]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
slab: make GFP_SLAB_BUG_MASK information more human readable
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
d86bd1be
JK
127static inline void *fixup_red_left(struct kmem_cache *s, void *p)
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
81819f0f
CL
197#ifdef CONFIG_SMP
198static struct notifier_block slab_notifier;
199#endif
200
02cbc874
CL
201/*
202 * Tracking user of a slab.
203 */
d6543e39 204#define TRACK_ADDRS_COUNT 16
02cbc874 205struct track {
ce71e27c 206 unsigned long addr; /* Called from address */
d6543e39
BG
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
02cbc874
CL
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
ab4d5ed5 217#ifdef CONFIG_SYSFS
81819f0f
CL
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
7656c72b
CL
243static inline void *get_freepointer(struct kmem_cache *s, void *object)
244{
245 return *(void **)(object + s->offset);
246}
247
0ad9500e
ED
248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249{
250 prefetch(object + s->offset);
251}
252
1393d9a1
CL
253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254{
255 void *p;
256
922d566c
JK
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s, object);
259
1393d9a1 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
261 return p;
262}
263
7656c72b
CL
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be 270#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
273 __p += (__s)->size)
7656c72b 274
54266640 275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
54266640 279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
ab9a0f19
LJ
286static inline int order_objects(int order, unsigned long size, int reserved)
287{
288 return ((PAGE_SIZE << order) - reserved) / size;
289}
290
834f3d11 291static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 292 unsigned long size, int reserved)
834f3d11
CL
293{
294 struct kmem_cache_order_objects x = {
ab9a0f19 295 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
296 };
297
298 return x;
299}
300
301static inline int oo_order(struct kmem_cache_order_objects x)
302{
210b5c06 303 return x.x >> OO_SHIFT;
834f3d11
CL
304}
305
306static inline int oo_objects(struct kmem_cache_order_objects x)
307{
210b5c06 308 return x.x & OO_MASK;
834f3d11
CL
309}
310
881db7fb
CL
311/*
312 * Per slab locking using the pagelock
313 */
314static __always_inline void slab_lock(struct page *page)
315{
48c935ad 316 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
317 bit_spin_lock(PG_locked, &page->flags);
318}
319
320static __always_inline void slab_unlock(struct page *page)
321{
48c935ad 322 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
323 __bit_spin_unlock(PG_locked, &page->flags);
324}
325
a0320865
DH
326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327{
328 struct page tmp;
329 tmp.counters = counters_new;
330 /*
331 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
332 * as page->_refcount. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
334 * be careful and only assign to the fields we need.
335 */
336 page->frozen = tmp.frozen;
337 page->inuse = tmp.inuse;
338 page->objects = tmp.objects;
339}
340
1d07171c
CL
341/* Interrupts must be disabled (for the fallback code to work right) */
342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 void *freelist_old, unsigned long counters_old,
344 void *freelist_new, unsigned long counters_new,
345 const char *n)
346{
347 VM_BUG_ON(!irqs_disabled());
2565409f
HC
348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 350 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 351 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
352 freelist_old, counters_old,
353 freelist_new, counters_new))
6f6528a1 354 return true;
1d07171c
CL
355 } else
356#endif
357 {
358 slab_lock(page);
d0e0ac97
CG
359 if (page->freelist == freelist_old &&
360 page->counters == counters_old) {
1d07171c 361 page->freelist = freelist_new;
a0320865 362 set_page_slub_counters(page, counters_new);
1d07171c 363 slab_unlock(page);
6f6528a1 364 return true;
1d07171c
CL
365 }
366 slab_unlock(page);
367 }
368
369 cpu_relax();
370 stat(s, CMPXCHG_DOUBLE_FAIL);
371
372#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 373 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
374#endif
375
6f6528a1 376 return false;
1d07171c
CL
377}
378
b789ef51
CL
379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 void *freelist_old, unsigned long counters_old,
381 void *freelist_new, unsigned long counters_new,
382 const char *n)
383{
2565409f
HC
384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 386 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 387 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
388 freelist_old, counters_old,
389 freelist_new, counters_new))
6f6528a1 390 return true;
b789ef51
CL
391 } else
392#endif
393 {
1d07171c
CL
394 unsigned long flags;
395
396 local_irq_save(flags);
881db7fb 397 slab_lock(page);
d0e0ac97
CG
398 if (page->freelist == freelist_old &&
399 page->counters == counters_old) {
b789ef51 400 page->freelist = freelist_new;
a0320865 401 set_page_slub_counters(page, counters_new);
881db7fb 402 slab_unlock(page);
1d07171c 403 local_irq_restore(flags);
6f6528a1 404 return true;
b789ef51 405 }
881db7fb 406 slab_unlock(page);
1d07171c 407 local_irq_restore(flags);
b789ef51
CL
408 }
409
410 cpu_relax();
411 stat(s, CMPXCHG_DOUBLE_FAIL);
412
413#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 414 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
415#endif
416
6f6528a1 417 return false;
b789ef51
CL
418}
419
41ecc55b 420#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
421/*
422 * Determine a map of object in use on a page.
423 *
881db7fb 424 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
425 * not vanish from under us.
426 */
427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428{
429 void *p;
430 void *addr = page_address(page);
431
432 for (p = page->freelist; p; p = get_freepointer(s, p))
433 set_bit(slab_index(p, s, addr), map);
434}
435
d86bd1be
JK
436static inline int size_from_object(struct kmem_cache *s)
437{
438 if (s->flags & SLAB_RED_ZONE)
439 return s->size - s->red_left_pad;
440
441 return s->size;
442}
443
444static inline void *restore_red_left(struct kmem_cache *s, void *p)
445{
446 if (s->flags & SLAB_RED_ZONE)
447 p -= s->red_left_pad;
448
449 return p;
450}
451
41ecc55b
CL
452/*
453 * Debug settings:
454 */
89d3c87e 455#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 456static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
457#elif defined(CONFIG_KASAN)
458static int slub_debug = SLAB_STORE_USER;
f0630fff 459#else
41ecc55b 460static int slub_debug;
f0630fff 461#endif
41ecc55b
CL
462
463static char *slub_debug_slabs;
fa5ec8a1 464static int disable_higher_order_debug;
41ecc55b 465
a79316c6
AR
466/*
467 * slub is about to manipulate internal object metadata. This memory lies
468 * outside the range of the allocated object, so accessing it would normally
469 * be reported by kasan as a bounds error. metadata_access_enable() is used
470 * to tell kasan that these accesses are OK.
471 */
472static inline void metadata_access_enable(void)
473{
474 kasan_disable_current();
475}
476
477static inline void metadata_access_disable(void)
478{
479 kasan_enable_current();
480}
481
81819f0f
CL
482/*
483 * Object debugging
484 */
d86bd1be
JK
485
486/* Verify that a pointer has an address that is valid within a slab page */
487static inline int check_valid_pointer(struct kmem_cache *s,
488 struct page *page, void *object)
489{
490 void *base;
491
492 if (!object)
493 return 1;
494
495 base = page_address(page);
496 object = restore_red_left(s, object);
497 if (object < base || object >= base + page->objects * s->size ||
498 (object - base) % s->size) {
499 return 0;
500 }
501
502 return 1;
503}
504
81819f0f
CL
505static void print_section(char *text, u8 *addr, unsigned int length)
506{
a79316c6 507 metadata_access_enable();
ffc79d28
SAS
508 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
509 length, 1);
a79316c6 510 metadata_access_disable();
81819f0f
CL
511}
512
81819f0f
CL
513static struct track *get_track(struct kmem_cache *s, void *object,
514 enum track_item alloc)
515{
516 struct track *p;
517
518 if (s->offset)
519 p = object + s->offset + sizeof(void *);
520 else
521 p = object + s->inuse;
522
523 return p + alloc;
524}
525
526static void set_track(struct kmem_cache *s, void *object,
ce71e27c 527 enum track_item alloc, unsigned long addr)
81819f0f 528{
1a00df4a 529 struct track *p = get_track(s, object, alloc);
81819f0f 530
81819f0f 531 if (addr) {
d6543e39
BG
532#ifdef CONFIG_STACKTRACE
533 struct stack_trace trace;
534 int i;
535
536 trace.nr_entries = 0;
537 trace.max_entries = TRACK_ADDRS_COUNT;
538 trace.entries = p->addrs;
539 trace.skip = 3;
a79316c6 540 metadata_access_enable();
d6543e39 541 save_stack_trace(&trace);
a79316c6 542 metadata_access_disable();
d6543e39
BG
543
544 /* See rant in lockdep.c */
545 if (trace.nr_entries != 0 &&
546 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
547 trace.nr_entries--;
548
549 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
550 p->addrs[i] = 0;
551#endif
81819f0f
CL
552 p->addr = addr;
553 p->cpu = smp_processor_id();
88e4ccf2 554 p->pid = current->pid;
81819f0f
CL
555 p->when = jiffies;
556 } else
557 memset(p, 0, sizeof(struct track));
558}
559
81819f0f
CL
560static void init_tracking(struct kmem_cache *s, void *object)
561{
24922684
CL
562 if (!(s->flags & SLAB_STORE_USER))
563 return;
564
ce71e27c
EGM
565 set_track(s, object, TRACK_FREE, 0UL);
566 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
567}
568
569static void print_track(const char *s, struct track *t)
570{
571 if (!t->addr)
572 return;
573
f9f58285
FF
574 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
575 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
576#ifdef CONFIG_STACKTRACE
577 {
578 int i;
579 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
580 if (t->addrs[i])
f9f58285 581 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
582 else
583 break;
584 }
585#endif
24922684
CL
586}
587
588static void print_tracking(struct kmem_cache *s, void *object)
589{
590 if (!(s->flags & SLAB_STORE_USER))
591 return;
592
593 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
594 print_track("Freed", get_track(s, object, TRACK_FREE));
595}
596
597static void print_page_info(struct page *page)
598{
f9f58285 599 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 600 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
601
602}
603
604static void slab_bug(struct kmem_cache *s, char *fmt, ...)
605{
ecc42fbe 606 struct va_format vaf;
24922684 607 va_list args;
24922684
CL
608
609 va_start(args, fmt);
ecc42fbe
FF
610 vaf.fmt = fmt;
611 vaf.va = &args;
f9f58285 612 pr_err("=============================================================================\n");
ecc42fbe 613 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 614 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 615
373d4d09 616 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 617 va_end(args);
81819f0f
CL
618}
619
24922684
CL
620static void slab_fix(struct kmem_cache *s, char *fmt, ...)
621{
ecc42fbe 622 struct va_format vaf;
24922684 623 va_list args;
24922684
CL
624
625 va_start(args, fmt);
ecc42fbe
FF
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 629 va_end(args);
24922684
CL
630}
631
632static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
633{
634 unsigned int off; /* Offset of last byte */
a973e9dd 635 u8 *addr = page_address(page);
24922684
CL
636
637 print_tracking(s, p);
638
639 print_page_info(page);
640
f9f58285
FF
641 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
642 p, p - addr, get_freepointer(s, p));
24922684 643
d86bd1be
JK
644 if (s->flags & SLAB_RED_ZONE)
645 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
646 else if (p > addr + 16)
ffc79d28 647 print_section("Bytes b4 ", p - 16, 16);
81819f0f 648
3b0efdfa 649 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 650 PAGE_SIZE));
81819f0f 651 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
652 print_section("Redzone ", p + s->object_size,
653 s->inuse - s->object_size);
81819f0f 654
81819f0f
CL
655 if (s->offset)
656 off = s->offset + sizeof(void *);
657 else
658 off = s->inuse;
659
24922684 660 if (s->flags & SLAB_STORE_USER)
81819f0f 661 off += 2 * sizeof(struct track);
81819f0f 662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
d86bd1be 665 print_section("Padding ", p + off, size_from_object(s) - off);
24922684
CL
666
667 dump_stack();
81819f0f
CL
668}
669
75c66def 670void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
671 u8 *object, char *reason)
672{
3dc50637 673 slab_bug(s, "%s", reason);
24922684 674 print_trailer(s, page, object);
81819f0f
CL
675}
676
d0e0ac97
CG
677static void slab_err(struct kmem_cache *s, struct page *page,
678 const char *fmt, ...)
81819f0f
CL
679{
680 va_list args;
681 char buf[100];
682
24922684
CL
683 va_start(args, fmt);
684 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 685 va_end(args);
3dc50637 686 slab_bug(s, "%s", buf);
24922684 687 print_page_info(page);
81819f0f
CL
688 dump_stack();
689}
690
f7cb1933 691static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
692{
693 u8 *p = object;
694
d86bd1be
JK
695 if (s->flags & SLAB_RED_ZONE)
696 memset(p - s->red_left_pad, val, s->red_left_pad);
697
81819f0f 698 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
699 memset(p, POISON_FREE, s->object_size - 1);
700 p[s->object_size - 1] = POISON_END;
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 704 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
705}
706
24922684
CL
707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 void *from, void *to)
709{
710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 memset(from, data, to - from);
712}
713
714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 u8 *object, char *what,
06428780 716 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
717{
718 u8 *fault;
719 u8 *end;
720
a79316c6 721 metadata_access_enable();
79824820 722 fault = memchr_inv(start, value, bytes);
a79316c6 723 metadata_access_disable();
24922684
CL
724 if (!fault)
725 return 1;
726
727 end = start + bytes;
728 while (end > fault && end[-1] == value)
729 end--;
730
731 slab_bug(s, "%s overwritten", what);
f9f58285 732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
733 fault, end - 1, fault[0], value);
734 print_trailer(s, page, object);
735
736 restore_bytes(s, what, value, fault, end);
737 return 0;
81819f0f
CL
738}
739
81819f0f
CL
740/*
741 * Object layout:
742 *
743 * object address
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
672bba3a 747 *
81819f0f
CL
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
749 * 0xa5 (POISON_END)
750 *
3b0efdfa 751 * object + s->object_size
81819f0f 752 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 753 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 754 * object_size == inuse.
672bba3a 755 *
81819f0f
CL
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
758 *
759 * object + s->inuse
672bba3a
CL
760 * Meta data starts here.
761 *
81819f0f
CL
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
672bba3a 764 * C. Padding to reach required alignment boundary or at mininum
6446faa2 765 * one word if debugging is on to be able to detect writes
672bba3a
CL
766 * before the word boundary.
767 *
768 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
769 *
770 * object + s->size
672bba3a 771 * Nothing is used beyond s->size.
81819f0f 772 *
3b0efdfa 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 774 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
775 * may be used with merged slabcaches.
776 */
777
81819f0f
CL
778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779{
780 unsigned long off = s->inuse; /* The end of info */
781
782 if (s->offset)
783 /* Freepointer is placed after the object. */
784 off += sizeof(void *);
785
786 if (s->flags & SLAB_STORE_USER)
787 /* We also have user information there */
788 off += 2 * sizeof(struct track);
789
d86bd1be 790 if (size_from_object(s) == off)
81819f0f
CL
791 return 1;
792
24922684 793 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 794 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
795}
796
39b26464 797/* Check the pad bytes at the end of a slab page */
81819f0f
CL
798static int slab_pad_check(struct kmem_cache *s, struct page *page)
799{
24922684
CL
800 u8 *start;
801 u8 *fault;
802 u8 *end;
803 int length;
804 int remainder;
81819f0f
CL
805
806 if (!(s->flags & SLAB_POISON))
807 return 1;
808
a973e9dd 809 start = page_address(page);
ab9a0f19 810 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
811 end = start + length;
812 remainder = length % s->size;
81819f0f
CL
813 if (!remainder)
814 return 1;
815
a79316c6 816 metadata_access_enable();
79824820 817 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 818 metadata_access_disable();
24922684
CL
819 if (!fault)
820 return 1;
821 while (end > fault && end[-1] == POISON_INUSE)
822 end--;
823
824 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 825 print_section("Padding ", end - remainder, remainder);
24922684 826
8a3d271d 827 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 828 return 0;
81819f0f
CL
829}
830
831static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 832 void *object, u8 val)
81819f0f
CL
833{
834 u8 *p = object;
3b0efdfa 835 u8 *endobject = object + s->object_size;
81819f0f
CL
836
837 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
838 if (!check_bytes_and_report(s, page, object, "Redzone",
839 object - s->red_left_pad, val, s->red_left_pad))
840 return 0;
841
24922684 842 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 843 endobject, val, s->inuse - s->object_size))
81819f0f 844 return 0;
81819f0f 845 } else {
3b0efdfa 846 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 847 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
848 endobject, POISON_INUSE,
849 s->inuse - s->object_size);
3adbefee 850 }
81819f0f
CL
851 }
852
853 if (s->flags & SLAB_POISON) {
f7cb1933 854 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 855 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 856 POISON_FREE, s->object_size - 1) ||
24922684 857 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 858 p + s->object_size - 1, POISON_END, 1)))
81819f0f 859 return 0;
81819f0f
CL
860 /*
861 * check_pad_bytes cleans up on its own.
862 */
863 check_pad_bytes(s, page, p);
864 }
865
f7cb1933 866 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
867 /*
868 * Object and freepointer overlap. Cannot check
869 * freepointer while object is allocated.
870 */
871 return 1;
872
873 /* Check free pointer validity */
874 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
875 object_err(s, page, p, "Freepointer corrupt");
876 /*
9f6c708e 877 * No choice but to zap it and thus lose the remainder
81819f0f 878 * of the free objects in this slab. May cause
672bba3a 879 * another error because the object count is now wrong.
81819f0f 880 */
a973e9dd 881 set_freepointer(s, p, NULL);
81819f0f
CL
882 return 0;
883 }
884 return 1;
885}
886
887static int check_slab(struct kmem_cache *s, struct page *page)
888{
39b26464
CL
889 int maxobj;
890
81819f0f
CL
891 VM_BUG_ON(!irqs_disabled());
892
893 if (!PageSlab(page)) {
24922684 894 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
895 return 0;
896 }
39b26464 897
ab9a0f19 898 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
899 if (page->objects > maxobj) {
900 slab_err(s, page, "objects %u > max %u",
f6edde9c 901 page->objects, maxobj);
39b26464
CL
902 return 0;
903 }
904 if (page->inuse > page->objects) {
24922684 905 slab_err(s, page, "inuse %u > max %u",
f6edde9c 906 page->inuse, page->objects);
81819f0f
CL
907 return 0;
908 }
909 /* Slab_pad_check fixes things up after itself */
910 slab_pad_check(s, page);
911 return 1;
912}
913
914/*
672bba3a
CL
915 * Determine if a certain object on a page is on the freelist. Must hold the
916 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
917 */
918static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
919{
920 int nr = 0;
881db7fb 921 void *fp;
81819f0f 922 void *object = NULL;
f6edde9c 923 int max_objects;
81819f0f 924
881db7fb 925 fp = page->freelist;
39b26464 926 while (fp && nr <= page->objects) {
81819f0f
CL
927 if (fp == search)
928 return 1;
929 if (!check_valid_pointer(s, page, fp)) {
930 if (object) {
931 object_err(s, page, object,
932 "Freechain corrupt");
a973e9dd 933 set_freepointer(s, object, NULL);
81819f0f 934 } else {
24922684 935 slab_err(s, page, "Freepointer corrupt");
a973e9dd 936 page->freelist = NULL;
39b26464 937 page->inuse = page->objects;
24922684 938 slab_fix(s, "Freelist cleared");
81819f0f
CL
939 return 0;
940 }
941 break;
942 }
943 object = fp;
944 fp = get_freepointer(s, object);
945 nr++;
946 }
947
ab9a0f19 948 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
949 if (max_objects > MAX_OBJS_PER_PAGE)
950 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
951
952 if (page->objects != max_objects) {
756a025f
JP
953 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
954 page->objects, max_objects);
224a88be
CL
955 page->objects = max_objects;
956 slab_fix(s, "Number of objects adjusted.");
957 }
39b26464 958 if (page->inuse != page->objects - nr) {
756a025f
JP
959 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
960 page->inuse, page->objects - nr);
39b26464 961 page->inuse = page->objects - nr;
24922684 962 slab_fix(s, "Object count adjusted.");
81819f0f
CL
963 }
964 return search == NULL;
965}
966
0121c619
CL
967static void trace(struct kmem_cache *s, struct page *page, void *object,
968 int alloc)
3ec09742
CL
969{
970 if (s->flags & SLAB_TRACE) {
f9f58285 971 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
972 s->name,
973 alloc ? "alloc" : "free",
974 object, page->inuse,
975 page->freelist);
976
977 if (!alloc)
d0e0ac97
CG
978 print_section("Object ", (void *)object,
979 s->object_size);
3ec09742
CL
980
981 dump_stack();
982 }
983}
984
643b1138 985/*
672bba3a 986 * Tracking of fully allocated slabs for debugging purposes.
643b1138 987 */
5cc6eee8
CL
988static void add_full(struct kmem_cache *s,
989 struct kmem_cache_node *n, struct page *page)
643b1138 990{
5cc6eee8
CL
991 if (!(s->flags & SLAB_STORE_USER))
992 return;
993
255d0884 994 lockdep_assert_held(&n->list_lock);
643b1138 995 list_add(&page->lru, &n->full);
643b1138
CL
996}
997
c65c1877 998static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 999{
643b1138
CL
1000 if (!(s->flags & SLAB_STORE_USER))
1001 return;
1002
255d0884 1003 lockdep_assert_held(&n->list_lock);
643b1138 1004 list_del(&page->lru);
643b1138
CL
1005}
1006
0f389ec6
CL
1007/* Tracking of the number of slabs for debugging purposes */
1008static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1009{
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 return atomic_long_read(&n->nr_slabs);
1013}
1014
26c02cf0
AB
1015static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1016{
1017 return atomic_long_read(&n->nr_slabs);
1018}
1019
205ab99d 1020static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1021{
1022 struct kmem_cache_node *n = get_node(s, node);
1023
1024 /*
1025 * May be called early in order to allocate a slab for the
1026 * kmem_cache_node structure. Solve the chicken-egg
1027 * dilemma by deferring the increment of the count during
1028 * bootstrap (see early_kmem_cache_node_alloc).
1029 */
338b2642 1030 if (likely(n)) {
0f389ec6 1031 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1032 atomic_long_add(objects, &n->total_objects);
1033 }
0f389ec6 1034}
205ab99d 1035static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1036{
1037 struct kmem_cache_node *n = get_node(s, node);
1038
1039 atomic_long_dec(&n->nr_slabs);
205ab99d 1040 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1041}
1042
1043/* Object debug checks for alloc/free paths */
3ec09742
CL
1044static void setup_object_debug(struct kmem_cache *s, struct page *page,
1045 void *object)
1046{
1047 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1048 return;
1049
f7cb1933 1050 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1051 init_tracking(s, object);
1052}
1053
becfda68 1054static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1055 struct page *page,
ce71e27c 1056 void *object, unsigned long addr)
81819f0f
CL
1057{
1058 if (!check_slab(s, page))
becfda68 1059 return 0;
81819f0f 1060
81819f0f
CL
1061 if (!check_valid_pointer(s, page, object)) {
1062 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1063 return 0;
81819f0f
CL
1064 }
1065
f7cb1933 1066 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1067 return 0;
1068
1069 return 1;
1070}
1071
1072static noinline int alloc_debug_processing(struct kmem_cache *s,
1073 struct page *page,
1074 void *object, unsigned long addr)
1075{
1076 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1077 if (!alloc_consistency_checks(s, page, object, addr))
1078 goto bad;
1079 }
81819f0f 1080
3ec09742
CL
1081 /* Success perform special debug activities for allocs */
1082 if (s->flags & SLAB_STORE_USER)
1083 set_track(s, object, TRACK_ALLOC, addr);
1084 trace(s, page, object, 1);
f7cb1933 1085 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1086 return 1;
3ec09742 1087
81819f0f
CL
1088bad:
1089 if (PageSlab(page)) {
1090 /*
1091 * If this is a slab page then lets do the best we can
1092 * to avoid issues in the future. Marking all objects
672bba3a 1093 * as used avoids touching the remaining objects.
81819f0f 1094 */
24922684 1095 slab_fix(s, "Marking all objects used");
39b26464 1096 page->inuse = page->objects;
a973e9dd 1097 page->freelist = NULL;
81819f0f
CL
1098 }
1099 return 0;
1100}
1101
becfda68
LA
1102static inline int free_consistency_checks(struct kmem_cache *s,
1103 struct page *page, void *object, unsigned long addr)
81819f0f 1104{
81819f0f 1105 if (!check_valid_pointer(s, page, object)) {
70d71228 1106 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1107 return 0;
81819f0f
CL
1108 }
1109
1110 if (on_freelist(s, page, object)) {
24922684 1111 object_err(s, page, object, "Object already free");
becfda68 1112 return 0;
81819f0f
CL
1113 }
1114
f7cb1933 1115 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1116 return 0;
81819f0f 1117
1b4f59e3 1118 if (unlikely(s != page->slab_cache)) {
3adbefee 1119 if (!PageSlab(page)) {
756a025f
JP
1120 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1121 object);
1b4f59e3 1122 } else if (!page->slab_cache) {
f9f58285
FF
1123 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1124 object);
70d71228 1125 dump_stack();
06428780 1126 } else
24922684
CL
1127 object_err(s, page, object,
1128 "page slab pointer corrupt.");
becfda68
LA
1129 return 0;
1130 }
1131 return 1;
1132}
1133
1134/* Supports checking bulk free of a constructed freelist */
1135static noinline int free_debug_processing(
1136 struct kmem_cache *s, struct page *page,
1137 void *head, void *tail, int bulk_cnt,
1138 unsigned long addr)
1139{
1140 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1141 void *object = head;
1142 int cnt = 0;
1143 unsigned long uninitialized_var(flags);
1144 int ret = 0;
1145
1146 spin_lock_irqsave(&n->list_lock, flags);
1147 slab_lock(page);
1148
1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150 if (!check_slab(s, page))
1151 goto out;
1152 }
1153
1154next_object:
1155 cnt++;
1156
1157 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158 if (!free_consistency_checks(s, page, object, addr))
1159 goto out;
81819f0f 1160 }
3ec09742 1161
3ec09742
CL
1162 if (s->flags & SLAB_STORE_USER)
1163 set_track(s, object, TRACK_FREE, addr);
1164 trace(s, page, object, 0);
81084651 1165 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1166 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1167
1168 /* Reached end of constructed freelist yet? */
1169 if (object != tail) {
1170 object = get_freepointer(s, object);
1171 goto next_object;
1172 }
804aa132
LA
1173 ret = 1;
1174
5c2e4bbb 1175out:
81084651
JDB
1176 if (cnt != bulk_cnt)
1177 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1178 bulk_cnt, cnt);
1179
881db7fb 1180 slab_unlock(page);
282acb43 1181 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1182 if (!ret)
1183 slab_fix(s, "Object at 0x%p not freed", object);
1184 return ret;
81819f0f
CL
1185}
1186
41ecc55b
CL
1187static int __init setup_slub_debug(char *str)
1188{
f0630fff
CL
1189 slub_debug = DEBUG_DEFAULT_FLAGS;
1190 if (*str++ != '=' || !*str)
1191 /*
1192 * No options specified. Switch on full debugging.
1193 */
1194 goto out;
1195
1196 if (*str == ',')
1197 /*
1198 * No options but restriction on slabs. This means full
1199 * debugging for slabs matching a pattern.
1200 */
1201 goto check_slabs;
1202
1203 slub_debug = 0;
1204 if (*str == '-')
1205 /*
1206 * Switch off all debugging measures.
1207 */
1208 goto out;
1209
1210 /*
1211 * Determine which debug features should be switched on
1212 */
06428780 1213 for (; *str && *str != ','; str++) {
f0630fff
CL
1214 switch (tolower(*str)) {
1215 case 'f':
becfda68 1216 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1217 break;
1218 case 'z':
1219 slub_debug |= SLAB_RED_ZONE;
1220 break;
1221 case 'p':
1222 slub_debug |= SLAB_POISON;
1223 break;
1224 case 'u':
1225 slub_debug |= SLAB_STORE_USER;
1226 break;
1227 case 't':
1228 slub_debug |= SLAB_TRACE;
1229 break;
4c13dd3b
DM
1230 case 'a':
1231 slub_debug |= SLAB_FAILSLAB;
1232 break;
08303a73
CA
1233 case 'o':
1234 /*
1235 * Avoid enabling debugging on caches if its minimum
1236 * order would increase as a result.
1237 */
1238 disable_higher_order_debug = 1;
1239 break;
f0630fff 1240 default:
f9f58285
FF
1241 pr_err("slub_debug option '%c' unknown. skipped\n",
1242 *str);
f0630fff 1243 }
41ecc55b
CL
1244 }
1245
f0630fff 1246check_slabs:
41ecc55b
CL
1247 if (*str == ',')
1248 slub_debug_slabs = str + 1;
f0630fff 1249out:
41ecc55b
CL
1250 return 1;
1251}
1252
1253__setup("slub_debug", setup_slub_debug);
1254
423c929c 1255unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1256 unsigned long flags, const char *name,
51cc5068 1257 void (*ctor)(void *))
41ecc55b
CL
1258{
1259 /*
e153362a 1260 * Enable debugging if selected on the kernel commandline.
41ecc55b 1261 */
c6f58d9b
CL
1262 if (slub_debug && (!slub_debug_slabs || (name &&
1263 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1264 flags |= slub_debug;
ba0268a8
CL
1265
1266 return flags;
41ecc55b 1267}
b4a64718 1268#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1269static inline void setup_object_debug(struct kmem_cache *s,
1270 struct page *page, void *object) {}
41ecc55b 1271
3ec09742 1272static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1273 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1274
282acb43 1275static inline int free_debug_processing(
81084651
JDB
1276 struct kmem_cache *s, struct page *page,
1277 void *head, void *tail, int bulk_cnt,
282acb43 1278 unsigned long addr) { return 0; }
41ecc55b 1279
41ecc55b
CL
1280static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1281 { return 1; }
1282static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1283 void *object, u8 val) { return 1; }
5cc6eee8
CL
1284static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285 struct page *page) {}
c65c1877
PZ
1286static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 struct page *page) {}
423c929c 1288unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1289 unsigned long flags, const char *name,
51cc5068 1290 void (*ctor)(void *))
ba0268a8
CL
1291{
1292 return flags;
1293}
41ecc55b 1294#define slub_debug 0
0f389ec6 1295
fdaa45e9
IM
1296#define disable_higher_order_debug 0
1297
0f389ec6
CL
1298static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1299 { return 0; }
26c02cf0
AB
1300static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1301 { return 0; }
205ab99d
CL
1302static inline void inc_slabs_node(struct kmem_cache *s, int node,
1303 int objects) {}
1304static inline void dec_slabs_node(struct kmem_cache *s, int node,
1305 int objects) {}
7d550c56 1306
02e72cc6
AR
1307#endif /* CONFIG_SLUB_DEBUG */
1308
1309/*
1310 * Hooks for other subsystems that check memory allocations. In a typical
1311 * production configuration these hooks all should produce no code at all.
1312 */
d56791b3
RB
1313static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1314{
1315 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1316 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1317}
1318
1319static inline void kfree_hook(const void *x)
1320{
1321 kmemleak_free(x);
0316bec2 1322 kasan_kfree_large(x);
d56791b3
RB
1323}
1324
d56791b3
RB
1325static inline void slab_free_hook(struct kmem_cache *s, void *x)
1326{
1327 kmemleak_free_recursive(x, s->flags);
7d550c56 1328
02e72cc6
AR
1329 /*
1330 * Trouble is that we may no longer disable interrupts in the fast path
1331 * So in order to make the debug calls that expect irqs to be
1332 * disabled we need to disable interrupts temporarily.
1333 */
1334#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1335 {
1336 unsigned long flags;
1337
1338 local_irq_save(flags);
1339 kmemcheck_slab_free(s, x, s->object_size);
1340 debug_check_no_locks_freed(x, s->object_size);
1341 local_irq_restore(flags);
1342 }
1343#endif
1344 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1346
1347 kasan_slab_free(s, x);
02e72cc6 1348}
205ab99d 1349
81084651
JDB
1350static inline void slab_free_freelist_hook(struct kmem_cache *s,
1351 void *head, void *tail)
1352{
1353/*
1354 * Compiler cannot detect this function can be removed if slab_free_hook()
1355 * evaluates to nothing. Thus, catch all relevant config debug options here.
1356 */
1357#if defined(CONFIG_KMEMCHECK) || \
1358 defined(CONFIG_LOCKDEP) || \
1359 defined(CONFIG_DEBUG_KMEMLEAK) || \
1360 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1361 defined(CONFIG_KASAN)
1362
1363 void *object = head;
1364 void *tail_obj = tail ? : head;
1365
1366 do {
1367 slab_free_hook(s, object);
1368 } while ((object != tail_obj) &&
1369 (object = get_freepointer(s, object)));
1370#endif
1371}
1372
588f8ba9
TG
1373static void setup_object(struct kmem_cache *s, struct page *page,
1374 void *object)
1375{
1376 setup_object_debug(s, page, object);
1377 if (unlikely(s->ctor)) {
1378 kasan_unpoison_object_data(s, object);
1379 s->ctor(object);
1380 kasan_poison_object_data(s, object);
1381 }
1382}
1383
81819f0f
CL
1384/*
1385 * Slab allocation and freeing
1386 */
5dfb4175
VD
1387static inline struct page *alloc_slab_page(struct kmem_cache *s,
1388 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1389{
5dfb4175 1390 struct page *page;
65c3376a
CL
1391 int order = oo_order(oo);
1392
b1eeab67
VN
1393 flags |= __GFP_NOTRACK;
1394
2154a336 1395 if (node == NUMA_NO_NODE)
5dfb4175 1396 page = alloc_pages(flags, order);
65c3376a 1397 else
96db800f 1398 page = __alloc_pages_node(node, flags, order);
5dfb4175 1399
f3ccb2c4
VD
1400 if (page && memcg_charge_slab(page, flags, order, s)) {
1401 __free_pages(page, order);
1402 page = NULL;
1403 }
5dfb4175
VD
1404
1405 return page;
65c3376a
CL
1406}
1407
210e7a43
TG
1408#ifdef CONFIG_SLAB_FREELIST_RANDOM
1409/* Pre-initialize the random sequence cache */
1410static int init_cache_random_seq(struct kmem_cache *s)
1411{
1412 int err;
1413 unsigned long i, count = oo_objects(s->oo);
1414
1415 err = cache_random_seq_create(s, count, GFP_KERNEL);
1416 if (err) {
1417 pr_err("SLUB: Unable to initialize free list for %s\n",
1418 s->name);
1419 return err;
1420 }
1421
1422 /* Transform to an offset on the set of pages */
1423 if (s->random_seq) {
1424 for (i = 0; i < count; i++)
1425 s->random_seq[i] *= s->size;
1426 }
1427 return 0;
1428}
1429
1430/* Initialize each random sequence freelist per cache */
1431static void __init init_freelist_randomization(void)
1432{
1433 struct kmem_cache *s;
1434
1435 mutex_lock(&slab_mutex);
1436
1437 list_for_each_entry(s, &slab_caches, list)
1438 init_cache_random_seq(s);
1439
1440 mutex_unlock(&slab_mutex);
1441}
1442
1443/* Get the next entry on the pre-computed freelist randomized */
1444static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1445 unsigned long *pos, void *start,
1446 unsigned long page_limit,
1447 unsigned long freelist_count)
1448{
1449 unsigned int idx;
1450
1451 /*
1452 * If the target page allocation failed, the number of objects on the
1453 * page might be smaller than the usual size defined by the cache.
1454 */
1455 do {
1456 idx = s->random_seq[*pos];
1457 *pos += 1;
1458 if (*pos >= freelist_count)
1459 *pos = 0;
1460 } while (unlikely(idx >= page_limit));
1461
1462 return (char *)start + idx;
1463}
1464
1465/* Shuffle the single linked freelist based on a random pre-computed sequence */
1466static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1467{
1468 void *start;
1469 void *cur;
1470 void *next;
1471 unsigned long idx, pos, page_limit, freelist_count;
1472
1473 if (page->objects < 2 || !s->random_seq)
1474 return false;
1475
1476 freelist_count = oo_objects(s->oo);
1477 pos = get_random_int() % freelist_count;
1478
1479 page_limit = page->objects * s->size;
1480 start = fixup_red_left(s, page_address(page));
1481
1482 /* First entry is used as the base of the freelist */
1483 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1484 freelist_count);
1485 page->freelist = cur;
1486
1487 for (idx = 1; idx < page->objects; idx++) {
1488 setup_object(s, page, cur);
1489 next = next_freelist_entry(s, page, &pos, start, page_limit,
1490 freelist_count);
1491 set_freepointer(s, cur, next);
1492 cur = next;
1493 }
1494 setup_object(s, page, cur);
1495 set_freepointer(s, cur, NULL);
1496
1497 return true;
1498}
1499#else
1500static inline int init_cache_random_seq(struct kmem_cache *s)
1501{
1502 return 0;
1503}
1504static inline void init_freelist_randomization(void) { }
1505static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1506{
1507 return false;
1508}
1509#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1510
81819f0f
CL
1511static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1512{
06428780 1513 struct page *page;
834f3d11 1514 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1515 gfp_t alloc_gfp;
588f8ba9
TG
1516 void *start, *p;
1517 int idx, order;
210e7a43 1518 bool shuffle;
81819f0f 1519
7e0528da
CL
1520 flags &= gfp_allowed_mask;
1521
d0164adc 1522 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1523 local_irq_enable();
1524
b7a49f0d 1525 flags |= s->allocflags;
e12ba74d 1526
ba52270d
PE
1527 /*
1528 * Let the initial higher-order allocation fail under memory pressure
1529 * so we fall-back to the minimum order allocation.
1530 */
1531 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1532 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1533 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1534
5dfb4175 1535 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1536 if (unlikely(!page)) {
1537 oo = s->min;
80c3a998 1538 alloc_gfp = flags;
65c3376a
CL
1539 /*
1540 * Allocation may have failed due to fragmentation.
1541 * Try a lower order alloc if possible
1542 */
5dfb4175 1543 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1544 if (unlikely(!page))
1545 goto out;
1546 stat(s, ORDER_FALLBACK);
65c3376a 1547 }
5a896d9e 1548
588f8ba9
TG
1549 if (kmemcheck_enabled &&
1550 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1551 int pages = 1 << oo_order(oo);
1552
80c3a998 1553 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1554
1555 /*
1556 * Objects from caches that have a constructor don't get
1557 * cleared when they're allocated, so we need to do it here.
1558 */
1559 if (s->ctor)
1560 kmemcheck_mark_uninitialized_pages(page, pages);
1561 else
1562 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1563 }
1564
834f3d11 1565 page->objects = oo_objects(oo);
81819f0f 1566
1f458cbf 1567 order = compound_order(page);
1b4f59e3 1568 page->slab_cache = s;
c03f94cc 1569 __SetPageSlab(page);
2f064f34 1570 if (page_is_pfmemalloc(page))
072bb0aa 1571 SetPageSlabPfmemalloc(page);
81819f0f
CL
1572
1573 start = page_address(page);
81819f0f
CL
1574
1575 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1576 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1577
0316bec2
AR
1578 kasan_poison_slab(page);
1579
210e7a43
TG
1580 shuffle = shuffle_freelist(s, page);
1581
1582 if (!shuffle) {
1583 for_each_object_idx(p, idx, s, start, page->objects) {
1584 setup_object(s, page, p);
1585 if (likely(idx < page->objects))
1586 set_freepointer(s, p, p + s->size);
1587 else
1588 set_freepointer(s, p, NULL);
1589 }
1590 page->freelist = fixup_red_left(s, start);
81819f0f 1591 }
81819f0f 1592
e6e82ea1 1593 page->inuse = page->objects;
8cb0a506 1594 page->frozen = 1;
588f8ba9 1595
81819f0f 1596out:
d0164adc 1597 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1598 local_irq_disable();
1599 if (!page)
1600 return NULL;
1601
1602 mod_zone_page_state(page_zone(page),
1603 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1604 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1605 1 << oo_order(oo));
1606
1607 inc_slabs_node(s, page_to_nid(page), page->objects);
1608
81819f0f
CL
1609 return page;
1610}
1611
588f8ba9
TG
1612static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1613{
1614 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34
MH
1615 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1616 pr_emerg("Unexpected gfp: %#x (%pGg)\n", invalid_mask, &invalid_mask);
588f8ba9
TG
1617 BUG();
1618 }
1619
1620 return allocate_slab(s,
1621 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1622}
1623
81819f0f
CL
1624static void __free_slab(struct kmem_cache *s, struct page *page)
1625{
834f3d11
CL
1626 int order = compound_order(page);
1627 int pages = 1 << order;
81819f0f 1628
becfda68 1629 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1630 void *p;
1631
1632 slab_pad_check(s, page);
224a88be
CL
1633 for_each_object(p, s, page_address(page),
1634 page->objects)
f7cb1933 1635 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1636 }
1637
b1eeab67 1638 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1639
81819f0f
CL
1640 mod_zone_page_state(page_zone(page),
1641 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1642 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1643 -pages);
81819f0f 1644
072bb0aa 1645 __ClearPageSlabPfmemalloc(page);
49bd5221 1646 __ClearPageSlab(page);
1f458cbf 1647
22b751c3 1648 page_mapcount_reset(page);
1eb5ac64
NP
1649 if (current->reclaim_state)
1650 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1651 memcg_uncharge_slab(page, order, s);
1652 __free_pages(page, order);
81819f0f
CL
1653}
1654
da9a638c
LJ
1655#define need_reserve_slab_rcu \
1656 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1657
81819f0f
CL
1658static void rcu_free_slab(struct rcu_head *h)
1659{
1660 struct page *page;
1661
da9a638c
LJ
1662 if (need_reserve_slab_rcu)
1663 page = virt_to_head_page(h);
1664 else
1665 page = container_of((struct list_head *)h, struct page, lru);
1666
1b4f59e3 1667 __free_slab(page->slab_cache, page);
81819f0f
CL
1668}
1669
1670static void free_slab(struct kmem_cache *s, struct page *page)
1671{
1672 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1673 struct rcu_head *head;
1674
1675 if (need_reserve_slab_rcu) {
1676 int order = compound_order(page);
1677 int offset = (PAGE_SIZE << order) - s->reserved;
1678
1679 VM_BUG_ON(s->reserved != sizeof(*head));
1680 head = page_address(page) + offset;
1681 } else {
bc4f610d 1682 head = &page->rcu_head;
da9a638c 1683 }
81819f0f
CL
1684
1685 call_rcu(head, rcu_free_slab);
1686 } else
1687 __free_slab(s, page);
1688}
1689
1690static void discard_slab(struct kmem_cache *s, struct page *page)
1691{
205ab99d 1692 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1693 free_slab(s, page);
1694}
1695
1696/*
5cc6eee8 1697 * Management of partially allocated slabs.
81819f0f 1698 */
1e4dd946
SR
1699static inline void
1700__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1701{
e95eed57 1702 n->nr_partial++;
136333d1 1703 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1704 list_add_tail(&page->lru, &n->partial);
1705 else
1706 list_add(&page->lru, &n->partial);
81819f0f
CL
1707}
1708
1e4dd946
SR
1709static inline void add_partial(struct kmem_cache_node *n,
1710 struct page *page, int tail)
62e346a8 1711{
c65c1877 1712 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1713 __add_partial(n, page, tail);
1714}
c65c1877 1715
1e4dd946
SR
1716static inline void remove_partial(struct kmem_cache_node *n,
1717 struct page *page)
1718{
1719 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1720 list_del(&page->lru);
1721 n->nr_partial--;
1e4dd946
SR
1722}
1723
81819f0f 1724/*
7ced3719
CL
1725 * Remove slab from the partial list, freeze it and
1726 * return the pointer to the freelist.
81819f0f 1727 *
497b66f2 1728 * Returns a list of objects or NULL if it fails.
81819f0f 1729 */
497b66f2 1730static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1731 struct kmem_cache_node *n, struct page *page,
633b0764 1732 int mode, int *objects)
81819f0f 1733{
2cfb7455
CL
1734 void *freelist;
1735 unsigned long counters;
1736 struct page new;
1737
c65c1877
PZ
1738 lockdep_assert_held(&n->list_lock);
1739
2cfb7455
CL
1740 /*
1741 * Zap the freelist and set the frozen bit.
1742 * The old freelist is the list of objects for the
1743 * per cpu allocation list.
1744 */
7ced3719
CL
1745 freelist = page->freelist;
1746 counters = page->counters;
1747 new.counters = counters;
633b0764 1748 *objects = new.objects - new.inuse;
23910c50 1749 if (mode) {
7ced3719 1750 new.inuse = page->objects;
23910c50
PE
1751 new.freelist = NULL;
1752 } else {
1753 new.freelist = freelist;
1754 }
2cfb7455 1755
a0132ac0 1756 VM_BUG_ON(new.frozen);
7ced3719 1757 new.frozen = 1;
2cfb7455 1758
7ced3719 1759 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1760 freelist, counters,
02d7633f 1761 new.freelist, new.counters,
7ced3719 1762 "acquire_slab"))
7ced3719 1763 return NULL;
2cfb7455
CL
1764
1765 remove_partial(n, page);
7ced3719 1766 WARN_ON(!freelist);
49e22585 1767 return freelist;
81819f0f
CL
1768}
1769
633b0764 1770static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1771static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1772
81819f0f 1773/*
672bba3a 1774 * Try to allocate a partial slab from a specific node.
81819f0f 1775 */
8ba00bb6
JK
1776static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1777 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1778{
49e22585
CL
1779 struct page *page, *page2;
1780 void *object = NULL;
633b0764
JK
1781 int available = 0;
1782 int objects;
81819f0f
CL
1783
1784 /*
1785 * Racy check. If we mistakenly see no partial slabs then we
1786 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1787 * partial slab and there is none available then get_partials()
1788 * will return NULL.
81819f0f
CL
1789 */
1790 if (!n || !n->nr_partial)
1791 return NULL;
1792
1793 spin_lock(&n->list_lock);
49e22585 1794 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1795 void *t;
49e22585 1796
8ba00bb6
JK
1797 if (!pfmemalloc_match(page, flags))
1798 continue;
1799
633b0764 1800 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1801 if (!t)
1802 break;
1803
633b0764 1804 available += objects;
12d79634 1805 if (!object) {
49e22585 1806 c->page = page;
49e22585 1807 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1808 object = t;
49e22585 1809 } else {
633b0764 1810 put_cpu_partial(s, page, 0);
8028dcea 1811 stat(s, CPU_PARTIAL_NODE);
49e22585 1812 }
345c905d
JK
1813 if (!kmem_cache_has_cpu_partial(s)
1814 || available > s->cpu_partial / 2)
49e22585
CL
1815 break;
1816
497b66f2 1817 }
81819f0f 1818 spin_unlock(&n->list_lock);
497b66f2 1819 return object;
81819f0f
CL
1820}
1821
1822/*
672bba3a 1823 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1824 */
de3ec035 1825static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1826 struct kmem_cache_cpu *c)
81819f0f
CL
1827{
1828#ifdef CONFIG_NUMA
1829 struct zonelist *zonelist;
dd1a239f 1830 struct zoneref *z;
54a6eb5c
MG
1831 struct zone *zone;
1832 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1833 void *object;
cc9a6c87 1834 unsigned int cpuset_mems_cookie;
81819f0f
CL
1835
1836 /*
672bba3a
CL
1837 * The defrag ratio allows a configuration of the tradeoffs between
1838 * inter node defragmentation and node local allocations. A lower
1839 * defrag_ratio increases the tendency to do local allocations
1840 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1841 *
672bba3a
CL
1842 * If the defrag_ratio is set to 0 then kmalloc() always
1843 * returns node local objects. If the ratio is higher then kmalloc()
1844 * may return off node objects because partial slabs are obtained
1845 * from other nodes and filled up.
81819f0f 1846 *
43efd3ea
LP
1847 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1848 * (which makes defrag_ratio = 1000) then every (well almost)
1849 * allocation will first attempt to defrag slab caches on other nodes.
1850 * This means scanning over all nodes to look for partial slabs which
1851 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1852 * with available objects.
81819f0f 1853 */
9824601e
CL
1854 if (!s->remote_node_defrag_ratio ||
1855 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1856 return NULL;
1857
cc9a6c87 1858 do {
d26914d1 1859 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1860 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1861 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1862 struct kmem_cache_node *n;
1863
1864 n = get_node(s, zone_to_nid(zone));
1865
dee2f8aa 1866 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1867 n->nr_partial > s->min_partial) {
8ba00bb6 1868 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1869 if (object) {
1870 /*
d26914d1
MG
1871 * Don't check read_mems_allowed_retry()
1872 * here - if mems_allowed was updated in
1873 * parallel, that was a harmless race
1874 * between allocation and the cpuset
1875 * update
cc9a6c87 1876 */
cc9a6c87
MG
1877 return object;
1878 }
c0ff7453 1879 }
81819f0f 1880 }
d26914d1 1881 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1882#endif
1883 return NULL;
1884}
1885
1886/*
1887 * Get a partial page, lock it and return it.
1888 */
497b66f2 1889static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1890 struct kmem_cache_cpu *c)
81819f0f 1891{
497b66f2 1892 void *object;
a561ce00
JK
1893 int searchnode = node;
1894
1895 if (node == NUMA_NO_NODE)
1896 searchnode = numa_mem_id();
1897 else if (!node_present_pages(node))
1898 searchnode = node_to_mem_node(node);
81819f0f 1899
8ba00bb6 1900 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1901 if (object || node != NUMA_NO_NODE)
1902 return object;
81819f0f 1903
acd19fd1 1904 return get_any_partial(s, flags, c);
81819f0f
CL
1905}
1906
8a5ec0ba
CL
1907#ifdef CONFIG_PREEMPT
1908/*
1909 * Calculate the next globally unique transaction for disambiguiation
1910 * during cmpxchg. The transactions start with the cpu number and are then
1911 * incremented by CONFIG_NR_CPUS.
1912 */
1913#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1914#else
1915/*
1916 * No preemption supported therefore also no need to check for
1917 * different cpus.
1918 */
1919#define TID_STEP 1
1920#endif
1921
1922static inline unsigned long next_tid(unsigned long tid)
1923{
1924 return tid + TID_STEP;
1925}
1926
1927static inline unsigned int tid_to_cpu(unsigned long tid)
1928{
1929 return tid % TID_STEP;
1930}
1931
1932static inline unsigned long tid_to_event(unsigned long tid)
1933{
1934 return tid / TID_STEP;
1935}
1936
1937static inline unsigned int init_tid(int cpu)
1938{
1939 return cpu;
1940}
1941
1942static inline void note_cmpxchg_failure(const char *n,
1943 const struct kmem_cache *s, unsigned long tid)
1944{
1945#ifdef SLUB_DEBUG_CMPXCHG
1946 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1947
f9f58285 1948 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1949
1950#ifdef CONFIG_PREEMPT
1951 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1952 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1953 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1954 else
1955#endif
1956 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1957 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1958 tid_to_event(tid), tid_to_event(actual_tid));
1959 else
f9f58285 1960 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1961 actual_tid, tid, next_tid(tid));
1962#endif
4fdccdfb 1963 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1964}
1965
788e1aad 1966static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1967{
8a5ec0ba
CL
1968 int cpu;
1969
1970 for_each_possible_cpu(cpu)
1971 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1972}
2cfb7455 1973
81819f0f
CL
1974/*
1975 * Remove the cpu slab
1976 */
d0e0ac97
CG
1977static void deactivate_slab(struct kmem_cache *s, struct page *page,
1978 void *freelist)
81819f0f 1979{
2cfb7455 1980 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1981 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1982 int lock = 0;
1983 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1984 void *nextfree;
136333d1 1985 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1986 struct page new;
1987 struct page old;
1988
1989 if (page->freelist) {
84e554e6 1990 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1991 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1992 }
1993
894b8788 1994 /*
2cfb7455
CL
1995 * Stage one: Free all available per cpu objects back
1996 * to the page freelist while it is still frozen. Leave the
1997 * last one.
1998 *
1999 * There is no need to take the list->lock because the page
2000 * is still frozen.
2001 */
2002 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2003 void *prior;
2004 unsigned long counters;
2005
2006 do {
2007 prior = page->freelist;
2008 counters = page->counters;
2009 set_freepointer(s, freelist, prior);
2010 new.counters = counters;
2011 new.inuse--;
a0132ac0 2012 VM_BUG_ON(!new.frozen);
2cfb7455 2013
1d07171c 2014 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2015 prior, counters,
2016 freelist, new.counters,
2017 "drain percpu freelist"));
2018
2019 freelist = nextfree;
2020 }
2021
894b8788 2022 /*
2cfb7455
CL
2023 * Stage two: Ensure that the page is unfrozen while the
2024 * list presence reflects the actual number of objects
2025 * during unfreeze.
2026 *
2027 * We setup the list membership and then perform a cmpxchg
2028 * with the count. If there is a mismatch then the page
2029 * is not unfrozen but the page is on the wrong list.
2030 *
2031 * Then we restart the process which may have to remove
2032 * the page from the list that we just put it on again
2033 * because the number of objects in the slab may have
2034 * changed.
894b8788 2035 */
2cfb7455 2036redo:
894b8788 2037
2cfb7455
CL
2038 old.freelist = page->freelist;
2039 old.counters = page->counters;
a0132ac0 2040 VM_BUG_ON(!old.frozen);
7c2e132c 2041
2cfb7455
CL
2042 /* Determine target state of the slab */
2043 new.counters = old.counters;
2044 if (freelist) {
2045 new.inuse--;
2046 set_freepointer(s, freelist, old.freelist);
2047 new.freelist = freelist;
2048 } else
2049 new.freelist = old.freelist;
2050
2051 new.frozen = 0;
2052
8a5b20ae 2053 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2054 m = M_FREE;
2055 else if (new.freelist) {
2056 m = M_PARTIAL;
2057 if (!lock) {
2058 lock = 1;
2059 /*
2060 * Taking the spinlock removes the possiblity
2061 * that acquire_slab() will see a slab page that
2062 * is frozen
2063 */
2064 spin_lock(&n->list_lock);
2065 }
2066 } else {
2067 m = M_FULL;
2068 if (kmem_cache_debug(s) && !lock) {
2069 lock = 1;
2070 /*
2071 * This also ensures that the scanning of full
2072 * slabs from diagnostic functions will not see
2073 * any frozen slabs.
2074 */
2075 spin_lock(&n->list_lock);
2076 }
2077 }
2078
2079 if (l != m) {
2080
2081 if (l == M_PARTIAL)
2082
2083 remove_partial(n, page);
2084
2085 else if (l == M_FULL)
894b8788 2086
c65c1877 2087 remove_full(s, n, page);
2cfb7455
CL
2088
2089 if (m == M_PARTIAL) {
2090
2091 add_partial(n, page, tail);
136333d1 2092 stat(s, tail);
2cfb7455
CL
2093
2094 } else if (m == M_FULL) {
894b8788 2095
2cfb7455
CL
2096 stat(s, DEACTIVATE_FULL);
2097 add_full(s, n, page);
2098
2099 }
2100 }
2101
2102 l = m;
1d07171c 2103 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2104 old.freelist, old.counters,
2105 new.freelist, new.counters,
2106 "unfreezing slab"))
2107 goto redo;
2108
2cfb7455
CL
2109 if (lock)
2110 spin_unlock(&n->list_lock);
2111
2112 if (m == M_FREE) {
2113 stat(s, DEACTIVATE_EMPTY);
2114 discard_slab(s, page);
2115 stat(s, FREE_SLAB);
894b8788 2116 }
81819f0f
CL
2117}
2118
d24ac77f
JK
2119/*
2120 * Unfreeze all the cpu partial slabs.
2121 *
59a09917
CL
2122 * This function must be called with interrupts disabled
2123 * for the cpu using c (or some other guarantee must be there
2124 * to guarantee no concurrent accesses).
d24ac77f 2125 */
59a09917
CL
2126static void unfreeze_partials(struct kmem_cache *s,
2127 struct kmem_cache_cpu *c)
49e22585 2128{
345c905d 2129#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2130 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2131 struct page *page, *discard_page = NULL;
49e22585
CL
2132
2133 while ((page = c->partial)) {
49e22585
CL
2134 struct page new;
2135 struct page old;
2136
2137 c->partial = page->next;
43d77867
JK
2138
2139 n2 = get_node(s, page_to_nid(page));
2140 if (n != n2) {
2141 if (n)
2142 spin_unlock(&n->list_lock);
2143
2144 n = n2;
2145 spin_lock(&n->list_lock);
2146 }
49e22585
CL
2147
2148 do {
2149
2150 old.freelist = page->freelist;
2151 old.counters = page->counters;
a0132ac0 2152 VM_BUG_ON(!old.frozen);
49e22585
CL
2153
2154 new.counters = old.counters;
2155 new.freelist = old.freelist;
2156
2157 new.frozen = 0;
2158
d24ac77f 2159 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2160 old.freelist, old.counters,
2161 new.freelist, new.counters,
2162 "unfreezing slab"));
2163
8a5b20ae 2164 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2165 page->next = discard_page;
2166 discard_page = page;
43d77867
JK
2167 } else {
2168 add_partial(n, page, DEACTIVATE_TO_TAIL);
2169 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2170 }
2171 }
2172
2173 if (n)
2174 spin_unlock(&n->list_lock);
9ada1934
SL
2175
2176 while (discard_page) {
2177 page = discard_page;
2178 discard_page = discard_page->next;
2179
2180 stat(s, DEACTIVATE_EMPTY);
2181 discard_slab(s, page);
2182 stat(s, FREE_SLAB);
2183 }
345c905d 2184#endif
49e22585
CL
2185}
2186
2187/*
2188 * Put a page that was just frozen (in __slab_free) into a partial page
2189 * slot if available. This is done without interrupts disabled and without
2190 * preemption disabled. The cmpxchg is racy and may put the partial page
2191 * onto a random cpus partial slot.
2192 *
2193 * If we did not find a slot then simply move all the partials to the
2194 * per node partial list.
2195 */
633b0764 2196static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2197{
345c905d 2198#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2199 struct page *oldpage;
2200 int pages;
2201 int pobjects;
2202
d6e0b7fa 2203 preempt_disable();
49e22585
CL
2204 do {
2205 pages = 0;
2206 pobjects = 0;
2207 oldpage = this_cpu_read(s->cpu_slab->partial);
2208
2209 if (oldpage) {
2210 pobjects = oldpage->pobjects;
2211 pages = oldpage->pages;
2212 if (drain && pobjects > s->cpu_partial) {
2213 unsigned long flags;
2214 /*
2215 * partial array is full. Move the existing
2216 * set to the per node partial list.
2217 */
2218 local_irq_save(flags);
59a09917 2219 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2220 local_irq_restore(flags);
e24fc410 2221 oldpage = NULL;
49e22585
CL
2222 pobjects = 0;
2223 pages = 0;
8028dcea 2224 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2225 }
2226 }
2227
2228 pages++;
2229 pobjects += page->objects - page->inuse;
2230
2231 page->pages = pages;
2232 page->pobjects = pobjects;
2233 page->next = oldpage;
2234
d0e0ac97
CG
2235 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2236 != oldpage);
d6e0b7fa
VD
2237 if (unlikely(!s->cpu_partial)) {
2238 unsigned long flags;
2239
2240 local_irq_save(flags);
2241 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2242 local_irq_restore(flags);
2243 }
2244 preempt_enable();
345c905d 2245#endif
49e22585
CL
2246}
2247
dfb4f096 2248static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2249{
84e554e6 2250 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2251 deactivate_slab(s, c->page, c->freelist);
2252
2253 c->tid = next_tid(c->tid);
2254 c->page = NULL;
2255 c->freelist = NULL;
81819f0f
CL
2256}
2257
2258/*
2259 * Flush cpu slab.
6446faa2 2260 *
81819f0f
CL
2261 * Called from IPI handler with interrupts disabled.
2262 */
0c710013 2263static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2264{
9dfc6e68 2265 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2266
49e22585
CL
2267 if (likely(c)) {
2268 if (c->page)
2269 flush_slab(s, c);
2270
59a09917 2271 unfreeze_partials(s, c);
49e22585 2272 }
81819f0f
CL
2273}
2274
2275static void flush_cpu_slab(void *d)
2276{
2277 struct kmem_cache *s = d;
81819f0f 2278
dfb4f096 2279 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2280}
2281
a8364d55
GBY
2282static bool has_cpu_slab(int cpu, void *info)
2283{
2284 struct kmem_cache *s = info;
2285 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2286
02e1a9cd 2287 return c->page || c->partial;
a8364d55
GBY
2288}
2289
81819f0f
CL
2290static void flush_all(struct kmem_cache *s)
2291{
a8364d55 2292 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2293}
2294
dfb4f096
CL
2295/*
2296 * Check if the objects in a per cpu structure fit numa
2297 * locality expectations.
2298 */
57d437d2 2299static inline int node_match(struct page *page, int node)
dfb4f096
CL
2300{
2301#ifdef CONFIG_NUMA
4d7868e6 2302 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2303 return 0;
2304#endif
2305 return 1;
2306}
2307
9a02d699 2308#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2309static int count_free(struct page *page)
2310{
2311 return page->objects - page->inuse;
2312}
2313
9a02d699
DR
2314static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2315{
2316 return atomic_long_read(&n->total_objects);
2317}
2318#endif /* CONFIG_SLUB_DEBUG */
2319
2320#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2321static unsigned long count_partial(struct kmem_cache_node *n,
2322 int (*get_count)(struct page *))
2323{
2324 unsigned long flags;
2325 unsigned long x = 0;
2326 struct page *page;
2327
2328 spin_lock_irqsave(&n->list_lock, flags);
2329 list_for_each_entry(page, &n->partial, lru)
2330 x += get_count(page);
2331 spin_unlock_irqrestore(&n->list_lock, flags);
2332 return x;
2333}
9a02d699 2334#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2335
781b2ba6
PE
2336static noinline void
2337slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2338{
9a02d699
DR
2339#ifdef CONFIG_SLUB_DEBUG
2340 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2341 DEFAULT_RATELIMIT_BURST);
781b2ba6 2342 int node;
fa45dc25 2343 struct kmem_cache_node *n;
781b2ba6 2344
9a02d699
DR
2345 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2346 return;
2347
5b3810e5
VB
2348 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2349 nid, gfpflags, &gfpflags);
f9f58285
FF
2350 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2351 s->name, s->object_size, s->size, oo_order(s->oo),
2352 oo_order(s->min));
781b2ba6 2353
3b0efdfa 2354 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2355 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2356 s->name);
fa5ec8a1 2357
fa45dc25 2358 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2359 unsigned long nr_slabs;
2360 unsigned long nr_objs;
2361 unsigned long nr_free;
2362
26c02cf0
AB
2363 nr_free = count_partial(n, count_free);
2364 nr_slabs = node_nr_slabs(n);
2365 nr_objs = node_nr_objs(n);
781b2ba6 2366
f9f58285 2367 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2368 node, nr_slabs, nr_objs, nr_free);
2369 }
9a02d699 2370#endif
781b2ba6
PE
2371}
2372
497b66f2
CL
2373static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2374 int node, struct kmem_cache_cpu **pc)
2375{
6faa6833 2376 void *freelist;
188fd063
CL
2377 struct kmem_cache_cpu *c = *pc;
2378 struct page *page;
497b66f2 2379
188fd063 2380 freelist = get_partial(s, flags, node, c);
497b66f2 2381
188fd063
CL
2382 if (freelist)
2383 return freelist;
2384
2385 page = new_slab(s, flags, node);
497b66f2 2386 if (page) {
7c8e0181 2387 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2388 if (c->page)
2389 flush_slab(s, c);
2390
2391 /*
2392 * No other reference to the page yet so we can
2393 * muck around with it freely without cmpxchg
2394 */
6faa6833 2395 freelist = page->freelist;
497b66f2
CL
2396 page->freelist = NULL;
2397
2398 stat(s, ALLOC_SLAB);
497b66f2
CL
2399 c->page = page;
2400 *pc = c;
2401 } else
6faa6833 2402 freelist = NULL;
497b66f2 2403
6faa6833 2404 return freelist;
497b66f2
CL
2405}
2406
072bb0aa
MG
2407static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2408{
2409 if (unlikely(PageSlabPfmemalloc(page)))
2410 return gfp_pfmemalloc_allowed(gfpflags);
2411
2412 return true;
2413}
2414
213eeb9f 2415/*
d0e0ac97
CG
2416 * Check the page->freelist of a page and either transfer the freelist to the
2417 * per cpu freelist or deactivate the page.
213eeb9f
CL
2418 *
2419 * The page is still frozen if the return value is not NULL.
2420 *
2421 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2422 *
2423 * This function must be called with interrupt disabled.
213eeb9f
CL
2424 */
2425static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2426{
2427 struct page new;
2428 unsigned long counters;
2429 void *freelist;
2430
2431 do {
2432 freelist = page->freelist;
2433 counters = page->counters;
6faa6833 2434
213eeb9f 2435 new.counters = counters;
a0132ac0 2436 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2437
2438 new.inuse = page->objects;
2439 new.frozen = freelist != NULL;
2440
d24ac77f 2441 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2442 freelist, counters,
2443 NULL, new.counters,
2444 "get_freelist"));
2445
2446 return freelist;
2447}
2448
81819f0f 2449/*
894b8788
CL
2450 * Slow path. The lockless freelist is empty or we need to perform
2451 * debugging duties.
2452 *
894b8788
CL
2453 * Processing is still very fast if new objects have been freed to the
2454 * regular freelist. In that case we simply take over the regular freelist
2455 * as the lockless freelist and zap the regular freelist.
81819f0f 2456 *
894b8788
CL
2457 * If that is not working then we fall back to the partial lists. We take the
2458 * first element of the freelist as the object to allocate now and move the
2459 * rest of the freelist to the lockless freelist.
81819f0f 2460 *
894b8788 2461 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2462 * we need to allocate a new slab. This is the slowest path since it involves
2463 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2464 *
2465 * Version of __slab_alloc to use when we know that interrupts are
2466 * already disabled (which is the case for bulk allocation).
81819f0f 2467 */
a380a3c7 2468static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2469 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2470{
6faa6833 2471 void *freelist;
f6e7def7 2472 struct page *page;
81819f0f 2473
f6e7def7
CL
2474 page = c->page;
2475 if (!page)
81819f0f 2476 goto new_slab;
49e22585 2477redo:
6faa6833 2478
57d437d2 2479 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2480 int searchnode = node;
2481
2482 if (node != NUMA_NO_NODE && !node_present_pages(node))
2483 searchnode = node_to_mem_node(node);
2484
2485 if (unlikely(!node_match(page, searchnode))) {
2486 stat(s, ALLOC_NODE_MISMATCH);
2487 deactivate_slab(s, page, c->freelist);
2488 c->page = NULL;
2489 c->freelist = NULL;
2490 goto new_slab;
2491 }
fc59c053 2492 }
6446faa2 2493
072bb0aa
MG
2494 /*
2495 * By rights, we should be searching for a slab page that was
2496 * PFMEMALLOC but right now, we are losing the pfmemalloc
2497 * information when the page leaves the per-cpu allocator
2498 */
2499 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2500 deactivate_slab(s, page, c->freelist);
2501 c->page = NULL;
2502 c->freelist = NULL;
2503 goto new_slab;
2504 }
2505
73736e03 2506 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2507 freelist = c->freelist;
2508 if (freelist)
73736e03 2509 goto load_freelist;
03e404af 2510
f6e7def7 2511 freelist = get_freelist(s, page);
6446faa2 2512
6faa6833 2513 if (!freelist) {
03e404af
CL
2514 c->page = NULL;
2515 stat(s, DEACTIVATE_BYPASS);
fc59c053 2516 goto new_slab;
03e404af 2517 }
6446faa2 2518
84e554e6 2519 stat(s, ALLOC_REFILL);
6446faa2 2520
894b8788 2521load_freelist:
507effea
CL
2522 /*
2523 * freelist is pointing to the list of objects to be used.
2524 * page is pointing to the page from which the objects are obtained.
2525 * That page must be frozen for per cpu allocations to work.
2526 */
a0132ac0 2527 VM_BUG_ON(!c->page->frozen);
6faa6833 2528 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2529 c->tid = next_tid(c->tid);
6faa6833 2530 return freelist;
81819f0f 2531
81819f0f 2532new_slab:
2cfb7455 2533
49e22585 2534 if (c->partial) {
f6e7def7
CL
2535 page = c->page = c->partial;
2536 c->partial = page->next;
49e22585
CL
2537 stat(s, CPU_PARTIAL_ALLOC);
2538 c->freelist = NULL;
2539 goto redo;
81819f0f
CL
2540 }
2541
188fd063 2542 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2543
f4697436 2544 if (unlikely(!freelist)) {
9a02d699 2545 slab_out_of_memory(s, gfpflags, node);
f4697436 2546 return NULL;
81819f0f 2547 }
2cfb7455 2548
f6e7def7 2549 page = c->page;
5091b74a 2550 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2551 goto load_freelist;
2cfb7455 2552
497b66f2 2553 /* Only entered in the debug case */
d0e0ac97
CG
2554 if (kmem_cache_debug(s) &&
2555 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2556 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2557
f6e7def7 2558 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2559 c->page = NULL;
2560 c->freelist = NULL;
6faa6833 2561 return freelist;
894b8788
CL
2562}
2563
a380a3c7
CL
2564/*
2565 * Another one that disabled interrupt and compensates for possible
2566 * cpu changes by refetching the per cpu area pointer.
2567 */
2568static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2569 unsigned long addr, struct kmem_cache_cpu *c)
2570{
2571 void *p;
2572 unsigned long flags;
2573
2574 local_irq_save(flags);
2575#ifdef CONFIG_PREEMPT
2576 /*
2577 * We may have been preempted and rescheduled on a different
2578 * cpu before disabling interrupts. Need to reload cpu area
2579 * pointer.
2580 */
2581 c = this_cpu_ptr(s->cpu_slab);
2582#endif
2583
2584 p = ___slab_alloc(s, gfpflags, node, addr, c);
2585 local_irq_restore(flags);
2586 return p;
2587}
2588
894b8788
CL
2589/*
2590 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2591 * have the fastpath folded into their functions. So no function call
2592 * overhead for requests that can be satisfied on the fastpath.
2593 *
2594 * The fastpath works by first checking if the lockless freelist can be used.
2595 * If not then __slab_alloc is called for slow processing.
2596 *
2597 * Otherwise we can simply pick the next object from the lockless free list.
2598 */
2b847c3c 2599static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2600 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2601{
03ec0ed5 2602 void *object;
dfb4f096 2603 struct kmem_cache_cpu *c;
57d437d2 2604 struct page *page;
8a5ec0ba 2605 unsigned long tid;
1f84260c 2606
8135be5a
VD
2607 s = slab_pre_alloc_hook(s, gfpflags);
2608 if (!s)
773ff60e 2609 return NULL;
8a5ec0ba 2610redo:
8a5ec0ba
CL
2611 /*
2612 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2613 * enabled. We may switch back and forth between cpus while
2614 * reading from one cpu area. That does not matter as long
2615 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2616 *
9aabf810
JK
2617 * We should guarantee that tid and kmem_cache are retrieved on
2618 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2619 * to check if it is matched or not.
8a5ec0ba 2620 */
9aabf810
JK
2621 do {
2622 tid = this_cpu_read(s->cpu_slab->tid);
2623 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2624 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2625 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2626
2627 /*
2628 * Irqless object alloc/free algorithm used here depends on sequence
2629 * of fetching cpu_slab's data. tid should be fetched before anything
2630 * on c to guarantee that object and page associated with previous tid
2631 * won't be used with current tid. If we fetch tid first, object and
2632 * page could be one associated with next tid and our alloc/free
2633 * request will be failed. In this case, we will retry. So, no problem.
2634 */
2635 barrier();
8a5ec0ba 2636
8a5ec0ba
CL
2637 /*
2638 * The transaction ids are globally unique per cpu and per operation on
2639 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2640 * occurs on the right processor and that there was no operation on the
2641 * linked list in between.
2642 */
8a5ec0ba 2643
9dfc6e68 2644 object = c->freelist;
57d437d2 2645 page = c->page;
8eae1492 2646 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2647 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2648 stat(s, ALLOC_SLOWPATH);
2649 } else {
0ad9500e
ED
2650 void *next_object = get_freepointer_safe(s, object);
2651
8a5ec0ba 2652 /*
25985edc 2653 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2654 * operation and if we are on the right processor.
2655 *
d0e0ac97
CG
2656 * The cmpxchg does the following atomically (without lock
2657 * semantics!)
8a5ec0ba
CL
2658 * 1. Relocate first pointer to the current per cpu area.
2659 * 2. Verify that tid and freelist have not been changed
2660 * 3. If they were not changed replace tid and freelist
2661 *
d0e0ac97
CG
2662 * Since this is without lock semantics the protection is only
2663 * against code executing on this cpu *not* from access by
2664 * other cpus.
8a5ec0ba 2665 */
933393f5 2666 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2667 s->cpu_slab->freelist, s->cpu_slab->tid,
2668 object, tid,
0ad9500e 2669 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2670
2671 note_cmpxchg_failure("slab_alloc", s, tid);
2672 goto redo;
2673 }
0ad9500e 2674 prefetch_freepointer(s, next_object);
84e554e6 2675 stat(s, ALLOC_FASTPATH);
894b8788 2676 }
8a5ec0ba 2677
74e2134f 2678 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2679 memset(object, 0, s->object_size);
d07dbea4 2680
03ec0ed5 2681 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2682
894b8788 2683 return object;
81819f0f
CL
2684}
2685
2b847c3c
EG
2686static __always_inline void *slab_alloc(struct kmem_cache *s,
2687 gfp_t gfpflags, unsigned long addr)
2688{
2689 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2690}
2691
81819f0f
CL
2692void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2693{
2b847c3c 2694 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2695
d0e0ac97
CG
2696 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2697 s->size, gfpflags);
5b882be4
EGM
2698
2699 return ret;
81819f0f
CL
2700}
2701EXPORT_SYMBOL(kmem_cache_alloc);
2702
0f24f128 2703#ifdef CONFIG_TRACING
4a92379b
RK
2704void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2705{
2b847c3c 2706 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2707 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2708 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2709 return ret;
2710}
2711EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2712#endif
2713
81819f0f
CL
2714#ifdef CONFIG_NUMA
2715void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2716{
2b847c3c 2717 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2718
ca2b84cb 2719 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2720 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2721
2722 return ret;
81819f0f
CL
2723}
2724EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2725
0f24f128 2726#ifdef CONFIG_TRACING
4a92379b 2727void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2728 gfp_t gfpflags,
4a92379b 2729 int node, size_t size)
5b882be4 2730{
2b847c3c 2731 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2732
2733 trace_kmalloc_node(_RET_IP_, ret,
2734 size, s->size, gfpflags, node);
0316bec2 2735
505f5dcb 2736 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2737 return ret;
5b882be4 2738}
4a92379b 2739EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2740#endif
5d1f57e4 2741#endif
5b882be4 2742
81819f0f 2743/*
94e4d712 2744 * Slow path handling. This may still be called frequently since objects
894b8788 2745 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2746 *
894b8788
CL
2747 * So we still attempt to reduce cache line usage. Just take the slab
2748 * lock and free the item. If there is no additional partial page
2749 * handling required then we can return immediately.
81819f0f 2750 */
894b8788 2751static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2752 void *head, void *tail, int cnt,
2753 unsigned long addr)
2754
81819f0f
CL
2755{
2756 void *prior;
2cfb7455 2757 int was_frozen;
2cfb7455
CL
2758 struct page new;
2759 unsigned long counters;
2760 struct kmem_cache_node *n = NULL;
61728d1e 2761 unsigned long uninitialized_var(flags);
81819f0f 2762
8a5ec0ba 2763 stat(s, FREE_SLOWPATH);
81819f0f 2764
19c7ff9e 2765 if (kmem_cache_debug(s) &&
282acb43 2766 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2767 return;
6446faa2 2768
2cfb7455 2769 do {
837d678d
JK
2770 if (unlikely(n)) {
2771 spin_unlock_irqrestore(&n->list_lock, flags);
2772 n = NULL;
2773 }
2cfb7455
CL
2774 prior = page->freelist;
2775 counters = page->counters;
81084651 2776 set_freepointer(s, tail, prior);
2cfb7455
CL
2777 new.counters = counters;
2778 was_frozen = new.frozen;
81084651 2779 new.inuse -= cnt;
837d678d 2780 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2781
c65c1877 2782 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2783
2784 /*
d0e0ac97
CG
2785 * Slab was on no list before and will be
2786 * partially empty
2787 * We can defer the list move and instead
2788 * freeze it.
49e22585
CL
2789 */
2790 new.frozen = 1;
2791
c65c1877 2792 } else { /* Needs to be taken off a list */
49e22585 2793
b455def2 2794 n = get_node(s, page_to_nid(page));
49e22585
CL
2795 /*
2796 * Speculatively acquire the list_lock.
2797 * If the cmpxchg does not succeed then we may
2798 * drop the list_lock without any processing.
2799 *
2800 * Otherwise the list_lock will synchronize with
2801 * other processors updating the list of slabs.
2802 */
2803 spin_lock_irqsave(&n->list_lock, flags);
2804
2805 }
2cfb7455 2806 }
81819f0f 2807
2cfb7455
CL
2808 } while (!cmpxchg_double_slab(s, page,
2809 prior, counters,
81084651 2810 head, new.counters,
2cfb7455 2811 "__slab_free"));
81819f0f 2812
2cfb7455 2813 if (likely(!n)) {
49e22585
CL
2814
2815 /*
2816 * If we just froze the page then put it onto the
2817 * per cpu partial list.
2818 */
8028dcea 2819 if (new.frozen && !was_frozen) {
49e22585 2820 put_cpu_partial(s, page, 1);
8028dcea
AS
2821 stat(s, CPU_PARTIAL_FREE);
2822 }
49e22585 2823 /*
2cfb7455
CL
2824 * The list lock was not taken therefore no list
2825 * activity can be necessary.
2826 */
b455def2
L
2827 if (was_frozen)
2828 stat(s, FREE_FROZEN);
2829 return;
2830 }
81819f0f 2831
8a5b20ae 2832 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2833 goto slab_empty;
2834
81819f0f 2835 /*
837d678d
JK
2836 * Objects left in the slab. If it was not on the partial list before
2837 * then add it.
81819f0f 2838 */
345c905d
JK
2839 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2840 if (kmem_cache_debug(s))
c65c1877 2841 remove_full(s, n, page);
837d678d
JK
2842 add_partial(n, page, DEACTIVATE_TO_TAIL);
2843 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2844 }
80f08c19 2845 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2846 return;
2847
2848slab_empty:
a973e9dd 2849 if (prior) {
81819f0f 2850 /*
6fbabb20 2851 * Slab on the partial list.
81819f0f 2852 */
5cc6eee8 2853 remove_partial(n, page);
84e554e6 2854 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2855 } else {
6fbabb20 2856 /* Slab must be on the full list */
c65c1877
PZ
2857 remove_full(s, n, page);
2858 }
2cfb7455 2859
80f08c19 2860 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2861 stat(s, FREE_SLAB);
81819f0f 2862 discard_slab(s, page);
81819f0f
CL
2863}
2864
894b8788
CL
2865/*
2866 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2867 * can perform fastpath freeing without additional function calls.
2868 *
2869 * The fastpath is only possible if we are freeing to the current cpu slab
2870 * of this processor. This typically the case if we have just allocated
2871 * the item before.
2872 *
2873 * If fastpath is not possible then fall back to __slab_free where we deal
2874 * with all sorts of special processing.
81084651
JDB
2875 *
2876 * Bulk free of a freelist with several objects (all pointing to the
2877 * same page) possible by specifying head and tail ptr, plus objects
2878 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2879 */
81084651
JDB
2880static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2881 void *head, void *tail, int cnt,
2882 unsigned long addr)
894b8788 2883{
81084651 2884 void *tail_obj = tail ? : head;
dfb4f096 2885 struct kmem_cache_cpu *c;
8a5ec0ba 2886 unsigned long tid;
1f84260c 2887
81084651 2888 slab_free_freelist_hook(s, head, tail);
c016b0bd 2889
8a5ec0ba
CL
2890redo:
2891 /*
2892 * Determine the currently cpus per cpu slab.
2893 * The cpu may change afterward. However that does not matter since
2894 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2895 * during the cmpxchg then the free will succeed.
8a5ec0ba 2896 */
9aabf810
JK
2897 do {
2898 tid = this_cpu_read(s->cpu_slab->tid);
2899 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2900 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2901 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2902
9aabf810
JK
2903 /* Same with comment on barrier() in slab_alloc_node() */
2904 barrier();
c016b0bd 2905
442b06bc 2906 if (likely(page == c->page)) {
81084651 2907 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2908
933393f5 2909 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2910 s->cpu_slab->freelist, s->cpu_slab->tid,
2911 c->freelist, tid,
81084651 2912 head, next_tid(tid)))) {
8a5ec0ba
CL
2913
2914 note_cmpxchg_failure("slab_free", s, tid);
2915 goto redo;
2916 }
84e554e6 2917 stat(s, FREE_FASTPATH);
894b8788 2918 } else
81084651 2919 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2920
894b8788
CL
2921}
2922
81819f0f
CL
2923void kmem_cache_free(struct kmem_cache *s, void *x)
2924{
b9ce5ef4
GC
2925 s = cache_from_obj(s, x);
2926 if (!s)
79576102 2927 return;
81084651 2928 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2929 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2930}
2931EXPORT_SYMBOL(kmem_cache_free);
2932
d0ecd894 2933struct detached_freelist {
fbd02630 2934 struct page *page;
d0ecd894
JDB
2935 void *tail;
2936 void *freelist;
2937 int cnt;
376bf125 2938 struct kmem_cache *s;
d0ecd894 2939};
fbd02630 2940
d0ecd894
JDB
2941/*
2942 * This function progressively scans the array with free objects (with
2943 * a limited look ahead) and extract objects belonging to the same
2944 * page. It builds a detached freelist directly within the given
2945 * page/objects. This can happen without any need for
2946 * synchronization, because the objects are owned by running process.
2947 * The freelist is build up as a single linked list in the objects.
2948 * The idea is, that this detached freelist can then be bulk
2949 * transferred to the real freelist(s), but only requiring a single
2950 * synchronization primitive. Look ahead in the array is limited due
2951 * to performance reasons.
2952 */
376bf125
JDB
2953static inline
2954int build_detached_freelist(struct kmem_cache *s, size_t size,
2955 void **p, struct detached_freelist *df)
d0ecd894
JDB
2956{
2957 size_t first_skipped_index = 0;
2958 int lookahead = 3;
2959 void *object;
ca257195 2960 struct page *page;
fbd02630 2961
d0ecd894
JDB
2962 /* Always re-init detached_freelist */
2963 df->page = NULL;
fbd02630 2964
d0ecd894
JDB
2965 do {
2966 object = p[--size];
ca257195 2967 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2968 } while (!object && size);
3eed034d 2969
d0ecd894
JDB
2970 if (!object)
2971 return 0;
fbd02630 2972
ca257195
JDB
2973 page = virt_to_head_page(object);
2974 if (!s) {
2975 /* Handle kalloc'ed objects */
2976 if (unlikely(!PageSlab(page))) {
2977 BUG_ON(!PageCompound(page));
2978 kfree_hook(object);
2979 __free_kmem_pages(page, compound_order(page));
2980 p[size] = NULL; /* mark object processed */
2981 return size;
2982 }
2983 /* Derive kmem_cache from object */
2984 df->s = page->slab_cache;
2985 } else {
2986 df->s = cache_from_obj(s, object); /* Support for memcg */
2987 }
376bf125 2988
d0ecd894 2989 /* Start new detached freelist */
ca257195 2990 df->page = page;
376bf125 2991 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
2992 df->tail = object;
2993 df->freelist = object;
2994 p[size] = NULL; /* mark object processed */
2995 df->cnt = 1;
2996
2997 while (size) {
2998 object = p[--size];
2999 if (!object)
3000 continue; /* Skip processed objects */
3001
3002 /* df->page is always set at this point */
3003 if (df->page == virt_to_head_page(object)) {
3004 /* Opportunity build freelist */
376bf125 3005 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3006 df->freelist = object;
3007 df->cnt++;
3008 p[size] = NULL; /* mark object processed */
3009
3010 continue;
fbd02630 3011 }
d0ecd894
JDB
3012
3013 /* Limit look ahead search */
3014 if (!--lookahead)
3015 break;
3016
3017 if (!first_skipped_index)
3018 first_skipped_index = size + 1;
fbd02630 3019 }
d0ecd894
JDB
3020
3021 return first_skipped_index;
3022}
3023
d0ecd894 3024/* Note that interrupts must be enabled when calling this function. */
376bf125 3025void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3026{
3027 if (WARN_ON(!size))
3028 return;
3029
3030 do {
3031 struct detached_freelist df;
3032
3033 size = build_detached_freelist(s, size, p, &df);
3034 if (unlikely(!df.page))
3035 continue;
3036
376bf125 3037 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3038 } while (likely(size));
484748f0
CL
3039}
3040EXPORT_SYMBOL(kmem_cache_free_bulk);
3041
994eb764 3042/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3043int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3044 void **p)
484748f0 3045{
994eb764
JDB
3046 struct kmem_cache_cpu *c;
3047 int i;
3048
03ec0ed5
JDB
3049 /* memcg and kmem_cache debug support */
3050 s = slab_pre_alloc_hook(s, flags);
3051 if (unlikely(!s))
3052 return false;
994eb764
JDB
3053 /*
3054 * Drain objects in the per cpu slab, while disabling local
3055 * IRQs, which protects against PREEMPT and interrupts
3056 * handlers invoking normal fastpath.
3057 */
3058 local_irq_disable();
3059 c = this_cpu_ptr(s->cpu_slab);
3060
3061 for (i = 0; i < size; i++) {
3062 void *object = c->freelist;
3063
ebe909e0 3064 if (unlikely(!object)) {
ebe909e0
JDB
3065 /*
3066 * Invoking slow path likely have side-effect
3067 * of re-populating per CPU c->freelist
3068 */
87098373 3069 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3070 _RET_IP_, c);
87098373
CL
3071 if (unlikely(!p[i]))
3072 goto error;
3073
ebe909e0
JDB
3074 c = this_cpu_ptr(s->cpu_slab);
3075 continue; /* goto for-loop */
3076 }
994eb764
JDB
3077 c->freelist = get_freepointer(s, object);
3078 p[i] = object;
3079 }
3080 c->tid = next_tid(c->tid);
3081 local_irq_enable();
3082
3083 /* Clear memory outside IRQ disabled fastpath loop */
3084 if (unlikely(flags & __GFP_ZERO)) {
3085 int j;
3086
3087 for (j = 0; j < i; j++)
3088 memset(p[j], 0, s->object_size);
3089 }
3090
03ec0ed5
JDB
3091 /* memcg and kmem_cache debug support */
3092 slab_post_alloc_hook(s, flags, size, p);
865762a8 3093 return i;
87098373 3094error:
87098373 3095 local_irq_enable();
03ec0ed5
JDB
3096 slab_post_alloc_hook(s, flags, i, p);
3097 __kmem_cache_free_bulk(s, i, p);
865762a8 3098 return 0;
484748f0
CL
3099}
3100EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3101
3102
81819f0f 3103/*
672bba3a
CL
3104 * Object placement in a slab is made very easy because we always start at
3105 * offset 0. If we tune the size of the object to the alignment then we can
3106 * get the required alignment by putting one properly sized object after
3107 * another.
81819f0f
CL
3108 *
3109 * Notice that the allocation order determines the sizes of the per cpu
3110 * caches. Each processor has always one slab available for allocations.
3111 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3112 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3113 * locking overhead.
81819f0f
CL
3114 */
3115
3116/*
3117 * Mininum / Maximum order of slab pages. This influences locking overhead
3118 * and slab fragmentation. A higher order reduces the number of partial slabs
3119 * and increases the number of allocations possible without having to
3120 * take the list_lock.
3121 */
3122static int slub_min_order;
114e9e89 3123static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3124static int slub_min_objects;
81819f0f 3125
81819f0f
CL
3126/*
3127 * Calculate the order of allocation given an slab object size.
3128 *
672bba3a
CL
3129 * The order of allocation has significant impact on performance and other
3130 * system components. Generally order 0 allocations should be preferred since
3131 * order 0 does not cause fragmentation in the page allocator. Larger objects
3132 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3133 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3134 * would be wasted.
3135 *
3136 * In order to reach satisfactory performance we must ensure that a minimum
3137 * number of objects is in one slab. Otherwise we may generate too much
3138 * activity on the partial lists which requires taking the list_lock. This is
3139 * less a concern for large slabs though which are rarely used.
81819f0f 3140 *
672bba3a
CL
3141 * slub_max_order specifies the order where we begin to stop considering the
3142 * number of objects in a slab as critical. If we reach slub_max_order then
3143 * we try to keep the page order as low as possible. So we accept more waste
3144 * of space in favor of a small page order.
81819f0f 3145 *
672bba3a
CL
3146 * Higher order allocations also allow the placement of more objects in a
3147 * slab and thereby reduce object handling overhead. If the user has
3148 * requested a higher mininum order then we start with that one instead of
3149 * the smallest order which will fit the object.
81819f0f 3150 */
5e6d444e 3151static inline int slab_order(int size, int min_objects,
ab9a0f19 3152 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3153{
3154 int order;
3155 int rem;
6300ea75 3156 int min_order = slub_min_order;
81819f0f 3157
ab9a0f19 3158 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3159 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3160
9f835703 3161 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3162 order <= max_order; order++) {
81819f0f 3163
5e6d444e 3164 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3165
ab9a0f19 3166 rem = (slab_size - reserved) % size;
81819f0f 3167
5e6d444e 3168 if (rem <= slab_size / fract_leftover)
81819f0f 3169 break;
81819f0f 3170 }
672bba3a 3171
81819f0f
CL
3172 return order;
3173}
3174
ab9a0f19 3175static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3176{
3177 int order;
3178 int min_objects;
3179 int fraction;
e8120ff1 3180 int max_objects;
5e6d444e
CL
3181
3182 /*
3183 * Attempt to find best configuration for a slab. This
3184 * works by first attempting to generate a layout with
3185 * the best configuration and backing off gradually.
3186 *
422ff4d7 3187 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3188 * we reduce the minimum objects required in a slab.
3189 */
3190 min_objects = slub_min_objects;
9b2cd506
CL
3191 if (!min_objects)
3192 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3193 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3194 min_objects = min(min_objects, max_objects);
3195
5e6d444e 3196 while (min_objects > 1) {
c124f5b5 3197 fraction = 16;
5e6d444e
CL
3198 while (fraction >= 4) {
3199 order = slab_order(size, min_objects,
ab9a0f19 3200 slub_max_order, fraction, reserved);
5e6d444e
CL
3201 if (order <= slub_max_order)
3202 return order;
3203 fraction /= 2;
3204 }
5086c389 3205 min_objects--;
5e6d444e
CL
3206 }
3207
3208 /*
3209 * We were unable to place multiple objects in a slab. Now
3210 * lets see if we can place a single object there.
3211 */
ab9a0f19 3212 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3213 if (order <= slub_max_order)
3214 return order;
3215
3216 /*
3217 * Doh this slab cannot be placed using slub_max_order.
3218 */
ab9a0f19 3219 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3220 if (order < MAX_ORDER)
5e6d444e
CL
3221 return order;
3222 return -ENOSYS;
3223}
3224
5595cffc 3225static void
4053497d 3226init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3227{
3228 n->nr_partial = 0;
81819f0f
CL
3229 spin_lock_init(&n->list_lock);
3230 INIT_LIST_HEAD(&n->partial);
8ab1372f 3231#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3232 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3233 atomic_long_set(&n->total_objects, 0);
643b1138 3234 INIT_LIST_HEAD(&n->full);
8ab1372f 3235#endif
81819f0f
CL
3236}
3237
55136592 3238static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3239{
6c182dc0 3240 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3241 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3242
8a5ec0ba 3243 /*
d4d84fef
CM
3244 * Must align to double word boundary for the double cmpxchg
3245 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3246 */
d4d84fef
CM
3247 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3248 2 * sizeof(void *));
8a5ec0ba
CL
3249
3250 if (!s->cpu_slab)
3251 return 0;
3252
3253 init_kmem_cache_cpus(s);
4c93c355 3254
8a5ec0ba 3255 return 1;
4c93c355 3256}
4c93c355 3257
51df1142
CL
3258static struct kmem_cache *kmem_cache_node;
3259
81819f0f
CL
3260/*
3261 * No kmalloc_node yet so do it by hand. We know that this is the first
3262 * slab on the node for this slabcache. There are no concurrent accesses
3263 * possible.
3264 *
721ae22a
ZYW
3265 * Note that this function only works on the kmem_cache_node
3266 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3267 * memory on a fresh node that has no slab structures yet.
81819f0f 3268 */
55136592 3269static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3270{
3271 struct page *page;
3272 struct kmem_cache_node *n;
3273
51df1142 3274 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3275
51df1142 3276 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3277
3278 BUG_ON(!page);
a2f92ee7 3279 if (page_to_nid(page) != node) {
f9f58285
FF
3280 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3281 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3282 }
3283
81819f0f
CL
3284 n = page->freelist;
3285 BUG_ON(!n);
51df1142 3286 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3287 page->inuse = 1;
8cb0a506 3288 page->frozen = 0;
51df1142 3289 kmem_cache_node->node[node] = n;
8ab1372f 3290#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3291 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3292 init_tracking(kmem_cache_node, n);
8ab1372f 3293#endif
505f5dcb
AP
3294 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3295 GFP_KERNEL);
4053497d 3296 init_kmem_cache_node(n);
51df1142 3297 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3298
67b6c900 3299 /*
1e4dd946
SR
3300 * No locks need to be taken here as it has just been
3301 * initialized and there is no concurrent access.
67b6c900 3302 */
1e4dd946 3303 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3304}
3305
3306static void free_kmem_cache_nodes(struct kmem_cache *s)
3307{
3308 int node;
fa45dc25 3309 struct kmem_cache_node *n;
81819f0f 3310
fa45dc25
CL
3311 for_each_kmem_cache_node(s, node, n) {
3312 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3313 s->node[node] = NULL;
3314 }
3315}
3316
52b4b950
DS
3317void __kmem_cache_release(struct kmem_cache *s)
3318{
210e7a43 3319 cache_random_seq_destroy(s);
52b4b950
DS
3320 free_percpu(s->cpu_slab);
3321 free_kmem_cache_nodes(s);
3322}
3323
55136592 3324static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3325{
3326 int node;
81819f0f 3327
f64dc58c 3328 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3329 struct kmem_cache_node *n;
3330
73367bd8 3331 if (slab_state == DOWN) {
55136592 3332 early_kmem_cache_node_alloc(node);
73367bd8
AD
3333 continue;
3334 }
51df1142 3335 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3336 GFP_KERNEL, node);
81819f0f 3337
73367bd8
AD
3338 if (!n) {
3339 free_kmem_cache_nodes(s);
3340 return 0;
81819f0f 3341 }
73367bd8 3342
81819f0f 3343 s->node[node] = n;
4053497d 3344 init_kmem_cache_node(n);
81819f0f
CL
3345 }
3346 return 1;
3347}
81819f0f 3348
c0bdb232 3349static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3350{
3351 if (min < MIN_PARTIAL)
3352 min = MIN_PARTIAL;
3353 else if (min > MAX_PARTIAL)
3354 min = MAX_PARTIAL;
3355 s->min_partial = min;
3356}
3357
81819f0f
CL
3358/*
3359 * calculate_sizes() determines the order and the distribution of data within
3360 * a slab object.
3361 */
06b285dc 3362static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3363{
3364 unsigned long flags = s->flags;
3b0efdfa 3365 unsigned long size = s->object_size;
834f3d11 3366 int order;
81819f0f 3367
d8b42bf5
CL
3368 /*
3369 * Round up object size to the next word boundary. We can only
3370 * place the free pointer at word boundaries and this determines
3371 * the possible location of the free pointer.
3372 */
3373 size = ALIGN(size, sizeof(void *));
3374
3375#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3376 /*
3377 * Determine if we can poison the object itself. If the user of
3378 * the slab may touch the object after free or before allocation
3379 * then we should never poison the object itself.
3380 */
3381 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3382 !s->ctor)
81819f0f
CL
3383 s->flags |= __OBJECT_POISON;
3384 else
3385 s->flags &= ~__OBJECT_POISON;
3386
81819f0f
CL
3387
3388 /*
672bba3a 3389 * If we are Redzoning then check if there is some space between the
81819f0f 3390 * end of the object and the free pointer. If not then add an
672bba3a 3391 * additional word to have some bytes to store Redzone information.
81819f0f 3392 */
3b0efdfa 3393 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3394 size += sizeof(void *);
41ecc55b 3395#endif
81819f0f
CL
3396
3397 /*
672bba3a
CL
3398 * With that we have determined the number of bytes in actual use
3399 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3400 */
3401 s->inuse = size;
3402
3403 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3404 s->ctor)) {
81819f0f
CL
3405 /*
3406 * Relocate free pointer after the object if it is not
3407 * permitted to overwrite the first word of the object on
3408 * kmem_cache_free.
3409 *
3410 * This is the case if we do RCU, have a constructor or
3411 * destructor or are poisoning the objects.
3412 */
3413 s->offset = size;
3414 size += sizeof(void *);
3415 }
3416
c12b3c62 3417#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3418 if (flags & SLAB_STORE_USER)
3419 /*
3420 * Need to store information about allocs and frees after
3421 * the object.
3422 */
3423 size += 2 * sizeof(struct track);
3424
d86bd1be 3425 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3426 /*
3427 * Add some empty padding so that we can catch
3428 * overwrites from earlier objects rather than let
3429 * tracking information or the free pointer be
0211a9c8 3430 * corrupted if a user writes before the start
81819f0f
CL
3431 * of the object.
3432 */
3433 size += sizeof(void *);
d86bd1be
JK
3434
3435 s->red_left_pad = sizeof(void *);
3436 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3437 size += s->red_left_pad;
3438 }
41ecc55b 3439#endif
672bba3a 3440
81819f0f
CL
3441 /*
3442 * SLUB stores one object immediately after another beginning from
3443 * offset 0. In order to align the objects we have to simply size
3444 * each object to conform to the alignment.
3445 */
45906855 3446 size = ALIGN(size, s->align);
81819f0f 3447 s->size = size;
06b285dc
CL
3448 if (forced_order >= 0)
3449 order = forced_order;
3450 else
ab9a0f19 3451 order = calculate_order(size, s->reserved);
81819f0f 3452
834f3d11 3453 if (order < 0)
81819f0f
CL
3454 return 0;
3455
b7a49f0d 3456 s->allocflags = 0;
834f3d11 3457 if (order)
b7a49f0d
CL
3458 s->allocflags |= __GFP_COMP;
3459
3460 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3461 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3462
3463 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3464 s->allocflags |= __GFP_RECLAIMABLE;
3465
81819f0f
CL
3466 /*
3467 * Determine the number of objects per slab
3468 */
ab9a0f19
LJ
3469 s->oo = oo_make(order, size, s->reserved);
3470 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3471 if (oo_objects(s->oo) > oo_objects(s->max))
3472 s->max = s->oo;
81819f0f 3473
834f3d11 3474 return !!oo_objects(s->oo);
81819f0f
CL
3475}
3476
8a13a4cc 3477static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3478{
8a13a4cc 3479 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3480 s->reserved = 0;
81819f0f 3481
da9a638c
LJ
3482 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3483 s->reserved = sizeof(struct rcu_head);
81819f0f 3484
06b285dc 3485 if (!calculate_sizes(s, -1))
81819f0f 3486 goto error;
3de47213
DR
3487 if (disable_higher_order_debug) {
3488 /*
3489 * Disable debugging flags that store metadata if the min slab
3490 * order increased.
3491 */
3b0efdfa 3492 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3493 s->flags &= ~DEBUG_METADATA_FLAGS;
3494 s->offset = 0;
3495 if (!calculate_sizes(s, -1))
3496 goto error;
3497 }
3498 }
81819f0f 3499
2565409f
HC
3500#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3501 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3502 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3503 /* Enable fast mode */
3504 s->flags |= __CMPXCHG_DOUBLE;
3505#endif
3506
3b89d7d8
DR
3507 /*
3508 * The larger the object size is, the more pages we want on the partial
3509 * list to avoid pounding the page allocator excessively.
3510 */
49e22585
CL
3511 set_min_partial(s, ilog2(s->size) / 2);
3512
3513 /*
3514 * cpu_partial determined the maximum number of objects kept in the
3515 * per cpu partial lists of a processor.
3516 *
3517 * Per cpu partial lists mainly contain slabs that just have one
3518 * object freed. If they are used for allocation then they can be
3519 * filled up again with minimal effort. The slab will never hit the
3520 * per node partial lists and therefore no locking will be required.
3521 *
3522 * This setting also determines
3523 *
3524 * A) The number of objects from per cpu partial slabs dumped to the
3525 * per node list when we reach the limit.
9f264904 3526 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3527 * per node list when we run out of per cpu objects. We only fetch
3528 * 50% to keep some capacity around for frees.
49e22585 3529 */
345c905d 3530 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3531 s->cpu_partial = 0;
3532 else if (s->size >= PAGE_SIZE)
49e22585
CL
3533 s->cpu_partial = 2;
3534 else if (s->size >= 1024)
3535 s->cpu_partial = 6;
3536 else if (s->size >= 256)
3537 s->cpu_partial = 13;
3538 else
3539 s->cpu_partial = 30;
3540
81819f0f 3541#ifdef CONFIG_NUMA
e2cb96b7 3542 s->remote_node_defrag_ratio = 1000;
81819f0f 3543#endif
210e7a43
TG
3544
3545 /* Initialize the pre-computed randomized freelist if slab is up */
3546 if (slab_state >= UP) {
3547 if (init_cache_random_seq(s))
3548 goto error;
3549 }
3550
55136592 3551 if (!init_kmem_cache_nodes(s))
dfb4f096 3552 goto error;
81819f0f 3553
55136592 3554 if (alloc_kmem_cache_cpus(s))
278b1bb1 3555 return 0;
ff12059e 3556
4c93c355 3557 free_kmem_cache_nodes(s);
81819f0f
CL
3558error:
3559 if (flags & SLAB_PANIC)
756a025f
JP
3560 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3561 s->name, (unsigned long)s->size, s->size,
3562 oo_order(s->oo), s->offset, flags);
278b1bb1 3563 return -EINVAL;
81819f0f 3564}
81819f0f 3565
33b12c38
CL
3566static void list_slab_objects(struct kmem_cache *s, struct page *page,
3567 const char *text)
3568{
3569#ifdef CONFIG_SLUB_DEBUG
3570 void *addr = page_address(page);
3571 void *p;
a5dd5c11
NK
3572 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3573 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3574 if (!map)
3575 return;
945cf2b6 3576 slab_err(s, page, text, s->name);
33b12c38 3577 slab_lock(page);
33b12c38 3578
5f80b13a 3579 get_map(s, page, map);
33b12c38
CL
3580 for_each_object(p, s, addr, page->objects) {
3581
3582 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3583 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3584 print_tracking(s, p);
3585 }
3586 }
3587 slab_unlock(page);
bbd7d57b 3588 kfree(map);
33b12c38
CL
3589#endif
3590}
3591
81819f0f 3592/*
599870b1 3593 * Attempt to free all partial slabs on a node.
52b4b950
DS
3594 * This is called from __kmem_cache_shutdown(). We must take list_lock
3595 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3596 */
599870b1 3597static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3598{
81819f0f
CL
3599 struct page *page, *h;
3600
52b4b950
DS
3601 BUG_ON(irqs_disabled());
3602 spin_lock_irq(&n->list_lock);
33b12c38 3603 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3604 if (!page->inuse) {
52b4b950 3605 remove_partial(n, page);
81819f0f 3606 discard_slab(s, page);
33b12c38
CL
3607 } else {
3608 list_slab_objects(s, page,
52b4b950 3609 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3610 }
33b12c38 3611 }
52b4b950 3612 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3613}
3614
3615/*
672bba3a 3616 * Release all resources used by a slab cache.
81819f0f 3617 */
52b4b950 3618int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3619{
3620 int node;
fa45dc25 3621 struct kmem_cache_node *n;
81819f0f
CL
3622
3623 flush_all(s);
81819f0f 3624 /* Attempt to free all objects */
fa45dc25 3625 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3626 free_partial(s, n);
3627 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3628 return 1;
3629 }
81819f0f
CL
3630 return 0;
3631}
3632
81819f0f
CL
3633/********************************************************************
3634 * Kmalloc subsystem
3635 *******************************************************************/
3636
81819f0f
CL
3637static int __init setup_slub_min_order(char *str)
3638{
06428780 3639 get_option(&str, &slub_min_order);
81819f0f
CL
3640
3641 return 1;
3642}
3643
3644__setup("slub_min_order=", setup_slub_min_order);
3645
3646static int __init setup_slub_max_order(char *str)
3647{
06428780 3648 get_option(&str, &slub_max_order);
818cf590 3649 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3650
3651 return 1;
3652}
3653
3654__setup("slub_max_order=", setup_slub_max_order);
3655
3656static int __init setup_slub_min_objects(char *str)
3657{
06428780 3658 get_option(&str, &slub_min_objects);
81819f0f
CL
3659
3660 return 1;
3661}
3662
3663__setup("slub_min_objects=", setup_slub_min_objects);
3664
81819f0f
CL
3665void *__kmalloc(size_t size, gfp_t flags)
3666{
aadb4bc4 3667 struct kmem_cache *s;
5b882be4 3668 void *ret;
81819f0f 3669
95a05b42 3670 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3671 return kmalloc_large(size, flags);
aadb4bc4 3672
2c59dd65 3673 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3674
3675 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3676 return s;
3677
2b847c3c 3678 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3679
ca2b84cb 3680 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3681
505f5dcb 3682 kasan_kmalloc(s, ret, size, flags);
0316bec2 3683
5b882be4 3684 return ret;
81819f0f
CL
3685}
3686EXPORT_SYMBOL(__kmalloc);
3687
5d1f57e4 3688#ifdef CONFIG_NUMA
f619cfe1
CL
3689static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3690{
b1eeab67 3691 struct page *page;
e4f7c0b4 3692 void *ptr = NULL;
f619cfe1 3693
52383431
VD
3694 flags |= __GFP_COMP | __GFP_NOTRACK;
3695 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3696 if (page)
e4f7c0b4
CM
3697 ptr = page_address(page);
3698
d56791b3 3699 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3700 return ptr;
f619cfe1
CL
3701}
3702
81819f0f
CL
3703void *__kmalloc_node(size_t size, gfp_t flags, int node)
3704{
aadb4bc4 3705 struct kmem_cache *s;
5b882be4 3706 void *ret;
81819f0f 3707
95a05b42 3708 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3709 ret = kmalloc_large_node(size, flags, node);
3710
ca2b84cb
EGM
3711 trace_kmalloc_node(_RET_IP_, ret,
3712 size, PAGE_SIZE << get_order(size),
3713 flags, node);
5b882be4
EGM
3714
3715 return ret;
3716 }
aadb4bc4 3717
2c59dd65 3718 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3719
3720 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3721 return s;
3722
2b847c3c 3723 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3724
ca2b84cb 3725 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3726
505f5dcb 3727 kasan_kmalloc(s, ret, size, flags);
0316bec2 3728
5b882be4 3729 return ret;
81819f0f
CL
3730}
3731EXPORT_SYMBOL(__kmalloc_node);
3732#endif
3733
0316bec2 3734static size_t __ksize(const void *object)
81819f0f 3735{
272c1d21 3736 struct page *page;
81819f0f 3737
ef8b4520 3738 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3739 return 0;
3740
294a80a8 3741 page = virt_to_head_page(object);
294a80a8 3742
76994412
PE
3743 if (unlikely(!PageSlab(page))) {
3744 WARN_ON(!PageCompound(page));
294a80a8 3745 return PAGE_SIZE << compound_order(page);
76994412 3746 }
81819f0f 3747
1b4f59e3 3748 return slab_ksize(page->slab_cache);
81819f0f 3749}
0316bec2
AR
3750
3751size_t ksize(const void *object)
3752{
3753 size_t size = __ksize(object);
3754 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3755 * so we need to unpoison this area.
3756 */
3757 kasan_unpoison_shadow(object, size);
0316bec2
AR
3758 return size;
3759}
b1aabecd 3760EXPORT_SYMBOL(ksize);
81819f0f
CL
3761
3762void kfree(const void *x)
3763{
81819f0f 3764 struct page *page;
5bb983b0 3765 void *object = (void *)x;
81819f0f 3766
2121db74
PE
3767 trace_kfree(_RET_IP_, x);
3768
2408c550 3769 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3770 return;
3771
b49af68f 3772 page = virt_to_head_page(x);
aadb4bc4 3773 if (unlikely(!PageSlab(page))) {
0937502a 3774 BUG_ON(!PageCompound(page));
d56791b3 3775 kfree_hook(x);
52383431 3776 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3777 return;
3778 }
81084651 3779 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3780}
3781EXPORT_SYMBOL(kfree);
3782
832f37f5
VD
3783#define SHRINK_PROMOTE_MAX 32
3784
2086d26a 3785/*
832f37f5
VD
3786 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3787 * up most to the head of the partial lists. New allocations will then
3788 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3789 *
3790 * The slabs with the least items are placed last. This results in them
3791 * being allocated from last increasing the chance that the last objects
3792 * are freed in them.
2086d26a 3793 */
d6e0b7fa 3794int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3795{
3796 int node;
3797 int i;
3798 struct kmem_cache_node *n;
3799 struct page *page;
3800 struct page *t;
832f37f5
VD
3801 struct list_head discard;
3802 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3803 unsigned long flags;
ce3712d7 3804 int ret = 0;
2086d26a 3805
d6e0b7fa
VD
3806 if (deactivate) {
3807 /*
3808 * Disable empty slabs caching. Used to avoid pinning offline
3809 * memory cgroups by kmem pages that can be freed.
3810 */
3811 s->cpu_partial = 0;
3812 s->min_partial = 0;
3813
3814 /*
3815 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3816 * so we have to make sure the change is visible.
3817 */
81ae6d03 3818 synchronize_sched();
d6e0b7fa
VD
3819 }
3820
2086d26a 3821 flush_all(s);
fa45dc25 3822 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3823 INIT_LIST_HEAD(&discard);
3824 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3825 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3826
3827 spin_lock_irqsave(&n->list_lock, flags);
3828
3829 /*
832f37f5 3830 * Build lists of slabs to discard or promote.
2086d26a 3831 *
672bba3a
CL
3832 * Note that concurrent frees may occur while we hold the
3833 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3834 */
3835 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3836 int free = page->objects - page->inuse;
3837
3838 /* Do not reread page->inuse */
3839 barrier();
3840
3841 /* We do not keep full slabs on the list */
3842 BUG_ON(free <= 0);
3843
3844 if (free == page->objects) {
3845 list_move(&page->lru, &discard);
69cb8e6b 3846 n->nr_partial--;
832f37f5
VD
3847 } else if (free <= SHRINK_PROMOTE_MAX)
3848 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3849 }
3850
2086d26a 3851 /*
832f37f5
VD
3852 * Promote the slabs filled up most to the head of the
3853 * partial list.
2086d26a 3854 */
832f37f5
VD
3855 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3856 list_splice(promote + i, &n->partial);
2086d26a 3857
2086d26a 3858 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3859
3860 /* Release empty slabs */
832f37f5 3861 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3862 discard_slab(s, page);
ce3712d7
VD
3863
3864 if (slabs_node(s, node))
3865 ret = 1;
2086d26a
CL
3866 }
3867
ce3712d7 3868 return ret;
2086d26a 3869}
2086d26a 3870
b9049e23
YG
3871static int slab_mem_going_offline_callback(void *arg)
3872{
3873 struct kmem_cache *s;
3874
18004c5d 3875 mutex_lock(&slab_mutex);
b9049e23 3876 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3877 __kmem_cache_shrink(s, false);
18004c5d 3878 mutex_unlock(&slab_mutex);
b9049e23
YG
3879
3880 return 0;
3881}
3882
3883static void slab_mem_offline_callback(void *arg)
3884{
3885 struct kmem_cache_node *n;
3886 struct kmem_cache *s;
3887 struct memory_notify *marg = arg;
3888 int offline_node;
3889
b9d5ab25 3890 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3891
3892 /*
3893 * If the node still has available memory. we need kmem_cache_node
3894 * for it yet.
3895 */
3896 if (offline_node < 0)
3897 return;
3898
18004c5d 3899 mutex_lock(&slab_mutex);
b9049e23
YG
3900 list_for_each_entry(s, &slab_caches, list) {
3901 n = get_node(s, offline_node);
3902 if (n) {
3903 /*
3904 * if n->nr_slabs > 0, slabs still exist on the node
3905 * that is going down. We were unable to free them,
c9404c9c 3906 * and offline_pages() function shouldn't call this
b9049e23
YG
3907 * callback. So, we must fail.
3908 */
0f389ec6 3909 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3910
3911 s->node[offline_node] = NULL;
8de66a0c 3912 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3913 }
3914 }
18004c5d 3915 mutex_unlock(&slab_mutex);
b9049e23
YG
3916}
3917
3918static int slab_mem_going_online_callback(void *arg)
3919{
3920 struct kmem_cache_node *n;
3921 struct kmem_cache *s;
3922 struct memory_notify *marg = arg;
b9d5ab25 3923 int nid = marg->status_change_nid_normal;
b9049e23
YG
3924 int ret = 0;
3925
3926 /*
3927 * If the node's memory is already available, then kmem_cache_node is
3928 * already created. Nothing to do.
3929 */
3930 if (nid < 0)
3931 return 0;
3932
3933 /*
0121c619 3934 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3935 * allocate a kmem_cache_node structure in order to bring the node
3936 * online.
3937 */
18004c5d 3938 mutex_lock(&slab_mutex);
b9049e23
YG
3939 list_for_each_entry(s, &slab_caches, list) {
3940 /*
3941 * XXX: kmem_cache_alloc_node will fallback to other nodes
3942 * since memory is not yet available from the node that
3943 * is brought up.
3944 */
8de66a0c 3945 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3946 if (!n) {
3947 ret = -ENOMEM;
3948 goto out;
3949 }
4053497d 3950 init_kmem_cache_node(n);
b9049e23
YG
3951 s->node[nid] = n;
3952 }
3953out:
18004c5d 3954 mutex_unlock(&slab_mutex);
b9049e23
YG
3955 return ret;
3956}
3957
3958static int slab_memory_callback(struct notifier_block *self,
3959 unsigned long action, void *arg)
3960{
3961 int ret = 0;
3962
3963 switch (action) {
3964 case MEM_GOING_ONLINE:
3965 ret = slab_mem_going_online_callback(arg);
3966 break;
3967 case MEM_GOING_OFFLINE:
3968 ret = slab_mem_going_offline_callback(arg);
3969 break;
3970 case MEM_OFFLINE:
3971 case MEM_CANCEL_ONLINE:
3972 slab_mem_offline_callback(arg);
3973 break;
3974 case MEM_ONLINE:
3975 case MEM_CANCEL_OFFLINE:
3976 break;
3977 }
dc19f9db
KH
3978 if (ret)
3979 ret = notifier_from_errno(ret);
3980 else
3981 ret = NOTIFY_OK;
b9049e23
YG
3982 return ret;
3983}
3984
3ac38faa
AM
3985static struct notifier_block slab_memory_callback_nb = {
3986 .notifier_call = slab_memory_callback,
3987 .priority = SLAB_CALLBACK_PRI,
3988};
b9049e23 3989
81819f0f
CL
3990/********************************************************************
3991 * Basic setup of slabs
3992 *******************************************************************/
3993
51df1142
CL
3994/*
3995 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3996 * the page allocator. Allocate them properly then fix up the pointers
3997 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3998 */
3999
dffb4d60 4000static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4001{
4002 int node;
dffb4d60 4003 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4004 struct kmem_cache_node *n;
51df1142 4005
dffb4d60 4006 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4007
7d557b3c
GC
4008 /*
4009 * This runs very early, and only the boot processor is supposed to be
4010 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4011 * IPIs around.
4012 */
4013 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4014 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4015 struct page *p;
4016
fa45dc25
CL
4017 list_for_each_entry(p, &n->partial, lru)
4018 p->slab_cache = s;
51df1142 4019
607bf324 4020#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4021 list_for_each_entry(p, &n->full, lru)
4022 p->slab_cache = s;
51df1142 4023#endif
51df1142 4024 }
f7ce3190 4025 slab_init_memcg_params(s);
dffb4d60
CL
4026 list_add(&s->list, &slab_caches);
4027 return s;
51df1142
CL
4028}
4029
81819f0f
CL
4030void __init kmem_cache_init(void)
4031{
dffb4d60
CL
4032 static __initdata struct kmem_cache boot_kmem_cache,
4033 boot_kmem_cache_node;
51df1142 4034
fc8d8620
SG
4035 if (debug_guardpage_minorder())
4036 slub_max_order = 0;
4037
dffb4d60
CL
4038 kmem_cache_node = &boot_kmem_cache_node;
4039 kmem_cache = &boot_kmem_cache;
51df1142 4040
dffb4d60
CL
4041 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4042 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4043
3ac38faa 4044 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4045
4046 /* Able to allocate the per node structures */
4047 slab_state = PARTIAL;
4048
dffb4d60
CL
4049 create_boot_cache(kmem_cache, "kmem_cache",
4050 offsetof(struct kmem_cache, node) +
4051 nr_node_ids * sizeof(struct kmem_cache_node *),
4052 SLAB_HWCACHE_ALIGN);
8a13a4cc 4053
dffb4d60 4054 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4055
51df1142
CL
4056 /*
4057 * Allocate kmem_cache_node properly from the kmem_cache slab.
4058 * kmem_cache_node is separately allocated so no need to
4059 * update any list pointers.
4060 */
dffb4d60 4061 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4062
4063 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4064 setup_kmalloc_cache_index_table();
f97d5f63 4065 create_kmalloc_caches(0);
81819f0f 4066
210e7a43
TG
4067 /* Setup random freelists for each cache */
4068 init_freelist_randomization();
4069
81819f0f
CL
4070#ifdef CONFIG_SMP
4071 register_cpu_notifier(&slab_notifier);
9dfc6e68 4072#endif
81819f0f 4073
f9f58285 4074 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4075 cache_line_size(),
81819f0f
CL
4076 slub_min_order, slub_max_order, slub_min_objects,
4077 nr_cpu_ids, nr_node_ids);
4078}
4079
7e85ee0c
PE
4080void __init kmem_cache_init_late(void)
4081{
7e85ee0c
PE
4082}
4083
2633d7a0 4084struct kmem_cache *
a44cb944
VD
4085__kmem_cache_alias(const char *name, size_t size, size_t align,
4086 unsigned long flags, void (*ctor)(void *))
81819f0f 4087{
426589f5 4088 struct kmem_cache *s, *c;
81819f0f 4089
a44cb944 4090 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4091 if (s) {
4092 s->refcount++;
84d0ddd6 4093
81819f0f
CL
4094 /*
4095 * Adjust the object sizes so that we clear
4096 * the complete object on kzalloc.
4097 */
3b0efdfa 4098 s->object_size = max(s->object_size, (int)size);
81819f0f 4099 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4100
426589f5 4101 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4102 c->object_size = s->object_size;
4103 c->inuse = max_t(int, c->inuse,
4104 ALIGN(size, sizeof(void *)));
4105 }
4106
7b8f3b66 4107 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4108 s->refcount--;
cbb79694 4109 s = NULL;
7b8f3b66 4110 }
a0e1d1be 4111 }
6446faa2 4112
cbb79694
CL
4113 return s;
4114}
84c1cf62 4115
8a13a4cc 4116int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4117{
aac3a166
PE
4118 int err;
4119
4120 err = kmem_cache_open(s, flags);
4121 if (err)
4122 return err;
20cea968 4123
45530c44
CL
4124 /* Mutex is not taken during early boot */
4125 if (slab_state <= UP)
4126 return 0;
4127
107dab5c 4128 memcg_propagate_slab_attrs(s);
aac3a166 4129 err = sysfs_slab_add(s);
aac3a166 4130 if (err)
52b4b950 4131 __kmem_cache_release(s);
20cea968 4132
aac3a166 4133 return err;
81819f0f 4134}
81819f0f 4135
81819f0f 4136#ifdef CONFIG_SMP
81819f0f 4137/*
672bba3a
CL
4138 * Use the cpu notifier to insure that the cpu slabs are flushed when
4139 * necessary.
81819f0f 4140 */
0db0628d 4141static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
4142 unsigned long action, void *hcpu)
4143{
4144 long cpu = (long)hcpu;
5b95a4ac
CL
4145 struct kmem_cache *s;
4146 unsigned long flags;
81819f0f
CL
4147
4148 switch (action) {
4149 case CPU_UP_CANCELED:
8bb78442 4150 case CPU_UP_CANCELED_FROZEN:
81819f0f 4151 case CPU_DEAD:
8bb78442 4152 case CPU_DEAD_FROZEN:
18004c5d 4153 mutex_lock(&slab_mutex);
5b95a4ac
CL
4154 list_for_each_entry(s, &slab_caches, list) {
4155 local_irq_save(flags);
4156 __flush_cpu_slab(s, cpu);
4157 local_irq_restore(flags);
4158 }
18004c5d 4159 mutex_unlock(&slab_mutex);
81819f0f
CL
4160 break;
4161 default:
4162 break;
4163 }
4164 return NOTIFY_OK;
4165}
4166
0db0628d 4167static struct notifier_block slab_notifier = {
3adbefee 4168 .notifier_call = slab_cpuup_callback
06428780 4169};
81819f0f
CL
4170
4171#endif
4172
ce71e27c 4173void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4174{
aadb4bc4 4175 struct kmem_cache *s;
94b528d0 4176 void *ret;
aadb4bc4 4177
95a05b42 4178 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4179 return kmalloc_large(size, gfpflags);
4180
2c59dd65 4181 s = kmalloc_slab(size, gfpflags);
81819f0f 4182
2408c550 4183 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4184 return s;
81819f0f 4185
2b847c3c 4186 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4187
25985edc 4188 /* Honor the call site pointer we received. */
ca2b84cb 4189 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4190
4191 return ret;
81819f0f
CL
4192}
4193
5d1f57e4 4194#ifdef CONFIG_NUMA
81819f0f 4195void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4196 int node, unsigned long caller)
81819f0f 4197{
aadb4bc4 4198 struct kmem_cache *s;
94b528d0 4199 void *ret;
aadb4bc4 4200
95a05b42 4201 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4202 ret = kmalloc_large_node(size, gfpflags, node);
4203
4204 trace_kmalloc_node(caller, ret,
4205 size, PAGE_SIZE << get_order(size),
4206 gfpflags, node);
4207
4208 return ret;
4209 }
eada35ef 4210
2c59dd65 4211 s = kmalloc_slab(size, gfpflags);
81819f0f 4212
2408c550 4213 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4214 return s;
81819f0f 4215
2b847c3c 4216 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4217
25985edc 4218 /* Honor the call site pointer we received. */
ca2b84cb 4219 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4220
4221 return ret;
81819f0f 4222}
5d1f57e4 4223#endif
81819f0f 4224
ab4d5ed5 4225#ifdef CONFIG_SYSFS
205ab99d
CL
4226static int count_inuse(struct page *page)
4227{
4228 return page->inuse;
4229}
4230
4231static int count_total(struct page *page)
4232{
4233 return page->objects;
4234}
ab4d5ed5 4235#endif
205ab99d 4236
ab4d5ed5 4237#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4238static int validate_slab(struct kmem_cache *s, struct page *page,
4239 unsigned long *map)
53e15af0
CL
4240{
4241 void *p;
a973e9dd 4242 void *addr = page_address(page);
53e15af0
CL
4243
4244 if (!check_slab(s, page) ||
4245 !on_freelist(s, page, NULL))
4246 return 0;
4247
4248 /* Now we know that a valid freelist exists */
39b26464 4249 bitmap_zero(map, page->objects);
53e15af0 4250
5f80b13a
CL
4251 get_map(s, page, map);
4252 for_each_object(p, s, addr, page->objects) {
4253 if (test_bit(slab_index(p, s, addr), map))
4254 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4255 return 0;
53e15af0
CL
4256 }
4257
224a88be 4258 for_each_object(p, s, addr, page->objects)
7656c72b 4259 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4260 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4261 return 0;
4262 return 1;
4263}
4264
434e245d
CL
4265static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4266 unsigned long *map)
53e15af0 4267{
881db7fb
CL
4268 slab_lock(page);
4269 validate_slab(s, page, map);
4270 slab_unlock(page);
53e15af0
CL
4271}
4272
434e245d
CL
4273static int validate_slab_node(struct kmem_cache *s,
4274 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4275{
4276 unsigned long count = 0;
4277 struct page *page;
4278 unsigned long flags;
4279
4280 spin_lock_irqsave(&n->list_lock, flags);
4281
4282 list_for_each_entry(page, &n->partial, lru) {
434e245d 4283 validate_slab_slab(s, page, map);
53e15af0
CL
4284 count++;
4285 }
4286 if (count != n->nr_partial)
f9f58285
FF
4287 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4288 s->name, count, n->nr_partial);
53e15af0
CL
4289
4290 if (!(s->flags & SLAB_STORE_USER))
4291 goto out;
4292
4293 list_for_each_entry(page, &n->full, lru) {
434e245d 4294 validate_slab_slab(s, page, map);
53e15af0
CL
4295 count++;
4296 }
4297 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4298 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4299 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4300
4301out:
4302 spin_unlock_irqrestore(&n->list_lock, flags);
4303 return count;
4304}
4305
434e245d 4306static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4307{
4308 int node;
4309 unsigned long count = 0;
205ab99d 4310 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4311 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4312 struct kmem_cache_node *n;
434e245d
CL
4313
4314 if (!map)
4315 return -ENOMEM;
53e15af0
CL
4316
4317 flush_all(s);
fa45dc25 4318 for_each_kmem_cache_node(s, node, n)
434e245d 4319 count += validate_slab_node(s, n, map);
434e245d 4320 kfree(map);
53e15af0
CL
4321 return count;
4322}
88a420e4 4323/*
672bba3a 4324 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4325 * and freed.
4326 */
4327
4328struct location {
4329 unsigned long count;
ce71e27c 4330 unsigned long addr;
45edfa58
CL
4331 long long sum_time;
4332 long min_time;
4333 long max_time;
4334 long min_pid;
4335 long max_pid;
174596a0 4336 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4337 nodemask_t nodes;
88a420e4
CL
4338};
4339
4340struct loc_track {
4341 unsigned long max;
4342 unsigned long count;
4343 struct location *loc;
4344};
4345
4346static void free_loc_track(struct loc_track *t)
4347{
4348 if (t->max)
4349 free_pages((unsigned long)t->loc,
4350 get_order(sizeof(struct location) * t->max));
4351}
4352
68dff6a9 4353static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4354{
4355 struct location *l;
4356 int order;
4357
88a420e4
CL
4358 order = get_order(sizeof(struct location) * max);
4359
68dff6a9 4360 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4361 if (!l)
4362 return 0;
4363
4364 if (t->count) {
4365 memcpy(l, t->loc, sizeof(struct location) * t->count);
4366 free_loc_track(t);
4367 }
4368 t->max = max;
4369 t->loc = l;
4370 return 1;
4371}
4372
4373static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4374 const struct track *track)
88a420e4
CL
4375{
4376 long start, end, pos;
4377 struct location *l;
ce71e27c 4378 unsigned long caddr;
45edfa58 4379 unsigned long age = jiffies - track->when;
88a420e4
CL
4380
4381 start = -1;
4382 end = t->count;
4383
4384 for ( ; ; ) {
4385 pos = start + (end - start + 1) / 2;
4386
4387 /*
4388 * There is nothing at "end". If we end up there
4389 * we need to add something to before end.
4390 */
4391 if (pos == end)
4392 break;
4393
4394 caddr = t->loc[pos].addr;
45edfa58
CL
4395 if (track->addr == caddr) {
4396
4397 l = &t->loc[pos];
4398 l->count++;
4399 if (track->when) {
4400 l->sum_time += age;
4401 if (age < l->min_time)
4402 l->min_time = age;
4403 if (age > l->max_time)
4404 l->max_time = age;
4405
4406 if (track->pid < l->min_pid)
4407 l->min_pid = track->pid;
4408 if (track->pid > l->max_pid)
4409 l->max_pid = track->pid;
4410
174596a0
RR
4411 cpumask_set_cpu(track->cpu,
4412 to_cpumask(l->cpus));
45edfa58
CL
4413 }
4414 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4415 return 1;
4416 }
4417
45edfa58 4418 if (track->addr < caddr)
88a420e4
CL
4419 end = pos;
4420 else
4421 start = pos;
4422 }
4423
4424 /*
672bba3a 4425 * Not found. Insert new tracking element.
88a420e4 4426 */
68dff6a9 4427 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4428 return 0;
4429
4430 l = t->loc + pos;
4431 if (pos < t->count)
4432 memmove(l + 1, l,
4433 (t->count - pos) * sizeof(struct location));
4434 t->count++;
4435 l->count = 1;
45edfa58
CL
4436 l->addr = track->addr;
4437 l->sum_time = age;
4438 l->min_time = age;
4439 l->max_time = age;
4440 l->min_pid = track->pid;
4441 l->max_pid = track->pid;
174596a0
RR
4442 cpumask_clear(to_cpumask(l->cpus));
4443 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4444 nodes_clear(l->nodes);
4445 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4446 return 1;
4447}
4448
4449static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4450 struct page *page, enum track_item alloc,
a5dd5c11 4451 unsigned long *map)
88a420e4 4452{
a973e9dd 4453 void *addr = page_address(page);
88a420e4
CL
4454 void *p;
4455
39b26464 4456 bitmap_zero(map, page->objects);
5f80b13a 4457 get_map(s, page, map);
88a420e4 4458
224a88be 4459 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4460 if (!test_bit(slab_index(p, s, addr), map))
4461 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4462}
4463
4464static int list_locations(struct kmem_cache *s, char *buf,
4465 enum track_item alloc)
4466{
e374d483 4467 int len = 0;
88a420e4 4468 unsigned long i;
68dff6a9 4469 struct loc_track t = { 0, 0, NULL };
88a420e4 4470 int node;
bbd7d57b
ED
4471 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4472 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4473 struct kmem_cache_node *n;
88a420e4 4474
bbd7d57b
ED
4475 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4476 GFP_TEMPORARY)) {
4477 kfree(map);
68dff6a9 4478 return sprintf(buf, "Out of memory\n");
bbd7d57b 4479 }
88a420e4
CL
4480 /* Push back cpu slabs */
4481 flush_all(s);
4482
fa45dc25 4483 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4484 unsigned long flags;
4485 struct page *page;
4486
9e86943b 4487 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4488 continue;
4489
4490 spin_lock_irqsave(&n->list_lock, flags);
4491 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4492 process_slab(&t, s, page, alloc, map);
88a420e4 4493 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4494 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4495 spin_unlock_irqrestore(&n->list_lock, flags);
4496 }
4497
4498 for (i = 0; i < t.count; i++) {
45edfa58 4499 struct location *l = &t.loc[i];
88a420e4 4500
9c246247 4501 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4502 break;
e374d483 4503 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4504
4505 if (l->addr)
62c70bce 4506 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4507 else
e374d483 4508 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4509
4510 if (l->sum_time != l->min_time) {
e374d483 4511 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4512 l->min_time,
4513 (long)div_u64(l->sum_time, l->count),
4514 l->max_time);
45edfa58 4515 } else
e374d483 4516 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4517 l->min_time);
4518
4519 if (l->min_pid != l->max_pid)
e374d483 4520 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4521 l->min_pid, l->max_pid);
4522 else
e374d483 4523 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4524 l->min_pid);
4525
174596a0
RR
4526 if (num_online_cpus() > 1 &&
4527 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4528 len < PAGE_SIZE - 60)
4529 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4530 " cpus=%*pbl",
4531 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4532
62bc62a8 4533 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4534 len < PAGE_SIZE - 60)
4535 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4536 " nodes=%*pbl",
4537 nodemask_pr_args(&l->nodes));
45edfa58 4538
e374d483 4539 len += sprintf(buf + len, "\n");
88a420e4
CL
4540 }
4541
4542 free_loc_track(&t);
bbd7d57b 4543 kfree(map);
88a420e4 4544 if (!t.count)
e374d483
HH
4545 len += sprintf(buf, "No data\n");
4546 return len;
88a420e4 4547}
ab4d5ed5 4548#endif
88a420e4 4549
a5a84755 4550#ifdef SLUB_RESILIENCY_TEST
c07b8183 4551static void __init resiliency_test(void)
a5a84755
CL
4552{
4553 u8 *p;
4554
95a05b42 4555 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4556
f9f58285
FF
4557 pr_err("SLUB resiliency testing\n");
4558 pr_err("-----------------------\n");
4559 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4560
4561 p = kzalloc(16, GFP_KERNEL);
4562 p[16] = 0x12;
f9f58285
FF
4563 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4564 p + 16);
a5a84755
CL
4565
4566 validate_slab_cache(kmalloc_caches[4]);
4567
4568 /* Hmmm... The next two are dangerous */
4569 p = kzalloc(32, GFP_KERNEL);
4570 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4571 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4572 p);
4573 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4574
4575 validate_slab_cache(kmalloc_caches[5]);
4576 p = kzalloc(64, GFP_KERNEL);
4577 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4578 *p = 0x56;
f9f58285
FF
4579 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4580 p);
4581 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4582 validate_slab_cache(kmalloc_caches[6]);
4583
f9f58285 4584 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4585 p = kzalloc(128, GFP_KERNEL);
4586 kfree(p);
4587 *p = 0x78;
f9f58285 4588 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4589 validate_slab_cache(kmalloc_caches[7]);
4590
4591 p = kzalloc(256, GFP_KERNEL);
4592 kfree(p);
4593 p[50] = 0x9a;
f9f58285 4594 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4595 validate_slab_cache(kmalloc_caches[8]);
4596
4597 p = kzalloc(512, GFP_KERNEL);
4598 kfree(p);
4599 p[512] = 0xab;
f9f58285 4600 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4601 validate_slab_cache(kmalloc_caches[9]);
4602}
4603#else
4604#ifdef CONFIG_SYSFS
4605static void resiliency_test(void) {};
4606#endif
4607#endif
4608
ab4d5ed5 4609#ifdef CONFIG_SYSFS
81819f0f 4610enum slab_stat_type {
205ab99d
CL
4611 SL_ALL, /* All slabs */
4612 SL_PARTIAL, /* Only partially allocated slabs */
4613 SL_CPU, /* Only slabs used for cpu caches */
4614 SL_OBJECTS, /* Determine allocated objects not slabs */
4615 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4616};
4617
205ab99d 4618#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4619#define SO_PARTIAL (1 << SL_PARTIAL)
4620#define SO_CPU (1 << SL_CPU)
4621#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4622#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4623
62e5c4b4
CG
4624static ssize_t show_slab_objects(struct kmem_cache *s,
4625 char *buf, unsigned long flags)
81819f0f
CL
4626{
4627 unsigned long total = 0;
81819f0f
CL
4628 int node;
4629 int x;
4630 unsigned long *nodes;
81819f0f 4631
e35e1a97 4632 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4633 if (!nodes)
4634 return -ENOMEM;
81819f0f 4635
205ab99d
CL
4636 if (flags & SO_CPU) {
4637 int cpu;
81819f0f 4638
205ab99d 4639 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4640 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4641 cpu);
ec3ab083 4642 int node;
49e22585 4643 struct page *page;
dfb4f096 4644
4db0c3c2 4645 page = READ_ONCE(c->page);
ec3ab083
CL
4646 if (!page)
4647 continue;
205ab99d 4648
ec3ab083
CL
4649 node = page_to_nid(page);
4650 if (flags & SO_TOTAL)
4651 x = page->objects;
4652 else if (flags & SO_OBJECTS)
4653 x = page->inuse;
4654 else
4655 x = 1;
49e22585 4656
ec3ab083
CL
4657 total += x;
4658 nodes[node] += x;
4659
4db0c3c2 4660 page = READ_ONCE(c->partial);
49e22585 4661 if (page) {
8afb1474
LZ
4662 node = page_to_nid(page);
4663 if (flags & SO_TOTAL)
4664 WARN_ON_ONCE(1);
4665 else if (flags & SO_OBJECTS)
4666 WARN_ON_ONCE(1);
4667 else
4668 x = page->pages;
bc6697d8
ED
4669 total += x;
4670 nodes[node] += x;
49e22585 4671 }
81819f0f
CL
4672 }
4673 }
4674
bfc8c901 4675 get_online_mems();
ab4d5ed5 4676#ifdef CONFIG_SLUB_DEBUG
205ab99d 4677 if (flags & SO_ALL) {
fa45dc25
CL
4678 struct kmem_cache_node *n;
4679
4680 for_each_kmem_cache_node(s, node, n) {
205ab99d 4681
d0e0ac97
CG
4682 if (flags & SO_TOTAL)
4683 x = atomic_long_read(&n->total_objects);
4684 else if (flags & SO_OBJECTS)
4685 x = atomic_long_read(&n->total_objects) -
4686 count_partial(n, count_free);
81819f0f 4687 else
205ab99d 4688 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4689 total += x;
4690 nodes[node] += x;
4691 }
4692
ab4d5ed5
CL
4693 } else
4694#endif
4695 if (flags & SO_PARTIAL) {
fa45dc25 4696 struct kmem_cache_node *n;
81819f0f 4697
fa45dc25 4698 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4699 if (flags & SO_TOTAL)
4700 x = count_partial(n, count_total);
4701 else if (flags & SO_OBJECTS)
4702 x = count_partial(n, count_inuse);
81819f0f 4703 else
205ab99d 4704 x = n->nr_partial;
81819f0f
CL
4705 total += x;
4706 nodes[node] += x;
4707 }
4708 }
81819f0f
CL
4709 x = sprintf(buf, "%lu", total);
4710#ifdef CONFIG_NUMA
fa45dc25 4711 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4712 if (nodes[node])
4713 x += sprintf(buf + x, " N%d=%lu",
4714 node, nodes[node]);
4715#endif
bfc8c901 4716 put_online_mems();
81819f0f
CL
4717 kfree(nodes);
4718 return x + sprintf(buf + x, "\n");
4719}
4720
ab4d5ed5 4721#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4722static int any_slab_objects(struct kmem_cache *s)
4723{
4724 int node;
fa45dc25 4725 struct kmem_cache_node *n;
81819f0f 4726
fa45dc25 4727 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4728 if (atomic_long_read(&n->total_objects))
81819f0f 4729 return 1;
fa45dc25 4730
81819f0f
CL
4731 return 0;
4732}
ab4d5ed5 4733#endif
81819f0f
CL
4734
4735#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4736#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4737
4738struct slab_attribute {
4739 struct attribute attr;
4740 ssize_t (*show)(struct kmem_cache *s, char *buf);
4741 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4742};
4743
4744#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4745 static struct slab_attribute _name##_attr = \
4746 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4747
4748#define SLAB_ATTR(_name) \
4749 static struct slab_attribute _name##_attr = \
ab067e99 4750 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4751
81819f0f
CL
4752static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4753{
4754 return sprintf(buf, "%d\n", s->size);
4755}
4756SLAB_ATTR_RO(slab_size);
4757
4758static ssize_t align_show(struct kmem_cache *s, char *buf)
4759{
4760 return sprintf(buf, "%d\n", s->align);
4761}
4762SLAB_ATTR_RO(align);
4763
4764static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4765{
3b0efdfa 4766 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4767}
4768SLAB_ATTR_RO(object_size);
4769
4770static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4771{
834f3d11 4772 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4773}
4774SLAB_ATTR_RO(objs_per_slab);
4775
06b285dc
CL
4776static ssize_t order_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778{
0121c619
CL
4779 unsigned long order;
4780 int err;
4781
3dbb95f7 4782 err = kstrtoul(buf, 10, &order);
0121c619
CL
4783 if (err)
4784 return err;
06b285dc
CL
4785
4786 if (order > slub_max_order || order < slub_min_order)
4787 return -EINVAL;
4788
4789 calculate_sizes(s, order);
4790 return length;
4791}
4792
81819f0f
CL
4793static ssize_t order_show(struct kmem_cache *s, char *buf)
4794{
834f3d11 4795 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4796}
06b285dc 4797SLAB_ATTR(order);
81819f0f 4798
73d342b1
DR
4799static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4800{
4801 return sprintf(buf, "%lu\n", s->min_partial);
4802}
4803
4804static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4805 size_t length)
4806{
4807 unsigned long min;
4808 int err;
4809
3dbb95f7 4810 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4811 if (err)
4812 return err;
4813
c0bdb232 4814 set_min_partial(s, min);
73d342b1
DR
4815 return length;
4816}
4817SLAB_ATTR(min_partial);
4818
49e22585
CL
4819static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4820{
4821 return sprintf(buf, "%u\n", s->cpu_partial);
4822}
4823
4824static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4825 size_t length)
4826{
4827 unsigned long objects;
4828 int err;
4829
3dbb95f7 4830 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4831 if (err)
4832 return err;
345c905d 4833 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4834 return -EINVAL;
49e22585
CL
4835
4836 s->cpu_partial = objects;
4837 flush_all(s);
4838 return length;
4839}
4840SLAB_ATTR(cpu_partial);
4841
81819f0f
CL
4842static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4843{
62c70bce
JP
4844 if (!s->ctor)
4845 return 0;
4846 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4847}
4848SLAB_ATTR_RO(ctor);
4849
81819f0f
CL
4850static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4851{
4307c14f 4852 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4853}
4854SLAB_ATTR_RO(aliases);
4855
81819f0f
CL
4856static ssize_t partial_show(struct kmem_cache *s, char *buf)
4857{
d9acf4b7 4858 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4859}
4860SLAB_ATTR_RO(partial);
4861
4862static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4863{
d9acf4b7 4864 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4865}
4866SLAB_ATTR_RO(cpu_slabs);
4867
4868static ssize_t objects_show(struct kmem_cache *s, char *buf)
4869{
205ab99d 4870 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4871}
4872SLAB_ATTR_RO(objects);
4873
205ab99d
CL
4874static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4875{
4876 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4877}
4878SLAB_ATTR_RO(objects_partial);
4879
49e22585
CL
4880static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4881{
4882 int objects = 0;
4883 int pages = 0;
4884 int cpu;
4885 int len;
4886
4887 for_each_online_cpu(cpu) {
4888 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4889
4890 if (page) {
4891 pages += page->pages;
4892 objects += page->pobjects;
4893 }
4894 }
4895
4896 len = sprintf(buf, "%d(%d)", objects, pages);
4897
4898#ifdef CONFIG_SMP
4899 for_each_online_cpu(cpu) {
4900 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4901
4902 if (page && len < PAGE_SIZE - 20)
4903 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4904 page->pobjects, page->pages);
4905 }
4906#endif
4907 return len + sprintf(buf + len, "\n");
4908}
4909SLAB_ATTR_RO(slabs_cpu_partial);
4910
a5a84755
CL
4911static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4912{
4913 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4914}
4915
4916static ssize_t reclaim_account_store(struct kmem_cache *s,
4917 const char *buf, size_t length)
4918{
4919 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4920 if (buf[0] == '1')
4921 s->flags |= SLAB_RECLAIM_ACCOUNT;
4922 return length;
4923}
4924SLAB_ATTR(reclaim_account);
4925
4926static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4927{
4928 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4929}
4930SLAB_ATTR_RO(hwcache_align);
4931
4932#ifdef CONFIG_ZONE_DMA
4933static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4934{
4935 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4936}
4937SLAB_ATTR_RO(cache_dma);
4938#endif
4939
4940static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4941{
4942 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4943}
4944SLAB_ATTR_RO(destroy_by_rcu);
4945
ab9a0f19
LJ
4946static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4947{
4948 return sprintf(buf, "%d\n", s->reserved);
4949}
4950SLAB_ATTR_RO(reserved);
4951
ab4d5ed5 4952#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4953static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4954{
4955 return show_slab_objects(s, buf, SO_ALL);
4956}
4957SLAB_ATTR_RO(slabs);
4958
205ab99d
CL
4959static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4960{
4961 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4962}
4963SLAB_ATTR_RO(total_objects);
4964
81819f0f
CL
4965static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4966{
becfda68 4967 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
4968}
4969
4970static ssize_t sanity_checks_store(struct kmem_cache *s,
4971 const char *buf, size_t length)
4972{
becfda68 4973 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
4974 if (buf[0] == '1') {
4975 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 4976 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 4977 }
81819f0f
CL
4978 return length;
4979}
4980SLAB_ATTR(sanity_checks);
4981
4982static ssize_t trace_show(struct kmem_cache *s, char *buf)
4983{
4984 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4985}
4986
4987static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4988 size_t length)
4989{
c9e16131
CL
4990 /*
4991 * Tracing a merged cache is going to give confusing results
4992 * as well as cause other issues like converting a mergeable
4993 * cache into an umergeable one.
4994 */
4995 if (s->refcount > 1)
4996 return -EINVAL;
4997
81819f0f 4998 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4999 if (buf[0] == '1') {
5000 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5001 s->flags |= SLAB_TRACE;
b789ef51 5002 }
81819f0f
CL
5003 return length;
5004}
5005SLAB_ATTR(trace);
5006
81819f0f
CL
5007static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5008{
5009 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5010}
5011
5012static ssize_t red_zone_store(struct kmem_cache *s,
5013 const char *buf, size_t length)
5014{
5015 if (any_slab_objects(s))
5016 return -EBUSY;
5017
5018 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5019 if (buf[0] == '1') {
81819f0f 5020 s->flags |= SLAB_RED_ZONE;
b789ef51 5021 }
06b285dc 5022 calculate_sizes(s, -1);
81819f0f
CL
5023 return length;
5024}
5025SLAB_ATTR(red_zone);
5026
5027static ssize_t poison_show(struct kmem_cache *s, char *buf)
5028{
5029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5030}
5031
5032static ssize_t poison_store(struct kmem_cache *s,
5033 const char *buf, size_t length)
5034{
5035 if (any_slab_objects(s))
5036 return -EBUSY;
5037
5038 s->flags &= ~SLAB_POISON;
b789ef51 5039 if (buf[0] == '1') {
81819f0f 5040 s->flags |= SLAB_POISON;
b789ef51 5041 }
06b285dc 5042 calculate_sizes(s, -1);
81819f0f
CL
5043 return length;
5044}
5045SLAB_ATTR(poison);
5046
5047static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5048{
5049 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5050}
5051
5052static ssize_t store_user_store(struct kmem_cache *s,
5053 const char *buf, size_t length)
5054{
5055 if (any_slab_objects(s))
5056 return -EBUSY;
5057
5058 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5059 if (buf[0] == '1') {
5060 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5061 s->flags |= SLAB_STORE_USER;
b789ef51 5062 }
06b285dc 5063 calculate_sizes(s, -1);
81819f0f
CL
5064 return length;
5065}
5066SLAB_ATTR(store_user);
5067
53e15af0
CL
5068static ssize_t validate_show(struct kmem_cache *s, char *buf)
5069{
5070 return 0;
5071}
5072
5073static ssize_t validate_store(struct kmem_cache *s,
5074 const char *buf, size_t length)
5075{
434e245d
CL
5076 int ret = -EINVAL;
5077
5078 if (buf[0] == '1') {
5079 ret = validate_slab_cache(s);
5080 if (ret >= 0)
5081 ret = length;
5082 }
5083 return ret;
53e15af0
CL
5084}
5085SLAB_ATTR(validate);
a5a84755
CL
5086
5087static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5088{
5089 if (!(s->flags & SLAB_STORE_USER))
5090 return -ENOSYS;
5091 return list_locations(s, buf, TRACK_ALLOC);
5092}
5093SLAB_ATTR_RO(alloc_calls);
5094
5095static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5096{
5097 if (!(s->flags & SLAB_STORE_USER))
5098 return -ENOSYS;
5099 return list_locations(s, buf, TRACK_FREE);
5100}
5101SLAB_ATTR_RO(free_calls);
5102#endif /* CONFIG_SLUB_DEBUG */
5103
5104#ifdef CONFIG_FAILSLAB
5105static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5106{
5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5108}
5109
5110static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5111 size_t length)
5112{
c9e16131
CL
5113 if (s->refcount > 1)
5114 return -EINVAL;
5115
a5a84755
CL
5116 s->flags &= ~SLAB_FAILSLAB;
5117 if (buf[0] == '1')
5118 s->flags |= SLAB_FAILSLAB;
5119 return length;
5120}
5121SLAB_ATTR(failslab);
ab4d5ed5 5122#endif
53e15af0 5123
2086d26a
CL
5124static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5125{
5126 return 0;
5127}
5128
5129static ssize_t shrink_store(struct kmem_cache *s,
5130 const char *buf, size_t length)
5131{
832f37f5
VD
5132 if (buf[0] == '1')
5133 kmem_cache_shrink(s);
5134 else
2086d26a
CL
5135 return -EINVAL;
5136 return length;
5137}
5138SLAB_ATTR(shrink);
5139
81819f0f 5140#ifdef CONFIG_NUMA
9824601e 5141static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5142{
9824601e 5143 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5144}
5145
9824601e 5146static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5147 const char *buf, size_t length)
5148{
0121c619
CL
5149 unsigned long ratio;
5150 int err;
5151
3dbb95f7 5152 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5153 if (err)
5154 return err;
5155
e2cb96b7 5156 if (ratio <= 100)
0121c619 5157 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5158
81819f0f
CL
5159 return length;
5160}
9824601e 5161SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5162#endif
5163
8ff12cfc 5164#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5165static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5166{
5167 unsigned long sum = 0;
5168 int cpu;
5169 int len;
5170 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5171
5172 if (!data)
5173 return -ENOMEM;
5174
5175 for_each_online_cpu(cpu) {
9dfc6e68 5176 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5177
5178 data[cpu] = x;
5179 sum += x;
5180 }
5181
5182 len = sprintf(buf, "%lu", sum);
5183
50ef37b9 5184#ifdef CONFIG_SMP
8ff12cfc
CL
5185 for_each_online_cpu(cpu) {
5186 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5187 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5188 }
50ef37b9 5189#endif
8ff12cfc
CL
5190 kfree(data);
5191 return len + sprintf(buf + len, "\n");
5192}
5193
78eb00cc
DR
5194static void clear_stat(struct kmem_cache *s, enum stat_item si)
5195{
5196 int cpu;
5197
5198 for_each_online_cpu(cpu)
9dfc6e68 5199 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5200}
5201
8ff12cfc
CL
5202#define STAT_ATTR(si, text) \
5203static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5204{ \
5205 return show_stat(s, buf, si); \
5206} \
78eb00cc
DR
5207static ssize_t text##_store(struct kmem_cache *s, \
5208 const char *buf, size_t length) \
5209{ \
5210 if (buf[0] != '0') \
5211 return -EINVAL; \
5212 clear_stat(s, si); \
5213 return length; \
5214} \
5215SLAB_ATTR(text); \
8ff12cfc
CL
5216
5217STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5218STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5219STAT_ATTR(FREE_FASTPATH, free_fastpath);
5220STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5221STAT_ATTR(FREE_FROZEN, free_frozen);
5222STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5223STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5224STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5225STAT_ATTR(ALLOC_SLAB, alloc_slab);
5226STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5227STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5228STAT_ATTR(FREE_SLAB, free_slab);
5229STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5230STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5231STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5232STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5233STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5234STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5235STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5236STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5237STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5238STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5239STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5240STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5241STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5242STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5243#endif
5244
06428780 5245static struct attribute *slab_attrs[] = {
81819f0f
CL
5246 &slab_size_attr.attr,
5247 &object_size_attr.attr,
5248 &objs_per_slab_attr.attr,
5249 &order_attr.attr,
73d342b1 5250 &min_partial_attr.attr,
49e22585 5251 &cpu_partial_attr.attr,
81819f0f 5252 &objects_attr.attr,
205ab99d 5253 &objects_partial_attr.attr,
81819f0f
CL
5254 &partial_attr.attr,
5255 &cpu_slabs_attr.attr,
5256 &ctor_attr.attr,
81819f0f
CL
5257 &aliases_attr.attr,
5258 &align_attr.attr,
81819f0f
CL
5259 &hwcache_align_attr.attr,
5260 &reclaim_account_attr.attr,
5261 &destroy_by_rcu_attr.attr,
a5a84755 5262 &shrink_attr.attr,
ab9a0f19 5263 &reserved_attr.attr,
49e22585 5264 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5265#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5266 &total_objects_attr.attr,
5267 &slabs_attr.attr,
5268 &sanity_checks_attr.attr,
5269 &trace_attr.attr,
81819f0f
CL
5270 &red_zone_attr.attr,
5271 &poison_attr.attr,
5272 &store_user_attr.attr,
53e15af0 5273 &validate_attr.attr,
88a420e4
CL
5274 &alloc_calls_attr.attr,
5275 &free_calls_attr.attr,
ab4d5ed5 5276#endif
81819f0f
CL
5277#ifdef CONFIG_ZONE_DMA
5278 &cache_dma_attr.attr,
5279#endif
5280#ifdef CONFIG_NUMA
9824601e 5281 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5282#endif
5283#ifdef CONFIG_SLUB_STATS
5284 &alloc_fastpath_attr.attr,
5285 &alloc_slowpath_attr.attr,
5286 &free_fastpath_attr.attr,
5287 &free_slowpath_attr.attr,
5288 &free_frozen_attr.attr,
5289 &free_add_partial_attr.attr,
5290 &free_remove_partial_attr.attr,
5291 &alloc_from_partial_attr.attr,
5292 &alloc_slab_attr.attr,
5293 &alloc_refill_attr.attr,
e36a2652 5294 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5295 &free_slab_attr.attr,
5296 &cpuslab_flush_attr.attr,
5297 &deactivate_full_attr.attr,
5298 &deactivate_empty_attr.attr,
5299 &deactivate_to_head_attr.attr,
5300 &deactivate_to_tail_attr.attr,
5301 &deactivate_remote_frees_attr.attr,
03e404af 5302 &deactivate_bypass_attr.attr,
65c3376a 5303 &order_fallback_attr.attr,
b789ef51
CL
5304 &cmpxchg_double_fail_attr.attr,
5305 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5306 &cpu_partial_alloc_attr.attr,
5307 &cpu_partial_free_attr.attr,
8028dcea
AS
5308 &cpu_partial_node_attr.attr,
5309 &cpu_partial_drain_attr.attr,
81819f0f 5310#endif
4c13dd3b
DM
5311#ifdef CONFIG_FAILSLAB
5312 &failslab_attr.attr,
5313#endif
5314
81819f0f
CL
5315 NULL
5316};
5317
5318static struct attribute_group slab_attr_group = {
5319 .attrs = slab_attrs,
5320};
5321
5322static ssize_t slab_attr_show(struct kobject *kobj,
5323 struct attribute *attr,
5324 char *buf)
5325{
5326 struct slab_attribute *attribute;
5327 struct kmem_cache *s;
5328 int err;
5329
5330 attribute = to_slab_attr(attr);
5331 s = to_slab(kobj);
5332
5333 if (!attribute->show)
5334 return -EIO;
5335
5336 err = attribute->show(s, buf);
5337
5338 return err;
5339}
5340
5341static ssize_t slab_attr_store(struct kobject *kobj,
5342 struct attribute *attr,
5343 const char *buf, size_t len)
5344{
5345 struct slab_attribute *attribute;
5346 struct kmem_cache *s;
5347 int err;
5348
5349 attribute = to_slab_attr(attr);
5350 s = to_slab(kobj);
5351
5352 if (!attribute->store)
5353 return -EIO;
5354
5355 err = attribute->store(s, buf, len);
127424c8 5356#ifdef CONFIG_MEMCG
107dab5c 5357 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5358 struct kmem_cache *c;
81819f0f 5359
107dab5c
GC
5360 mutex_lock(&slab_mutex);
5361 if (s->max_attr_size < len)
5362 s->max_attr_size = len;
5363
ebe945c2
GC
5364 /*
5365 * This is a best effort propagation, so this function's return
5366 * value will be determined by the parent cache only. This is
5367 * basically because not all attributes will have a well
5368 * defined semantics for rollbacks - most of the actions will
5369 * have permanent effects.
5370 *
5371 * Returning the error value of any of the children that fail
5372 * is not 100 % defined, in the sense that users seeing the
5373 * error code won't be able to know anything about the state of
5374 * the cache.
5375 *
5376 * Only returning the error code for the parent cache at least
5377 * has well defined semantics. The cache being written to
5378 * directly either failed or succeeded, in which case we loop
5379 * through the descendants with best-effort propagation.
5380 */
426589f5
VD
5381 for_each_memcg_cache(c, s)
5382 attribute->store(c, buf, len);
107dab5c
GC
5383 mutex_unlock(&slab_mutex);
5384 }
5385#endif
81819f0f
CL
5386 return err;
5387}
5388
107dab5c
GC
5389static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5390{
127424c8 5391#ifdef CONFIG_MEMCG
107dab5c
GC
5392 int i;
5393 char *buffer = NULL;
93030d83 5394 struct kmem_cache *root_cache;
107dab5c 5395
93030d83 5396 if (is_root_cache(s))
107dab5c
GC
5397 return;
5398
f7ce3190 5399 root_cache = s->memcg_params.root_cache;
93030d83 5400
107dab5c
GC
5401 /*
5402 * This mean this cache had no attribute written. Therefore, no point
5403 * in copying default values around
5404 */
93030d83 5405 if (!root_cache->max_attr_size)
107dab5c
GC
5406 return;
5407
5408 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5409 char mbuf[64];
5410 char *buf;
5411 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5412
5413 if (!attr || !attr->store || !attr->show)
5414 continue;
5415
5416 /*
5417 * It is really bad that we have to allocate here, so we will
5418 * do it only as a fallback. If we actually allocate, though,
5419 * we can just use the allocated buffer until the end.
5420 *
5421 * Most of the slub attributes will tend to be very small in
5422 * size, but sysfs allows buffers up to a page, so they can
5423 * theoretically happen.
5424 */
5425 if (buffer)
5426 buf = buffer;
93030d83 5427 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5428 buf = mbuf;
5429 else {
5430 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5431 if (WARN_ON(!buffer))
5432 continue;
5433 buf = buffer;
5434 }
5435
93030d83 5436 attr->show(root_cache, buf);
107dab5c
GC
5437 attr->store(s, buf, strlen(buf));
5438 }
5439
5440 if (buffer)
5441 free_page((unsigned long)buffer);
5442#endif
5443}
5444
41a21285
CL
5445static void kmem_cache_release(struct kobject *k)
5446{
5447 slab_kmem_cache_release(to_slab(k));
5448}
5449
52cf25d0 5450static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5451 .show = slab_attr_show,
5452 .store = slab_attr_store,
5453};
5454
5455static struct kobj_type slab_ktype = {
5456 .sysfs_ops = &slab_sysfs_ops,
41a21285 5457 .release = kmem_cache_release,
81819f0f
CL
5458};
5459
5460static int uevent_filter(struct kset *kset, struct kobject *kobj)
5461{
5462 struct kobj_type *ktype = get_ktype(kobj);
5463
5464 if (ktype == &slab_ktype)
5465 return 1;
5466 return 0;
5467}
5468
9cd43611 5469static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5470 .filter = uevent_filter,
5471};
5472
27c3a314 5473static struct kset *slab_kset;
81819f0f 5474
9a41707b
VD
5475static inline struct kset *cache_kset(struct kmem_cache *s)
5476{
127424c8 5477#ifdef CONFIG_MEMCG
9a41707b 5478 if (!is_root_cache(s))
f7ce3190 5479 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5480#endif
5481 return slab_kset;
5482}
5483
81819f0f
CL
5484#define ID_STR_LENGTH 64
5485
5486/* Create a unique string id for a slab cache:
6446faa2
CL
5487 *
5488 * Format :[flags-]size
81819f0f
CL
5489 */
5490static char *create_unique_id(struct kmem_cache *s)
5491{
5492 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5493 char *p = name;
5494
5495 BUG_ON(!name);
5496
5497 *p++ = ':';
5498 /*
5499 * First flags affecting slabcache operations. We will only
5500 * get here for aliasable slabs so we do not need to support
5501 * too many flags. The flags here must cover all flags that
5502 * are matched during merging to guarantee that the id is
5503 * unique.
5504 */
5505 if (s->flags & SLAB_CACHE_DMA)
5506 *p++ = 'd';
5507 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5508 *p++ = 'a';
becfda68 5509 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5510 *p++ = 'F';
5a896d9e
VN
5511 if (!(s->flags & SLAB_NOTRACK))
5512 *p++ = 't';
230e9fc2
VD
5513 if (s->flags & SLAB_ACCOUNT)
5514 *p++ = 'A';
81819f0f
CL
5515 if (p != name + 1)
5516 *p++ = '-';
5517 p += sprintf(p, "%07d", s->size);
2633d7a0 5518
81819f0f
CL
5519 BUG_ON(p > name + ID_STR_LENGTH - 1);
5520 return name;
5521}
5522
5523static int sysfs_slab_add(struct kmem_cache *s)
5524{
5525 int err;
5526 const char *name;
45530c44 5527 int unmergeable = slab_unmergeable(s);
81819f0f 5528
81819f0f
CL
5529 if (unmergeable) {
5530 /*
5531 * Slabcache can never be merged so we can use the name proper.
5532 * This is typically the case for debug situations. In that
5533 * case we can catch duplicate names easily.
5534 */
27c3a314 5535 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5536 name = s->name;
5537 } else {
5538 /*
5539 * Create a unique name for the slab as a target
5540 * for the symlinks.
5541 */
5542 name = create_unique_id(s);
5543 }
5544
9a41707b 5545 s->kobj.kset = cache_kset(s);
26e4f205 5546 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5547 if (err)
80da026a 5548 goto out;
81819f0f
CL
5549
5550 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5551 if (err)
5552 goto out_del_kobj;
9a41707b 5553
127424c8 5554#ifdef CONFIG_MEMCG
9a41707b
VD
5555 if (is_root_cache(s)) {
5556 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5557 if (!s->memcg_kset) {
54b6a731
DJ
5558 err = -ENOMEM;
5559 goto out_del_kobj;
9a41707b
VD
5560 }
5561 }
5562#endif
5563
81819f0f
CL
5564 kobject_uevent(&s->kobj, KOBJ_ADD);
5565 if (!unmergeable) {
5566 /* Setup first alias */
5567 sysfs_slab_alias(s, s->name);
81819f0f 5568 }
54b6a731
DJ
5569out:
5570 if (!unmergeable)
5571 kfree(name);
5572 return err;
5573out_del_kobj:
5574 kobject_del(&s->kobj);
54b6a731 5575 goto out;
81819f0f
CL
5576}
5577
41a21285 5578void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5579{
97d06609 5580 if (slab_state < FULL)
2bce6485
CL
5581 /*
5582 * Sysfs has not been setup yet so no need to remove the
5583 * cache from sysfs.
5584 */
5585 return;
5586
127424c8 5587#ifdef CONFIG_MEMCG
9a41707b
VD
5588 kset_unregister(s->memcg_kset);
5589#endif
81819f0f
CL
5590 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5591 kobject_del(&s->kobj);
151c602f 5592 kobject_put(&s->kobj);
81819f0f
CL
5593}
5594
5595/*
5596 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5597 * available lest we lose that information.
81819f0f
CL
5598 */
5599struct saved_alias {
5600 struct kmem_cache *s;
5601 const char *name;
5602 struct saved_alias *next;
5603};
5604
5af328a5 5605static struct saved_alias *alias_list;
81819f0f
CL
5606
5607static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5608{
5609 struct saved_alias *al;
5610
97d06609 5611 if (slab_state == FULL) {
81819f0f
CL
5612 /*
5613 * If we have a leftover link then remove it.
5614 */
27c3a314
GKH
5615 sysfs_remove_link(&slab_kset->kobj, name);
5616 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5617 }
5618
5619 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5620 if (!al)
5621 return -ENOMEM;
5622
5623 al->s = s;
5624 al->name = name;
5625 al->next = alias_list;
5626 alias_list = al;
5627 return 0;
5628}
5629
5630static int __init slab_sysfs_init(void)
5631{
5b95a4ac 5632 struct kmem_cache *s;
81819f0f
CL
5633 int err;
5634
18004c5d 5635 mutex_lock(&slab_mutex);
2bce6485 5636
0ff21e46 5637 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5638 if (!slab_kset) {
18004c5d 5639 mutex_unlock(&slab_mutex);
f9f58285 5640 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5641 return -ENOSYS;
5642 }
5643
97d06609 5644 slab_state = FULL;
26a7bd03 5645
5b95a4ac 5646 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5647 err = sysfs_slab_add(s);
5d540fb7 5648 if (err)
f9f58285
FF
5649 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5650 s->name);
26a7bd03 5651 }
81819f0f
CL
5652
5653 while (alias_list) {
5654 struct saved_alias *al = alias_list;
5655
5656 alias_list = alias_list->next;
5657 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5658 if (err)
f9f58285
FF
5659 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5660 al->name);
81819f0f
CL
5661 kfree(al);
5662 }
5663
18004c5d 5664 mutex_unlock(&slab_mutex);
81819f0f
CL
5665 resiliency_test();
5666 return 0;
5667}
5668
5669__initcall(slab_sysfs_init);
ab4d5ed5 5670#endif /* CONFIG_SYSFS */
57ed3eda
PE
5671
5672/*
5673 * The /proc/slabinfo ABI
5674 */
158a9624 5675#ifdef CONFIG_SLABINFO
0d7561c6 5676void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5677{
57ed3eda 5678 unsigned long nr_slabs = 0;
205ab99d
CL
5679 unsigned long nr_objs = 0;
5680 unsigned long nr_free = 0;
57ed3eda 5681 int node;
fa45dc25 5682 struct kmem_cache_node *n;
57ed3eda 5683
fa45dc25 5684 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5685 nr_slabs += node_nr_slabs(n);
5686 nr_objs += node_nr_objs(n);
205ab99d 5687 nr_free += count_partial(n, count_free);
57ed3eda
PE
5688 }
5689
0d7561c6
GC
5690 sinfo->active_objs = nr_objs - nr_free;
5691 sinfo->num_objs = nr_objs;
5692 sinfo->active_slabs = nr_slabs;
5693 sinfo->num_slabs = nr_slabs;
5694 sinfo->objects_per_slab = oo_objects(s->oo);
5695 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5696}
5697
0d7561c6 5698void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5699{
7b3c3a50
AD
5700}
5701
b7454ad3
GC
5702ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5703 size_t count, loff_t *ppos)
7b3c3a50 5704{
b7454ad3 5705 return -EIO;
7b3c3a50 5706}
158a9624 5707#endif /* CONFIG_SLABINFO */