 4368 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4369
4370 return ret;
81819f0f 4371}
5d1f57e4 4372#endif
81819f0f 4373
ab4d5ed5 4374#ifdef CONFIG_SYSFS
205ab99d
CL
4375static int count_inuse(struct page *page)
4376{
4377 return page->inuse;
4378}
4379
4380static int count_total(struct page *page)
4381{
4382 return page->objects;
4383}
ab4d5ed5 4384#endif
205ab99d 4385
ab4d5ed5 4386#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4387static int validate_slab(struct kmem_cache *s, struct page *page,
4388 unsigned long *map)
53e15af0
CL
4389{
4390 void *p;
a973e9dd 4391 void *addr = page_address(page);
53e15af0
CL
4392
4393 if (!check_slab(s, page) ||
4394 !on_freelist(s, page, NULL))
4395 return 0;
4396
4397 /* Now we know that a valid freelist exists */
39b26464 4398 bitmap_zero(map, page->objects);
53e15af0 4399
5f80b13a
CL
4400 get_map(s, page, map);
4401 for_each_object(p, s, addr, page->objects) {
4402 if (test_bit(slab_index(p, s, addr), map))
4403 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4404 return 0;
53e15af0
CL
4405 }
4406
224a88be 4407 for_each_object(p, s, addr, page->objects)
7656c72b 4408 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4409 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4410 return 0;
4411 return 1;
4412}
4413
434e245d
CL
4414static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4415 unsigned long *map)
53e15af0 4416{
881db7fb
CL
4417 slab_lock(page);
4418 validate_slab(s, page, map);
4419 slab_unlock(page);
53e15af0
CL
4420}
4421
434e245d
CL
4422static int validate_slab_node(struct kmem_cache *s,
4423 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4424{
4425 unsigned long count = 0;
4426 struct page *page;
4427 unsigned long flags;
4428
4429 spin_lock_irqsave(&n->list_lock, flags);
4430
916ac052 4431 list_for_each_entry(page, &n->partial, slab_list) {
434e245d 4432 validate_slab_slab(s, page, map);
53e15af0
CL
4433 count++;
4434 }
4435 if (count != n->nr_partial)
f9f58285
FF
4436 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4437 s->name, count, n->nr_partial);
53e15af0
CL
4438
4439 if (!(s->flags & SLAB_STORE_USER))
4440 goto out;
4441
916ac052 4442 list_for_each_entry(page, &n->full, slab_list) {
434e245d 4443 validate_slab_slab(s, page, map);
53e15af0
CL
4444 count++;
4445 }
4446 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4447 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4448 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4449
4450out:
4451 spin_unlock_irqrestore(&n->list_lock, flags);
4452 return count;
4453}
4454
434e245d 4455static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4456{
4457 int node;
4458 unsigned long count = 0;
fa45dc25 4459 struct kmem_cache_node *n;
0684e652 4460 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4461
4462 if (!map)
4463 return -ENOMEM;
53e15af0
CL
4464
4465 flush_all(s);
fa45dc25 4466 for_each_kmem_cache_node(s, node, n)
434e245d 4467 count += validate_slab_node(s, n, map);
0684e652 4468 bitmap_free(map);
53e15af0
CL
4469 return count;
4470}
88a420e4 4471/*
672bba3a 4472 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4473 * and freed.
4474 */
4475
4476struct location {
4477 unsigned long count;
ce71e27c 4478 unsigned long addr;
45edfa58
CL
4479 long long sum_time;
4480 long min_time;
4481 long max_time;
4482 long min_pid;
4483 long max_pid;
174596a0 4484 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4485 nodemask_t nodes;
88a420e4
CL
4486};
4487
4488struct loc_track {
4489 unsigned long max;
4490 unsigned long count;
4491 struct location *loc;
4492};
4493
4494static void free_loc_track(struct loc_track *t)
4495{
4496 if (t->max)
4497 free_pages((unsigned long)t->loc,
4498 get_order(sizeof(struct location) * t->max));
4499}
4500
68dff6a9 4501static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4502{
4503 struct location *l;
4504 int order;
4505
88a420e4
CL
4506 order = get_order(sizeof(struct location) * max);
4507
68dff6a9 4508 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4509 if (!l)
4510 return 0;
4511
4512 if (t->count) {
4513 memcpy(l, t->loc, sizeof(struct location) * t->count);
4514 free_loc_track(t);
4515 }
4516 t->max = max;
4517 t->loc = l;
4518 return 1;
4519}
4520
4521static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4522 const struct track *track)
88a420e4
CL
4523{
4524 long start, end, pos;
4525 struct location *l;
ce71e27c 4526 unsigned long caddr;
45edfa58 4527 unsigned long age = jiffies - track->when;
88a420e4
CL
4528
4529 start = -1;
4530 end = t->count;
4531
4532 for ( ; ; ) {
4533 pos = start + (end - start + 1) / 2;
4534
4535 /*
4536 * There is nothing at "end". If we end up there
4537 * we need to add something to before end.
4538 */
4539 if (pos == end)
4540 break;
4541
4542 caddr = t->loc[pos].addr;
45edfa58
CL
4543 if (track->addr == caddr) {
4544
4545 l = &t->loc[pos];
4546 l->count++;
4547 if (track->when) {
4548 l->sum_time += age;
4549 if (age < l->min_time)
4550 l->min_time = age;
4551 if (age > l->max_time)
4552 l->max_time = age;
4553
4554 if (track->pid < l->min_pid)
4555 l->min_pid = track->pid;
4556 if (track->pid > l->max_pid)
4557 l->max_pid = track->pid;
4558
174596a0
RR
4559 cpumask_set_cpu(track->cpu,
4560 to_cpumask(l->cpus));
45edfa58
CL
4561 }
4562 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4563 return 1;
4564 }
4565
45edfa58 4566 if (track->addr < caddr)
88a420e4
CL
4567 end = pos;
4568 else
4569 start = pos;
4570 }
4571
4572 /*
672bba3a 4573 * Not found. Insert new tracking element.
88a420e4 4574 */
68dff6a9 4575 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4576 return 0;
4577
4578 l = t->loc + pos;
4579 if (pos < t->count)
4580 memmove(l + 1, l,
4581 (t->count - pos) * sizeof(struct location));
4582 t->count++;
4583 l->count = 1;
45edfa58
CL
4584 l->addr = track->addr;
4585 l->sum_time = age;
4586 l->min_time = age;
4587 l->max_time = age;
4588 l->min_pid = track->pid;
4589 l->max_pid = track->pid;
174596a0
RR
4590 cpumask_clear(to_cpumask(l->cpus));
4591 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4592 nodes_clear(l->nodes);
4593 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4594 return 1;
4595}
4596
4597static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4598 struct page *page, enum track_item alloc,
a5dd5c11 4599 unsigned long *map)
88a420e4 4600{
a973e9dd 4601 void *addr = page_address(page);
88a420e4
CL
4602 void *p;
4603
39b26464 4604 bitmap_zero(map, page->objects);
5f80b13a 4605 get_map(s, page, map);
88a420e4 4606
224a88be 4607 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4608 if (!test_bit(slab_index(p, s, addr), map))
4609 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4610}
4611
4612static int list_locations(struct kmem_cache *s, char *buf,
4613 enum track_item alloc)
4614{
e374d483 4615 int len = 0;
88a420e4 4616 unsigned long i;
68dff6a9 4617 struct loc_track t = { 0, 0, NULL };
88a420e4 4618 int node;
fa45dc25 4619 struct kmem_cache_node *n;
0684e652 4620 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4621
bbd7d57b 4622 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4623 GFP_KERNEL)) {
0684e652 4624 bitmap_free(map);
68dff6a9 4625 return sprintf(buf, "Out of memory\n");
bbd7d57b 4626 }
88a420e4
CL
4627 /* Push back cpu slabs */
4628 flush_all(s);
4629
fa45dc25 4630 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4631 unsigned long flags;
4632 struct page *page;
4633
9e86943b 4634 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4635 continue;
4636
4637 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4638 list_for_each_entry(page, &n->partial, slab_list)
bbd7d57b 4639 process_slab(&t, s, page, alloc, map);
916ac052 4640 list_for_each_entry(page, &n->full, slab_list)
bbd7d57b 4641 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4642 spin_unlock_irqrestore(&n->list_lock, flags);
4643 }
4644
4645 for (i = 0; i < t.count; i++) {
45edfa58 4646 struct location *l = &t.loc[i];
88a420e4 4647
9c246247 4648 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4649 break;
e374d483 4650 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4651
4652 if (l->addr)
62c70bce 4653 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4654 else
e374d483 4655 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4656
4657 if (l->sum_time != l->min_time) {
e374d483 4658 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4659 l->min_time,
4660 (long)div_u64(l->sum_time, l->count),
4661 l->max_time);
45edfa58 4662 } else
e374d483 4663 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4664 l->min_time);
4665
4666 if (l->min_pid != l->max_pid)
e374d483 4667 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4668 l->min_pid, l->max_pid);
4669 else
e374d483 4670 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4671 l->min_pid);
4672
174596a0
RR
4673 if (num_online_cpus() > 1 &&
4674 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4675 len < PAGE_SIZE - 60)
4676 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4677 " cpus=%*pbl",
4678 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4679
62bc62a8 4680 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4681 len < PAGE_SIZE - 60)
4682 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4683 " nodes=%*pbl",
4684 nodemask_pr_args(&l->nodes));
45edfa58 4685
e374d483 4686 len += sprintf(buf + len, "\n");
88a420e4
CL
4687 }
4688
4689 free_loc_track(&t);
0684e652 4690 bitmap_free(map);
88a420e4 4691 if (!t.count)
e374d483
HH
4692 len += sprintf(buf, "No data\n");
4693 return len;
88a420e4 4694}
6dfd1b65 4695#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4696
a5a84755 4697#ifdef SLUB_RESILIENCY_TEST
c07b8183 4698static void __init resiliency_test(void)
a5a84755
CL
4699{
4700 u8 *p;
cc252eae 4701 int type = KMALLOC_NORMAL;
a5a84755 4702
95a05b42 4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4704
f9f58285
FF
4705 pr_err("SLUB resiliency testing\n");
4706 pr_err("-----------------------\n");
4707 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4708
4709 p = kzalloc(16, GFP_KERNEL);
4710 p[16] = 0x12;
f9f58285
FF
4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712 p + 16);
a5a84755 4713
cc252eae 4714 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4715
4716 /* Hmmm... The next two are dangerous */
4717 p = kzalloc(32, GFP_KERNEL);
4718 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720 p);
4721 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4722
cc252eae 4723 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4724 p = kzalloc(64, GFP_KERNEL);
4725 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726 *p = 0x56;
f9f58285
FF
4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728 p);
4729 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4730 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4731
f9f58285 4732 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4733 p = kzalloc(128, GFP_KERNEL);
4734 kfree(p);
4735 *p = 0x78;
f9f58285 4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4737 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4738
4739 p = kzalloc(256, GFP_KERNEL);
4740 kfree(p);
4741 p[50] = 0x9a;
f9f58285 4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4743 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4744
4745 p = kzalloc(512, GFP_KERNEL);
4746 kfree(p);
4747 p[512] = 0xab;
f9f58285 4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4749 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4750}
4751#else
4752#ifdef CONFIG_SYSFS
4753static void resiliency_test(void) {};
4754#endif
6dfd1b65 4755#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4756
ab4d5ed5 4757#ifdef CONFIG_SYSFS
81819f0f 4758enum slab_stat_type {
205ab99d
CL
4759 SL_ALL, /* All slabs */
4760 SL_PARTIAL, /* Only partially allocated slabs */
4761 SL_CPU, /* Only slabs used for cpu caches */
4762 SL_OBJECTS, /* Determine allocated objects not slabs */
4763 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4764};
4765
205ab99d 4766#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4767#define SO_PARTIAL (1 << SL_PARTIAL)
4768#define SO_CPU (1 << SL_CPU)
4769#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4770#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4771
1663f26d
TH
4772#ifdef CONFIG_MEMCG
4773static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774
4775static int __init setup_slub_memcg_sysfs(char *str)
4776{
4777 int v;
4778
4779 if (get_option(&str, &v) > 0)
4780 memcg_sysfs_enabled = v;
4781
4782 return 1;
4783}
4784
4785__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786#endif
4787
62e5c4b4
CG
4788static ssize_t show_slab_objects(struct kmem_cache *s,
4789 char *buf, unsigned long flags)
81819f0f
CL
4790{
4791 unsigned long total = 0;
81819f0f
CL
4792 int node;
4793 int x;
4794 unsigned long *nodes;
81819f0f 4795
6396bb22 4796 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4797 if (!nodes)
4798 return -ENOMEM;
81819f0f 4799
205ab99d
CL
4800 if (flags & SO_CPU) {
4801 int cpu;
81819f0f 4802
205ab99d 4803 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805 cpu);
ec3ab083 4806 int node;
49e22585 4807 struct page *page;
dfb4f096 4808
4db0c3c2 4809 page = READ_ONCE(c->page);
ec3ab083
CL
4810 if (!page)
4811 continue;
205ab99d 4812
ec3ab083
CL
4813 node = page_to_nid(page);
4814 if (flags & SO_TOTAL)
4815 x = page->objects;
4816 else if (flags & SO_OBJECTS)
4817 x = page->inuse;
4818 else
4819 x = 1;
49e22585 4820
ec3ab083
CL
4821 total += x;
4822 nodes[node] += x;
4823
a93cf07b 4824 page = slub_percpu_partial_read_once(c);
49e22585 4825 if (page) {
8afb1474
LZ
4826 node = page_to_nid(page);
4827 if (flags & SO_TOTAL)
4828 WARN_ON_ONCE(1);
4829 else if (flags & SO_OBJECTS)
4830 WARN_ON_ONCE(1);
4831 else
4832 x = page->pages;
bc6697d8
ED
4833 total += x;
4834 nodes[node] += x;
49e22585 4835 }
81819f0f
CL
4836 }
4837 }
4838
e4f8e513
QC
4839 /*
4840 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4841 * already held which will conflict with an existing lock order:
4842 *
4843 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4844 *
4845 * We don't really need mem_hotplug_lock (to hold off
4846 * slab_mem_going_offline_callback) here because slab's memory hot
4847 * unplug code doesn't destroy the kmem_cache->node[] data.
4848 */
4849
ab4d5ed5 4850#ifdef CONFIG_SLUB_DEBUG
205ab99d 4851 if (flags & SO_ALL) {
fa45dc25
CL
4852 struct kmem_cache_node *n;
4853
4854 for_each_kmem_cache_node(s, node, n) {
205ab99d 4855
d0e0ac97
CG
4856 if (flags & SO_TOTAL)
4857 x = atomic_long_read(&n->total_objects);
4858 else if (flags & SO_OBJECTS)
4859 x = atomic_long_read(&n->total_objects) -
4860 count_partial(n, count_free);
81819f0f 4861 else
205ab99d 4862 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4863 total += x;
4864 nodes[node] += x;
4865 }
4866
ab4d5ed5
CL
4867 } else
4868#endif
4869 if (flags & SO_PARTIAL) {
fa45dc25 4870 struct kmem_cache_node *n;
81819f0f 4871
fa45dc25 4872 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4873 if (flags & SO_TOTAL)
4874 x = count_partial(n, count_total);
4875 else if (flags & SO_OBJECTS)
4876 x = count_partial(n, count_inuse);
81819f0f 4877 else
205ab99d 4878 x = n->nr_partial;
81819f0f
CL
4879 total += x;
4880 nodes[node] += x;
4881 }
4882 }
81819f0f
CL
4883 x = sprintf(buf, "%lu", total);
4884#ifdef CONFIG_NUMA
fa45dc25 4885 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4886 if (nodes[node])
4887 x += sprintf(buf + x, " N%d=%lu",
4888 node, nodes[node]);
4889#endif
4890 kfree(nodes);
4891 return x + sprintf(buf + x, "\n");
4892}
4893
ab4d5ed5 4894#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4895static int any_slab_objects(struct kmem_cache *s)
4896{
4897 int node;
fa45dc25 4898 struct kmem_cache_node *n;
81819f0f 4899
fa45dc25 4900 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4901 if (atomic_long_read(&n->total_objects))
81819f0f 4902 return 1;
fa45dc25 4903
81819f0f
CL
4904 return 0;
4905}
ab4d5ed5 4906#endif
81819f0f
CL
4907
4908#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4909#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4910
4911struct slab_attribute {
4912 struct attribute attr;
4913 ssize_t (*show)(struct kmem_cache *s, char *buf);
4914 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4915};
4916
4917#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4918 static struct slab_attribute _name##_attr = \
4919 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4920
4921#define SLAB_ATTR(_name) \
4922 static struct slab_attribute _name##_attr = \
ab067e99 4923 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4924
81819f0f
CL
4925static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4926{
44065b2e 4927 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4928}
4929SLAB_ATTR_RO(slab_size);
4930
4931static ssize_t align_show(struct kmem_cache *s, char *buf)
4932{
3a3791ec 4933 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4934}
4935SLAB_ATTR_RO(align);
4936
4937static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4938{
1b473f29 4939 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4940}
4941SLAB_ATTR_RO(object_size);
4942
4943static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4944{
19af27af 4945 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4946}
4947SLAB_ATTR_RO(objs_per_slab);
4948
06b285dc
CL
4949static ssize_t order_store(struct kmem_cache *s,
4950 const char *buf, size_t length)
4951{
19af27af 4952 unsigned int order;
0121c619
CL
4953 int err;
4954
19af27af 4955 err = kstrtouint(buf, 10, &order);
0121c619
CL
4956 if (err)
4957 return err;
06b285dc
CL
4958
4959 if (order > slub_max_order || order < slub_min_order)
4960 return -EINVAL;
4961
4962 calculate_sizes(s, order);
4963 return length;
4964}
4965
81819f0f
CL
4966static ssize_t order_show(struct kmem_cache *s, char *buf)
4967{
19af27af 4968 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4969}
06b285dc 4970SLAB_ATTR(order);
81819f0f 4971
73d342b1
DR
4972static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4973{
4974 return sprintf(buf, "%lu\n", s->min_partial);
4975}
4976
4977static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4978 size_t length)
4979{
4980 unsigned long min;
4981 int err;
4982
3dbb95f7 4983 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4984 if (err)
4985 return err;
4986
c0bdb232 4987 set_min_partial(s, min);
73d342b1
DR
4988 return length;
4989}
4990SLAB_ATTR(min_partial);
4991
49e22585
CL
4992static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4993{
e6d0e1dc 4994 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4995}
4996
4997static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4998 size_t length)
4999{
e5d9998f 5000 unsigned int objects;
49e22585
CL
5001 int err;
5002
e5d9998f 5003 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5004 if (err)
5005 return err;
345c905d 5006 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5007 return -EINVAL;
49e22585 5008
e6d0e1dc 5009 slub_set_cpu_partial(s, objects);
49e22585
CL
5010 flush_all(s);
5011 return length;
5012}
5013SLAB_ATTR(cpu_partial);
5014
81819f0f
CL
5015static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5016{
62c70bce
JP
5017 if (!s->ctor)
5018 return 0;
5019 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5020}
5021SLAB_ATTR_RO(ctor);
5022
81819f0f
CL
5023static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5024{
4307c14f 5025 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5026}
5027SLAB_ATTR_RO(aliases);
5028
81819f0f
CL
5029static ssize_t partial_show(struct kmem_cache *s, char *buf)
5030{
d9acf4b7 5031 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5032}
5033SLAB_ATTR_RO(partial);
5034
5035static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5036{
d9acf4b7 5037 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5038}
5039SLAB_ATTR_RO(cpu_slabs);
5040
5041static ssize_t objects_show(struct kmem_cache *s, char *buf)
5042{
205ab99d 5043 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5044}
5045SLAB_ATTR_RO(objects);
5046
205ab99d
CL
5047static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5048{
5049 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5050}
5051SLAB_ATTR_RO(objects_partial);
5052
49e22585
CL
5053static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5054{
5055 int objects = 0;
5056 int pages = 0;
5057 int cpu;
5058 int len;
5059
5060 for_each_online_cpu(cpu) {
a93cf07b
WY
5061 struct page *page;
5062
5063 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5064
5065 if (page) {
5066 pages += page->pages;
5067 objects += page->pobjects;
5068 }
5069 }
5070
5071 len = sprintf(buf, "%d(%d)", objects, pages);
5072
5073#ifdef CONFIG_SMP
5074 for_each_online_cpu(cpu) {
a93cf07b
WY
5075 struct page *page;
5076
5077 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5078
5079 if (page && len < PAGE_SIZE - 20)
5080 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5081 page->pobjects, page->pages);
5082 }
5083#endif
5084 return len + sprintf(buf + len, "\n");
5085}
5086SLAB_ATTR_RO(slabs_cpu_partial);
5087
a5a84755
CL
5088static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5089{
5090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5091}
5092
5093static ssize_t reclaim_account_store(struct kmem_cache *s,
5094 const char *buf, size_t length)
5095{
5096 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5097 if (buf[0] == '1')
5098 s->flags |= SLAB_RECLAIM_ACCOUNT;
5099 return length;
5100}
5101SLAB_ATTR(reclaim_account);
5102
5103static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5104{
5105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5106}
5107SLAB_ATTR_RO(hwcache_align);
5108
5109#ifdef CONFIG_ZONE_DMA
5110static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5111{
5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5113}
5114SLAB_ATTR_RO(cache_dma);
5115#endif
5116
8eb8284b
DW
5117static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5118{
7bbdb81e 5119 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5120}
5121SLAB_ATTR_RO(usersize);
5122
a5a84755
CL
5123static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5124{
5f0d5a3a 5125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5126}
5127SLAB_ATTR_RO(destroy_by_rcu);
5128
ab4d5ed5 5129#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5130static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5131{
5132 return show_slab_objects(s, buf, SO_ALL);
5133}
5134SLAB_ATTR_RO(slabs);
5135
205ab99d
CL
5136static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5137{
5138 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5139}
5140SLAB_ATTR_RO(total_objects);
5141
81819f0f
CL
5142static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5143{
becfda68 5144 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5145}
5146
5147static ssize_t sanity_checks_store(struct kmem_cache *s,
5148 const char *buf, size_t length)
5149{
becfda68 5150 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5151 if (buf[0] == '1') {
5152 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5153 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5154 }
81819f0f
CL
5155 return length;
5156}
5157SLAB_ATTR(sanity_checks);
5158
5159static ssize_t trace_show(struct kmem_cache *s, char *buf)
5160{
5161 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5162}
5163
5164static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5165 size_t length)
5166{
c9e16131
CL
5167 /*
5168 * Tracing a merged cache is going to give confusing results
5169 * as well as cause other issues like converting a mergeable
5170 * cache into an umergeable one.
5171 */
5172 if (s->refcount > 1)
5173 return -EINVAL;
5174
81819f0f 5175 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5176 if (buf[0] == '1') {
5177 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5178 s->flags |= SLAB_TRACE;
b789ef51 5179 }
81819f0f
CL
5180 return length;
5181}
5182SLAB_ATTR(trace);
5183
81819f0f
CL
5184static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5185{
5186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5187}
5188
5189static ssize_t red_zone_store(struct kmem_cache *s,
5190 const char *buf, size_t length)
5191{
5192 if (any_slab_objects(s))
5193 return -EBUSY;
5194
5195 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5196 if (buf[0] == '1') {
81819f0f 5197 s->flags |= SLAB_RED_ZONE;
b789ef51 5198 }
06b285dc 5199 calculate_sizes(s, -1);
81819f0f
CL
5200 return length;
5201}
5202SLAB_ATTR(red_zone);
5203
5204static ssize_t poison_show(struct kmem_cache *s, char *buf)
5205{
5206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5207}
5208
5209static ssize_t poison_store(struct kmem_cache *s,
5210 const char *buf, size_t length)
5211{
5212 if (any_slab_objects(s))
5213 return -EBUSY;
5214
5215 s->flags &= ~SLAB_POISON;
b789ef51 5216 if (buf[0] == '1') {
81819f0f 5217 s->flags |= SLAB_POISON;
b789ef51 5218 }
06b285dc 5219 calculate_sizes(s, -1);
81819f0f
CL
5220 return length;
5221}
5222SLAB_ATTR(poison);
5223
5224static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5225{
5226 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5227}
5228
5229static ssize_t store_user_store(struct kmem_cache *s,
5230 const char *buf, size_t length)
5231{
5232 if (any_slab_objects(s))
5233 return -EBUSY;
5234
5235 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5236 if (buf[0] == '1') {
5237 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5238 s->flags |= SLAB_STORE_USER;
b789ef51 5239 }
06b285dc 5240 calculate_sizes(s, -1);
81819f0f
CL
5241 return length;
5242}
5243SLAB_ATTR(store_user);
5244
53e15af0
CL
5245static ssize_t validate_show(struct kmem_cache *s, char *buf)
5246{
5247 return 0;
5248}
5249
5250static ssize_t validate_store(struct kmem_cache *s,
5251 const char *buf, size_t length)
5252{
434e245d
CL
5253 int ret = -EINVAL;
5254
5255 if (buf[0] == '1') {
5256 ret = validate_slab_cache(s);
5257 if (ret >= 0)
5258 ret = length;
5259 }
5260 return ret;
53e15af0
CL
5261}
5262SLAB_ATTR(validate);
a5a84755
CL
5263
5264static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5265{
5266 if (!(s->flags & SLAB_STORE_USER))
5267 return -ENOSYS;
5268 return list_locations(s, buf, TRACK_ALLOC);
5269}
5270SLAB_ATTR_RO(alloc_calls);
5271
5272static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5273{
5274 if (!(s->flags & SLAB_STORE_USER))
5275 return -ENOSYS;
5276 return list_locations(s, buf, TRACK_FREE);
5277}
5278SLAB_ATTR_RO(free_calls);
5279#endif /* CONFIG_SLUB_DEBUG */
5280
5281#ifdef CONFIG_FAILSLAB
5282static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5283{
5284 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5285}
5286
5287static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5288 size_t length)
5289{
c9e16131
CL
5290 if (s->refcount > 1)
5291 return -EINVAL;
5292
a5a84755
CL
5293 s->flags &= ~SLAB_FAILSLAB;
5294 if (buf[0] == '1')
5295 s->flags |= SLAB_FAILSLAB;
5296 return length;
5297}
5298SLAB_ATTR(failslab);
ab4d5ed5 5299#endif
53e15af0 5300
2086d26a
CL
5301static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5302{
5303 return 0;
5304}
5305
5306static ssize_t shrink_store(struct kmem_cache *s,
5307 const char *buf, size_t length)
5308{
832f37f5 5309 if (buf[0] == '1')
04f768a3 5310 kmem_cache_shrink_all(s);
832f37f5 5311 else
2086d26a
CL
5312 return -EINVAL;
5313 return length;
5314}
5315SLAB_ATTR(shrink);
5316
81819f0f 5317#ifdef CONFIG_NUMA
9824601e 5318static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5319{
eb7235eb 5320 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5321}
5322
9824601e 5323static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5324 const char *buf, size_t length)
5325{
eb7235eb 5326 unsigned int ratio;
0121c619
CL
5327 int err;
5328
eb7235eb 5329 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5330 if (err)
5331 return err;
eb7235eb
AD
5332 if (ratio > 100)
5333 return -ERANGE;
0121c619 5334
eb7235eb 5335 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5336
81819f0f
CL
5337 return length;
5338}
9824601e 5339SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5340#endif
5341
8ff12cfc 5342#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5343static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5344{
5345 unsigned long sum = 0;
5346 int cpu;
5347 int len;
6da2ec56 5348 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5349
5350 if (!data)
5351 return -ENOMEM;
5352
5353 for_each_online_cpu(cpu) {
9dfc6e68 5354 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5355
5356 data[cpu] = x;
5357 sum += x;
5358 }
5359
5360 len = sprintf(buf, "%lu", sum);
5361
50ef37b9 5362#ifdef CONFIG_SMP
8ff12cfc
CL
5363 for_each_online_cpu(cpu) {
5364 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5365 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5366 }
50ef37b9 5367#endif
8ff12cfc
CL
5368 kfree(data);
5369 return len + sprintf(buf + len, "\n");
5370}
5371
78eb00cc
DR
5372static void clear_stat(struct kmem_cache *s, enum stat_item si)
5373{
5374 int cpu;
5375
5376 for_each_online_cpu(cpu)
9dfc6e68 5377 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5378}
5379
8ff12cfc
CL
5380#define STAT_ATTR(si, text) \
5381static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5382{ \
5383 return show_stat(s, buf, si); \
5384} \
78eb00cc
DR
5385static ssize_t text##_store(struct kmem_cache *s, \
5386 const char *buf, size_t length) \
5387{ \
5388 if (buf[0] != '0') \
5389 return -EINVAL; \
5390 clear_stat(s, si); \
5391 return length; \
5392} \
5393SLAB_ATTR(text); \
8ff12cfc
CL
5394
5395STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5396STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5397STAT_ATTR(FREE_FASTPATH, free_fastpath);
5398STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5399STAT_ATTR(FREE_FROZEN, free_frozen);
5400STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5401STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5402STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5403STAT_ATTR(ALLOC_SLAB, alloc_slab);
5404STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5405STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5406STAT_ATTR(FREE_SLAB, free_slab);
5407STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5408STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5409STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5410STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5411STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5412STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5413STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5414STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5415STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5416STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5417STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5418STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5419STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5420STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5421#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5422
06428780 5423static struct attribute *slab_attrs[] = {
81819f0f
CL
5424 &slab_size_attr.attr,
5425 &object_size_attr.attr,
5426 &objs_per_slab_attr.attr,
5427 &order_attr.attr,
73d342b1 5428 &min_partial_attr.attr,
49e22585 5429 &cpu_partial_attr.attr,
81819f0f 5430 &objects_attr.attr,
205ab99d 5431 &objects_partial_attr.attr,
81819f0f
CL
5432 &partial_attr.attr,
5433 &cpu_slabs_attr.attr,
5434 &ctor_attr.attr,
81819f0f
CL
5435 &aliases_attr.attr,
5436 &align_attr.attr,
81819f0f
CL
5437 &hwcache_align_attr.attr,
5438 &reclaim_account_attr.attr,
5439 &destroy_by_rcu_attr.attr,
a5a84755 5440 &shrink_attr.attr,
49e22585 5441 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5442#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5443 &total_objects_attr.attr,
5444 &slabs_attr.attr,
5445 &sanity_checks_attr.attr,
5446 &trace_attr.attr,
81819f0f
CL
5447 &red_zone_attr.attr,
5448 &poison_attr.attr,
5449 &store_user_attr.attr,
53e15af0 5450 &validate_attr.attr,
88a420e4
CL
5451 &alloc_calls_attr.attr,
5452 &free_calls_attr.attr,
ab4d5ed5 5453#endif
81819f0f
CL
5454#ifdef CONFIG_ZONE_DMA
5455 &cache_dma_attr.attr,
5456#endif
5457#ifdef CONFIG_NUMA
9824601e 5458 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5459#endif
5460#ifdef CONFIG_SLUB_STATS
5461 &alloc_fastpath_attr.attr,
5462 &alloc_slowpath_attr.attr,
5463 &free_fastpath_attr.attr,
5464 &free_slowpath_attr.attr,
5465 &free_frozen_attr.attr,
5466 &free_add_partial_attr.attr,
5467 &free_remove_partial_attr.attr,
5468 &alloc_from_partial_attr.attr,
5469 &alloc_slab_attr.attr,
5470 &alloc_refill_attr.attr,
e36a2652 5471 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5472 &free_slab_attr.attr,
5473 &cpuslab_flush_attr.attr,
5474 &deactivate_full_attr.attr,
5475 &deactivate_empty_attr.attr,
5476 &deactivate_to_head_attr.attr,
5477 &deactivate_to_tail_attr.attr,
5478 &deactivate_remote_frees_attr.attr,
03e404af 5479 &deactivate_bypass_attr.attr,
65c3376a 5480 &order_fallback_attr.attr,
b789ef51
CL
5481 &cmpxchg_double_fail_attr.attr,
5482 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5483 &cpu_partial_alloc_attr.attr,
5484 &cpu_partial_free_attr.attr,
8028dcea
AS
5485 &cpu_partial_node_attr.attr,
5486 &cpu_partial_drain_attr.attr,
81819f0f 5487#endif
4c13dd3b
DM
5488#ifdef CONFIG_FAILSLAB
5489 &failslab_attr.attr,
5490#endif
8eb8284b 5491 &usersize_attr.attr,
4c13dd3b 5492
81819f0f
CL
5493 NULL
5494};
5495
1fdaaa23 5496static const struct attribute_group slab_attr_group = {
81819f0f
CL
5497 .attrs = slab_attrs,
5498};
5499
5500static ssize_t slab_attr_show(struct kobject *kobj,
5501 struct attribute *attr,
5502 char *buf)
5503{
5504 struct slab_attribute *attribute;
5505 struct kmem_cache *s;
5506 int err;
5507
5508 attribute = to_slab_attr(attr);
5509 s = to_slab(kobj);
5510
5511 if (!attribute->show)
5512 return -EIO;
5513
5514 err = attribute->show(s, buf);
5515
5516 return err;
5517}
5518
5519static ssize_t slab_attr_store(struct kobject *kobj,
5520 struct attribute *attr,
5521 const char *buf, size_t len)
5522{
5523 struct slab_attribute *attribute;
5524 struct kmem_cache *s;
5525 int err;
5526
5527 attribute = to_slab_attr(attr);
5528 s = to_slab(kobj);
5529
5530 if (!attribute->store)
5531 return -EIO;
5532
5533 err = attribute->store(s, buf, len);
127424c8 5534#ifdef CONFIG_MEMCG
107dab5c 5535 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5536 struct kmem_cache *c;
81819f0f 5537
107dab5c
GC
5538 mutex_lock(&slab_mutex);
5539 if (s->max_attr_size < len)
5540 s->max_attr_size = len;
5541
ebe945c2
GC
5542 /*
5543 * This is a best effort propagation, so this function's return
5544 * value will be determined by the parent cache only. This is
5545 * basically because not all attributes will have a well
5546 * defined semantics for rollbacks - most of the actions will
5547 * have permanent effects.
5548 *
5549 * Returning the error value of any of the children that fail
5550 * is not 100 % defined, in the sense that users seeing the
5551 * error code won't be able to know anything about the state of
5552 * the cache.
5553 *
5554 * Only returning the error code for the parent cache at least
5555 * has well defined semantics. The cache being written to
5556 * directly either failed or succeeded, in which case we loop
5557 * through the descendants with best-effort propagation.
5558 */
426589f5
VD
5559 for_each_memcg_cache(c, s)
5560 attribute->store(c, buf, len);
107dab5c
GC
5561 mutex_unlock(&slab_mutex);
5562 }
5563#endif
81819f0f
CL
5564 return err;
5565}
5566
107dab5c
GC
5567static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5568{
127424c8 5569#ifdef CONFIG_MEMCG
107dab5c
GC
5570 int i;
5571 char *buffer = NULL;
93030d83 5572 struct kmem_cache *root_cache;
107dab5c 5573
93030d83 5574 if (is_root_cache(s))
107dab5c
GC
5575 return;
5576
f7ce3190 5577 root_cache = s->memcg_params.root_cache;
93030d83 5578
107dab5c
GC
5579 /*
5580 * This mean this cache had no attribute written. Therefore, no point
5581 * in copying default values around
5582 */
93030d83 5583 if (!root_cache->max_attr_size)
107dab5c
GC
5584 return;
5585
5586 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5587 char mbuf[64];
5588 char *buf;
5589 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5590 ssize_t len;
107dab5c
GC
5591
5592 if (!attr || !attr->store || !attr->show)
5593 continue;
5594
5595 /*
5596 * It is really bad that we have to allocate here, so we will
5597 * do it only as a fallback. If we actually allocate, though,
5598 * we can just use the allocated buffer until the end.
5599 *
5600 * Most of the slub attributes will tend to be very small in
5601 * size, but sysfs allows buffers up to a page, so they can
5602 * theoretically happen.
5603 */
5604 if (buffer)
5605 buf = buffer;
93030d83 5606 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5607 buf = mbuf;
5608 else {
5609 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5610 if (WARN_ON(!buffer))
5611 continue;
5612 buf = buffer;
5613 }
5614
478fe303
TG
5615 len = attr->show(root_cache, buf);
5616 if (len > 0)
5617 attr->store(s, buf, len);
107dab5c
GC
5618 }
5619
5620 if (buffer)
5621 free_page((unsigned long)buffer);
6dfd1b65 5622#endif /* CONFIG_MEMCG */
107dab5c
GC
5623}
5624
41a21285
CL
5625static void kmem_cache_release(struct kobject *k)
5626{
5627 slab_kmem_cache_release(to_slab(k));
5628}
5629
52cf25d0 5630static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5631 .show = slab_attr_show,
5632 .store = slab_attr_store,
5633};
5634
5635static struct kobj_type slab_ktype = {
5636 .sysfs_ops = &slab_sysfs_ops,
41a21285 5637 .release = kmem_cache_release,
81819f0f
CL
5638};
5639
5640static int uevent_filter(struct kset *kset, struct kobject *kobj)
5641{
5642 struct kobj_type *ktype = get_ktype(kobj);
5643
5644 if (ktype == &slab_ktype)
5645 return 1;
5646 return 0;
5647}
5648
9cd43611 5649static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5650 .filter = uevent_filter,
5651};
5652
27c3a314 5653static struct kset *slab_kset;
81819f0f 5654
9a41707b
VD
5655static inline struct kset *cache_kset(struct kmem_cache *s)
5656{
127424c8 5657#ifdef CONFIG_MEMCG
9a41707b 5658 if (!is_root_cache(s))
f7ce3190 5659 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5660#endif
5661 return slab_kset;
5662}
5663
81819f0f
CL
5664#define ID_STR_LENGTH 64
5665
5666/* Create a unique string id for a slab cache:
6446faa2
CL
5667 *
5668 * Format :[flags-]size
81819f0f
CL
5669 */
5670static char *create_unique_id(struct kmem_cache *s)
5671{
5672 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5673 char *p = name;
5674
5675 BUG_ON(!name);
5676
5677 *p++ = ':';
5678 /*
5679 * First flags affecting slabcache operations. We will only
5680 * get here for aliasable slabs so we do not need to support
5681 * too many flags. The flags here must cover all flags that
5682 * are matched during merging to guarantee that the id is
5683 * unique.
5684 */
5685 if (s->flags & SLAB_CACHE_DMA)
5686 *p++ = 'd';
6d6ea1e9
NB
5687 if (s->flags & SLAB_CACHE_DMA32)
5688 *p++ = 'D';
81819f0f
CL
5689 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5690 *p++ = 'a';
becfda68 5691 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5692 *p++ = 'F';
230e9fc2
VD
5693 if (s->flags & SLAB_ACCOUNT)
5694 *p++ = 'A';
81819f0f
CL
5695 if (p != name + 1)
5696 *p++ = '-';
44065b2e 5697 p += sprintf(p, "%07u", s->size);
2633d7a0 5698
81819f0f
CL
5699 BUG_ON(p > name + ID_STR_LENGTH - 1);
5700 return name;
5701}
5702
3b7b3140
TH
5703static void sysfs_slab_remove_workfn(struct work_struct *work)
5704{
5705 struct kmem_cache *s =
5706 container_of(work, struct kmem_cache, kobj_remove_work);
5707
5708 if (!s->kobj.state_in_sysfs)
5709 /*
5710 * For a memcg cache, this may be called during
5711 * deactivation and again on shutdown. Remove only once.
5712 * A cache is never shut down before deactivation is
5713 * complete, so no need to worry about synchronization.
5714 */
f6ba4880 5715 goto out;
3b7b3140
TH
5716
5717#ifdef CONFIG_MEMCG
5718 kset_unregister(s->memcg_kset);
5719#endif
5720 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5721out:
3b7b3140
TH
5722 kobject_put(&s->kobj);
5723}
5724
81819f0f
CL
5725static int sysfs_slab_add(struct kmem_cache *s)
5726{
5727 int err;
5728 const char *name;
1663f26d 5729 struct kset *kset = cache_kset(s);
45530c44 5730 int unmergeable = slab_unmergeable(s);
81819f0f 5731
3b7b3140
TH
5732 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5733
1663f26d
TH
5734 if (!kset) {
5735 kobject_init(&s->kobj, &slab_ktype);
5736 return 0;
5737 }
5738
11066386
MC
5739 if (!unmergeable && disable_higher_order_debug &&
5740 (slub_debug & DEBUG_METADATA_FLAGS))
5741 unmergeable = 1;
5742
81819f0f
CL
5743 if (unmergeable) {
5744 /*
5745 * Slabcache can never be merged so we can use the name proper.
5746 * This is typically the case for debug situations. In that
5747 * case we can catch duplicate names easily.
5748 */
27c3a314 5749 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5750 name = s->name;
5751 } else {
5752 /*
5753 * Create a unique name for the slab as a target
5754 * for the symlinks.
5755 */
5756 name = create_unique_id(s);
5757 }
5758
1663f26d 5759 s->kobj.kset = kset;
26e4f205 5760 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5761 if (err)
80da026a 5762 goto out;
81819f0f
CL
5763
5764 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5765 if (err)
5766 goto out_del_kobj;
9a41707b 5767
127424c8 5768#ifdef CONFIG_MEMCG
1663f26d 5769 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5770 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5771 if (!s->memcg_kset) {
54b6a731
DJ
5772 err = -ENOMEM;
5773 goto out_del_kobj;
9a41707b
VD
5774 }
5775 }
5776#endif
5777
81819f0f
CL
5778 kobject_uevent(&s->kobj, KOBJ_ADD);
5779 if (!unmergeable) {
5780 /* Setup first alias */
5781 sysfs_slab_alias(s, s->name);
81819f0f 5782 }
54b6a731
DJ
5783out:
5784 if (!unmergeable)
5785 kfree(name);
5786 return err;
5787out_del_kobj:
5788 kobject_del(&s->kobj);
54b6a731 5789 goto out;
81819f0f
CL
5790}
5791
bf5eb3de 5792static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5793{
97d06609 5794 if (slab_state < FULL)
2bce6485
CL
5795 /*
5796 * Sysfs has not been setup yet so no need to remove the
5797 * cache from sysfs.
5798 */
5799 return;
5800
3b7b3140
TH
5801 kobject_get(&s->kobj);
5802 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5803}
5804
d50d82fa
MP
5805void sysfs_slab_unlink(struct kmem_cache *s)
5806{
5807 if (slab_state >= FULL)
5808 kobject_del(&s->kobj);
5809}
5810
bf5eb3de
TH
5811void sysfs_slab_release(struct kmem_cache *s)
5812{
5813 if (slab_state >= FULL)
5814 kobject_put(&s->kobj);
81819f0f
CL
5815}
5816
5817/*
5818 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5819 * available lest we lose that information.
81819f0f
CL
5820 */
5821struct saved_alias {
5822 struct kmem_cache *s;
5823 const char *name;
5824 struct saved_alias *next;
5825};
5826
5af328a5 5827static struct saved_alias *alias_list;
81819f0f
CL
5828
5829static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5830{
5831 struct saved_alias *al;
5832
97d06609 5833 if (slab_state == FULL) {
81819f0f
CL
5834 /*
5835 * If we have a leftover link then remove it.
5836 */
27c3a314
GKH
5837 sysfs_remove_link(&slab_kset->kobj, name);
5838 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5839 }
5840
5841 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5842 if (!al)
5843 return -ENOMEM;
5844
5845 al->s = s;
5846 al->name = name;
5847 al->next = alias_list;
5848 alias_list = al;
5849 return 0;
5850}
5851
5852static int __init slab_sysfs_init(void)
5853{
5b95a4ac 5854 struct kmem_cache *s;
81819f0f
CL
5855 int err;
5856
18004c5d 5857 mutex_lock(&slab_mutex);
2bce6485 5858
0ff21e46 5859 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5860 if (!slab_kset) {
18004c5d 5861 mutex_unlock(&slab_mutex);
f9f58285 5862 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5863 return -ENOSYS;
5864 }
5865
97d06609 5866 slab_state = FULL;
26a7bd03 5867
5b95a4ac 5868 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5869 err = sysfs_slab_add(s);
5d540fb7 5870 if (err)
f9f58285
FF
5871 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5872 s->name);
26a7bd03 5873 }
81819f0f
CL
5874
5875 while (alias_list) {
5876 struct saved_alias *al = alias_list;
5877
5878 alias_list = alias_list->next;
5879 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5880 if (err)
f9f58285
FF
5881 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5882 al->name);
81819f0f
CL
5883 kfree(al);
5884 }
5885
18004c5d 5886 mutex_unlock(&slab_mutex);
81819f0f
CL
5887 resiliency_test();
5888 return 0;
5889}
5890
5891__initcall(slab_sysfs_init);
ab4d5ed5 5892#endif /* CONFIG_SYSFS */
57ed3eda
PE
5893
5894/*
5895 * The /proc/slabinfo ABI
5896 */
5b365771 5897#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5898void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5899{
57ed3eda 5900 unsigned long nr_slabs = 0;
205ab99d
CL
5901 unsigned long nr_objs = 0;
5902 unsigned long nr_free = 0;
57ed3eda 5903 int node;
fa45dc25 5904 struct kmem_cache_node *n;
57ed3eda 5905
fa45dc25 5906 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5907 nr_slabs += node_nr_slabs(n);
5908 nr_objs += node_nr_objs(n);
205ab99d 5909 nr_free += count_partial(n, count_free);
57ed3eda
PE
5910 }
5911
0d7561c6
GC
5912 sinfo->active_objs = nr_objs - nr_free;
5913 sinfo->num_objs = nr_objs;
5914 sinfo->active_slabs = nr_slabs;
5915 sinfo->num_slabs = nr_slabs;
5916 sinfo->objects_per_slab = oo_objects(s->oo);
5917 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5918}
5919
0d7561c6 5920void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5921{
7b3c3a50
AD
5922}
5923
b7454ad3
GC
5924ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5925 size_t count, loff_t *ppos)
7b3c3a50 5926{
b7454ad3 5927 return -EIO;
7b3c3a50 5928}
5b365771 5929#endif /* CONFIG_SLUB_DEBUG */