]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm/thp: don't count ZONE_MOVABLE as the target for freepage reserving
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254#else
255 return ptr;
256#endif
257}
258
259/* Returns the freelist pointer recorded at location ptr_addr. */
260static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262{
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
2482ddec 269 return freelist_dereference(s, object + s->offset);
7656c72b
CL
270}
271
0ad9500e
ED
272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273{
2482ddec
KC
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
2482ddec 280 unsigned long freepointer_addr;
1393d9a1
CL
281 void *p;
282
922d566c
JK
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
2482ddec
KC
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
289}
290
7656c72b
CL
291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292{
2482ddec
KC
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
ce6fa91b
AP
295#ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297#endif
298
2482ddec 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
300}
301
302/* Loop over all objects in a slab */
224a88be 303#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
7656c72b 307
54266640 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
54266640 312
7656c72b 313/* Determine object index from a given position */
284b50dd 314static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b
CL
315{
316 return (p - addr) / s->size;
317}
318
19af27af 319static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
ab9a0f19 320{
19af27af 321 return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
ab9a0f19
LJ
322}
323
19af27af
AD
324static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 unsigned int size, unsigned int reserved)
834f3d11
CL
326{
327 struct kmem_cache_order_objects x = {
ab9a0f19 328 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
329 };
330
331 return x;
332}
333
19af27af 334static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 335{
210b5c06 336 return x.x >> OO_SHIFT;
834f3d11
CL
337}
338
19af27af 339static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x & OO_MASK;
834f3d11
CL
342}
343
881db7fb
CL
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
48c935ad 349 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
48c935ad 355 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
a0320865
DH
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
a0320865 395 set_page_slub_counters(page, counters_new);
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
a0320865 434 set_page_slub_counters(page, counters_new);
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
454/*
455 * Determine a map of object in use on a page.
456 *
881db7fb 457 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
870b1fbb 469static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
41ecc55b
CL
485/*
486 * Debug settings:
487 */
89d3c87e 488#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 490#else
d50112ed 491static slab_flags_t slub_debug;
f0630fff 492#endif
41ecc55b
CL
493
494static char *slub_debug_slabs;
fa5ec8a1 495static int disable_higher_order_debug;
41ecc55b 496
a79316c6
AR
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
81819f0f
CL
513/*
514 * Object debugging
515 */
d86bd1be
JK
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534}
535
aa2efd5e
DT
536static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
81819f0f 538{
a79316c6 539 metadata_access_enable();
aa2efd5e 540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 541 length, 1);
a79316c6 542 metadata_access_disable();
81819f0f
CL
543}
544
81819f0f
CL
545static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547{
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556}
557
558static void set_track(struct kmem_cache *s, void *object,
ce71e27c 559 enum track_item alloc, unsigned long addr)
81819f0f 560{
1a00df4a 561 struct track *p = get_track(s, object, alloc);
81819f0f 562
81819f0f 563 if (addr) {
d6543e39
BG
564#ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
a79316c6 572 metadata_access_enable();
d6543e39 573 save_stack_trace(&trace);
a79316c6 574 metadata_access_disable();
d6543e39
BG
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583#endif
81819f0f
CL
584 p->addr = addr;
585 p->cpu = smp_processor_id();
88e4ccf2 586 p->pid = current->pid;
81819f0f
CL
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590}
591
81819f0f
CL
592static void init_tracking(struct kmem_cache *s, void *object)
593{
24922684
CL
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
ce71e27c
EGM
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
599}
600
86609d33 601static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
602{
603 if (!t->addr)
604 return;
605
f9f58285 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
608#ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
f9f58285 613 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
614 else
615 break;
616 }
617#endif
24922684
CL
618}
619
620static void print_tracking(struct kmem_cache *s, void *object)
621{
86609d33 622 unsigned long pr_time = jiffies;
24922684
CL
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
86609d33
CP
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
628}
629
630static void print_page_info(struct page *page)
631{
f9f58285 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 633 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
634
635}
636
637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638{
ecc42fbe 639 struct va_format vaf;
24922684 640 va_list args;
24922684
CL
641
642 va_start(args, fmt);
ecc42fbe
FF
643 vaf.fmt = fmt;
644 vaf.va = &args;
f9f58285 645 pr_err("=============================================================================\n");
ecc42fbe 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 647 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 648
373d4d09 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 650 va_end(args);
81819f0f
CL
651}
652
24922684
CL
653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654{
ecc42fbe 655 struct va_format vaf;
24922684 656 va_list args;
24922684
CL
657
658 va_start(args, fmt);
ecc42fbe
FF
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 662 va_end(args);
24922684
CL
663}
664
665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
666{
667 unsigned int off; /* Offset of last byte */
a973e9dd 668 u8 *addr = page_address(page);
24922684
CL
669
670 print_tracking(s, p);
671
672 print_page_info(page);
673
f9f58285
FF
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
24922684 676
d86bd1be 677 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
d86bd1be 680 else if (p > addr + 16)
aa2efd5e 681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 682
aa2efd5e 683 print_section(KERN_ERR, "Object ", p,
1b473f29 684 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 685 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 687 s->inuse - s->object_size);
81819f0f 688
81819f0f
CL
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
693
24922684 694 if (s->flags & SLAB_STORE_USER)
81819f0f 695 off += 2 * sizeof(struct track);
81819f0f 696
80a9201a
AP
697 off += kasan_metadata_size(s);
698
d86bd1be 699 if (off != size_from_object(s))
81819f0f 700 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
24922684
CL
703
704 dump_stack();
81819f0f
CL
705}
706
75c66def 707void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
708 u8 *object, char *reason)
709{
3dc50637 710 slab_bug(s, "%s", reason);
24922684 711 print_trailer(s, page, object);
81819f0f
CL
712}
713
d0e0ac97
CG
714static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
81819f0f
CL
716{
717 va_list args;
718 char buf[100];
719
24922684
CL
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 722 va_end(args);
3dc50637 723 slab_bug(s, "%s", buf);
24922684 724 print_page_info(page);
81819f0f
CL
725 dump_stack();
726}
727
f7cb1933 728static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
729{
730 u8 *p = object;
731
d86bd1be
JK
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
734
81819f0f 735 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
81819f0f
CL
738 }
739
740 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 741 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
742}
743
24922684
CL
744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
746{
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
749}
750
751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
06428780 753 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
754{
755 u8 *fault;
756 u8 *end;
757
a79316c6 758 metadata_access_enable();
79824820 759 fault = memchr_inv(start, value, bytes);
a79316c6 760 metadata_access_disable();
24922684
CL
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
f9f58285 769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
772
773 restore_bytes(s, what, value, fault, end);
774 return 0;
81819f0f
CL
775}
776
81819f0f
CL
777/*
778 * Object layout:
779 *
780 * object address
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
672bba3a 784 *
81819f0f
CL
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * 0xa5 (POISON_END)
787 *
3b0efdfa 788 * object + s->object_size
81819f0f 789 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 790 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 791 * object_size == inuse.
672bba3a 792 *
81819f0f
CL
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
795 *
796 * object + s->inuse
672bba3a
CL
797 * Meta data starts here.
798 *
81819f0f
CL
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
672bba3a 801 * C. Padding to reach required alignment boundary or at mininum
6446faa2 802 * one word if debugging is on to be able to detect writes
672bba3a
CL
803 * before the word boundary.
804 *
805 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
806 *
807 * object + s->size
672bba3a 808 * Nothing is used beyond s->size.
81819f0f 809 *
3b0efdfa 810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 811 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
812 * may be used with merged slabcaches.
813 */
814
81819f0f
CL
815static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816{
817 unsigned long off = s->inuse; /* The end of info */
818
819 if (s->offset)
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
822
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
826
80a9201a
AP
827 off += kasan_metadata_size(s);
828
d86bd1be 829 if (size_from_object(s) == off)
81819f0f
CL
830 return 1;
831
24922684 832 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 833 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
834}
835
39b26464 836/* Check the pad bytes at the end of a slab page */
81819f0f
CL
837static int slab_pad_check(struct kmem_cache *s, struct page *page)
838{
24922684
CL
839 u8 *start;
840 u8 *fault;
841 u8 *end;
5d682681 842 u8 *pad;
24922684
CL
843 int length;
844 int remainder;
81819f0f
CL
845
846 if (!(s->flags & SLAB_POISON))
847 return 1;
848
a973e9dd 849 start = page_address(page);
ab9a0f19 850 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
851 end = start + length;
852 remainder = length % s->size;
81819f0f
CL
853 if (!remainder)
854 return 1;
855
5d682681 856 pad = end - remainder;
a79316c6 857 metadata_access_enable();
5d682681 858 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 859 metadata_access_disable();
24922684
CL
860 if (!fault)
861 return 1;
862 while (end > fault && end[-1] == POISON_INUSE)
863 end--;
864
865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 866 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 867
5d682681 868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 869 return 0;
81819f0f
CL
870}
871
872static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 873 void *object, u8 val)
81819f0f
CL
874{
875 u8 *p = object;
3b0efdfa 876 u8 *endobject = object + s->object_size;
81819f0f
CL
877
878 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 object - s->red_left_pad, val, s->red_left_pad))
881 return 0;
882
24922684 883 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 884 endobject, val, s->inuse - s->object_size))
81819f0f 885 return 0;
81819f0f 886 } else {
3b0efdfa 887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 888 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
889 endobject, POISON_INUSE,
890 s->inuse - s->object_size);
3adbefee 891 }
81819f0f
CL
892 }
893
894 if (s->flags & SLAB_POISON) {
f7cb1933 895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 896 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 897 POISON_FREE, s->object_size - 1) ||
24922684 898 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 899 p + s->object_size - 1, POISON_END, 1)))
81819f0f 900 return 0;
81819f0f
CL
901 /*
902 * check_pad_bytes cleans up on its own.
903 */
904 check_pad_bytes(s, page, p);
905 }
906
f7cb1933 907 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
908 /*
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
911 */
912 return 1;
913
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 object_err(s, page, p, "Freepointer corrupt");
917 /*
9f6c708e 918 * No choice but to zap it and thus lose the remainder
81819f0f 919 * of the free objects in this slab. May cause
672bba3a 920 * another error because the object count is now wrong.
81819f0f 921 */
a973e9dd 922 set_freepointer(s, p, NULL);
81819f0f
CL
923 return 0;
924 }
925 return 1;
926}
927
928static int check_slab(struct kmem_cache *s, struct page *page)
929{
39b26464
CL
930 int maxobj;
931
81819f0f
CL
932 VM_BUG_ON(!irqs_disabled());
933
934 if (!PageSlab(page)) {
24922684 935 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
936 return 0;
937 }
39b26464 938
ab9a0f19 939 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
940 if (page->objects > maxobj) {
941 slab_err(s, page, "objects %u > max %u",
f6edde9c 942 page->objects, maxobj);
39b26464
CL
943 return 0;
944 }
945 if (page->inuse > page->objects) {
24922684 946 slab_err(s, page, "inuse %u > max %u",
f6edde9c 947 page->inuse, page->objects);
81819f0f
CL
948 return 0;
949 }
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s, page);
952 return 1;
953}
954
955/*
672bba3a
CL
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
958 */
959static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
960{
961 int nr = 0;
881db7fb 962 void *fp;
81819f0f 963 void *object = NULL;
f6edde9c 964 int max_objects;
81819f0f 965
881db7fb 966 fp = page->freelist;
39b26464 967 while (fp && nr <= page->objects) {
81819f0f
CL
968 if (fp == search)
969 return 1;
970 if (!check_valid_pointer(s, page, fp)) {
971 if (object) {
972 object_err(s, page, object,
973 "Freechain corrupt");
a973e9dd 974 set_freepointer(s, object, NULL);
81819f0f 975 } else {
24922684 976 slab_err(s, page, "Freepointer corrupt");
a973e9dd 977 page->freelist = NULL;
39b26464 978 page->inuse = page->objects;
24922684 979 slab_fix(s, "Freelist cleared");
81819f0f
CL
980 return 0;
981 }
982 break;
983 }
984 object = fp;
985 fp = get_freepointer(s, object);
986 nr++;
987 }
988
ab9a0f19 989 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
990 if (max_objects > MAX_OBJS_PER_PAGE)
991 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
992
993 if (page->objects != max_objects) {
756a025f
JP
994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 page->objects, max_objects);
224a88be
CL
996 page->objects = max_objects;
997 slab_fix(s, "Number of objects adjusted.");
998 }
39b26464 999 if (page->inuse != page->objects - nr) {
756a025f
JP
1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 page->inuse, page->objects - nr);
39b26464 1002 page->inuse = page->objects - nr;
24922684 1003 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1004 }
1005 return search == NULL;
1006}
1007
0121c619
CL
1008static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 int alloc)
3ec09742
CL
1010{
1011 if (s->flags & SLAB_TRACE) {
f9f58285 1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1013 s->name,
1014 alloc ? "alloc" : "free",
1015 object, page->inuse,
1016 page->freelist);
1017
1018 if (!alloc)
aa2efd5e 1019 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1020 s->object_size);
3ec09742
CL
1021
1022 dump_stack();
1023 }
1024}
1025
643b1138 1026/*
672bba3a 1027 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1028 */
5cc6eee8
CL
1029static void add_full(struct kmem_cache *s,
1030 struct kmem_cache_node *n, struct page *page)
643b1138 1031{
5cc6eee8
CL
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
255d0884 1035 lockdep_assert_held(&n->list_lock);
643b1138 1036 list_add(&page->lru, &n->full);
643b1138
CL
1037}
1038
c65c1877 1039static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1040{
643b1138
CL
1041 if (!(s->flags & SLAB_STORE_USER))
1042 return;
1043
255d0884 1044 lockdep_assert_held(&n->list_lock);
643b1138 1045 list_del(&page->lru);
643b1138
CL
1046}
1047
0f389ec6
CL
1048/* Tracking of the number of slabs for debugging purposes */
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050{
1051 struct kmem_cache_node *n = get_node(s, node);
1052
1053 return atomic_long_read(&n->nr_slabs);
1054}
1055
26c02cf0
AB
1056static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057{
1058 return atomic_long_read(&n->nr_slabs);
1059}
1060
205ab99d 1061static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1062{
1063 struct kmem_cache_node *n = get_node(s, node);
1064
1065 /*
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1070 */
338b2642 1071 if (likely(n)) {
0f389ec6 1072 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1073 atomic_long_add(objects, &n->total_objects);
1074 }
0f389ec6 1075}
205ab99d 1076static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1077{
1078 struct kmem_cache_node *n = get_node(s, node);
1079
1080 atomic_long_dec(&n->nr_slabs);
205ab99d 1081 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1082}
1083
1084/* Object debug checks for alloc/free paths */
3ec09742
CL
1085static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 void *object)
1087{
1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 return;
1090
f7cb1933 1091 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1092 init_tracking(s, object);
1093}
1094
becfda68 1095static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1096 struct page *page,
ce71e27c 1097 void *object, unsigned long addr)
81819f0f
CL
1098{
1099 if (!check_slab(s, page))
becfda68 1100 return 0;
81819f0f 1101
81819f0f
CL
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1104 return 0;
81819f0f
CL
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1108 return 0;
1109
1110 return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1116{
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1120 }
81819f0f 1121
3ec09742
CL
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
f7cb1933 1126 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1127 return 1;
3ec09742 1128
81819f0f
CL
1129bad:
1130 if (PageSlab(page)) {
1131 /*
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
672bba3a 1134 * as used avoids touching the remaining objects.
81819f0f 1135 */
24922684 1136 slab_fix(s, "Marking all objects used");
39b26464 1137 page->inuse = page->objects;
a973e9dd 1138 page->freelist = NULL;
81819f0f
CL
1139 }
1140 return 0;
1141}
1142
becfda68
LA
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
81819f0f 1145{
81819f0f 1146 if (!check_valid_pointer(s, page, object)) {
70d71228 1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1148 return 0;
81819f0f
CL
1149 }
1150
1151 if (on_freelist(s, page, object)) {
24922684 1152 object_err(s, page, object, "Object already free");
becfda68 1153 return 0;
81819f0f
CL
1154 }
1155
f7cb1933 1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1157 return 0;
81819f0f 1158
1b4f59e3 1159 if (unlikely(s != page->slab_cache)) {
3adbefee 1160 if (!PageSlab(page)) {
756a025f
JP
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1b4f59e3 1163 } else if (!page->slab_cache) {
f9f58285
FF
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
70d71228 1166 dump_stack();
06428780 1167 } else
24922684
CL
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
becfda68
LA
1170 return 0;
1171 }
1172 return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1180{
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1186
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1193 }
1194
1195next_object:
1196 cnt++;
1197
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
81819f0f 1201 }
3ec09742 1202
3ec09742
CL
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
81084651 1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1207 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1208
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1213 }
804aa132
LA
1214 ret = 1;
1215
5c2e4bbb 1216out:
81084651
JDB
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1220
881db7fb 1221 slab_unlock(page);
282acb43 1222 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
81819f0f
CL
1226}
1227
41ecc55b
CL
1228static int __init setup_slub_debug(char *str)
1229{
f0630fff
CL
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1232 /*
1233 * No options specified. Switch on full debugging.
1234 */
1235 goto out;
1236
1237 if (*str == ',')
1238 /*
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1241 */
1242 goto check_slabs;
1243
1244 slub_debug = 0;
1245 if (*str == '-')
1246 /*
1247 * Switch off all debugging measures.
1248 */
1249 goto out;
1250
1251 /*
1252 * Determine which debug features should be switched on
1253 */
06428780 1254 for (; *str && *str != ','; str++) {
f0630fff
CL
1255 switch (tolower(*str)) {
1256 case 'f':
becfda68 1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
4c13dd3b
DM
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
08303a73
CA
1274 case 'o':
1275 /*
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1278 */
1279 disable_higher_order_debug = 1;
1280 break;
f0630fff 1281 default:
f9f58285
FF
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
f0630fff 1284 }
41ecc55b
CL
1285 }
1286
f0630fff 1287check_slabs:
41ecc55b
CL
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
f0630fff 1290out:
41ecc55b
CL
1291 return 1;
1292}
1293
1294__setup("slub_debug", setup_slub_debug);
1295
0293d1fd 1296slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1297 slab_flags_t flags, const char *name,
51cc5068 1298 void (*ctor)(void *))
41ecc55b
CL
1299{
1300 /*
e153362a 1301 * Enable debugging if selected on the kernel commandline.
41ecc55b 1302 */
c6f58d9b
CL
1303 if (slub_debug && (!slub_debug_slabs || (name &&
1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1305 flags |= slub_debug;
ba0268a8
CL
1306
1307 return flags;
41ecc55b 1308}
b4a64718 1309#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1310static inline void setup_object_debug(struct kmem_cache *s,
1311 struct page *page, void *object) {}
41ecc55b 1312
3ec09742 1313static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1314 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1315
282acb43 1316static inline int free_debug_processing(
81084651
JDB
1317 struct kmem_cache *s, struct page *page,
1318 void *head, void *tail, int bulk_cnt,
282acb43 1319 unsigned long addr) { return 0; }
41ecc55b 1320
41ecc55b
CL
1321static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322 { return 1; }
1323static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1324 void *object, u8 val) { return 1; }
5cc6eee8
CL
1325static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
c65c1877
PZ
1327static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 struct page *page) {}
0293d1fd 1329slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1330 slab_flags_t flags, const char *name,
51cc5068 1331 void (*ctor)(void *))
ba0268a8
CL
1332{
1333 return flags;
1334}
41ecc55b 1335#define slub_debug 0
0f389ec6 1336
fdaa45e9
IM
1337#define disable_higher_order_debug 0
1338
0f389ec6
CL
1339static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340 { return 0; }
26c02cf0
AB
1341static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342 { return 0; }
205ab99d
CL
1343static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344 int objects) {}
1345static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 int objects) {}
7d550c56 1347
02e72cc6
AR
1348#endif /* CONFIG_SLUB_DEBUG */
1349
1350/*
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1353 */
d56791b3
RB
1354static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355{
1356 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1357 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1358}
1359
ee3ce779 1360static __always_inline void kfree_hook(void *x)
d56791b3
RB
1361{
1362 kmemleak_free(x);
ee3ce779 1363 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1364}
1365
ee3ce779 1366static __always_inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1367{
80a9201a
AP
1368 void *freeptr;
1369
d56791b3 1370 kmemleak_free_recursive(x, s->flags);
7d550c56 1371
02e72cc6
AR
1372 /*
1373 * Trouble is that we may no longer disable interrupts in the fast path
1374 * So in order to make the debug calls that expect irqs to be
1375 * disabled we need to disable interrupts temporarily.
1376 */
4675ff05 1377#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1378 {
1379 unsigned long flags;
1380
1381 local_irq_save(flags);
02e72cc6
AR
1382 debug_check_no_locks_freed(x, s->object_size);
1383 local_irq_restore(flags);
1384 }
1385#endif
1386 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1387 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1388
80a9201a
AP
1389 freeptr = get_freepointer(s, x);
1390 /*
1391 * kasan_slab_free() may put x into memory quarantine, delaying its
1392 * reuse. In this case the object's freelist pointer is changed.
1393 */
ee3ce779 1394 kasan_slab_free(s, x, _RET_IP_);
80a9201a 1395 return freeptr;
02e72cc6 1396}
205ab99d 1397
81084651
JDB
1398static inline void slab_free_freelist_hook(struct kmem_cache *s,
1399 void *head, void *tail)
1400{
1401/*
1402 * Compiler cannot detect this function can be removed if slab_free_hook()
1403 * evaluates to nothing. Thus, catch all relevant config debug options here.
1404 */
4675ff05 1405#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1406 defined(CONFIG_DEBUG_KMEMLEAK) || \
1407 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1408 defined(CONFIG_KASAN)
1409
1410 void *object = head;
1411 void *tail_obj = tail ? : head;
80a9201a 1412 void *freeptr;
81084651
JDB
1413
1414 do {
80a9201a
AP
1415 freeptr = slab_free_hook(s, object);
1416 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1417#endif
1418}
1419
588f8ba9
TG
1420static void setup_object(struct kmem_cache *s, struct page *page,
1421 void *object)
1422{
1423 setup_object_debug(s, page, object);
b3cbd9bf 1424 kasan_init_slab_obj(s, object);
588f8ba9
TG
1425 if (unlikely(s->ctor)) {
1426 kasan_unpoison_object_data(s, object);
1427 s->ctor(object);
1428 kasan_poison_object_data(s, object);
1429 }
1430}
1431
81819f0f
CL
1432/*
1433 * Slab allocation and freeing
1434 */
5dfb4175
VD
1435static inline struct page *alloc_slab_page(struct kmem_cache *s,
1436 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1437{
5dfb4175 1438 struct page *page;
19af27af 1439 unsigned int order = oo_order(oo);
65c3376a 1440
2154a336 1441 if (node == NUMA_NO_NODE)
5dfb4175 1442 page = alloc_pages(flags, order);
65c3376a 1443 else
96db800f 1444 page = __alloc_pages_node(node, flags, order);
5dfb4175 1445
f3ccb2c4
VD
1446 if (page && memcg_charge_slab(page, flags, order, s)) {
1447 __free_pages(page, order);
1448 page = NULL;
1449 }
5dfb4175
VD
1450
1451 return page;
65c3376a
CL
1452}
1453
210e7a43
TG
1454#ifdef CONFIG_SLAB_FREELIST_RANDOM
1455/* Pre-initialize the random sequence cache */
1456static int init_cache_random_seq(struct kmem_cache *s)
1457{
19af27af 1458 unsigned int count = oo_objects(s->oo);
210e7a43 1459 int err;
210e7a43 1460
a810007a
SR
1461 /* Bailout if already initialised */
1462 if (s->random_seq)
1463 return 0;
1464
210e7a43
TG
1465 err = cache_random_seq_create(s, count, GFP_KERNEL);
1466 if (err) {
1467 pr_err("SLUB: Unable to initialize free list for %s\n",
1468 s->name);
1469 return err;
1470 }
1471
1472 /* Transform to an offset on the set of pages */
1473 if (s->random_seq) {
19af27af
AD
1474 unsigned int i;
1475
210e7a43
TG
1476 for (i = 0; i < count; i++)
1477 s->random_seq[i] *= s->size;
1478 }
1479 return 0;
1480}
1481
1482/* Initialize each random sequence freelist per cache */
1483static void __init init_freelist_randomization(void)
1484{
1485 struct kmem_cache *s;
1486
1487 mutex_lock(&slab_mutex);
1488
1489 list_for_each_entry(s, &slab_caches, list)
1490 init_cache_random_seq(s);
1491
1492 mutex_unlock(&slab_mutex);
1493}
1494
1495/* Get the next entry on the pre-computed freelist randomized */
1496static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1497 unsigned long *pos, void *start,
1498 unsigned long page_limit,
1499 unsigned long freelist_count)
1500{
1501 unsigned int idx;
1502
1503 /*
1504 * If the target page allocation failed, the number of objects on the
1505 * page might be smaller than the usual size defined by the cache.
1506 */
1507 do {
1508 idx = s->random_seq[*pos];
1509 *pos += 1;
1510 if (*pos >= freelist_count)
1511 *pos = 0;
1512 } while (unlikely(idx >= page_limit));
1513
1514 return (char *)start + idx;
1515}
1516
1517/* Shuffle the single linked freelist based on a random pre-computed sequence */
1518static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1519{
1520 void *start;
1521 void *cur;
1522 void *next;
1523 unsigned long idx, pos, page_limit, freelist_count;
1524
1525 if (page->objects < 2 || !s->random_seq)
1526 return false;
1527
1528 freelist_count = oo_objects(s->oo);
1529 pos = get_random_int() % freelist_count;
1530
1531 page_limit = page->objects * s->size;
1532 start = fixup_red_left(s, page_address(page));
1533
1534 /* First entry is used as the base of the freelist */
1535 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1536 freelist_count);
1537 page->freelist = cur;
1538
1539 for (idx = 1; idx < page->objects; idx++) {
1540 setup_object(s, page, cur);
1541 next = next_freelist_entry(s, page, &pos, start, page_limit,
1542 freelist_count);
1543 set_freepointer(s, cur, next);
1544 cur = next;
1545 }
1546 setup_object(s, page, cur);
1547 set_freepointer(s, cur, NULL);
1548
1549 return true;
1550}
1551#else
1552static inline int init_cache_random_seq(struct kmem_cache *s)
1553{
1554 return 0;
1555}
1556static inline void init_freelist_randomization(void) { }
1557static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1558{
1559 return false;
1560}
1561#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1562
81819f0f
CL
1563static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1564{
06428780 1565 struct page *page;
834f3d11 1566 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1567 gfp_t alloc_gfp;
588f8ba9
TG
1568 void *start, *p;
1569 int idx, order;
210e7a43 1570 bool shuffle;
81819f0f 1571
7e0528da
CL
1572 flags &= gfp_allowed_mask;
1573
d0164adc 1574 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1575 local_irq_enable();
1576
b7a49f0d 1577 flags |= s->allocflags;
e12ba74d 1578
ba52270d
PE
1579 /*
1580 * Let the initial higher-order allocation fail under memory pressure
1581 * so we fall-back to the minimum order allocation.
1582 */
1583 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1584 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1585 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1586
5dfb4175 1587 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1588 if (unlikely(!page)) {
1589 oo = s->min;
80c3a998 1590 alloc_gfp = flags;
65c3376a
CL
1591 /*
1592 * Allocation may have failed due to fragmentation.
1593 * Try a lower order alloc if possible
1594 */
5dfb4175 1595 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1596 if (unlikely(!page))
1597 goto out;
1598 stat(s, ORDER_FALLBACK);
65c3376a 1599 }
5a896d9e 1600
834f3d11 1601 page->objects = oo_objects(oo);
81819f0f 1602
1f458cbf 1603 order = compound_order(page);
1b4f59e3 1604 page->slab_cache = s;
c03f94cc 1605 __SetPageSlab(page);
2f064f34 1606 if (page_is_pfmemalloc(page))
072bb0aa 1607 SetPageSlabPfmemalloc(page);
81819f0f
CL
1608
1609 start = page_address(page);
81819f0f
CL
1610
1611 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1612 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1613
0316bec2
AR
1614 kasan_poison_slab(page);
1615
210e7a43
TG
1616 shuffle = shuffle_freelist(s, page);
1617
1618 if (!shuffle) {
1619 for_each_object_idx(p, idx, s, start, page->objects) {
1620 setup_object(s, page, p);
1621 if (likely(idx < page->objects))
1622 set_freepointer(s, p, p + s->size);
1623 else
1624 set_freepointer(s, p, NULL);
1625 }
1626 page->freelist = fixup_red_left(s, start);
81819f0f 1627 }
81819f0f 1628
e6e82ea1 1629 page->inuse = page->objects;
8cb0a506 1630 page->frozen = 1;
588f8ba9 1631
81819f0f 1632out:
d0164adc 1633 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1634 local_irq_disable();
1635 if (!page)
1636 return NULL;
1637
7779f212 1638 mod_lruvec_page_state(page,
588f8ba9
TG
1639 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1640 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1641 1 << oo_order(oo));
1642
1643 inc_slabs_node(s, page_to_nid(page), page->objects);
1644
81819f0f
CL
1645 return page;
1646}
1647
588f8ba9
TG
1648static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1649{
1650 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1651 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1652 flags &= ~GFP_SLAB_BUG_MASK;
1653 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1654 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1655 dump_stack();
588f8ba9
TG
1656 }
1657
1658 return allocate_slab(s,
1659 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1660}
1661
81819f0f
CL
1662static void __free_slab(struct kmem_cache *s, struct page *page)
1663{
834f3d11
CL
1664 int order = compound_order(page);
1665 int pages = 1 << order;
81819f0f 1666
becfda68 1667 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1668 void *p;
1669
1670 slab_pad_check(s, page);
224a88be
CL
1671 for_each_object(p, s, page_address(page),
1672 page->objects)
f7cb1933 1673 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1674 }
1675
7779f212 1676 mod_lruvec_page_state(page,
81819f0f
CL
1677 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1678 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1679 -pages);
81819f0f 1680
072bb0aa 1681 __ClearPageSlabPfmemalloc(page);
49bd5221 1682 __ClearPageSlab(page);
1f458cbf 1683
22b751c3 1684 page_mapcount_reset(page);
1eb5ac64
NP
1685 if (current->reclaim_state)
1686 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1687 memcg_uncharge_slab(page, order, s);
1688 __free_pages(page, order);
81819f0f
CL
1689}
1690
da9a638c
LJ
1691#define need_reserve_slab_rcu \
1692 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1693
81819f0f
CL
1694static void rcu_free_slab(struct rcu_head *h)
1695{
1696 struct page *page;
1697
da9a638c
LJ
1698 if (need_reserve_slab_rcu)
1699 page = virt_to_head_page(h);
1700 else
1701 page = container_of((struct list_head *)h, struct page, lru);
1702
1b4f59e3 1703 __free_slab(page->slab_cache, page);
81819f0f
CL
1704}
1705
1706static void free_slab(struct kmem_cache *s, struct page *page)
1707{
5f0d5a3a 1708 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1709 struct rcu_head *head;
1710
1711 if (need_reserve_slab_rcu) {
1712 int order = compound_order(page);
1713 int offset = (PAGE_SIZE << order) - s->reserved;
1714
1715 VM_BUG_ON(s->reserved != sizeof(*head));
1716 head = page_address(page) + offset;
1717 } else {
bc4f610d 1718 head = &page->rcu_head;
da9a638c 1719 }
81819f0f
CL
1720
1721 call_rcu(head, rcu_free_slab);
1722 } else
1723 __free_slab(s, page);
1724}
1725
1726static void discard_slab(struct kmem_cache *s, struct page *page)
1727{
205ab99d 1728 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1729 free_slab(s, page);
1730}
1731
1732/*
5cc6eee8 1733 * Management of partially allocated slabs.
81819f0f 1734 */
1e4dd946
SR
1735static inline void
1736__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1737{
e95eed57 1738 n->nr_partial++;
136333d1 1739 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1740 list_add_tail(&page->lru, &n->partial);
1741 else
1742 list_add(&page->lru, &n->partial);
81819f0f
CL
1743}
1744
1e4dd946
SR
1745static inline void add_partial(struct kmem_cache_node *n,
1746 struct page *page, int tail)
62e346a8 1747{
c65c1877 1748 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1749 __add_partial(n, page, tail);
1750}
c65c1877 1751
1e4dd946
SR
1752static inline void remove_partial(struct kmem_cache_node *n,
1753 struct page *page)
1754{
1755 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1756 list_del(&page->lru);
1757 n->nr_partial--;
1e4dd946
SR
1758}
1759
81819f0f 1760/*
7ced3719
CL
1761 * Remove slab from the partial list, freeze it and
1762 * return the pointer to the freelist.
81819f0f 1763 *
497b66f2 1764 * Returns a list of objects or NULL if it fails.
81819f0f 1765 */
497b66f2 1766static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1767 struct kmem_cache_node *n, struct page *page,
633b0764 1768 int mode, int *objects)
81819f0f 1769{
2cfb7455
CL
1770 void *freelist;
1771 unsigned long counters;
1772 struct page new;
1773
c65c1877
PZ
1774 lockdep_assert_held(&n->list_lock);
1775
2cfb7455
CL
1776 /*
1777 * Zap the freelist and set the frozen bit.
1778 * The old freelist is the list of objects for the
1779 * per cpu allocation list.
1780 */
7ced3719
CL
1781 freelist = page->freelist;
1782 counters = page->counters;
1783 new.counters = counters;
633b0764 1784 *objects = new.objects - new.inuse;
23910c50 1785 if (mode) {
7ced3719 1786 new.inuse = page->objects;
23910c50
PE
1787 new.freelist = NULL;
1788 } else {
1789 new.freelist = freelist;
1790 }
2cfb7455 1791
a0132ac0 1792 VM_BUG_ON(new.frozen);
7ced3719 1793 new.frozen = 1;
2cfb7455 1794
7ced3719 1795 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1796 freelist, counters,
02d7633f 1797 new.freelist, new.counters,
7ced3719 1798 "acquire_slab"))
7ced3719 1799 return NULL;
2cfb7455
CL
1800
1801 remove_partial(n, page);
7ced3719 1802 WARN_ON(!freelist);
49e22585 1803 return freelist;
81819f0f
CL
1804}
1805
633b0764 1806static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1807static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1808
81819f0f 1809/*
672bba3a 1810 * Try to allocate a partial slab from a specific node.
81819f0f 1811 */
8ba00bb6
JK
1812static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1813 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1814{
49e22585
CL
1815 struct page *page, *page2;
1816 void *object = NULL;
e5d9998f 1817 unsigned int available = 0;
633b0764 1818 int objects;
81819f0f
CL
1819
1820 /*
1821 * Racy check. If we mistakenly see no partial slabs then we
1822 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1823 * partial slab and there is none available then get_partials()
1824 * will return NULL.
81819f0f
CL
1825 */
1826 if (!n || !n->nr_partial)
1827 return NULL;
1828
1829 spin_lock(&n->list_lock);
49e22585 1830 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1831 void *t;
49e22585 1832
8ba00bb6
JK
1833 if (!pfmemalloc_match(page, flags))
1834 continue;
1835
633b0764 1836 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1837 if (!t)
1838 break;
1839
633b0764 1840 available += objects;
12d79634 1841 if (!object) {
49e22585 1842 c->page = page;
49e22585 1843 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1844 object = t;
49e22585 1845 } else {
633b0764 1846 put_cpu_partial(s, page, 0);
8028dcea 1847 stat(s, CPU_PARTIAL_NODE);
49e22585 1848 }
345c905d 1849 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1850 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1851 break;
1852
497b66f2 1853 }
81819f0f 1854 spin_unlock(&n->list_lock);
497b66f2 1855 return object;
81819f0f
CL
1856}
1857
1858/*
672bba3a 1859 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1860 */
de3ec035 1861static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1862 struct kmem_cache_cpu *c)
81819f0f
CL
1863{
1864#ifdef CONFIG_NUMA
1865 struct zonelist *zonelist;
dd1a239f 1866 struct zoneref *z;
54a6eb5c
MG
1867 struct zone *zone;
1868 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1869 void *object;
cc9a6c87 1870 unsigned int cpuset_mems_cookie;
81819f0f
CL
1871
1872 /*
672bba3a
CL
1873 * The defrag ratio allows a configuration of the tradeoffs between
1874 * inter node defragmentation and node local allocations. A lower
1875 * defrag_ratio increases the tendency to do local allocations
1876 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1877 *
672bba3a
CL
1878 * If the defrag_ratio is set to 0 then kmalloc() always
1879 * returns node local objects. If the ratio is higher then kmalloc()
1880 * may return off node objects because partial slabs are obtained
1881 * from other nodes and filled up.
81819f0f 1882 *
43efd3ea
LP
1883 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1884 * (which makes defrag_ratio = 1000) then every (well almost)
1885 * allocation will first attempt to defrag slab caches on other nodes.
1886 * This means scanning over all nodes to look for partial slabs which
1887 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1888 * with available objects.
81819f0f 1889 */
9824601e
CL
1890 if (!s->remote_node_defrag_ratio ||
1891 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1892 return NULL;
1893
cc9a6c87 1894 do {
d26914d1 1895 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1896 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1897 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1898 struct kmem_cache_node *n;
1899
1900 n = get_node(s, zone_to_nid(zone));
1901
dee2f8aa 1902 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1903 n->nr_partial > s->min_partial) {
8ba00bb6 1904 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1905 if (object) {
1906 /*
d26914d1
MG
1907 * Don't check read_mems_allowed_retry()
1908 * here - if mems_allowed was updated in
1909 * parallel, that was a harmless race
1910 * between allocation and the cpuset
1911 * update
cc9a6c87 1912 */
cc9a6c87
MG
1913 return object;
1914 }
c0ff7453 1915 }
81819f0f 1916 }
d26914d1 1917 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1918#endif
1919 return NULL;
1920}
1921
1922/*
1923 * Get a partial page, lock it and return it.
1924 */
497b66f2 1925static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1926 struct kmem_cache_cpu *c)
81819f0f 1927{
497b66f2 1928 void *object;
a561ce00
JK
1929 int searchnode = node;
1930
1931 if (node == NUMA_NO_NODE)
1932 searchnode = numa_mem_id();
1933 else if (!node_present_pages(node))
1934 searchnode = node_to_mem_node(node);
81819f0f 1935
8ba00bb6 1936 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1937 if (object || node != NUMA_NO_NODE)
1938 return object;
81819f0f 1939
acd19fd1 1940 return get_any_partial(s, flags, c);
81819f0f
CL
1941}
1942
8a5ec0ba
CL
1943#ifdef CONFIG_PREEMPT
1944/*
1945 * Calculate the next globally unique transaction for disambiguiation
1946 * during cmpxchg. The transactions start with the cpu number and are then
1947 * incremented by CONFIG_NR_CPUS.
1948 */
1949#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1950#else
1951/*
1952 * No preemption supported therefore also no need to check for
1953 * different cpus.
1954 */
1955#define TID_STEP 1
1956#endif
1957
1958static inline unsigned long next_tid(unsigned long tid)
1959{
1960 return tid + TID_STEP;
1961}
1962
1963static inline unsigned int tid_to_cpu(unsigned long tid)
1964{
1965 return tid % TID_STEP;
1966}
1967
1968static inline unsigned long tid_to_event(unsigned long tid)
1969{
1970 return tid / TID_STEP;
1971}
1972
1973static inline unsigned int init_tid(int cpu)
1974{
1975 return cpu;
1976}
1977
1978static inline void note_cmpxchg_failure(const char *n,
1979 const struct kmem_cache *s, unsigned long tid)
1980{
1981#ifdef SLUB_DEBUG_CMPXCHG
1982 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1983
f9f58285 1984 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1985
1986#ifdef CONFIG_PREEMPT
1987 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1988 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1989 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1990 else
1991#endif
1992 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1993 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1994 tid_to_event(tid), tid_to_event(actual_tid));
1995 else
f9f58285 1996 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1997 actual_tid, tid, next_tid(tid));
1998#endif
4fdccdfb 1999 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2000}
2001
788e1aad 2002static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2003{
8a5ec0ba
CL
2004 int cpu;
2005
2006 for_each_possible_cpu(cpu)
2007 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2008}
2cfb7455 2009
81819f0f
CL
2010/*
2011 * Remove the cpu slab
2012 */
d0e0ac97 2013static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2014 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2015{
2cfb7455 2016 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2017 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2018 int lock = 0;
2019 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2020 void *nextfree;
136333d1 2021 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2022 struct page new;
2023 struct page old;
2024
2025 if (page->freelist) {
84e554e6 2026 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2027 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2028 }
2029
894b8788 2030 /*
2cfb7455
CL
2031 * Stage one: Free all available per cpu objects back
2032 * to the page freelist while it is still frozen. Leave the
2033 * last one.
2034 *
2035 * There is no need to take the list->lock because the page
2036 * is still frozen.
2037 */
2038 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2039 void *prior;
2040 unsigned long counters;
2041
2042 do {
2043 prior = page->freelist;
2044 counters = page->counters;
2045 set_freepointer(s, freelist, prior);
2046 new.counters = counters;
2047 new.inuse--;
a0132ac0 2048 VM_BUG_ON(!new.frozen);
2cfb7455 2049
1d07171c 2050 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2051 prior, counters,
2052 freelist, new.counters,
2053 "drain percpu freelist"));
2054
2055 freelist = nextfree;
2056 }
2057
894b8788 2058 /*
2cfb7455
CL
2059 * Stage two: Ensure that the page is unfrozen while the
2060 * list presence reflects the actual number of objects
2061 * during unfreeze.
2062 *
2063 * We setup the list membership and then perform a cmpxchg
2064 * with the count. If there is a mismatch then the page
2065 * is not unfrozen but the page is on the wrong list.
2066 *
2067 * Then we restart the process which may have to remove
2068 * the page from the list that we just put it on again
2069 * because the number of objects in the slab may have
2070 * changed.
894b8788 2071 */
2cfb7455 2072redo:
894b8788 2073
2cfb7455
CL
2074 old.freelist = page->freelist;
2075 old.counters = page->counters;
a0132ac0 2076 VM_BUG_ON(!old.frozen);
7c2e132c 2077
2cfb7455
CL
2078 /* Determine target state of the slab */
2079 new.counters = old.counters;
2080 if (freelist) {
2081 new.inuse--;
2082 set_freepointer(s, freelist, old.freelist);
2083 new.freelist = freelist;
2084 } else
2085 new.freelist = old.freelist;
2086
2087 new.frozen = 0;
2088
8a5b20ae 2089 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2090 m = M_FREE;
2091 else if (new.freelist) {
2092 m = M_PARTIAL;
2093 if (!lock) {
2094 lock = 1;
2095 /*
2096 * Taking the spinlock removes the possiblity
2097 * that acquire_slab() will see a slab page that
2098 * is frozen
2099 */
2100 spin_lock(&n->list_lock);
2101 }
2102 } else {
2103 m = M_FULL;
2104 if (kmem_cache_debug(s) && !lock) {
2105 lock = 1;
2106 /*
2107 * This also ensures that the scanning of full
2108 * slabs from diagnostic functions will not see
2109 * any frozen slabs.
2110 */
2111 spin_lock(&n->list_lock);
2112 }
2113 }
2114
2115 if (l != m) {
2116
2117 if (l == M_PARTIAL)
2118
2119 remove_partial(n, page);
2120
2121 else if (l == M_FULL)
894b8788 2122
c65c1877 2123 remove_full(s, n, page);
2cfb7455
CL
2124
2125 if (m == M_PARTIAL) {
2126
2127 add_partial(n, page, tail);
136333d1 2128 stat(s, tail);
2cfb7455
CL
2129
2130 } else if (m == M_FULL) {
894b8788 2131
2cfb7455
CL
2132 stat(s, DEACTIVATE_FULL);
2133 add_full(s, n, page);
2134
2135 }
2136 }
2137
2138 l = m;
1d07171c 2139 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2140 old.freelist, old.counters,
2141 new.freelist, new.counters,
2142 "unfreezing slab"))
2143 goto redo;
2144
2cfb7455
CL
2145 if (lock)
2146 spin_unlock(&n->list_lock);
2147
2148 if (m == M_FREE) {
2149 stat(s, DEACTIVATE_EMPTY);
2150 discard_slab(s, page);
2151 stat(s, FREE_SLAB);
894b8788 2152 }
d4ff6d35
WY
2153
2154 c->page = NULL;
2155 c->freelist = NULL;
81819f0f
CL
2156}
2157
d24ac77f
JK
2158/*
2159 * Unfreeze all the cpu partial slabs.
2160 *
59a09917
CL
2161 * This function must be called with interrupts disabled
2162 * for the cpu using c (or some other guarantee must be there
2163 * to guarantee no concurrent accesses).
d24ac77f 2164 */
59a09917
CL
2165static void unfreeze_partials(struct kmem_cache *s,
2166 struct kmem_cache_cpu *c)
49e22585 2167{
345c905d 2168#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2169 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2170 struct page *page, *discard_page = NULL;
49e22585
CL
2171
2172 while ((page = c->partial)) {
49e22585
CL
2173 struct page new;
2174 struct page old;
2175
2176 c->partial = page->next;
43d77867
JK
2177
2178 n2 = get_node(s, page_to_nid(page));
2179 if (n != n2) {
2180 if (n)
2181 spin_unlock(&n->list_lock);
2182
2183 n = n2;
2184 spin_lock(&n->list_lock);
2185 }
49e22585
CL
2186
2187 do {
2188
2189 old.freelist = page->freelist;
2190 old.counters = page->counters;
a0132ac0 2191 VM_BUG_ON(!old.frozen);
49e22585
CL
2192
2193 new.counters = old.counters;
2194 new.freelist = old.freelist;
2195
2196 new.frozen = 0;
2197
d24ac77f 2198 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2199 old.freelist, old.counters,
2200 new.freelist, new.counters,
2201 "unfreezing slab"));
2202
8a5b20ae 2203 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2204 page->next = discard_page;
2205 discard_page = page;
43d77867
JK
2206 } else {
2207 add_partial(n, page, DEACTIVATE_TO_TAIL);
2208 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2209 }
2210 }
2211
2212 if (n)
2213 spin_unlock(&n->list_lock);
9ada1934
SL
2214
2215 while (discard_page) {
2216 page = discard_page;
2217 discard_page = discard_page->next;
2218
2219 stat(s, DEACTIVATE_EMPTY);
2220 discard_slab(s, page);
2221 stat(s, FREE_SLAB);
2222 }
345c905d 2223#endif
49e22585
CL
2224}
2225
2226/*
2227 * Put a page that was just frozen (in __slab_free) into a partial page
0d2d5d40 2228 * slot if available.
49e22585
CL
2229 *
2230 * If we did not find a slot then simply move all the partials to the
2231 * per node partial list.
2232 */
633b0764 2233static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2234{
345c905d 2235#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2236 struct page *oldpage;
2237 int pages;
2238 int pobjects;
2239
d6e0b7fa 2240 preempt_disable();
49e22585
CL
2241 do {
2242 pages = 0;
2243 pobjects = 0;
2244 oldpage = this_cpu_read(s->cpu_slab->partial);
2245
2246 if (oldpage) {
2247 pobjects = oldpage->pobjects;
2248 pages = oldpage->pages;
2249 if (drain && pobjects > s->cpu_partial) {
2250 unsigned long flags;
2251 /*
2252 * partial array is full. Move the existing
2253 * set to the per node partial list.
2254 */
2255 local_irq_save(flags);
59a09917 2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2257 local_irq_restore(flags);
e24fc410 2258 oldpage = NULL;
49e22585
CL
2259 pobjects = 0;
2260 pages = 0;
8028dcea 2261 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2262 }
2263 }
2264
2265 pages++;
2266 pobjects += page->objects - page->inuse;
2267
2268 page->pages = pages;
2269 page->pobjects = pobjects;
2270 page->next = oldpage;
2271
d0e0ac97
CG
2272 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2273 != oldpage);
d6e0b7fa
VD
2274 if (unlikely(!s->cpu_partial)) {
2275 unsigned long flags;
2276
2277 local_irq_save(flags);
2278 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2279 local_irq_restore(flags);
2280 }
2281 preempt_enable();
345c905d 2282#endif
49e22585
CL
2283}
2284
dfb4f096 2285static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2286{
84e554e6 2287 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2288 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2289
2290 c->tid = next_tid(c->tid);
81819f0f
CL
2291}
2292
2293/*
2294 * Flush cpu slab.
6446faa2 2295 *
81819f0f
CL
2296 * Called from IPI handler with interrupts disabled.
2297 */
0c710013 2298static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2299{
9dfc6e68 2300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2301
49e22585
CL
2302 if (likely(c)) {
2303 if (c->page)
2304 flush_slab(s, c);
2305
59a09917 2306 unfreeze_partials(s, c);
49e22585 2307 }
81819f0f
CL
2308}
2309
2310static void flush_cpu_slab(void *d)
2311{
2312 struct kmem_cache *s = d;
81819f0f 2313
dfb4f096 2314 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2315}
2316
a8364d55
GBY
2317static bool has_cpu_slab(int cpu, void *info)
2318{
2319 struct kmem_cache *s = info;
2320 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2321
a93cf07b 2322 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2323}
2324
81819f0f
CL
2325static void flush_all(struct kmem_cache *s)
2326{
a8364d55 2327 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2328}
2329
a96a87bf
SAS
2330/*
2331 * Use the cpu notifier to insure that the cpu slabs are flushed when
2332 * necessary.
2333 */
2334static int slub_cpu_dead(unsigned int cpu)
2335{
2336 struct kmem_cache *s;
2337 unsigned long flags;
2338
2339 mutex_lock(&slab_mutex);
2340 list_for_each_entry(s, &slab_caches, list) {
2341 local_irq_save(flags);
2342 __flush_cpu_slab(s, cpu);
2343 local_irq_restore(flags);
2344 }
2345 mutex_unlock(&slab_mutex);
2346 return 0;
2347}
2348
dfb4f096
CL
2349/*
2350 * Check if the objects in a per cpu structure fit numa
2351 * locality expectations.
2352 */
57d437d2 2353static inline int node_match(struct page *page, int node)
dfb4f096
CL
2354{
2355#ifdef CONFIG_NUMA
4d7868e6 2356 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2357 return 0;
2358#endif
2359 return 1;
2360}
2361
9a02d699 2362#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2363static int count_free(struct page *page)
2364{
2365 return page->objects - page->inuse;
2366}
2367
9a02d699
DR
2368static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2369{
2370 return atomic_long_read(&n->total_objects);
2371}
2372#endif /* CONFIG_SLUB_DEBUG */
2373
2374#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2375static unsigned long count_partial(struct kmem_cache_node *n,
2376 int (*get_count)(struct page *))
2377{
2378 unsigned long flags;
2379 unsigned long x = 0;
2380 struct page *page;
2381
2382 spin_lock_irqsave(&n->list_lock, flags);
2383 list_for_each_entry(page, &n->partial, lru)
2384 x += get_count(page);
2385 spin_unlock_irqrestore(&n->list_lock, flags);
2386 return x;
2387}
9a02d699 2388#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2389
781b2ba6
PE
2390static noinline void
2391slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2392{
9a02d699
DR
2393#ifdef CONFIG_SLUB_DEBUG
2394 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2395 DEFAULT_RATELIMIT_BURST);
781b2ba6 2396 int node;
fa45dc25 2397 struct kmem_cache_node *n;
781b2ba6 2398
9a02d699
DR
2399 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2400 return;
2401
5b3810e5
VB
2402 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2403 nid, gfpflags, &gfpflags);
19af27af 2404 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2405 s->name, s->object_size, s->size, oo_order(s->oo),
2406 oo_order(s->min));
781b2ba6 2407
3b0efdfa 2408 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2409 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2410 s->name);
fa5ec8a1 2411
fa45dc25 2412 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2413 unsigned long nr_slabs;
2414 unsigned long nr_objs;
2415 unsigned long nr_free;
2416
26c02cf0
AB
2417 nr_free = count_partial(n, count_free);
2418 nr_slabs = node_nr_slabs(n);
2419 nr_objs = node_nr_objs(n);
781b2ba6 2420
f9f58285 2421 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2422 node, nr_slabs, nr_objs, nr_free);
2423 }
9a02d699 2424#endif
781b2ba6
PE
2425}
2426
497b66f2
CL
2427static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2428 int node, struct kmem_cache_cpu **pc)
2429{
6faa6833 2430 void *freelist;
188fd063
CL
2431 struct kmem_cache_cpu *c = *pc;
2432 struct page *page;
497b66f2 2433
188fd063 2434 freelist = get_partial(s, flags, node, c);
497b66f2 2435
188fd063
CL
2436 if (freelist)
2437 return freelist;
2438
2439 page = new_slab(s, flags, node);
497b66f2 2440 if (page) {
7c8e0181 2441 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2442 if (c->page)
2443 flush_slab(s, c);
2444
2445 /*
2446 * No other reference to the page yet so we can
2447 * muck around with it freely without cmpxchg
2448 */
6faa6833 2449 freelist = page->freelist;
497b66f2
CL
2450 page->freelist = NULL;
2451
2452 stat(s, ALLOC_SLAB);
497b66f2
CL
2453 c->page = page;
2454 *pc = c;
2455 } else
6faa6833 2456 freelist = NULL;
497b66f2 2457
6faa6833 2458 return freelist;
497b66f2
CL
2459}
2460
072bb0aa
MG
2461static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2462{
2463 if (unlikely(PageSlabPfmemalloc(page)))
2464 return gfp_pfmemalloc_allowed(gfpflags);
2465
2466 return true;
2467}
2468
213eeb9f 2469/*
d0e0ac97
CG
2470 * Check the page->freelist of a page and either transfer the freelist to the
2471 * per cpu freelist or deactivate the page.
213eeb9f
CL
2472 *
2473 * The page is still frozen if the return value is not NULL.
2474 *
2475 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2476 *
2477 * This function must be called with interrupt disabled.
213eeb9f
CL
2478 */
2479static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2480{
2481 struct page new;
2482 unsigned long counters;
2483 void *freelist;
2484
2485 do {
2486 freelist = page->freelist;
2487 counters = page->counters;
6faa6833 2488
213eeb9f 2489 new.counters = counters;
a0132ac0 2490 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2491
2492 new.inuse = page->objects;
2493 new.frozen = freelist != NULL;
2494
d24ac77f 2495 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2496 freelist, counters,
2497 NULL, new.counters,
2498 "get_freelist"));
2499
2500 return freelist;
2501}
2502
81819f0f 2503/*
894b8788
CL
2504 * Slow path. The lockless freelist is empty or we need to perform
2505 * debugging duties.
2506 *
894b8788
CL
2507 * Processing is still very fast if new objects have been freed to the
2508 * regular freelist. In that case we simply take over the regular freelist
2509 * as the lockless freelist and zap the regular freelist.
81819f0f 2510 *
894b8788
CL
2511 * If that is not working then we fall back to the partial lists. We take the
2512 * first element of the freelist as the object to allocate now and move the
2513 * rest of the freelist to the lockless freelist.
81819f0f 2514 *
894b8788 2515 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2516 * we need to allocate a new slab. This is the slowest path since it involves
2517 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2518 *
2519 * Version of __slab_alloc to use when we know that interrupts are
2520 * already disabled (which is the case for bulk allocation).
81819f0f 2521 */
a380a3c7 2522static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2523 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2524{
6faa6833 2525 void *freelist;
f6e7def7 2526 struct page *page;
81819f0f 2527
f6e7def7
CL
2528 page = c->page;
2529 if (!page)
81819f0f 2530 goto new_slab;
49e22585 2531redo:
6faa6833 2532
57d437d2 2533 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2534 int searchnode = node;
2535
2536 if (node != NUMA_NO_NODE && !node_present_pages(node))
2537 searchnode = node_to_mem_node(node);
2538
2539 if (unlikely(!node_match(page, searchnode))) {
2540 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2541 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2542 goto new_slab;
2543 }
fc59c053 2544 }
6446faa2 2545
072bb0aa
MG
2546 /*
2547 * By rights, we should be searching for a slab page that was
2548 * PFMEMALLOC but right now, we are losing the pfmemalloc
2549 * information when the page leaves the per-cpu allocator
2550 */
2551 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2552 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2553 goto new_slab;
2554 }
2555
73736e03 2556 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2557 freelist = c->freelist;
2558 if (freelist)
73736e03 2559 goto load_freelist;
03e404af 2560
f6e7def7 2561 freelist = get_freelist(s, page);
6446faa2 2562
6faa6833 2563 if (!freelist) {
03e404af
CL
2564 c->page = NULL;
2565 stat(s, DEACTIVATE_BYPASS);
fc59c053 2566 goto new_slab;
03e404af 2567 }
6446faa2 2568
84e554e6 2569 stat(s, ALLOC_REFILL);
6446faa2 2570
894b8788 2571load_freelist:
507effea
CL
2572 /*
2573 * freelist is pointing to the list of objects to be used.
2574 * page is pointing to the page from which the objects are obtained.
2575 * That page must be frozen for per cpu allocations to work.
2576 */
a0132ac0 2577 VM_BUG_ON(!c->page->frozen);
6faa6833 2578 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2579 c->tid = next_tid(c->tid);
6faa6833 2580 return freelist;
81819f0f 2581
81819f0f 2582new_slab:
2cfb7455 2583
a93cf07b
WY
2584 if (slub_percpu_partial(c)) {
2585 page = c->page = slub_percpu_partial(c);
2586 slub_set_percpu_partial(c, page);
49e22585 2587 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2588 goto redo;
81819f0f
CL
2589 }
2590
188fd063 2591 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2592
f4697436 2593 if (unlikely(!freelist)) {
9a02d699 2594 slab_out_of_memory(s, gfpflags, node);
f4697436 2595 return NULL;
81819f0f 2596 }
2cfb7455 2597
f6e7def7 2598 page = c->page;
5091b74a 2599 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2600 goto load_freelist;
2cfb7455 2601
497b66f2 2602 /* Only entered in the debug case */
d0e0ac97
CG
2603 if (kmem_cache_debug(s) &&
2604 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2605 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2606
d4ff6d35 2607 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2608 return freelist;
894b8788
CL
2609}
2610
a380a3c7
CL
2611/*
2612 * Another one that disabled interrupt and compensates for possible
2613 * cpu changes by refetching the per cpu area pointer.
2614 */
2615static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2616 unsigned long addr, struct kmem_cache_cpu *c)
2617{
2618 void *p;
2619 unsigned long flags;
2620
2621 local_irq_save(flags);
2622#ifdef CONFIG_PREEMPT
2623 /*
2624 * We may have been preempted and rescheduled on a different
2625 * cpu before disabling interrupts. Need to reload cpu area
2626 * pointer.
2627 */
2628 c = this_cpu_ptr(s->cpu_slab);
2629#endif
2630
2631 p = ___slab_alloc(s, gfpflags, node, addr, c);
2632 local_irq_restore(flags);
2633 return p;
2634}
2635
894b8788
CL
2636/*
2637 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2638 * have the fastpath folded into their functions. So no function call
2639 * overhead for requests that can be satisfied on the fastpath.
2640 *
2641 * The fastpath works by first checking if the lockless freelist can be used.
2642 * If not then __slab_alloc is called for slow processing.
2643 *
2644 * Otherwise we can simply pick the next object from the lockless free list.
2645 */
2b847c3c 2646static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2647 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2648{
03ec0ed5 2649 void *object;
dfb4f096 2650 struct kmem_cache_cpu *c;
57d437d2 2651 struct page *page;
8a5ec0ba 2652 unsigned long tid;
1f84260c 2653
8135be5a
VD
2654 s = slab_pre_alloc_hook(s, gfpflags);
2655 if (!s)
773ff60e 2656 return NULL;
8a5ec0ba 2657redo:
8a5ec0ba
CL
2658 /*
2659 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2660 * enabled. We may switch back and forth between cpus while
2661 * reading from one cpu area. That does not matter as long
2662 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2663 *
9aabf810
JK
2664 * We should guarantee that tid and kmem_cache are retrieved on
2665 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2666 * to check if it is matched or not.
8a5ec0ba 2667 */
9aabf810
JK
2668 do {
2669 tid = this_cpu_read(s->cpu_slab->tid);
2670 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2671 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2672 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2673
2674 /*
2675 * Irqless object alloc/free algorithm used here depends on sequence
2676 * of fetching cpu_slab's data. tid should be fetched before anything
2677 * on c to guarantee that object and page associated with previous tid
2678 * won't be used with current tid. If we fetch tid first, object and
2679 * page could be one associated with next tid and our alloc/free
2680 * request will be failed. In this case, we will retry. So, no problem.
2681 */
2682 barrier();
8a5ec0ba 2683
8a5ec0ba
CL
2684 /*
2685 * The transaction ids are globally unique per cpu and per operation on
2686 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2687 * occurs on the right processor and that there was no operation on the
2688 * linked list in between.
2689 */
8a5ec0ba 2690
9dfc6e68 2691 object = c->freelist;
57d437d2 2692 page = c->page;
8eae1492 2693 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2694 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2695 stat(s, ALLOC_SLOWPATH);
2696 } else {
0ad9500e
ED
2697 void *next_object = get_freepointer_safe(s, object);
2698
8a5ec0ba 2699 /*
25985edc 2700 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2701 * operation and if we are on the right processor.
2702 *
d0e0ac97
CG
2703 * The cmpxchg does the following atomically (without lock
2704 * semantics!)
8a5ec0ba
CL
2705 * 1. Relocate first pointer to the current per cpu area.
2706 * 2. Verify that tid and freelist have not been changed
2707 * 3. If they were not changed replace tid and freelist
2708 *
d0e0ac97
CG
2709 * Since this is without lock semantics the protection is only
2710 * against code executing on this cpu *not* from access by
2711 * other cpus.
8a5ec0ba 2712 */
933393f5 2713 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2714 s->cpu_slab->freelist, s->cpu_slab->tid,
2715 object, tid,
0ad9500e 2716 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2717
2718 note_cmpxchg_failure("slab_alloc", s, tid);
2719 goto redo;
2720 }
0ad9500e 2721 prefetch_freepointer(s, next_object);
84e554e6 2722 stat(s, ALLOC_FASTPATH);
894b8788 2723 }
8a5ec0ba 2724
74e2134f 2725 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2726 memset(object, 0, s->object_size);
d07dbea4 2727
03ec0ed5 2728 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2729
894b8788 2730 return object;
81819f0f
CL
2731}
2732
2b847c3c
EG
2733static __always_inline void *slab_alloc(struct kmem_cache *s,
2734 gfp_t gfpflags, unsigned long addr)
2735{
2736 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2737}
2738
81819f0f
CL
2739void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2740{
2b847c3c 2741 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2742
d0e0ac97
CG
2743 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2744 s->size, gfpflags);
5b882be4
EGM
2745
2746 return ret;
81819f0f
CL
2747}
2748EXPORT_SYMBOL(kmem_cache_alloc);
2749
0f24f128 2750#ifdef CONFIG_TRACING
4a92379b
RK
2751void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2752{
2b847c3c 2753 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2754 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2755 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2756 return ret;
2757}
2758EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2759#endif
2760
81819f0f
CL
2761#ifdef CONFIG_NUMA
2762void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2763{
2b847c3c 2764 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2765
ca2b84cb 2766 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2767 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2768
2769 return ret;
81819f0f
CL
2770}
2771EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2772
0f24f128 2773#ifdef CONFIG_TRACING
4a92379b 2774void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2775 gfp_t gfpflags,
4a92379b 2776 int node, size_t size)
5b882be4 2777{
2b847c3c 2778 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2779
2780 trace_kmalloc_node(_RET_IP_, ret,
2781 size, s->size, gfpflags, node);
0316bec2 2782
505f5dcb 2783 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2784 return ret;
5b882be4 2785}
4a92379b 2786EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2787#endif
5d1f57e4 2788#endif
5b882be4 2789
81819f0f 2790/*
94e4d712 2791 * Slow path handling. This may still be called frequently since objects
894b8788 2792 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2793 *
894b8788
CL
2794 * So we still attempt to reduce cache line usage. Just take the slab
2795 * lock and free the item. If there is no additional partial page
2796 * handling required then we can return immediately.
81819f0f 2797 */
894b8788 2798static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2799 void *head, void *tail, int cnt,
2800 unsigned long addr)
2801
81819f0f
CL
2802{
2803 void *prior;
2cfb7455 2804 int was_frozen;
2cfb7455
CL
2805 struct page new;
2806 unsigned long counters;
2807 struct kmem_cache_node *n = NULL;
61728d1e 2808 unsigned long uninitialized_var(flags);
81819f0f 2809
8a5ec0ba 2810 stat(s, FREE_SLOWPATH);
81819f0f 2811
19c7ff9e 2812 if (kmem_cache_debug(s) &&
282acb43 2813 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2814 return;
6446faa2 2815
2cfb7455 2816 do {
837d678d
JK
2817 if (unlikely(n)) {
2818 spin_unlock_irqrestore(&n->list_lock, flags);
2819 n = NULL;
2820 }
2cfb7455
CL
2821 prior = page->freelist;
2822 counters = page->counters;
81084651 2823 set_freepointer(s, tail, prior);
2cfb7455
CL
2824 new.counters = counters;
2825 was_frozen = new.frozen;
81084651 2826 new.inuse -= cnt;
837d678d 2827 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2828
c65c1877 2829 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2830
2831 /*
d0e0ac97
CG
2832 * Slab was on no list before and will be
2833 * partially empty
2834 * We can defer the list move and instead
2835 * freeze it.
49e22585
CL
2836 */
2837 new.frozen = 1;
2838
c65c1877 2839 } else { /* Needs to be taken off a list */
49e22585 2840
b455def2 2841 n = get_node(s, page_to_nid(page));
49e22585
CL
2842 /*
2843 * Speculatively acquire the list_lock.
2844 * If the cmpxchg does not succeed then we may
2845 * drop the list_lock without any processing.
2846 *
2847 * Otherwise the list_lock will synchronize with
2848 * other processors updating the list of slabs.
2849 */
2850 spin_lock_irqsave(&n->list_lock, flags);
2851
2852 }
2cfb7455 2853 }
81819f0f 2854
2cfb7455
CL
2855 } while (!cmpxchg_double_slab(s, page,
2856 prior, counters,
81084651 2857 head, new.counters,
2cfb7455 2858 "__slab_free"));
81819f0f 2859
2cfb7455 2860 if (likely(!n)) {
49e22585
CL
2861
2862 /*
2863 * If we just froze the page then put it onto the
2864 * per cpu partial list.
2865 */
8028dcea 2866 if (new.frozen && !was_frozen) {
49e22585 2867 put_cpu_partial(s, page, 1);
8028dcea
AS
2868 stat(s, CPU_PARTIAL_FREE);
2869 }
49e22585 2870 /*
2cfb7455
CL
2871 * The list lock was not taken therefore no list
2872 * activity can be necessary.
2873 */
b455def2
L
2874 if (was_frozen)
2875 stat(s, FREE_FROZEN);
2876 return;
2877 }
81819f0f 2878
8a5b20ae 2879 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2880 goto slab_empty;
2881
81819f0f 2882 /*
837d678d
JK
2883 * Objects left in the slab. If it was not on the partial list before
2884 * then add it.
81819f0f 2885 */
345c905d
JK
2886 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2887 if (kmem_cache_debug(s))
c65c1877 2888 remove_full(s, n, page);
837d678d
JK
2889 add_partial(n, page, DEACTIVATE_TO_TAIL);
2890 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2891 }
80f08c19 2892 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2893 return;
2894
2895slab_empty:
a973e9dd 2896 if (prior) {
81819f0f 2897 /*
6fbabb20 2898 * Slab on the partial list.
81819f0f 2899 */
5cc6eee8 2900 remove_partial(n, page);
84e554e6 2901 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2902 } else {
6fbabb20 2903 /* Slab must be on the full list */
c65c1877
PZ
2904 remove_full(s, n, page);
2905 }
2cfb7455 2906
80f08c19 2907 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2908 stat(s, FREE_SLAB);
81819f0f 2909 discard_slab(s, page);
81819f0f
CL
2910}
2911
894b8788
CL
2912/*
2913 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2914 * can perform fastpath freeing without additional function calls.
2915 *
2916 * The fastpath is only possible if we are freeing to the current cpu slab
2917 * of this processor. This typically the case if we have just allocated
2918 * the item before.
2919 *
2920 * If fastpath is not possible then fall back to __slab_free where we deal
2921 * with all sorts of special processing.
81084651
JDB
2922 *
2923 * Bulk free of a freelist with several objects (all pointing to the
2924 * same page) possible by specifying head and tail ptr, plus objects
2925 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2926 */
80a9201a
AP
2927static __always_inline void do_slab_free(struct kmem_cache *s,
2928 struct page *page, void *head, void *tail,
2929 int cnt, unsigned long addr)
894b8788 2930{
81084651 2931 void *tail_obj = tail ? : head;
dfb4f096 2932 struct kmem_cache_cpu *c;
8a5ec0ba 2933 unsigned long tid;
8a5ec0ba
CL
2934redo:
2935 /*
2936 * Determine the currently cpus per cpu slab.
2937 * The cpu may change afterward. However that does not matter since
2938 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2939 * during the cmpxchg then the free will succeed.
8a5ec0ba 2940 */
9aabf810
JK
2941 do {
2942 tid = this_cpu_read(s->cpu_slab->tid);
2943 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2944 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2945 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2946
9aabf810
JK
2947 /* Same with comment on barrier() in slab_alloc_node() */
2948 barrier();
c016b0bd 2949
442b06bc 2950 if (likely(page == c->page)) {
81084651 2951 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2952
933393f5 2953 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2954 s->cpu_slab->freelist, s->cpu_slab->tid,
2955 c->freelist, tid,
81084651 2956 head, next_tid(tid)))) {
8a5ec0ba
CL
2957
2958 note_cmpxchg_failure("slab_free", s, tid);
2959 goto redo;
2960 }
84e554e6 2961 stat(s, FREE_FASTPATH);
894b8788 2962 } else
81084651 2963 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2964
894b8788
CL
2965}
2966
80a9201a
AP
2967static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2968 void *head, void *tail, int cnt,
2969 unsigned long addr)
2970{
2971 slab_free_freelist_hook(s, head, tail);
2972 /*
2973 * slab_free_freelist_hook() could have put the items into quarantine.
2974 * If so, no need to free them.
2975 */
5f0d5a3a 2976 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2977 return;
2978 do_slab_free(s, page, head, tail, cnt, addr);
2979}
2980
2981#ifdef CONFIG_KASAN
2982void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2983{
2984 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2985}
2986#endif
2987
81819f0f
CL
2988void kmem_cache_free(struct kmem_cache *s, void *x)
2989{
b9ce5ef4
GC
2990 s = cache_from_obj(s, x);
2991 if (!s)
79576102 2992 return;
81084651 2993 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2994 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2995}
2996EXPORT_SYMBOL(kmem_cache_free);
2997
d0ecd894 2998struct detached_freelist {
fbd02630 2999 struct page *page;
d0ecd894
JDB
3000 void *tail;
3001 void *freelist;
3002 int cnt;
376bf125 3003 struct kmem_cache *s;
d0ecd894 3004};
fbd02630 3005
d0ecd894
JDB
3006/*
3007 * This function progressively scans the array with free objects (with
3008 * a limited look ahead) and extract objects belonging to the same
3009 * page. It builds a detached freelist directly within the given
3010 * page/objects. This can happen without any need for
3011 * synchronization, because the objects are owned by running process.
3012 * The freelist is build up as a single linked list in the objects.
3013 * The idea is, that this detached freelist can then be bulk
3014 * transferred to the real freelist(s), but only requiring a single
3015 * synchronization primitive. Look ahead in the array is limited due
3016 * to performance reasons.
3017 */
376bf125
JDB
3018static inline
3019int build_detached_freelist(struct kmem_cache *s, size_t size,
3020 void **p, struct detached_freelist *df)
d0ecd894
JDB
3021{
3022 size_t first_skipped_index = 0;
3023 int lookahead = 3;
3024 void *object;
ca257195 3025 struct page *page;
fbd02630 3026
d0ecd894
JDB
3027 /* Always re-init detached_freelist */
3028 df->page = NULL;
fbd02630 3029
d0ecd894
JDB
3030 do {
3031 object = p[--size];
ca257195 3032 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3033 } while (!object && size);
3eed034d 3034
d0ecd894
JDB
3035 if (!object)
3036 return 0;
fbd02630 3037
ca257195
JDB
3038 page = virt_to_head_page(object);
3039 if (!s) {
3040 /* Handle kalloc'ed objects */
3041 if (unlikely(!PageSlab(page))) {
3042 BUG_ON(!PageCompound(page));
3043 kfree_hook(object);
4949148a 3044 __free_pages(page, compound_order(page));
ca257195
JDB
3045 p[size] = NULL; /* mark object processed */
3046 return size;
3047 }
3048 /* Derive kmem_cache from object */
3049 df->s = page->slab_cache;
3050 } else {
3051 df->s = cache_from_obj(s, object); /* Support for memcg */
3052 }
376bf125 3053
d0ecd894 3054 /* Start new detached freelist */
ca257195 3055 df->page = page;
376bf125 3056 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3057 df->tail = object;
3058 df->freelist = object;
3059 p[size] = NULL; /* mark object processed */
3060 df->cnt = 1;
3061
3062 while (size) {
3063 object = p[--size];
3064 if (!object)
3065 continue; /* Skip processed objects */
3066
3067 /* df->page is always set at this point */
3068 if (df->page == virt_to_head_page(object)) {
3069 /* Opportunity build freelist */
376bf125 3070 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3071 df->freelist = object;
3072 df->cnt++;
3073 p[size] = NULL; /* mark object processed */
3074
3075 continue;
fbd02630 3076 }
d0ecd894
JDB
3077
3078 /* Limit look ahead search */
3079 if (!--lookahead)
3080 break;
3081
3082 if (!first_skipped_index)
3083 first_skipped_index = size + 1;
fbd02630 3084 }
d0ecd894
JDB
3085
3086 return first_skipped_index;
3087}
3088
d0ecd894 3089/* Note that interrupts must be enabled when calling this function. */
376bf125 3090void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3091{
3092 if (WARN_ON(!size))
3093 return;
3094
3095 do {
3096 struct detached_freelist df;
3097
3098 size = build_detached_freelist(s, size, p, &df);
84582c8a 3099 if (!df.page)
d0ecd894
JDB
3100 continue;
3101
376bf125 3102 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3103 } while (likely(size));
484748f0
CL
3104}
3105EXPORT_SYMBOL(kmem_cache_free_bulk);
3106
994eb764 3107/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3108int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3109 void **p)
484748f0 3110{
994eb764
JDB
3111 struct kmem_cache_cpu *c;
3112 int i;
3113
03ec0ed5
JDB
3114 /* memcg and kmem_cache debug support */
3115 s = slab_pre_alloc_hook(s, flags);
3116 if (unlikely(!s))
3117 return false;
994eb764
JDB
3118 /*
3119 * Drain objects in the per cpu slab, while disabling local
3120 * IRQs, which protects against PREEMPT and interrupts
3121 * handlers invoking normal fastpath.
3122 */
3123 local_irq_disable();
3124 c = this_cpu_ptr(s->cpu_slab);
3125
3126 for (i = 0; i < size; i++) {
3127 void *object = c->freelist;
3128
ebe909e0 3129 if (unlikely(!object)) {
ebe909e0
JDB
3130 /*
3131 * Invoking slow path likely have side-effect
3132 * of re-populating per CPU c->freelist
3133 */
87098373 3134 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3135 _RET_IP_, c);
87098373
CL
3136 if (unlikely(!p[i]))
3137 goto error;
3138
ebe909e0
JDB
3139 c = this_cpu_ptr(s->cpu_slab);
3140 continue; /* goto for-loop */
3141 }
994eb764
JDB
3142 c->freelist = get_freepointer(s, object);
3143 p[i] = object;
3144 }
3145 c->tid = next_tid(c->tid);
3146 local_irq_enable();
3147
3148 /* Clear memory outside IRQ disabled fastpath loop */
3149 if (unlikely(flags & __GFP_ZERO)) {
3150 int j;
3151
3152 for (j = 0; j < i; j++)
3153 memset(p[j], 0, s->object_size);
3154 }
3155
03ec0ed5
JDB
3156 /* memcg and kmem_cache debug support */
3157 slab_post_alloc_hook(s, flags, size, p);
865762a8 3158 return i;
87098373 3159error:
87098373 3160 local_irq_enable();
03ec0ed5
JDB
3161 slab_post_alloc_hook(s, flags, i, p);
3162 __kmem_cache_free_bulk(s, i, p);
865762a8 3163 return 0;
484748f0
CL
3164}
3165EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3166
3167
81819f0f 3168/*
672bba3a
CL
3169 * Object placement in a slab is made very easy because we always start at
3170 * offset 0. If we tune the size of the object to the alignment then we can
3171 * get the required alignment by putting one properly sized object after
3172 * another.
81819f0f
CL
3173 *
3174 * Notice that the allocation order determines the sizes of the per cpu
3175 * caches. Each processor has always one slab available for allocations.
3176 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3177 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3178 * locking overhead.
81819f0f
CL
3179 */
3180
3181/*
3182 * Mininum / Maximum order of slab pages. This influences locking overhead
3183 * and slab fragmentation. A higher order reduces the number of partial slabs
3184 * and increases the number of allocations possible without having to
3185 * take the list_lock.
3186 */
19af27af
AD
3187static unsigned int slub_min_order;
3188static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3189static unsigned int slub_min_objects;
81819f0f 3190
81819f0f
CL
3191/*
3192 * Calculate the order of allocation given an slab object size.
3193 *
672bba3a
CL
3194 * The order of allocation has significant impact on performance and other
3195 * system components. Generally order 0 allocations should be preferred since
3196 * order 0 does not cause fragmentation in the page allocator. Larger objects
3197 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3198 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3199 * would be wasted.
3200 *
3201 * In order to reach satisfactory performance we must ensure that a minimum
3202 * number of objects is in one slab. Otherwise we may generate too much
3203 * activity on the partial lists which requires taking the list_lock. This is
3204 * less a concern for large slabs though which are rarely used.
81819f0f 3205 *
672bba3a
CL
3206 * slub_max_order specifies the order where we begin to stop considering the
3207 * number of objects in a slab as critical. If we reach slub_max_order then
3208 * we try to keep the page order as low as possible. So we accept more waste
3209 * of space in favor of a small page order.
81819f0f 3210 *
672bba3a
CL
3211 * Higher order allocations also allow the placement of more objects in a
3212 * slab and thereby reduce object handling overhead. If the user has
3213 * requested a higher mininum order then we start with that one instead of
3214 * the smallest order which will fit the object.
81819f0f 3215 */
19af27af
AD
3216static inline unsigned int slab_order(unsigned int size,
3217 unsigned int min_objects, unsigned int max_order,
3218 unsigned int fract_leftover, unsigned int reserved)
81819f0f 3219{
19af27af
AD
3220 unsigned int min_order = slub_min_order;
3221 unsigned int order;
81819f0f 3222
ab9a0f19 3223 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3224 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3225
19af27af 3226 for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
5e6d444e 3227 order <= max_order; order++) {
81819f0f 3228
19af27af
AD
3229 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3230 unsigned int rem;
81819f0f 3231
ab9a0f19 3232 rem = (slab_size - reserved) % size;
81819f0f 3233
5e6d444e 3234 if (rem <= slab_size / fract_leftover)
81819f0f 3235 break;
81819f0f 3236 }
672bba3a 3237
81819f0f
CL
3238 return order;
3239}
3240
19af27af 3241static inline int calculate_order(unsigned int size, unsigned int reserved)
5e6d444e 3242{
19af27af
AD
3243 unsigned int order;
3244 unsigned int min_objects;
3245 unsigned int max_objects;
5e6d444e
CL
3246
3247 /*
3248 * Attempt to find best configuration for a slab. This
3249 * works by first attempting to generate a layout with
3250 * the best configuration and backing off gradually.
3251 *
422ff4d7 3252 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3253 * we reduce the minimum objects required in a slab.
3254 */
3255 min_objects = slub_min_objects;
9b2cd506
CL
3256 if (!min_objects)
3257 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3258 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3259 min_objects = min(min_objects, max_objects);
3260
5e6d444e 3261 while (min_objects > 1) {
19af27af
AD
3262 unsigned int fraction;
3263
c124f5b5 3264 fraction = 16;
5e6d444e
CL
3265 while (fraction >= 4) {
3266 order = slab_order(size, min_objects,
ab9a0f19 3267 slub_max_order, fraction, reserved);
5e6d444e
CL
3268 if (order <= slub_max_order)
3269 return order;
3270 fraction /= 2;
3271 }
5086c389 3272 min_objects--;
5e6d444e
CL
3273 }
3274
3275 /*
3276 * We were unable to place multiple objects in a slab. Now
3277 * lets see if we can place a single object there.
3278 */
ab9a0f19 3279 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3280 if (order <= slub_max_order)
3281 return order;
3282
3283 /*
3284 * Doh this slab cannot be placed using slub_max_order.
3285 */
ab9a0f19 3286 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3287 if (order < MAX_ORDER)
5e6d444e
CL
3288 return order;
3289 return -ENOSYS;
3290}
3291
5595cffc 3292static void
4053497d 3293init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3294{
3295 n->nr_partial = 0;
81819f0f
CL
3296 spin_lock_init(&n->list_lock);
3297 INIT_LIST_HEAD(&n->partial);
8ab1372f 3298#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3299 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3300 atomic_long_set(&n->total_objects, 0);
643b1138 3301 INIT_LIST_HEAD(&n->full);
8ab1372f 3302#endif
81819f0f
CL
3303}
3304
55136592 3305static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3306{
6c182dc0 3307 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3308 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3309
8a5ec0ba 3310 /*
d4d84fef
CM
3311 * Must align to double word boundary for the double cmpxchg
3312 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3313 */
d4d84fef
CM
3314 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3315 2 * sizeof(void *));
8a5ec0ba
CL
3316
3317 if (!s->cpu_slab)
3318 return 0;
3319
3320 init_kmem_cache_cpus(s);
4c93c355 3321
8a5ec0ba 3322 return 1;
4c93c355 3323}
4c93c355 3324
51df1142
CL
3325static struct kmem_cache *kmem_cache_node;
3326
81819f0f
CL
3327/*
3328 * No kmalloc_node yet so do it by hand. We know that this is the first
3329 * slab on the node for this slabcache. There are no concurrent accesses
3330 * possible.
3331 *
721ae22a
ZYW
3332 * Note that this function only works on the kmem_cache_node
3333 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3334 * memory on a fresh node that has no slab structures yet.
81819f0f 3335 */
55136592 3336static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3337{
3338 struct page *page;
3339 struct kmem_cache_node *n;
3340
51df1142 3341 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3342
51df1142 3343 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3344
3345 BUG_ON(!page);
a2f92ee7 3346 if (page_to_nid(page) != node) {
f9f58285
FF
3347 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3348 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3349 }
3350
81819f0f
CL
3351 n = page->freelist;
3352 BUG_ON(!n);
51df1142 3353 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3354 page->inuse = 1;
8cb0a506 3355 page->frozen = 0;
51df1142 3356 kmem_cache_node->node[node] = n;
8ab1372f 3357#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3358 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3359 init_tracking(kmem_cache_node, n);
8ab1372f 3360#endif
505f5dcb
AP
3361 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3362 GFP_KERNEL);
4053497d 3363 init_kmem_cache_node(n);
51df1142 3364 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3365
67b6c900 3366 /*
1e4dd946
SR
3367 * No locks need to be taken here as it has just been
3368 * initialized and there is no concurrent access.
67b6c900 3369 */
1e4dd946 3370 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3371}
3372
3373static void free_kmem_cache_nodes(struct kmem_cache *s)
3374{
3375 int node;
fa45dc25 3376 struct kmem_cache_node *n;
81819f0f 3377
fa45dc25 3378 for_each_kmem_cache_node(s, node, n) {
81819f0f 3379 s->node[node] = NULL;
ea37df54 3380 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3381 }
3382}
3383
52b4b950
DS
3384void __kmem_cache_release(struct kmem_cache *s)
3385{
210e7a43 3386 cache_random_seq_destroy(s);
52b4b950
DS
3387 free_percpu(s->cpu_slab);
3388 free_kmem_cache_nodes(s);
3389}
3390
55136592 3391static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3392{
3393 int node;
81819f0f 3394
f64dc58c 3395 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3396 struct kmem_cache_node *n;
3397
73367bd8 3398 if (slab_state == DOWN) {
55136592 3399 early_kmem_cache_node_alloc(node);
73367bd8
AD
3400 continue;
3401 }
51df1142 3402 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3403 GFP_KERNEL, node);
81819f0f 3404
73367bd8
AD
3405 if (!n) {
3406 free_kmem_cache_nodes(s);
3407 return 0;
81819f0f 3408 }
73367bd8 3409
4053497d 3410 init_kmem_cache_node(n);
ea37df54 3411 s->node[node] = n;
81819f0f
CL
3412 }
3413 return 1;
3414}
81819f0f 3415
c0bdb232 3416static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3417{
3418 if (min < MIN_PARTIAL)
3419 min = MIN_PARTIAL;
3420 else if (min > MAX_PARTIAL)
3421 min = MAX_PARTIAL;
3422 s->min_partial = min;
3423}
3424
e6d0e1dc
WY
3425static void set_cpu_partial(struct kmem_cache *s)
3426{
3427#ifdef CONFIG_SLUB_CPU_PARTIAL
3428 /*
3429 * cpu_partial determined the maximum number of objects kept in the
3430 * per cpu partial lists of a processor.
3431 *
3432 * Per cpu partial lists mainly contain slabs that just have one
3433 * object freed. If they are used for allocation then they can be
3434 * filled up again with minimal effort. The slab will never hit the
3435 * per node partial lists and therefore no locking will be required.
3436 *
3437 * This setting also determines
3438 *
3439 * A) The number of objects from per cpu partial slabs dumped to the
3440 * per node list when we reach the limit.
3441 * B) The number of objects in cpu partial slabs to extract from the
3442 * per node list when we run out of per cpu objects. We only fetch
3443 * 50% to keep some capacity around for frees.
3444 */
3445 if (!kmem_cache_has_cpu_partial(s))
3446 s->cpu_partial = 0;
3447 else if (s->size >= PAGE_SIZE)
3448 s->cpu_partial = 2;
3449 else if (s->size >= 1024)
3450 s->cpu_partial = 6;
3451 else if (s->size >= 256)
3452 s->cpu_partial = 13;
3453 else
3454 s->cpu_partial = 30;
3455#endif
3456}
3457
81819f0f
CL
3458/*
3459 * calculate_sizes() determines the order and the distribution of data within
3460 * a slab object.
3461 */
06b285dc 3462static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3463{
d50112ed 3464 slab_flags_t flags = s->flags;
be4a7988 3465 unsigned int size = s->object_size;
19af27af 3466 unsigned int order;
81819f0f 3467
d8b42bf5
CL
3468 /*
3469 * Round up object size to the next word boundary. We can only
3470 * place the free pointer at word boundaries and this determines
3471 * the possible location of the free pointer.
3472 */
3473 size = ALIGN(size, sizeof(void *));
3474
3475#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3476 /*
3477 * Determine if we can poison the object itself. If the user of
3478 * the slab may touch the object after free or before allocation
3479 * then we should never poison the object itself.
3480 */
5f0d5a3a 3481 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3482 !s->ctor)
81819f0f
CL
3483 s->flags |= __OBJECT_POISON;
3484 else
3485 s->flags &= ~__OBJECT_POISON;
3486
81819f0f
CL
3487
3488 /*
672bba3a 3489 * If we are Redzoning then check if there is some space between the
81819f0f 3490 * end of the object and the free pointer. If not then add an
672bba3a 3491 * additional word to have some bytes to store Redzone information.
81819f0f 3492 */
3b0efdfa 3493 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3494 size += sizeof(void *);
41ecc55b 3495#endif
81819f0f
CL
3496
3497 /*
672bba3a
CL
3498 * With that we have determined the number of bytes in actual use
3499 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3500 */
3501 s->inuse = size;
3502
5f0d5a3a 3503 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3504 s->ctor)) {
81819f0f
CL
3505 /*
3506 * Relocate free pointer after the object if it is not
3507 * permitted to overwrite the first word of the object on
3508 * kmem_cache_free.
3509 *
3510 * This is the case if we do RCU, have a constructor or
3511 * destructor or are poisoning the objects.
3512 */
3513 s->offset = size;
3514 size += sizeof(void *);
3515 }
3516
c12b3c62 3517#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3518 if (flags & SLAB_STORE_USER)
3519 /*
3520 * Need to store information about allocs and frees after
3521 * the object.
3522 */
3523 size += 2 * sizeof(struct track);
80a9201a 3524#endif
81819f0f 3525
80a9201a
AP
3526 kasan_cache_create(s, &size, &s->flags);
3527#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3528 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3529 /*
3530 * Add some empty padding so that we can catch
3531 * overwrites from earlier objects rather than let
3532 * tracking information or the free pointer be
0211a9c8 3533 * corrupted if a user writes before the start
81819f0f
CL
3534 * of the object.
3535 */
3536 size += sizeof(void *);
d86bd1be
JK
3537
3538 s->red_left_pad = sizeof(void *);
3539 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3540 size += s->red_left_pad;
3541 }
41ecc55b 3542#endif
672bba3a 3543
81819f0f
CL
3544 /*
3545 * SLUB stores one object immediately after another beginning from
3546 * offset 0. In order to align the objects we have to simply size
3547 * each object to conform to the alignment.
3548 */
45906855 3549 size = ALIGN(size, s->align);
81819f0f 3550 s->size = size;
06b285dc
CL
3551 if (forced_order >= 0)
3552 order = forced_order;
3553 else
ab9a0f19 3554 order = calculate_order(size, s->reserved);
81819f0f 3555
19af27af 3556 if ((int)order < 0)
81819f0f
CL
3557 return 0;
3558
b7a49f0d 3559 s->allocflags = 0;
834f3d11 3560 if (order)
b7a49f0d
CL
3561 s->allocflags |= __GFP_COMP;
3562
3563 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3564 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3565
3566 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3567 s->allocflags |= __GFP_RECLAIMABLE;
3568
81819f0f
CL
3569 /*
3570 * Determine the number of objects per slab
3571 */
ab9a0f19
LJ
3572 s->oo = oo_make(order, size, s->reserved);
3573 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3574 if (oo_objects(s->oo) > oo_objects(s->max))
3575 s->max = s->oo;
81819f0f 3576
834f3d11 3577 return !!oo_objects(s->oo);
81819f0f
CL
3578}
3579
d50112ed 3580static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3581{
8a13a4cc 3582 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3583 s->reserved = 0;
2482ddec
KC
3584#ifdef CONFIG_SLAB_FREELIST_HARDENED
3585 s->random = get_random_long();
3586#endif
81819f0f 3587
5f0d5a3a 3588 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3589 s->reserved = sizeof(struct rcu_head);
81819f0f 3590
06b285dc 3591 if (!calculate_sizes(s, -1))
81819f0f 3592 goto error;
3de47213
DR
3593 if (disable_higher_order_debug) {
3594 /*
3595 * Disable debugging flags that store metadata if the min slab
3596 * order increased.
3597 */
3b0efdfa 3598 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3599 s->flags &= ~DEBUG_METADATA_FLAGS;
3600 s->offset = 0;
3601 if (!calculate_sizes(s, -1))
3602 goto error;
3603 }
3604 }
81819f0f 3605
2565409f
HC
3606#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3607 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3608 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3609 /* Enable fast mode */
3610 s->flags |= __CMPXCHG_DOUBLE;
3611#endif
3612
3b89d7d8
DR
3613 /*
3614 * The larger the object size is, the more pages we want on the partial
3615 * list to avoid pounding the page allocator excessively.
3616 */
49e22585
CL
3617 set_min_partial(s, ilog2(s->size) / 2);
3618
e6d0e1dc 3619 set_cpu_partial(s);
49e22585 3620
81819f0f 3621#ifdef CONFIG_NUMA
e2cb96b7 3622 s->remote_node_defrag_ratio = 1000;
81819f0f 3623#endif
210e7a43
TG
3624
3625 /* Initialize the pre-computed randomized freelist if slab is up */
3626 if (slab_state >= UP) {
3627 if (init_cache_random_seq(s))
3628 goto error;
3629 }
3630
55136592 3631 if (!init_kmem_cache_nodes(s))
dfb4f096 3632 goto error;
81819f0f 3633
55136592 3634 if (alloc_kmem_cache_cpus(s))
278b1bb1 3635 return 0;
ff12059e 3636
4c93c355 3637 free_kmem_cache_nodes(s);
81819f0f
CL
3638error:
3639 if (flags & SLAB_PANIC)
44065b2e
AD
3640 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3641 s->name, s->size, s->size,
4fd0b46e 3642 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3643 return -EINVAL;
81819f0f 3644}
81819f0f 3645
33b12c38
CL
3646static void list_slab_objects(struct kmem_cache *s, struct page *page,
3647 const char *text)
3648{
3649#ifdef CONFIG_SLUB_DEBUG
3650 void *addr = page_address(page);
3651 void *p;
a5dd5c11
NK
3652 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3653 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3654 if (!map)
3655 return;
945cf2b6 3656 slab_err(s, page, text, s->name);
33b12c38 3657 slab_lock(page);
33b12c38 3658
5f80b13a 3659 get_map(s, page, map);
33b12c38
CL
3660 for_each_object(p, s, addr, page->objects) {
3661
3662 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3663 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3664 print_tracking(s, p);
3665 }
3666 }
3667 slab_unlock(page);
bbd7d57b 3668 kfree(map);
33b12c38
CL
3669#endif
3670}
3671
81819f0f 3672/*
599870b1 3673 * Attempt to free all partial slabs on a node.
52b4b950
DS
3674 * This is called from __kmem_cache_shutdown(). We must take list_lock
3675 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3676 */
599870b1 3677static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3678{
60398923 3679 LIST_HEAD(discard);
81819f0f
CL
3680 struct page *page, *h;
3681
52b4b950
DS
3682 BUG_ON(irqs_disabled());
3683 spin_lock_irq(&n->list_lock);
33b12c38 3684 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3685 if (!page->inuse) {
52b4b950 3686 remove_partial(n, page);
60398923 3687 list_add(&page->lru, &discard);
33b12c38
CL
3688 } else {
3689 list_slab_objects(s, page,
52b4b950 3690 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3691 }
33b12c38 3692 }
52b4b950 3693 spin_unlock_irq(&n->list_lock);
60398923
CW
3694
3695 list_for_each_entry_safe(page, h, &discard, lru)
3696 discard_slab(s, page);
81819f0f
CL
3697}
3698
f9e13c0a
SB
3699bool __kmem_cache_empty(struct kmem_cache *s)
3700{
3701 int node;
3702 struct kmem_cache_node *n;
3703
3704 for_each_kmem_cache_node(s, node, n)
3705 if (n->nr_partial || slabs_node(s, node))
3706 return false;
3707 return true;
3708}
3709
81819f0f 3710/*
672bba3a 3711 * Release all resources used by a slab cache.
81819f0f 3712 */
52b4b950 3713int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3714{
3715 int node;
fa45dc25 3716 struct kmem_cache_node *n;
81819f0f
CL
3717
3718 flush_all(s);
81819f0f 3719 /* Attempt to free all objects */
fa45dc25 3720 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3721 free_partial(s, n);
3722 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3723 return 1;
3724 }
bf5eb3de 3725 sysfs_slab_remove(s);
81819f0f
CL
3726 return 0;
3727}
3728
81819f0f
CL
3729/********************************************************************
3730 * Kmalloc subsystem
3731 *******************************************************************/
3732
81819f0f
CL
3733static int __init setup_slub_min_order(char *str)
3734{
19af27af 3735 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3736
3737 return 1;
3738}
3739
3740__setup("slub_min_order=", setup_slub_min_order);
3741
3742static int __init setup_slub_max_order(char *str)
3743{
19af27af
AD
3744 get_option(&str, (int *)&slub_max_order);
3745 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3746
3747 return 1;
3748}
3749
3750__setup("slub_max_order=", setup_slub_max_order);
3751
3752static int __init setup_slub_min_objects(char *str)
3753{
19af27af 3754 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3755
3756 return 1;
3757}
3758
3759__setup("slub_min_objects=", setup_slub_min_objects);
3760
81819f0f
CL
3761void *__kmalloc(size_t size, gfp_t flags)
3762{
aadb4bc4 3763 struct kmem_cache *s;
5b882be4 3764 void *ret;
81819f0f 3765
95a05b42 3766 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3767 return kmalloc_large(size, flags);
aadb4bc4 3768
2c59dd65 3769 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3770
3771 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3772 return s;
3773
2b847c3c 3774 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3775
ca2b84cb 3776 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3777
505f5dcb 3778 kasan_kmalloc(s, ret, size, flags);
0316bec2 3779
5b882be4 3780 return ret;
81819f0f
CL
3781}
3782EXPORT_SYMBOL(__kmalloc);
3783
5d1f57e4 3784#ifdef CONFIG_NUMA
f619cfe1
CL
3785static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3786{
b1eeab67 3787 struct page *page;
e4f7c0b4 3788 void *ptr = NULL;
f619cfe1 3789
75f296d9 3790 flags |= __GFP_COMP;
4949148a 3791 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3792 if (page)
e4f7c0b4
CM
3793 ptr = page_address(page);
3794
d56791b3 3795 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3796 return ptr;
f619cfe1
CL
3797}
3798
81819f0f
CL
3799void *__kmalloc_node(size_t size, gfp_t flags, int node)
3800{
aadb4bc4 3801 struct kmem_cache *s;
5b882be4 3802 void *ret;
81819f0f 3803
95a05b42 3804 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3805 ret = kmalloc_large_node(size, flags, node);
3806
ca2b84cb
EGM
3807 trace_kmalloc_node(_RET_IP_, ret,
3808 size, PAGE_SIZE << get_order(size),
3809 flags, node);
5b882be4
EGM
3810
3811 return ret;
3812 }
aadb4bc4 3813
2c59dd65 3814 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3815
3816 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3817 return s;
3818
2b847c3c 3819 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3820
ca2b84cb 3821 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3822
505f5dcb 3823 kasan_kmalloc(s, ret, size, flags);
0316bec2 3824
5b882be4 3825 return ret;
81819f0f
CL
3826}
3827EXPORT_SYMBOL(__kmalloc_node);
3828#endif
3829
ed18adc1
KC
3830#ifdef CONFIG_HARDENED_USERCOPY
3831/*
afcc90f8
KC
3832 * Rejects incorrectly sized objects and objects that are to be copied
3833 * to/from userspace but do not fall entirely within the containing slab
3834 * cache's usercopy region.
ed18adc1
KC
3835 *
3836 * Returns NULL if check passes, otherwise const char * to name of cache
3837 * to indicate an error.
3838 */
f4e6e289
KC
3839void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3840 bool to_user)
ed18adc1
KC
3841{
3842 struct kmem_cache *s;
44065b2e 3843 unsigned int offset;
ed18adc1
KC
3844 size_t object_size;
3845
3846 /* Find object and usable object size. */
3847 s = page->slab_cache;
ed18adc1
KC
3848
3849 /* Reject impossible pointers. */
3850 if (ptr < page_address(page))
f4e6e289
KC
3851 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3852 to_user, 0, n);
ed18adc1
KC
3853
3854 /* Find offset within object. */
3855 offset = (ptr - page_address(page)) % s->size;
3856
3857 /* Adjust for redzone and reject if within the redzone. */
3858 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3859 if (offset < s->red_left_pad)
f4e6e289
KC
3860 usercopy_abort("SLUB object in left red zone",
3861 s->name, to_user, offset, n);
ed18adc1
KC
3862 offset -= s->red_left_pad;
3863 }
3864
afcc90f8
KC
3865 /* Allow address range falling entirely within usercopy region. */
3866 if (offset >= s->useroffset &&
3867 offset - s->useroffset <= s->usersize &&
3868 n <= s->useroffset - offset + s->usersize)
f4e6e289 3869 return;
ed18adc1 3870
afcc90f8
KC
3871 /*
3872 * If the copy is still within the allocated object, produce
3873 * a warning instead of rejecting the copy. This is intended
3874 * to be a temporary method to find any missing usercopy
3875 * whitelists.
3876 */
3877 object_size = slab_ksize(s);
2d891fbc
KC
3878 if (usercopy_fallback &&
3879 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3880 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3881 return;
3882 }
ed18adc1 3883
f4e6e289 3884 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3885}
3886#endif /* CONFIG_HARDENED_USERCOPY */
3887
0316bec2 3888static size_t __ksize(const void *object)
81819f0f 3889{
272c1d21 3890 struct page *page;
81819f0f 3891
ef8b4520 3892 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3893 return 0;
3894
294a80a8 3895 page = virt_to_head_page(object);
294a80a8 3896
76994412
PE
3897 if (unlikely(!PageSlab(page))) {
3898 WARN_ON(!PageCompound(page));
294a80a8 3899 return PAGE_SIZE << compound_order(page);
76994412 3900 }
81819f0f 3901
1b4f59e3 3902 return slab_ksize(page->slab_cache);
81819f0f 3903}
0316bec2
AR
3904
3905size_t ksize(const void *object)
3906{
3907 size_t size = __ksize(object);
3908 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3909 * so we need to unpoison this area.
3910 */
3911 kasan_unpoison_shadow(object, size);
0316bec2
AR
3912 return size;
3913}
b1aabecd 3914EXPORT_SYMBOL(ksize);
81819f0f
CL
3915
3916void kfree(const void *x)
3917{
81819f0f 3918 struct page *page;
5bb983b0 3919 void *object = (void *)x;
81819f0f 3920
2121db74
PE
3921 trace_kfree(_RET_IP_, x);
3922
2408c550 3923 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3924 return;
3925
b49af68f 3926 page = virt_to_head_page(x);
aadb4bc4 3927 if (unlikely(!PageSlab(page))) {
0937502a 3928 BUG_ON(!PageCompound(page));
47adccce 3929 kfree_hook(object);
4949148a 3930 __free_pages(page, compound_order(page));
aadb4bc4
CL
3931 return;
3932 }
81084651 3933 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3934}
3935EXPORT_SYMBOL(kfree);
3936
832f37f5
VD
3937#define SHRINK_PROMOTE_MAX 32
3938
2086d26a 3939/*
832f37f5
VD
3940 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3941 * up most to the head of the partial lists. New allocations will then
3942 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3943 *
3944 * The slabs with the least items are placed last. This results in them
3945 * being allocated from last increasing the chance that the last objects
3946 * are freed in them.
2086d26a 3947 */
c9fc5864 3948int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3949{
3950 int node;
3951 int i;
3952 struct kmem_cache_node *n;
3953 struct page *page;
3954 struct page *t;
832f37f5
VD
3955 struct list_head discard;
3956 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3957 unsigned long flags;
ce3712d7 3958 int ret = 0;
2086d26a 3959
2086d26a 3960 flush_all(s);
fa45dc25 3961 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3962 INIT_LIST_HEAD(&discard);
3963 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3964 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3965
3966 spin_lock_irqsave(&n->list_lock, flags);
3967
3968 /*
832f37f5 3969 * Build lists of slabs to discard or promote.
2086d26a 3970 *
672bba3a
CL
3971 * Note that concurrent frees may occur while we hold the
3972 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3973 */
3974 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3975 int free = page->objects - page->inuse;
3976
3977 /* Do not reread page->inuse */
3978 barrier();
3979
3980 /* We do not keep full slabs on the list */
3981 BUG_ON(free <= 0);
3982
3983 if (free == page->objects) {
3984 list_move(&page->lru, &discard);
69cb8e6b 3985 n->nr_partial--;
832f37f5
VD
3986 } else if (free <= SHRINK_PROMOTE_MAX)
3987 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3988 }
3989
2086d26a 3990 /*
832f37f5
VD
3991 * Promote the slabs filled up most to the head of the
3992 * partial list.
2086d26a 3993 */
832f37f5
VD
3994 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3995 list_splice(promote + i, &n->partial);
2086d26a 3996
2086d26a 3997 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3998
3999 /* Release empty slabs */
832f37f5 4000 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 4001 discard_slab(s, page);
ce3712d7
VD
4002
4003 if (slabs_node(s, node))
4004 ret = 1;
2086d26a
CL
4005 }
4006
ce3712d7 4007 return ret;
2086d26a 4008}
2086d26a 4009
c9fc5864 4010#ifdef CONFIG_MEMCG
01fb58bc
TH
4011static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4012{
50862ce7
TH
4013 /*
4014 * Called with all the locks held after a sched RCU grace period.
4015 * Even if @s becomes empty after shrinking, we can't know that @s
4016 * doesn't have allocations already in-flight and thus can't
4017 * destroy @s until the associated memcg is released.
4018 *
4019 * However, let's remove the sysfs files for empty caches here.
4020 * Each cache has a lot of interface files which aren't
4021 * particularly useful for empty draining caches; otherwise, we can
4022 * easily end up with millions of unnecessary sysfs files on
4023 * systems which have a lot of memory and transient cgroups.
4024 */
4025 if (!__kmem_cache_shrink(s))
4026 sysfs_slab_remove(s);
01fb58bc
TH
4027}
4028
c9fc5864
TH
4029void __kmemcg_cache_deactivate(struct kmem_cache *s)
4030{
4031 /*
4032 * Disable empty slabs caching. Used to avoid pinning offline
4033 * memory cgroups by kmem pages that can be freed.
4034 */
e6d0e1dc 4035 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4036 s->min_partial = 0;
4037
4038 /*
4039 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4040 * we have to make sure the change is visible before shrinking.
c9fc5864 4041 */
01fb58bc 4042 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4043}
4044#endif
4045
b9049e23
YG
4046static int slab_mem_going_offline_callback(void *arg)
4047{
4048 struct kmem_cache *s;
4049
18004c5d 4050 mutex_lock(&slab_mutex);
b9049e23 4051 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4052 __kmem_cache_shrink(s);
18004c5d 4053 mutex_unlock(&slab_mutex);
b9049e23
YG
4054
4055 return 0;
4056}
4057
4058static void slab_mem_offline_callback(void *arg)
4059{
4060 struct kmem_cache_node *n;
4061 struct kmem_cache *s;
4062 struct memory_notify *marg = arg;
4063 int offline_node;
4064
b9d5ab25 4065 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4066
4067 /*
4068 * If the node still has available memory. we need kmem_cache_node
4069 * for it yet.
4070 */
4071 if (offline_node < 0)
4072 return;
4073
18004c5d 4074 mutex_lock(&slab_mutex);
b9049e23
YG
4075 list_for_each_entry(s, &slab_caches, list) {
4076 n = get_node(s, offline_node);
4077 if (n) {
4078 /*
4079 * if n->nr_slabs > 0, slabs still exist on the node
4080 * that is going down. We were unable to free them,
c9404c9c 4081 * and offline_pages() function shouldn't call this
b9049e23
YG
4082 * callback. So, we must fail.
4083 */
0f389ec6 4084 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4085
4086 s->node[offline_node] = NULL;
8de66a0c 4087 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4088 }
4089 }
18004c5d 4090 mutex_unlock(&slab_mutex);
b9049e23
YG
4091}
4092
4093static int slab_mem_going_online_callback(void *arg)
4094{
4095 struct kmem_cache_node *n;
4096 struct kmem_cache *s;
4097 struct memory_notify *marg = arg;
b9d5ab25 4098 int nid = marg->status_change_nid_normal;
b9049e23
YG
4099 int ret = 0;
4100
4101 /*
4102 * If the node's memory is already available, then kmem_cache_node is
4103 * already created. Nothing to do.
4104 */
4105 if (nid < 0)
4106 return 0;
4107
4108 /*
0121c619 4109 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4110 * allocate a kmem_cache_node structure in order to bring the node
4111 * online.
4112 */
18004c5d 4113 mutex_lock(&slab_mutex);
b9049e23
YG
4114 list_for_each_entry(s, &slab_caches, list) {
4115 /*
4116 * XXX: kmem_cache_alloc_node will fallback to other nodes
4117 * since memory is not yet available from the node that
4118 * is brought up.
4119 */
8de66a0c 4120 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4121 if (!n) {
4122 ret = -ENOMEM;
4123 goto out;
4124 }
4053497d 4125 init_kmem_cache_node(n);
b9049e23
YG
4126 s->node[nid] = n;
4127 }
4128out:
18004c5d 4129 mutex_unlock(&slab_mutex);
b9049e23
YG
4130 return ret;
4131}
4132
4133static int slab_memory_callback(struct notifier_block *self,
4134 unsigned long action, void *arg)
4135{
4136 int ret = 0;
4137
4138 switch (action) {
4139 case MEM_GOING_ONLINE:
4140 ret = slab_mem_going_online_callback(arg);
4141 break;
4142 case MEM_GOING_OFFLINE:
4143 ret = slab_mem_going_offline_callback(arg);
4144 break;
4145 case MEM_OFFLINE:
4146 case MEM_CANCEL_ONLINE:
4147 slab_mem_offline_callback(arg);
4148 break;
4149 case MEM_ONLINE:
4150 case MEM_CANCEL_OFFLINE:
4151 break;
4152 }
dc19f9db
KH
4153 if (ret)
4154 ret = notifier_from_errno(ret);
4155 else
4156 ret = NOTIFY_OK;
b9049e23
YG
4157 return ret;
4158}
4159
3ac38faa
AM
4160static struct notifier_block slab_memory_callback_nb = {
4161 .notifier_call = slab_memory_callback,
4162 .priority = SLAB_CALLBACK_PRI,
4163};
b9049e23 4164
81819f0f
CL
4165/********************************************************************
4166 * Basic setup of slabs
4167 *******************************************************************/
4168
51df1142
CL
4169/*
4170 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4171 * the page allocator. Allocate them properly then fix up the pointers
4172 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4173 */
4174
dffb4d60 4175static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4176{
4177 int node;
dffb4d60 4178 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4179 struct kmem_cache_node *n;
51df1142 4180
dffb4d60 4181 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4182
7d557b3c
GC
4183 /*
4184 * This runs very early, and only the boot processor is supposed to be
4185 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4186 * IPIs around.
4187 */
4188 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4189 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4190 struct page *p;
4191
fa45dc25
CL
4192 list_for_each_entry(p, &n->partial, lru)
4193 p->slab_cache = s;
51df1142 4194
607bf324 4195#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4196 list_for_each_entry(p, &n->full, lru)
4197 p->slab_cache = s;
51df1142 4198#endif
51df1142 4199 }
f7ce3190 4200 slab_init_memcg_params(s);
dffb4d60 4201 list_add(&s->list, &slab_caches);
510ded33 4202 memcg_link_cache(s);
dffb4d60 4203 return s;
51df1142
CL
4204}
4205
81819f0f
CL
4206void __init kmem_cache_init(void)
4207{
dffb4d60
CL
4208 static __initdata struct kmem_cache boot_kmem_cache,
4209 boot_kmem_cache_node;
51df1142 4210
fc8d8620
SG
4211 if (debug_guardpage_minorder())
4212 slub_max_order = 0;
4213
dffb4d60
CL
4214 kmem_cache_node = &boot_kmem_cache_node;
4215 kmem_cache = &boot_kmem_cache;
51df1142 4216
dffb4d60 4217 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4218 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4219
3ac38faa 4220 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4221
4222 /* Able to allocate the per node structures */
4223 slab_state = PARTIAL;
4224
dffb4d60
CL
4225 create_boot_cache(kmem_cache, "kmem_cache",
4226 offsetof(struct kmem_cache, node) +
4227 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4228 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4229
dffb4d60 4230 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4231
51df1142
CL
4232 /*
4233 * Allocate kmem_cache_node properly from the kmem_cache slab.
4234 * kmem_cache_node is separately allocated so no need to
4235 * update any list pointers.
4236 */
dffb4d60 4237 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4238
4239 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4240 setup_kmalloc_cache_index_table();
f97d5f63 4241 create_kmalloc_caches(0);
81819f0f 4242
210e7a43
TG
4243 /* Setup random freelists for each cache */
4244 init_freelist_randomization();
4245
a96a87bf
SAS
4246 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4247 slub_cpu_dead);
81819f0f 4248
19af27af 4249 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
f97d5f63 4250 cache_line_size(),
81819f0f
CL
4251 slub_min_order, slub_max_order, slub_min_objects,
4252 nr_cpu_ids, nr_node_ids);
4253}
4254
7e85ee0c
PE
4255void __init kmem_cache_init_late(void)
4256{
7e85ee0c
PE
4257}
4258
2633d7a0 4259struct kmem_cache *
f4957d5b 4260__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4261 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4262{
426589f5 4263 struct kmem_cache *s, *c;
81819f0f 4264
a44cb944 4265 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4266 if (s) {
4267 s->refcount++;
84d0ddd6 4268
81819f0f
CL
4269 /*
4270 * Adjust the object sizes so that we clear
4271 * the complete object on kzalloc.
4272 */
1b473f29 4273 s->object_size = max(s->object_size, size);
52ee6d74 4274 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4275
426589f5 4276 for_each_memcg_cache(c, s) {
84d0ddd6 4277 c->object_size = s->object_size;
52ee6d74 4278 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4279 }
4280
7b8f3b66 4281 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4282 s->refcount--;
cbb79694 4283 s = NULL;
7b8f3b66 4284 }
a0e1d1be 4285 }
6446faa2 4286
cbb79694
CL
4287 return s;
4288}
84c1cf62 4289
d50112ed 4290int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4291{
aac3a166
PE
4292 int err;
4293
4294 err = kmem_cache_open(s, flags);
4295 if (err)
4296 return err;
20cea968 4297
45530c44
CL
4298 /* Mutex is not taken during early boot */
4299 if (slab_state <= UP)
4300 return 0;
4301
107dab5c 4302 memcg_propagate_slab_attrs(s);
aac3a166 4303 err = sysfs_slab_add(s);
aac3a166 4304 if (err)
52b4b950 4305 __kmem_cache_release(s);
20cea968 4306
aac3a166 4307 return err;
81819f0f 4308}
81819f0f 4309
ce71e27c 4310void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4311{
aadb4bc4 4312 struct kmem_cache *s;
94b528d0 4313 void *ret;
aadb4bc4 4314
95a05b42 4315 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4316 return kmalloc_large(size, gfpflags);
4317
2c59dd65 4318 s = kmalloc_slab(size, gfpflags);
81819f0f 4319
2408c550 4320 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4321 return s;
81819f0f 4322
2b847c3c 4323 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4324
25985edc 4325 /* Honor the call site pointer we received. */
ca2b84cb 4326 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4327
4328 return ret;
81819f0f
CL
4329}
4330
5d1f57e4 4331#ifdef CONFIG_NUMA
81819f0f 4332void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4333 int node, unsigned long caller)
81819f0f 4334{
aadb4bc4 4335 struct kmem_cache *s;
94b528d0 4336 void *ret;
aadb4bc4 4337
95a05b42 4338 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4339 ret = kmalloc_large_node(size, gfpflags, node);
4340
4341 trace_kmalloc_node(caller, ret,
4342 size, PAGE_SIZE << get_order(size),
4343 gfpflags, node);
4344
4345 return ret;
4346 }
eada35ef 4347
2c59dd65 4348 s = kmalloc_slab(size, gfpflags);
81819f0f 4349
2408c550 4350 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4351 return s;
81819f0f 4352
2b847c3c 4353 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4354
25985edc 4355 /* Honor the call site pointer we received. */
ca2b84cb 4356 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4357
4358 return ret;
81819f0f 4359}
5d1f57e4 4360#endif
81819f0f 4361
ab4d5ed5 4362#ifdef CONFIG_SYSFS
205ab99d
CL
4363static int count_inuse(struct page *page)
4364{
4365 return page->inuse;
4366}
4367
4368static int count_total(struct page *page)
4369{
4370 return page->objects;
4371}
ab4d5ed5 4372#endif
205ab99d 4373
ab4d5ed5 4374#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4375static int validate_slab(struct kmem_cache *s, struct page *page,
4376 unsigned long *map)
53e15af0
CL
4377{
4378 void *p;
a973e9dd 4379 void *addr = page_address(page);
53e15af0
CL
4380
4381 if (!check_slab(s, page) ||
4382 !on_freelist(s, page, NULL))
4383 return 0;
4384
4385 /* Now we know that a valid freelist exists */
39b26464 4386 bitmap_zero(map, page->objects);
53e15af0 4387
5f80b13a
CL
4388 get_map(s, page, map);
4389 for_each_object(p, s, addr, page->objects) {
4390 if (test_bit(slab_index(p, s, addr), map))
4391 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4392 return 0;
53e15af0
CL
4393 }
4394
224a88be 4395 for_each_object(p, s, addr, page->objects)
7656c72b 4396 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4397 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4398 return 0;
4399 return 1;
4400}
4401
434e245d
CL
4402static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4403 unsigned long *map)
53e15af0 4404{
881db7fb
CL
4405 slab_lock(page);
4406 validate_slab(s, page, map);
4407 slab_unlock(page);
53e15af0
CL
4408}
4409
434e245d
CL
4410static int validate_slab_node(struct kmem_cache *s,
4411 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4412{
4413 unsigned long count = 0;
4414 struct page *page;
4415 unsigned long flags;
4416
4417 spin_lock_irqsave(&n->list_lock, flags);
4418
4419 list_for_each_entry(page, &n->partial, lru) {
434e245d 4420 validate_slab_slab(s, page, map);
53e15af0
CL
4421 count++;
4422 }
4423 if (count != n->nr_partial)
f9f58285
FF
4424 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4425 s->name, count, n->nr_partial);
53e15af0
CL
4426
4427 if (!(s->flags & SLAB_STORE_USER))
4428 goto out;
4429
4430 list_for_each_entry(page, &n->full, lru) {
434e245d 4431 validate_slab_slab(s, page, map);
53e15af0
CL
4432 count++;
4433 }
4434 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4435 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4436 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4437
4438out:
4439 spin_unlock_irqrestore(&n->list_lock, flags);
4440 return count;
4441}
4442
434e245d 4443static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4444{
4445 int node;
4446 unsigned long count = 0;
205ab99d 4447 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4448 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4449 struct kmem_cache_node *n;
434e245d
CL
4450
4451 if (!map)
4452 return -ENOMEM;
53e15af0
CL
4453
4454 flush_all(s);
fa45dc25 4455 for_each_kmem_cache_node(s, node, n)
434e245d 4456 count += validate_slab_node(s, n, map);
434e245d 4457 kfree(map);
53e15af0
CL
4458 return count;
4459}
88a420e4 4460/*
672bba3a 4461 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4462 * and freed.
4463 */
4464
4465struct location {
4466 unsigned long count;
ce71e27c 4467 unsigned long addr;
45edfa58
CL
4468 long long sum_time;
4469 long min_time;
4470 long max_time;
4471 long min_pid;
4472 long max_pid;
174596a0 4473 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4474 nodemask_t nodes;
88a420e4
CL
4475};
4476
4477struct loc_track {
4478 unsigned long max;
4479 unsigned long count;
4480 struct location *loc;
4481};
4482
4483static void free_loc_track(struct loc_track *t)
4484{
4485 if (t->max)
4486 free_pages((unsigned long)t->loc,
4487 get_order(sizeof(struct location) * t->max));
4488}
4489
68dff6a9 4490static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4491{
4492 struct location *l;
4493 int order;
4494
88a420e4
CL
4495 order = get_order(sizeof(struct location) * max);
4496
68dff6a9 4497 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4498 if (!l)
4499 return 0;
4500
4501 if (t->count) {
4502 memcpy(l, t->loc, sizeof(struct location) * t->count);
4503 free_loc_track(t);
4504 }
4505 t->max = max;
4506 t->loc = l;
4507 return 1;
4508}
4509
4510static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4511 const struct track *track)
88a420e4
CL
4512{
4513 long start, end, pos;
4514 struct location *l;
ce71e27c 4515 unsigned long caddr;
45edfa58 4516 unsigned long age = jiffies - track->when;
88a420e4
CL
4517
4518 start = -1;
4519 end = t->count;
4520
4521 for ( ; ; ) {
4522 pos = start + (end - start + 1) / 2;
4523
4524 /*
4525 * There is nothing at "end". If we end up there
4526 * we need to add something to before end.
4527 */
4528 if (pos == end)
4529 break;
4530
4531 caddr = t->loc[pos].addr;
45edfa58
CL
4532 if (track->addr == caddr) {
4533
4534 l = &t->loc[pos];
4535 l->count++;
4536 if (track->when) {
4537 l->sum_time += age;
4538 if (age < l->min_time)
4539 l->min_time = age;
4540 if (age > l->max_time)
4541 l->max_time = age;
4542
4543 if (track->pid < l->min_pid)
4544 l->min_pid = track->pid;
4545 if (track->pid > l->max_pid)
4546 l->max_pid = track->pid;
4547
174596a0
RR
4548 cpumask_set_cpu(track->cpu,
4549 to_cpumask(l->cpus));
45edfa58
CL
4550 }
4551 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4552 return 1;
4553 }
4554
45edfa58 4555 if (track->addr < caddr)
88a420e4
CL
4556 end = pos;
4557 else
4558 start = pos;
4559 }
4560
4561 /*
672bba3a 4562 * Not found. Insert new tracking element.
88a420e4 4563 */
68dff6a9 4564 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4565 return 0;
4566
4567 l = t->loc + pos;
4568 if (pos < t->count)
4569 memmove(l + 1, l,
4570 (t->count - pos) * sizeof(struct location));
4571 t->count++;
4572 l->count = 1;
45edfa58
CL
4573 l->addr = track->addr;
4574 l->sum_time = age;
4575 l->min_time = age;
4576 l->max_time = age;
4577 l->min_pid = track->pid;
4578 l->max_pid = track->pid;
174596a0
RR
4579 cpumask_clear(to_cpumask(l->cpus));
4580 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4581 nodes_clear(l->nodes);
4582 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4583 return 1;
4584}
4585
4586static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4587 struct page *page, enum track_item alloc,
a5dd5c11 4588 unsigned long *map)
88a420e4 4589{
a973e9dd 4590 void *addr = page_address(page);
88a420e4
CL
4591 void *p;
4592
39b26464 4593 bitmap_zero(map, page->objects);
5f80b13a 4594 get_map(s, page, map);
88a420e4 4595
224a88be 4596 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4597 if (!test_bit(slab_index(p, s, addr), map))
4598 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4599}
4600
4601static int list_locations(struct kmem_cache *s, char *buf,
4602 enum track_item alloc)
4603{
e374d483 4604 int len = 0;
88a420e4 4605 unsigned long i;
68dff6a9 4606 struct loc_track t = { 0, 0, NULL };
88a420e4 4607 int node;
bbd7d57b
ED
4608 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4609 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4610 struct kmem_cache_node *n;
88a420e4 4611
bbd7d57b 4612 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4613 GFP_KERNEL)) {
bbd7d57b 4614 kfree(map);
68dff6a9 4615 return sprintf(buf, "Out of memory\n");
bbd7d57b 4616 }
88a420e4
CL
4617 /* Push back cpu slabs */
4618 flush_all(s);
4619
fa45dc25 4620 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4621 unsigned long flags;
4622 struct page *page;
4623
9e86943b 4624 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4625 continue;
4626
4627 spin_lock_irqsave(&n->list_lock, flags);
4628 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4629 process_slab(&t, s, page, alloc, map);
88a420e4 4630 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4631 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4632 spin_unlock_irqrestore(&n->list_lock, flags);
4633 }
4634
4635 for (i = 0; i < t.count; i++) {
45edfa58 4636 struct location *l = &t.loc[i];
88a420e4 4637
9c246247 4638 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4639 break;
e374d483 4640 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4641
4642 if (l->addr)
62c70bce 4643 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4644 else
e374d483 4645 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4646
4647 if (l->sum_time != l->min_time) {
e374d483 4648 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4649 l->min_time,
4650 (long)div_u64(l->sum_time, l->count),
4651 l->max_time);
45edfa58 4652 } else
e374d483 4653 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4654 l->min_time);
4655
4656 if (l->min_pid != l->max_pid)
e374d483 4657 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4658 l->min_pid, l->max_pid);
4659 else
e374d483 4660 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4661 l->min_pid);
4662
174596a0
RR
4663 if (num_online_cpus() > 1 &&
4664 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4665 len < PAGE_SIZE - 60)
4666 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4667 " cpus=%*pbl",
4668 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4669
62bc62a8 4670 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4671 len < PAGE_SIZE - 60)
4672 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4673 " nodes=%*pbl",
4674 nodemask_pr_args(&l->nodes));
45edfa58 4675
e374d483 4676 len += sprintf(buf + len, "\n");
88a420e4
CL
4677 }
4678
4679 free_loc_track(&t);
bbd7d57b 4680 kfree(map);
88a420e4 4681 if (!t.count)
e374d483
HH
4682 len += sprintf(buf, "No data\n");
4683 return len;
88a420e4 4684}
ab4d5ed5 4685#endif
88a420e4 4686
a5a84755 4687#ifdef SLUB_RESILIENCY_TEST
c07b8183 4688static void __init resiliency_test(void)
a5a84755
CL
4689{
4690 u8 *p;
4691
95a05b42 4692 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4693
f9f58285
FF
4694 pr_err("SLUB resiliency testing\n");
4695 pr_err("-----------------------\n");
4696 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4697
4698 p = kzalloc(16, GFP_KERNEL);
4699 p[16] = 0x12;
f9f58285
FF
4700 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4701 p + 16);
a5a84755
CL
4702
4703 validate_slab_cache(kmalloc_caches[4]);
4704
4705 /* Hmmm... The next two are dangerous */
4706 p = kzalloc(32, GFP_KERNEL);
4707 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4708 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4709 p);
4710 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4711
4712 validate_slab_cache(kmalloc_caches[5]);
4713 p = kzalloc(64, GFP_KERNEL);
4714 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4715 *p = 0x56;
f9f58285
FF
4716 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4717 p);
4718 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4719 validate_slab_cache(kmalloc_caches[6]);
4720
f9f58285 4721 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4722 p = kzalloc(128, GFP_KERNEL);
4723 kfree(p);
4724 *p = 0x78;
f9f58285 4725 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4726 validate_slab_cache(kmalloc_caches[7]);
4727
4728 p = kzalloc(256, GFP_KERNEL);
4729 kfree(p);
4730 p[50] = 0x9a;
f9f58285 4731 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4732 validate_slab_cache(kmalloc_caches[8]);
4733
4734 p = kzalloc(512, GFP_KERNEL);
4735 kfree(p);
4736 p[512] = 0xab;
f9f58285 4737 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4738 validate_slab_cache(kmalloc_caches[9]);
4739}
4740#else
4741#ifdef CONFIG_SYSFS
4742static void resiliency_test(void) {};
4743#endif
4744#endif
4745
ab4d5ed5 4746#ifdef CONFIG_SYSFS
81819f0f 4747enum slab_stat_type {
205ab99d
CL
4748 SL_ALL, /* All slabs */
4749 SL_PARTIAL, /* Only partially allocated slabs */
4750 SL_CPU, /* Only slabs used for cpu caches */
4751 SL_OBJECTS, /* Determine allocated objects not slabs */
4752 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4753};
4754
205ab99d 4755#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4756#define SO_PARTIAL (1 << SL_PARTIAL)
4757#define SO_CPU (1 << SL_CPU)
4758#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4759#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4760
1663f26d
TH
4761#ifdef CONFIG_MEMCG
4762static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4763
4764static int __init setup_slub_memcg_sysfs(char *str)
4765{
4766 int v;
4767
4768 if (get_option(&str, &v) > 0)
4769 memcg_sysfs_enabled = v;
4770
4771 return 1;
4772}
4773
4774__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4775#endif
4776
62e5c4b4
CG
4777static ssize_t show_slab_objects(struct kmem_cache *s,
4778 char *buf, unsigned long flags)
81819f0f
CL
4779{
4780 unsigned long total = 0;
81819f0f
CL
4781 int node;
4782 int x;
4783 unsigned long *nodes;
81819f0f 4784
e35e1a97 4785 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4786 if (!nodes)
4787 return -ENOMEM;
81819f0f 4788
205ab99d
CL
4789 if (flags & SO_CPU) {
4790 int cpu;
81819f0f 4791
205ab99d 4792 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4793 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4794 cpu);
ec3ab083 4795 int node;
49e22585 4796 struct page *page;
dfb4f096 4797
4db0c3c2 4798 page = READ_ONCE(c->page);
ec3ab083
CL
4799 if (!page)
4800 continue;
205ab99d 4801
ec3ab083
CL
4802 node = page_to_nid(page);
4803 if (flags & SO_TOTAL)
4804 x = page->objects;
4805 else if (flags & SO_OBJECTS)
4806 x = page->inuse;
4807 else
4808 x = 1;
49e22585 4809
ec3ab083
CL
4810 total += x;
4811 nodes[node] += x;
4812
a93cf07b 4813 page = slub_percpu_partial_read_once(c);
49e22585 4814 if (page) {
8afb1474
LZ
4815 node = page_to_nid(page);
4816 if (flags & SO_TOTAL)
4817 WARN_ON_ONCE(1);
4818 else if (flags & SO_OBJECTS)
4819 WARN_ON_ONCE(1);
4820 else
4821 x = page->pages;
bc6697d8
ED
4822 total += x;
4823 nodes[node] += x;
49e22585 4824 }
81819f0f
CL
4825 }
4826 }
4827
bfc8c901 4828 get_online_mems();
ab4d5ed5 4829#ifdef CONFIG_SLUB_DEBUG
205ab99d 4830 if (flags & SO_ALL) {
fa45dc25
CL
4831 struct kmem_cache_node *n;
4832
4833 for_each_kmem_cache_node(s, node, n) {
205ab99d 4834
d0e0ac97
CG
4835 if (flags & SO_TOTAL)
4836 x = atomic_long_read(&n->total_objects);
4837 else if (flags & SO_OBJECTS)
4838 x = atomic_long_read(&n->total_objects) -
4839 count_partial(n, count_free);
81819f0f 4840 else
205ab99d 4841 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4842 total += x;
4843 nodes[node] += x;
4844 }
4845
ab4d5ed5
CL
4846 } else
4847#endif
4848 if (flags & SO_PARTIAL) {
fa45dc25 4849 struct kmem_cache_node *n;
81819f0f 4850
fa45dc25 4851 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4852 if (flags & SO_TOTAL)
4853 x = count_partial(n, count_total);
4854 else if (flags & SO_OBJECTS)
4855 x = count_partial(n, count_inuse);
81819f0f 4856 else
205ab99d 4857 x = n->nr_partial;
81819f0f
CL
4858 total += x;
4859 nodes[node] += x;
4860 }
4861 }
81819f0f
CL
4862 x = sprintf(buf, "%lu", total);
4863#ifdef CONFIG_NUMA
fa45dc25 4864 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4865 if (nodes[node])
4866 x += sprintf(buf + x, " N%d=%lu",
4867 node, nodes[node]);
4868#endif
bfc8c901 4869 put_online_mems();
81819f0f
CL
4870 kfree(nodes);
4871 return x + sprintf(buf + x, "\n");
4872}
4873
ab4d5ed5 4874#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4875static int any_slab_objects(struct kmem_cache *s)
4876{
4877 int node;
fa45dc25 4878 struct kmem_cache_node *n;
81819f0f 4879
fa45dc25 4880 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4881 if (atomic_long_read(&n->total_objects))
81819f0f 4882 return 1;
fa45dc25 4883
81819f0f
CL
4884 return 0;
4885}
ab4d5ed5 4886#endif
81819f0f
CL
4887
4888#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4889#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4890
4891struct slab_attribute {
4892 struct attribute attr;
4893 ssize_t (*show)(struct kmem_cache *s, char *buf);
4894 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4895};
4896
4897#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4898 static struct slab_attribute _name##_attr = \
4899 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4900
4901#define SLAB_ATTR(_name) \
4902 static struct slab_attribute _name##_attr = \
ab067e99 4903 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4904
81819f0f
CL
4905static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4906{
44065b2e 4907 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4908}
4909SLAB_ATTR_RO(slab_size);
4910
4911static ssize_t align_show(struct kmem_cache *s, char *buf)
4912{
3a3791ec 4913 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4914}
4915SLAB_ATTR_RO(align);
4916
4917static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4918{
1b473f29 4919 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4920}
4921SLAB_ATTR_RO(object_size);
4922
4923static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4924{
19af27af 4925 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4926}
4927SLAB_ATTR_RO(objs_per_slab);
4928
06b285dc
CL
4929static ssize_t order_store(struct kmem_cache *s,
4930 const char *buf, size_t length)
4931{
19af27af 4932 unsigned int order;
0121c619
CL
4933 int err;
4934
19af27af 4935 err = kstrtouint(buf, 10, &order);
0121c619
CL
4936 if (err)
4937 return err;
06b285dc
CL
4938
4939 if (order > slub_max_order || order < slub_min_order)
4940 return -EINVAL;
4941
4942 calculate_sizes(s, order);
4943 return length;
4944}
4945
81819f0f
CL
4946static ssize_t order_show(struct kmem_cache *s, char *buf)
4947{
19af27af 4948 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4949}
06b285dc 4950SLAB_ATTR(order);
81819f0f 4951
73d342b1
DR
4952static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4953{
4954 return sprintf(buf, "%lu\n", s->min_partial);
4955}
4956
4957static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4958 size_t length)
4959{
4960 unsigned long min;
4961 int err;
4962
3dbb95f7 4963 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4964 if (err)
4965 return err;
4966
c0bdb232 4967 set_min_partial(s, min);
73d342b1
DR
4968 return length;
4969}
4970SLAB_ATTR(min_partial);
4971
49e22585
CL
4972static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4973{
e6d0e1dc 4974 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4975}
4976
4977static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4978 size_t length)
4979{
e5d9998f 4980 unsigned int objects;
49e22585
CL
4981 int err;
4982
e5d9998f 4983 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4984 if (err)
4985 return err;
345c905d 4986 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4987 return -EINVAL;
49e22585 4988
e6d0e1dc 4989 slub_set_cpu_partial(s, objects);
49e22585
CL
4990 flush_all(s);
4991 return length;
4992}
4993SLAB_ATTR(cpu_partial);
4994
81819f0f
CL
4995static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4996{
62c70bce
JP
4997 if (!s->ctor)
4998 return 0;
4999 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5000}
5001SLAB_ATTR_RO(ctor);
5002
81819f0f
CL
5003static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5004{
4307c14f 5005 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5006}
5007SLAB_ATTR_RO(aliases);
5008
81819f0f
CL
5009static ssize_t partial_show(struct kmem_cache *s, char *buf)
5010{
d9acf4b7 5011 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5012}
5013SLAB_ATTR_RO(partial);
5014
5015static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5016{
d9acf4b7 5017 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5018}
5019SLAB_ATTR_RO(cpu_slabs);
5020
5021static ssize_t objects_show(struct kmem_cache *s, char *buf)
5022{
205ab99d 5023 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5024}
5025SLAB_ATTR_RO(objects);
5026
205ab99d
CL
5027static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5028{
5029 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5030}
5031SLAB_ATTR_RO(objects_partial);
5032
49e22585
CL
5033static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5034{
5035 int objects = 0;
5036 int pages = 0;
5037 int cpu;
5038 int len;
5039
5040 for_each_online_cpu(cpu) {
a93cf07b
WY
5041 struct page *page;
5042
5043 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5044
5045 if (page) {
5046 pages += page->pages;
5047 objects += page->pobjects;
5048 }
5049 }
5050
5051 len = sprintf(buf, "%d(%d)", objects, pages);
5052
5053#ifdef CONFIG_SMP
5054 for_each_online_cpu(cpu) {
a93cf07b
WY
5055 struct page *page;
5056
5057 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5058
5059 if (page && len < PAGE_SIZE - 20)
5060 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5061 page->pobjects, page->pages);
5062 }
5063#endif
5064 return len + sprintf(buf + len, "\n");
5065}
5066SLAB_ATTR_RO(slabs_cpu_partial);
5067
a5a84755
CL
5068static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5069{
5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5071}
5072
5073static ssize_t reclaim_account_store(struct kmem_cache *s,
5074 const char *buf, size_t length)
5075{
5076 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5077 if (buf[0] == '1')
5078 s->flags |= SLAB_RECLAIM_ACCOUNT;
5079 return length;
5080}
5081SLAB_ATTR(reclaim_account);
5082
5083static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5084{
5085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5086}
5087SLAB_ATTR_RO(hwcache_align);
5088
5089#ifdef CONFIG_ZONE_DMA
5090static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5091{
5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5093}
5094SLAB_ATTR_RO(cache_dma);
5095#endif
5096
8eb8284b
DW
5097static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5098{
7bbdb81e 5099 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5100}
5101SLAB_ATTR_RO(usersize);
5102
a5a84755
CL
5103static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5104{
5f0d5a3a 5105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5106}
5107SLAB_ATTR_RO(destroy_by_rcu);
5108
ab9a0f19
LJ
5109static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5110{
d66e52d1 5111 return sprintf(buf, "%u\n", s->reserved);
ab9a0f19
LJ
5112}
5113SLAB_ATTR_RO(reserved);
5114
ab4d5ed5 5115#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5116static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5117{
5118 return show_slab_objects(s, buf, SO_ALL);
5119}
5120SLAB_ATTR_RO(slabs);
5121
205ab99d
CL
5122static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5123{
5124 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5125}
5126SLAB_ATTR_RO(total_objects);
5127
81819f0f
CL
5128static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5129{
becfda68 5130 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5131}
5132
5133static ssize_t sanity_checks_store(struct kmem_cache *s,
5134 const char *buf, size_t length)
5135{
becfda68 5136 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5137 if (buf[0] == '1') {
5138 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5139 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5140 }
81819f0f
CL
5141 return length;
5142}
5143SLAB_ATTR(sanity_checks);
5144
5145static ssize_t trace_show(struct kmem_cache *s, char *buf)
5146{
5147 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5148}
5149
5150static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5151 size_t length)
5152{
c9e16131
CL
5153 /*
5154 * Tracing a merged cache is going to give confusing results
5155 * as well as cause other issues like converting a mergeable
5156 * cache into an umergeable one.
5157 */
5158 if (s->refcount > 1)
5159 return -EINVAL;
5160
81819f0f 5161 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5162 if (buf[0] == '1') {
5163 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5164 s->flags |= SLAB_TRACE;
b789ef51 5165 }
81819f0f
CL
5166 return length;
5167}
5168SLAB_ATTR(trace);
5169
81819f0f
CL
5170static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5171{
5172 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5173}
5174
5175static ssize_t red_zone_store(struct kmem_cache *s,
5176 const char *buf, size_t length)
5177{
5178 if (any_slab_objects(s))
5179 return -EBUSY;
5180
5181 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5182 if (buf[0] == '1') {
81819f0f 5183 s->flags |= SLAB_RED_ZONE;
b789ef51 5184 }
06b285dc 5185 calculate_sizes(s, -1);
81819f0f
CL
5186 return length;
5187}
5188SLAB_ATTR(red_zone);
5189
5190static ssize_t poison_show(struct kmem_cache *s, char *buf)
5191{
5192 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5193}
5194
5195static ssize_t poison_store(struct kmem_cache *s,
5196 const char *buf, size_t length)
5197{
5198 if (any_slab_objects(s))
5199 return -EBUSY;
5200
5201 s->flags &= ~SLAB_POISON;
b789ef51 5202 if (buf[0] == '1') {
81819f0f 5203 s->flags |= SLAB_POISON;
b789ef51 5204 }
06b285dc 5205 calculate_sizes(s, -1);
81819f0f
CL
5206 return length;
5207}
5208SLAB_ATTR(poison);
5209
5210static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5211{
5212 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5213}
5214
5215static ssize_t store_user_store(struct kmem_cache *s,
5216 const char *buf, size_t length)
5217{
5218 if (any_slab_objects(s))
5219 return -EBUSY;
5220
5221 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5222 if (buf[0] == '1') {
5223 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5224 s->flags |= SLAB_STORE_USER;
b789ef51 5225 }
06b285dc 5226 calculate_sizes(s, -1);
81819f0f
CL
5227 return length;
5228}
5229SLAB_ATTR(store_user);
5230
53e15af0
CL
5231static ssize_t validate_show(struct kmem_cache *s, char *buf)
5232{
5233 return 0;
5234}
5235
5236static ssize_t validate_store(struct kmem_cache *s,
5237 const char *buf, size_t length)
5238{
434e245d
CL
5239 int ret = -EINVAL;
5240
5241 if (buf[0] == '1') {
5242 ret = validate_slab_cache(s);
5243 if (ret >= 0)
5244 ret = length;
5245 }
5246 return ret;
53e15af0
CL
5247}
5248SLAB_ATTR(validate);
a5a84755
CL
5249
5250static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5251{
5252 if (!(s->flags & SLAB_STORE_USER))
5253 return -ENOSYS;
5254 return list_locations(s, buf, TRACK_ALLOC);
5255}
5256SLAB_ATTR_RO(alloc_calls);
5257
5258static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5259{
5260 if (!(s->flags & SLAB_STORE_USER))
5261 return -ENOSYS;
5262 return list_locations(s, buf, TRACK_FREE);
5263}
5264SLAB_ATTR_RO(free_calls);
5265#endif /* CONFIG_SLUB_DEBUG */
5266
5267#ifdef CONFIG_FAILSLAB
5268static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5269{
5270 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5271}
5272
5273static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5274 size_t length)
5275{
c9e16131
CL
5276 if (s->refcount > 1)
5277 return -EINVAL;
5278
a5a84755
CL
5279 s->flags &= ~SLAB_FAILSLAB;
5280 if (buf[0] == '1')
5281 s->flags |= SLAB_FAILSLAB;
5282 return length;
5283}
5284SLAB_ATTR(failslab);
ab4d5ed5 5285#endif
53e15af0 5286
2086d26a
CL
5287static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5288{
5289 return 0;
5290}
5291
5292static ssize_t shrink_store(struct kmem_cache *s,
5293 const char *buf, size_t length)
5294{
832f37f5
VD
5295 if (buf[0] == '1')
5296 kmem_cache_shrink(s);
5297 else
2086d26a
CL
5298 return -EINVAL;
5299 return length;
5300}
5301SLAB_ATTR(shrink);
5302
81819f0f 5303#ifdef CONFIG_NUMA
9824601e 5304static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5305{
eb7235eb 5306 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5307}
5308
9824601e 5309static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5310 const char *buf, size_t length)
5311{
eb7235eb 5312 unsigned int ratio;
0121c619
CL
5313 int err;
5314
eb7235eb 5315 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5316 if (err)
5317 return err;
eb7235eb
AD
5318 if (ratio > 100)
5319 return -ERANGE;
0121c619 5320
eb7235eb 5321 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5322
81819f0f
CL
5323 return length;
5324}
9824601e 5325SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5326#endif
5327
8ff12cfc 5328#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5329static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5330{
5331 unsigned long sum = 0;
5332 int cpu;
5333 int len;
5334 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5335
5336 if (!data)
5337 return -ENOMEM;
5338
5339 for_each_online_cpu(cpu) {
9dfc6e68 5340 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5341
5342 data[cpu] = x;
5343 sum += x;
5344 }
5345
5346 len = sprintf(buf, "%lu", sum);
5347
50ef37b9 5348#ifdef CONFIG_SMP
8ff12cfc
CL
5349 for_each_online_cpu(cpu) {
5350 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5351 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5352 }
50ef37b9 5353#endif
8ff12cfc
CL
5354 kfree(data);
5355 return len + sprintf(buf + len, "\n");
5356}
5357
78eb00cc
DR
5358static void clear_stat(struct kmem_cache *s, enum stat_item si)
5359{
5360 int cpu;
5361
5362 for_each_online_cpu(cpu)
9dfc6e68 5363 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5364}
5365
8ff12cfc
CL
5366#define STAT_ATTR(si, text) \
5367static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5368{ \
5369 return show_stat(s, buf, si); \
5370} \
78eb00cc
DR
5371static ssize_t text##_store(struct kmem_cache *s, \
5372 const char *buf, size_t length) \
5373{ \
5374 if (buf[0] != '0') \
5375 return -EINVAL; \
5376 clear_stat(s, si); \
5377 return length; \
5378} \
5379SLAB_ATTR(text); \
8ff12cfc
CL
5380
5381STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5382STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5383STAT_ATTR(FREE_FASTPATH, free_fastpath);
5384STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5385STAT_ATTR(FREE_FROZEN, free_frozen);
5386STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5387STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5388STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5389STAT_ATTR(ALLOC_SLAB, alloc_slab);
5390STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5391STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5392STAT_ATTR(FREE_SLAB, free_slab);
5393STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5394STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5395STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5396STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5397STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5398STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5399STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5400STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5401STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5402STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5403STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5404STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5405STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5406STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5407#endif
5408
06428780 5409static struct attribute *slab_attrs[] = {
81819f0f
CL
5410 &slab_size_attr.attr,
5411 &object_size_attr.attr,
5412 &objs_per_slab_attr.attr,
5413 &order_attr.attr,
73d342b1 5414 &min_partial_attr.attr,
49e22585 5415 &cpu_partial_attr.attr,
81819f0f 5416 &objects_attr.attr,
205ab99d 5417 &objects_partial_attr.attr,
81819f0f
CL
5418 &partial_attr.attr,
5419 &cpu_slabs_attr.attr,
5420 &ctor_attr.attr,
81819f0f
CL
5421 &aliases_attr.attr,
5422 &align_attr.attr,
81819f0f
CL
5423 &hwcache_align_attr.attr,
5424 &reclaim_account_attr.attr,
5425 &destroy_by_rcu_attr.attr,
a5a84755 5426 &shrink_attr.attr,
ab9a0f19 5427 &reserved_attr.attr,
49e22585 5428 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5429#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5430 &total_objects_attr.attr,
5431 &slabs_attr.attr,
5432 &sanity_checks_attr.attr,
5433 &trace_attr.attr,
81819f0f
CL
5434 &red_zone_attr.attr,
5435 &poison_attr.attr,
5436 &store_user_attr.attr,
53e15af0 5437 &validate_attr.attr,
88a420e4
CL
5438 &alloc_calls_attr.attr,
5439 &free_calls_attr.attr,
ab4d5ed5 5440#endif
81819f0f
CL
5441#ifdef CONFIG_ZONE_DMA
5442 &cache_dma_attr.attr,
5443#endif
5444#ifdef CONFIG_NUMA
9824601e 5445 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5446#endif
5447#ifdef CONFIG_SLUB_STATS
5448 &alloc_fastpath_attr.attr,
5449 &alloc_slowpath_attr.attr,
5450 &free_fastpath_attr.attr,
5451 &free_slowpath_attr.attr,
5452 &free_frozen_attr.attr,
5453 &free_add_partial_attr.attr,
5454 &free_remove_partial_attr.attr,
5455 &alloc_from_partial_attr.attr,
5456 &alloc_slab_attr.attr,
5457 &alloc_refill_attr.attr,
e36a2652 5458 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5459 &free_slab_attr.attr,
5460 &cpuslab_flush_attr.attr,
5461 &deactivate_full_attr.attr,
5462 &deactivate_empty_attr.attr,
5463 &deactivate_to_head_attr.attr,
5464 &deactivate_to_tail_attr.attr,
5465 &deactivate_remote_frees_attr.attr,
03e404af 5466 &deactivate_bypass_attr.attr,
65c3376a 5467 &order_fallback_attr.attr,
b789ef51
CL
5468 &cmpxchg_double_fail_attr.attr,
5469 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5470 &cpu_partial_alloc_attr.attr,
5471 &cpu_partial_free_attr.attr,
8028dcea
AS
5472 &cpu_partial_node_attr.attr,
5473 &cpu_partial_drain_attr.attr,
81819f0f 5474#endif
4c13dd3b
DM
5475#ifdef CONFIG_FAILSLAB
5476 &failslab_attr.attr,
5477#endif
8eb8284b 5478 &usersize_attr.attr,
4c13dd3b 5479
81819f0f
CL
5480 NULL
5481};
5482
1fdaaa23 5483static const struct attribute_group slab_attr_group = {
81819f0f
CL
5484 .attrs = slab_attrs,
5485};
5486
5487static ssize_t slab_attr_show(struct kobject *kobj,
5488 struct attribute *attr,
5489 char *buf)
5490{
5491 struct slab_attribute *attribute;
5492 struct kmem_cache *s;
5493 int err;
5494
5495 attribute = to_slab_attr(attr);
5496 s = to_slab(kobj);
5497
5498 if (!attribute->show)
5499 return -EIO;
5500
5501 err = attribute->show(s, buf);
5502
5503 return err;
5504}
5505
5506static ssize_t slab_attr_store(struct kobject *kobj,
5507 struct attribute *attr,
5508 const char *buf, size_t len)
5509{
5510 struct slab_attribute *attribute;
5511 struct kmem_cache *s;
5512 int err;
5513
5514 attribute = to_slab_attr(attr);
5515 s = to_slab(kobj);
5516
5517 if (!attribute->store)
5518 return -EIO;
5519
5520 err = attribute->store(s, buf, len);
127424c8 5521#ifdef CONFIG_MEMCG
107dab5c 5522 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5523 struct kmem_cache *c;
81819f0f 5524
107dab5c
GC
5525 mutex_lock(&slab_mutex);
5526 if (s->max_attr_size < len)
5527 s->max_attr_size = len;
5528
ebe945c2
GC
5529 /*
5530 * This is a best effort propagation, so this function's return
5531 * value will be determined by the parent cache only. This is
5532 * basically because not all attributes will have a well
5533 * defined semantics for rollbacks - most of the actions will
5534 * have permanent effects.
5535 *
5536 * Returning the error value of any of the children that fail
5537 * is not 100 % defined, in the sense that users seeing the
5538 * error code won't be able to know anything about the state of
5539 * the cache.
5540 *
5541 * Only returning the error code for the parent cache at least
5542 * has well defined semantics. The cache being written to
5543 * directly either failed or succeeded, in which case we loop
5544 * through the descendants with best-effort propagation.
5545 */
426589f5
VD
5546 for_each_memcg_cache(c, s)
5547 attribute->store(c, buf, len);
107dab5c
GC
5548 mutex_unlock(&slab_mutex);
5549 }
5550#endif
81819f0f
CL
5551 return err;
5552}
5553
107dab5c
GC
5554static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5555{
127424c8 5556#ifdef CONFIG_MEMCG
107dab5c
GC
5557 int i;
5558 char *buffer = NULL;
93030d83 5559 struct kmem_cache *root_cache;
107dab5c 5560
93030d83 5561 if (is_root_cache(s))
107dab5c
GC
5562 return;
5563
f7ce3190 5564 root_cache = s->memcg_params.root_cache;
93030d83 5565
107dab5c
GC
5566 /*
5567 * This mean this cache had no attribute written. Therefore, no point
5568 * in copying default values around
5569 */
93030d83 5570 if (!root_cache->max_attr_size)
107dab5c
GC
5571 return;
5572
5573 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5574 char mbuf[64];
5575 char *buf;
5576 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5577 ssize_t len;
107dab5c
GC
5578
5579 if (!attr || !attr->store || !attr->show)
5580 continue;
5581
5582 /*
5583 * It is really bad that we have to allocate here, so we will
5584 * do it only as a fallback. If we actually allocate, though,
5585 * we can just use the allocated buffer until the end.
5586 *
5587 * Most of the slub attributes will tend to be very small in
5588 * size, but sysfs allows buffers up to a page, so they can
5589 * theoretically happen.
5590 */
5591 if (buffer)
5592 buf = buffer;
93030d83 5593 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5594 buf = mbuf;
5595 else {
5596 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5597 if (WARN_ON(!buffer))
5598 continue;
5599 buf = buffer;
5600 }
5601
478fe303
TG
5602 len = attr->show(root_cache, buf);
5603 if (len > 0)
5604 attr->store(s, buf, len);
107dab5c
GC
5605 }
5606
5607 if (buffer)
5608 free_page((unsigned long)buffer);
5609#endif
5610}
5611
41a21285
CL
5612static void kmem_cache_release(struct kobject *k)
5613{
5614 slab_kmem_cache_release(to_slab(k));
5615}
5616
52cf25d0 5617static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5618 .show = slab_attr_show,
5619 .store = slab_attr_store,
5620};
5621
5622static struct kobj_type slab_ktype = {
5623 .sysfs_ops = &slab_sysfs_ops,
41a21285 5624 .release = kmem_cache_release,
81819f0f
CL
5625};
5626
5627static int uevent_filter(struct kset *kset, struct kobject *kobj)
5628{
5629 struct kobj_type *ktype = get_ktype(kobj);
5630
5631 if (ktype == &slab_ktype)
5632 return 1;
5633 return 0;
5634}
5635
9cd43611 5636static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5637 .filter = uevent_filter,
5638};
5639
27c3a314 5640static struct kset *slab_kset;
81819f0f 5641
9a41707b
VD
5642static inline struct kset *cache_kset(struct kmem_cache *s)
5643{
127424c8 5644#ifdef CONFIG_MEMCG
9a41707b 5645 if (!is_root_cache(s))
f7ce3190 5646 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5647#endif
5648 return slab_kset;
5649}
5650
81819f0f
CL
5651#define ID_STR_LENGTH 64
5652
5653/* Create a unique string id for a slab cache:
6446faa2
CL
5654 *
5655 * Format :[flags-]size
81819f0f
CL
5656 */
5657static char *create_unique_id(struct kmem_cache *s)
5658{
5659 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5660 char *p = name;
5661
5662 BUG_ON(!name);
5663
5664 *p++ = ':';
5665 /*
5666 * First flags affecting slabcache operations. We will only
5667 * get here for aliasable slabs so we do not need to support
5668 * too many flags. The flags here must cover all flags that
5669 * are matched during merging to guarantee that the id is
5670 * unique.
5671 */
5672 if (s->flags & SLAB_CACHE_DMA)
5673 *p++ = 'd';
5674 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5675 *p++ = 'a';
becfda68 5676 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5677 *p++ = 'F';
230e9fc2
VD
5678 if (s->flags & SLAB_ACCOUNT)
5679 *p++ = 'A';
81819f0f
CL
5680 if (p != name + 1)
5681 *p++ = '-';
44065b2e 5682 p += sprintf(p, "%07u", s->size);
2633d7a0 5683
81819f0f
CL
5684 BUG_ON(p > name + ID_STR_LENGTH - 1);
5685 return name;
5686}
5687
3b7b3140
TH
5688static void sysfs_slab_remove_workfn(struct work_struct *work)
5689{
5690 struct kmem_cache *s =
5691 container_of(work, struct kmem_cache, kobj_remove_work);
5692
5693 if (!s->kobj.state_in_sysfs)
5694 /*
5695 * For a memcg cache, this may be called during
5696 * deactivation and again on shutdown. Remove only once.
5697 * A cache is never shut down before deactivation is
5698 * complete, so no need to worry about synchronization.
5699 */
f6ba4880 5700 goto out;
3b7b3140
TH
5701
5702#ifdef CONFIG_MEMCG
5703 kset_unregister(s->memcg_kset);
5704#endif
5705 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5706 kobject_del(&s->kobj);
f6ba4880 5707out:
3b7b3140
TH
5708 kobject_put(&s->kobj);
5709}
5710
81819f0f
CL
5711static int sysfs_slab_add(struct kmem_cache *s)
5712{
5713 int err;
5714 const char *name;
1663f26d 5715 struct kset *kset = cache_kset(s);
45530c44 5716 int unmergeable = slab_unmergeable(s);
81819f0f 5717
3b7b3140
TH
5718 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5719
1663f26d
TH
5720 if (!kset) {
5721 kobject_init(&s->kobj, &slab_ktype);
5722 return 0;
5723 }
5724
11066386
MC
5725 if (!unmergeable && disable_higher_order_debug &&
5726 (slub_debug & DEBUG_METADATA_FLAGS))
5727 unmergeable = 1;
5728
81819f0f
CL
5729 if (unmergeable) {
5730 /*
5731 * Slabcache can never be merged so we can use the name proper.
5732 * This is typically the case for debug situations. In that
5733 * case we can catch duplicate names easily.
5734 */
27c3a314 5735 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5736 name = s->name;
5737 } else {
5738 /*
5739 * Create a unique name for the slab as a target
5740 * for the symlinks.
5741 */
5742 name = create_unique_id(s);
5743 }
5744
1663f26d 5745 s->kobj.kset = kset;
26e4f205 5746 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5747 if (err)
80da026a 5748 goto out;
81819f0f
CL
5749
5750 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5751 if (err)
5752 goto out_del_kobj;
9a41707b 5753
127424c8 5754#ifdef CONFIG_MEMCG
1663f26d 5755 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5756 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5757 if (!s->memcg_kset) {
54b6a731
DJ
5758 err = -ENOMEM;
5759 goto out_del_kobj;
9a41707b
VD
5760 }
5761 }
5762#endif
5763
81819f0f
CL
5764 kobject_uevent(&s->kobj, KOBJ_ADD);
5765 if (!unmergeable) {
5766 /* Setup first alias */
5767 sysfs_slab_alias(s, s->name);
81819f0f 5768 }
54b6a731
DJ
5769out:
5770 if (!unmergeable)
5771 kfree(name);
5772 return err;
5773out_del_kobj:
5774 kobject_del(&s->kobj);
54b6a731 5775 goto out;
81819f0f
CL
5776}
5777
bf5eb3de 5778static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5779{
97d06609 5780 if (slab_state < FULL)
2bce6485
CL
5781 /*
5782 * Sysfs has not been setup yet so no need to remove the
5783 * cache from sysfs.
5784 */
5785 return;
5786
3b7b3140
TH
5787 kobject_get(&s->kobj);
5788 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5789}
5790
5791void sysfs_slab_release(struct kmem_cache *s)
5792{
5793 if (slab_state >= FULL)
5794 kobject_put(&s->kobj);
81819f0f
CL
5795}
5796
5797/*
5798 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5799 * available lest we lose that information.
81819f0f
CL
5800 */
5801struct saved_alias {
5802 struct kmem_cache *s;
5803 const char *name;
5804 struct saved_alias *next;
5805};
5806
5af328a5 5807static struct saved_alias *alias_list;
81819f0f
CL
5808
5809static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5810{
5811 struct saved_alias *al;
5812
97d06609 5813 if (slab_state == FULL) {
81819f0f
CL
5814 /*
5815 * If we have a leftover link then remove it.
5816 */
27c3a314
GKH
5817 sysfs_remove_link(&slab_kset->kobj, name);
5818 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5819 }
5820
5821 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5822 if (!al)
5823 return -ENOMEM;
5824
5825 al->s = s;
5826 al->name = name;
5827 al->next = alias_list;
5828 alias_list = al;
5829 return 0;
5830}
5831
5832static int __init slab_sysfs_init(void)
5833{
5b95a4ac 5834 struct kmem_cache *s;
81819f0f
CL
5835 int err;
5836
18004c5d 5837 mutex_lock(&slab_mutex);
2bce6485 5838
0ff21e46 5839 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5840 if (!slab_kset) {
18004c5d 5841 mutex_unlock(&slab_mutex);
f9f58285 5842 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5843 return -ENOSYS;
5844 }
5845
97d06609 5846 slab_state = FULL;
26a7bd03 5847
5b95a4ac 5848 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5849 err = sysfs_slab_add(s);
5d540fb7 5850 if (err)
f9f58285
FF
5851 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5852 s->name);
26a7bd03 5853 }
81819f0f
CL
5854
5855 while (alias_list) {
5856 struct saved_alias *al = alias_list;
5857
5858 alias_list = alias_list->next;
5859 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5860 if (err)
f9f58285
FF
5861 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5862 al->name);
81819f0f
CL
5863 kfree(al);
5864 }
5865
18004c5d 5866 mutex_unlock(&slab_mutex);
81819f0f
CL
5867 resiliency_test();
5868 return 0;
5869}
5870
5871__initcall(slab_sysfs_init);
ab4d5ed5 5872#endif /* CONFIG_SYSFS */
57ed3eda
PE
5873
5874/*
5875 * The /proc/slabinfo ABI
5876 */
5b365771 5877#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5878void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5879{
57ed3eda 5880 unsigned long nr_slabs = 0;
205ab99d
CL
5881 unsigned long nr_objs = 0;
5882 unsigned long nr_free = 0;
57ed3eda 5883 int node;
fa45dc25 5884 struct kmem_cache_node *n;
57ed3eda 5885
fa45dc25 5886 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5887 nr_slabs += node_nr_slabs(n);
5888 nr_objs += node_nr_objs(n);
205ab99d 5889 nr_free += count_partial(n, count_free);
57ed3eda
PE
5890 }
5891
0d7561c6
GC
5892 sinfo->active_objs = nr_objs - nr_free;
5893 sinfo->num_objs = nr_objs;
5894 sinfo->active_slabs = nr_slabs;
5895 sinfo->num_slabs = nr_slabs;
5896 sinfo->objects_per_slab = oo_objects(s->oo);
5897 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5898}
5899
0d7561c6 5900void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5901{
7b3c3a50
AD
5902}
5903
b7454ad3
GC
5904ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5905 size_t count, loff_t *ppos)
7b3c3a50 5906{
b7454ad3 5907 return -EIO;
7b3c3a50 5908}
5b365771 5909#endif /* CONFIG_SLUB_DEBUG */