]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
5a896d9e 25#include <linux/kmemcheck.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
3ac7fe5a 30#include <linux/debugobjects.h>
81819f0f 31#include <linux/kallsyms.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
81819f0f 39
4a92379b
RK
40#include <trace/events/kmem.h>
41
072bb0aa
MG
42#include "internal.h"
43
81819f0f
CL
44/*
45 * Lock order:
18004c5d 46 * 1. slab_mutex (Global Mutex)
881db7fb
CL
47 * 2. node->list_lock
48 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 49 *
18004c5d 50 * slab_mutex
881db7fb 51 *
18004c5d 52 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
53 * and to synchronize major metadata changes to slab cache structures.
54 *
55 * The slab_lock is only used for debugging and on arches that do not
56 * have the ability to do a cmpxchg_double. It only protects the second
57 * double word in the page struct. Meaning
58 * A. page->freelist -> List of object free in a page
59 * B. page->counters -> Counters of objects
60 * C. page->frozen -> frozen state
61 *
62 * If a slab is frozen then it is exempt from list management. It is not
63 * on any list. The processor that froze the slab is the one who can
64 * perform list operations on the page. Other processors may put objects
65 * onto the freelist but the processor that froze the slab is the only
66 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * Overloading of page flags that are otherwise used for LRU management.
98 *
4b6f0750
CL
99 * PageActive The slab is frozen and exempt from list processing.
100 * This means that the slab is dedicated to a purpose
101 * such as satisfying allocations for a specific
102 * processor. Objects may be freed in the slab while
103 * it is frozen but slab_free will then skip the usual
104 * list operations. It is up to the processor holding
105 * the slab to integrate the slab into the slab lists
106 * when the slab is no longer needed.
107 *
108 * One use of this flag is to mark slabs that are
109 * used for allocations. Then such a slab becomes a cpu
110 * slab. The cpu slab may be equipped with an additional
dfb4f096 111 * freelist that allows lockless access to
894b8788
CL
112 * free objects in addition to the regular freelist
113 * that requires the slab lock.
81819f0f
CL
114 *
115 * PageError Slab requires special handling due to debug
116 * options set. This moves slab handling out of
894b8788 117 * the fast path and disables lockless freelists.
81819f0f
CL
118 */
119
af537b0a
CL
120static inline int kmem_cache_debug(struct kmem_cache *s)
121{
5577bd8a 122#ifdef CONFIG_SLUB_DEBUG
af537b0a 123 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 124#else
af537b0a 125 return 0;
5577bd8a 126#endif
af537b0a 127}
5577bd8a 128
117d54df 129void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
130{
131 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 p += s->red_left_pad;
133
134 return p;
135}
136
345c905d
JK
137static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138{
139#ifdef CONFIG_SLUB_CPU_PARTIAL
140 return !kmem_cache_debug(s);
141#else
142 return false;
143#endif
144}
145
81819f0f
CL
146/*
147 * Issues still to be resolved:
148 *
81819f0f
CL
149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 *
81819f0f
CL
151 * - Variable sizing of the per node arrays
152 */
153
154/* Enable to test recovery from slab corruption on boot */
155#undef SLUB_RESILIENCY_TEST
156
b789ef51
CL
157/* Enable to log cmpxchg failures */
158#undef SLUB_DEBUG_CMPXCHG
159
2086d26a
CL
160/*
161 * Mininum number of partial slabs. These will be left on the partial
162 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 */
76be8950 164#define MIN_PARTIAL 5
e95eed57 165
2086d26a
CL
166/*
167 * Maximum number of desirable partial slabs.
168 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 169 * sort the partial list by the number of objects in use.
2086d26a
CL
170 */
171#define MAX_PARTIAL 10
172
becfda68 173#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 174 SLAB_POISON | SLAB_STORE_USER)
672bba3a 175
149daaf3
LA
176/*
177 * These debug flags cannot use CMPXCHG because there might be consistency
178 * issues when checking or reading debug information
179 */
180#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
181 SLAB_TRACE)
182
183
fa5ec8a1 184/*
3de47213
DR
185 * Debugging flags that require metadata to be stored in the slab. These get
186 * disabled when slub_debug=O is used and a cache's min order increases with
187 * metadata.
fa5ec8a1 188 */
3de47213 189#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 190
210b5c06
CG
191#define OO_SHIFT 16
192#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 193#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 194
81819f0f 195/* Internal SLUB flags */
f90ec390 196#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 197#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 198
02cbc874
CL
199/*
200 * Tracking user of a slab.
201 */
d6543e39 202#define TRACK_ADDRS_COUNT 16
02cbc874 203struct track {
ce71e27c 204 unsigned long addr; /* Called from address */
d6543e39
BG
205#ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207#endif
02cbc874
CL
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
211};
212
213enum track_item { TRACK_ALLOC, TRACK_FREE };
214
ab4d5ed5 215#ifdef CONFIG_SYSFS
81819f0f
CL
216static int sysfs_slab_add(struct kmem_cache *);
217static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 218static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 219static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 220#else
0c710013
CL
221static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
107dab5c 224static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 225static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
2482ddec
KC
243/*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
248static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250{
251#ifdef CONFIG_SLAB_FREELIST_HARDENED
252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253#else
254 return ptr;
255#endif
256}
257
258/* Returns the freelist pointer recorded at location ptr_addr. */
259static inline void *freelist_dereference(const struct kmem_cache *s,
260 void *ptr_addr)
261{
262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 (unsigned long)ptr_addr);
264}
265
7656c72b
CL
266static inline void *get_freepointer(struct kmem_cache *s, void *object)
267{
2482ddec 268 return freelist_dereference(s, object + s->offset);
7656c72b
CL
269}
270
0ad9500e
ED
271static void prefetch_freepointer(const struct kmem_cache *s, void *object)
272{
2482ddec
KC
273 if (object)
274 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
275}
276
1393d9a1
CL
277static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
278{
2482ddec 279 unsigned long freepointer_addr;
1393d9a1
CL
280 void *p;
281
922d566c
JK
282 if (!debug_pagealloc_enabled())
283 return get_freepointer(s, object);
284
2482ddec
KC
285 freepointer_addr = (unsigned long)object + s->offset;
286 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
287 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
2482ddec
KC
292 unsigned long freeptr_addr = (unsigned long)object + s->offset;
293
ce6fa91b
AP
294#ifdef CONFIG_SLAB_FREELIST_HARDENED
295 BUG_ON(object == fp); /* naive detection of double free or corruption */
296#endif
297
2482ddec 298 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
299}
300
301/* Loop over all objects in a slab */
224a88be 302#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
303 for (__p = fixup_red_left(__s, __addr); \
304 __p < (__addr) + (__objects) * (__s)->size; \
305 __p += (__s)->size)
7656c72b 306
54266640 307#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
308 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
309 __idx <= __objects; \
310 __p += (__s)->size, __idx++)
54266640 311
7656c72b
CL
312/* Determine object index from a given position */
313static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
314{
315 return (p - addr) / s->size;
316}
317
ab9a0f19
LJ
318static inline int order_objects(int order, unsigned long size, int reserved)
319{
320 return ((PAGE_SIZE << order) - reserved) / size;
321}
322
834f3d11 323static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 324 unsigned long size, int reserved)
834f3d11
CL
325{
326 struct kmem_cache_order_objects x = {
ab9a0f19 327 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
328 };
329
330 return x;
331}
332
333static inline int oo_order(struct kmem_cache_order_objects x)
334{
210b5c06 335 return x.x >> OO_SHIFT;
834f3d11
CL
336}
337
338static inline int oo_objects(struct kmem_cache_order_objects x)
339{
210b5c06 340 return x.x & OO_MASK;
834f3d11
CL
341}
342
881db7fb
CL
343/*
344 * Per slab locking using the pagelock
345 */
346static __always_inline void slab_lock(struct page *page)
347{
48c935ad 348 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
349 bit_spin_lock(PG_locked, &page->flags);
350}
351
352static __always_inline void slab_unlock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
a0320865
DH
358static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359{
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
364 * as page->_refcount. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371}
372
1d07171c
CL
373/* Interrupts must be disabled (for the fallback code to work right) */
374static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378{
379 VM_BUG_ON(!irqs_disabled());
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
384 freelist_old, counters_old,
385 freelist_new, counters_new))
6f6528a1 386 return true;
1d07171c
CL
387 } else
388#endif
389 {
390 slab_lock(page);
d0e0ac97
CG
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
1d07171c 393 page->freelist = freelist_new;
a0320865 394 set_page_slub_counters(page, counters_new);
1d07171c 395 slab_unlock(page);
6f6528a1 396 return true;
1d07171c
CL
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 405 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
406#endif
407
6f6528a1 408 return false;
1d07171c
CL
409}
410
b789ef51
CL
411static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415{
2565409f
HC
416#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 418 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 419 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
420 freelist_old, counters_old,
421 freelist_new, counters_new))
6f6528a1 422 return true;
b789ef51
CL
423 } else
424#endif
425 {
1d07171c
CL
426 unsigned long flags;
427
428 local_irq_save(flags);
881db7fb 429 slab_lock(page);
d0e0ac97
CG
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
b789ef51 432 page->freelist = freelist_new;
a0320865 433 set_page_slub_counters(page, counters_new);
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
6f6528a1 436 return true;
b789ef51 437 }
881db7fb 438 slab_unlock(page);
1d07171c 439 local_irq_restore(flags);
b789ef51
CL
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 446 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
447#endif
448
6f6528a1 449 return false;
b789ef51
CL
450}
451
41ecc55b 452#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
459static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460{
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466}
467
d86bd1be
JK
468static inline int size_from_object(struct kmem_cache *s)
469{
470 if (s->flags & SLAB_RED_ZONE)
471 return s->size - s->red_left_pad;
472
473 return s->size;
474}
475
476static inline void *restore_red_left(struct kmem_cache *s, void *p)
477{
478 if (s->flags & SLAB_RED_ZONE)
479 p -= s->red_left_pad;
480
481 return p;
482}
483
41ecc55b
CL
484/*
485 * Debug settings:
486 */
89d3c87e 487#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
488static int slub_debug = DEBUG_DEFAULT_FLAGS;
489#else
41ecc55b 490static int slub_debug;
f0630fff 491#endif
41ecc55b
CL
492
493static char *slub_debug_slabs;
fa5ec8a1 494static int disable_higher_order_debug;
41ecc55b 495
a79316c6
AR
496/*
497 * slub is about to manipulate internal object metadata. This memory lies
498 * outside the range of the allocated object, so accessing it would normally
499 * be reported by kasan as a bounds error. metadata_access_enable() is used
500 * to tell kasan that these accesses are OK.
501 */
502static inline void metadata_access_enable(void)
503{
504 kasan_disable_current();
505}
506
507static inline void metadata_access_disable(void)
508{
509 kasan_enable_current();
510}
511
81819f0f
CL
512/*
513 * Object debugging
514 */
d86bd1be
JK
515
516/* Verify that a pointer has an address that is valid within a slab page */
517static inline int check_valid_pointer(struct kmem_cache *s,
518 struct page *page, void *object)
519{
520 void *base;
521
522 if (!object)
523 return 1;
524
525 base = page_address(page);
526 object = restore_red_left(s, object);
527 if (object < base || object >= base + page->objects * s->size ||
528 (object - base) % s->size) {
529 return 0;
530 }
531
532 return 1;
533}
534
aa2efd5e
DT
535static void print_section(char *level, char *text, u8 *addr,
536 unsigned int length)
81819f0f 537{
a79316c6 538 metadata_access_enable();
aa2efd5e 539 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 540 length, 1);
a79316c6 541 metadata_access_disable();
81819f0f
CL
542}
543
81819f0f
CL
544static struct track *get_track(struct kmem_cache *s, void *object,
545 enum track_item alloc)
546{
547 struct track *p;
548
549 if (s->offset)
550 p = object + s->offset + sizeof(void *);
551 else
552 p = object + s->inuse;
553
554 return p + alloc;
555}
556
557static void set_track(struct kmem_cache *s, void *object,
ce71e27c 558 enum track_item alloc, unsigned long addr)
81819f0f 559{
1a00df4a 560 struct track *p = get_track(s, object, alloc);
81819f0f 561
81819f0f 562 if (addr) {
d6543e39
BG
563#ifdef CONFIG_STACKTRACE
564 struct stack_trace trace;
565 int i;
566
567 trace.nr_entries = 0;
568 trace.max_entries = TRACK_ADDRS_COUNT;
569 trace.entries = p->addrs;
570 trace.skip = 3;
a79316c6 571 metadata_access_enable();
d6543e39 572 save_stack_trace(&trace);
a79316c6 573 metadata_access_disable();
d6543e39
BG
574
575 /* See rant in lockdep.c */
576 if (trace.nr_entries != 0 &&
577 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
578 trace.nr_entries--;
579
580 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
581 p->addrs[i] = 0;
582#endif
81819f0f
CL
583 p->addr = addr;
584 p->cpu = smp_processor_id();
88e4ccf2 585 p->pid = current->pid;
81819f0f
CL
586 p->when = jiffies;
587 } else
588 memset(p, 0, sizeof(struct track));
589}
590
81819f0f
CL
591static void init_tracking(struct kmem_cache *s, void *object)
592{
24922684
CL
593 if (!(s->flags & SLAB_STORE_USER))
594 return;
595
ce71e27c
EGM
596 set_track(s, object, TRACK_FREE, 0UL);
597 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
598}
599
600static void print_track(const char *s, struct track *t)
601{
602 if (!t->addr)
603 return;
604
f9f58285
FF
605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
607#ifdef CONFIG_STACKTRACE
608 {
609 int i;
610 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 if (t->addrs[i])
f9f58285 612 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
613 else
614 break;
615 }
616#endif
24922684
CL
617}
618
619static void print_tracking(struct kmem_cache *s, void *object)
620{
621 if (!(s->flags & SLAB_STORE_USER))
622 return;
623
624 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
625 print_track("Freed", get_track(s, object, TRACK_FREE));
626}
627
628static void print_page_info(struct page *page)
629{
f9f58285 630 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 631 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
632
633}
634
635static void slab_bug(struct kmem_cache *s, char *fmt, ...)
636{
ecc42fbe 637 struct va_format vaf;
24922684 638 va_list args;
24922684
CL
639
640 va_start(args, fmt);
ecc42fbe
FF
641 vaf.fmt = fmt;
642 vaf.va = &args;
f9f58285 643 pr_err("=============================================================================\n");
ecc42fbe 644 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 645 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 646
373d4d09 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 648 va_end(args);
81819f0f
CL
649}
650
24922684
CL
651static void slab_fix(struct kmem_cache *s, char *fmt, ...)
652{
ecc42fbe 653 struct va_format vaf;
24922684 654 va_list args;
24922684
CL
655
656 va_start(args, fmt);
ecc42fbe
FF
657 vaf.fmt = fmt;
658 vaf.va = &args;
659 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 660 va_end(args);
24922684
CL
661}
662
663static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
664{
665 unsigned int off; /* Offset of last byte */
a973e9dd 666 u8 *addr = page_address(page);
24922684
CL
667
668 print_tracking(s, p);
669
670 print_page_info(page);
671
f9f58285
FF
672 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
673 p, p - addr, get_freepointer(s, p));
24922684 674
d86bd1be 675 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
676 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
677 s->red_left_pad);
d86bd1be 678 else if (p > addr + 16)
aa2efd5e 679 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 680
aa2efd5e
DT
681 print_section(KERN_ERR, "Object ", p,
682 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 683 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 684 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 685 s->inuse - s->object_size);
81819f0f 686
81819f0f
CL
687 if (s->offset)
688 off = s->offset + sizeof(void *);
689 else
690 off = s->inuse;
691
24922684 692 if (s->flags & SLAB_STORE_USER)
81819f0f 693 off += 2 * sizeof(struct track);
81819f0f 694
80a9201a
AP
695 off += kasan_metadata_size(s);
696
d86bd1be 697 if (off != size_from_object(s))
81819f0f 698 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
699 print_section(KERN_ERR, "Padding ", p + off,
700 size_from_object(s) - off);
24922684
CL
701
702 dump_stack();
81819f0f
CL
703}
704
75c66def 705void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
706 u8 *object, char *reason)
707{
3dc50637 708 slab_bug(s, "%s", reason);
24922684 709 print_trailer(s, page, object);
81819f0f
CL
710}
711
d0e0ac97
CG
712static void slab_err(struct kmem_cache *s, struct page *page,
713 const char *fmt, ...)
81819f0f
CL
714{
715 va_list args;
716 char buf[100];
717
24922684
CL
718 va_start(args, fmt);
719 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 720 va_end(args);
3dc50637 721 slab_bug(s, "%s", buf);
24922684 722 print_page_info(page);
81819f0f
CL
723 dump_stack();
724}
725
f7cb1933 726static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
727{
728 u8 *p = object;
729
d86bd1be
JK
730 if (s->flags & SLAB_RED_ZONE)
731 memset(p - s->red_left_pad, val, s->red_left_pad);
732
81819f0f 733 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
734 memset(p, POISON_FREE, s->object_size - 1);
735 p[s->object_size - 1] = POISON_END;
81819f0f
CL
736 }
737
738 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 739 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
740}
741
24922684
CL
742static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
743 void *from, void *to)
744{
745 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
746 memset(from, data, to - from);
747}
748
749static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
750 u8 *object, char *what,
06428780 751 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
752{
753 u8 *fault;
754 u8 *end;
755
a79316c6 756 metadata_access_enable();
79824820 757 fault = memchr_inv(start, value, bytes);
a79316c6 758 metadata_access_disable();
24922684
CL
759 if (!fault)
760 return 1;
761
762 end = start + bytes;
763 while (end > fault && end[-1] == value)
764 end--;
765
766 slab_bug(s, "%s overwritten", what);
f9f58285 767 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
768 fault, end - 1, fault[0], value);
769 print_trailer(s, page, object);
770
771 restore_bytes(s, what, value, fault, end);
772 return 0;
81819f0f
CL
773}
774
81819f0f
CL
775/*
776 * Object layout:
777 *
778 * object address
779 * Bytes of the object to be managed.
780 * If the freepointer may overlay the object then the free
781 * pointer is the first word of the object.
672bba3a 782 *
81819f0f
CL
783 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
784 * 0xa5 (POISON_END)
785 *
3b0efdfa 786 * object + s->object_size
81819f0f 787 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 788 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 789 * object_size == inuse.
672bba3a 790 *
81819f0f
CL
791 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
792 * 0xcc (RED_ACTIVE) for objects in use.
793 *
794 * object + s->inuse
672bba3a
CL
795 * Meta data starts here.
796 *
81819f0f
CL
797 * A. Free pointer (if we cannot overwrite object on free)
798 * B. Tracking data for SLAB_STORE_USER
672bba3a 799 * C. Padding to reach required alignment boundary or at mininum
6446faa2 800 * one word if debugging is on to be able to detect writes
672bba3a
CL
801 * before the word boundary.
802 *
803 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
804 *
805 * object + s->size
672bba3a 806 * Nothing is used beyond s->size.
81819f0f 807 *
3b0efdfa 808 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 809 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
810 * may be used with merged slabcaches.
811 */
812
81819f0f
CL
813static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
814{
815 unsigned long off = s->inuse; /* The end of info */
816
817 if (s->offset)
818 /* Freepointer is placed after the object. */
819 off += sizeof(void *);
820
821 if (s->flags & SLAB_STORE_USER)
822 /* We also have user information there */
823 off += 2 * sizeof(struct track);
824
80a9201a
AP
825 off += kasan_metadata_size(s);
826
d86bd1be 827 if (size_from_object(s) == off)
81819f0f
CL
828 return 1;
829
24922684 830 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 831 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
832}
833
39b26464 834/* Check the pad bytes at the end of a slab page */
81819f0f
CL
835static int slab_pad_check(struct kmem_cache *s, struct page *page)
836{
24922684
CL
837 u8 *start;
838 u8 *fault;
839 u8 *end;
840 int length;
841 int remainder;
81819f0f
CL
842
843 if (!(s->flags & SLAB_POISON))
844 return 1;
845
a973e9dd 846 start = page_address(page);
ab9a0f19 847 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
848 end = start + length;
849 remainder = length % s->size;
81819f0f
CL
850 if (!remainder)
851 return 1;
852
a79316c6 853 metadata_access_enable();
79824820 854 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 855 metadata_access_disable();
24922684
CL
856 if (!fault)
857 return 1;
858 while (end > fault && end[-1] == POISON_INUSE)
859 end--;
860
861 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 862 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 863
8a3d271d 864 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 865 return 0;
81819f0f
CL
866}
867
868static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 869 void *object, u8 val)
81819f0f
CL
870{
871 u8 *p = object;
3b0efdfa 872 u8 *endobject = object + s->object_size;
81819f0f
CL
873
874 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
875 if (!check_bytes_and_report(s, page, object, "Redzone",
876 object - s->red_left_pad, val, s->red_left_pad))
877 return 0;
878
24922684 879 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 880 endobject, val, s->inuse - s->object_size))
81819f0f 881 return 0;
81819f0f 882 } else {
3b0efdfa 883 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 884 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
885 endobject, POISON_INUSE,
886 s->inuse - s->object_size);
3adbefee 887 }
81819f0f
CL
888 }
889
890 if (s->flags & SLAB_POISON) {
f7cb1933 891 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 892 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 893 POISON_FREE, s->object_size - 1) ||
24922684 894 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 895 p + s->object_size - 1, POISON_END, 1)))
81819f0f 896 return 0;
81819f0f
CL
897 /*
898 * check_pad_bytes cleans up on its own.
899 */
900 check_pad_bytes(s, page, p);
901 }
902
f7cb1933 903 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
904 /*
905 * Object and freepointer overlap. Cannot check
906 * freepointer while object is allocated.
907 */
908 return 1;
909
910 /* Check free pointer validity */
911 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
912 object_err(s, page, p, "Freepointer corrupt");
913 /*
9f6c708e 914 * No choice but to zap it and thus lose the remainder
81819f0f 915 * of the free objects in this slab. May cause
672bba3a 916 * another error because the object count is now wrong.
81819f0f 917 */
a973e9dd 918 set_freepointer(s, p, NULL);
81819f0f
CL
919 return 0;
920 }
921 return 1;
922}
923
924static int check_slab(struct kmem_cache *s, struct page *page)
925{
39b26464
CL
926 int maxobj;
927
81819f0f
CL
928 VM_BUG_ON(!irqs_disabled());
929
930 if (!PageSlab(page)) {
24922684 931 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
932 return 0;
933 }
39b26464 934
ab9a0f19 935 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
936 if (page->objects > maxobj) {
937 slab_err(s, page, "objects %u > max %u",
f6edde9c 938 page->objects, maxobj);
39b26464
CL
939 return 0;
940 }
941 if (page->inuse > page->objects) {
24922684 942 slab_err(s, page, "inuse %u > max %u",
f6edde9c 943 page->inuse, page->objects);
81819f0f
CL
944 return 0;
945 }
946 /* Slab_pad_check fixes things up after itself */
947 slab_pad_check(s, page);
948 return 1;
949}
950
951/*
672bba3a
CL
952 * Determine if a certain object on a page is on the freelist. Must hold the
953 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
954 */
955static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
956{
957 int nr = 0;
881db7fb 958 void *fp;
81819f0f 959 void *object = NULL;
f6edde9c 960 int max_objects;
81819f0f 961
881db7fb 962 fp = page->freelist;
39b26464 963 while (fp && nr <= page->objects) {
81819f0f
CL
964 if (fp == search)
965 return 1;
966 if (!check_valid_pointer(s, page, fp)) {
967 if (object) {
968 object_err(s, page, object,
969 "Freechain corrupt");
a973e9dd 970 set_freepointer(s, object, NULL);
81819f0f 971 } else {
24922684 972 slab_err(s, page, "Freepointer corrupt");
a973e9dd 973 page->freelist = NULL;
39b26464 974 page->inuse = page->objects;
24922684 975 slab_fix(s, "Freelist cleared");
81819f0f
CL
976 return 0;
977 }
978 break;
979 }
980 object = fp;
981 fp = get_freepointer(s, object);
982 nr++;
983 }
984
ab9a0f19 985 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
986 if (max_objects > MAX_OBJS_PER_PAGE)
987 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
988
989 if (page->objects != max_objects) {
756a025f
JP
990 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
991 page->objects, max_objects);
224a88be
CL
992 page->objects = max_objects;
993 slab_fix(s, "Number of objects adjusted.");
994 }
39b26464 995 if (page->inuse != page->objects - nr) {
756a025f
JP
996 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
997 page->inuse, page->objects - nr);
39b26464 998 page->inuse = page->objects - nr;
24922684 999 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1000 }
1001 return search == NULL;
1002}
1003
0121c619
CL
1004static void trace(struct kmem_cache *s, struct page *page, void *object,
1005 int alloc)
3ec09742
CL
1006{
1007 if (s->flags & SLAB_TRACE) {
f9f58285 1008 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1009 s->name,
1010 alloc ? "alloc" : "free",
1011 object, page->inuse,
1012 page->freelist);
1013
1014 if (!alloc)
aa2efd5e 1015 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1016 s->object_size);
3ec09742
CL
1017
1018 dump_stack();
1019 }
1020}
1021
643b1138 1022/*
672bba3a 1023 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1024 */
5cc6eee8
CL
1025static void add_full(struct kmem_cache *s,
1026 struct kmem_cache_node *n, struct page *page)
643b1138 1027{
5cc6eee8
CL
1028 if (!(s->flags & SLAB_STORE_USER))
1029 return;
1030
255d0884 1031 lockdep_assert_held(&n->list_lock);
643b1138 1032 list_add(&page->lru, &n->full);
643b1138
CL
1033}
1034
c65c1877 1035static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1036{
643b1138
CL
1037 if (!(s->flags & SLAB_STORE_USER))
1038 return;
1039
255d0884 1040 lockdep_assert_held(&n->list_lock);
643b1138 1041 list_del(&page->lru);
643b1138
CL
1042}
1043
0f389ec6
CL
1044/* Tracking of the number of slabs for debugging purposes */
1045static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1046{
1047 struct kmem_cache_node *n = get_node(s, node);
1048
1049 return atomic_long_read(&n->nr_slabs);
1050}
1051
26c02cf0
AB
1052static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1053{
1054 return atomic_long_read(&n->nr_slabs);
1055}
1056
205ab99d 1057static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1058{
1059 struct kmem_cache_node *n = get_node(s, node);
1060
1061 /*
1062 * May be called early in order to allocate a slab for the
1063 * kmem_cache_node structure. Solve the chicken-egg
1064 * dilemma by deferring the increment of the count during
1065 * bootstrap (see early_kmem_cache_node_alloc).
1066 */
338b2642 1067 if (likely(n)) {
0f389ec6 1068 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1069 atomic_long_add(objects, &n->total_objects);
1070 }
0f389ec6 1071}
205ab99d 1072static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1073{
1074 struct kmem_cache_node *n = get_node(s, node);
1075
1076 atomic_long_dec(&n->nr_slabs);
205ab99d 1077 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1078}
1079
1080/* Object debug checks for alloc/free paths */
3ec09742
CL
1081static void setup_object_debug(struct kmem_cache *s, struct page *page,
1082 void *object)
1083{
1084 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1085 return;
1086
f7cb1933 1087 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1088 init_tracking(s, object);
1089}
1090
becfda68 1091static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1092 struct page *page,
ce71e27c 1093 void *object, unsigned long addr)
81819f0f
CL
1094{
1095 if (!check_slab(s, page))
becfda68 1096 return 0;
81819f0f 1097
81819f0f
CL
1098 if (!check_valid_pointer(s, page, object)) {
1099 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1100 return 0;
81819f0f
CL
1101 }
1102
f7cb1933 1103 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1104 return 0;
1105
1106 return 1;
1107}
1108
1109static noinline int alloc_debug_processing(struct kmem_cache *s,
1110 struct page *page,
1111 void *object, unsigned long addr)
1112{
1113 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1114 if (!alloc_consistency_checks(s, page, object, addr))
1115 goto bad;
1116 }
81819f0f 1117
3ec09742
CL
1118 /* Success perform special debug activities for allocs */
1119 if (s->flags & SLAB_STORE_USER)
1120 set_track(s, object, TRACK_ALLOC, addr);
1121 trace(s, page, object, 1);
f7cb1933 1122 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1123 return 1;
3ec09742 1124
81819f0f
CL
1125bad:
1126 if (PageSlab(page)) {
1127 /*
1128 * If this is a slab page then lets do the best we can
1129 * to avoid issues in the future. Marking all objects
672bba3a 1130 * as used avoids touching the remaining objects.
81819f0f 1131 */
24922684 1132 slab_fix(s, "Marking all objects used");
39b26464 1133 page->inuse = page->objects;
a973e9dd 1134 page->freelist = NULL;
81819f0f
CL
1135 }
1136 return 0;
1137}
1138
becfda68
LA
1139static inline int free_consistency_checks(struct kmem_cache *s,
1140 struct page *page, void *object, unsigned long addr)
81819f0f 1141{
81819f0f 1142 if (!check_valid_pointer(s, page, object)) {
70d71228 1143 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1144 return 0;
81819f0f
CL
1145 }
1146
1147 if (on_freelist(s, page, object)) {
24922684 1148 object_err(s, page, object, "Object already free");
becfda68 1149 return 0;
81819f0f
CL
1150 }
1151
f7cb1933 1152 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1153 return 0;
81819f0f 1154
1b4f59e3 1155 if (unlikely(s != page->slab_cache)) {
3adbefee 1156 if (!PageSlab(page)) {
756a025f
JP
1157 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1158 object);
1b4f59e3 1159 } else if (!page->slab_cache) {
f9f58285
FF
1160 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1161 object);
70d71228 1162 dump_stack();
06428780 1163 } else
24922684
CL
1164 object_err(s, page, object,
1165 "page slab pointer corrupt.");
becfda68
LA
1166 return 0;
1167 }
1168 return 1;
1169}
1170
1171/* Supports checking bulk free of a constructed freelist */
1172static noinline int free_debug_processing(
1173 struct kmem_cache *s, struct page *page,
1174 void *head, void *tail, int bulk_cnt,
1175 unsigned long addr)
1176{
1177 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1178 void *object = head;
1179 int cnt = 0;
1180 unsigned long uninitialized_var(flags);
1181 int ret = 0;
1182
1183 spin_lock_irqsave(&n->list_lock, flags);
1184 slab_lock(page);
1185
1186 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1187 if (!check_slab(s, page))
1188 goto out;
1189 }
1190
1191next_object:
1192 cnt++;
1193
1194 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1195 if (!free_consistency_checks(s, page, object, addr))
1196 goto out;
81819f0f 1197 }
3ec09742 1198
3ec09742
CL
1199 if (s->flags & SLAB_STORE_USER)
1200 set_track(s, object, TRACK_FREE, addr);
1201 trace(s, page, object, 0);
81084651 1202 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1203 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1204
1205 /* Reached end of constructed freelist yet? */
1206 if (object != tail) {
1207 object = get_freepointer(s, object);
1208 goto next_object;
1209 }
804aa132
LA
1210 ret = 1;
1211
5c2e4bbb 1212out:
81084651
JDB
1213 if (cnt != bulk_cnt)
1214 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1215 bulk_cnt, cnt);
1216
881db7fb 1217 slab_unlock(page);
282acb43 1218 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1219 if (!ret)
1220 slab_fix(s, "Object at 0x%p not freed", object);
1221 return ret;
81819f0f
CL
1222}
1223
41ecc55b
CL
1224static int __init setup_slub_debug(char *str)
1225{
f0630fff
CL
1226 slub_debug = DEBUG_DEFAULT_FLAGS;
1227 if (*str++ != '=' || !*str)
1228 /*
1229 * No options specified. Switch on full debugging.
1230 */
1231 goto out;
1232
1233 if (*str == ',')
1234 /*
1235 * No options but restriction on slabs. This means full
1236 * debugging for slabs matching a pattern.
1237 */
1238 goto check_slabs;
1239
1240 slub_debug = 0;
1241 if (*str == '-')
1242 /*
1243 * Switch off all debugging measures.
1244 */
1245 goto out;
1246
1247 /*
1248 * Determine which debug features should be switched on
1249 */
06428780 1250 for (; *str && *str != ','; str++) {
f0630fff
CL
1251 switch (tolower(*str)) {
1252 case 'f':
becfda68 1253 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1254 break;
1255 case 'z':
1256 slub_debug |= SLAB_RED_ZONE;
1257 break;
1258 case 'p':
1259 slub_debug |= SLAB_POISON;
1260 break;
1261 case 'u':
1262 slub_debug |= SLAB_STORE_USER;
1263 break;
1264 case 't':
1265 slub_debug |= SLAB_TRACE;
1266 break;
4c13dd3b
DM
1267 case 'a':
1268 slub_debug |= SLAB_FAILSLAB;
1269 break;
08303a73
CA
1270 case 'o':
1271 /*
1272 * Avoid enabling debugging on caches if its minimum
1273 * order would increase as a result.
1274 */
1275 disable_higher_order_debug = 1;
1276 break;
f0630fff 1277 default:
f9f58285
FF
1278 pr_err("slub_debug option '%c' unknown. skipped\n",
1279 *str);
f0630fff 1280 }
41ecc55b
CL
1281 }
1282
f0630fff 1283check_slabs:
41ecc55b
CL
1284 if (*str == ',')
1285 slub_debug_slabs = str + 1;
f0630fff 1286out:
41ecc55b
CL
1287 return 1;
1288}
1289
1290__setup("slub_debug", setup_slub_debug);
1291
423c929c 1292unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1293 unsigned long flags, const char *name,
51cc5068 1294 void (*ctor)(void *))
41ecc55b
CL
1295{
1296 /*
e153362a 1297 * Enable debugging if selected on the kernel commandline.
41ecc55b 1298 */
c6f58d9b
CL
1299 if (slub_debug && (!slub_debug_slabs || (name &&
1300 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1301 flags |= slub_debug;
ba0268a8
CL
1302
1303 return flags;
41ecc55b 1304}
b4a64718 1305#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1306static inline void setup_object_debug(struct kmem_cache *s,
1307 struct page *page, void *object) {}
41ecc55b 1308
3ec09742 1309static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1310 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1311
282acb43 1312static inline int free_debug_processing(
81084651
JDB
1313 struct kmem_cache *s, struct page *page,
1314 void *head, void *tail, int bulk_cnt,
282acb43 1315 unsigned long addr) { return 0; }
41ecc55b 1316
41ecc55b
CL
1317static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1318 { return 1; }
1319static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1320 void *object, u8 val) { return 1; }
5cc6eee8
CL
1321static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1322 struct page *page) {}
c65c1877
PZ
1323static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1324 struct page *page) {}
423c929c 1325unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1326 unsigned long flags, const char *name,
51cc5068 1327 void (*ctor)(void *))
ba0268a8
CL
1328{
1329 return flags;
1330}
41ecc55b 1331#define slub_debug 0
0f389ec6 1332
fdaa45e9
IM
1333#define disable_higher_order_debug 0
1334
0f389ec6
CL
1335static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1336 { return 0; }
26c02cf0
AB
1337static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1338 { return 0; }
205ab99d
CL
1339static inline void inc_slabs_node(struct kmem_cache *s, int node,
1340 int objects) {}
1341static inline void dec_slabs_node(struct kmem_cache *s, int node,
1342 int objects) {}
7d550c56 1343
02e72cc6
AR
1344#endif /* CONFIG_SLUB_DEBUG */
1345
1346/*
1347 * Hooks for other subsystems that check memory allocations. In a typical
1348 * production configuration these hooks all should produce no code at all.
1349 */
d56791b3
RB
1350static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1351{
1352 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1353 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1354}
1355
1356static inline void kfree_hook(const void *x)
1357{
1358 kmemleak_free(x);
0316bec2 1359 kasan_kfree_large(x);
d56791b3
RB
1360}
1361
80a9201a 1362static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1363{
80a9201a
AP
1364 void *freeptr;
1365
d56791b3 1366 kmemleak_free_recursive(x, s->flags);
7d550c56 1367
02e72cc6
AR
1368 /*
1369 * Trouble is that we may no longer disable interrupts in the fast path
1370 * So in order to make the debug calls that expect irqs to be
1371 * disabled we need to disable interrupts temporarily.
1372 */
1373#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1374 {
1375 unsigned long flags;
1376
1377 local_irq_save(flags);
1378 kmemcheck_slab_free(s, x, s->object_size);
1379 debug_check_no_locks_freed(x, s->object_size);
1380 local_irq_restore(flags);
1381 }
1382#endif
1383 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1384 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1385
80a9201a
AP
1386 freeptr = get_freepointer(s, x);
1387 /*
1388 * kasan_slab_free() may put x into memory quarantine, delaying its
1389 * reuse. In this case the object's freelist pointer is changed.
1390 */
0316bec2 1391 kasan_slab_free(s, x);
80a9201a 1392 return freeptr;
02e72cc6 1393}
205ab99d 1394
81084651
JDB
1395static inline void slab_free_freelist_hook(struct kmem_cache *s,
1396 void *head, void *tail)
1397{
1398/*
1399 * Compiler cannot detect this function can be removed if slab_free_hook()
1400 * evaluates to nothing. Thus, catch all relevant config debug options here.
1401 */
1402#if defined(CONFIG_KMEMCHECK) || \
1403 defined(CONFIG_LOCKDEP) || \
1404 defined(CONFIG_DEBUG_KMEMLEAK) || \
1405 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1406 defined(CONFIG_KASAN)
1407
1408 void *object = head;
1409 void *tail_obj = tail ? : head;
80a9201a 1410 void *freeptr;
81084651
JDB
1411
1412 do {
80a9201a
AP
1413 freeptr = slab_free_hook(s, object);
1414 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1415#endif
1416}
1417
588f8ba9
TG
1418static void setup_object(struct kmem_cache *s, struct page *page,
1419 void *object)
1420{
1421 setup_object_debug(s, page, object);
b3cbd9bf 1422 kasan_init_slab_obj(s, object);
588f8ba9
TG
1423 if (unlikely(s->ctor)) {
1424 kasan_unpoison_object_data(s, object);
1425 s->ctor(object);
1426 kasan_poison_object_data(s, object);
1427 }
1428}
1429
81819f0f
CL
1430/*
1431 * Slab allocation and freeing
1432 */
5dfb4175
VD
1433static inline struct page *alloc_slab_page(struct kmem_cache *s,
1434 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1435{
5dfb4175 1436 struct page *page;
65c3376a
CL
1437 int order = oo_order(oo);
1438
b1eeab67
VN
1439 flags |= __GFP_NOTRACK;
1440
2154a336 1441 if (node == NUMA_NO_NODE)
5dfb4175 1442 page = alloc_pages(flags, order);
65c3376a 1443 else
96db800f 1444 page = __alloc_pages_node(node, flags, order);
5dfb4175 1445
f3ccb2c4
VD
1446 if (page && memcg_charge_slab(page, flags, order, s)) {
1447 __free_pages(page, order);
1448 page = NULL;
1449 }
5dfb4175
VD
1450
1451 return page;
65c3376a
CL
1452}
1453
210e7a43
TG
1454#ifdef CONFIG_SLAB_FREELIST_RANDOM
1455/* Pre-initialize the random sequence cache */
1456static int init_cache_random_seq(struct kmem_cache *s)
1457{
1458 int err;
1459 unsigned long i, count = oo_objects(s->oo);
1460
a810007a
SR
1461 /* Bailout if already initialised */
1462 if (s->random_seq)
1463 return 0;
1464
210e7a43
TG
1465 err = cache_random_seq_create(s, count, GFP_KERNEL);
1466 if (err) {
1467 pr_err("SLUB: Unable to initialize free list for %s\n",
1468 s->name);
1469 return err;
1470 }
1471
1472 /* Transform to an offset on the set of pages */
1473 if (s->random_seq) {
1474 for (i = 0; i < count; i++)
1475 s->random_seq[i] *= s->size;
1476 }
1477 return 0;
1478}
1479
1480/* Initialize each random sequence freelist per cache */
1481static void __init init_freelist_randomization(void)
1482{
1483 struct kmem_cache *s;
1484
1485 mutex_lock(&slab_mutex);
1486
1487 list_for_each_entry(s, &slab_caches, list)
1488 init_cache_random_seq(s);
1489
1490 mutex_unlock(&slab_mutex);
1491}
1492
1493/* Get the next entry on the pre-computed freelist randomized */
1494static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 unsigned long *pos, void *start,
1496 unsigned long page_limit,
1497 unsigned long freelist_count)
1498{
1499 unsigned int idx;
1500
1501 /*
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1504 */
1505 do {
1506 idx = s->random_seq[*pos];
1507 *pos += 1;
1508 if (*pos >= freelist_count)
1509 *pos = 0;
1510 } while (unlikely(idx >= page_limit));
1511
1512 return (char *)start + idx;
1513}
1514
1515/* Shuffle the single linked freelist based on a random pre-computed sequence */
1516static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517{
1518 void *start;
1519 void *cur;
1520 void *next;
1521 unsigned long idx, pos, page_limit, freelist_count;
1522
1523 if (page->objects < 2 || !s->random_seq)
1524 return false;
1525
1526 freelist_count = oo_objects(s->oo);
1527 pos = get_random_int() % freelist_count;
1528
1529 page_limit = page->objects * s->size;
1530 start = fixup_red_left(s, page_address(page));
1531
1532 /* First entry is used as the base of the freelist */
1533 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 freelist_count);
1535 page->freelist = cur;
1536
1537 for (idx = 1; idx < page->objects; idx++) {
1538 setup_object(s, page, cur);
1539 next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 freelist_count);
1541 set_freepointer(s, cur, next);
1542 cur = next;
1543 }
1544 setup_object(s, page, cur);
1545 set_freepointer(s, cur, NULL);
1546
1547 return true;
1548}
1549#else
1550static inline int init_cache_random_seq(struct kmem_cache *s)
1551{
1552 return 0;
1553}
1554static inline void init_freelist_randomization(void) { }
1555static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1556{
1557 return false;
1558}
1559#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560
81819f0f
CL
1561static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1562{
06428780 1563 struct page *page;
834f3d11 1564 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1565 gfp_t alloc_gfp;
588f8ba9
TG
1566 void *start, *p;
1567 int idx, order;
210e7a43 1568 bool shuffle;
81819f0f 1569
7e0528da
CL
1570 flags &= gfp_allowed_mask;
1571
d0164adc 1572 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1573 local_irq_enable();
1574
b7a49f0d 1575 flags |= s->allocflags;
e12ba74d 1576
ba52270d
PE
1577 /*
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1580 */
1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1584
5dfb4175 1585 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1586 if (unlikely(!page)) {
1587 oo = s->min;
80c3a998 1588 alloc_gfp = flags;
65c3376a
CL
1589 /*
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1592 */
5dfb4175 1593 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1594 if (unlikely(!page))
1595 goto out;
1596 stat(s, ORDER_FALLBACK);
65c3376a 1597 }
5a896d9e 1598
588f8ba9
TG
1599 if (kmemcheck_enabled &&
1600 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1601 int pages = 1 << oo_order(oo);
1602
80c3a998 1603 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1604
1605 /*
1606 * Objects from caches that have a constructor don't get
1607 * cleared when they're allocated, so we need to do it here.
1608 */
1609 if (s->ctor)
1610 kmemcheck_mark_uninitialized_pages(page, pages);
1611 else
1612 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1613 }
1614
834f3d11 1615 page->objects = oo_objects(oo);
81819f0f 1616
1f458cbf 1617 order = compound_order(page);
1b4f59e3 1618 page->slab_cache = s;
c03f94cc 1619 __SetPageSlab(page);
2f064f34 1620 if (page_is_pfmemalloc(page))
072bb0aa 1621 SetPageSlabPfmemalloc(page);
81819f0f
CL
1622
1623 start = page_address(page);
81819f0f
CL
1624
1625 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1626 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1627
0316bec2
AR
1628 kasan_poison_slab(page);
1629
210e7a43
TG
1630 shuffle = shuffle_freelist(s, page);
1631
1632 if (!shuffle) {
1633 for_each_object_idx(p, idx, s, start, page->objects) {
1634 setup_object(s, page, p);
1635 if (likely(idx < page->objects))
1636 set_freepointer(s, p, p + s->size);
1637 else
1638 set_freepointer(s, p, NULL);
1639 }
1640 page->freelist = fixup_red_left(s, start);
81819f0f 1641 }
81819f0f 1642
e6e82ea1 1643 page->inuse = page->objects;
8cb0a506 1644 page->frozen = 1;
588f8ba9 1645
81819f0f 1646out:
d0164adc 1647 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1648 local_irq_disable();
1649 if (!page)
1650 return NULL;
1651
7779f212 1652 mod_lruvec_page_state(page,
588f8ba9
TG
1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 1 << oo_order(oo));
1656
1657 inc_slabs_node(s, page_to_nid(page), page->objects);
1658
81819f0f
CL
1659 return page;
1660}
1661
588f8ba9
TG
1662static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1663{
1664 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1665 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1666 flags &= ~GFP_SLAB_BUG_MASK;
1667 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1668 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1669 dump_stack();
588f8ba9
TG
1670 }
1671
1672 return allocate_slab(s,
1673 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1674}
1675
81819f0f
CL
1676static void __free_slab(struct kmem_cache *s, struct page *page)
1677{
834f3d11
CL
1678 int order = compound_order(page);
1679 int pages = 1 << order;
81819f0f 1680
becfda68 1681 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1682 void *p;
1683
1684 slab_pad_check(s, page);
224a88be
CL
1685 for_each_object(p, s, page_address(page),
1686 page->objects)
f7cb1933 1687 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1688 }
1689
b1eeab67 1690 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1691
7779f212 1692 mod_lruvec_page_state(page,
81819f0f
CL
1693 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1694 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1695 -pages);
81819f0f 1696
072bb0aa 1697 __ClearPageSlabPfmemalloc(page);
49bd5221 1698 __ClearPageSlab(page);
1f458cbf 1699
22b751c3 1700 page_mapcount_reset(page);
1eb5ac64
NP
1701 if (current->reclaim_state)
1702 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1703 memcg_uncharge_slab(page, order, s);
1704 __free_pages(page, order);
81819f0f
CL
1705}
1706
da9a638c
LJ
1707#define need_reserve_slab_rcu \
1708 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1709
81819f0f
CL
1710static void rcu_free_slab(struct rcu_head *h)
1711{
1712 struct page *page;
1713
da9a638c
LJ
1714 if (need_reserve_slab_rcu)
1715 page = virt_to_head_page(h);
1716 else
1717 page = container_of((struct list_head *)h, struct page, lru);
1718
1b4f59e3 1719 __free_slab(page->slab_cache, page);
81819f0f
CL
1720}
1721
1722static void free_slab(struct kmem_cache *s, struct page *page)
1723{
5f0d5a3a 1724 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1725 struct rcu_head *head;
1726
1727 if (need_reserve_slab_rcu) {
1728 int order = compound_order(page);
1729 int offset = (PAGE_SIZE << order) - s->reserved;
1730
1731 VM_BUG_ON(s->reserved != sizeof(*head));
1732 head = page_address(page) + offset;
1733 } else {
bc4f610d 1734 head = &page->rcu_head;
da9a638c 1735 }
81819f0f
CL
1736
1737 call_rcu(head, rcu_free_slab);
1738 } else
1739 __free_slab(s, page);
1740}
1741
1742static void discard_slab(struct kmem_cache *s, struct page *page)
1743{
205ab99d 1744 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1745 free_slab(s, page);
1746}
1747
1748/*
5cc6eee8 1749 * Management of partially allocated slabs.
81819f0f 1750 */
1e4dd946
SR
1751static inline void
1752__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1753{
e95eed57 1754 n->nr_partial++;
136333d1 1755 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1756 list_add_tail(&page->lru, &n->partial);
1757 else
1758 list_add(&page->lru, &n->partial);
81819f0f
CL
1759}
1760
1e4dd946
SR
1761static inline void add_partial(struct kmem_cache_node *n,
1762 struct page *page, int tail)
62e346a8 1763{
c65c1877 1764 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1765 __add_partial(n, page, tail);
1766}
c65c1877 1767
1e4dd946
SR
1768static inline void remove_partial(struct kmem_cache_node *n,
1769 struct page *page)
1770{
1771 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1772 list_del(&page->lru);
1773 n->nr_partial--;
1e4dd946
SR
1774}
1775
81819f0f 1776/*
7ced3719
CL
1777 * Remove slab from the partial list, freeze it and
1778 * return the pointer to the freelist.
81819f0f 1779 *
497b66f2 1780 * Returns a list of objects or NULL if it fails.
81819f0f 1781 */
497b66f2 1782static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1783 struct kmem_cache_node *n, struct page *page,
633b0764 1784 int mode, int *objects)
81819f0f 1785{
2cfb7455
CL
1786 void *freelist;
1787 unsigned long counters;
1788 struct page new;
1789
c65c1877
PZ
1790 lockdep_assert_held(&n->list_lock);
1791
2cfb7455
CL
1792 /*
1793 * Zap the freelist and set the frozen bit.
1794 * The old freelist is the list of objects for the
1795 * per cpu allocation list.
1796 */
7ced3719
CL
1797 freelist = page->freelist;
1798 counters = page->counters;
1799 new.counters = counters;
633b0764 1800 *objects = new.objects - new.inuse;
23910c50 1801 if (mode) {
7ced3719 1802 new.inuse = page->objects;
23910c50
PE
1803 new.freelist = NULL;
1804 } else {
1805 new.freelist = freelist;
1806 }
2cfb7455 1807
a0132ac0 1808 VM_BUG_ON(new.frozen);
7ced3719 1809 new.frozen = 1;
2cfb7455 1810
7ced3719 1811 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1812 freelist, counters,
02d7633f 1813 new.freelist, new.counters,
7ced3719 1814 "acquire_slab"))
7ced3719 1815 return NULL;
2cfb7455
CL
1816
1817 remove_partial(n, page);
7ced3719 1818 WARN_ON(!freelist);
49e22585 1819 return freelist;
81819f0f
CL
1820}
1821
633b0764 1822static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1823static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1824
81819f0f 1825/*
672bba3a 1826 * Try to allocate a partial slab from a specific node.
81819f0f 1827 */
8ba00bb6
JK
1828static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1829 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1830{
49e22585
CL
1831 struct page *page, *page2;
1832 void *object = NULL;
633b0764
JK
1833 int available = 0;
1834 int objects;
81819f0f
CL
1835
1836 /*
1837 * Racy check. If we mistakenly see no partial slabs then we
1838 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1839 * partial slab and there is none available then get_partials()
1840 * will return NULL.
81819f0f
CL
1841 */
1842 if (!n || !n->nr_partial)
1843 return NULL;
1844
1845 spin_lock(&n->list_lock);
49e22585 1846 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1847 void *t;
49e22585 1848
8ba00bb6
JK
1849 if (!pfmemalloc_match(page, flags))
1850 continue;
1851
633b0764 1852 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1853 if (!t)
1854 break;
1855
633b0764 1856 available += objects;
12d79634 1857 if (!object) {
49e22585 1858 c->page = page;
49e22585 1859 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1860 object = t;
49e22585 1861 } else {
633b0764 1862 put_cpu_partial(s, page, 0);
8028dcea 1863 stat(s, CPU_PARTIAL_NODE);
49e22585 1864 }
345c905d 1865 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1866 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1867 break;
1868
497b66f2 1869 }
81819f0f 1870 spin_unlock(&n->list_lock);
497b66f2 1871 return object;
81819f0f
CL
1872}
1873
1874/*
672bba3a 1875 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1876 */
de3ec035 1877static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1878 struct kmem_cache_cpu *c)
81819f0f
CL
1879{
1880#ifdef CONFIG_NUMA
1881 struct zonelist *zonelist;
dd1a239f 1882 struct zoneref *z;
54a6eb5c
MG
1883 struct zone *zone;
1884 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1885 void *object;
cc9a6c87 1886 unsigned int cpuset_mems_cookie;
81819f0f
CL
1887
1888 /*
672bba3a
CL
1889 * The defrag ratio allows a configuration of the tradeoffs between
1890 * inter node defragmentation and node local allocations. A lower
1891 * defrag_ratio increases the tendency to do local allocations
1892 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1893 *
672bba3a
CL
1894 * If the defrag_ratio is set to 0 then kmalloc() always
1895 * returns node local objects. If the ratio is higher then kmalloc()
1896 * may return off node objects because partial slabs are obtained
1897 * from other nodes and filled up.
81819f0f 1898 *
43efd3ea
LP
1899 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1900 * (which makes defrag_ratio = 1000) then every (well almost)
1901 * allocation will first attempt to defrag slab caches on other nodes.
1902 * This means scanning over all nodes to look for partial slabs which
1903 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1904 * with available objects.
81819f0f 1905 */
9824601e
CL
1906 if (!s->remote_node_defrag_ratio ||
1907 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1908 return NULL;
1909
cc9a6c87 1910 do {
d26914d1 1911 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1912 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1913 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1914 struct kmem_cache_node *n;
1915
1916 n = get_node(s, zone_to_nid(zone));
1917
dee2f8aa 1918 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1919 n->nr_partial > s->min_partial) {
8ba00bb6 1920 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1921 if (object) {
1922 /*
d26914d1
MG
1923 * Don't check read_mems_allowed_retry()
1924 * here - if mems_allowed was updated in
1925 * parallel, that was a harmless race
1926 * between allocation and the cpuset
1927 * update
cc9a6c87 1928 */
cc9a6c87
MG
1929 return object;
1930 }
c0ff7453 1931 }
81819f0f 1932 }
d26914d1 1933 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1934#endif
1935 return NULL;
1936}
1937
1938/*
1939 * Get a partial page, lock it and return it.
1940 */
497b66f2 1941static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1942 struct kmem_cache_cpu *c)
81819f0f 1943{
497b66f2 1944 void *object;
a561ce00
JK
1945 int searchnode = node;
1946
1947 if (node == NUMA_NO_NODE)
1948 searchnode = numa_mem_id();
1949 else if (!node_present_pages(node))
1950 searchnode = node_to_mem_node(node);
81819f0f 1951
8ba00bb6 1952 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1953 if (object || node != NUMA_NO_NODE)
1954 return object;
81819f0f 1955
acd19fd1 1956 return get_any_partial(s, flags, c);
81819f0f
CL
1957}
1958
8a5ec0ba
CL
1959#ifdef CONFIG_PREEMPT
1960/*
1961 * Calculate the next globally unique transaction for disambiguiation
1962 * during cmpxchg. The transactions start with the cpu number and are then
1963 * incremented by CONFIG_NR_CPUS.
1964 */
1965#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1966#else
1967/*
1968 * No preemption supported therefore also no need to check for
1969 * different cpus.
1970 */
1971#define TID_STEP 1
1972#endif
1973
1974static inline unsigned long next_tid(unsigned long tid)
1975{
1976 return tid + TID_STEP;
1977}
1978
1979static inline unsigned int tid_to_cpu(unsigned long tid)
1980{
1981 return tid % TID_STEP;
1982}
1983
1984static inline unsigned long tid_to_event(unsigned long tid)
1985{
1986 return tid / TID_STEP;
1987}
1988
1989static inline unsigned int init_tid(int cpu)
1990{
1991 return cpu;
1992}
1993
1994static inline void note_cmpxchg_failure(const char *n,
1995 const struct kmem_cache *s, unsigned long tid)
1996{
1997#ifdef SLUB_DEBUG_CMPXCHG
1998 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1999
f9f58285 2000 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2001
2002#ifdef CONFIG_PREEMPT
2003 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2004 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2005 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2006 else
2007#endif
2008 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2009 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2010 tid_to_event(tid), tid_to_event(actual_tid));
2011 else
f9f58285 2012 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2013 actual_tid, tid, next_tid(tid));
2014#endif
4fdccdfb 2015 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2016}
2017
788e1aad 2018static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2019{
8a5ec0ba
CL
2020 int cpu;
2021
2022 for_each_possible_cpu(cpu)
2023 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2024}
2cfb7455 2025
81819f0f
CL
2026/*
2027 * Remove the cpu slab
2028 */
d0e0ac97 2029static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2030 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2031{
2cfb7455 2032 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2033 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2034 int lock = 0;
2035 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2036 void *nextfree;
136333d1 2037 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2038 struct page new;
2039 struct page old;
2040
2041 if (page->freelist) {
84e554e6 2042 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2043 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2044 }
2045
894b8788 2046 /*
2cfb7455
CL
2047 * Stage one: Free all available per cpu objects back
2048 * to the page freelist while it is still frozen. Leave the
2049 * last one.
2050 *
2051 * There is no need to take the list->lock because the page
2052 * is still frozen.
2053 */
2054 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2055 void *prior;
2056 unsigned long counters;
2057
2058 do {
2059 prior = page->freelist;
2060 counters = page->counters;
2061 set_freepointer(s, freelist, prior);
2062 new.counters = counters;
2063 new.inuse--;
a0132ac0 2064 VM_BUG_ON(!new.frozen);
2cfb7455 2065
1d07171c 2066 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2067 prior, counters,
2068 freelist, new.counters,
2069 "drain percpu freelist"));
2070
2071 freelist = nextfree;
2072 }
2073
894b8788 2074 /*
2cfb7455
CL
2075 * Stage two: Ensure that the page is unfrozen while the
2076 * list presence reflects the actual number of objects
2077 * during unfreeze.
2078 *
2079 * We setup the list membership and then perform a cmpxchg
2080 * with the count. If there is a mismatch then the page
2081 * is not unfrozen but the page is on the wrong list.
2082 *
2083 * Then we restart the process which may have to remove
2084 * the page from the list that we just put it on again
2085 * because the number of objects in the slab may have
2086 * changed.
894b8788 2087 */
2cfb7455 2088redo:
894b8788 2089
2cfb7455
CL
2090 old.freelist = page->freelist;
2091 old.counters = page->counters;
a0132ac0 2092 VM_BUG_ON(!old.frozen);
7c2e132c 2093
2cfb7455
CL
2094 /* Determine target state of the slab */
2095 new.counters = old.counters;
2096 if (freelist) {
2097 new.inuse--;
2098 set_freepointer(s, freelist, old.freelist);
2099 new.freelist = freelist;
2100 } else
2101 new.freelist = old.freelist;
2102
2103 new.frozen = 0;
2104
8a5b20ae 2105 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2106 m = M_FREE;
2107 else if (new.freelist) {
2108 m = M_PARTIAL;
2109 if (!lock) {
2110 lock = 1;
2111 /*
2112 * Taking the spinlock removes the possiblity
2113 * that acquire_slab() will see a slab page that
2114 * is frozen
2115 */
2116 spin_lock(&n->list_lock);
2117 }
2118 } else {
2119 m = M_FULL;
2120 if (kmem_cache_debug(s) && !lock) {
2121 lock = 1;
2122 /*
2123 * This also ensures that the scanning of full
2124 * slabs from diagnostic functions will not see
2125 * any frozen slabs.
2126 */
2127 spin_lock(&n->list_lock);
2128 }
2129 }
2130
2131 if (l != m) {
2132
2133 if (l == M_PARTIAL)
2134
2135 remove_partial(n, page);
2136
2137 else if (l == M_FULL)
894b8788 2138
c65c1877 2139 remove_full(s, n, page);
2cfb7455
CL
2140
2141 if (m == M_PARTIAL) {
2142
2143 add_partial(n, page, tail);
136333d1 2144 stat(s, tail);
2cfb7455
CL
2145
2146 } else if (m == M_FULL) {
894b8788 2147
2cfb7455
CL
2148 stat(s, DEACTIVATE_FULL);
2149 add_full(s, n, page);
2150
2151 }
2152 }
2153
2154 l = m;
1d07171c 2155 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2156 old.freelist, old.counters,
2157 new.freelist, new.counters,
2158 "unfreezing slab"))
2159 goto redo;
2160
2cfb7455
CL
2161 if (lock)
2162 spin_unlock(&n->list_lock);
2163
2164 if (m == M_FREE) {
2165 stat(s, DEACTIVATE_EMPTY);
2166 discard_slab(s, page);
2167 stat(s, FREE_SLAB);
894b8788 2168 }
d4ff6d35
WY
2169
2170 c->page = NULL;
2171 c->freelist = NULL;
81819f0f
CL
2172}
2173
d24ac77f
JK
2174/*
2175 * Unfreeze all the cpu partial slabs.
2176 *
59a09917
CL
2177 * This function must be called with interrupts disabled
2178 * for the cpu using c (or some other guarantee must be there
2179 * to guarantee no concurrent accesses).
d24ac77f 2180 */
59a09917
CL
2181static void unfreeze_partials(struct kmem_cache *s,
2182 struct kmem_cache_cpu *c)
49e22585 2183{
345c905d 2184#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2185 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2186 struct page *page, *discard_page = NULL;
49e22585
CL
2187
2188 while ((page = c->partial)) {
49e22585
CL
2189 struct page new;
2190 struct page old;
2191
2192 c->partial = page->next;
43d77867
JK
2193
2194 n2 = get_node(s, page_to_nid(page));
2195 if (n != n2) {
2196 if (n)
2197 spin_unlock(&n->list_lock);
2198
2199 n = n2;
2200 spin_lock(&n->list_lock);
2201 }
49e22585
CL
2202
2203 do {
2204
2205 old.freelist = page->freelist;
2206 old.counters = page->counters;
a0132ac0 2207 VM_BUG_ON(!old.frozen);
49e22585
CL
2208
2209 new.counters = old.counters;
2210 new.freelist = old.freelist;
2211
2212 new.frozen = 0;
2213
d24ac77f 2214 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2215 old.freelist, old.counters,
2216 new.freelist, new.counters,
2217 "unfreezing slab"));
2218
8a5b20ae 2219 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2220 page->next = discard_page;
2221 discard_page = page;
43d77867
JK
2222 } else {
2223 add_partial(n, page, DEACTIVATE_TO_TAIL);
2224 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2225 }
2226 }
2227
2228 if (n)
2229 spin_unlock(&n->list_lock);
9ada1934
SL
2230
2231 while (discard_page) {
2232 page = discard_page;
2233 discard_page = discard_page->next;
2234
2235 stat(s, DEACTIVATE_EMPTY);
2236 discard_slab(s, page);
2237 stat(s, FREE_SLAB);
2238 }
345c905d 2239#endif
49e22585
CL
2240}
2241
2242/*
2243 * Put a page that was just frozen (in __slab_free) into a partial page
2244 * slot if available. This is done without interrupts disabled and without
2245 * preemption disabled. The cmpxchg is racy and may put the partial page
2246 * onto a random cpus partial slot.
2247 *
2248 * If we did not find a slot then simply move all the partials to the
2249 * per node partial list.
2250 */
633b0764 2251static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2252{
345c905d 2253#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2254 struct page *oldpage;
2255 int pages;
2256 int pobjects;
2257
d6e0b7fa 2258 preempt_disable();
49e22585
CL
2259 do {
2260 pages = 0;
2261 pobjects = 0;
2262 oldpage = this_cpu_read(s->cpu_slab->partial);
2263
2264 if (oldpage) {
2265 pobjects = oldpage->pobjects;
2266 pages = oldpage->pages;
2267 if (drain && pobjects > s->cpu_partial) {
2268 unsigned long flags;
2269 /*
2270 * partial array is full. Move the existing
2271 * set to the per node partial list.
2272 */
2273 local_irq_save(flags);
59a09917 2274 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2275 local_irq_restore(flags);
e24fc410 2276 oldpage = NULL;
49e22585
CL
2277 pobjects = 0;
2278 pages = 0;
8028dcea 2279 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2280 }
2281 }
2282
2283 pages++;
2284 pobjects += page->objects - page->inuse;
2285
2286 page->pages = pages;
2287 page->pobjects = pobjects;
2288 page->next = oldpage;
2289
d0e0ac97
CG
2290 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2291 != oldpage);
d6e0b7fa
VD
2292 if (unlikely(!s->cpu_partial)) {
2293 unsigned long flags;
2294
2295 local_irq_save(flags);
2296 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2297 local_irq_restore(flags);
2298 }
2299 preempt_enable();
345c905d 2300#endif
49e22585
CL
2301}
2302
dfb4f096 2303static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2304{
84e554e6 2305 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2306 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2307
2308 c->tid = next_tid(c->tid);
81819f0f
CL
2309}
2310
2311/*
2312 * Flush cpu slab.
6446faa2 2313 *
81819f0f
CL
2314 * Called from IPI handler with interrupts disabled.
2315 */
0c710013 2316static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2317{
9dfc6e68 2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2319
49e22585
CL
2320 if (likely(c)) {
2321 if (c->page)
2322 flush_slab(s, c);
2323
59a09917 2324 unfreeze_partials(s, c);
49e22585 2325 }
81819f0f
CL
2326}
2327
2328static void flush_cpu_slab(void *d)
2329{
2330 struct kmem_cache *s = d;
81819f0f 2331
dfb4f096 2332 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2333}
2334
a8364d55
GBY
2335static bool has_cpu_slab(int cpu, void *info)
2336{
2337 struct kmem_cache *s = info;
2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2339
a93cf07b 2340 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2341}
2342
81819f0f
CL
2343static void flush_all(struct kmem_cache *s)
2344{
a8364d55 2345 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2346}
2347
a96a87bf
SAS
2348/*
2349 * Use the cpu notifier to insure that the cpu slabs are flushed when
2350 * necessary.
2351 */
2352static int slub_cpu_dead(unsigned int cpu)
2353{
2354 struct kmem_cache *s;
2355 unsigned long flags;
2356
2357 mutex_lock(&slab_mutex);
2358 list_for_each_entry(s, &slab_caches, list) {
2359 local_irq_save(flags);
2360 __flush_cpu_slab(s, cpu);
2361 local_irq_restore(flags);
2362 }
2363 mutex_unlock(&slab_mutex);
2364 return 0;
2365}
2366
dfb4f096
CL
2367/*
2368 * Check if the objects in a per cpu structure fit numa
2369 * locality expectations.
2370 */
57d437d2 2371static inline int node_match(struct page *page, int node)
dfb4f096
CL
2372{
2373#ifdef CONFIG_NUMA
4d7868e6 2374 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2375 return 0;
2376#endif
2377 return 1;
2378}
2379
9a02d699 2380#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2381static int count_free(struct page *page)
2382{
2383 return page->objects - page->inuse;
2384}
2385
9a02d699
DR
2386static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2387{
2388 return atomic_long_read(&n->total_objects);
2389}
2390#endif /* CONFIG_SLUB_DEBUG */
2391
2392#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2393static unsigned long count_partial(struct kmem_cache_node *n,
2394 int (*get_count)(struct page *))
2395{
2396 unsigned long flags;
2397 unsigned long x = 0;
2398 struct page *page;
2399
2400 spin_lock_irqsave(&n->list_lock, flags);
2401 list_for_each_entry(page, &n->partial, lru)
2402 x += get_count(page);
2403 spin_unlock_irqrestore(&n->list_lock, flags);
2404 return x;
2405}
9a02d699 2406#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2407
781b2ba6
PE
2408static noinline void
2409slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2410{
9a02d699
DR
2411#ifdef CONFIG_SLUB_DEBUG
2412 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2413 DEFAULT_RATELIMIT_BURST);
781b2ba6 2414 int node;
fa45dc25 2415 struct kmem_cache_node *n;
781b2ba6 2416
9a02d699
DR
2417 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2418 return;
2419
5b3810e5
VB
2420 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2421 nid, gfpflags, &gfpflags);
f9f58285
FF
2422 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2423 s->name, s->object_size, s->size, oo_order(s->oo),
2424 oo_order(s->min));
781b2ba6 2425
3b0efdfa 2426 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2427 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2428 s->name);
fa5ec8a1 2429
fa45dc25 2430 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2431 unsigned long nr_slabs;
2432 unsigned long nr_objs;
2433 unsigned long nr_free;
2434
26c02cf0
AB
2435 nr_free = count_partial(n, count_free);
2436 nr_slabs = node_nr_slabs(n);
2437 nr_objs = node_nr_objs(n);
781b2ba6 2438
f9f58285 2439 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2440 node, nr_slabs, nr_objs, nr_free);
2441 }
9a02d699 2442#endif
781b2ba6
PE
2443}
2444
497b66f2
CL
2445static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2446 int node, struct kmem_cache_cpu **pc)
2447{
6faa6833 2448 void *freelist;
188fd063
CL
2449 struct kmem_cache_cpu *c = *pc;
2450 struct page *page;
497b66f2 2451
188fd063 2452 freelist = get_partial(s, flags, node, c);
497b66f2 2453
188fd063
CL
2454 if (freelist)
2455 return freelist;
2456
2457 page = new_slab(s, flags, node);
497b66f2 2458 if (page) {
7c8e0181 2459 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2460 if (c->page)
2461 flush_slab(s, c);
2462
2463 /*
2464 * No other reference to the page yet so we can
2465 * muck around with it freely without cmpxchg
2466 */
6faa6833 2467 freelist = page->freelist;
497b66f2
CL
2468 page->freelist = NULL;
2469
2470 stat(s, ALLOC_SLAB);
497b66f2
CL
2471 c->page = page;
2472 *pc = c;
2473 } else
6faa6833 2474 freelist = NULL;
497b66f2 2475
6faa6833 2476 return freelist;
497b66f2
CL
2477}
2478
072bb0aa
MG
2479static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2480{
2481 if (unlikely(PageSlabPfmemalloc(page)))
2482 return gfp_pfmemalloc_allowed(gfpflags);
2483
2484 return true;
2485}
2486
213eeb9f 2487/*
d0e0ac97
CG
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
213eeb9f
CL
2490 *
2491 * The page is still frozen if the return value is not NULL.
2492 *
2493 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2494 *
2495 * This function must be called with interrupt disabled.
213eeb9f
CL
2496 */
2497static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2498{
2499 struct page new;
2500 unsigned long counters;
2501 void *freelist;
2502
2503 do {
2504 freelist = page->freelist;
2505 counters = page->counters;
6faa6833 2506
213eeb9f 2507 new.counters = counters;
a0132ac0 2508 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2509
2510 new.inuse = page->objects;
2511 new.frozen = freelist != NULL;
2512
d24ac77f 2513 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2514 freelist, counters,
2515 NULL, new.counters,
2516 "get_freelist"));
2517
2518 return freelist;
2519}
2520
81819f0f 2521/*
894b8788
CL
2522 * Slow path. The lockless freelist is empty or we need to perform
2523 * debugging duties.
2524 *
894b8788
CL
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
81819f0f 2528 *
894b8788
CL
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
81819f0f 2532 *
894b8788 2533 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2536 *
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
81819f0f 2539 */
a380a3c7 2540static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2541 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2542{
6faa6833 2543 void *freelist;
f6e7def7 2544 struct page *page;
81819f0f 2545
f6e7def7
CL
2546 page = c->page;
2547 if (!page)
81819f0f 2548 goto new_slab;
49e22585 2549redo:
6faa6833 2550
57d437d2 2551 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2552 int searchnode = node;
2553
2554 if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 searchnode = node_to_mem_node(node);
2556
2557 if (unlikely(!node_match(page, searchnode))) {
2558 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2559 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2560 goto new_slab;
2561 }
fc59c053 2562 }
6446faa2 2563
072bb0aa
MG
2564 /*
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2568 */
2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2570 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2571 goto new_slab;
2572 }
2573
73736e03 2574 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2575 freelist = c->freelist;
2576 if (freelist)
73736e03 2577 goto load_freelist;
03e404af 2578
f6e7def7 2579 freelist = get_freelist(s, page);
6446faa2 2580
6faa6833 2581 if (!freelist) {
03e404af
CL
2582 c->page = NULL;
2583 stat(s, DEACTIVATE_BYPASS);
fc59c053 2584 goto new_slab;
03e404af 2585 }
6446faa2 2586
84e554e6 2587 stat(s, ALLOC_REFILL);
6446faa2 2588
894b8788 2589load_freelist:
507effea
CL
2590 /*
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2594 */
a0132ac0 2595 VM_BUG_ON(!c->page->frozen);
6faa6833 2596 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2597 c->tid = next_tid(c->tid);
6faa6833 2598 return freelist;
81819f0f 2599
81819f0f 2600new_slab:
2cfb7455 2601
a93cf07b
WY
2602 if (slub_percpu_partial(c)) {
2603 page = c->page = slub_percpu_partial(c);
2604 slub_set_percpu_partial(c, page);
49e22585 2605 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2606 goto redo;
81819f0f
CL
2607 }
2608
188fd063 2609 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2610
f4697436 2611 if (unlikely(!freelist)) {
9a02d699 2612 slab_out_of_memory(s, gfpflags, node);
f4697436 2613 return NULL;
81819f0f 2614 }
2cfb7455 2615
f6e7def7 2616 page = c->page;
5091b74a 2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2618 goto load_freelist;
2cfb7455 2619
497b66f2 2620 /* Only entered in the debug case */
d0e0ac97
CG
2621 if (kmem_cache_debug(s) &&
2622 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2623 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2624
d4ff6d35 2625 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2626 return freelist;
894b8788
CL
2627}
2628
a380a3c7
CL
2629/*
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2632 */
2633static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 unsigned long addr, struct kmem_cache_cpu *c)
2635{
2636 void *p;
2637 unsigned long flags;
2638
2639 local_irq_save(flags);
2640#ifdef CONFIG_PREEMPT
2641 /*
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2644 * pointer.
2645 */
2646 c = this_cpu_ptr(s->cpu_slab);
2647#endif
2648
2649 p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 local_irq_restore(flags);
2651 return p;
2652}
2653
894b8788
CL
2654/*
2655 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2656 * have the fastpath folded into their functions. So no function call
2657 * overhead for requests that can be satisfied on the fastpath.
2658 *
2659 * The fastpath works by first checking if the lockless freelist can be used.
2660 * If not then __slab_alloc is called for slow processing.
2661 *
2662 * Otherwise we can simply pick the next object from the lockless free list.
2663 */
2b847c3c 2664static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2665 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2666{
03ec0ed5 2667 void *object;
dfb4f096 2668 struct kmem_cache_cpu *c;
57d437d2 2669 struct page *page;
8a5ec0ba 2670 unsigned long tid;
1f84260c 2671
8135be5a
VD
2672 s = slab_pre_alloc_hook(s, gfpflags);
2673 if (!s)
773ff60e 2674 return NULL;
8a5ec0ba 2675redo:
8a5ec0ba
CL
2676 /*
2677 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2678 * enabled. We may switch back and forth between cpus while
2679 * reading from one cpu area. That does not matter as long
2680 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2681 *
9aabf810
JK
2682 * We should guarantee that tid and kmem_cache are retrieved on
2683 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2684 * to check if it is matched or not.
8a5ec0ba 2685 */
9aabf810
JK
2686 do {
2687 tid = this_cpu_read(s->cpu_slab->tid);
2688 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2689 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2690 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2691
2692 /*
2693 * Irqless object alloc/free algorithm used here depends on sequence
2694 * of fetching cpu_slab's data. tid should be fetched before anything
2695 * on c to guarantee that object and page associated with previous tid
2696 * won't be used with current tid. If we fetch tid first, object and
2697 * page could be one associated with next tid and our alloc/free
2698 * request will be failed. In this case, we will retry. So, no problem.
2699 */
2700 barrier();
8a5ec0ba 2701
8a5ec0ba
CL
2702 /*
2703 * The transaction ids are globally unique per cpu and per operation on
2704 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2705 * occurs on the right processor and that there was no operation on the
2706 * linked list in between.
2707 */
8a5ec0ba 2708
9dfc6e68 2709 object = c->freelist;
57d437d2 2710 page = c->page;
8eae1492 2711 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2712 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2713 stat(s, ALLOC_SLOWPATH);
2714 } else {
0ad9500e
ED
2715 void *next_object = get_freepointer_safe(s, object);
2716
8a5ec0ba 2717 /*
25985edc 2718 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2719 * operation and if we are on the right processor.
2720 *
d0e0ac97
CG
2721 * The cmpxchg does the following atomically (without lock
2722 * semantics!)
8a5ec0ba
CL
2723 * 1. Relocate first pointer to the current per cpu area.
2724 * 2. Verify that tid and freelist have not been changed
2725 * 3. If they were not changed replace tid and freelist
2726 *
d0e0ac97
CG
2727 * Since this is without lock semantics the protection is only
2728 * against code executing on this cpu *not* from access by
2729 * other cpus.
8a5ec0ba 2730 */
933393f5 2731 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2732 s->cpu_slab->freelist, s->cpu_slab->tid,
2733 object, tid,
0ad9500e 2734 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2735
2736 note_cmpxchg_failure("slab_alloc", s, tid);
2737 goto redo;
2738 }
0ad9500e 2739 prefetch_freepointer(s, next_object);
84e554e6 2740 stat(s, ALLOC_FASTPATH);
894b8788 2741 }
8a5ec0ba 2742
74e2134f 2743 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2744 memset(object, 0, s->object_size);
d07dbea4 2745
03ec0ed5 2746 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2747
894b8788 2748 return object;
81819f0f
CL
2749}
2750
2b847c3c
EG
2751static __always_inline void *slab_alloc(struct kmem_cache *s,
2752 gfp_t gfpflags, unsigned long addr)
2753{
2754 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2755}
2756
81819f0f
CL
2757void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2758{
2b847c3c 2759 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2760
d0e0ac97
CG
2761 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2762 s->size, gfpflags);
5b882be4
EGM
2763
2764 return ret;
81819f0f
CL
2765}
2766EXPORT_SYMBOL(kmem_cache_alloc);
2767
0f24f128 2768#ifdef CONFIG_TRACING
4a92379b
RK
2769void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2770{
2b847c3c 2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2772 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2773 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2774 return ret;
2775}
2776EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2777#endif
2778
81819f0f
CL
2779#ifdef CONFIG_NUMA
2780void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2781{
2b847c3c 2782 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2783
ca2b84cb 2784 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2785 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2786
2787 return ret;
81819f0f
CL
2788}
2789EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2790
0f24f128 2791#ifdef CONFIG_TRACING
4a92379b 2792void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2793 gfp_t gfpflags,
4a92379b 2794 int node, size_t size)
5b882be4 2795{
2b847c3c 2796 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2797
2798 trace_kmalloc_node(_RET_IP_, ret,
2799 size, s->size, gfpflags, node);
0316bec2 2800
505f5dcb 2801 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2802 return ret;
5b882be4 2803}
4a92379b 2804EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2805#endif
5d1f57e4 2806#endif
5b882be4 2807
81819f0f 2808/*
94e4d712 2809 * Slow path handling. This may still be called frequently since objects
894b8788 2810 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2811 *
894b8788
CL
2812 * So we still attempt to reduce cache line usage. Just take the slab
2813 * lock and free the item. If there is no additional partial page
2814 * handling required then we can return immediately.
81819f0f 2815 */
894b8788 2816static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2817 void *head, void *tail, int cnt,
2818 unsigned long addr)
2819
81819f0f
CL
2820{
2821 void *prior;
2cfb7455 2822 int was_frozen;
2cfb7455
CL
2823 struct page new;
2824 unsigned long counters;
2825 struct kmem_cache_node *n = NULL;
61728d1e 2826 unsigned long uninitialized_var(flags);
81819f0f 2827
8a5ec0ba 2828 stat(s, FREE_SLOWPATH);
81819f0f 2829
19c7ff9e 2830 if (kmem_cache_debug(s) &&
282acb43 2831 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2832 return;
6446faa2 2833
2cfb7455 2834 do {
837d678d
JK
2835 if (unlikely(n)) {
2836 spin_unlock_irqrestore(&n->list_lock, flags);
2837 n = NULL;
2838 }
2cfb7455
CL
2839 prior = page->freelist;
2840 counters = page->counters;
81084651 2841 set_freepointer(s, tail, prior);
2cfb7455
CL
2842 new.counters = counters;
2843 was_frozen = new.frozen;
81084651 2844 new.inuse -= cnt;
837d678d 2845 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2846
c65c1877 2847 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2848
2849 /*
d0e0ac97
CG
2850 * Slab was on no list before and will be
2851 * partially empty
2852 * We can defer the list move and instead
2853 * freeze it.
49e22585
CL
2854 */
2855 new.frozen = 1;
2856
c65c1877 2857 } else { /* Needs to be taken off a list */
49e22585 2858
b455def2 2859 n = get_node(s, page_to_nid(page));
49e22585
CL
2860 /*
2861 * Speculatively acquire the list_lock.
2862 * If the cmpxchg does not succeed then we may
2863 * drop the list_lock without any processing.
2864 *
2865 * Otherwise the list_lock will synchronize with
2866 * other processors updating the list of slabs.
2867 */
2868 spin_lock_irqsave(&n->list_lock, flags);
2869
2870 }
2cfb7455 2871 }
81819f0f 2872
2cfb7455
CL
2873 } while (!cmpxchg_double_slab(s, page,
2874 prior, counters,
81084651 2875 head, new.counters,
2cfb7455 2876 "__slab_free"));
81819f0f 2877
2cfb7455 2878 if (likely(!n)) {
49e22585
CL
2879
2880 /*
2881 * If we just froze the page then put it onto the
2882 * per cpu partial list.
2883 */
8028dcea 2884 if (new.frozen && !was_frozen) {
49e22585 2885 put_cpu_partial(s, page, 1);
8028dcea
AS
2886 stat(s, CPU_PARTIAL_FREE);
2887 }
49e22585 2888 /*
2cfb7455
CL
2889 * The list lock was not taken therefore no list
2890 * activity can be necessary.
2891 */
b455def2
L
2892 if (was_frozen)
2893 stat(s, FREE_FROZEN);
2894 return;
2895 }
81819f0f 2896
8a5b20ae 2897 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2898 goto slab_empty;
2899
81819f0f 2900 /*
837d678d
JK
2901 * Objects left in the slab. If it was not on the partial list before
2902 * then add it.
81819f0f 2903 */
345c905d
JK
2904 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2905 if (kmem_cache_debug(s))
c65c1877 2906 remove_full(s, n, page);
837d678d
JK
2907 add_partial(n, page, DEACTIVATE_TO_TAIL);
2908 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2909 }
80f08c19 2910 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2911 return;
2912
2913slab_empty:
a973e9dd 2914 if (prior) {
81819f0f 2915 /*
6fbabb20 2916 * Slab on the partial list.
81819f0f 2917 */
5cc6eee8 2918 remove_partial(n, page);
84e554e6 2919 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2920 } else {
6fbabb20 2921 /* Slab must be on the full list */
c65c1877
PZ
2922 remove_full(s, n, page);
2923 }
2cfb7455 2924
80f08c19 2925 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2926 stat(s, FREE_SLAB);
81819f0f 2927 discard_slab(s, page);
81819f0f
CL
2928}
2929
894b8788
CL
2930/*
2931 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2932 * can perform fastpath freeing without additional function calls.
2933 *
2934 * The fastpath is only possible if we are freeing to the current cpu slab
2935 * of this processor. This typically the case if we have just allocated
2936 * the item before.
2937 *
2938 * If fastpath is not possible then fall back to __slab_free where we deal
2939 * with all sorts of special processing.
81084651
JDB
2940 *
2941 * Bulk free of a freelist with several objects (all pointing to the
2942 * same page) possible by specifying head and tail ptr, plus objects
2943 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2944 */
80a9201a
AP
2945static __always_inline void do_slab_free(struct kmem_cache *s,
2946 struct page *page, void *head, void *tail,
2947 int cnt, unsigned long addr)
894b8788 2948{
81084651 2949 void *tail_obj = tail ? : head;
dfb4f096 2950 struct kmem_cache_cpu *c;
8a5ec0ba 2951 unsigned long tid;
8a5ec0ba
CL
2952redo:
2953 /*
2954 * Determine the currently cpus per cpu slab.
2955 * The cpu may change afterward. However that does not matter since
2956 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2957 * during the cmpxchg then the free will succeed.
8a5ec0ba 2958 */
9aabf810
JK
2959 do {
2960 tid = this_cpu_read(s->cpu_slab->tid);
2961 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2962 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2963 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2964
9aabf810
JK
2965 /* Same with comment on barrier() in slab_alloc_node() */
2966 barrier();
c016b0bd 2967
442b06bc 2968 if (likely(page == c->page)) {
81084651 2969 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2970
933393f5 2971 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2972 s->cpu_slab->freelist, s->cpu_slab->tid,
2973 c->freelist, tid,
81084651 2974 head, next_tid(tid)))) {
8a5ec0ba
CL
2975
2976 note_cmpxchg_failure("slab_free", s, tid);
2977 goto redo;
2978 }
84e554e6 2979 stat(s, FREE_FASTPATH);
894b8788 2980 } else
81084651 2981 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2982
894b8788
CL
2983}
2984
80a9201a
AP
2985static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2986 void *head, void *tail, int cnt,
2987 unsigned long addr)
2988{
2989 slab_free_freelist_hook(s, head, tail);
2990 /*
2991 * slab_free_freelist_hook() could have put the items into quarantine.
2992 * If so, no need to free them.
2993 */
5f0d5a3a 2994 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2995 return;
2996 do_slab_free(s, page, head, tail, cnt, addr);
2997}
2998
2999#ifdef CONFIG_KASAN
3000void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3001{
3002 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3003}
3004#endif
3005
81819f0f
CL
3006void kmem_cache_free(struct kmem_cache *s, void *x)
3007{
b9ce5ef4
GC
3008 s = cache_from_obj(s, x);
3009 if (!s)
79576102 3010 return;
81084651 3011 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3012 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3013}
3014EXPORT_SYMBOL(kmem_cache_free);
3015
d0ecd894 3016struct detached_freelist {
fbd02630 3017 struct page *page;
d0ecd894
JDB
3018 void *tail;
3019 void *freelist;
3020 int cnt;
376bf125 3021 struct kmem_cache *s;
d0ecd894 3022};
fbd02630 3023
d0ecd894
JDB
3024/*
3025 * This function progressively scans the array with free objects (with
3026 * a limited look ahead) and extract objects belonging to the same
3027 * page. It builds a detached freelist directly within the given
3028 * page/objects. This can happen without any need for
3029 * synchronization, because the objects are owned by running process.
3030 * The freelist is build up as a single linked list in the objects.
3031 * The idea is, that this detached freelist can then be bulk
3032 * transferred to the real freelist(s), but only requiring a single
3033 * synchronization primitive. Look ahead in the array is limited due
3034 * to performance reasons.
3035 */
376bf125
JDB
3036static inline
3037int build_detached_freelist(struct kmem_cache *s, size_t size,
3038 void **p, struct detached_freelist *df)
d0ecd894
JDB
3039{
3040 size_t first_skipped_index = 0;
3041 int lookahead = 3;
3042 void *object;
ca257195 3043 struct page *page;
fbd02630 3044
d0ecd894
JDB
3045 /* Always re-init detached_freelist */
3046 df->page = NULL;
fbd02630 3047
d0ecd894
JDB
3048 do {
3049 object = p[--size];
ca257195 3050 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3051 } while (!object && size);
3eed034d 3052
d0ecd894
JDB
3053 if (!object)
3054 return 0;
fbd02630 3055
ca257195
JDB
3056 page = virt_to_head_page(object);
3057 if (!s) {
3058 /* Handle kalloc'ed objects */
3059 if (unlikely(!PageSlab(page))) {
3060 BUG_ON(!PageCompound(page));
3061 kfree_hook(object);
4949148a 3062 __free_pages(page, compound_order(page));
ca257195
JDB
3063 p[size] = NULL; /* mark object processed */
3064 return size;
3065 }
3066 /* Derive kmem_cache from object */
3067 df->s = page->slab_cache;
3068 } else {
3069 df->s = cache_from_obj(s, object); /* Support for memcg */
3070 }
376bf125 3071
d0ecd894 3072 /* Start new detached freelist */
ca257195 3073 df->page = page;
376bf125 3074 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3075 df->tail = object;
3076 df->freelist = object;
3077 p[size] = NULL; /* mark object processed */
3078 df->cnt = 1;
3079
3080 while (size) {
3081 object = p[--size];
3082 if (!object)
3083 continue; /* Skip processed objects */
3084
3085 /* df->page is always set at this point */
3086 if (df->page == virt_to_head_page(object)) {
3087 /* Opportunity build freelist */
376bf125 3088 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3089 df->freelist = object;
3090 df->cnt++;
3091 p[size] = NULL; /* mark object processed */
3092
3093 continue;
fbd02630 3094 }
d0ecd894
JDB
3095
3096 /* Limit look ahead search */
3097 if (!--lookahead)
3098 break;
3099
3100 if (!first_skipped_index)
3101 first_skipped_index = size + 1;
fbd02630 3102 }
d0ecd894
JDB
3103
3104 return first_skipped_index;
3105}
3106
d0ecd894 3107/* Note that interrupts must be enabled when calling this function. */
376bf125 3108void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3109{
3110 if (WARN_ON(!size))
3111 return;
3112
3113 do {
3114 struct detached_freelist df;
3115
3116 size = build_detached_freelist(s, size, p, &df);
84582c8a 3117 if (!df.page)
d0ecd894
JDB
3118 continue;
3119
376bf125 3120 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3121 } while (likely(size));
484748f0
CL
3122}
3123EXPORT_SYMBOL(kmem_cache_free_bulk);
3124
994eb764 3125/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3126int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3127 void **p)
484748f0 3128{
994eb764
JDB
3129 struct kmem_cache_cpu *c;
3130 int i;
3131
03ec0ed5
JDB
3132 /* memcg and kmem_cache debug support */
3133 s = slab_pre_alloc_hook(s, flags);
3134 if (unlikely(!s))
3135 return false;
994eb764
JDB
3136 /*
3137 * Drain objects in the per cpu slab, while disabling local
3138 * IRQs, which protects against PREEMPT and interrupts
3139 * handlers invoking normal fastpath.
3140 */
3141 local_irq_disable();
3142 c = this_cpu_ptr(s->cpu_slab);
3143
3144 for (i = 0; i < size; i++) {
3145 void *object = c->freelist;
3146
ebe909e0 3147 if (unlikely(!object)) {
ebe909e0
JDB
3148 /*
3149 * Invoking slow path likely have side-effect
3150 * of re-populating per CPU c->freelist
3151 */
87098373 3152 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3153 _RET_IP_, c);
87098373
CL
3154 if (unlikely(!p[i]))
3155 goto error;
3156
ebe909e0
JDB
3157 c = this_cpu_ptr(s->cpu_slab);
3158 continue; /* goto for-loop */
3159 }
994eb764
JDB
3160 c->freelist = get_freepointer(s, object);
3161 p[i] = object;
3162 }
3163 c->tid = next_tid(c->tid);
3164 local_irq_enable();
3165
3166 /* Clear memory outside IRQ disabled fastpath loop */
3167 if (unlikely(flags & __GFP_ZERO)) {
3168 int j;
3169
3170 for (j = 0; j < i; j++)
3171 memset(p[j], 0, s->object_size);
3172 }
3173
03ec0ed5
JDB
3174 /* memcg and kmem_cache debug support */
3175 slab_post_alloc_hook(s, flags, size, p);
865762a8 3176 return i;
87098373 3177error:
87098373 3178 local_irq_enable();
03ec0ed5
JDB
3179 slab_post_alloc_hook(s, flags, i, p);
3180 __kmem_cache_free_bulk(s, i, p);
865762a8 3181 return 0;
484748f0
CL
3182}
3183EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3184
3185
81819f0f 3186/*
672bba3a
CL
3187 * Object placement in a slab is made very easy because we always start at
3188 * offset 0. If we tune the size of the object to the alignment then we can
3189 * get the required alignment by putting one properly sized object after
3190 * another.
81819f0f
CL
3191 *
3192 * Notice that the allocation order determines the sizes of the per cpu
3193 * caches. Each processor has always one slab available for allocations.
3194 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3195 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3196 * locking overhead.
81819f0f
CL
3197 */
3198
3199/*
3200 * Mininum / Maximum order of slab pages. This influences locking overhead
3201 * and slab fragmentation. A higher order reduces the number of partial slabs
3202 * and increases the number of allocations possible without having to
3203 * take the list_lock.
3204 */
3205static int slub_min_order;
114e9e89 3206static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3207static int slub_min_objects;
81819f0f 3208
81819f0f
CL
3209/*
3210 * Calculate the order of allocation given an slab object size.
3211 *
672bba3a
CL
3212 * The order of allocation has significant impact on performance and other
3213 * system components. Generally order 0 allocations should be preferred since
3214 * order 0 does not cause fragmentation in the page allocator. Larger objects
3215 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3216 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3217 * would be wasted.
3218 *
3219 * In order to reach satisfactory performance we must ensure that a minimum
3220 * number of objects is in one slab. Otherwise we may generate too much
3221 * activity on the partial lists which requires taking the list_lock. This is
3222 * less a concern for large slabs though which are rarely used.
81819f0f 3223 *
672bba3a
CL
3224 * slub_max_order specifies the order where we begin to stop considering the
3225 * number of objects in a slab as critical. If we reach slub_max_order then
3226 * we try to keep the page order as low as possible. So we accept more waste
3227 * of space in favor of a small page order.
81819f0f 3228 *
672bba3a
CL
3229 * Higher order allocations also allow the placement of more objects in a
3230 * slab and thereby reduce object handling overhead. If the user has
3231 * requested a higher mininum order then we start with that one instead of
3232 * the smallest order which will fit the object.
81819f0f 3233 */
5e6d444e 3234static inline int slab_order(int size, int min_objects,
ab9a0f19 3235 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3236{
3237 int order;
3238 int rem;
6300ea75 3239 int min_order = slub_min_order;
81819f0f 3240
ab9a0f19 3241 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3242 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3243
9f835703 3244 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3245 order <= max_order; order++) {
81819f0f 3246
5e6d444e 3247 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3248
ab9a0f19 3249 rem = (slab_size - reserved) % size;
81819f0f 3250
5e6d444e 3251 if (rem <= slab_size / fract_leftover)
81819f0f 3252 break;
81819f0f 3253 }
672bba3a 3254
81819f0f
CL
3255 return order;
3256}
3257
ab9a0f19 3258static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3259{
3260 int order;
3261 int min_objects;
3262 int fraction;
e8120ff1 3263 int max_objects;
5e6d444e
CL
3264
3265 /*
3266 * Attempt to find best configuration for a slab. This
3267 * works by first attempting to generate a layout with
3268 * the best configuration and backing off gradually.
3269 *
422ff4d7 3270 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3271 * we reduce the minimum objects required in a slab.
3272 */
3273 min_objects = slub_min_objects;
9b2cd506
CL
3274 if (!min_objects)
3275 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3276 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3277 min_objects = min(min_objects, max_objects);
3278
5e6d444e 3279 while (min_objects > 1) {
c124f5b5 3280 fraction = 16;
5e6d444e
CL
3281 while (fraction >= 4) {
3282 order = slab_order(size, min_objects,
ab9a0f19 3283 slub_max_order, fraction, reserved);
5e6d444e
CL
3284 if (order <= slub_max_order)
3285 return order;
3286 fraction /= 2;
3287 }
5086c389 3288 min_objects--;
5e6d444e
CL
3289 }
3290
3291 /*
3292 * We were unable to place multiple objects in a slab. Now
3293 * lets see if we can place a single object there.
3294 */
ab9a0f19 3295 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3296 if (order <= slub_max_order)
3297 return order;
3298
3299 /*
3300 * Doh this slab cannot be placed using slub_max_order.
3301 */
ab9a0f19 3302 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3303 if (order < MAX_ORDER)
5e6d444e
CL
3304 return order;
3305 return -ENOSYS;
3306}
3307
5595cffc 3308static void
4053497d 3309init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3310{
3311 n->nr_partial = 0;
81819f0f
CL
3312 spin_lock_init(&n->list_lock);
3313 INIT_LIST_HEAD(&n->partial);
8ab1372f 3314#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3315 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3316 atomic_long_set(&n->total_objects, 0);
643b1138 3317 INIT_LIST_HEAD(&n->full);
8ab1372f 3318#endif
81819f0f
CL
3319}
3320
55136592 3321static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3322{
6c182dc0 3323 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3324 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3325
8a5ec0ba 3326 /*
d4d84fef
CM
3327 * Must align to double word boundary for the double cmpxchg
3328 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3329 */
d4d84fef
CM
3330 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3331 2 * sizeof(void *));
8a5ec0ba
CL
3332
3333 if (!s->cpu_slab)
3334 return 0;
3335
3336 init_kmem_cache_cpus(s);
4c93c355 3337
8a5ec0ba 3338 return 1;
4c93c355 3339}
4c93c355 3340
51df1142
CL
3341static struct kmem_cache *kmem_cache_node;
3342
81819f0f
CL
3343/*
3344 * No kmalloc_node yet so do it by hand. We know that this is the first
3345 * slab on the node for this slabcache. There are no concurrent accesses
3346 * possible.
3347 *
721ae22a
ZYW
3348 * Note that this function only works on the kmem_cache_node
3349 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3350 * memory on a fresh node that has no slab structures yet.
81819f0f 3351 */
55136592 3352static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3353{
3354 struct page *page;
3355 struct kmem_cache_node *n;
3356
51df1142 3357 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3358
51df1142 3359 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3360
3361 BUG_ON(!page);
a2f92ee7 3362 if (page_to_nid(page) != node) {
f9f58285
FF
3363 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3364 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3365 }
3366
81819f0f
CL
3367 n = page->freelist;
3368 BUG_ON(!n);
51df1142 3369 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3370 page->inuse = 1;
8cb0a506 3371 page->frozen = 0;
51df1142 3372 kmem_cache_node->node[node] = n;
8ab1372f 3373#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3374 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3375 init_tracking(kmem_cache_node, n);
8ab1372f 3376#endif
505f5dcb
AP
3377 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3378 GFP_KERNEL);
4053497d 3379 init_kmem_cache_node(n);
51df1142 3380 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3381
67b6c900 3382 /*
1e4dd946
SR
3383 * No locks need to be taken here as it has just been
3384 * initialized and there is no concurrent access.
67b6c900 3385 */
1e4dd946 3386 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3387}
3388
3389static void free_kmem_cache_nodes(struct kmem_cache *s)
3390{
3391 int node;
fa45dc25 3392 struct kmem_cache_node *n;
81819f0f 3393
fa45dc25 3394 for_each_kmem_cache_node(s, node, n) {
81819f0f 3395 s->node[node] = NULL;
ea37df54 3396 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3397 }
3398}
3399
52b4b950
DS
3400void __kmem_cache_release(struct kmem_cache *s)
3401{
210e7a43 3402 cache_random_seq_destroy(s);
52b4b950
DS
3403 free_percpu(s->cpu_slab);
3404 free_kmem_cache_nodes(s);
3405}
3406
55136592 3407static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3408{
3409 int node;
81819f0f 3410
f64dc58c 3411 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3412 struct kmem_cache_node *n;
3413
73367bd8 3414 if (slab_state == DOWN) {
55136592 3415 early_kmem_cache_node_alloc(node);
73367bd8
AD
3416 continue;
3417 }
51df1142 3418 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3419 GFP_KERNEL, node);
81819f0f 3420
73367bd8
AD
3421 if (!n) {
3422 free_kmem_cache_nodes(s);
3423 return 0;
81819f0f 3424 }
73367bd8 3425
4053497d 3426 init_kmem_cache_node(n);
ea37df54 3427 s->node[node] = n;
81819f0f
CL
3428 }
3429 return 1;
3430}
81819f0f 3431
c0bdb232 3432static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3433{
3434 if (min < MIN_PARTIAL)
3435 min = MIN_PARTIAL;
3436 else if (min > MAX_PARTIAL)
3437 min = MAX_PARTIAL;
3438 s->min_partial = min;
3439}
3440
e6d0e1dc
WY
3441static void set_cpu_partial(struct kmem_cache *s)
3442{
3443#ifdef CONFIG_SLUB_CPU_PARTIAL
3444 /*
3445 * cpu_partial determined the maximum number of objects kept in the
3446 * per cpu partial lists of a processor.
3447 *
3448 * Per cpu partial lists mainly contain slabs that just have one
3449 * object freed. If they are used for allocation then they can be
3450 * filled up again with minimal effort. The slab will never hit the
3451 * per node partial lists and therefore no locking will be required.
3452 *
3453 * This setting also determines
3454 *
3455 * A) The number of objects from per cpu partial slabs dumped to the
3456 * per node list when we reach the limit.
3457 * B) The number of objects in cpu partial slabs to extract from the
3458 * per node list when we run out of per cpu objects. We only fetch
3459 * 50% to keep some capacity around for frees.
3460 */
3461 if (!kmem_cache_has_cpu_partial(s))
3462 s->cpu_partial = 0;
3463 else if (s->size >= PAGE_SIZE)
3464 s->cpu_partial = 2;
3465 else if (s->size >= 1024)
3466 s->cpu_partial = 6;
3467 else if (s->size >= 256)
3468 s->cpu_partial = 13;
3469 else
3470 s->cpu_partial = 30;
3471#endif
3472}
3473
81819f0f
CL
3474/*
3475 * calculate_sizes() determines the order and the distribution of data within
3476 * a slab object.
3477 */
06b285dc 3478static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3479{
3480 unsigned long flags = s->flags;
80a9201a 3481 size_t size = s->object_size;
834f3d11 3482 int order;
81819f0f 3483
d8b42bf5
CL
3484 /*
3485 * Round up object size to the next word boundary. We can only
3486 * place the free pointer at word boundaries and this determines
3487 * the possible location of the free pointer.
3488 */
3489 size = ALIGN(size, sizeof(void *));
3490
3491#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3492 /*
3493 * Determine if we can poison the object itself. If the user of
3494 * the slab may touch the object after free or before allocation
3495 * then we should never poison the object itself.
3496 */
5f0d5a3a 3497 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3498 !s->ctor)
81819f0f
CL
3499 s->flags |= __OBJECT_POISON;
3500 else
3501 s->flags &= ~__OBJECT_POISON;
3502
81819f0f
CL
3503
3504 /*
672bba3a 3505 * If we are Redzoning then check if there is some space between the
81819f0f 3506 * end of the object and the free pointer. If not then add an
672bba3a 3507 * additional word to have some bytes to store Redzone information.
81819f0f 3508 */
3b0efdfa 3509 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3510 size += sizeof(void *);
41ecc55b 3511#endif
81819f0f
CL
3512
3513 /*
672bba3a
CL
3514 * With that we have determined the number of bytes in actual use
3515 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3516 */
3517 s->inuse = size;
3518
5f0d5a3a 3519 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3520 s->ctor)) {
81819f0f
CL
3521 /*
3522 * Relocate free pointer after the object if it is not
3523 * permitted to overwrite the first word of the object on
3524 * kmem_cache_free.
3525 *
3526 * This is the case if we do RCU, have a constructor or
3527 * destructor or are poisoning the objects.
3528 */
3529 s->offset = size;
3530 size += sizeof(void *);
3531 }
3532
c12b3c62 3533#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3534 if (flags & SLAB_STORE_USER)
3535 /*
3536 * Need to store information about allocs and frees after
3537 * the object.
3538 */
3539 size += 2 * sizeof(struct track);
80a9201a 3540#endif
81819f0f 3541
80a9201a
AP
3542 kasan_cache_create(s, &size, &s->flags);
3543#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3544 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3545 /*
3546 * Add some empty padding so that we can catch
3547 * overwrites from earlier objects rather than let
3548 * tracking information or the free pointer be
0211a9c8 3549 * corrupted if a user writes before the start
81819f0f
CL
3550 * of the object.
3551 */
3552 size += sizeof(void *);
d86bd1be
JK
3553
3554 s->red_left_pad = sizeof(void *);
3555 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3556 size += s->red_left_pad;
3557 }
41ecc55b 3558#endif
672bba3a 3559
81819f0f
CL
3560 /*
3561 * SLUB stores one object immediately after another beginning from
3562 * offset 0. In order to align the objects we have to simply size
3563 * each object to conform to the alignment.
3564 */
45906855 3565 size = ALIGN(size, s->align);
81819f0f 3566 s->size = size;
06b285dc
CL
3567 if (forced_order >= 0)
3568 order = forced_order;
3569 else
ab9a0f19 3570 order = calculate_order(size, s->reserved);
81819f0f 3571
834f3d11 3572 if (order < 0)
81819f0f
CL
3573 return 0;
3574
b7a49f0d 3575 s->allocflags = 0;
834f3d11 3576 if (order)
b7a49f0d
CL
3577 s->allocflags |= __GFP_COMP;
3578
3579 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3580 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3581
3582 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3583 s->allocflags |= __GFP_RECLAIMABLE;
3584
81819f0f
CL
3585 /*
3586 * Determine the number of objects per slab
3587 */
ab9a0f19
LJ
3588 s->oo = oo_make(order, size, s->reserved);
3589 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3590 if (oo_objects(s->oo) > oo_objects(s->max))
3591 s->max = s->oo;
81819f0f 3592
834f3d11 3593 return !!oo_objects(s->oo);
81819f0f
CL
3594}
3595
8a13a4cc 3596static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3597{
8a13a4cc 3598 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3599 s->reserved = 0;
2482ddec
KC
3600#ifdef CONFIG_SLAB_FREELIST_HARDENED
3601 s->random = get_random_long();
3602#endif
81819f0f 3603
5f0d5a3a 3604 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3605 s->reserved = sizeof(struct rcu_head);
81819f0f 3606
06b285dc 3607 if (!calculate_sizes(s, -1))
81819f0f 3608 goto error;
3de47213
DR
3609 if (disable_higher_order_debug) {
3610 /*
3611 * Disable debugging flags that store metadata if the min slab
3612 * order increased.
3613 */
3b0efdfa 3614 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3615 s->flags &= ~DEBUG_METADATA_FLAGS;
3616 s->offset = 0;
3617 if (!calculate_sizes(s, -1))
3618 goto error;
3619 }
3620 }
81819f0f 3621
2565409f
HC
3622#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3624 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3625 /* Enable fast mode */
3626 s->flags |= __CMPXCHG_DOUBLE;
3627#endif
3628
3b89d7d8
DR
3629 /*
3630 * The larger the object size is, the more pages we want on the partial
3631 * list to avoid pounding the page allocator excessively.
3632 */
49e22585
CL
3633 set_min_partial(s, ilog2(s->size) / 2);
3634
e6d0e1dc 3635 set_cpu_partial(s);
49e22585 3636
81819f0f 3637#ifdef CONFIG_NUMA
e2cb96b7 3638 s->remote_node_defrag_ratio = 1000;
81819f0f 3639#endif
210e7a43
TG
3640
3641 /* Initialize the pre-computed randomized freelist if slab is up */
3642 if (slab_state >= UP) {
3643 if (init_cache_random_seq(s))
3644 goto error;
3645 }
3646
55136592 3647 if (!init_kmem_cache_nodes(s))
dfb4f096 3648 goto error;
81819f0f 3649
55136592 3650 if (alloc_kmem_cache_cpus(s))
278b1bb1 3651 return 0;
ff12059e 3652
4c93c355 3653 free_kmem_cache_nodes(s);
81819f0f
CL
3654error:
3655 if (flags & SLAB_PANIC)
756a025f
JP
3656 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3657 s->name, (unsigned long)s->size, s->size,
3658 oo_order(s->oo), s->offset, flags);
278b1bb1 3659 return -EINVAL;
81819f0f 3660}
81819f0f 3661
33b12c38
CL
3662static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663 const char *text)
3664{
3665#ifdef CONFIG_SLUB_DEBUG
3666 void *addr = page_address(page);
3667 void *p;
a5dd5c11
NK
3668 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3669 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3670 if (!map)
3671 return;
945cf2b6 3672 slab_err(s, page, text, s->name);
33b12c38 3673 slab_lock(page);
33b12c38 3674
5f80b13a 3675 get_map(s, page, map);
33b12c38
CL
3676 for_each_object(p, s, addr, page->objects) {
3677
3678 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3679 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3680 print_tracking(s, p);
3681 }
3682 }
3683 slab_unlock(page);
bbd7d57b 3684 kfree(map);
33b12c38
CL
3685#endif
3686}
3687
81819f0f 3688/*
599870b1 3689 * Attempt to free all partial slabs on a node.
52b4b950
DS
3690 * This is called from __kmem_cache_shutdown(). We must take list_lock
3691 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3692 */
599870b1 3693static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3694{
60398923 3695 LIST_HEAD(discard);
81819f0f
CL
3696 struct page *page, *h;
3697
52b4b950
DS
3698 BUG_ON(irqs_disabled());
3699 spin_lock_irq(&n->list_lock);
33b12c38 3700 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3701 if (!page->inuse) {
52b4b950 3702 remove_partial(n, page);
60398923 3703 list_add(&page->lru, &discard);
33b12c38
CL
3704 } else {
3705 list_slab_objects(s, page,
52b4b950 3706 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3707 }
33b12c38 3708 }
52b4b950 3709 spin_unlock_irq(&n->list_lock);
60398923
CW
3710
3711 list_for_each_entry_safe(page, h, &discard, lru)
3712 discard_slab(s, page);
81819f0f
CL
3713}
3714
3715/*
672bba3a 3716 * Release all resources used by a slab cache.
81819f0f 3717 */
52b4b950 3718int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3719{
3720 int node;
fa45dc25 3721 struct kmem_cache_node *n;
81819f0f
CL
3722
3723 flush_all(s);
81819f0f 3724 /* Attempt to free all objects */
fa45dc25 3725 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3726 free_partial(s, n);
3727 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3728 return 1;
3729 }
bf5eb3de 3730 sysfs_slab_remove(s);
81819f0f
CL
3731 return 0;
3732}
3733
81819f0f
CL
3734/********************************************************************
3735 * Kmalloc subsystem
3736 *******************************************************************/
3737
81819f0f
CL
3738static int __init setup_slub_min_order(char *str)
3739{
06428780 3740 get_option(&str, &slub_min_order);
81819f0f
CL
3741
3742 return 1;
3743}
3744
3745__setup("slub_min_order=", setup_slub_min_order);
3746
3747static int __init setup_slub_max_order(char *str)
3748{
06428780 3749 get_option(&str, &slub_max_order);
818cf590 3750 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3751
3752 return 1;
3753}
3754
3755__setup("slub_max_order=", setup_slub_max_order);
3756
3757static int __init setup_slub_min_objects(char *str)
3758{
06428780 3759 get_option(&str, &slub_min_objects);
81819f0f
CL
3760
3761 return 1;
3762}
3763
3764__setup("slub_min_objects=", setup_slub_min_objects);
3765
81819f0f
CL
3766void *__kmalloc(size_t size, gfp_t flags)
3767{
aadb4bc4 3768 struct kmem_cache *s;
5b882be4 3769 void *ret;
81819f0f 3770
95a05b42 3771 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3772 return kmalloc_large(size, flags);
aadb4bc4 3773
2c59dd65 3774 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3775
3776 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3777 return s;
3778
2b847c3c 3779 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3780
ca2b84cb 3781 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3782
505f5dcb 3783 kasan_kmalloc(s, ret, size, flags);
0316bec2 3784
5b882be4 3785 return ret;
81819f0f
CL
3786}
3787EXPORT_SYMBOL(__kmalloc);
3788
5d1f57e4 3789#ifdef CONFIG_NUMA
f619cfe1
CL
3790static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3791{
b1eeab67 3792 struct page *page;
e4f7c0b4 3793 void *ptr = NULL;
f619cfe1 3794
52383431 3795 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3796 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3797 if (page)
e4f7c0b4
CM
3798 ptr = page_address(page);
3799
d56791b3 3800 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3801 return ptr;
f619cfe1
CL
3802}
3803
81819f0f
CL
3804void *__kmalloc_node(size_t size, gfp_t flags, int node)
3805{
aadb4bc4 3806 struct kmem_cache *s;
5b882be4 3807 void *ret;
81819f0f 3808
95a05b42 3809 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3810 ret = kmalloc_large_node(size, flags, node);
3811
ca2b84cb
EGM
3812 trace_kmalloc_node(_RET_IP_, ret,
3813 size, PAGE_SIZE << get_order(size),
3814 flags, node);
5b882be4
EGM
3815
3816 return ret;
3817 }
aadb4bc4 3818
2c59dd65 3819 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3820
3821 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3822 return s;
3823
2b847c3c 3824 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3825
ca2b84cb 3826 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3827
505f5dcb 3828 kasan_kmalloc(s, ret, size, flags);
0316bec2 3829
5b882be4 3830 return ret;
81819f0f
CL
3831}
3832EXPORT_SYMBOL(__kmalloc_node);
3833#endif
3834
ed18adc1
KC
3835#ifdef CONFIG_HARDENED_USERCOPY
3836/*
3837 * Rejects objects that are incorrectly sized.
3838 *
3839 * Returns NULL if check passes, otherwise const char * to name of cache
3840 * to indicate an error.
3841 */
3842const char *__check_heap_object(const void *ptr, unsigned long n,
3843 struct page *page)
3844{
3845 struct kmem_cache *s;
3846 unsigned long offset;
3847 size_t object_size;
3848
3849 /* Find object and usable object size. */
3850 s = page->slab_cache;
3851 object_size = slab_ksize(s);
3852
3853 /* Reject impossible pointers. */
3854 if (ptr < page_address(page))
3855 return s->name;
3856
3857 /* Find offset within object. */
3858 offset = (ptr - page_address(page)) % s->size;
3859
3860 /* Adjust for redzone and reject if within the redzone. */
3861 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3862 if (offset < s->red_left_pad)
3863 return s->name;
3864 offset -= s->red_left_pad;
3865 }
3866
3867 /* Allow address range falling entirely within object size. */
3868 if (offset <= object_size && n <= object_size - offset)
3869 return NULL;
3870
3871 return s->name;
3872}
3873#endif /* CONFIG_HARDENED_USERCOPY */
3874
0316bec2 3875static size_t __ksize(const void *object)
81819f0f 3876{
272c1d21 3877 struct page *page;
81819f0f 3878
ef8b4520 3879 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3880 return 0;
3881
294a80a8 3882 page = virt_to_head_page(object);
294a80a8 3883
76994412
PE
3884 if (unlikely(!PageSlab(page))) {
3885 WARN_ON(!PageCompound(page));
294a80a8 3886 return PAGE_SIZE << compound_order(page);
76994412 3887 }
81819f0f 3888
1b4f59e3 3889 return slab_ksize(page->slab_cache);
81819f0f 3890}
0316bec2
AR
3891
3892size_t ksize(const void *object)
3893{
3894 size_t size = __ksize(object);
3895 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3896 * so we need to unpoison this area.
3897 */
3898 kasan_unpoison_shadow(object, size);
0316bec2
AR
3899 return size;
3900}
b1aabecd 3901EXPORT_SYMBOL(ksize);
81819f0f
CL
3902
3903void kfree(const void *x)
3904{
81819f0f 3905 struct page *page;
5bb983b0 3906 void *object = (void *)x;
81819f0f 3907
2121db74
PE
3908 trace_kfree(_RET_IP_, x);
3909
2408c550 3910 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3911 return;
3912
b49af68f 3913 page = virt_to_head_page(x);
aadb4bc4 3914 if (unlikely(!PageSlab(page))) {
0937502a 3915 BUG_ON(!PageCompound(page));
d56791b3 3916 kfree_hook(x);
4949148a 3917 __free_pages(page, compound_order(page));
aadb4bc4
CL
3918 return;
3919 }
81084651 3920 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3921}
3922EXPORT_SYMBOL(kfree);
3923
832f37f5
VD
3924#define SHRINK_PROMOTE_MAX 32
3925
2086d26a 3926/*
832f37f5
VD
3927 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3928 * up most to the head of the partial lists. New allocations will then
3929 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3930 *
3931 * The slabs with the least items are placed last. This results in them
3932 * being allocated from last increasing the chance that the last objects
3933 * are freed in them.
2086d26a 3934 */
c9fc5864 3935int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3936{
3937 int node;
3938 int i;
3939 struct kmem_cache_node *n;
3940 struct page *page;
3941 struct page *t;
832f37f5
VD
3942 struct list_head discard;
3943 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3944 unsigned long flags;
ce3712d7 3945 int ret = 0;
2086d26a 3946
2086d26a 3947 flush_all(s);
fa45dc25 3948 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3949 INIT_LIST_HEAD(&discard);
3950 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3951 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3952
3953 spin_lock_irqsave(&n->list_lock, flags);
3954
3955 /*
832f37f5 3956 * Build lists of slabs to discard or promote.
2086d26a 3957 *
672bba3a
CL
3958 * Note that concurrent frees may occur while we hold the
3959 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3960 */
3961 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3962 int free = page->objects - page->inuse;
3963
3964 /* Do not reread page->inuse */
3965 barrier();
3966
3967 /* We do not keep full slabs on the list */
3968 BUG_ON(free <= 0);
3969
3970 if (free == page->objects) {
3971 list_move(&page->lru, &discard);
69cb8e6b 3972 n->nr_partial--;
832f37f5
VD
3973 } else if (free <= SHRINK_PROMOTE_MAX)
3974 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3975 }
3976
2086d26a 3977 /*
832f37f5
VD
3978 * Promote the slabs filled up most to the head of the
3979 * partial list.
2086d26a 3980 */
832f37f5
VD
3981 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3982 list_splice(promote + i, &n->partial);
2086d26a 3983
2086d26a 3984 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3985
3986 /* Release empty slabs */
832f37f5 3987 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3988 discard_slab(s, page);
ce3712d7
VD
3989
3990 if (slabs_node(s, node))
3991 ret = 1;
2086d26a
CL
3992 }
3993
ce3712d7 3994 return ret;
2086d26a 3995}
2086d26a 3996
c9fc5864 3997#ifdef CONFIG_MEMCG
01fb58bc
TH
3998static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3999{
50862ce7
TH
4000 /*
4001 * Called with all the locks held after a sched RCU grace period.
4002 * Even if @s becomes empty after shrinking, we can't know that @s
4003 * doesn't have allocations already in-flight and thus can't
4004 * destroy @s until the associated memcg is released.
4005 *
4006 * However, let's remove the sysfs files for empty caches here.
4007 * Each cache has a lot of interface files which aren't
4008 * particularly useful for empty draining caches; otherwise, we can
4009 * easily end up with millions of unnecessary sysfs files on
4010 * systems which have a lot of memory and transient cgroups.
4011 */
4012 if (!__kmem_cache_shrink(s))
4013 sysfs_slab_remove(s);
01fb58bc
TH
4014}
4015
c9fc5864
TH
4016void __kmemcg_cache_deactivate(struct kmem_cache *s)
4017{
4018 /*
4019 * Disable empty slabs caching. Used to avoid pinning offline
4020 * memory cgroups by kmem pages that can be freed.
4021 */
e6d0e1dc 4022 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4023 s->min_partial = 0;
4024
4025 /*
4026 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4027 * we have to make sure the change is visible before shrinking.
c9fc5864 4028 */
01fb58bc 4029 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4030}
4031#endif
4032
b9049e23
YG
4033static int slab_mem_going_offline_callback(void *arg)
4034{
4035 struct kmem_cache *s;
4036
18004c5d 4037 mutex_lock(&slab_mutex);
b9049e23 4038 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4039 __kmem_cache_shrink(s);
18004c5d 4040 mutex_unlock(&slab_mutex);
b9049e23
YG
4041
4042 return 0;
4043}
4044
4045static void slab_mem_offline_callback(void *arg)
4046{
4047 struct kmem_cache_node *n;
4048 struct kmem_cache *s;
4049 struct memory_notify *marg = arg;
4050 int offline_node;
4051
b9d5ab25 4052 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4053
4054 /*
4055 * If the node still has available memory. we need kmem_cache_node
4056 * for it yet.
4057 */
4058 if (offline_node < 0)
4059 return;
4060
18004c5d 4061 mutex_lock(&slab_mutex);
b9049e23
YG
4062 list_for_each_entry(s, &slab_caches, list) {
4063 n = get_node(s, offline_node);
4064 if (n) {
4065 /*
4066 * if n->nr_slabs > 0, slabs still exist on the node
4067 * that is going down. We were unable to free them,
c9404c9c 4068 * and offline_pages() function shouldn't call this
b9049e23
YG
4069 * callback. So, we must fail.
4070 */
0f389ec6 4071 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4072
4073 s->node[offline_node] = NULL;
8de66a0c 4074 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4075 }
4076 }
18004c5d 4077 mutex_unlock(&slab_mutex);
b9049e23
YG
4078}
4079
4080static int slab_mem_going_online_callback(void *arg)
4081{
4082 struct kmem_cache_node *n;
4083 struct kmem_cache *s;
4084 struct memory_notify *marg = arg;
b9d5ab25 4085 int nid = marg->status_change_nid_normal;
b9049e23
YG
4086 int ret = 0;
4087
4088 /*
4089 * If the node's memory is already available, then kmem_cache_node is
4090 * already created. Nothing to do.
4091 */
4092 if (nid < 0)
4093 return 0;
4094
4095 /*
0121c619 4096 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4097 * allocate a kmem_cache_node structure in order to bring the node
4098 * online.
4099 */
18004c5d 4100 mutex_lock(&slab_mutex);
b9049e23
YG
4101 list_for_each_entry(s, &slab_caches, list) {
4102 /*
4103 * XXX: kmem_cache_alloc_node will fallback to other nodes
4104 * since memory is not yet available from the node that
4105 * is brought up.
4106 */
8de66a0c 4107 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4108 if (!n) {
4109 ret = -ENOMEM;
4110 goto out;
4111 }
4053497d 4112 init_kmem_cache_node(n);
b9049e23
YG
4113 s->node[nid] = n;
4114 }
4115out:
18004c5d 4116 mutex_unlock(&slab_mutex);
b9049e23
YG
4117 return ret;
4118}
4119
4120static int slab_memory_callback(struct notifier_block *self,
4121 unsigned long action, void *arg)
4122{
4123 int ret = 0;
4124
4125 switch (action) {
4126 case MEM_GOING_ONLINE:
4127 ret = slab_mem_going_online_callback(arg);
4128 break;
4129 case MEM_GOING_OFFLINE:
4130 ret = slab_mem_going_offline_callback(arg);
4131 break;
4132 case MEM_OFFLINE:
4133 case MEM_CANCEL_ONLINE:
4134 slab_mem_offline_callback(arg);
4135 break;
4136 case MEM_ONLINE:
4137 case MEM_CANCEL_OFFLINE:
4138 break;
4139 }
dc19f9db
KH
4140 if (ret)
4141 ret = notifier_from_errno(ret);
4142 else
4143 ret = NOTIFY_OK;
b9049e23
YG
4144 return ret;
4145}
4146
3ac38faa
AM
4147static struct notifier_block slab_memory_callback_nb = {
4148 .notifier_call = slab_memory_callback,
4149 .priority = SLAB_CALLBACK_PRI,
4150};
b9049e23 4151
81819f0f
CL
4152/********************************************************************
4153 * Basic setup of slabs
4154 *******************************************************************/
4155
51df1142
CL
4156/*
4157 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4158 * the page allocator. Allocate them properly then fix up the pointers
4159 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4160 */
4161
dffb4d60 4162static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4163{
4164 int node;
dffb4d60 4165 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4166 struct kmem_cache_node *n;
51df1142 4167
dffb4d60 4168 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4169
7d557b3c
GC
4170 /*
4171 * This runs very early, and only the boot processor is supposed to be
4172 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4173 * IPIs around.
4174 */
4175 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4176 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4177 struct page *p;
4178
fa45dc25
CL
4179 list_for_each_entry(p, &n->partial, lru)
4180 p->slab_cache = s;
51df1142 4181
607bf324 4182#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4183 list_for_each_entry(p, &n->full, lru)
4184 p->slab_cache = s;
51df1142 4185#endif
51df1142 4186 }
f7ce3190 4187 slab_init_memcg_params(s);
dffb4d60 4188 list_add(&s->list, &slab_caches);
510ded33 4189 memcg_link_cache(s);
dffb4d60 4190 return s;
51df1142
CL
4191}
4192
81819f0f
CL
4193void __init kmem_cache_init(void)
4194{
dffb4d60
CL
4195 static __initdata struct kmem_cache boot_kmem_cache,
4196 boot_kmem_cache_node;
51df1142 4197
fc8d8620
SG
4198 if (debug_guardpage_minorder())
4199 slub_max_order = 0;
4200
dffb4d60
CL
4201 kmem_cache_node = &boot_kmem_cache_node;
4202 kmem_cache = &boot_kmem_cache;
51df1142 4203
dffb4d60
CL
4204 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4205 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4206
3ac38faa 4207 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4208
4209 /* Able to allocate the per node structures */
4210 slab_state = PARTIAL;
4211
dffb4d60
CL
4212 create_boot_cache(kmem_cache, "kmem_cache",
4213 offsetof(struct kmem_cache, node) +
4214 nr_node_ids * sizeof(struct kmem_cache_node *),
4215 SLAB_HWCACHE_ALIGN);
8a13a4cc 4216
dffb4d60 4217 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4218
51df1142
CL
4219 /*
4220 * Allocate kmem_cache_node properly from the kmem_cache slab.
4221 * kmem_cache_node is separately allocated so no need to
4222 * update any list pointers.
4223 */
dffb4d60 4224 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4225
4226 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4227 setup_kmalloc_cache_index_table();
f97d5f63 4228 create_kmalloc_caches(0);
81819f0f 4229
210e7a43
TG
4230 /* Setup random freelists for each cache */
4231 init_freelist_randomization();
4232
a96a87bf
SAS
4233 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4234 slub_cpu_dead);
81819f0f 4235
9b130ad5 4236 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
f97d5f63 4237 cache_line_size(),
81819f0f
CL
4238 slub_min_order, slub_max_order, slub_min_objects,
4239 nr_cpu_ids, nr_node_ids);
4240}
4241
7e85ee0c
PE
4242void __init kmem_cache_init_late(void)
4243{
7e85ee0c
PE
4244}
4245
2633d7a0 4246struct kmem_cache *
a44cb944
VD
4247__kmem_cache_alias(const char *name, size_t size, size_t align,
4248 unsigned long flags, void (*ctor)(void *))
81819f0f 4249{
426589f5 4250 struct kmem_cache *s, *c;
81819f0f 4251
a44cb944 4252 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4253 if (s) {
4254 s->refcount++;
84d0ddd6 4255
81819f0f
CL
4256 /*
4257 * Adjust the object sizes so that we clear
4258 * the complete object on kzalloc.
4259 */
3b0efdfa 4260 s->object_size = max(s->object_size, (int)size);
81819f0f 4261 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4262
426589f5 4263 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4264 c->object_size = s->object_size;
4265 c->inuse = max_t(int, c->inuse,
4266 ALIGN(size, sizeof(void *)));
4267 }
4268
7b8f3b66 4269 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4270 s->refcount--;
cbb79694 4271 s = NULL;
7b8f3b66 4272 }
a0e1d1be 4273 }
6446faa2 4274
cbb79694
CL
4275 return s;
4276}
84c1cf62 4277
8a13a4cc 4278int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4279{
aac3a166
PE
4280 int err;
4281
4282 err = kmem_cache_open(s, flags);
4283 if (err)
4284 return err;
20cea968 4285
45530c44
CL
4286 /* Mutex is not taken during early boot */
4287 if (slab_state <= UP)
4288 return 0;
4289
107dab5c 4290 memcg_propagate_slab_attrs(s);
aac3a166 4291 err = sysfs_slab_add(s);
aac3a166 4292 if (err)
52b4b950 4293 __kmem_cache_release(s);
20cea968 4294
aac3a166 4295 return err;
81819f0f 4296}
81819f0f 4297
ce71e27c 4298void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4299{
aadb4bc4 4300 struct kmem_cache *s;
94b528d0 4301 void *ret;
aadb4bc4 4302
95a05b42 4303 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4304 return kmalloc_large(size, gfpflags);
4305
2c59dd65 4306 s = kmalloc_slab(size, gfpflags);
81819f0f 4307
2408c550 4308 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4309 return s;
81819f0f 4310
2b847c3c 4311 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4312
25985edc 4313 /* Honor the call site pointer we received. */
ca2b84cb 4314 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4315
4316 return ret;
81819f0f
CL
4317}
4318
5d1f57e4 4319#ifdef CONFIG_NUMA
81819f0f 4320void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4321 int node, unsigned long caller)
81819f0f 4322{
aadb4bc4 4323 struct kmem_cache *s;
94b528d0 4324 void *ret;
aadb4bc4 4325
95a05b42 4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4327 ret = kmalloc_large_node(size, gfpflags, node);
4328
4329 trace_kmalloc_node(caller, ret,
4330 size, PAGE_SIZE << get_order(size),
4331 gfpflags, node);
4332
4333 return ret;
4334 }
eada35ef 4335
2c59dd65 4336 s = kmalloc_slab(size, gfpflags);
81819f0f 4337
2408c550 4338 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4339 return s;
81819f0f 4340
2b847c3c 4341 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4342
25985edc 4343 /* Honor the call site pointer we received. */
ca2b84cb 4344 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4345
4346 return ret;
81819f0f 4347}
5d1f57e4 4348#endif
81819f0f 4349
ab4d5ed5 4350#ifdef CONFIG_SYSFS
205ab99d
CL
4351static int count_inuse(struct page *page)
4352{
4353 return page->inuse;
4354}
4355
4356static int count_total(struct page *page)
4357{
4358 return page->objects;
4359}
ab4d5ed5 4360#endif
205ab99d 4361
ab4d5ed5 4362#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4363static int validate_slab(struct kmem_cache *s, struct page *page,
4364 unsigned long *map)
53e15af0
CL
4365{
4366 void *p;
a973e9dd 4367 void *addr = page_address(page);
53e15af0
CL
4368
4369 if (!check_slab(s, page) ||
4370 !on_freelist(s, page, NULL))
4371 return 0;
4372
4373 /* Now we know that a valid freelist exists */
39b26464 4374 bitmap_zero(map, page->objects);
53e15af0 4375
5f80b13a
CL
4376 get_map(s, page, map);
4377 for_each_object(p, s, addr, page->objects) {
4378 if (test_bit(slab_index(p, s, addr), map))
4379 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4380 return 0;
53e15af0
CL
4381 }
4382
224a88be 4383 for_each_object(p, s, addr, page->objects)
7656c72b 4384 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4385 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4386 return 0;
4387 return 1;
4388}
4389
434e245d
CL
4390static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4391 unsigned long *map)
53e15af0 4392{
881db7fb
CL
4393 slab_lock(page);
4394 validate_slab(s, page, map);
4395 slab_unlock(page);
53e15af0
CL
4396}
4397
434e245d
CL
4398static int validate_slab_node(struct kmem_cache *s,
4399 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4400{
4401 unsigned long count = 0;
4402 struct page *page;
4403 unsigned long flags;
4404
4405 spin_lock_irqsave(&n->list_lock, flags);
4406
4407 list_for_each_entry(page, &n->partial, lru) {
434e245d 4408 validate_slab_slab(s, page, map);
53e15af0
CL
4409 count++;
4410 }
4411 if (count != n->nr_partial)
f9f58285
FF
4412 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4413 s->name, count, n->nr_partial);
53e15af0
CL
4414
4415 if (!(s->flags & SLAB_STORE_USER))
4416 goto out;
4417
4418 list_for_each_entry(page, &n->full, lru) {
434e245d 4419 validate_slab_slab(s, page, map);
53e15af0
CL
4420 count++;
4421 }
4422 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4423 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4424 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4425
4426out:
4427 spin_unlock_irqrestore(&n->list_lock, flags);
4428 return count;
4429}
4430
434e245d 4431static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4432{
4433 int node;
4434 unsigned long count = 0;
205ab99d 4435 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4436 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4437 struct kmem_cache_node *n;
434e245d
CL
4438
4439 if (!map)
4440 return -ENOMEM;
53e15af0
CL
4441
4442 flush_all(s);
fa45dc25 4443 for_each_kmem_cache_node(s, node, n)
434e245d 4444 count += validate_slab_node(s, n, map);
434e245d 4445 kfree(map);
53e15af0
CL
4446 return count;
4447}
88a420e4 4448/*
672bba3a 4449 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4450 * and freed.
4451 */
4452
4453struct location {
4454 unsigned long count;
ce71e27c 4455 unsigned long addr;
45edfa58
CL
4456 long long sum_time;
4457 long min_time;
4458 long max_time;
4459 long min_pid;
4460 long max_pid;
174596a0 4461 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4462 nodemask_t nodes;
88a420e4
CL
4463};
4464
4465struct loc_track {
4466 unsigned long max;
4467 unsigned long count;
4468 struct location *loc;
4469};
4470
4471static void free_loc_track(struct loc_track *t)
4472{
4473 if (t->max)
4474 free_pages((unsigned long)t->loc,
4475 get_order(sizeof(struct location) * t->max));
4476}
4477
68dff6a9 4478static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4479{
4480 struct location *l;
4481 int order;
4482
88a420e4
CL
4483 order = get_order(sizeof(struct location) * max);
4484
68dff6a9 4485 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4486 if (!l)
4487 return 0;
4488
4489 if (t->count) {
4490 memcpy(l, t->loc, sizeof(struct location) * t->count);
4491 free_loc_track(t);
4492 }
4493 t->max = max;
4494 t->loc = l;
4495 return 1;
4496}
4497
4498static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4499 const struct track *track)
88a420e4
CL
4500{
4501 long start, end, pos;
4502 struct location *l;
ce71e27c 4503 unsigned long caddr;
45edfa58 4504 unsigned long age = jiffies - track->when;
88a420e4
CL
4505
4506 start = -1;
4507 end = t->count;
4508
4509 for ( ; ; ) {
4510 pos = start + (end - start + 1) / 2;
4511
4512 /*
4513 * There is nothing at "end". If we end up there
4514 * we need to add something to before end.
4515 */
4516 if (pos == end)
4517 break;
4518
4519 caddr = t->loc[pos].addr;
45edfa58
CL
4520 if (track->addr == caddr) {
4521
4522 l = &t->loc[pos];
4523 l->count++;
4524 if (track->when) {
4525 l->sum_time += age;
4526 if (age < l->min_time)
4527 l->min_time = age;
4528 if (age > l->max_time)
4529 l->max_time = age;
4530
4531 if (track->pid < l->min_pid)
4532 l->min_pid = track->pid;
4533 if (track->pid > l->max_pid)
4534 l->max_pid = track->pid;
4535
174596a0
RR
4536 cpumask_set_cpu(track->cpu,
4537 to_cpumask(l->cpus));
45edfa58
CL
4538 }
4539 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4540 return 1;
4541 }
4542
45edfa58 4543 if (track->addr < caddr)
88a420e4
CL
4544 end = pos;
4545 else
4546 start = pos;
4547 }
4548
4549 /*
672bba3a 4550 * Not found. Insert new tracking element.
88a420e4 4551 */
68dff6a9 4552 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4553 return 0;
4554
4555 l = t->loc + pos;
4556 if (pos < t->count)
4557 memmove(l + 1, l,
4558 (t->count - pos) * sizeof(struct location));
4559 t->count++;
4560 l->count = 1;
45edfa58
CL
4561 l->addr = track->addr;
4562 l->sum_time = age;
4563 l->min_time = age;
4564 l->max_time = age;
4565 l->min_pid = track->pid;
4566 l->max_pid = track->pid;
174596a0
RR
4567 cpumask_clear(to_cpumask(l->cpus));
4568 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4569 nodes_clear(l->nodes);
4570 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4571 return 1;
4572}
4573
4574static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4575 struct page *page, enum track_item alloc,
a5dd5c11 4576 unsigned long *map)
88a420e4 4577{
a973e9dd 4578 void *addr = page_address(page);
88a420e4
CL
4579 void *p;
4580
39b26464 4581 bitmap_zero(map, page->objects);
5f80b13a 4582 get_map(s, page, map);
88a420e4 4583
224a88be 4584 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4585 if (!test_bit(slab_index(p, s, addr), map))
4586 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4587}
4588
4589static int list_locations(struct kmem_cache *s, char *buf,
4590 enum track_item alloc)
4591{
e374d483 4592 int len = 0;
88a420e4 4593 unsigned long i;
68dff6a9 4594 struct loc_track t = { 0, 0, NULL };
88a420e4 4595 int node;
bbd7d57b
ED
4596 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4597 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4598 struct kmem_cache_node *n;
88a420e4 4599
bbd7d57b 4600 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4601 GFP_KERNEL)) {
bbd7d57b 4602 kfree(map);
68dff6a9 4603 return sprintf(buf, "Out of memory\n");
bbd7d57b 4604 }
88a420e4
CL
4605 /* Push back cpu slabs */
4606 flush_all(s);
4607
fa45dc25 4608 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4609 unsigned long flags;
4610 struct page *page;
4611
9e86943b 4612 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4613 continue;
4614
4615 spin_lock_irqsave(&n->list_lock, flags);
4616 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4617 process_slab(&t, s, page, alloc, map);
88a420e4 4618 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4619 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4620 spin_unlock_irqrestore(&n->list_lock, flags);
4621 }
4622
4623 for (i = 0; i < t.count; i++) {
45edfa58 4624 struct location *l = &t.loc[i];
88a420e4 4625
9c246247 4626 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4627 break;
e374d483 4628 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4629
4630 if (l->addr)
62c70bce 4631 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4632 else
e374d483 4633 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4634
4635 if (l->sum_time != l->min_time) {
e374d483 4636 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4637 l->min_time,
4638 (long)div_u64(l->sum_time, l->count),
4639 l->max_time);
45edfa58 4640 } else
e374d483 4641 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4642 l->min_time);
4643
4644 if (l->min_pid != l->max_pid)
e374d483 4645 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4646 l->min_pid, l->max_pid);
4647 else
e374d483 4648 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4649 l->min_pid);
4650
174596a0
RR
4651 if (num_online_cpus() > 1 &&
4652 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4653 len < PAGE_SIZE - 60)
4654 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4655 " cpus=%*pbl",
4656 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4657
62bc62a8 4658 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4659 len < PAGE_SIZE - 60)
4660 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4661 " nodes=%*pbl",
4662 nodemask_pr_args(&l->nodes));
45edfa58 4663
e374d483 4664 len += sprintf(buf + len, "\n");
88a420e4
CL
4665 }
4666
4667 free_loc_track(&t);
bbd7d57b 4668 kfree(map);
88a420e4 4669 if (!t.count)
e374d483
HH
4670 len += sprintf(buf, "No data\n");
4671 return len;
88a420e4 4672}
ab4d5ed5 4673#endif
88a420e4 4674
a5a84755 4675#ifdef SLUB_RESILIENCY_TEST
c07b8183 4676static void __init resiliency_test(void)
a5a84755
CL
4677{
4678 u8 *p;
4679
95a05b42 4680 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4681
f9f58285
FF
4682 pr_err("SLUB resiliency testing\n");
4683 pr_err("-----------------------\n");
4684 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4685
4686 p = kzalloc(16, GFP_KERNEL);
4687 p[16] = 0x12;
f9f58285
FF
4688 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4689 p + 16);
a5a84755
CL
4690
4691 validate_slab_cache(kmalloc_caches[4]);
4692
4693 /* Hmmm... The next two are dangerous */
4694 p = kzalloc(32, GFP_KERNEL);
4695 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4696 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4697 p);
4698 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4699
4700 validate_slab_cache(kmalloc_caches[5]);
4701 p = kzalloc(64, GFP_KERNEL);
4702 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4703 *p = 0x56;
f9f58285
FF
4704 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4705 p);
4706 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4707 validate_slab_cache(kmalloc_caches[6]);
4708
f9f58285 4709 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4710 p = kzalloc(128, GFP_KERNEL);
4711 kfree(p);
4712 *p = 0x78;
f9f58285 4713 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4714 validate_slab_cache(kmalloc_caches[7]);
4715
4716 p = kzalloc(256, GFP_KERNEL);
4717 kfree(p);
4718 p[50] = 0x9a;
f9f58285 4719 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4720 validate_slab_cache(kmalloc_caches[8]);
4721
4722 p = kzalloc(512, GFP_KERNEL);
4723 kfree(p);
4724 p[512] = 0xab;
f9f58285 4725 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4726 validate_slab_cache(kmalloc_caches[9]);
4727}
4728#else
4729#ifdef CONFIG_SYSFS
4730static void resiliency_test(void) {};
4731#endif
4732#endif
4733
ab4d5ed5 4734#ifdef CONFIG_SYSFS
81819f0f 4735enum slab_stat_type {
205ab99d
CL
4736 SL_ALL, /* All slabs */
4737 SL_PARTIAL, /* Only partially allocated slabs */
4738 SL_CPU, /* Only slabs used for cpu caches */
4739 SL_OBJECTS, /* Determine allocated objects not slabs */
4740 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4741};
4742
205ab99d 4743#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4744#define SO_PARTIAL (1 << SL_PARTIAL)
4745#define SO_CPU (1 << SL_CPU)
4746#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4747#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4748
1663f26d
TH
4749#ifdef CONFIG_MEMCG
4750static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4751
4752static int __init setup_slub_memcg_sysfs(char *str)
4753{
4754 int v;
4755
4756 if (get_option(&str, &v) > 0)
4757 memcg_sysfs_enabled = v;
4758
4759 return 1;
4760}
4761
4762__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4763#endif
4764
62e5c4b4
CG
4765static ssize_t show_slab_objects(struct kmem_cache *s,
4766 char *buf, unsigned long flags)
81819f0f
CL
4767{
4768 unsigned long total = 0;
81819f0f
CL
4769 int node;
4770 int x;
4771 unsigned long *nodes;
81819f0f 4772
e35e1a97 4773 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4774 if (!nodes)
4775 return -ENOMEM;
81819f0f 4776
205ab99d
CL
4777 if (flags & SO_CPU) {
4778 int cpu;
81819f0f 4779
205ab99d 4780 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4781 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4782 cpu);
ec3ab083 4783 int node;
49e22585 4784 struct page *page;
dfb4f096 4785
4db0c3c2 4786 page = READ_ONCE(c->page);
ec3ab083
CL
4787 if (!page)
4788 continue;
205ab99d 4789
ec3ab083
CL
4790 node = page_to_nid(page);
4791 if (flags & SO_TOTAL)
4792 x = page->objects;
4793 else if (flags & SO_OBJECTS)
4794 x = page->inuse;
4795 else
4796 x = 1;
49e22585 4797
ec3ab083
CL
4798 total += x;
4799 nodes[node] += x;
4800
a93cf07b 4801 page = slub_percpu_partial_read_once(c);
49e22585 4802 if (page) {
8afb1474
LZ
4803 node = page_to_nid(page);
4804 if (flags & SO_TOTAL)
4805 WARN_ON_ONCE(1);
4806 else if (flags & SO_OBJECTS)
4807 WARN_ON_ONCE(1);
4808 else
4809 x = page->pages;
bc6697d8
ED
4810 total += x;
4811 nodes[node] += x;
49e22585 4812 }
81819f0f
CL
4813 }
4814 }
4815
bfc8c901 4816 get_online_mems();
ab4d5ed5 4817#ifdef CONFIG_SLUB_DEBUG
205ab99d 4818 if (flags & SO_ALL) {
fa45dc25
CL
4819 struct kmem_cache_node *n;
4820
4821 for_each_kmem_cache_node(s, node, n) {
205ab99d 4822
d0e0ac97
CG
4823 if (flags & SO_TOTAL)
4824 x = atomic_long_read(&n->total_objects);
4825 else if (flags & SO_OBJECTS)
4826 x = atomic_long_read(&n->total_objects) -
4827 count_partial(n, count_free);
81819f0f 4828 else
205ab99d 4829 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4830 total += x;
4831 nodes[node] += x;
4832 }
4833
ab4d5ed5
CL
4834 } else
4835#endif
4836 if (flags & SO_PARTIAL) {
fa45dc25 4837 struct kmem_cache_node *n;
81819f0f 4838
fa45dc25 4839 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4840 if (flags & SO_TOTAL)
4841 x = count_partial(n, count_total);
4842 else if (flags & SO_OBJECTS)
4843 x = count_partial(n, count_inuse);
81819f0f 4844 else
205ab99d 4845 x = n->nr_partial;
81819f0f
CL
4846 total += x;
4847 nodes[node] += x;
4848 }
4849 }
81819f0f
CL
4850 x = sprintf(buf, "%lu", total);
4851#ifdef CONFIG_NUMA
fa45dc25 4852 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4853 if (nodes[node])
4854 x += sprintf(buf + x, " N%d=%lu",
4855 node, nodes[node]);
4856#endif
bfc8c901 4857 put_online_mems();
81819f0f
CL
4858 kfree(nodes);
4859 return x + sprintf(buf + x, "\n");
4860}
4861
ab4d5ed5 4862#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4863static int any_slab_objects(struct kmem_cache *s)
4864{
4865 int node;
fa45dc25 4866 struct kmem_cache_node *n;
81819f0f 4867
fa45dc25 4868 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4869 if (atomic_long_read(&n->total_objects))
81819f0f 4870 return 1;
fa45dc25 4871
81819f0f
CL
4872 return 0;
4873}
ab4d5ed5 4874#endif
81819f0f
CL
4875
4876#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4877#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4878
4879struct slab_attribute {
4880 struct attribute attr;
4881 ssize_t (*show)(struct kmem_cache *s, char *buf);
4882 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4883};
4884
4885#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4886 static struct slab_attribute _name##_attr = \
4887 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4888
4889#define SLAB_ATTR(_name) \
4890 static struct slab_attribute _name##_attr = \
ab067e99 4891 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4892
81819f0f
CL
4893static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4894{
4895 return sprintf(buf, "%d\n", s->size);
4896}
4897SLAB_ATTR_RO(slab_size);
4898
4899static ssize_t align_show(struct kmem_cache *s, char *buf)
4900{
4901 return sprintf(buf, "%d\n", s->align);
4902}
4903SLAB_ATTR_RO(align);
4904
4905static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4906{
3b0efdfa 4907 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4908}
4909SLAB_ATTR_RO(object_size);
4910
4911static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4912{
834f3d11 4913 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4914}
4915SLAB_ATTR_RO(objs_per_slab);
4916
06b285dc
CL
4917static ssize_t order_store(struct kmem_cache *s,
4918 const char *buf, size_t length)
4919{
0121c619
CL
4920 unsigned long order;
4921 int err;
4922
3dbb95f7 4923 err = kstrtoul(buf, 10, &order);
0121c619
CL
4924 if (err)
4925 return err;
06b285dc
CL
4926
4927 if (order > slub_max_order || order < slub_min_order)
4928 return -EINVAL;
4929
4930 calculate_sizes(s, order);
4931 return length;
4932}
4933
81819f0f
CL
4934static ssize_t order_show(struct kmem_cache *s, char *buf)
4935{
834f3d11 4936 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4937}
06b285dc 4938SLAB_ATTR(order);
81819f0f 4939
73d342b1
DR
4940static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4941{
4942 return sprintf(buf, "%lu\n", s->min_partial);
4943}
4944
4945static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4946 size_t length)
4947{
4948 unsigned long min;
4949 int err;
4950
3dbb95f7 4951 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4952 if (err)
4953 return err;
4954
c0bdb232 4955 set_min_partial(s, min);
73d342b1
DR
4956 return length;
4957}
4958SLAB_ATTR(min_partial);
4959
49e22585
CL
4960static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4961{
e6d0e1dc 4962 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4963}
4964
4965static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4966 size_t length)
4967{
4968 unsigned long objects;
4969 int err;
4970
3dbb95f7 4971 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4972 if (err)
4973 return err;
345c905d 4974 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4975 return -EINVAL;
49e22585 4976
e6d0e1dc 4977 slub_set_cpu_partial(s, objects);
49e22585
CL
4978 flush_all(s);
4979 return length;
4980}
4981SLAB_ATTR(cpu_partial);
4982
81819f0f
CL
4983static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4984{
62c70bce
JP
4985 if (!s->ctor)
4986 return 0;
4987 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4988}
4989SLAB_ATTR_RO(ctor);
4990
81819f0f
CL
4991static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4992{
4307c14f 4993 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4994}
4995SLAB_ATTR_RO(aliases);
4996
81819f0f
CL
4997static ssize_t partial_show(struct kmem_cache *s, char *buf)
4998{
d9acf4b7 4999 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5000}
5001SLAB_ATTR_RO(partial);
5002
5003static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5004{
d9acf4b7 5005 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5006}
5007SLAB_ATTR_RO(cpu_slabs);
5008
5009static ssize_t objects_show(struct kmem_cache *s, char *buf)
5010{
205ab99d 5011 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5012}
5013SLAB_ATTR_RO(objects);
5014
205ab99d
CL
5015static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5016{
5017 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5018}
5019SLAB_ATTR_RO(objects_partial);
5020
49e22585
CL
5021static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5022{
5023 int objects = 0;
5024 int pages = 0;
5025 int cpu;
5026 int len;
5027
5028 for_each_online_cpu(cpu) {
a93cf07b
WY
5029 struct page *page;
5030
5031 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5032
5033 if (page) {
5034 pages += page->pages;
5035 objects += page->pobjects;
5036 }
5037 }
5038
5039 len = sprintf(buf, "%d(%d)", objects, pages);
5040
5041#ifdef CONFIG_SMP
5042 for_each_online_cpu(cpu) {
a93cf07b
WY
5043 struct page *page;
5044
5045 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5046
5047 if (page && len < PAGE_SIZE - 20)
5048 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5049 page->pobjects, page->pages);
5050 }
5051#endif
5052 return len + sprintf(buf + len, "\n");
5053}
5054SLAB_ATTR_RO(slabs_cpu_partial);
5055
a5a84755
CL
5056static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5057{
5058 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5059}
5060
5061static ssize_t reclaim_account_store(struct kmem_cache *s,
5062 const char *buf, size_t length)
5063{
5064 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5065 if (buf[0] == '1')
5066 s->flags |= SLAB_RECLAIM_ACCOUNT;
5067 return length;
5068}
5069SLAB_ATTR(reclaim_account);
5070
5071static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5072{
5073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5074}
5075SLAB_ATTR_RO(hwcache_align);
5076
5077#ifdef CONFIG_ZONE_DMA
5078static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5079{
5080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5081}
5082SLAB_ATTR_RO(cache_dma);
5083#endif
5084
5085static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5086{
5f0d5a3a 5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5088}
5089SLAB_ATTR_RO(destroy_by_rcu);
5090
ab9a0f19
LJ
5091static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5092{
5093 return sprintf(buf, "%d\n", s->reserved);
5094}
5095SLAB_ATTR_RO(reserved);
5096
ab4d5ed5 5097#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5098static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5099{
5100 return show_slab_objects(s, buf, SO_ALL);
5101}
5102SLAB_ATTR_RO(slabs);
5103
205ab99d
CL
5104static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5105{
5106 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5107}
5108SLAB_ATTR_RO(total_objects);
5109
81819f0f
CL
5110static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5111{
becfda68 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5113}
5114
5115static ssize_t sanity_checks_store(struct kmem_cache *s,
5116 const char *buf, size_t length)
5117{
becfda68 5118 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5119 if (buf[0] == '1') {
5120 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5121 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5122 }
81819f0f
CL
5123 return length;
5124}
5125SLAB_ATTR(sanity_checks);
5126
5127static ssize_t trace_show(struct kmem_cache *s, char *buf)
5128{
5129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5130}
5131
5132static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5133 size_t length)
5134{
c9e16131
CL
5135 /*
5136 * Tracing a merged cache is going to give confusing results
5137 * as well as cause other issues like converting a mergeable
5138 * cache into an umergeable one.
5139 */
5140 if (s->refcount > 1)
5141 return -EINVAL;
5142
81819f0f 5143 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5144 if (buf[0] == '1') {
5145 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5146 s->flags |= SLAB_TRACE;
b789ef51 5147 }
81819f0f
CL
5148 return length;
5149}
5150SLAB_ATTR(trace);
5151
81819f0f
CL
5152static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5153{
5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5155}
5156
5157static ssize_t red_zone_store(struct kmem_cache *s,
5158 const char *buf, size_t length)
5159{
5160 if (any_slab_objects(s))
5161 return -EBUSY;
5162
5163 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5164 if (buf[0] == '1') {
81819f0f 5165 s->flags |= SLAB_RED_ZONE;
b789ef51 5166 }
06b285dc 5167 calculate_sizes(s, -1);
81819f0f
CL
5168 return length;
5169}
5170SLAB_ATTR(red_zone);
5171
5172static ssize_t poison_show(struct kmem_cache *s, char *buf)
5173{
5174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5175}
5176
5177static ssize_t poison_store(struct kmem_cache *s,
5178 const char *buf, size_t length)
5179{
5180 if (any_slab_objects(s))
5181 return -EBUSY;
5182
5183 s->flags &= ~SLAB_POISON;
b789ef51 5184 if (buf[0] == '1') {
81819f0f 5185 s->flags |= SLAB_POISON;
b789ef51 5186 }
06b285dc 5187 calculate_sizes(s, -1);
81819f0f
CL
5188 return length;
5189}
5190SLAB_ATTR(poison);
5191
5192static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5193{
5194 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5195}
5196
5197static ssize_t store_user_store(struct kmem_cache *s,
5198 const char *buf, size_t length)
5199{
5200 if (any_slab_objects(s))
5201 return -EBUSY;
5202
5203 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5204 if (buf[0] == '1') {
5205 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5206 s->flags |= SLAB_STORE_USER;
b789ef51 5207 }
06b285dc 5208 calculate_sizes(s, -1);
81819f0f
CL
5209 return length;
5210}
5211SLAB_ATTR(store_user);
5212
53e15af0
CL
5213static ssize_t validate_show(struct kmem_cache *s, char *buf)
5214{
5215 return 0;
5216}
5217
5218static ssize_t validate_store(struct kmem_cache *s,
5219 const char *buf, size_t length)
5220{
434e245d
CL
5221 int ret = -EINVAL;
5222
5223 if (buf[0] == '1') {
5224 ret = validate_slab_cache(s);
5225 if (ret >= 0)
5226 ret = length;
5227 }
5228 return ret;
53e15af0
CL
5229}
5230SLAB_ATTR(validate);
a5a84755
CL
5231
5232static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5233{
5234 if (!(s->flags & SLAB_STORE_USER))
5235 return -ENOSYS;
5236 return list_locations(s, buf, TRACK_ALLOC);
5237}
5238SLAB_ATTR_RO(alloc_calls);
5239
5240static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5241{
5242 if (!(s->flags & SLAB_STORE_USER))
5243 return -ENOSYS;
5244 return list_locations(s, buf, TRACK_FREE);
5245}
5246SLAB_ATTR_RO(free_calls);
5247#endif /* CONFIG_SLUB_DEBUG */
5248
5249#ifdef CONFIG_FAILSLAB
5250static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5251{
5252 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5253}
5254
5255static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5256 size_t length)
5257{
c9e16131
CL
5258 if (s->refcount > 1)
5259 return -EINVAL;
5260
a5a84755
CL
5261 s->flags &= ~SLAB_FAILSLAB;
5262 if (buf[0] == '1')
5263 s->flags |= SLAB_FAILSLAB;
5264 return length;
5265}
5266SLAB_ATTR(failslab);
ab4d5ed5 5267#endif
53e15af0 5268
2086d26a
CL
5269static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5270{
5271 return 0;
5272}
5273
5274static ssize_t shrink_store(struct kmem_cache *s,
5275 const char *buf, size_t length)
5276{
832f37f5
VD
5277 if (buf[0] == '1')
5278 kmem_cache_shrink(s);
5279 else
2086d26a
CL
5280 return -EINVAL;
5281 return length;
5282}
5283SLAB_ATTR(shrink);
5284
81819f0f 5285#ifdef CONFIG_NUMA
9824601e 5286static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5287{
9824601e 5288 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5289}
5290
9824601e 5291static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5292 const char *buf, size_t length)
5293{
0121c619
CL
5294 unsigned long ratio;
5295 int err;
5296
3dbb95f7 5297 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5298 if (err)
5299 return err;
5300
e2cb96b7 5301 if (ratio <= 100)
0121c619 5302 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5303
81819f0f
CL
5304 return length;
5305}
9824601e 5306SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5307#endif
5308
8ff12cfc 5309#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5310static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5311{
5312 unsigned long sum = 0;
5313 int cpu;
5314 int len;
5315 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5316
5317 if (!data)
5318 return -ENOMEM;
5319
5320 for_each_online_cpu(cpu) {
9dfc6e68 5321 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5322
5323 data[cpu] = x;
5324 sum += x;
5325 }
5326
5327 len = sprintf(buf, "%lu", sum);
5328
50ef37b9 5329#ifdef CONFIG_SMP
8ff12cfc
CL
5330 for_each_online_cpu(cpu) {
5331 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5332 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5333 }
50ef37b9 5334#endif
8ff12cfc
CL
5335 kfree(data);
5336 return len + sprintf(buf + len, "\n");
5337}
5338
78eb00cc
DR
5339static void clear_stat(struct kmem_cache *s, enum stat_item si)
5340{
5341 int cpu;
5342
5343 for_each_online_cpu(cpu)
9dfc6e68 5344 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5345}
5346
8ff12cfc
CL
5347#define STAT_ATTR(si, text) \
5348static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5349{ \
5350 return show_stat(s, buf, si); \
5351} \
78eb00cc
DR
5352static ssize_t text##_store(struct kmem_cache *s, \
5353 const char *buf, size_t length) \
5354{ \
5355 if (buf[0] != '0') \
5356 return -EINVAL; \
5357 clear_stat(s, si); \
5358 return length; \
5359} \
5360SLAB_ATTR(text); \
8ff12cfc
CL
5361
5362STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5363STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5364STAT_ATTR(FREE_FASTPATH, free_fastpath);
5365STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5366STAT_ATTR(FREE_FROZEN, free_frozen);
5367STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5368STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5369STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5370STAT_ATTR(ALLOC_SLAB, alloc_slab);
5371STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5372STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5373STAT_ATTR(FREE_SLAB, free_slab);
5374STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5375STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5376STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5377STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5378STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5379STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5380STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5381STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5382STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5383STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5384STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5385STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5386STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5387STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5388#endif
5389
06428780 5390static struct attribute *slab_attrs[] = {
81819f0f
CL
5391 &slab_size_attr.attr,
5392 &object_size_attr.attr,
5393 &objs_per_slab_attr.attr,
5394 &order_attr.attr,
73d342b1 5395 &min_partial_attr.attr,
49e22585 5396 &cpu_partial_attr.attr,
81819f0f 5397 &objects_attr.attr,
205ab99d 5398 &objects_partial_attr.attr,
81819f0f
CL
5399 &partial_attr.attr,
5400 &cpu_slabs_attr.attr,
5401 &ctor_attr.attr,
81819f0f
CL
5402 &aliases_attr.attr,
5403 &align_attr.attr,
81819f0f
CL
5404 &hwcache_align_attr.attr,
5405 &reclaim_account_attr.attr,
5406 &destroy_by_rcu_attr.attr,
a5a84755 5407 &shrink_attr.attr,
ab9a0f19 5408 &reserved_attr.attr,
49e22585 5409 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5410#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5411 &total_objects_attr.attr,
5412 &slabs_attr.attr,
5413 &sanity_checks_attr.attr,
5414 &trace_attr.attr,
81819f0f
CL
5415 &red_zone_attr.attr,
5416 &poison_attr.attr,
5417 &store_user_attr.attr,
53e15af0 5418 &validate_attr.attr,
88a420e4
CL
5419 &alloc_calls_attr.attr,
5420 &free_calls_attr.attr,
ab4d5ed5 5421#endif
81819f0f
CL
5422#ifdef CONFIG_ZONE_DMA
5423 &cache_dma_attr.attr,
5424#endif
5425#ifdef CONFIG_NUMA
9824601e 5426 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5427#endif
5428#ifdef CONFIG_SLUB_STATS
5429 &alloc_fastpath_attr.attr,
5430 &alloc_slowpath_attr.attr,
5431 &free_fastpath_attr.attr,
5432 &free_slowpath_attr.attr,
5433 &free_frozen_attr.attr,
5434 &free_add_partial_attr.attr,
5435 &free_remove_partial_attr.attr,
5436 &alloc_from_partial_attr.attr,
5437 &alloc_slab_attr.attr,
5438 &alloc_refill_attr.attr,
e36a2652 5439 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5440 &free_slab_attr.attr,
5441 &cpuslab_flush_attr.attr,
5442 &deactivate_full_attr.attr,
5443 &deactivate_empty_attr.attr,
5444 &deactivate_to_head_attr.attr,
5445 &deactivate_to_tail_attr.attr,
5446 &deactivate_remote_frees_attr.attr,
03e404af 5447 &deactivate_bypass_attr.attr,
65c3376a 5448 &order_fallback_attr.attr,
b789ef51
CL
5449 &cmpxchg_double_fail_attr.attr,
5450 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5451 &cpu_partial_alloc_attr.attr,
5452 &cpu_partial_free_attr.attr,
8028dcea
AS
5453 &cpu_partial_node_attr.attr,
5454 &cpu_partial_drain_attr.attr,
81819f0f 5455#endif
4c13dd3b
DM
5456#ifdef CONFIG_FAILSLAB
5457 &failslab_attr.attr,
5458#endif
5459
81819f0f
CL
5460 NULL
5461};
5462
1fdaaa23 5463static const struct attribute_group slab_attr_group = {
81819f0f
CL
5464 .attrs = slab_attrs,
5465};
5466
5467static ssize_t slab_attr_show(struct kobject *kobj,
5468 struct attribute *attr,
5469 char *buf)
5470{
5471 struct slab_attribute *attribute;
5472 struct kmem_cache *s;
5473 int err;
5474
5475 attribute = to_slab_attr(attr);
5476 s = to_slab(kobj);
5477
5478 if (!attribute->show)
5479 return -EIO;
5480
5481 err = attribute->show(s, buf);
5482
5483 return err;
5484}
5485
5486static ssize_t slab_attr_store(struct kobject *kobj,
5487 struct attribute *attr,
5488 const char *buf, size_t len)
5489{
5490 struct slab_attribute *attribute;
5491 struct kmem_cache *s;
5492 int err;
5493
5494 attribute = to_slab_attr(attr);
5495 s = to_slab(kobj);
5496
5497 if (!attribute->store)
5498 return -EIO;
5499
5500 err = attribute->store(s, buf, len);
127424c8 5501#ifdef CONFIG_MEMCG
107dab5c 5502 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5503 struct kmem_cache *c;
81819f0f 5504
107dab5c
GC
5505 mutex_lock(&slab_mutex);
5506 if (s->max_attr_size < len)
5507 s->max_attr_size = len;
5508
ebe945c2
GC
5509 /*
5510 * This is a best effort propagation, so this function's return
5511 * value will be determined by the parent cache only. This is
5512 * basically because not all attributes will have a well
5513 * defined semantics for rollbacks - most of the actions will
5514 * have permanent effects.
5515 *
5516 * Returning the error value of any of the children that fail
5517 * is not 100 % defined, in the sense that users seeing the
5518 * error code won't be able to know anything about the state of
5519 * the cache.
5520 *
5521 * Only returning the error code for the parent cache at least
5522 * has well defined semantics. The cache being written to
5523 * directly either failed or succeeded, in which case we loop
5524 * through the descendants with best-effort propagation.
5525 */
426589f5
VD
5526 for_each_memcg_cache(c, s)
5527 attribute->store(c, buf, len);
107dab5c
GC
5528 mutex_unlock(&slab_mutex);
5529 }
5530#endif
81819f0f
CL
5531 return err;
5532}
5533
107dab5c
GC
5534static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5535{
127424c8 5536#ifdef CONFIG_MEMCG
107dab5c
GC
5537 int i;
5538 char *buffer = NULL;
93030d83 5539 struct kmem_cache *root_cache;
107dab5c 5540
93030d83 5541 if (is_root_cache(s))
107dab5c
GC
5542 return;
5543
f7ce3190 5544 root_cache = s->memcg_params.root_cache;
93030d83 5545
107dab5c
GC
5546 /*
5547 * This mean this cache had no attribute written. Therefore, no point
5548 * in copying default values around
5549 */
93030d83 5550 if (!root_cache->max_attr_size)
107dab5c
GC
5551 return;
5552
5553 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5554 char mbuf[64];
5555 char *buf;
5556 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5557 ssize_t len;
107dab5c
GC
5558
5559 if (!attr || !attr->store || !attr->show)
5560 continue;
5561
5562 /*
5563 * It is really bad that we have to allocate here, so we will
5564 * do it only as a fallback. If we actually allocate, though,
5565 * we can just use the allocated buffer until the end.
5566 *
5567 * Most of the slub attributes will tend to be very small in
5568 * size, but sysfs allows buffers up to a page, so they can
5569 * theoretically happen.
5570 */
5571 if (buffer)
5572 buf = buffer;
93030d83 5573 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5574 buf = mbuf;
5575 else {
5576 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5577 if (WARN_ON(!buffer))
5578 continue;
5579 buf = buffer;
5580 }
5581
478fe303
TG
5582 len = attr->show(root_cache, buf);
5583 if (len > 0)
5584 attr->store(s, buf, len);
107dab5c
GC
5585 }
5586
5587 if (buffer)
5588 free_page((unsigned long)buffer);
5589#endif
5590}
5591
41a21285
CL
5592static void kmem_cache_release(struct kobject *k)
5593{
5594 slab_kmem_cache_release(to_slab(k));
5595}
5596
52cf25d0 5597static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5598 .show = slab_attr_show,
5599 .store = slab_attr_store,
5600};
5601
5602static struct kobj_type slab_ktype = {
5603 .sysfs_ops = &slab_sysfs_ops,
41a21285 5604 .release = kmem_cache_release,
81819f0f
CL
5605};
5606
5607static int uevent_filter(struct kset *kset, struct kobject *kobj)
5608{
5609 struct kobj_type *ktype = get_ktype(kobj);
5610
5611 if (ktype == &slab_ktype)
5612 return 1;
5613 return 0;
5614}
5615
9cd43611 5616static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5617 .filter = uevent_filter,
5618};
5619
27c3a314 5620static struct kset *slab_kset;
81819f0f 5621
9a41707b
VD
5622static inline struct kset *cache_kset(struct kmem_cache *s)
5623{
127424c8 5624#ifdef CONFIG_MEMCG
9a41707b 5625 if (!is_root_cache(s))
f7ce3190 5626 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5627#endif
5628 return slab_kset;
5629}
5630
81819f0f
CL
5631#define ID_STR_LENGTH 64
5632
5633/* Create a unique string id for a slab cache:
6446faa2
CL
5634 *
5635 * Format :[flags-]size
81819f0f
CL
5636 */
5637static char *create_unique_id(struct kmem_cache *s)
5638{
5639 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5640 char *p = name;
5641
5642 BUG_ON(!name);
5643
5644 *p++ = ':';
5645 /*
5646 * First flags affecting slabcache operations. We will only
5647 * get here for aliasable slabs so we do not need to support
5648 * too many flags. The flags here must cover all flags that
5649 * are matched during merging to guarantee that the id is
5650 * unique.
5651 */
5652 if (s->flags & SLAB_CACHE_DMA)
5653 *p++ = 'd';
5654 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5655 *p++ = 'a';
becfda68 5656 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5657 *p++ = 'F';
5a896d9e
VN
5658 if (!(s->flags & SLAB_NOTRACK))
5659 *p++ = 't';
230e9fc2
VD
5660 if (s->flags & SLAB_ACCOUNT)
5661 *p++ = 'A';
81819f0f
CL
5662 if (p != name + 1)
5663 *p++ = '-';
5664 p += sprintf(p, "%07d", s->size);
2633d7a0 5665
81819f0f
CL
5666 BUG_ON(p > name + ID_STR_LENGTH - 1);
5667 return name;
5668}
5669
3b7b3140
TH
5670static void sysfs_slab_remove_workfn(struct work_struct *work)
5671{
5672 struct kmem_cache *s =
5673 container_of(work, struct kmem_cache, kobj_remove_work);
5674
5675 if (!s->kobj.state_in_sysfs)
5676 /*
5677 * For a memcg cache, this may be called during
5678 * deactivation and again on shutdown. Remove only once.
5679 * A cache is never shut down before deactivation is
5680 * complete, so no need to worry about synchronization.
5681 */
f6ba4880 5682 goto out;
3b7b3140
TH
5683
5684#ifdef CONFIG_MEMCG
5685 kset_unregister(s->memcg_kset);
5686#endif
5687 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5688 kobject_del(&s->kobj);
f6ba4880 5689out:
3b7b3140
TH
5690 kobject_put(&s->kobj);
5691}
5692
81819f0f
CL
5693static int sysfs_slab_add(struct kmem_cache *s)
5694{
5695 int err;
5696 const char *name;
1663f26d 5697 struct kset *kset = cache_kset(s);
45530c44 5698 int unmergeable = slab_unmergeable(s);
81819f0f 5699
3b7b3140
TH
5700 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5701
1663f26d
TH
5702 if (!kset) {
5703 kobject_init(&s->kobj, &slab_ktype);
5704 return 0;
5705 }
5706
81819f0f
CL
5707 if (unmergeable) {
5708 /*
5709 * Slabcache can never be merged so we can use the name proper.
5710 * This is typically the case for debug situations. In that
5711 * case we can catch duplicate names easily.
5712 */
27c3a314 5713 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5714 name = s->name;
5715 } else {
5716 /*
5717 * Create a unique name for the slab as a target
5718 * for the symlinks.
5719 */
5720 name = create_unique_id(s);
5721 }
5722
1663f26d 5723 s->kobj.kset = kset;
26e4f205 5724 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5725 if (err)
80da026a 5726 goto out;
81819f0f
CL
5727
5728 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5729 if (err)
5730 goto out_del_kobj;
9a41707b 5731
127424c8 5732#ifdef CONFIG_MEMCG
1663f26d 5733 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5734 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5735 if (!s->memcg_kset) {
54b6a731
DJ
5736 err = -ENOMEM;
5737 goto out_del_kobj;
9a41707b
VD
5738 }
5739 }
5740#endif
5741
81819f0f
CL
5742 kobject_uevent(&s->kobj, KOBJ_ADD);
5743 if (!unmergeable) {
5744 /* Setup first alias */
5745 sysfs_slab_alias(s, s->name);
81819f0f 5746 }
54b6a731
DJ
5747out:
5748 if (!unmergeable)
5749 kfree(name);
5750 return err;
5751out_del_kobj:
5752 kobject_del(&s->kobj);
54b6a731 5753 goto out;
81819f0f
CL
5754}
5755
bf5eb3de 5756static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5757{
97d06609 5758 if (slab_state < FULL)
2bce6485
CL
5759 /*
5760 * Sysfs has not been setup yet so no need to remove the
5761 * cache from sysfs.
5762 */
5763 return;
5764
3b7b3140
TH
5765 kobject_get(&s->kobj);
5766 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5767}
5768
5769void sysfs_slab_release(struct kmem_cache *s)
5770{
5771 if (slab_state >= FULL)
5772 kobject_put(&s->kobj);
81819f0f
CL
5773}
5774
5775/*
5776 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5777 * available lest we lose that information.
81819f0f
CL
5778 */
5779struct saved_alias {
5780 struct kmem_cache *s;
5781 const char *name;
5782 struct saved_alias *next;
5783};
5784
5af328a5 5785static struct saved_alias *alias_list;
81819f0f
CL
5786
5787static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5788{
5789 struct saved_alias *al;
5790
97d06609 5791 if (slab_state == FULL) {
81819f0f
CL
5792 /*
5793 * If we have a leftover link then remove it.
5794 */
27c3a314
GKH
5795 sysfs_remove_link(&slab_kset->kobj, name);
5796 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5797 }
5798
5799 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5800 if (!al)
5801 return -ENOMEM;
5802
5803 al->s = s;
5804 al->name = name;
5805 al->next = alias_list;
5806 alias_list = al;
5807 return 0;
5808}
5809
5810static int __init slab_sysfs_init(void)
5811{
5b95a4ac 5812 struct kmem_cache *s;
81819f0f
CL
5813 int err;
5814
18004c5d 5815 mutex_lock(&slab_mutex);
2bce6485 5816
0ff21e46 5817 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5818 if (!slab_kset) {
18004c5d 5819 mutex_unlock(&slab_mutex);
f9f58285 5820 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5821 return -ENOSYS;
5822 }
5823
97d06609 5824 slab_state = FULL;
26a7bd03 5825
5b95a4ac 5826 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5827 err = sysfs_slab_add(s);
5d540fb7 5828 if (err)
f9f58285
FF
5829 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5830 s->name);
26a7bd03 5831 }
81819f0f
CL
5832
5833 while (alias_list) {
5834 struct saved_alias *al = alias_list;
5835
5836 alias_list = alias_list->next;
5837 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5838 if (err)
f9f58285
FF
5839 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5840 al->name);
81819f0f
CL
5841 kfree(al);
5842 }
5843
18004c5d 5844 mutex_unlock(&slab_mutex);
81819f0f
CL
5845 resiliency_test();
5846 return 0;
5847}
5848
5849__initcall(slab_sysfs_init);
ab4d5ed5 5850#endif /* CONFIG_SYSFS */
57ed3eda
PE
5851
5852/*
5853 * The /proc/slabinfo ABI
5854 */
158a9624 5855#ifdef CONFIG_SLABINFO
0d7561c6 5856void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5857{
57ed3eda 5858 unsigned long nr_slabs = 0;
205ab99d
CL
5859 unsigned long nr_objs = 0;
5860 unsigned long nr_free = 0;
57ed3eda 5861 int node;
fa45dc25 5862 struct kmem_cache_node *n;
57ed3eda 5863
fa45dc25 5864 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5865 nr_slabs += node_nr_slabs(n);
5866 nr_objs += node_nr_objs(n);
205ab99d 5867 nr_free += count_partial(n, count_free);
57ed3eda
PE
5868 }
5869
0d7561c6
GC
5870 sinfo->active_objs = nr_objs - nr_free;
5871 sinfo->num_objs = nr_objs;
5872 sinfo->active_slabs = nr_slabs;
5873 sinfo->num_slabs = nr_slabs;
5874 sinfo->objects_per_slab = oo_objects(s->oo);
5875 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5876}
5877
0d7561c6 5878void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5879{
7b3c3a50
AD
5880}
5881
b7454ad3
GC
5882ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5883 size_t count, loff_t *ppos)
7b3c3a50 5884{
b7454ad3 5885 return -EIO;
7b3c3a50 5886}
158a9624 5887#endif /* CONFIG_SLABINFO */