]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm, slub: introduce static key for slub_debug()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
af537b0a
CL
125static inline int kmem_cache_debug(struct kmem_cache *s)
126{
5577bd8a 127#ifdef CONFIG_SLUB_DEBUG
ca0cab65
VB
128 if (static_branch_unlikely(&slub_debug_enabled))
129 return s->flags & SLAB_DEBUG_FLAGS;
5577bd8a 130#endif
ca0cab65 131 return 0;
af537b0a 132}
5577bd8a 133
117d54df 134void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
135{
136 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
137 p += s->red_left_pad;
138
139 return p;
140}
141
345c905d
JK
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
81819f0f
CL
151/*
152 * Issues still to be resolved:
153 *
81819f0f
CL
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
81819f0f
CL
156 * - Variable sizing of the per node arrays
157 */
158
159/* Enable to test recovery from slab corruption on boot */
160#undef SLUB_RESILIENCY_TEST
161
b789ef51
CL
162/* Enable to log cmpxchg failures */
163#undef SLUB_DEBUG_CMPXCHG
164
2086d26a
CL
165/*
166 * Mininum number of partial slabs. These will be left on the partial
167 * lists even if they are empty. kmem_cache_shrink may reclaim them.
168 */
76be8950 169#define MIN_PARTIAL 5
e95eed57 170
2086d26a
CL
171/*
172 * Maximum number of desirable partial slabs.
173 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 174 * sort the partial list by the number of objects in use.
2086d26a
CL
175 */
176#define MAX_PARTIAL 10
177
becfda68 178#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 179 SLAB_POISON | SLAB_STORE_USER)
672bba3a 180
149daaf3
LA
181/*
182 * These debug flags cannot use CMPXCHG because there might be consistency
183 * issues when checking or reading debug information
184 */
185#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
186 SLAB_TRACE)
187
188
fa5ec8a1 189/*
3de47213
DR
190 * Debugging flags that require metadata to be stored in the slab. These get
191 * disabled when slub_debug=O is used and a cache's min order increases with
192 * metadata.
fa5ec8a1 193 */
3de47213 194#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 195
210b5c06
CG
196#define OO_SHIFT 16
197#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 198#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 199
81819f0f 200/* Internal SLUB flags */
d50112ed 201/* Poison object */
4fd0b46e 202#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 203/* Use cmpxchg_double */
4fd0b46e 204#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 205
02cbc874
CL
206/*
207 * Tracking user of a slab.
208 */
d6543e39 209#define TRACK_ADDRS_COUNT 16
02cbc874 210struct track {
ce71e27c 211 unsigned long addr; /* Called from address */
d6543e39
BG
212#ifdef CONFIG_STACKTRACE
213 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
214#endif
02cbc874
CL
215 int cpu; /* Was running on cpu */
216 int pid; /* Pid context */
217 unsigned long when; /* When did the operation occur */
218};
219
220enum track_item { TRACK_ALLOC, TRACK_FREE };
221
ab4d5ed5 222#ifdef CONFIG_SYSFS
81819f0f
CL
223static int sysfs_slab_add(struct kmem_cache *);
224static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 225static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 226static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 227#else
0c710013
CL
228static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
229static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
230 { return 0; }
107dab5c 231static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 232static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
233#endif
234
4fdccdfb 235static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
236{
237#ifdef CONFIG_SLUB_STATS
88da03a6
CL
238 /*
239 * The rmw is racy on a preemptible kernel but this is acceptable, so
240 * avoid this_cpu_add()'s irq-disable overhead.
241 */
242 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
243#endif
244}
245
81819f0f
CL
246/********************************************************************
247 * Core slab cache functions
248 *******************************************************************/
249
2482ddec
KC
250/*
251 * Returns freelist pointer (ptr). With hardening, this is obfuscated
252 * with an XOR of the address where the pointer is held and a per-cache
253 * random number.
254 */
255static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
256 unsigned long ptr_addr)
257{
258#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
259 /*
260 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
261 * Normally, this doesn't cause any issues, as both set_freepointer()
262 * and get_freepointer() are called with a pointer with the same tag.
263 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
264 * example, when __free_slub() iterates over objects in a cache, it
265 * passes untagged pointers to check_object(). check_object() in turns
266 * calls get_freepointer() with an untagged pointer, which causes the
267 * freepointer to be restored incorrectly.
268 */
269 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 270 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
271#else
272 return ptr;
273#endif
274}
275
276/* Returns the freelist pointer recorded at location ptr_addr. */
277static inline void *freelist_dereference(const struct kmem_cache *s,
278 void *ptr_addr)
279{
280 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
281 (unsigned long)ptr_addr);
282}
283
7656c72b
CL
284static inline void *get_freepointer(struct kmem_cache *s, void *object)
285{
2482ddec 286 return freelist_dereference(s, object + s->offset);
7656c72b
CL
287}
288
0ad9500e
ED
289static void prefetch_freepointer(const struct kmem_cache *s, void *object)
290{
0882ff91 291 prefetch(object + s->offset);
0ad9500e
ED
292}
293
1393d9a1
CL
294static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
295{
2482ddec 296 unsigned long freepointer_addr;
1393d9a1
CL
297 void *p;
298
8e57f8ac 299 if (!debug_pagealloc_enabled_static())
922d566c
JK
300 return get_freepointer(s, object);
301
2482ddec 302 freepointer_addr = (unsigned long)object + s->offset;
fe557319 303 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 304 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
305}
306
7656c72b
CL
307static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
308{
2482ddec
KC
309 unsigned long freeptr_addr = (unsigned long)object + s->offset;
310
ce6fa91b
AP
311#ifdef CONFIG_SLAB_FREELIST_HARDENED
312 BUG_ON(object == fp); /* naive detection of double free or corruption */
313#endif
314
2482ddec 315 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
316}
317
318/* Loop over all objects in a slab */
224a88be 319#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
320 for (__p = fixup_red_left(__s, __addr); \
321 __p < (__addr) + (__objects) * (__s)->size; \
322 __p += (__s)->size)
7656c72b 323
7656c72b 324/* Determine object index from a given position */
284b50dd 325static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 326{
6373dca1 327 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
328}
329
9736d2a9 330static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 331{
9736d2a9 332 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
333}
334
19af27af 335static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 336 unsigned int size)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
9736d2a9 339 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
340 };
341
342 return x;
343}
344
19af27af 345static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
19af27af 350static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
48c935ad 360 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
361 bit_spin_lock(PG_locked, &page->flags);
362}
363
364static __always_inline void slab_unlock(struct page *page)
365{
48c935ad 366 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
367 __bit_spin_unlock(PG_locked, &page->flags);
368}
369
1d07171c
CL
370/* Interrupts must be disabled (for the fallback code to work right) */
371static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
372 void *freelist_old, unsigned long counters_old,
373 void *freelist_new, unsigned long counters_new,
374 const char *n)
375{
376 VM_BUG_ON(!irqs_disabled());
2565409f
HC
377#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
378 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 379 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 380 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
381 freelist_old, counters_old,
382 freelist_new, counters_new))
6f6528a1 383 return true;
1d07171c
CL
384 } else
385#endif
386 {
387 slab_lock(page);
d0e0ac97
CG
388 if (page->freelist == freelist_old &&
389 page->counters == counters_old) {
1d07171c 390 page->freelist = freelist_new;
7d27a04b 391 page->counters = counters_new;
1d07171c 392 slab_unlock(page);
6f6528a1 393 return true;
1d07171c
CL
394 }
395 slab_unlock(page);
396 }
397
398 cpu_relax();
399 stat(s, CMPXCHG_DOUBLE_FAIL);
400
401#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 402 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
403#endif
404
6f6528a1 405 return false;
1d07171c
CL
406}
407
b789ef51
CL
408static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
409 void *freelist_old, unsigned long counters_old,
410 void *freelist_new, unsigned long counters_new,
411 const char *n)
412{
2565409f
HC
413#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
414 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 415 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 416 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
417 freelist_old, counters_old,
418 freelist_new, counters_new))
6f6528a1 419 return true;
b789ef51
CL
420 } else
421#endif
422 {
1d07171c
CL
423 unsigned long flags;
424
425 local_irq_save(flags);
881db7fb 426 slab_lock(page);
d0e0ac97
CG
427 if (page->freelist == freelist_old &&
428 page->counters == counters_old) {
b789ef51 429 page->freelist = freelist_new;
7d27a04b 430 page->counters = counters_new;
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
6f6528a1 433 return true;
b789ef51 434 }
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
b789ef51
CL
437 }
438
439 cpu_relax();
440 stat(s, CMPXCHG_DOUBLE_FAIL);
441
442#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 443 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
444#endif
445
6f6528a1 446 return false;
b789ef51
CL
447}
448
41ecc55b 449#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
450static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
451static DEFINE_SPINLOCK(object_map_lock);
452
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
90e9f6a6 459static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 460 __acquires(&object_map_lock)
5f80b13a
CL
461{
462 void *p;
463 void *addr = page_address(page);
464
90e9f6a6
YZ
465 VM_BUG_ON(!irqs_disabled());
466
467 spin_lock(&object_map_lock);
468
469 bitmap_zero(object_map, page->objects);
470
5f80b13a 471 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
472 set_bit(slab_index(p, s, addr), object_map);
473
474 return object_map;
475}
476
81aba9e0 477static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
478{
479 VM_BUG_ON(map != object_map);
480 lockdep_assert_held(&object_map_lock);
481
482 spin_unlock(&object_map_lock);
5f80b13a
CL
483}
484
870b1fbb 485static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
486{
487 if (s->flags & SLAB_RED_ZONE)
488 return s->size - s->red_left_pad;
489
490 return s->size;
491}
492
493static inline void *restore_red_left(struct kmem_cache *s, void *p)
494{
495 if (s->flags & SLAB_RED_ZONE)
496 p -= s->red_left_pad;
497
498 return p;
499}
500
41ecc55b
CL
501/*
502 * Debug settings:
503 */
89d3c87e 504#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 505static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 506#else
d50112ed 507static slab_flags_t slub_debug;
f0630fff 508#endif
41ecc55b 509
e17f1dfb 510static char *slub_debug_string;
fa5ec8a1 511static int disable_higher_order_debug;
41ecc55b 512
a79316c6
AR
513/*
514 * slub is about to manipulate internal object metadata. This memory lies
515 * outside the range of the allocated object, so accessing it would normally
516 * be reported by kasan as a bounds error. metadata_access_enable() is used
517 * to tell kasan that these accesses are OK.
518 */
519static inline void metadata_access_enable(void)
520{
521 kasan_disable_current();
522}
523
524static inline void metadata_access_disable(void)
525{
526 kasan_enable_current();
527}
528
81819f0f
CL
529/*
530 * Object debugging
531 */
d86bd1be
JK
532
533/* Verify that a pointer has an address that is valid within a slab page */
534static inline int check_valid_pointer(struct kmem_cache *s,
535 struct page *page, void *object)
536{
537 void *base;
538
539 if (!object)
540 return 1;
541
542 base = page_address(page);
338cfaad 543 object = kasan_reset_tag(object);
d86bd1be
JK
544 object = restore_red_left(s, object);
545 if (object < base || object >= base + page->objects * s->size ||
546 (object - base) % s->size) {
547 return 0;
548 }
549
550 return 1;
551}
552
aa2efd5e
DT
553static void print_section(char *level, char *text, u8 *addr,
554 unsigned int length)
81819f0f 555{
a79316c6 556 metadata_access_enable();
aa2efd5e 557 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 558 length, 1);
a79316c6 559 metadata_access_disable();
81819f0f
CL
560}
561
cbfc35a4
WL
562/*
563 * See comment in calculate_sizes().
564 */
565static inline bool freeptr_outside_object(struct kmem_cache *s)
566{
567 return s->offset >= s->inuse;
568}
569
570/*
571 * Return offset of the end of info block which is inuse + free pointer if
572 * not overlapping with object.
573 */
574static inline unsigned int get_info_end(struct kmem_cache *s)
575{
576 if (freeptr_outside_object(s))
577 return s->inuse + sizeof(void *);
578 else
579 return s->inuse;
580}
581
81819f0f
CL
582static struct track *get_track(struct kmem_cache *s, void *object,
583 enum track_item alloc)
584{
585 struct track *p;
586
cbfc35a4 587 p = object + get_info_end(s);
81819f0f
CL
588
589 return p + alloc;
590}
591
592static void set_track(struct kmem_cache *s, void *object,
ce71e27c 593 enum track_item alloc, unsigned long addr)
81819f0f 594{
1a00df4a 595 struct track *p = get_track(s, object, alloc);
81819f0f 596
81819f0f 597 if (addr) {
d6543e39 598#ifdef CONFIG_STACKTRACE
79716799 599 unsigned int nr_entries;
d6543e39 600
a79316c6 601 metadata_access_enable();
79716799 602 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 603 metadata_access_disable();
d6543e39 604
79716799
TG
605 if (nr_entries < TRACK_ADDRS_COUNT)
606 p->addrs[nr_entries] = 0;
d6543e39 607#endif
81819f0f
CL
608 p->addr = addr;
609 p->cpu = smp_processor_id();
88e4ccf2 610 p->pid = current->pid;
81819f0f 611 p->when = jiffies;
b8ca7ff7 612 } else {
81819f0f 613 memset(p, 0, sizeof(struct track));
b8ca7ff7 614 }
81819f0f
CL
615}
616
81819f0f
CL
617static void init_tracking(struct kmem_cache *s, void *object)
618{
24922684
CL
619 if (!(s->flags & SLAB_STORE_USER))
620 return;
621
ce71e27c
EGM
622 set_track(s, object, TRACK_FREE, 0UL);
623 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
624}
625
86609d33 626static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
627{
628 if (!t->addr)
629 return;
630
f9f58285 631 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 632 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
633#ifdef CONFIG_STACKTRACE
634 {
635 int i;
636 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
637 if (t->addrs[i])
f9f58285 638 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
639 else
640 break;
641 }
642#endif
24922684
CL
643}
644
645static void print_tracking(struct kmem_cache *s, void *object)
646{
86609d33 647 unsigned long pr_time = jiffies;
24922684
CL
648 if (!(s->flags & SLAB_STORE_USER))
649 return;
650
86609d33
CP
651 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
652 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
653}
654
655static void print_page_info(struct page *page)
656{
f9f58285 657 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 658 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
659
660}
661
662static void slab_bug(struct kmem_cache *s, char *fmt, ...)
663{
ecc42fbe 664 struct va_format vaf;
24922684 665 va_list args;
24922684
CL
666
667 va_start(args, fmt);
ecc42fbe
FF
668 vaf.fmt = fmt;
669 vaf.va = &args;
f9f58285 670 pr_err("=============================================================================\n");
ecc42fbe 671 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 672 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 673
373d4d09 674 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 675 va_end(args);
81819f0f
CL
676}
677
24922684
CL
678static void slab_fix(struct kmem_cache *s, char *fmt, ...)
679{
ecc42fbe 680 struct va_format vaf;
24922684 681 va_list args;
24922684
CL
682
683 va_start(args, fmt);
ecc42fbe
FF
684 vaf.fmt = fmt;
685 vaf.va = &args;
686 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 687 va_end(args);
24922684
CL
688}
689
52f23478
DZ
690static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
691 void *freelist, void *nextfree)
692{
693 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
694 !check_valid_pointer(s, page, nextfree)) {
695 object_err(s, page, freelist, "Freechain corrupt");
696 freelist = NULL;
697 slab_fix(s, "Isolate corrupted freechain");
698 return true;
699 }
700
701 return false;
702}
703
24922684 704static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
705{
706 unsigned int off; /* Offset of last byte */
a973e9dd 707 u8 *addr = page_address(page);
24922684
CL
708
709 print_tracking(s, p);
710
711 print_page_info(page);
712
f9f58285
FF
713 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
714 p, p - addr, get_freepointer(s, p));
24922684 715
d86bd1be 716 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
717 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
718 s->red_left_pad);
d86bd1be 719 else if (p > addr + 16)
aa2efd5e 720 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 721
aa2efd5e 722 print_section(KERN_ERR, "Object ", p,
1b473f29 723 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 724 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 725 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 726 s->inuse - s->object_size);
81819f0f 727
cbfc35a4 728 off = get_info_end(s);
81819f0f 729
24922684 730 if (s->flags & SLAB_STORE_USER)
81819f0f 731 off += 2 * sizeof(struct track);
81819f0f 732
80a9201a
AP
733 off += kasan_metadata_size(s);
734
d86bd1be 735 if (off != size_from_object(s))
81819f0f 736 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
737 print_section(KERN_ERR, "Padding ", p + off,
738 size_from_object(s) - off);
24922684
CL
739
740 dump_stack();
81819f0f
CL
741}
742
75c66def 743void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
744 u8 *object, char *reason)
745{
3dc50637 746 slab_bug(s, "%s", reason);
24922684 747 print_trailer(s, page, object);
81819f0f
CL
748}
749
a38965bf 750static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 751 const char *fmt, ...)
81819f0f
CL
752{
753 va_list args;
754 char buf[100];
755
24922684
CL
756 va_start(args, fmt);
757 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 758 va_end(args);
3dc50637 759 slab_bug(s, "%s", buf);
24922684 760 print_page_info(page);
81819f0f
CL
761 dump_stack();
762}
763
f7cb1933 764static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
765{
766 u8 *p = object;
767
d86bd1be
JK
768 if (s->flags & SLAB_RED_ZONE)
769 memset(p - s->red_left_pad, val, s->red_left_pad);
770
81819f0f 771 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
772 memset(p, POISON_FREE, s->object_size - 1);
773 p[s->object_size - 1] = POISON_END;
81819f0f
CL
774 }
775
776 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 777 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
778}
779
24922684
CL
780static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
781 void *from, void *to)
782{
783 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
784 memset(from, data, to - from);
785}
786
787static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
788 u8 *object, char *what,
06428780 789 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
790{
791 u8 *fault;
792 u8 *end;
e1b70dd1 793 u8 *addr = page_address(page);
24922684 794
a79316c6 795 metadata_access_enable();
79824820 796 fault = memchr_inv(start, value, bytes);
a79316c6 797 metadata_access_disable();
24922684
CL
798 if (!fault)
799 return 1;
800
801 end = start + bytes;
802 while (end > fault && end[-1] == value)
803 end--;
804
805 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
806 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
807 fault, end - 1, fault - addr,
808 fault[0], value);
24922684
CL
809 print_trailer(s, page, object);
810
811 restore_bytes(s, what, value, fault, end);
812 return 0;
81819f0f
CL
813}
814
81819f0f
CL
815/*
816 * Object layout:
817 *
818 * object address
819 * Bytes of the object to be managed.
820 * If the freepointer may overlay the object then the free
cbfc35a4 821 * pointer is at the middle of the object.
672bba3a 822 *
81819f0f
CL
823 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
824 * 0xa5 (POISON_END)
825 *
3b0efdfa 826 * object + s->object_size
81819f0f 827 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 828 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 829 * object_size == inuse.
672bba3a 830 *
81819f0f
CL
831 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
832 * 0xcc (RED_ACTIVE) for objects in use.
833 *
834 * object + s->inuse
672bba3a
CL
835 * Meta data starts here.
836 *
81819f0f
CL
837 * A. Free pointer (if we cannot overwrite object on free)
838 * B. Tracking data for SLAB_STORE_USER
672bba3a 839 * C. Padding to reach required alignment boundary or at mininum
6446faa2 840 * one word if debugging is on to be able to detect writes
672bba3a
CL
841 * before the word boundary.
842 *
843 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
844 *
845 * object + s->size
672bba3a 846 * Nothing is used beyond s->size.
81819f0f 847 *
3b0efdfa 848 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 849 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
850 * may be used with merged slabcaches.
851 */
852
81819f0f
CL
853static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
854{
cbfc35a4 855 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
856
857 if (s->flags & SLAB_STORE_USER)
858 /* We also have user information there */
859 off += 2 * sizeof(struct track);
860
80a9201a
AP
861 off += kasan_metadata_size(s);
862
d86bd1be 863 if (size_from_object(s) == off)
81819f0f
CL
864 return 1;
865
24922684 866 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 867 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
868}
869
39b26464 870/* Check the pad bytes at the end of a slab page */
81819f0f
CL
871static int slab_pad_check(struct kmem_cache *s, struct page *page)
872{
24922684
CL
873 u8 *start;
874 u8 *fault;
875 u8 *end;
5d682681 876 u8 *pad;
24922684
CL
877 int length;
878 int remainder;
81819f0f
CL
879
880 if (!(s->flags & SLAB_POISON))
881 return 1;
882
a973e9dd 883 start = page_address(page);
a50b854e 884 length = page_size(page);
39b26464
CL
885 end = start + length;
886 remainder = length % s->size;
81819f0f
CL
887 if (!remainder)
888 return 1;
889
5d682681 890 pad = end - remainder;
a79316c6 891 metadata_access_enable();
5d682681 892 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 893 metadata_access_disable();
24922684
CL
894 if (!fault)
895 return 1;
896 while (end > fault && end[-1] == POISON_INUSE)
897 end--;
898
e1b70dd1
MC
899 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
900 fault, end - 1, fault - start);
5d682681 901 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 902
5d682681 903 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 904 return 0;
81819f0f
CL
905}
906
907static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 908 void *object, u8 val)
81819f0f
CL
909{
910 u8 *p = object;
3b0efdfa 911 u8 *endobject = object + s->object_size;
81819f0f
CL
912
913 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
914 if (!check_bytes_and_report(s, page, object, "Redzone",
915 object - s->red_left_pad, val, s->red_left_pad))
916 return 0;
917
24922684 918 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 919 endobject, val, s->inuse - s->object_size))
81819f0f 920 return 0;
81819f0f 921 } else {
3b0efdfa 922 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 923 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
924 endobject, POISON_INUSE,
925 s->inuse - s->object_size);
3adbefee 926 }
81819f0f
CL
927 }
928
929 if (s->flags & SLAB_POISON) {
f7cb1933 930 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 931 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 932 POISON_FREE, s->object_size - 1) ||
24922684 933 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 934 p + s->object_size - 1, POISON_END, 1)))
81819f0f 935 return 0;
81819f0f
CL
936 /*
937 * check_pad_bytes cleans up on its own.
938 */
939 check_pad_bytes(s, page, p);
940 }
941
cbfc35a4 942 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
943 /*
944 * Object and freepointer overlap. Cannot check
945 * freepointer while object is allocated.
946 */
947 return 1;
948
949 /* Check free pointer validity */
950 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
951 object_err(s, page, p, "Freepointer corrupt");
952 /*
9f6c708e 953 * No choice but to zap it and thus lose the remainder
81819f0f 954 * of the free objects in this slab. May cause
672bba3a 955 * another error because the object count is now wrong.
81819f0f 956 */
a973e9dd 957 set_freepointer(s, p, NULL);
81819f0f
CL
958 return 0;
959 }
960 return 1;
961}
962
963static int check_slab(struct kmem_cache *s, struct page *page)
964{
39b26464
CL
965 int maxobj;
966
81819f0f
CL
967 VM_BUG_ON(!irqs_disabled());
968
969 if (!PageSlab(page)) {
24922684 970 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
971 return 0;
972 }
39b26464 973
9736d2a9 974 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
975 if (page->objects > maxobj) {
976 slab_err(s, page, "objects %u > max %u",
f6edde9c 977 page->objects, maxobj);
39b26464
CL
978 return 0;
979 }
980 if (page->inuse > page->objects) {
24922684 981 slab_err(s, page, "inuse %u > max %u",
f6edde9c 982 page->inuse, page->objects);
81819f0f
CL
983 return 0;
984 }
985 /* Slab_pad_check fixes things up after itself */
986 slab_pad_check(s, page);
987 return 1;
988}
989
990/*
672bba3a
CL
991 * Determine if a certain object on a page is on the freelist. Must hold the
992 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
993 */
994static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
995{
996 int nr = 0;
881db7fb 997 void *fp;
81819f0f 998 void *object = NULL;
f6edde9c 999 int max_objects;
81819f0f 1000
881db7fb 1001 fp = page->freelist;
39b26464 1002 while (fp && nr <= page->objects) {
81819f0f
CL
1003 if (fp == search)
1004 return 1;
1005 if (!check_valid_pointer(s, page, fp)) {
1006 if (object) {
1007 object_err(s, page, object,
1008 "Freechain corrupt");
a973e9dd 1009 set_freepointer(s, object, NULL);
81819f0f 1010 } else {
24922684 1011 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1012 page->freelist = NULL;
39b26464 1013 page->inuse = page->objects;
24922684 1014 slab_fix(s, "Freelist cleared");
81819f0f
CL
1015 return 0;
1016 }
1017 break;
1018 }
1019 object = fp;
1020 fp = get_freepointer(s, object);
1021 nr++;
1022 }
1023
9736d2a9 1024 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1025 if (max_objects > MAX_OBJS_PER_PAGE)
1026 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1027
1028 if (page->objects != max_objects) {
756a025f
JP
1029 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1030 page->objects, max_objects);
224a88be
CL
1031 page->objects = max_objects;
1032 slab_fix(s, "Number of objects adjusted.");
1033 }
39b26464 1034 if (page->inuse != page->objects - nr) {
756a025f
JP
1035 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1036 page->inuse, page->objects - nr);
39b26464 1037 page->inuse = page->objects - nr;
24922684 1038 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1039 }
1040 return search == NULL;
1041}
1042
0121c619
CL
1043static void trace(struct kmem_cache *s, struct page *page, void *object,
1044 int alloc)
3ec09742
CL
1045{
1046 if (s->flags & SLAB_TRACE) {
f9f58285 1047 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1048 s->name,
1049 alloc ? "alloc" : "free",
1050 object, page->inuse,
1051 page->freelist);
1052
1053 if (!alloc)
aa2efd5e 1054 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1055 s->object_size);
3ec09742
CL
1056
1057 dump_stack();
1058 }
1059}
1060
643b1138 1061/*
672bba3a 1062 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1063 */
5cc6eee8
CL
1064static void add_full(struct kmem_cache *s,
1065 struct kmem_cache_node *n, struct page *page)
643b1138 1066{
5cc6eee8
CL
1067 if (!(s->flags & SLAB_STORE_USER))
1068 return;
1069
255d0884 1070 lockdep_assert_held(&n->list_lock);
916ac052 1071 list_add(&page->slab_list, &n->full);
643b1138
CL
1072}
1073
c65c1877 1074static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1075{
643b1138
CL
1076 if (!(s->flags & SLAB_STORE_USER))
1077 return;
1078
255d0884 1079 lockdep_assert_held(&n->list_lock);
916ac052 1080 list_del(&page->slab_list);
643b1138
CL
1081}
1082
0f389ec6
CL
1083/* Tracking of the number of slabs for debugging purposes */
1084static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1085{
1086 struct kmem_cache_node *n = get_node(s, node);
1087
1088 return atomic_long_read(&n->nr_slabs);
1089}
1090
26c02cf0
AB
1091static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1092{
1093 return atomic_long_read(&n->nr_slabs);
1094}
1095
205ab99d 1096static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1097{
1098 struct kmem_cache_node *n = get_node(s, node);
1099
1100 /*
1101 * May be called early in order to allocate a slab for the
1102 * kmem_cache_node structure. Solve the chicken-egg
1103 * dilemma by deferring the increment of the count during
1104 * bootstrap (see early_kmem_cache_node_alloc).
1105 */
338b2642 1106 if (likely(n)) {
0f389ec6 1107 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1108 atomic_long_add(objects, &n->total_objects);
1109 }
0f389ec6 1110}
205ab99d 1111static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1112{
1113 struct kmem_cache_node *n = get_node(s, node);
1114
1115 atomic_long_dec(&n->nr_slabs);
205ab99d 1116 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1117}
1118
1119/* Object debug checks for alloc/free paths */
3ec09742
CL
1120static void setup_object_debug(struct kmem_cache *s, struct page *page,
1121 void *object)
1122{
1123 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1124 return;
1125
f7cb1933 1126 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1127 init_tracking(s, object);
1128}
1129
a50b854e
MWO
1130static
1131void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1132{
1133 if (!(s->flags & SLAB_POISON))
1134 return;
1135
1136 metadata_access_enable();
a50b854e 1137 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1138 metadata_access_disable();
1139}
1140
becfda68 1141static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1142 struct page *page, void *object)
81819f0f
CL
1143{
1144 if (!check_slab(s, page))
becfda68 1145 return 0;
81819f0f 1146
81819f0f
CL
1147 if (!check_valid_pointer(s, page, object)) {
1148 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1149 return 0;
81819f0f
CL
1150 }
1151
f7cb1933 1152 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1153 return 0;
1154
1155 return 1;
1156}
1157
1158static noinline int alloc_debug_processing(struct kmem_cache *s,
1159 struct page *page,
1160 void *object, unsigned long addr)
1161{
1162 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1163 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1164 goto bad;
1165 }
81819f0f 1166
3ec09742
CL
1167 /* Success perform special debug activities for allocs */
1168 if (s->flags & SLAB_STORE_USER)
1169 set_track(s, object, TRACK_ALLOC, addr);
1170 trace(s, page, object, 1);
f7cb1933 1171 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1172 return 1;
3ec09742 1173
81819f0f
CL
1174bad:
1175 if (PageSlab(page)) {
1176 /*
1177 * If this is a slab page then lets do the best we can
1178 * to avoid issues in the future. Marking all objects
672bba3a 1179 * as used avoids touching the remaining objects.
81819f0f 1180 */
24922684 1181 slab_fix(s, "Marking all objects used");
39b26464 1182 page->inuse = page->objects;
a973e9dd 1183 page->freelist = NULL;
81819f0f
CL
1184 }
1185 return 0;
1186}
1187
becfda68
LA
1188static inline int free_consistency_checks(struct kmem_cache *s,
1189 struct page *page, void *object, unsigned long addr)
81819f0f 1190{
81819f0f 1191 if (!check_valid_pointer(s, page, object)) {
70d71228 1192 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1193 return 0;
81819f0f
CL
1194 }
1195
1196 if (on_freelist(s, page, object)) {
24922684 1197 object_err(s, page, object, "Object already free");
becfda68 1198 return 0;
81819f0f
CL
1199 }
1200
f7cb1933 1201 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1202 return 0;
81819f0f 1203
1b4f59e3 1204 if (unlikely(s != page->slab_cache)) {
3adbefee 1205 if (!PageSlab(page)) {
756a025f
JP
1206 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1207 object);
1b4f59e3 1208 } else if (!page->slab_cache) {
f9f58285
FF
1209 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1210 object);
70d71228 1211 dump_stack();
06428780 1212 } else
24922684
CL
1213 object_err(s, page, object,
1214 "page slab pointer corrupt.");
becfda68
LA
1215 return 0;
1216 }
1217 return 1;
1218}
1219
1220/* Supports checking bulk free of a constructed freelist */
1221static noinline int free_debug_processing(
1222 struct kmem_cache *s, struct page *page,
1223 void *head, void *tail, int bulk_cnt,
1224 unsigned long addr)
1225{
1226 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1227 void *object = head;
1228 int cnt = 0;
3f649ab7 1229 unsigned long flags;
becfda68
LA
1230 int ret = 0;
1231
1232 spin_lock_irqsave(&n->list_lock, flags);
1233 slab_lock(page);
1234
1235 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1236 if (!check_slab(s, page))
1237 goto out;
1238 }
1239
1240next_object:
1241 cnt++;
1242
1243 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1244 if (!free_consistency_checks(s, page, object, addr))
1245 goto out;
81819f0f 1246 }
3ec09742 1247
3ec09742
CL
1248 if (s->flags & SLAB_STORE_USER)
1249 set_track(s, object, TRACK_FREE, addr);
1250 trace(s, page, object, 0);
81084651 1251 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1252 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1253
1254 /* Reached end of constructed freelist yet? */
1255 if (object != tail) {
1256 object = get_freepointer(s, object);
1257 goto next_object;
1258 }
804aa132
LA
1259 ret = 1;
1260
5c2e4bbb 1261out:
81084651
JDB
1262 if (cnt != bulk_cnt)
1263 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1264 bulk_cnt, cnt);
1265
881db7fb 1266 slab_unlock(page);
282acb43 1267 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1268 if (!ret)
1269 slab_fix(s, "Object at 0x%p not freed", object);
1270 return ret;
81819f0f
CL
1271}
1272
e17f1dfb
VB
1273/*
1274 * Parse a block of slub_debug options. Blocks are delimited by ';'
1275 *
1276 * @str: start of block
1277 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1278 * @slabs: return start of list of slabs, or NULL when there's no list
1279 * @init: assume this is initial parsing and not per-kmem-create parsing
1280 *
1281 * returns the start of next block if there's any, or NULL
1282 */
1283static char *
1284parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1285{
e17f1dfb 1286 bool higher_order_disable = false;
f0630fff 1287
e17f1dfb
VB
1288 /* Skip any completely empty blocks */
1289 while (*str && *str == ';')
1290 str++;
1291
1292 if (*str == ',') {
f0630fff
CL
1293 /*
1294 * No options but restriction on slabs. This means full
1295 * debugging for slabs matching a pattern.
1296 */
e17f1dfb 1297 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1298 goto check_slabs;
e17f1dfb
VB
1299 }
1300 *flags = 0;
f0630fff 1301
e17f1dfb
VB
1302 /* Determine which debug features should be switched on */
1303 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1304 switch (tolower(*str)) {
e17f1dfb
VB
1305 case '-':
1306 *flags = 0;
1307 break;
f0630fff 1308 case 'f':
e17f1dfb 1309 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1310 break;
1311 case 'z':
e17f1dfb 1312 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1313 break;
1314 case 'p':
e17f1dfb 1315 *flags |= SLAB_POISON;
f0630fff
CL
1316 break;
1317 case 'u':
e17f1dfb 1318 *flags |= SLAB_STORE_USER;
f0630fff
CL
1319 break;
1320 case 't':
e17f1dfb 1321 *flags |= SLAB_TRACE;
f0630fff 1322 break;
4c13dd3b 1323 case 'a':
e17f1dfb 1324 *flags |= SLAB_FAILSLAB;
4c13dd3b 1325 break;
08303a73
CA
1326 case 'o':
1327 /*
1328 * Avoid enabling debugging on caches if its minimum
1329 * order would increase as a result.
1330 */
e17f1dfb 1331 higher_order_disable = true;
08303a73 1332 break;
f0630fff 1333 default:
e17f1dfb
VB
1334 if (init)
1335 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1336 }
41ecc55b 1337 }
f0630fff 1338check_slabs:
41ecc55b 1339 if (*str == ',')
e17f1dfb
VB
1340 *slabs = ++str;
1341 else
1342 *slabs = NULL;
1343
1344 /* Skip over the slab list */
1345 while (*str && *str != ';')
1346 str++;
1347
1348 /* Skip any completely empty blocks */
1349 while (*str && *str == ';')
1350 str++;
1351
1352 if (init && higher_order_disable)
1353 disable_higher_order_debug = 1;
1354
1355 if (*str)
1356 return str;
1357 else
1358 return NULL;
1359}
1360
1361static int __init setup_slub_debug(char *str)
1362{
1363 slab_flags_t flags;
1364 char *saved_str;
1365 char *slab_list;
1366 bool global_slub_debug_changed = false;
1367 bool slab_list_specified = false;
1368
1369 slub_debug = DEBUG_DEFAULT_FLAGS;
1370 if (*str++ != '=' || !*str)
1371 /*
1372 * No options specified. Switch on full debugging.
1373 */
1374 goto out;
1375
1376 saved_str = str;
1377 while (str) {
1378 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1379
1380 if (!slab_list) {
1381 slub_debug = flags;
1382 global_slub_debug_changed = true;
1383 } else {
1384 slab_list_specified = true;
1385 }
1386 }
1387
1388 /*
1389 * For backwards compatibility, a single list of flags with list of
1390 * slabs means debugging is only enabled for those slabs, so the global
1391 * slub_debug should be 0. We can extended that to multiple lists as
1392 * long as there is no option specifying flags without a slab list.
1393 */
1394 if (slab_list_specified) {
1395 if (!global_slub_debug_changed)
1396 slub_debug = 0;
1397 slub_debug_string = saved_str;
1398 }
f0630fff 1399out:
ca0cab65
VB
1400 if (slub_debug != 0 || slub_debug_string)
1401 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1402 if ((static_branch_unlikely(&init_on_alloc) ||
1403 static_branch_unlikely(&init_on_free)) &&
1404 (slub_debug & SLAB_POISON))
1405 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1406 return 1;
1407}
1408
1409__setup("slub_debug", setup_slub_debug);
1410
c5fd3ca0
AT
1411/*
1412 * kmem_cache_flags - apply debugging options to the cache
1413 * @object_size: the size of an object without meta data
1414 * @flags: flags to set
1415 * @name: name of the cache
1416 * @ctor: constructor function
1417 *
1418 * Debug option(s) are applied to @flags. In addition to the debug
1419 * option(s), if a slab name (or multiple) is specified i.e.
1420 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1421 * then only the select slabs will receive the debug option(s).
1422 */
0293d1fd 1423slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1424 slab_flags_t flags, const char *name,
51cc5068 1425 void (*ctor)(void *))
41ecc55b 1426{
c5fd3ca0
AT
1427 char *iter;
1428 size_t len;
e17f1dfb
VB
1429 char *next_block;
1430 slab_flags_t block_flags;
c5fd3ca0
AT
1431
1432 /* If slub_debug = 0, it folds into the if conditional. */
e17f1dfb 1433 if (!slub_debug_string)
c5fd3ca0
AT
1434 return flags | slub_debug;
1435
1436 len = strlen(name);
e17f1dfb
VB
1437 next_block = slub_debug_string;
1438 /* Go through all blocks of debug options, see if any matches our slab's name */
1439 while (next_block) {
1440 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1441 if (!iter)
1442 continue;
1443 /* Found a block that has a slab list, search it */
1444 while (*iter) {
1445 char *end, *glob;
1446 size_t cmplen;
1447
1448 end = strchrnul(iter, ',');
1449 if (next_block && next_block < end)
1450 end = next_block - 1;
1451
1452 glob = strnchr(iter, end - iter, '*');
1453 if (glob)
1454 cmplen = glob - iter;
1455 else
1456 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1457
e17f1dfb
VB
1458 if (!strncmp(name, iter, cmplen)) {
1459 flags |= block_flags;
1460 return flags;
1461 }
c5fd3ca0 1462
e17f1dfb
VB
1463 if (!*end || *end == ';')
1464 break;
1465 iter = end + 1;
c5fd3ca0 1466 }
c5fd3ca0 1467 }
ba0268a8 1468
e17f1dfb 1469 return slub_debug;
41ecc55b 1470}
b4a64718 1471#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1472static inline void setup_object_debug(struct kmem_cache *s,
1473 struct page *page, void *object) {}
a50b854e
MWO
1474static inline
1475void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1476
3ec09742 1477static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1478 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1479
282acb43 1480static inline int free_debug_processing(
81084651
JDB
1481 struct kmem_cache *s, struct page *page,
1482 void *head, void *tail, int bulk_cnt,
282acb43 1483 unsigned long addr) { return 0; }
41ecc55b 1484
41ecc55b
CL
1485static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1486 { return 1; }
1487static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1488 void *object, u8 val) { return 1; }
5cc6eee8
CL
1489static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
c65c1877
PZ
1491static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1492 struct page *page) {}
0293d1fd 1493slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1494 slab_flags_t flags, const char *name,
51cc5068 1495 void (*ctor)(void *))
ba0268a8
CL
1496{
1497 return flags;
1498}
41ecc55b 1499#define slub_debug 0
0f389ec6 1500
fdaa45e9
IM
1501#define disable_higher_order_debug 0
1502
0f389ec6
CL
1503static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1504 { return 0; }
26c02cf0
AB
1505static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1506 { return 0; }
205ab99d
CL
1507static inline void inc_slabs_node(struct kmem_cache *s, int node,
1508 int objects) {}
1509static inline void dec_slabs_node(struct kmem_cache *s, int node,
1510 int objects) {}
7d550c56 1511
52f23478
DZ
1512static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1513 void *freelist, void *nextfree)
1514{
1515 return false;
1516}
02e72cc6
AR
1517#endif /* CONFIG_SLUB_DEBUG */
1518
1519/*
1520 * Hooks for other subsystems that check memory allocations. In a typical
1521 * production configuration these hooks all should produce no code at all.
1522 */
0116523c 1523static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1524{
53128245 1525 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1526 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1527 kmemleak_alloc(ptr, size, 1, flags);
53128245 1528 return ptr;
d56791b3
RB
1529}
1530
ee3ce779 1531static __always_inline void kfree_hook(void *x)
d56791b3
RB
1532{
1533 kmemleak_free(x);
ee3ce779 1534 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1535}
1536
c3895391 1537static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1538{
1539 kmemleak_free_recursive(x, s->flags);
7d550c56 1540
02e72cc6
AR
1541 /*
1542 * Trouble is that we may no longer disable interrupts in the fast path
1543 * So in order to make the debug calls that expect irqs to be
1544 * disabled we need to disable interrupts temporarily.
1545 */
4675ff05 1546#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1547 {
1548 unsigned long flags;
1549
1550 local_irq_save(flags);
02e72cc6
AR
1551 debug_check_no_locks_freed(x, s->object_size);
1552 local_irq_restore(flags);
1553 }
1554#endif
1555 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1556 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1557
c3895391
AK
1558 /* KASAN might put x into memory quarantine, delaying its reuse */
1559 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1560}
205ab99d 1561
c3895391
AK
1562static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1563 void **head, void **tail)
81084651 1564{
6471384a
AP
1565
1566 void *object;
1567 void *next = *head;
1568 void *old_tail = *tail ? *tail : *head;
1569 int rsize;
1570
aea4df4c
LA
1571 /* Head and tail of the reconstructed freelist */
1572 *head = NULL;
1573 *tail = NULL;
1b7e816f 1574
aea4df4c
LA
1575 do {
1576 object = next;
1577 next = get_freepointer(s, object);
1578
1579 if (slab_want_init_on_free(s)) {
6471384a
AP
1580 /*
1581 * Clear the object and the metadata, but don't touch
1582 * the redzone.
1583 */
1584 memset(object, 0, s->object_size);
1585 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1586 : 0;
1587 memset((char *)object + s->inuse, 0,
1588 s->size - s->inuse - rsize);
81084651 1589
aea4df4c 1590 }
c3895391
AK
1591 /* If object's reuse doesn't have to be delayed */
1592 if (!slab_free_hook(s, object)) {
1593 /* Move object to the new freelist */
1594 set_freepointer(s, object, *head);
1595 *head = object;
1596 if (!*tail)
1597 *tail = object;
1598 }
1599 } while (object != old_tail);
1600
1601 if (*head == *tail)
1602 *tail = NULL;
1603
1604 return *head != NULL;
81084651
JDB
1605}
1606
4d176711 1607static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1608 void *object)
1609{
1610 setup_object_debug(s, page, object);
4d176711 1611 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1612 if (unlikely(s->ctor)) {
1613 kasan_unpoison_object_data(s, object);
1614 s->ctor(object);
1615 kasan_poison_object_data(s, object);
1616 }
4d176711 1617 return object;
588f8ba9
TG
1618}
1619
81819f0f
CL
1620/*
1621 * Slab allocation and freeing
1622 */
5dfb4175
VD
1623static inline struct page *alloc_slab_page(struct kmem_cache *s,
1624 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1625{
5dfb4175 1626 struct page *page;
19af27af 1627 unsigned int order = oo_order(oo);
65c3376a 1628
2154a336 1629 if (node == NUMA_NO_NODE)
5dfb4175 1630 page = alloc_pages(flags, order);
65c3376a 1631 else
96db800f 1632 page = __alloc_pages_node(node, flags, order);
5dfb4175 1633
6cea1d56 1634 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1635 __free_pages(page, order);
1636 page = NULL;
1637 }
5dfb4175
VD
1638
1639 return page;
65c3376a
CL
1640}
1641
210e7a43
TG
1642#ifdef CONFIG_SLAB_FREELIST_RANDOM
1643/* Pre-initialize the random sequence cache */
1644static int init_cache_random_seq(struct kmem_cache *s)
1645{
19af27af 1646 unsigned int count = oo_objects(s->oo);
210e7a43 1647 int err;
210e7a43 1648
a810007a
SR
1649 /* Bailout if already initialised */
1650 if (s->random_seq)
1651 return 0;
1652
210e7a43
TG
1653 err = cache_random_seq_create(s, count, GFP_KERNEL);
1654 if (err) {
1655 pr_err("SLUB: Unable to initialize free list for %s\n",
1656 s->name);
1657 return err;
1658 }
1659
1660 /* Transform to an offset on the set of pages */
1661 if (s->random_seq) {
19af27af
AD
1662 unsigned int i;
1663
210e7a43
TG
1664 for (i = 0; i < count; i++)
1665 s->random_seq[i] *= s->size;
1666 }
1667 return 0;
1668}
1669
1670/* Initialize each random sequence freelist per cache */
1671static void __init init_freelist_randomization(void)
1672{
1673 struct kmem_cache *s;
1674
1675 mutex_lock(&slab_mutex);
1676
1677 list_for_each_entry(s, &slab_caches, list)
1678 init_cache_random_seq(s);
1679
1680 mutex_unlock(&slab_mutex);
1681}
1682
1683/* Get the next entry on the pre-computed freelist randomized */
1684static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1685 unsigned long *pos, void *start,
1686 unsigned long page_limit,
1687 unsigned long freelist_count)
1688{
1689 unsigned int idx;
1690
1691 /*
1692 * If the target page allocation failed, the number of objects on the
1693 * page might be smaller than the usual size defined by the cache.
1694 */
1695 do {
1696 idx = s->random_seq[*pos];
1697 *pos += 1;
1698 if (*pos >= freelist_count)
1699 *pos = 0;
1700 } while (unlikely(idx >= page_limit));
1701
1702 return (char *)start + idx;
1703}
1704
1705/* Shuffle the single linked freelist based on a random pre-computed sequence */
1706static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1707{
1708 void *start;
1709 void *cur;
1710 void *next;
1711 unsigned long idx, pos, page_limit, freelist_count;
1712
1713 if (page->objects < 2 || !s->random_seq)
1714 return false;
1715
1716 freelist_count = oo_objects(s->oo);
1717 pos = get_random_int() % freelist_count;
1718
1719 page_limit = page->objects * s->size;
1720 start = fixup_red_left(s, page_address(page));
1721
1722 /* First entry is used as the base of the freelist */
1723 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1724 freelist_count);
4d176711 1725 cur = setup_object(s, page, cur);
210e7a43
TG
1726 page->freelist = cur;
1727
1728 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1729 next = next_freelist_entry(s, page, &pos, start, page_limit,
1730 freelist_count);
4d176711 1731 next = setup_object(s, page, next);
210e7a43
TG
1732 set_freepointer(s, cur, next);
1733 cur = next;
1734 }
210e7a43
TG
1735 set_freepointer(s, cur, NULL);
1736
1737 return true;
1738}
1739#else
1740static inline int init_cache_random_seq(struct kmem_cache *s)
1741{
1742 return 0;
1743}
1744static inline void init_freelist_randomization(void) { }
1745static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1746{
1747 return false;
1748}
1749#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1750
81819f0f
CL
1751static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1752{
06428780 1753 struct page *page;
834f3d11 1754 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1755 gfp_t alloc_gfp;
4d176711 1756 void *start, *p, *next;
a50b854e 1757 int idx;
210e7a43 1758 bool shuffle;
81819f0f 1759
7e0528da
CL
1760 flags &= gfp_allowed_mask;
1761
d0164adc 1762 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1763 local_irq_enable();
1764
b7a49f0d 1765 flags |= s->allocflags;
e12ba74d 1766
ba52270d
PE
1767 /*
1768 * Let the initial higher-order allocation fail under memory pressure
1769 * so we fall-back to the minimum order allocation.
1770 */
1771 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1772 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1773 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1774
5dfb4175 1775 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1776 if (unlikely(!page)) {
1777 oo = s->min;
80c3a998 1778 alloc_gfp = flags;
65c3376a
CL
1779 /*
1780 * Allocation may have failed due to fragmentation.
1781 * Try a lower order alloc if possible
1782 */
5dfb4175 1783 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1784 if (unlikely(!page))
1785 goto out;
1786 stat(s, ORDER_FALLBACK);
65c3376a 1787 }
5a896d9e 1788
834f3d11 1789 page->objects = oo_objects(oo);
81819f0f 1790
1b4f59e3 1791 page->slab_cache = s;
c03f94cc 1792 __SetPageSlab(page);
2f064f34 1793 if (page_is_pfmemalloc(page))
072bb0aa 1794 SetPageSlabPfmemalloc(page);
81819f0f 1795
a7101224 1796 kasan_poison_slab(page);
81819f0f 1797
a7101224 1798 start = page_address(page);
81819f0f 1799
a50b854e 1800 setup_page_debug(s, page, start);
0316bec2 1801
210e7a43
TG
1802 shuffle = shuffle_freelist(s, page);
1803
1804 if (!shuffle) {
4d176711
AK
1805 start = fixup_red_left(s, start);
1806 start = setup_object(s, page, start);
1807 page->freelist = start;
18e50661
AK
1808 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1809 next = p + s->size;
1810 next = setup_object(s, page, next);
1811 set_freepointer(s, p, next);
1812 p = next;
1813 }
1814 set_freepointer(s, p, NULL);
81819f0f 1815 }
81819f0f 1816
e6e82ea1 1817 page->inuse = page->objects;
8cb0a506 1818 page->frozen = 1;
588f8ba9 1819
81819f0f 1820out:
d0164adc 1821 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1822 local_irq_disable();
1823 if (!page)
1824 return NULL;
1825
588f8ba9
TG
1826 inc_slabs_node(s, page_to_nid(page), page->objects);
1827
81819f0f
CL
1828 return page;
1829}
1830
588f8ba9
TG
1831static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1832{
44405099
LL
1833 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1834 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1835
1836 return allocate_slab(s,
1837 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1838}
1839
81819f0f
CL
1840static void __free_slab(struct kmem_cache *s, struct page *page)
1841{
834f3d11
CL
1842 int order = compound_order(page);
1843 int pages = 1 << order;
81819f0f 1844
becfda68 1845 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1846 void *p;
1847
1848 slab_pad_check(s, page);
224a88be
CL
1849 for_each_object(p, s, page_address(page),
1850 page->objects)
f7cb1933 1851 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1852 }
1853
072bb0aa 1854 __ClearPageSlabPfmemalloc(page);
49bd5221 1855 __ClearPageSlab(page);
1f458cbf 1856
d4fc5069 1857 page->mapping = NULL;
1eb5ac64
NP
1858 if (current->reclaim_state)
1859 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1860 uncharge_slab_page(page, order, s);
27ee57c9 1861 __free_pages(page, order);
81819f0f
CL
1862}
1863
1864static void rcu_free_slab(struct rcu_head *h)
1865{
bf68c214 1866 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1867
1b4f59e3 1868 __free_slab(page->slab_cache, page);
81819f0f
CL
1869}
1870
1871static void free_slab(struct kmem_cache *s, struct page *page)
1872{
5f0d5a3a 1873 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1874 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1875 } else
1876 __free_slab(s, page);
1877}
1878
1879static void discard_slab(struct kmem_cache *s, struct page *page)
1880{
205ab99d 1881 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1882 free_slab(s, page);
1883}
1884
1885/*
5cc6eee8 1886 * Management of partially allocated slabs.
81819f0f 1887 */
1e4dd946
SR
1888static inline void
1889__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1890{
e95eed57 1891 n->nr_partial++;
136333d1 1892 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1893 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1894 else
916ac052 1895 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1896}
1897
1e4dd946
SR
1898static inline void add_partial(struct kmem_cache_node *n,
1899 struct page *page, int tail)
62e346a8 1900{
c65c1877 1901 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1902 __add_partial(n, page, tail);
1903}
c65c1877 1904
1e4dd946
SR
1905static inline void remove_partial(struct kmem_cache_node *n,
1906 struct page *page)
1907{
1908 lockdep_assert_held(&n->list_lock);
916ac052 1909 list_del(&page->slab_list);
52b4b950 1910 n->nr_partial--;
1e4dd946
SR
1911}
1912
81819f0f 1913/*
7ced3719
CL
1914 * Remove slab from the partial list, freeze it and
1915 * return the pointer to the freelist.
81819f0f 1916 *
497b66f2 1917 * Returns a list of objects or NULL if it fails.
81819f0f 1918 */
497b66f2 1919static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1920 struct kmem_cache_node *n, struct page *page,
633b0764 1921 int mode, int *objects)
81819f0f 1922{
2cfb7455
CL
1923 void *freelist;
1924 unsigned long counters;
1925 struct page new;
1926
c65c1877
PZ
1927 lockdep_assert_held(&n->list_lock);
1928
2cfb7455
CL
1929 /*
1930 * Zap the freelist and set the frozen bit.
1931 * The old freelist is the list of objects for the
1932 * per cpu allocation list.
1933 */
7ced3719
CL
1934 freelist = page->freelist;
1935 counters = page->counters;
1936 new.counters = counters;
633b0764 1937 *objects = new.objects - new.inuse;
23910c50 1938 if (mode) {
7ced3719 1939 new.inuse = page->objects;
23910c50
PE
1940 new.freelist = NULL;
1941 } else {
1942 new.freelist = freelist;
1943 }
2cfb7455 1944
a0132ac0 1945 VM_BUG_ON(new.frozen);
7ced3719 1946 new.frozen = 1;
2cfb7455 1947
7ced3719 1948 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1949 freelist, counters,
02d7633f 1950 new.freelist, new.counters,
7ced3719 1951 "acquire_slab"))
7ced3719 1952 return NULL;
2cfb7455
CL
1953
1954 remove_partial(n, page);
7ced3719 1955 WARN_ON(!freelist);
49e22585 1956 return freelist;
81819f0f
CL
1957}
1958
633b0764 1959static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1960static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1961
81819f0f 1962/*
672bba3a 1963 * Try to allocate a partial slab from a specific node.
81819f0f 1964 */
8ba00bb6
JK
1965static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1966 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1967{
49e22585
CL
1968 struct page *page, *page2;
1969 void *object = NULL;
e5d9998f 1970 unsigned int available = 0;
633b0764 1971 int objects;
81819f0f
CL
1972
1973 /*
1974 * Racy check. If we mistakenly see no partial slabs then we
1975 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1976 * partial slab and there is none available then get_partials()
1977 * will return NULL.
81819f0f
CL
1978 */
1979 if (!n || !n->nr_partial)
1980 return NULL;
1981
1982 spin_lock(&n->list_lock);
916ac052 1983 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1984 void *t;
49e22585 1985
8ba00bb6
JK
1986 if (!pfmemalloc_match(page, flags))
1987 continue;
1988
633b0764 1989 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1990 if (!t)
1991 break;
1992
633b0764 1993 available += objects;
12d79634 1994 if (!object) {
49e22585 1995 c->page = page;
49e22585 1996 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1997 object = t;
49e22585 1998 } else {
633b0764 1999 put_cpu_partial(s, page, 0);
8028dcea 2000 stat(s, CPU_PARTIAL_NODE);
49e22585 2001 }
345c905d 2002 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2003 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2004 break;
2005
497b66f2 2006 }
81819f0f 2007 spin_unlock(&n->list_lock);
497b66f2 2008 return object;
81819f0f
CL
2009}
2010
2011/*
672bba3a 2012 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2013 */
de3ec035 2014static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2015 struct kmem_cache_cpu *c)
81819f0f
CL
2016{
2017#ifdef CONFIG_NUMA
2018 struct zonelist *zonelist;
dd1a239f 2019 struct zoneref *z;
54a6eb5c 2020 struct zone *zone;
97a225e6 2021 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2022 void *object;
cc9a6c87 2023 unsigned int cpuset_mems_cookie;
81819f0f
CL
2024
2025 /*
672bba3a
CL
2026 * The defrag ratio allows a configuration of the tradeoffs between
2027 * inter node defragmentation and node local allocations. A lower
2028 * defrag_ratio increases the tendency to do local allocations
2029 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2030 *
672bba3a
CL
2031 * If the defrag_ratio is set to 0 then kmalloc() always
2032 * returns node local objects. If the ratio is higher then kmalloc()
2033 * may return off node objects because partial slabs are obtained
2034 * from other nodes and filled up.
81819f0f 2035 *
43efd3ea
LP
2036 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2037 * (which makes defrag_ratio = 1000) then every (well almost)
2038 * allocation will first attempt to defrag slab caches on other nodes.
2039 * This means scanning over all nodes to look for partial slabs which
2040 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2041 * with available objects.
81819f0f 2042 */
9824601e
CL
2043 if (!s->remote_node_defrag_ratio ||
2044 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2045 return NULL;
2046
cc9a6c87 2047 do {
d26914d1 2048 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2049 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2050 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2051 struct kmem_cache_node *n;
2052
2053 n = get_node(s, zone_to_nid(zone));
2054
dee2f8aa 2055 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2056 n->nr_partial > s->min_partial) {
8ba00bb6 2057 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2058 if (object) {
2059 /*
d26914d1
MG
2060 * Don't check read_mems_allowed_retry()
2061 * here - if mems_allowed was updated in
2062 * parallel, that was a harmless race
2063 * between allocation and the cpuset
2064 * update
cc9a6c87 2065 */
cc9a6c87
MG
2066 return object;
2067 }
c0ff7453 2068 }
81819f0f 2069 }
d26914d1 2070 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2071#endif /* CONFIG_NUMA */
81819f0f
CL
2072 return NULL;
2073}
2074
2075/*
2076 * Get a partial page, lock it and return it.
2077 */
497b66f2 2078static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2079 struct kmem_cache_cpu *c)
81819f0f 2080{
497b66f2 2081 void *object;
a561ce00
JK
2082 int searchnode = node;
2083
2084 if (node == NUMA_NO_NODE)
2085 searchnode = numa_mem_id();
81819f0f 2086
8ba00bb6 2087 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2088 if (object || node != NUMA_NO_NODE)
2089 return object;
81819f0f 2090
acd19fd1 2091 return get_any_partial(s, flags, c);
81819f0f
CL
2092}
2093
923717cb 2094#ifdef CONFIG_PREEMPTION
8a5ec0ba 2095/*
0d645ed1 2096 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2097 * during cmpxchg. The transactions start with the cpu number and are then
2098 * incremented by CONFIG_NR_CPUS.
2099 */
2100#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2101#else
2102/*
2103 * No preemption supported therefore also no need to check for
2104 * different cpus.
2105 */
2106#define TID_STEP 1
2107#endif
2108
2109static inline unsigned long next_tid(unsigned long tid)
2110{
2111 return tid + TID_STEP;
2112}
2113
9d5f0be0 2114#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2115static inline unsigned int tid_to_cpu(unsigned long tid)
2116{
2117 return tid % TID_STEP;
2118}
2119
2120static inline unsigned long tid_to_event(unsigned long tid)
2121{
2122 return tid / TID_STEP;
2123}
9d5f0be0 2124#endif
8a5ec0ba
CL
2125
2126static inline unsigned int init_tid(int cpu)
2127{
2128 return cpu;
2129}
2130
2131static inline void note_cmpxchg_failure(const char *n,
2132 const struct kmem_cache *s, unsigned long tid)
2133{
2134#ifdef SLUB_DEBUG_CMPXCHG
2135 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2136
f9f58285 2137 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2138
923717cb 2139#ifdef CONFIG_PREEMPTION
8a5ec0ba 2140 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2141 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2142 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2143 else
2144#endif
2145 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2146 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2147 tid_to_event(tid), tid_to_event(actual_tid));
2148 else
f9f58285 2149 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2150 actual_tid, tid, next_tid(tid));
2151#endif
4fdccdfb 2152 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2153}
2154
788e1aad 2155static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2156{
8a5ec0ba
CL
2157 int cpu;
2158
2159 for_each_possible_cpu(cpu)
2160 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2161}
2cfb7455 2162
81819f0f
CL
2163/*
2164 * Remove the cpu slab
2165 */
d0e0ac97 2166static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2167 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2168{
2cfb7455 2169 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2170 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2171 int lock = 0;
2172 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2173 void *nextfree;
136333d1 2174 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2175 struct page new;
2176 struct page old;
2177
2178 if (page->freelist) {
84e554e6 2179 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2180 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2181 }
2182
894b8788 2183 /*
2cfb7455
CL
2184 * Stage one: Free all available per cpu objects back
2185 * to the page freelist while it is still frozen. Leave the
2186 * last one.
2187 *
2188 * There is no need to take the list->lock because the page
2189 * is still frozen.
2190 */
2191 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2192 void *prior;
2193 unsigned long counters;
2194
52f23478
DZ
2195 /*
2196 * If 'nextfree' is invalid, it is possible that the object at
2197 * 'freelist' is already corrupted. So isolate all objects
2198 * starting at 'freelist'.
2199 */
2200 if (freelist_corrupted(s, page, freelist, nextfree))
2201 break;
2202
2cfb7455
CL
2203 do {
2204 prior = page->freelist;
2205 counters = page->counters;
2206 set_freepointer(s, freelist, prior);
2207 new.counters = counters;
2208 new.inuse--;
a0132ac0 2209 VM_BUG_ON(!new.frozen);
2cfb7455 2210
1d07171c 2211 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2212 prior, counters,
2213 freelist, new.counters,
2214 "drain percpu freelist"));
2215
2216 freelist = nextfree;
2217 }
2218
894b8788 2219 /*
2cfb7455
CL
2220 * Stage two: Ensure that the page is unfrozen while the
2221 * list presence reflects the actual number of objects
2222 * during unfreeze.
2223 *
2224 * We setup the list membership and then perform a cmpxchg
2225 * with the count. If there is a mismatch then the page
2226 * is not unfrozen but the page is on the wrong list.
2227 *
2228 * Then we restart the process which may have to remove
2229 * the page from the list that we just put it on again
2230 * because the number of objects in the slab may have
2231 * changed.
894b8788 2232 */
2cfb7455 2233redo:
894b8788 2234
2cfb7455
CL
2235 old.freelist = page->freelist;
2236 old.counters = page->counters;
a0132ac0 2237 VM_BUG_ON(!old.frozen);
7c2e132c 2238
2cfb7455
CL
2239 /* Determine target state of the slab */
2240 new.counters = old.counters;
2241 if (freelist) {
2242 new.inuse--;
2243 set_freepointer(s, freelist, old.freelist);
2244 new.freelist = freelist;
2245 } else
2246 new.freelist = old.freelist;
2247
2248 new.frozen = 0;
2249
8a5b20ae 2250 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2251 m = M_FREE;
2252 else if (new.freelist) {
2253 m = M_PARTIAL;
2254 if (!lock) {
2255 lock = 1;
2256 /*
8bb4e7a2 2257 * Taking the spinlock removes the possibility
2cfb7455
CL
2258 * that acquire_slab() will see a slab page that
2259 * is frozen
2260 */
2261 spin_lock(&n->list_lock);
2262 }
2263 } else {
2264 m = M_FULL;
2265 if (kmem_cache_debug(s) && !lock) {
2266 lock = 1;
2267 /*
2268 * This also ensures that the scanning of full
2269 * slabs from diagnostic functions will not see
2270 * any frozen slabs.
2271 */
2272 spin_lock(&n->list_lock);
2273 }
2274 }
2275
2276 if (l != m) {
2cfb7455 2277 if (l == M_PARTIAL)
2cfb7455 2278 remove_partial(n, page);
2cfb7455 2279 else if (l == M_FULL)
c65c1877 2280 remove_full(s, n, page);
2cfb7455 2281
88349a28 2282 if (m == M_PARTIAL)
2cfb7455 2283 add_partial(n, page, tail);
88349a28 2284 else if (m == M_FULL)
2cfb7455 2285 add_full(s, n, page);
2cfb7455
CL
2286 }
2287
2288 l = m;
1d07171c 2289 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2290 old.freelist, old.counters,
2291 new.freelist, new.counters,
2292 "unfreezing slab"))
2293 goto redo;
2294
2cfb7455
CL
2295 if (lock)
2296 spin_unlock(&n->list_lock);
2297
88349a28
WY
2298 if (m == M_PARTIAL)
2299 stat(s, tail);
2300 else if (m == M_FULL)
2301 stat(s, DEACTIVATE_FULL);
2302 else if (m == M_FREE) {
2cfb7455
CL
2303 stat(s, DEACTIVATE_EMPTY);
2304 discard_slab(s, page);
2305 stat(s, FREE_SLAB);
894b8788 2306 }
d4ff6d35
WY
2307
2308 c->page = NULL;
2309 c->freelist = NULL;
81819f0f
CL
2310}
2311
d24ac77f
JK
2312/*
2313 * Unfreeze all the cpu partial slabs.
2314 *
59a09917
CL
2315 * This function must be called with interrupts disabled
2316 * for the cpu using c (or some other guarantee must be there
2317 * to guarantee no concurrent accesses).
d24ac77f 2318 */
59a09917
CL
2319static void unfreeze_partials(struct kmem_cache *s,
2320 struct kmem_cache_cpu *c)
49e22585 2321{
345c905d 2322#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2323 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2324 struct page *page, *discard_page = NULL;
49e22585 2325
4c7ba22e 2326 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2327 struct page new;
2328 struct page old;
2329
4c7ba22e 2330 slub_set_percpu_partial(c, page);
43d77867
JK
2331
2332 n2 = get_node(s, page_to_nid(page));
2333 if (n != n2) {
2334 if (n)
2335 spin_unlock(&n->list_lock);
2336
2337 n = n2;
2338 spin_lock(&n->list_lock);
2339 }
49e22585
CL
2340
2341 do {
2342
2343 old.freelist = page->freelist;
2344 old.counters = page->counters;
a0132ac0 2345 VM_BUG_ON(!old.frozen);
49e22585
CL
2346
2347 new.counters = old.counters;
2348 new.freelist = old.freelist;
2349
2350 new.frozen = 0;
2351
d24ac77f 2352 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2353 old.freelist, old.counters,
2354 new.freelist, new.counters,
2355 "unfreezing slab"));
2356
8a5b20ae 2357 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2358 page->next = discard_page;
2359 discard_page = page;
43d77867
JK
2360 } else {
2361 add_partial(n, page, DEACTIVATE_TO_TAIL);
2362 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2363 }
2364 }
2365
2366 if (n)
2367 spin_unlock(&n->list_lock);
9ada1934
SL
2368
2369 while (discard_page) {
2370 page = discard_page;
2371 discard_page = discard_page->next;
2372
2373 stat(s, DEACTIVATE_EMPTY);
2374 discard_slab(s, page);
2375 stat(s, FREE_SLAB);
2376 }
6dfd1b65 2377#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2378}
2379
2380/*
9234bae9
WY
2381 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2382 * partial page slot if available.
49e22585
CL
2383 *
2384 * If we did not find a slot then simply move all the partials to the
2385 * per node partial list.
2386 */
633b0764 2387static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2388{
345c905d 2389#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2390 struct page *oldpage;
2391 int pages;
2392 int pobjects;
2393
d6e0b7fa 2394 preempt_disable();
49e22585
CL
2395 do {
2396 pages = 0;
2397 pobjects = 0;
2398 oldpage = this_cpu_read(s->cpu_slab->partial);
2399
2400 if (oldpage) {
2401 pobjects = oldpage->pobjects;
2402 pages = oldpage->pages;
bbd4e305 2403 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2404 unsigned long flags;
2405 /*
2406 * partial array is full. Move the existing
2407 * set to the per node partial list.
2408 */
2409 local_irq_save(flags);
59a09917 2410 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2411 local_irq_restore(flags);
e24fc410 2412 oldpage = NULL;
49e22585
CL
2413 pobjects = 0;
2414 pages = 0;
8028dcea 2415 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2416 }
2417 }
2418
2419 pages++;
2420 pobjects += page->objects - page->inuse;
2421
2422 page->pages = pages;
2423 page->pobjects = pobjects;
2424 page->next = oldpage;
2425
d0e0ac97
CG
2426 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2427 != oldpage);
bbd4e305 2428 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2429 unsigned long flags;
2430
2431 local_irq_save(flags);
2432 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2433 local_irq_restore(flags);
2434 }
2435 preempt_enable();
6dfd1b65 2436#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2437}
2438
dfb4f096 2439static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2440{
84e554e6 2441 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2442 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2443
2444 c->tid = next_tid(c->tid);
81819f0f
CL
2445}
2446
2447/*
2448 * Flush cpu slab.
6446faa2 2449 *
81819f0f
CL
2450 * Called from IPI handler with interrupts disabled.
2451 */
0c710013 2452static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2453{
9dfc6e68 2454 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2455
1265ef2d
WY
2456 if (c->page)
2457 flush_slab(s, c);
49e22585 2458
1265ef2d 2459 unfreeze_partials(s, c);
81819f0f
CL
2460}
2461
2462static void flush_cpu_slab(void *d)
2463{
2464 struct kmem_cache *s = d;
81819f0f 2465
dfb4f096 2466 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2467}
2468
a8364d55
GBY
2469static bool has_cpu_slab(int cpu, void *info)
2470{
2471 struct kmem_cache *s = info;
2472 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2473
a93cf07b 2474 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2475}
2476
81819f0f
CL
2477static void flush_all(struct kmem_cache *s)
2478{
cb923159 2479 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2480}
2481
a96a87bf
SAS
2482/*
2483 * Use the cpu notifier to insure that the cpu slabs are flushed when
2484 * necessary.
2485 */
2486static int slub_cpu_dead(unsigned int cpu)
2487{
2488 struct kmem_cache *s;
2489 unsigned long flags;
2490
2491 mutex_lock(&slab_mutex);
2492 list_for_each_entry(s, &slab_caches, list) {
2493 local_irq_save(flags);
2494 __flush_cpu_slab(s, cpu);
2495 local_irq_restore(flags);
2496 }
2497 mutex_unlock(&slab_mutex);
2498 return 0;
2499}
2500
dfb4f096
CL
2501/*
2502 * Check if the objects in a per cpu structure fit numa
2503 * locality expectations.
2504 */
57d437d2 2505static inline int node_match(struct page *page, int node)
dfb4f096
CL
2506{
2507#ifdef CONFIG_NUMA
6159d0f5 2508 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2509 return 0;
2510#endif
2511 return 1;
2512}
2513
9a02d699 2514#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2515static int count_free(struct page *page)
2516{
2517 return page->objects - page->inuse;
2518}
2519
9a02d699
DR
2520static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2521{
2522 return atomic_long_read(&n->total_objects);
2523}
2524#endif /* CONFIG_SLUB_DEBUG */
2525
2526#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2527static unsigned long count_partial(struct kmem_cache_node *n,
2528 int (*get_count)(struct page *))
2529{
2530 unsigned long flags;
2531 unsigned long x = 0;
2532 struct page *page;
2533
2534 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2535 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2536 x += get_count(page);
2537 spin_unlock_irqrestore(&n->list_lock, flags);
2538 return x;
2539}
9a02d699 2540#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2541
781b2ba6
PE
2542static noinline void
2543slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2544{
9a02d699
DR
2545#ifdef CONFIG_SLUB_DEBUG
2546 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2547 DEFAULT_RATELIMIT_BURST);
781b2ba6 2548 int node;
fa45dc25 2549 struct kmem_cache_node *n;
781b2ba6 2550
9a02d699
DR
2551 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2552 return;
2553
5b3810e5
VB
2554 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2555 nid, gfpflags, &gfpflags);
19af27af 2556 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2557 s->name, s->object_size, s->size, oo_order(s->oo),
2558 oo_order(s->min));
781b2ba6 2559
3b0efdfa 2560 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2561 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2562 s->name);
fa5ec8a1 2563
fa45dc25 2564 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2565 unsigned long nr_slabs;
2566 unsigned long nr_objs;
2567 unsigned long nr_free;
2568
26c02cf0
AB
2569 nr_free = count_partial(n, count_free);
2570 nr_slabs = node_nr_slabs(n);
2571 nr_objs = node_nr_objs(n);
781b2ba6 2572
f9f58285 2573 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2574 node, nr_slabs, nr_objs, nr_free);
2575 }
9a02d699 2576#endif
781b2ba6
PE
2577}
2578
497b66f2
CL
2579static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2580 int node, struct kmem_cache_cpu **pc)
2581{
6faa6833 2582 void *freelist;
188fd063
CL
2583 struct kmem_cache_cpu *c = *pc;
2584 struct page *page;
497b66f2 2585
128227e7
MW
2586 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2587
188fd063 2588 freelist = get_partial(s, flags, node, c);
497b66f2 2589
188fd063
CL
2590 if (freelist)
2591 return freelist;
2592
2593 page = new_slab(s, flags, node);
497b66f2 2594 if (page) {
7c8e0181 2595 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2596 if (c->page)
2597 flush_slab(s, c);
2598
2599 /*
2600 * No other reference to the page yet so we can
2601 * muck around with it freely without cmpxchg
2602 */
6faa6833 2603 freelist = page->freelist;
497b66f2
CL
2604 page->freelist = NULL;
2605
2606 stat(s, ALLOC_SLAB);
497b66f2
CL
2607 c->page = page;
2608 *pc = c;
edde82b6 2609 }
497b66f2 2610
6faa6833 2611 return freelist;
497b66f2
CL
2612}
2613
072bb0aa
MG
2614static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2615{
2616 if (unlikely(PageSlabPfmemalloc(page)))
2617 return gfp_pfmemalloc_allowed(gfpflags);
2618
2619 return true;
2620}
2621
213eeb9f 2622/*
d0e0ac97
CG
2623 * Check the page->freelist of a page and either transfer the freelist to the
2624 * per cpu freelist or deactivate the page.
213eeb9f
CL
2625 *
2626 * The page is still frozen if the return value is not NULL.
2627 *
2628 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2629 *
2630 * This function must be called with interrupt disabled.
213eeb9f
CL
2631 */
2632static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2633{
2634 struct page new;
2635 unsigned long counters;
2636 void *freelist;
2637
2638 do {
2639 freelist = page->freelist;
2640 counters = page->counters;
6faa6833 2641
213eeb9f 2642 new.counters = counters;
a0132ac0 2643 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2644
2645 new.inuse = page->objects;
2646 new.frozen = freelist != NULL;
2647
d24ac77f 2648 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2649 freelist, counters,
2650 NULL, new.counters,
2651 "get_freelist"));
2652
2653 return freelist;
2654}
2655
81819f0f 2656/*
894b8788
CL
2657 * Slow path. The lockless freelist is empty or we need to perform
2658 * debugging duties.
2659 *
894b8788
CL
2660 * Processing is still very fast if new objects have been freed to the
2661 * regular freelist. In that case we simply take over the regular freelist
2662 * as the lockless freelist and zap the regular freelist.
81819f0f 2663 *
894b8788
CL
2664 * If that is not working then we fall back to the partial lists. We take the
2665 * first element of the freelist as the object to allocate now and move the
2666 * rest of the freelist to the lockless freelist.
81819f0f 2667 *
894b8788 2668 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2669 * we need to allocate a new slab. This is the slowest path since it involves
2670 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2671 *
2672 * Version of __slab_alloc to use when we know that interrupts are
2673 * already disabled (which is the case for bulk allocation).
81819f0f 2674 */
a380a3c7 2675static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2676 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2677{
6faa6833 2678 void *freelist;
f6e7def7 2679 struct page *page;
81819f0f 2680
f6e7def7 2681 page = c->page;
0715e6c5
VB
2682 if (!page) {
2683 /*
2684 * if the node is not online or has no normal memory, just
2685 * ignore the node constraint
2686 */
2687 if (unlikely(node != NUMA_NO_NODE &&
2688 !node_state(node, N_NORMAL_MEMORY)))
2689 node = NUMA_NO_NODE;
81819f0f 2690 goto new_slab;
0715e6c5 2691 }
49e22585 2692redo:
6faa6833 2693
57d437d2 2694 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2695 /*
2696 * same as above but node_match() being false already
2697 * implies node != NUMA_NO_NODE
2698 */
2699 if (!node_state(node, N_NORMAL_MEMORY)) {
2700 node = NUMA_NO_NODE;
2701 goto redo;
2702 } else {
a561ce00 2703 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2704 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2705 goto new_slab;
2706 }
fc59c053 2707 }
6446faa2 2708
072bb0aa
MG
2709 /*
2710 * By rights, we should be searching for a slab page that was
2711 * PFMEMALLOC but right now, we are losing the pfmemalloc
2712 * information when the page leaves the per-cpu allocator
2713 */
2714 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2715 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2716 goto new_slab;
2717 }
2718
73736e03 2719 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2720 freelist = c->freelist;
2721 if (freelist)
73736e03 2722 goto load_freelist;
03e404af 2723
f6e7def7 2724 freelist = get_freelist(s, page);
6446faa2 2725
6faa6833 2726 if (!freelist) {
03e404af
CL
2727 c->page = NULL;
2728 stat(s, DEACTIVATE_BYPASS);
fc59c053 2729 goto new_slab;
03e404af 2730 }
6446faa2 2731
84e554e6 2732 stat(s, ALLOC_REFILL);
6446faa2 2733
894b8788 2734load_freelist:
507effea
CL
2735 /*
2736 * freelist is pointing to the list of objects to be used.
2737 * page is pointing to the page from which the objects are obtained.
2738 * That page must be frozen for per cpu allocations to work.
2739 */
a0132ac0 2740 VM_BUG_ON(!c->page->frozen);
6faa6833 2741 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2742 c->tid = next_tid(c->tid);
6faa6833 2743 return freelist;
81819f0f 2744
81819f0f 2745new_slab:
2cfb7455 2746
a93cf07b
WY
2747 if (slub_percpu_partial(c)) {
2748 page = c->page = slub_percpu_partial(c);
2749 slub_set_percpu_partial(c, page);
49e22585 2750 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2751 goto redo;
81819f0f
CL
2752 }
2753
188fd063 2754 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2755
f4697436 2756 if (unlikely(!freelist)) {
9a02d699 2757 slab_out_of_memory(s, gfpflags, node);
f4697436 2758 return NULL;
81819f0f 2759 }
2cfb7455 2760
f6e7def7 2761 page = c->page;
5091b74a 2762 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2763 goto load_freelist;
2cfb7455 2764
497b66f2 2765 /* Only entered in the debug case */
d0e0ac97
CG
2766 if (kmem_cache_debug(s) &&
2767 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2768 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2769
d4ff6d35 2770 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2771 return freelist;
894b8788
CL
2772}
2773
a380a3c7
CL
2774/*
2775 * Another one that disabled interrupt and compensates for possible
2776 * cpu changes by refetching the per cpu area pointer.
2777 */
2778static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2779 unsigned long addr, struct kmem_cache_cpu *c)
2780{
2781 void *p;
2782 unsigned long flags;
2783
2784 local_irq_save(flags);
923717cb 2785#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2786 /*
2787 * We may have been preempted and rescheduled on a different
2788 * cpu before disabling interrupts. Need to reload cpu area
2789 * pointer.
2790 */
2791 c = this_cpu_ptr(s->cpu_slab);
2792#endif
2793
2794 p = ___slab_alloc(s, gfpflags, node, addr, c);
2795 local_irq_restore(flags);
2796 return p;
2797}
2798
0f181f9f
AP
2799/*
2800 * If the object has been wiped upon free, make sure it's fully initialized by
2801 * zeroing out freelist pointer.
2802 */
2803static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2804 void *obj)
2805{
2806 if (unlikely(slab_want_init_on_free(s)) && obj)
2807 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2808}
2809
894b8788
CL
2810/*
2811 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2812 * have the fastpath folded into their functions. So no function call
2813 * overhead for requests that can be satisfied on the fastpath.
2814 *
2815 * The fastpath works by first checking if the lockless freelist can be used.
2816 * If not then __slab_alloc is called for slow processing.
2817 *
2818 * Otherwise we can simply pick the next object from the lockless free list.
2819 */
2b847c3c 2820static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2821 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2822{
03ec0ed5 2823 void *object;
dfb4f096 2824 struct kmem_cache_cpu *c;
57d437d2 2825 struct page *page;
8a5ec0ba 2826 unsigned long tid;
1f84260c 2827
8135be5a
VD
2828 s = slab_pre_alloc_hook(s, gfpflags);
2829 if (!s)
773ff60e 2830 return NULL;
8a5ec0ba 2831redo:
8a5ec0ba
CL
2832 /*
2833 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2834 * enabled. We may switch back and forth between cpus while
2835 * reading from one cpu area. That does not matter as long
2836 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2837 *
9aabf810 2838 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2839 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2840 * to check if it is matched or not.
8a5ec0ba 2841 */
9aabf810
JK
2842 do {
2843 tid = this_cpu_read(s->cpu_slab->tid);
2844 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2845 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2846 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2847
2848 /*
2849 * Irqless object alloc/free algorithm used here depends on sequence
2850 * of fetching cpu_slab's data. tid should be fetched before anything
2851 * on c to guarantee that object and page associated with previous tid
2852 * won't be used with current tid. If we fetch tid first, object and
2853 * page could be one associated with next tid and our alloc/free
2854 * request will be failed. In this case, we will retry. So, no problem.
2855 */
2856 barrier();
8a5ec0ba 2857
8a5ec0ba
CL
2858 /*
2859 * The transaction ids are globally unique per cpu and per operation on
2860 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2861 * occurs on the right processor and that there was no operation on the
2862 * linked list in between.
2863 */
8a5ec0ba 2864
9dfc6e68 2865 object = c->freelist;
57d437d2 2866 page = c->page;
8eae1492 2867 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2868 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2869 stat(s, ALLOC_SLOWPATH);
2870 } else {
0ad9500e
ED
2871 void *next_object = get_freepointer_safe(s, object);
2872
8a5ec0ba 2873 /*
25985edc 2874 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2875 * operation and if we are on the right processor.
2876 *
d0e0ac97
CG
2877 * The cmpxchg does the following atomically (without lock
2878 * semantics!)
8a5ec0ba
CL
2879 * 1. Relocate first pointer to the current per cpu area.
2880 * 2. Verify that tid and freelist have not been changed
2881 * 3. If they were not changed replace tid and freelist
2882 *
d0e0ac97
CG
2883 * Since this is without lock semantics the protection is only
2884 * against code executing on this cpu *not* from access by
2885 * other cpus.
8a5ec0ba 2886 */
933393f5 2887 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2888 s->cpu_slab->freelist, s->cpu_slab->tid,
2889 object, tid,
0ad9500e 2890 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2891
2892 note_cmpxchg_failure("slab_alloc", s, tid);
2893 goto redo;
2894 }
0ad9500e 2895 prefetch_freepointer(s, next_object);
84e554e6 2896 stat(s, ALLOC_FASTPATH);
894b8788 2897 }
0f181f9f
AP
2898
2899 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2900
6471384a 2901 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2902 memset(object, 0, s->object_size);
d07dbea4 2903
03ec0ed5 2904 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2905
894b8788 2906 return object;
81819f0f
CL
2907}
2908
2b847c3c
EG
2909static __always_inline void *slab_alloc(struct kmem_cache *s,
2910 gfp_t gfpflags, unsigned long addr)
2911{
2912 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2913}
2914
81819f0f
CL
2915void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2916{
2b847c3c 2917 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2918
d0e0ac97
CG
2919 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2920 s->size, gfpflags);
5b882be4
EGM
2921
2922 return ret;
81819f0f
CL
2923}
2924EXPORT_SYMBOL(kmem_cache_alloc);
2925
0f24f128 2926#ifdef CONFIG_TRACING
4a92379b
RK
2927void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2928{
2b847c3c 2929 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2930 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2931 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2932 return ret;
2933}
2934EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2935#endif
2936
81819f0f
CL
2937#ifdef CONFIG_NUMA
2938void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2939{
2b847c3c 2940 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2941
ca2b84cb 2942 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2943 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2944
2945 return ret;
81819f0f
CL
2946}
2947EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2948
0f24f128 2949#ifdef CONFIG_TRACING
4a92379b 2950void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2951 gfp_t gfpflags,
4a92379b 2952 int node, size_t size)
5b882be4 2953{
2b847c3c 2954 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2955
2956 trace_kmalloc_node(_RET_IP_, ret,
2957 size, s->size, gfpflags, node);
0316bec2 2958
0116523c 2959 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2960 return ret;
5b882be4 2961}
4a92379b 2962EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2963#endif
6dfd1b65 2964#endif /* CONFIG_NUMA */
5b882be4 2965
81819f0f 2966/*
94e4d712 2967 * Slow path handling. This may still be called frequently since objects
894b8788 2968 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2969 *
894b8788
CL
2970 * So we still attempt to reduce cache line usage. Just take the slab
2971 * lock and free the item. If there is no additional partial page
2972 * handling required then we can return immediately.
81819f0f 2973 */
894b8788 2974static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2975 void *head, void *tail, int cnt,
2976 unsigned long addr)
2977
81819f0f
CL
2978{
2979 void *prior;
2cfb7455 2980 int was_frozen;
2cfb7455
CL
2981 struct page new;
2982 unsigned long counters;
2983 struct kmem_cache_node *n = NULL;
3f649ab7 2984 unsigned long flags;
81819f0f 2985
8a5ec0ba 2986 stat(s, FREE_SLOWPATH);
81819f0f 2987
19c7ff9e 2988 if (kmem_cache_debug(s) &&
282acb43 2989 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2990 return;
6446faa2 2991
2cfb7455 2992 do {
837d678d
JK
2993 if (unlikely(n)) {
2994 spin_unlock_irqrestore(&n->list_lock, flags);
2995 n = NULL;
2996 }
2cfb7455
CL
2997 prior = page->freelist;
2998 counters = page->counters;
81084651 2999 set_freepointer(s, tail, prior);
2cfb7455
CL
3000 new.counters = counters;
3001 was_frozen = new.frozen;
81084651 3002 new.inuse -= cnt;
837d678d 3003 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3004
c65c1877 3005 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3006
3007 /*
d0e0ac97
CG
3008 * Slab was on no list before and will be
3009 * partially empty
3010 * We can defer the list move and instead
3011 * freeze it.
49e22585
CL
3012 */
3013 new.frozen = 1;
3014
c65c1877 3015 } else { /* Needs to be taken off a list */
49e22585 3016
b455def2 3017 n = get_node(s, page_to_nid(page));
49e22585
CL
3018 /*
3019 * Speculatively acquire the list_lock.
3020 * If the cmpxchg does not succeed then we may
3021 * drop the list_lock without any processing.
3022 *
3023 * Otherwise the list_lock will synchronize with
3024 * other processors updating the list of slabs.
3025 */
3026 spin_lock_irqsave(&n->list_lock, flags);
3027
3028 }
2cfb7455 3029 }
81819f0f 3030
2cfb7455
CL
3031 } while (!cmpxchg_double_slab(s, page,
3032 prior, counters,
81084651 3033 head, new.counters,
2cfb7455 3034 "__slab_free"));
81819f0f 3035
2cfb7455 3036 if (likely(!n)) {
49e22585
CL
3037
3038 /*
3039 * If we just froze the page then put it onto the
3040 * per cpu partial list.
3041 */
8028dcea 3042 if (new.frozen && !was_frozen) {
49e22585 3043 put_cpu_partial(s, page, 1);
8028dcea
AS
3044 stat(s, CPU_PARTIAL_FREE);
3045 }
49e22585 3046 /*
2cfb7455
CL
3047 * The list lock was not taken therefore no list
3048 * activity can be necessary.
3049 */
b455def2
L
3050 if (was_frozen)
3051 stat(s, FREE_FROZEN);
3052 return;
3053 }
81819f0f 3054
8a5b20ae 3055 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3056 goto slab_empty;
3057
81819f0f 3058 /*
837d678d
JK
3059 * Objects left in the slab. If it was not on the partial list before
3060 * then add it.
81819f0f 3061 */
345c905d 3062 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3063 remove_full(s, n, page);
837d678d
JK
3064 add_partial(n, page, DEACTIVATE_TO_TAIL);
3065 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3066 }
80f08c19 3067 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3068 return;
3069
3070slab_empty:
a973e9dd 3071 if (prior) {
81819f0f 3072 /*
6fbabb20 3073 * Slab on the partial list.
81819f0f 3074 */
5cc6eee8 3075 remove_partial(n, page);
84e554e6 3076 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3077 } else {
6fbabb20 3078 /* Slab must be on the full list */
c65c1877
PZ
3079 remove_full(s, n, page);
3080 }
2cfb7455 3081
80f08c19 3082 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3083 stat(s, FREE_SLAB);
81819f0f 3084 discard_slab(s, page);
81819f0f
CL
3085}
3086
894b8788
CL
3087/*
3088 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3089 * can perform fastpath freeing without additional function calls.
3090 *
3091 * The fastpath is only possible if we are freeing to the current cpu slab
3092 * of this processor. This typically the case if we have just allocated
3093 * the item before.
3094 *
3095 * If fastpath is not possible then fall back to __slab_free where we deal
3096 * with all sorts of special processing.
81084651
JDB
3097 *
3098 * Bulk free of a freelist with several objects (all pointing to the
3099 * same page) possible by specifying head and tail ptr, plus objects
3100 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3101 */
80a9201a
AP
3102static __always_inline void do_slab_free(struct kmem_cache *s,
3103 struct page *page, void *head, void *tail,
3104 int cnt, unsigned long addr)
894b8788 3105{
81084651 3106 void *tail_obj = tail ? : head;
dfb4f096 3107 struct kmem_cache_cpu *c;
8a5ec0ba 3108 unsigned long tid;
8a5ec0ba
CL
3109redo:
3110 /*
3111 * Determine the currently cpus per cpu slab.
3112 * The cpu may change afterward. However that does not matter since
3113 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3114 * during the cmpxchg then the free will succeed.
8a5ec0ba 3115 */
9aabf810
JK
3116 do {
3117 tid = this_cpu_read(s->cpu_slab->tid);
3118 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3119 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3120 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3121
9aabf810
JK
3122 /* Same with comment on barrier() in slab_alloc_node() */
3123 barrier();
c016b0bd 3124
442b06bc 3125 if (likely(page == c->page)) {
5076190d
LT
3126 void **freelist = READ_ONCE(c->freelist);
3127
3128 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3129
933393f5 3130 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3131 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3132 freelist, tid,
81084651 3133 head, next_tid(tid)))) {
8a5ec0ba
CL
3134
3135 note_cmpxchg_failure("slab_free", s, tid);
3136 goto redo;
3137 }
84e554e6 3138 stat(s, FREE_FASTPATH);
894b8788 3139 } else
81084651 3140 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3141
894b8788
CL
3142}
3143
80a9201a
AP
3144static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3145 void *head, void *tail, int cnt,
3146 unsigned long addr)
3147{
80a9201a 3148 /*
c3895391
AK
3149 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3150 * to remove objects, whose reuse must be delayed.
80a9201a 3151 */
c3895391
AK
3152 if (slab_free_freelist_hook(s, &head, &tail))
3153 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3154}
3155
2bd926b4 3156#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3157void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3158{
3159 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3160}
3161#endif
3162
81819f0f
CL
3163void kmem_cache_free(struct kmem_cache *s, void *x)
3164{
b9ce5ef4
GC
3165 s = cache_from_obj(s, x);
3166 if (!s)
79576102 3167 return;
81084651 3168 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3169 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3170}
3171EXPORT_SYMBOL(kmem_cache_free);
3172
d0ecd894 3173struct detached_freelist {
fbd02630 3174 struct page *page;
d0ecd894
JDB
3175 void *tail;
3176 void *freelist;
3177 int cnt;
376bf125 3178 struct kmem_cache *s;
d0ecd894 3179};
fbd02630 3180
d0ecd894
JDB
3181/*
3182 * This function progressively scans the array with free objects (with
3183 * a limited look ahead) and extract objects belonging to the same
3184 * page. It builds a detached freelist directly within the given
3185 * page/objects. This can happen without any need for
3186 * synchronization, because the objects are owned by running process.
3187 * The freelist is build up as a single linked list in the objects.
3188 * The idea is, that this detached freelist can then be bulk
3189 * transferred to the real freelist(s), but only requiring a single
3190 * synchronization primitive. Look ahead in the array is limited due
3191 * to performance reasons.
3192 */
376bf125
JDB
3193static inline
3194int build_detached_freelist(struct kmem_cache *s, size_t size,
3195 void **p, struct detached_freelist *df)
d0ecd894
JDB
3196{
3197 size_t first_skipped_index = 0;
3198 int lookahead = 3;
3199 void *object;
ca257195 3200 struct page *page;
fbd02630 3201
d0ecd894
JDB
3202 /* Always re-init detached_freelist */
3203 df->page = NULL;
fbd02630 3204
d0ecd894
JDB
3205 do {
3206 object = p[--size];
ca257195 3207 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3208 } while (!object && size);
3eed034d 3209
d0ecd894
JDB
3210 if (!object)
3211 return 0;
fbd02630 3212
ca257195
JDB
3213 page = virt_to_head_page(object);
3214 if (!s) {
3215 /* Handle kalloc'ed objects */
3216 if (unlikely(!PageSlab(page))) {
3217 BUG_ON(!PageCompound(page));
3218 kfree_hook(object);
4949148a 3219 __free_pages(page, compound_order(page));
ca257195
JDB
3220 p[size] = NULL; /* mark object processed */
3221 return size;
3222 }
3223 /* Derive kmem_cache from object */
3224 df->s = page->slab_cache;
3225 } else {
3226 df->s = cache_from_obj(s, object); /* Support for memcg */
3227 }
376bf125 3228
d0ecd894 3229 /* Start new detached freelist */
ca257195 3230 df->page = page;
376bf125 3231 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3232 df->tail = object;
3233 df->freelist = object;
3234 p[size] = NULL; /* mark object processed */
3235 df->cnt = 1;
3236
3237 while (size) {
3238 object = p[--size];
3239 if (!object)
3240 continue; /* Skip processed objects */
3241
3242 /* df->page is always set at this point */
3243 if (df->page == virt_to_head_page(object)) {
3244 /* Opportunity build freelist */
376bf125 3245 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3246 df->freelist = object;
3247 df->cnt++;
3248 p[size] = NULL; /* mark object processed */
3249
3250 continue;
fbd02630 3251 }
d0ecd894
JDB
3252
3253 /* Limit look ahead search */
3254 if (!--lookahead)
3255 break;
3256
3257 if (!first_skipped_index)
3258 first_skipped_index = size + 1;
fbd02630 3259 }
d0ecd894
JDB
3260
3261 return first_skipped_index;
3262}
3263
d0ecd894 3264/* Note that interrupts must be enabled when calling this function. */
376bf125 3265void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3266{
3267 if (WARN_ON(!size))
3268 return;
3269
3270 do {
3271 struct detached_freelist df;
3272
3273 size = build_detached_freelist(s, size, p, &df);
84582c8a 3274 if (!df.page)
d0ecd894
JDB
3275 continue;
3276
376bf125 3277 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3278 } while (likely(size));
484748f0
CL
3279}
3280EXPORT_SYMBOL(kmem_cache_free_bulk);
3281
994eb764 3282/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3283int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3284 void **p)
484748f0 3285{
994eb764
JDB
3286 struct kmem_cache_cpu *c;
3287 int i;
3288
03ec0ed5
JDB
3289 /* memcg and kmem_cache debug support */
3290 s = slab_pre_alloc_hook(s, flags);
3291 if (unlikely(!s))
3292 return false;
994eb764
JDB
3293 /*
3294 * Drain objects in the per cpu slab, while disabling local
3295 * IRQs, which protects against PREEMPT and interrupts
3296 * handlers invoking normal fastpath.
3297 */
3298 local_irq_disable();
3299 c = this_cpu_ptr(s->cpu_slab);
3300
3301 for (i = 0; i < size; i++) {
3302 void *object = c->freelist;
3303
ebe909e0 3304 if (unlikely(!object)) {
fd4d9c7d
JH
3305 /*
3306 * We may have removed an object from c->freelist using
3307 * the fastpath in the previous iteration; in that case,
3308 * c->tid has not been bumped yet.
3309 * Since ___slab_alloc() may reenable interrupts while
3310 * allocating memory, we should bump c->tid now.
3311 */
3312 c->tid = next_tid(c->tid);
3313
ebe909e0
JDB
3314 /*
3315 * Invoking slow path likely have side-effect
3316 * of re-populating per CPU c->freelist
3317 */
87098373 3318 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3319 _RET_IP_, c);
87098373
CL
3320 if (unlikely(!p[i]))
3321 goto error;
3322
ebe909e0 3323 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3324 maybe_wipe_obj_freeptr(s, p[i]);
3325
ebe909e0
JDB
3326 continue; /* goto for-loop */
3327 }
994eb764
JDB
3328 c->freelist = get_freepointer(s, object);
3329 p[i] = object;
0f181f9f 3330 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3331 }
3332 c->tid = next_tid(c->tid);
3333 local_irq_enable();
3334
3335 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3336 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3337 int j;
3338
3339 for (j = 0; j < i; j++)
3340 memset(p[j], 0, s->object_size);
3341 }
3342
03ec0ed5
JDB
3343 /* memcg and kmem_cache debug support */
3344 slab_post_alloc_hook(s, flags, size, p);
865762a8 3345 return i;
87098373 3346error:
87098373 3347 local_irq_enable();
03ec0ed5
JDB
3348 slab_post_alloc_hook(s, flags, i, p);
3349 __kmem_cache_free_bulk(s, i, p);
865762a8 3350 return 0;
484748f0
CL
3351}
3352EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3353
3354
81819f0f 3355/*
672bba3a
CL
3356 * Object placement in a slab is made very easy because we always start at
3357 * offset 0. If we tune the size of the object to the alignment then we can
3358 * get the required alignment by putting one properly sized object after
3359 * another.
81819f0f
CL
3360 *
3361 * Notice that the allocation order determines the sizes of the per cpu
3362 * caches. Each processor has always one slab available for allocations.
3363 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3364 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3365 * locking overhead.
81819f0f
CL
3366 */
3367
3368/*
3369 * Mininum / Maximum order of slab pages. This influences locking overhead
3370 * and slab fragmentation. A higher order reduces the number of partial slabs
3371 * and increases the number of allocations possible without having to
3372 * take the list_lock.
3373 */
19af27af
AD
3374static unsigned int slub_min_order;
3375static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3376static unsigned int slub_min_objects;
81819f0f 3377
81819f0f
CL
3378/*
3379 * Calculate the order of allocation given an slab object size.
3380 *
672bba3a
CL
3381 * The order of allocation has significant impact on performance and other
3382 * system components. Generally order 0 allocations should be preferred since
3383 * order 0 does not cause fragmentation in the page allocator. Larger objects
3384 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3385 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3386 * would be wasted.
3387 *
3388 * In order to reach satisfactory performance we must ensure that a minimum
3389 * number of objects is in one slab. Otherwise we may generate too much
3390 * activity on the partial lists which requires taking the list_lock. This is
3391 * less a concern for large slabs though which are rarely used.
81819f0f 3392 *
672bba3a
CL
3393 * slub_max_order specifies the order where we begin to stop considering the
3394 * number of objects in a slab as critical. If we reach slub_max_order then
3395 * we try to keep the page order as low as possible. So we accept more waste
3396 * of space in favor of a small page order.
81819f0f 3397 *
672bba3a
CL
3398 * Higher order allocations also allow the placement of more objects in a
3399 * slab and thereby reduce object handling overhead. If the user has
3400 * requested a higher mininum order then we start with that one instead of
3401 * the smallest order which will fit the object.
81819f0f 3402 */
19af27af
AD
3403static inline unsigned int slab_order(unsigned int size,
3404 unsigned int min_objects, unsigned int max_order,
9736d2a9 3405 unsigned int fract_leftover)
81819f0f 3406{
19af27af
AD
3407 unsigned int min_order = slub_min_order;
3408 unsigned int order;
81819f0f 3409
9736d2a9 3410 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3411 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3412
9736d2a9 3413 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3414 order <= max_order; order++) {
81819f0f 3415
19af27af
AD
3416 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3417 unsigned int rem;
81819f0f 3418
9736d2a9 3419 rem = slab_size % size;
81819f0f 3420
5e6d444e 3421 if (rem <= slab_size / fract_leftover)
81819f0f 3422 break;
81819f0f 3423 }
672bba3a 3424
81819f0f
CL
3425 return order;
3426}
3427
9736d2a9 3428static inline int calculate_order(unsigned int size)
5e6d444e 3429{
19af27af
AD
3430 unsigned int order;
3431 unsigned int min_objects;
3432 unsigned int max_objects;
5e6d444e
CL
3433
3434 /*
3435 * Attempt to find best configuration for a slab. This
3436 * works by first attempting to generate a layout with
3437 * the best configuration and backing off gradually.
3438 *
422ff4d7 3439 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3440 * we reduce the minimum objects required in a slab.
3441 */
3442 min_objects = slub_min_objects;
9b2cd506
CL
3443 if (!min_objects)
3444 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3445 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3446 min_objects = min(min_objects, max_objects);
3447
5e6d444e 3448 while (min_objects > 1) {
19af27af
AD
3449 unsigned int fraction;
3450
c124f5b5 3451 fraction = 16;
5e6d444e
CL
3452 while (fraction >= 4) {
3453 order = slab_order(size, min_objects,
9736d2a9 3454 slub_max_order, fraction);
5e6d444e
CL
3455 if (order <= slub_max_order)
3456 return order;
3457 fraction /= 2;
3458 }
5086c389 3459 min_objects--;
5e6d444e
CL
3460 }
3461
3462 /*
3463 * We were unable to place multiple objects in a slab. Now
3464 * lets see if we can place a single object there.
3465 */
9736d2a9 3466 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3467 if (order <= slub_max_order)
3468 return order;
3469
3470 /*
3471 * Doh this slab cannot be placed using slub_max_order.
3472 */
9736d2a9 3473 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3474 if (order < MAX_ORDER)
5e6d444e
CL
3475 return order;
3476 return -ENOSYS;
3477}
3478
5595cffc 3479static void
4053497d 3480init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3481{
3482 n->nr_partial = 0;
81819f0f
CL
3483 spin_lock_init(&n->list_lock);
3484 INIT_LIST_HEAD(&n->partial);
8ab1372f 3485#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3486 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3487 atomic_long_set(&n->total_objects, 0);
643b1138 3488 INIT_LIST_HEAD(&n->full);
8ab1372f 3489#endif
81819f0f
CL
3490}
3491
55136592 3492static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3493{
6c182dc0 3494 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3495 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3496
8a5ec0ba 3497 /*
d4d84fef
CM
3498 * Must align to double word boundary for the double cmpxchg
3499 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3500 */
d4d84fef
CM
3501 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3502 2 * sizeof(void *));
8a5ec0ba
CL
3503
3504 if (!s->cpu_slab)
3505 return 0;
3506
3507 init_kmem_cache_cpus(s);
4c93c355 3508
8a5ec0ba 3509 return 1;
4c93c355 3510}
4c93c355 3511
51df1142
CL
3512static struct kmem_cache *kmem_cache_node;
3513
81819f0f
CL
3514/*
3515 * No kmalloc_node yet so do it by hand. We know that this is the first
3516 * slab on the node for this slabcache. There are no concurrent accesses
3517 * possible.
3518 *
721ae22a
ZYW
3519 * Note that this function only works on the kmem_cache_node
3520 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3521 * memory on a fresh node that has no slab structures yet.
81819f0f 3522 */
55136592 3523static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3524{
3525 struct page *page;
3526 struct kmem_cache_node *n;
3527
51df1142 3528 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3529
51df1142 3530 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3531
3532 BUG_ON(!page);
a2f92ee7 3533 if (page_to_nid(page) != node) {
f9f58285
FF
3534 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3535 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3536 }
3537
81819f0f
CL
3538 n = page->freelist;
3539 BUG_ON(!n);
8ab1372f 3540#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3541 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3542 init_tracking(kmem_cache_node, n);
8ab1372f 3543#endif
12b22386 3544 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3545 GFP_KERNEL);
12b22386
AK
3546 page->freelist = get_freepointer(kmem_cache_node, n);
3547 page->inuse = 1;
3548 page->frozen = 0;
3549 kmem_cache_node->node[node] = n;
4053497d 3550 init_kmem_cache_node(n);
51df1142 3551 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3552
67b6c900 3553 /*
1e4dd946
SR
3554 * No locks need to be taken here as it has just been
3555 * initialized and there is no concurrent access.
67b6c900 3556 */
1e4dd946 3557 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3558}
3559
3560static void free_kmem_cache_nodes(struct kmem_cache *s)
3561{
3562 int node;
fa45dc25 3563 struct kmem_cache_node *n;
81819f0f 3564
fa45dc25 3565 for_each_kmem_cache_node(s, node, n) {
81819f0f 3566 s->node[node] = NULL;
ea37df54 3567 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3568 }
3569}
3570
52b4b950
DS
3571void __kmem_cache_release(struct kmem_cache *s)
3572{
210e7a43 3573 cache_random_seq_destroy(s);
52b4b950
DS
3574 free_percpu(s->cpu_slab);
3575 free_kmem_cache_nodes(s);
3576}
3577
55136592 3578static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3579{
3580 int node;
81819f0f 3581
f64dc58c 3582 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3583 struct kmem_cache_node *n;
3584
73367bd8 3585 if (slab_state == DOWN) {
55136592 3586 early_kmem_cache_node_alloc(node);
73367bd8
AD
3587 continue;
3588 }
51df1142 3589 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3590 GFP_KERNEL, node);
81819f0f 3591
73367bd8
AD
3592 if (!n) {
3593 free_kmem_cache_nodes(s);
3594 return 0;
81819f0f 3595 }
73367bd8 3596
4053497d 3597 init_kmem_cache_node(n);
ea37df54 3598 s->node[node] = n;
81819f0f
CL
3599 }
3600 return 1;
3601}
81819f0f 3602
c0bdb232 3603static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3604{
3605 if (min < MIN_PARTIAL)
3606 min = MIN_PARTIAL;
3607 else if (min > MAX_PARTIAL)
3608 min = MAX_PARTIAL;
3609 s->min_partial = min;
3610}
3611
e6d0e1dc
WY
3612static void set_cpu_partial(struct kmem_cache *s)
3613{
3614#ifdef CONFIG_SLUB_CPU_PARTIAL
3615 /*
3616 * cpu_partial determined the maximum number of objects kept in the
3617 * per cpu partial lists of a processor.
3618 *
3619 * Per cpu partial lists mainly contain slabs that just have one
3620 * object freed. If they are used for allocation then they can be
3621 * filled up again with minimal effort. The slab will never hit the
3622 * per node partial lists and therefore no locking will be required.
3623 *
3624 * This setting also determines
3625 *
3626 * A) The number of objects from per cpu partial slabs dumped to the
3627 * per node list when we reach the limit.
3628 * B) The number of objects in cpu partial slabs to extract from the
3629 * per node list when we run out of per cpu objects. We only fetch
3630 * 50% to keep some capacity around for frees.
3631 */
3632 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3633 slub_set_cpu_partial(s, 0);
e6d0e1dc 3634 else if (s->size >= PAGE_SIZE)
bbd4e305 3635 slub_set_cpu_partial(s, 2);
e6d0e1dc 3636 else if (s->size >= 1024)
bbd4e305 3637 slub_set_cpu_partial(s, 6);
e6d0e1dc 3638 else if (s->size >= 256)
bbd4e305 3639 slub_set_cpu_partial(s, 13);
e6d0e1dc 3640 else
bbd4e305 3641 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3642#endif
3643}
3644
81819f0f
CL
3645/*
3646 * calculate_sizes() determines the order and the distribution of data within
3647 * a slab object.
3648 */
06b285dc 3649static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3650{
d50112ed 3651 slab_flags_t flags = s->flags;
be4a7988 3652 unsigned int size = s->object_size;
89b83f28 3653 unsigned int freepointer_area;
19af27af 3654 unsigned int order;
81819f0f 3655
d8b42bf5
CL
3656 /*
3657 * Round up object size to the next word boundary. We can only
3658 * place the free pointer at word boundaries and this determines
3659 * the possible location of the free pointer.
3660 */
3661 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3662 /*
3663 * This is the area of the object where a freepointer can be
3664 * safely written. If redzoning adds more to the inuse size, we
3665 * can't use that portion for writing the freepointer, so
3666 * s->offset must be limited within this for the general case.
3667 */
3668 freepointer_area = size;
d8b42bf5
CL
3669
3670#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3671 /*
3672 * Determine if we can poison the object itself. If the user of
3673 * the slab may touch the object after free or before allocation
3674 * then we should never poison the object itself.
3675 */
5f0d5a3a 3676 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3677 !s->ctor)
81819f0f
CL
3678 s->flags |= __OBJECT_POISON;
3679 else
3680 s->flags &= ~__OBJECT_POISON;
3681
81819f0f
CL
3682
3683 /*
672bba3a 3684 * If we are Redzoning then check if there is some space between the
81819f0f 3685 * end of the object and the free pointer. If not then add an
672bba3a 3686 * additional word to have some bytes to store Redzone information.
81819f0f 3687 */
3b0efdfa 3688 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3689 size += sizeof(void *);
41ecc55b 3690#endif
81819f0f
CL
3691
3692 /*
672bba3a
CL
3693 * With that we have determined the number of bytes in actual use
3694 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3695 */
3696 s->inuse = size;
3697
5f0d5a3a 3698 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3699 s->ctor)) {
81819f0f
CL
3700 /*
3701 * Relocate free pointer after the object if it is not
3702 * permitted to overwrite the first word of the object on
3703 * kmem_cache_free.
3704 *
3705 * This is the case if we do RCU, have a constructor or
3706 * destructor or are poisoning the objects.
cbfc35a4
WL
3707 *
3708 * The assumption that s->offset >= s->inuse means free
3709 * pointer is outside of the object is used in the
3710 * freeptr_outside_object() function. If that is no
3711 * longer true, the function needs to be modified.
81819f0f
CL
3712 */
3713 s->offset = size;
3714 size += sizeof(void *);
89b83f28 3715 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3716 /*
3717 * Store freelist pointer near middle of object to keep
3718 * it away from the edges of the object to avoid small
3719 * sized over/underflows from neighboring allocations.
3720 */
89b83f28 3721 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3722 }
3723
c12b3c62 3724#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3725 if (flags & SLAB_STORE_USER)
3726 /*
3727 * Need to store information about allocs and frees after
3728 * the object.
3729 */
3730 size += 2 * sizeof(struct track);
80a9201a 3731#endif
81819f0f 3732
80a9201a
AP
3733 kasan_cache_create(s, &size, &s->flags);
3734#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3735 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3736 /*
3737 * Add some empty padding so that we can catch
3738 * overwrites from earlier objects rather than let
3739 * tracking information or the free pointer be
0211a9c8 3740 * corrupted if a user writes before the start
81819f0f
CL
3741 * of the object.
3742 */
3743 size += sizeof(void *);
d86bd1be
JK
3744
3745 s->red_left_pad = sizeof(void *);
3746 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3747 size += s->red_left_pad;
3748 }
41ecc55b 3749#endif
672bba3a 3750
81819f0f
CL
3751 /*
3752 * SLUB stores one object immediately after another beginning from
3753 * offset 0. In order to align the objects we have to simply size
3754 * each object to conform to the alignment.
3755 */
45906855 3756 size = ALIGN(size, s->align);
81819f0f 3757 s->size = size;
06b285dc
CL
3758 if (forced_order >= 0)
3759 order = forced_order;
3760 else
9736d2a9 3761 order = calculate_order(size);
81819f0f 3762
19af27af 3763 if ((int)order < 0)
81819f0f
CL
3764 return 0;
3765
b7a49f0d 3766 s->allocflags = 0;
834f3d11 3767 if (order)
b7a49f0d
CL
3768 s->allocflags |= __GFP_COMP;
3769
3770 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3771 s->allocflags |= GFP_DMA;
b7a49f0d 3772
6d6ea1e9
NB
3773 if (s->flags & SLAB_CACHE_DMA32)
3774 s->allocflags |= GFP_DMA32;
3775
b7a49f0d
CL
3776 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3777 s->allocflags |= __GFP_RECLAIMABLE;
3778
81819f0f
CL
3779 /*
3780 * Determine the number of objects per slab
3781 */
9736d2a9
MW
3782 s->oo = oo_make(order, size);
3783 s->min = oo_make(get_order(size), size);
205ab99d
CL
3784 if (oo_objects(s->oo) > oo_objects(s->max))
3785 s->max = s->oo;
81819f0f 3786
834f3d11 3787 return !!oo_objects(s->oo);
81819f0f
CL
3788}
3789
d50112ed 3790static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3791{
8a13a4cc 3792 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3793#ifdef CONFIG_SLAB_FREELIST_HARDENED
3794 s->random = get_random_long();
3795#endif
81819f0f 3796
06b285dc 3797 if (!calculate_sizes(s, -1))
81819f0f 3798 goto error;
3de47213
DR
3799 if (disable_higher_order_debug) {
3800 /*
3801 * Disable debugging flags that store metadata if the min slab
3802 * order increased.
3803 */
3b0efdfa 3804 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3805 s->flags &= ~DEBUG_METADATA_FLAGS;
3806 s->offset = 0;
3807 if (!calculate_sizes(s, -1))
3808 goto error;
3809 }
3810 }
81819f0f 3811
2565409f
HC
3812#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3813 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3814 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3815 /* Enable fast mode */
3816 s->flags |= __CMPXCHG_DOUBLE;
3817#endif
3818
3b89d7d8
DR
3819 /*
3820 * The larger the object size is, the more pages we want on the partial
3821 * list to avoid pounding the page allocator excessively.
3822 */
49e22585
CL
3823 set_min_partial(s, ilog2(s->size) / 2);
3824
e6d0e1dc 3825 set_cpu_partial(s);
49e22585 3826
81819f0f 3827#ifdef CONFIG_NUMA
e2cb96b7 3828 s->remote_node_defrag_ratio = 1000;
81819f0f 3829#endif
210e7a43
TG
3830
3831 /* Initialize the pre-computed randomized freelist if slab is up */
3832 if (slab_state >= UP) {
3833 if (init_cache_random_seq(s))
3834 goto error;
3835 }
3836
55136592 3837 if (!init_kmem_cache_nodes(s))
dfb4f096 3838 goto error;
81819f0f 3839
55136592 3840 if (alloc_kmem_cache_cpus(s))
278b1bb1 3841 return 0;
ff12059e 3842
4c93c355 3843 free_kmem_cache_nodes(s);
81819f0f 3844error:
278b1bb1 3845 return -EINVAL;
81819f0f 3846}
81819f0f 3847
33b12c38 3848static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3849 const char *text)
33b12c38
CL
3850{
3851#ifdef CONFIG_SLUB_DEBUG
3852 void *addr = page_address(page);
55860d96 3853 unsigned long *map;
33b12c38 3854 void *p;
aa456c7a 3855
945cf2b6 3856 slab_err(s, page, text, s->name);
33b12c38 3857 slab_lock(page);
33b12c38 3858
90e9f6a6 3859 map = get_map(s, page);
33b12c38
CL
3860 for_each_object(p, s, addr, page->objects) {
3861
3862 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3863 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3864 print_tracking(s, p);
3865 }
3866 }
55860d96 3867 put_map(map);
33b12c38
CL
3868 slab_unlock(page);
3869#endif
3870}
3871
81819f0f 3872/*
599870b1 3873 * Attempt to free all partial slabs on a node.
52b4b950
DS
3874 * This is called from __kmem_cache_shutdown(). We must take list_lock
3875 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3876 */
599870b1 3877static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3878{
60398923 3879 LIST_HEAD(discard);
81819f0f
CL
3880 struct page *page, *h;
3881
52b4b950
DS
3882 BUG_ON(irqs_disabled());
3883 spin_lock_irq(&n->list_lock);
916ac052 3884 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3885 if (!page->inuse) {
52b4b950 3886 remove_partial(n, page);
916ac052 3887 list_add(&page->slab_list, &discard);
33b12c38
CL
3888 } else {
3889 list_slab_objects(s, page,
55860d96 3890 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3891 }
33b12c38 3892 }
52b4b950 3893 spin_unlock_irq(&n->list_lock);
60398923 3894
916ac052 3895 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3896 discard_slab(s, page);
81819f0f
CL
3897}
3898
f9e13c0a
SB
3899bool __kmem_cache_empty(struct kmem_cache *s)
3900{
3901 int node;
3902 struct kmem_cache_node *n;
3903
3904 for_each_kmem_cache_node(s, node, n)
3905 if (n->nr_partial || slabs_node(s, node))
3906 return false;
3907 return true;
3908}
3909
81819f0f 3910/*
672bba3a 3911 * Release all resources used by a slab cache.
81819f0f 3912 */
52b4b950 3913int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3914{
3915 int node;
fa45dc25 3916 struct kmem_cache_node *n;
81819f0f
CL
3917
3918 flush_all(s);
81819f0f 3919 /* Attempt to free all objects */
fa45dc25 3920 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3921 free_partial(s, n);
3922 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3923 return 1;
3924 }
bf5eb3de 3925 sysfs_slab_remove(s);
81819f0f
CL
3926 return 0;
3927}
3928
81819f0f
CL
3929/********************************************************************
3930 * Kmalloc subsystem
3931 *******************************************************************/
3932
81819f0f
CL
3933static int __init setup_slub_min_order(char *str)
3934{
19af27af 3935 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3936
3937 return 1;
3938}
3939
3940__setup("slub_min_order=", setup_slub_min_order);
3941
3942static int __init setup_slub_max_order(char *str)
3943{
19af27af
AD
3944 get_option(&str, (int *)&slub_max_order);
3945 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3946
3947 return 1;
3948}
3949
3950__setup("slub_max_order=", setup_slub_max_order);
3951
3952static int __init setup_slub_min_objects(char *str)
3953{
19af27af 3954 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3955
3956 return 1;
3957}
3958
3959__setup("slub_min_objects=", setup_slub_min_objects);
3960
81819f0f
CL
3961void *__kmalloc(size_t size, gfp_t flags)
3962{
aadb4bc4 3963 struct kmem_cache *s;
5b882be4 3964 void *ret;
81819f0f 3965
95a05b42 3966 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3967 return kmalloc_large(size, flags);
aadb4bc4 3968
2c59dd65 3969 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3970
3971 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3972 return s;
3973
2b847c3c 3974 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3975
ca2b84cb 3976 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3977
0116523c 3978 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3979
5b882be4 3980 return ret;
81819f0f
CL
3981}
3982EXPORT_SYMBOL(__kmalloc);
3983
5d1f57e4 3984#ifdef CONFIG_NUMA
f619cfe1
CL
3985static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3986{
b1eeab67 3987 struct page *page;
e4f7c0b4 3988 void *ptr = NULL;
6a486c0a 3989 unsigned int order = get_order(size);
f619cfe1 3990
75f296d9 3991 flags |= __GFP_COMP;
6a486c0a
VB
3992 page = alloc_pages_node(node, flags, order);
3993 if (page) {
e4f7c0b4 3994 ptr = page_address(page);
6a486c0a
VB
3995 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3996 1 << order);
3997 }
e4f7c0b4 3998
0116523c 3999 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4000}
4001
81819f0f
CL
4002void *__kmalloc_node(size_t size, gfp_t flags, int node)
4003{
aadb4bc4 4004 struct kmem_cache *s;
5b882be4 4005 void *ret;
81819f0f 4006
95a05b42 4007 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4008 ret = kmalloc_large_node(size, flags, node);
4009
ca2b84cb
EGM
4010 trace_kmalloc_node(_RET_IP_, ret,
4011 size, PAGE_SIZE << get_order(size),
4012 flags, node);
5b882be4
EGM
4013
4014 return ret;
4015 }
aadb4bc4 4016
2c59dd65 4017 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4018
4019 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4020 return s;
4021
2b847c3c 4022 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4023
ca2b84cb 4024 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4025
0116523c 4026 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4027
5b882be4 4028 return ret;
81819f0f
CL
4029}
4030EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4031#endif /* CONFIG_NUMA */
81819f0f 4032
ed18adc1
KC
4033#ifdef CONFIG_HARDENED_USERCOPY
4034/*
afcc90f8
KC
4035 * Rejects incorrectly sized objects and objects that are to be copied
4036 * to/from userspace but do not fall entirely within the containing slab
4037 * cache's usercopy region.
ed18adc1
KC
4038 *
4039 * Returns NULL if check passes, otherwise const char * to name of cache
4040 * to indicate an error.
4041 */
f4e6e289
KC
4042void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4043 bool to_user)
ed18adc1
KC
4044{
4045 struct kmem_cache *s;
44065b2e 4046 unsigned int offset;
ed18adc1
KC
4047 size_t object_size;
4048
96fedce2
AK
4049 ptr = kasan_reset_tag(ptr);
4050
ed18adc1
KC
4051 /* Find object and usable object size. */
4052 s = page->slab_cache;
ed18adc1
KC
4053
4054 /* Reject impossible pointers. */
4055 if (ptr < page_address(page))
f4e6e289
KC
4056 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4057 to_user, 0, n);
ed18adc1
KC
4058
4059 /* Find offset within object. */
4060 offset = (ptr - page_address(page)) % s->size;
4061
4062 /* Adjust for redzone and reject if within the redzone. */
4063 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
4064 if (offset < s->red_left_pad)
f4e6e289
KC
4065 usercopy_abort("SLUB object in left red zone",
4066 s->name, to_user, offset, n);
ed18adc1
KC
4067 offset -= s->red_left_pad;
4068 }
4069
afcc90f8
KC
4070 /* Allow address range falling entirely within usercopy region. */
4071 if (offset >= s->useroffset &&
4072 offset - s->useroffset <= s->usersize &&
4073 n <= s->useroffset - offset + s->usersize)
f4e6e289 4074 return;
ed18adc1 4075
afcc90f8
KC
4076 /*
4077 * If the copy is still within the allocated object, produce
4078 * a warning instead of rejecting the copy. This is intended
4079 * to be a temporary method to find any missing usercopy
4080 * whitelists.
4081 */
4082 object_size = slab_ksize(s);
2d891fbc
KC
4083 if (usercopy_fallback &&
4084 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4085 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4086 return;
4087 }
ed18adc1 4088
f4e6e289 4089 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4090}
4091#endif /* CONFIG_HARDENED_USERCOPY */
4092
10d1f8cb 4093size_t __ksize(const void *object)
81819f0f 4094{
272c1d21 4095 struct page *page;
81819f0f 4096
ef8b4520 4097 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4098 return 0;
4099
294a80a8 4100 page = virt_to_head_page(object);
294a80a8 4101
76994412
PE
4102 if (unlikely(!PageSlab(page))) {
4103 WARN_ON(!PageCompound(page));
a50b854e 4104 return page_size(page);
76994412 4105 }
81819f0f 4106
1b4f59e3 4107 return slab_ksize(page->slab_cache);
81819f0f 4108}
10d1f8cb 4109EXPORT_SYMBOL(__ksize);
81819f0f
CL
4110
4111void kfree(const void *x)
4112{
81819f0f 4113 struct page *page;
5bb983b0 4114 void *object = (void *)x;
81819f0f 4115
2121db74
PE
4116 trace_kfree(_RET_IP_, x);
4117
2408c550 4118 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4119 return;
4120
b49af68f 4121 page = virt_to_head_page(x);
aadb4bc4 4122 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4123 unsigned int order = compound_order(page);
4124
0937502a 4125 BUG_ON(!PageCompound(page));
47adccce 4126 kfree_hook(object);
6a486c0a
VB
4127 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4128 -(1 << order));
4129 __free_pages(page, order);
aadb4bc4
CL
4130 return;
4131 }
81084651 4132 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4133}
4134EXPORT_SYMBOL(kfree);
4135
832f37f5
VD
4136#define SHRINK_PROMOTE_MAX 32
4137
2086d26a 4138/*
832f37f5
VD
4139 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4140 * up most to the head of the partial lists. New allocations will then
4141 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4142 *
4143 * The slabs with the least items are placed last. This results in them
4144 * being allocated from last increasing the chance that the last objects
4145 * are freed in them.
2086d26a 4146 */
c9fc5864 4147int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4148{
4149 int node;
4150 int i;
4151 struct kmem_cache_node *n;
4152 struct page *page;
4153 struct page *t;
832f37f5
VD
4154 struct list_head discard;
4155 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4156 unsigned long flags;
ce3712d7 4157 int ret = 0;
2086d26a 4158
2086d26a 4159 flush_all(s);
fa45dc25 4160 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4161 INIT_LIST_HEAD(&discard);
4162 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4163 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4164
4165 spin_lock_irqsave(&n->list_lock, flags);
4166
4167 /*
832f37f5 4168 * Build lists of slabs to discard or promote.
2086d26a 4169 *
672bba3a
CL
4170 * Note that concurrent frees may occur while we hold the
4171 * list_lock. page->inuse here is the upper limit.
2086d26a 4172 */
916ac052 4173 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4174 int free = page->objects - page->inuse;
4175
4176 /* Do not reread page->inuse */
4177 barrier();
4178
4179 /* We do not keep full slabs on the list */
4180 BUG_ON(free <= 0);
4181
4182 if (free == page->objects) {
916ac052 4183 list_move(&page->slab_list, &discard);
69cb8e6b 4184 n->nr_partial--;
832f37f5 4185 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4186 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4187 }
4188
2086d26a 4189 /*
832f37f5
VD
4190 * Promote the slabs filled up most to the head of the
4191 * partial list.
2086d26a 4192 */
832f37f5
VD
4193 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4194 list_splice(promote + i, &n->partial);
2086d26a 4195
2086d26a 4196 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4197
4198 /* Release empty slabs */
916ac052 4199 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4200 discard_slab(s, page);
ce3712d7
VD
4201
4202 if (slabs_node(s, node))
4203 ret = 1;
2086d26a
CL
4204 }
4205
ce3712d7 4206 return ret;
2086d26a 4207}
2086d26a 4208
c9fc5864 4209#ifdef CONFIG_MEMCG
43486694 4210void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4211{
50862ce7
TH
4212 /*
4213 * Called with all the locks held after a sched RCU grace period.
4214 * Even if @s becomes empty after shrinking, we can't know that @s
4215 * doesn't have allocations already in-flight and thus can't
4216 * destroy @s until the associated memcg is released.
4217 *
4218 * However, let's remove the sysfs files for empty caches here.
4219 * Each cache has a lot of interface files which aren't
4220 * particularly useful for empty draining caches; otherwise, we can
4221 * easily end up with millions of unnecessary sysfs files on
4222 * systems which have a lot of memory and transient cgroups.
4223 */
4224 if (!__kmem_cache_shrink(s))
4225 sysfs_slab_remove(s);
01fb58bc
TH
4226}
4227
c9fc5864
TH
4228void __kmemcg_cache_deactivate(struct kmem_cache *s)
4229{
4230 /*
4231 * Disable empty slabs caching. Used to avoid pinning offline
4232 * memory cgroups by kmem pages that can be freed.
4233 */
e6d0e1dc 4234 slub_set_cpu_partial(s, 0);
c9fc5864 4235 s->min_partial = 0;
c9fc5864 4236}
6dfd1b65 4237#endif /* CONFIG_MEMCG */
c9fc5864 4238
b9049e23
YG
4239static int slab_mem_going_offline_callback(void *arg)
4240{
4241 struct kmem_cache *s;
4242
18004c5d 4243 mutex_lock(&slab_mutex);
b9049e23 4244 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4245 __kmem_cache_shrink(s);
18004c5d 4246 mutex_unlock(&slab_mutex);
b9049e23
YG
4247
4248 return 0;
4249}
4250
4251static void slab_mem_offline_callback(void *arg)
4252{
4253 struct kmem_cache_node *n;
4254 struct kmem_cache *s;
4255 struct memory_notify *marg = arg;
4256 int offline_node;
4257
b9d5ab25 4258 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4259
4260 /*
4261 * If the node still has available memory. we need kmem_cache_node
4262 * for it yet.
4263 */
4264 if (offline_node < 0)
4265 return;
4266
18004c5d 4267 mutex_lock(&slab_mutex);
b9049e23
YG
4268 list_for_each_entry(s, &slab_caches, list) {
4269 n = get_node(s, offline_node);
4270 if (n) {
4271 /*
4272 * if n->nr_slabs > 0, slabs still exist on the node
4273 * that is going down. We were unable to free them,
c9404c9c 4274 * and offline_pages() function shouldn't call this
b9049e23
YG
4275 * callback. So, we must fail.
4276 */
0f389ec6 4277 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4278
4279 s->node[offline_node] = NULL;
8de66a0c 4280 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4281 }
4282 }
18004c5d 4283 mutex_unlock(&slab_mutex);
b9049e23
YG
4284}
4285
4286static int slab_mem_going_online_callback(void *arg)
4287{
4288 struct kmem_cache_node *n;
4289 struct kmem_cache *s;
4290 struct memory_notify *marg = arg;
b9d5ab25 4291 int nid = marg->status_change_nid_normal;
b9049e23
YG
4292 int ret = 0;
4293
4294 /*
4295 * If the node's memory is already available, then kmem_cache_node is
4296 * already created. Nothing to do.
4297 */
4298 if (nid < 0)
4299 return 0;
4300
4301 /*
0121c619 4302 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4303 * allocate a kmem_cache_node structure in order to bring the node
4304 * online.
4305 */
18004c5d 4306 mutex_lock(&slab_mutex);
b9049e23
YG
4307 list_for_each_entry(s, &slab_caches, list) {
4308 /*
4309 * XXX: kmem_cache_alloc_node will fallback to other nodes
4310 * since memory is not yet available from the node that
4311 * is brought up.
4312 */
8de66a0c 4313 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4314 if (!n) {
4315 ret = -ENOMEM;
4316 goto out;
4317 }
4053497d 4318 init_kmem_cache_node(n);
b9049e23
YG
4319 s->node[nid] = n;
4320 }
4321out:
18004c5d 4322 mutex_unlock(&slab_mutex);
b9049e23
YG
4323 return ret;
4324}
4325
4326static int slab_memory_callback(struct notifier_block *self,
4327 unsigned long action, void *arg)
4328{
4329 int ret = 0;
4330
4331 switch (action) {
4332 case MEM_GOING_ONLINE:
4333 ret = slab_mem_going_online_callback(arg);
4334 break;
4335 case MEM_GOING_OFFLINE:
4336 ret = slab_mem_going_offline_callback(arg);
4337 break;
4338 case MEM_OFFLINE:
4339 case MEM_CANCEL_ONLINE:
4340 slab_mem_offline_callback(arg);
4341 break;
4342 case MEM_ONLINE:
4343 case MEM_CANCEL_OFFLINE:
4344 break;
4345 }
dc19f9db
KH
4346 if (ret)
4347 ret = notifier_from_errno(ret);
4348 else
4349 ret = NOTIFY_OK;
b9049e23
YG
4350 return ret;
4351}
4352
3ac38faa
AM
4353static struct notifier_block slab_memory_callback_nb = {
4354 .notifier_call = slab_memory_callback,
4355 .priority = SLAB_CALLBACK_PRI,
4356};
b9049e23 4357
81819f0f
CL
4358/********************************************************************
4359 * Basic setup of slabs
4360 *******************************************************************/
4361
51df1142
CL
4362/*
4363 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4364 * the page allocator. Allocate them properly then fix up the pointers
4365 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4366 */
4367
dffb4d60 4368static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4369{
4370 int node;
dffb4d60 4371 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4372 struct kmem_cache_node *n;
51df1142 4373
dffb4d60 4374 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4375
7d557b3c
GC
4376 /*
4377 * This runs very early, and only the boot processor is supposed to be
4378 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4379 * IPIs around.
4380 */
4381 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4382 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4383 struct page *p;
4384
916ac052 4385 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4386 p->slab_cache = s;
51df1142 4387
607bf324 4388#ifdef CONFIG_SLUB_DEBUG
916ac052 4389 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4390 p->slab_cache = s;
51df1142 4391#endif
51df1142 4392 }
f7ce3190 4393 slab_init_memcg_params(s);
dffb4d60 4394 list_add(&s->list, &slab_caches);
c03914b7 4395 memcg_link_cache(s, NULL);
dffb4d60 4396 return s;
51df1142
CL
4397}
4398
81819f0f
CL
4399void __init kmem_cache_init(void)
4400{
dffb4d60
CL
4401 static __initdata struct kmem_cache boot_kmem_cache,
4402 boot_kmem_cache_node;
51df1142 4403
fc8d8620
SG
4404 if (debug_guardpage_minorder())
4405 slub_max_order = 0;
4406
dffb4d60
CL
4407 kmem_cache_node = &boot_kmem_cache_node;
4408 kmem_cache = &boot_kmem_cache;
51df1142 4409
dffb4d60 4410 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4411 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4412
3ac38faa 4413 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4414
4415 /* Able to allocate the per node structures */
4416 slab_state = PARTIAL;
4417
dffb4d60
CL
4418 create_boot_cache(kmem_cache, "kmem_cache",
4419 offsetof(struct kmem_cache, node) +
4420 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4421 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4422
dffb4d60 4423 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4424 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4425
4426 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4427 setup_kmalloc_cache_index_table();
f97d5f63 4428 create_kmalloc_caches(0);
81819f0f 4429
210e7a43
TG
4430 /* Setup random freelists for each cache */
4431 init_freelist_randomization();
4432
a96a87bf
SAS
4433 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4434 slub_cpu_dead);
81819f0f 4435
b9726c26 4436 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4437 cache_line_size(),
81819f0f
CL
4438 slub_min_order, slub_max_order, slub_min_objects,
4439 nr_cpu_ids, nr_node_ids);
4440}
4441
7e85ee0c
PE
4442void __init kmem_cache_init_late(void)
4443{
7e85ee0c
PE
4444}
4445
2633d7a0 4446struct kmem_cache *
f4957d5b 4447__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4448 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4449{
426589f5 4450 struct kmem_cache *s, *c;
81819f0f 4451
a44cb944 4452 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4453 if (s) {
4454 s->refcount++;
84d0ddd6 4455
81819f0f
CL
4456 /*
4457 * Adjust the object sizes so that we clear
4458 * the complete object on kzalloc.
4459 */
1b473f29 4460 s->object_size = max(s->object_size, size);
52ee6d74 4461 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4462
426589f5 4463 for_each_memcg_cache(c, s) {
84d0ddd6 4464 c->object_size = s->object_size;
52ee6d74 4465 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4466 }
4467
7b8f3b66 4468 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4469 s->refcount--;
cbb79694 4470 s = NULL;
7b8f3b66 4471 }
a0e1d1be 4472 }
6446faa2 4473
cbb79694
CL
4474 return s;
4475}
84c1cf62 4476
d50112ed 4477int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4478{
aac3a166
PE
4479 int err;
4480
4481 err = kmem_cache_open(s, flags);
4482 if (err)
4483 return err;
20cea968 4484
45530c44
CL
4485 /* Mutex is not taken during early boot */
4486 if (slab_state <= UP)
4487 return 0;
4488
107dab5c 4489 memcg_propagate_slab_attrs(s);
aac3a166 4490 err = sysfs_slab_add(s);
aac3a166 4491 if (err)
52b4b950 4492 __kmem_cache_release(s);
20cea968 4493
aac3a166 4494 return err;
81819f0f 4495}
81819f0f 4496
ce71e27c 4497void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4498{
aadb4bc4 4499 struct kmem_cache *s;
94b528d0 4500 void *ret;
aadb4bc4 4501
95a05b42 4502 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4503 return kmalloc_large(size, gfpflags);
4504
2c59dd65 4505 s = kmalloc_slab(size, gfpflags);
81819f0f 4506
2408c550 4507 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4508 return s;
81819f0f 4509
2b847c3c 4510 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4511
25985edc 4512 /* Honor the call site pointer we received. */
ca2b84cb 4513 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4514
4515 return ret;
81819f0f 4516}
fd7cb575 4517EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4518
5d1f57e4 4519#ifdef CONFIG_NUMA
81819f0f 4520void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4521 int node, unsigned long caller)
81819f0f 4522{
aadb4bc4 4523 struct kmem_cache *s;
94b528d0 4524 void *ret;
aadb4bc4 4525
95a05b42 4526 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4527 ret = kmalloc_large_node(size, gfpflags, node);
4528
4529 trace_kmalloc_node(caller, ret,
4530 size, PAGE_SIZE << get_order(size),
4531 gfpflags, node);
4532
4533 return ret;
4534 }
eada35ef 4535
2c59dd65 4536 s = kmalloc_slab(size, gfpflags);
81819f0f 4537
2408c550 4538 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4539 return s;
81819f0f 4540
2b847c3c 4541 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4542
25985edc 4543 /* Honor the call site pointer we received. */
ca2b84cb 4544 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4545
4546 return ret;
81819f0f 4547}
fd7cb575 4548EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4549#endif
81819f0f 4550
ab4d5ed5 4551#ifdef CONFIG_SYSFS
205ab99d
CL
4552static int count_inuse(struct page *page)
4553{
4554 return page->inuse;
4555}
4556
4557static int count_total(struct page *page)
4558{
4559 return page->objects;
4560}
ab4d5ed5 4561#endif
205ab99d 4562
ab4d5ed5 4563#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4564static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4565{
4566 void *p;
a973e9dd 4567 void *addr = page_address(page);
90e9f6a6
YZ
4568 unsigned long *map;
4569
4570 slab_lock(page);
53e15af0 4571
dd98afd4 4572 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4573 goto unlock;
53e15af0
CL
4574
4575 /* Now we know that a valid freelist exists */
90e9f6a6 4576 map = get_map(s, page);
5f80b13a 4577 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4578 u8 val = test_bit(slab_index(p, s, addr), map) ?
4579 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4580
dd98afd4
YZ
4581 if (!check_object(s, page, p, val))
4582 break;
4583 }
90e9f6a6
YZ
4584 put_map(map);
4585unlock:
881db7fb 4586 slab_unlock(page);
53e15af0
CL
4587}
4588
434e245d 4589static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4590 struct kmem_cache_node *n)
53e15af0
CL
4591{
4592 unsigned long count = 0;
4593 struct page *page;
4594 unsigned long flags;
4595
4596 spin_lock_irqsave(&n->list_lock, flags);
4597
916ac052 4598 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4599 validate_slab(s, page);
53e15af0
CL
4600 count++;
4601 }
4602 if (count != n->nr_partial)
f9f58285
FF
4603 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4604 s->name, count, n->nr_partial);
53e15af0
CL
4605
4606 if (!(s->flags & SLAB_STORE_USER))
4607 goto out;
4608
916ac052 4609 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4610 validate_slab(s, page);
53e15af0
CL
4611 count++;
4612 }
4613 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4614 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4615 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4616
4617out:
4618 spin_unlock_irqrestore(&n->list_lock, flags);
4619 return count;
4620}
4621
434e245d 4622static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4623{
4624 int node;
4625 unsigned long count = 0;
fa45dc25 4626 struct kmem_cache_node *n;
53e15af0
CL
4627
4628 flush_all(s);
fa45dc25 4629 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4630 count += validate_slab_node(s, n);
4631
53e15af0
CL
4632 return count;
4633}
88a420e4 4634/*
672bba3a 4635 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4636 * and freed.
4637 */
4638
4639struct location {
4640 unsigned long count;
ce71e27c 4641 unsigned long addr;
45edfa58
CL
4642 long long sum_time;
4643 long min_time;
4644 long max_time;
4645 long min_pid;
4646 long max_pid;
174596a0 4647 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4648 nodemask_t nodes;
88a420e4
CL
4649};
4650
4651struct loc_track {
4652 unsigned long max;
4653 unsigned long count;
4654 struct location *loc;
4655};
4656
4657static void free_loc_track(struct loc_track *t)
4658{
4659 if (t->max)
4660 free_pages((unsigned long)t->loc,
4661 get_order(sizeof(struct location) * t->max));
4662}
4663
68dff6a9 4664static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4665{
4666 struct location *l;
4667 int order;
4668
88a420e4
CL
4669 order = get_order(sizeof(struct location) * max);
4670
68dff6a9 4671 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4672 if (!l)
4673 return 0;
4674
4675 if (t->count) {
4676 memcpy(l, t->loc, sizeof(struct location) * t->count);
4677 free_loc_track(t);
4678 }
4679 t->max = max;
4680 t->loc = l;
4681 return 1;
4682}
4683
4684static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4685 const struct track *track)
88a420e4
CL
4686{
4687 long start, end, pos;
4688 struct location *l;
ce71e27c 4689 unsigned long caddr;
45edfa58 4690 unsigned long age = jiffies - track->when;
88a420e4
CL
4691
4692 start = -1;
4693 end = t->count;
4694
4695 for ( ; ; ) {
4696 pos = start + (end - start + 1) / 2;
4697
4698 /*
4699 * There is nothing at "end". If we end up there
4700 * we need to add something to before end.
4701 */
4702 if (pos == end)
4703 break;
4704
4705 caddr = t->loc[pos].addr;
45edfa58
CL
4706 if (track->addr == caddr) {
4707
4708 l = &t->loc[pos];
4709 l->count++;
4710 if (track->when) {
4711 l->sum_time += age;
4712 if (age < l->min_time)
4713 l->min_time = age;
4714 if (age > l->max_time)
4715 l->max_time = age;
4716
4717 if (track->pid < l->min_pid)
4718 l->min_pid = track->pid;
4719 if (track->pid > l->max_pid)
4720 l->max_pid = track->pid;
4721
174596a0
RR
4722 cpumask_set_cpu(track->cpu,
4723 to_cpumask(l->cpus));
45edfa58
CL
4724 }
4725 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4726 return 1;
4727 }
4728
45edfa58 4729 if (track->addr < caddr)
88a420e4
CL
4730 end = pos;
4731 else
4732 start = pos;
4733 }
4734
4735 /*
672bba3a 4736 * Not found. Insert new tracking element.
88a420e4 4737 */
68dff6a9 4738 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4739 return 0;
4740
4741 l = t->loc + pos;
4742 if (pos < t->count)
4743 memmove(l + 1, l,
4744 (t->count - pos) * sizeof(struct location));
4745 t->count++;
4746 l->count = 1;
45edfa58
CL
4747 l->addr = track->addr;
4748 l->sum_time = age;
4749 l->min_time = age;
4750 l->max_time = age;
4751 l->min_pid = track->pid;
4752 l->max_pid = track->pid;
174596a0
RR
4753 cpumask_clear(to_cpumask(l->cpus));
4754 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4755 nodes_clear(l->nodes);
4756 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4757 return 1;
4758}
4759
4760static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4761 struct page *page, enum track_item alloc)
88a420e4 4762{
a973e9dd 4763 void *addr = page_address(page);
88a420e4 4764 void *p;
90e9f6a6 4765 unsigned long *map;
88a420e4 4766
90e9f6a6 4767 map = get_map(s, page);
224a88be 4768 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4769 if (!test_bit(slab_index(p, s, addr), map))
4770 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4771 put_map(map);
88a420e4
CL
4772}
4773
4774static int list_locations(struct kmem_cache *s, char *buf,
4775 enum track_item alloc)
4776{
e374d483 4777 int len = 0;
88a420e4 4778 unsigned long i;
68dff6a9 4779 struct loc_track t = { 0, 0, NULL };
88a420e4 4780 int node;
fa45dc25 4781 struct kmem_cache_node *n;
88a420e4 4782
90e9f6a6
YZ
4783 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4784 GFP_KERNEL)) {
68dff6a9 4785 return sprintf(buf, "Out of memory\n");
bbd7d57b 4786 }
88a420e4
CL
4787 /* Push back cpu slabs */
4788 flush_all(s);
4789
fa45dc25 4790 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4791 unsigned long flags;
4792 struct page *page;
4793
9e86943b 4794 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4795 continue;
4796
4797 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4798 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4799 process_slab(&t, s, page, alloc);
916ac052 4800 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4801 process_slab(&t, s, page, alloc);
88a420e4
CL
4802 spin_unlock_irqrestore(&n->list_lock, flags);
4803 }
4804
4805 for (i = 0; i < t.count; i++) {
45edfa58 4806 struct location *l = &t.loc[i];
88a420e4 4807
9c246247 4808 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4809 break;
e374d483 4810 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4811
4812 if (l->addr)
62c70bce 4813 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4814 else
e374d483 4815 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4816
4817 if (l->sum_time != l->min_time) {
e374d483 4818 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4819 l->min_time,
4820 (long)div_u64(l->sum_time, l->count),
4821 l->max_time);
45edfa58 4822 } else
e374d483 4823 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4824 l->min_time);
4825
4826 if (l->min_pid != l->max_pid)
e374d483 4827 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4828 l->min_pid, l->max_pid);
4829 else
e374d483 4830 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4831 l->min_pid);
4832
174596a0
RR
4833 if (num_online_cpus() > 1 &&
4834 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4835 len < PAGE_SIZE - 60)
4836 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4837 " cpus=%*pbl",
4838 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4839
62bc62a8 4840 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4841 len < PAGE_SIZE - 60)
4842 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4843 " nodes=%*pbl",
4844 nodemask_pr_args(&l->nodes));
45edfa58 4845
e374d483 4846 len += sprintf(buf + len, "\n");
88a420e4
CL
4847 }
4848
4849 free_loc_track(&t);
4850 if (!t.count)
e374d483
HH
4851 len += sprintf(buf, "No data\n");
4852 return len;
88a420e4 4853}
6dfd1b65 4854#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4855
a5a84755 4856#ifdef SLUB_RESILIENCY_TEST
c07b8183 4857static void __init resiliency_test(void)
a5a84755
CL
4858{
4859 u8 *p;
cc252eae 4860 int type = KMALLOC_NORMAL;
a5a84755 4861
95a05b42 4862 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4863
f9f58285
FF
4864 pr_err("SLUB resiliency testing\n");
4865 pr_err("-----------------------\n");
4866 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4867
4868 p = kzalloc(16, GFP_KERNEL);
4869 p[16] = 0x12;
f9f58285
FF
4870 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4871 p + 16);
a5a84755 4872
cc252eae 4873 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4874
4875 /* Hmmm... The next two are dangerous */
4876 p = kzalloc(32, GFP_KERNEL);
4877 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4878 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4879 p);
4880 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4881
cc252eae 4882 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4883 p = kzalloc(64, GFP_KERNEL);
4884 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4885 *p = 0x56;
f9f58285
FF
4886 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4887 p);
4888 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4889 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4890
f9f58285 4891 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4892 p = kzalloc(128, GFP_KERNEL);
4893 kfree(p);
4894 *p = 0x78;
f9f58285 4895 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4896 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4897
4898 p = kzalloc(256, GFP_KERNEL);
4899 kfree(p);
4900 p[50] = 0x9a;
f9f58285 4901 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4902 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4903
4904 p = kzalloc(512, GFP_KERNEL);
4905 kfree(p);
4906 p[512] = 0xab;
f9f58285 4907 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4908 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4909}
4910#else
4911#ifdef CONFIG_SYSFS
4912static void resiliency_test(void) {};
4913#endif
6dfd1b65 4914#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4915
ab4d5ed5 4916#ifdef CONFIG_SYSFS
81819f0f 4917enum slab_stat_type {
205ab99d
CL
4918 SL_ALL, /* All slabs */
4919 SL_PARTIAL, /* Only partially allocated slabs */
4920 SL_CPU, /* Only slabs used for cpu caches */
4921 SL_OBJECTS, /* Determine allocated objects not slabs */
4922 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4923};
4924
205ab99d 4925#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4926#define SO_PARTIAL (1 << SL_PARTIAL)
4927#define SO_CPU (1 << SL_CPU)
4928#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4929#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4930
1663f26d
TH
4931#ifdef CONFIG_MEMCG
4932static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4933
4934static int __init setup_slub_memcg_sysfs(char *str)
4935{
4936 int v;
4937
4938 if (get_option(&str, &v) > 0)
4939 memcg_sysfs_enabled = v;
4940
4941 return 1;
4942}
4943
4944__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4945#endif
4946
62e5c4b4
CG
4947static ssize_t show_slab_objects(struct kmem_cache *s,
4948 char *buf, unsigned long flags)
81819f0f
CL
4949{
4950 unsigned long total = 0;
81819f0f
CL
4951 int node;
4952 int x;
4953 unsigned long *nodes;
81819f0f 4954
6396bb22 4955 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4956 if (!nodes)
4957 return -ENOMEM;
81819f0f 4958
205ab99d
CL
4959 if (flags & SO_CPU) {
4960 int cpu;
81819f0f 4961
205ab99d 4962 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4963 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4964 cpu);
ec3ab083 4965 int node;
49e22585 4966 struct page *page;
dfb4f096 4967
4db0c3c2 4968 page = READ_ONCE(c->page);
ec3ab083
CL
4969 if (!page)
4970 continue;
205ab99d 4971
ec3ab083
CL
4972 node = page_to_nid(page);
4973 if (flags & SO_TOTAL)
4974 x = page->objects;
4975 else if (flags & SO_OBJECTS)
4976 x = page->inuse;
4977 else
4978 x = 1;
49e22585 4979
ec3ab083
CL
4980 total += x;
4981 nodes[node] += x;
4982
a93cf07b 4983 page = slub_percpu_partial_read_once(c);
49e22585 4984 if (page) {
8afb1474
LZ
4985 node = page_to_nid(page);
4986 if (flags & SO_TOTAL)
4987 WARN_ON_ONCE(1);
4988 else if (flags & SO_OBJECTS)
4989 WARN_ON_ONCE(1);
4990 else
4991 x = page->pages;
bc6697d8
ED
4992 total += x;
4993 nodes[node] += x;
49e22585 4994 }
81819f0f
CL
4995 }
4996 }
4997
e4f8e513
QC
4998 /*
4999 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5000 * already held which will conflict with an existing lock order:
5001 *
5002 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5003 *
5004 * We don't really need mem_hotplug_lock (to hold off
5005 * slab_mem_going_offline_callback) here because slab's memory hot
5006 * unplug code doesn't destroy the kmem_cache->node[] data.
5007 */
5008
ab4d5ed5 5009#ifdef CONFIG_SLUB_DEBUG
205ab99d 5010 if (flags & SO_ALL) {
fa45dc25
CL
5011 struct kmem_cache_node *n;
5012
5013 for_each_kmem_cache_node(s, node, n) {
205ab99d 5014
d0e0ac97
CG
5015 if (flags & SO_TOTAL)
5016 x = atomic_long_read(&n->total_objects);
5017 else if (flags & SO_OBJECTS)
5018 x = atomic_long_read(&n->total_objects) -
5019 count_partial(n, count_free);
81819f0f 5020 else
205ab99d 5021 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5022 total += x;
5023 nodes[node] += x;
5024 }
5025
ab4d5ed5
CL
5026 } else
5027#endif
5028 if (flags & SO_PARTIAL) {
fa45dc25 5029 struct kmem_cache_node *n;
81819f0f 5030
fa45dc25 5031 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5032 if (flags & SO_TOTAL)
5033 x = count_partial(n, count_total);
5034 else if (flags & SO_OBJECTS)
5035 x = count_partial(n, count_inuse);
81819f0f 5036 else
205ab99d 5037 x = n->nr_partial;
81819f0f
CL
5038 total += x;
5039 nodes[node] += x;
5040 }
5041 }
81819f0f
CL
5042 x = sprintf(buf, "%lu", total);
5043#ifdef CONFIG_NUMA
fa45dc25 5044 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
5045 if (nodes[node])
5046 x += sprintf(buf + x, " N%d=%lu",
5047 node, nodes[node]);
5048#endif
5049 kfree(nodes);
5050 return x + sprintf(buf + x, "\n");
5051}
5052
81819f0f 5053#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5054#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5055
5056struct slab_attribute {
5057 struct attribute attr;
5058 ssize_t (*show)(struct kmem_cache *s, char *buf);
5059 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5060};
5061
5062#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5063 static struct slab_attribute _name##_attr = \
5064 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5065
5066#define SLAB_ATTR(_name) \
5067 static struct slab_attribute _name##_attr = \
ab067e99 5068 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5069
81819f0f
CL
5070static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5071{
44065b2e 5072 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5073}
5074SLAB_ATTR_RO(slab_size);
5075
5076static ssize_t align_show(struct kmem_cache *s, char *buf)
5077{
3a3791ec 5078 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5079}
5080SLAB_ATTR_RO(align);
5081
5082static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5083{
1b473f29 5084 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5085}
5086SLAB_ATTR_RO(object_size);
5087
5088static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5089{
19af27af 5090 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5091}
5092SLAB_ATTR_RO(objs_per_slab);
5093
5094static ssize_t order_show(struct kmem_cache *s, char *buf)
5095{
19af27af 5096 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5097}
32a6f409 5098SLAB_ATTR_RO(order);
81819f0f 5099
73d342b1
DR
5100static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5101{
5102 return sprintf(buf, "%lu\n", s->min_partial);
5103}
5104
5105static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5106 size_t length)
5107{
5108 unsigned long min;
5109 int err;
5110
3dbb95f7 5111 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5112 if (err)
5113 return err;
5114
c0bdb232 5115 set_min_partial(s, min);
73d342b1
DR
5116 return length;
5117}
5118SLAB_ATTR(min_partial);
5119
49e22585
CL
5120static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5121{
e6d0e1dc 5122 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5123}
5124
5125static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5126 size_t length)
5127{
e5d9998f 5128 unsigned int objects;
49e22585
CL
5129 int err;
5130
e5d9998f 5131 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5132 if (err)
5133 return err;
345c905d 5134 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5135 return -EINVAL;
49e22585 5136
e6d0e1dc 5137 slub_set_cpu_partial(s, objects);
49e22585
CL
5138 flush_all(s);
5139 return length;
5140}
5141SLAB_ATTR(cpu_partial);
5142
81819f0f
CL
5143static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5144{
62c70bce
JP
5145 if (!s->ctor)
5146 return 0;
5147 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5148}
5149SLAB_ATTR_RO(ctor);
5150
81819f0f
CL
5151static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5152{
4307c14f 5153 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5154}
5155SLAB_ATTR_RO(aliases);
5156
81819f0f
CL
5157static ssize_t partial_show(struct kmem_cache *s, char *buf)
5158{
d9acf4b7 5159 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5160}
5161SLAB_ATTR_RO(partial);
5162
5163static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5164{
d9acf4b7 5165 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5166}
5167SLAB_ATTR_RO(cpu_slabs);
5168
5169static ssize_t objects_show(struct kmem_cache *s, char *buf)
5170{
205ab99d 5171 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5172}
5173SLAB_ATTR_RO(objects);
5174
205ab99d
CL
5175static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5176{
5177 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5178}
5179SLAB_ATTR_RO(objects_partial);
5180
49e22585
CL
5181static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5182{
5183 int objects = 0;
5184 int pages = 0;
5185 int cpu;
5186 int len;
5187
5188 for_each_online_cpu(cpu) {
a93cf07b
WY
5189 struct page *page;
5190
5191 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5192
5193 if (page) {
5194 pages += page->pages;
5195 objects += page->pobjects;
5196 }
5197 }
5198
5199 len = sprintf(buf, "%d(%d)", objects, pages);
5200
5201#ifdef CONFIG_SMP
5202 for_each_online_cpu(cpu) {
a93cf07b
WY
5203 struct page *page;
5204
5205 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5206
5207 if (page && len < PAGE_SIZE - 20)
5208 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5209 page->pobjects, page->pages);
5210 }
5211#endif
5212 return len + sprintf(buf + len, "\n");
5213}
5214SLAB_ATTR_RO(slabs_cpu_partial);
5215
a5a84755
CL
5216static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5217{
5218 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5219}
8f58119a 5220SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5221
5222static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5223{
5224 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5225}
5226SLAB_ATTR_RO(hwcache_align);
5227
5228#ifdef CONFIG_ZONE_DMA
5229static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5230{
5231 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5232}
5233SLAB_ATTR_RO(cache_dma);
5234#endif
5235
8eb8284b
DW
5236static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5237{
7bbdb81e 5238 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5239}
5240SLAB_ATTR_RO(usersize);
5241
a5a84755
CL
5242static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5243{
5f0d5a3a 5244 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5245}
5246SLAB_ATTR_RO(destroy_by_rcu);
5247
ab4d5ed5 5248#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5249static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5250{
5251 return show_slab_objects(s, buf, SO_ALL);
5252}
5253SLAB_ATTR_RO(slabs);
5254
205ab99d
CL
5255static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5256{
5257 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5258}
5259SLAB_ATTR_RO(total_objects);
5260
81819f0f
CL
5261static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5262{
becfda68 5263 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5264}
060807f8 5265SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5266
5267static ssize_t trace_show(struct kmem_cache *s, char *buf)
5268{
5269 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5270}
060807f8 5271SLAB_ATTR_RO(trace);
81819f0f 5272
81819f0f
CL
5273static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5274{
5275 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5276}
5277
ad38b5b1 5278SLAB_ATTR_RO(red_zone);
81819f0f
CL
5279
5280static ssize_t poison_show(struct kmem_cache *s, char *buf)
5281{
5282 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5283}
5284
ad38b5b1 5285SLAB_ATTR_RO(poison);
81819f0f
CL
5286
5287static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5288{
5289 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5290}
5291
ad38b5b1 5292SLAB_ATTR_RO(store_user);
81819f0f 5293
53e15af0
CL
5294static ssize_t validate_show(struct kmem_cache *s, char *buf)
5295{
5296 return 0;
5297}
5298
5299static ssize_t validate_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301{
434e245d
CL
5302 int ret = -EINVAL;
5303
5304 if (buf[0] == '1') {
5305 ret = validate_slab_cache(s);
5306 if (ret >= 0)
5307 ret = length;
5308 }
5309 return ret;
53e15af0
CL
5310}
5311SLAB_ATTR(validate);
a5a84755
CL
5312
5313static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5314{
5315 if (!(s->flags & SLAB_STORE_USER))
5316 return -ENOSYS;
5317 return list_locations(s, buf, TRACK_ALLOC);
5318}
5319SLAB_ATTR_RO(alloc_calls);
5320
5321static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5322{
5323 if (!(s->flags & SLAB_STORE_USER))
5324 return -ENOSYS;
5325 return list_locations(s, buf, TRACK_FREE);
5326}
5327SLAB_ATTR_RO(free_calls);
5328#endif /* CONFIG_SLUB_DEBUG */
5329
5330#ifdef CONFIG_FAILSLAB
5331static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5332{
5333 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5334}
060807f8 5335SLAB_ATTR_RO(failslab);
ab4d5ed5 5336#endif
53e15af0 5337
2086d26a
CL
5338static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5339{
5340 return 0;
5341}
5342
5343static ssize_t shrink_store(struct kmem_cache *s,
5344 const char *buf, size_t length)
5345{
832f37f5 5346 if (buf[0] == '1')
04f768a3 5347 kmem_cache_shrink_all(s);
832f37f5 5348 else
2086d26a
CL
5349 return -EINVAL;
5350 return length;
5351}
5352SLAB_ATTR(shrink);
5353
81819f0f 5354#ifdef CONFIG_NUMA
9824601e 5355static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5356{
eb7235eb 5357 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5358}
5359
9824601e 5360static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5361 const char *buf, size_t length)
5362{
eb7235eb 5363 unsigned int ratio;
0121c619
CL
5364 int err;
5365
eb7235eb 5366 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5367 if (err)
5368 return err;
eb7235eb
AD
5369 if (ratio > 100)
5370 return -ERANGE;
0121c619 5371
eb7235eb 5372 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5373
81819f0f
CL
5374 return length;
5375}
9824601e 5376SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5377#endif
5378
8ff12cfc 5379#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5380static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5381{
5382 unsigned long sum = 0;
5383 int cpu;
5384 int len;
6da2ec56 5385 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5386
5387 if (!data)
5388 return -ENOMEM;
5389
5390 for_each_online_cpu(cpu) {
9dfc6e68 5391 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5392
5393 data[cpu] = x;
5394 sum += x;
5395 }
5396
5397 len = sprintf(buf, "%lu", sum);
5398
50ef37b9 5399#ifdef CONFIG_SMP
8ff12cfc
CL
5400 for_each_online_cpu(cpu) {
5401 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5402 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5403 }
50ef37b9 5404#endif
8ff12cfc
CL
5405 kfree(data);
5406 return len + sprintf(buf + len, "\n");
5407}
5408
78eb00cc
DR
5409static void clear_stat(struct kmem_cache *s, enum stat_item si)
5410{
5411 int cpu;
5412
5413 for_each_online_cpu(cpu)
9dfc6e68 5414 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5415}
5416
8ff12cfc
CL
5417#define STAT_ATTR(si, text) \
5418static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5419{ \
5420 return show_stat(s, buf, si); \
5421} \
78eb00cc
DR
5422static ssize_t text##_store(struct kmem_cache *s, \
5423 const char *buf, size_t length) \
5424{ \
5425 if (buf[0] != '0') \
5426 return -EINVAL; \
5427 clear_stat(s, si); \
5428 return length; \
5429} \
5430SLAB_ATTR(text); \
8ff12cfc
CL
5431
5432STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5433STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5434STAT_ATTR(FREE_FASTPATH, free_fastpath);
5435STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5436STAT_ATTR(FREE_FROZEN, free_frozen);
5437STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5438STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5439STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5440STAT_ATTR(ALLOC_SLAB, alloc_slab);
5441STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5442STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5443STAT_ATTR(FREE_SLAB, free_slab);
5444STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5445STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5446STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5447STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5448STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5449STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5450STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5451STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5452STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5453STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5454STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5455STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5456STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5457STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5458#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5459
06428780 5460static struct attribute *slab_attrs[] = {
81819f0f
CL
5461 &slab_size_attr.attr,
5462 &object_size_attr.attr,
5463 &objs_per_slab_attr.attr,
5464 &order_attr.attr,
73d342b1 5465 &min_partial_attr.attr,
49e22585 5466 &cpu_partial_attr.attr,
81819f0f 5467 &objects_attr.attr,
205ab99d 5468 &objects_partial_attr.attr,
81819f0f
CL
5469 &partial_attr.attr,
5470 &cpu_slabs_attr.attr,
5471 &ctor_attr.attr,
81819f0f
CL
5472 &aliases_attr.attr,
5473 &align_attr.attr,
81819f0f
CL
5474 &hwcache_align_attr.attr,
5475 &reclaim_account_attr.attr,
5476 &destroy_by_rcu_attr.attr,
a5a84755 5477 &shrink_attr.attr,
49e22585 5478 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5479#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5480 &total_objects_attr.attr,
5481 &slabs_attr.attr,
5482 &sanity_checks_attr.attr,
5483 &trace_attr.attr,
81819f0f
CL
5484 &red_zone_attr.attr,
5485 &poison_attr.attr,
5486 &store_user_attr.attr,
53e15af0 5487 &validate_attr.attr,
88a420e4
CL
5488 &alloc_calls_attr.attr,
5489 &free_calls_attr.attr,
ab4d5ed5 5490#endif
81819f0f
CL
5491#ifdef CONFIG_ZONE_DMA
5492 &cache_dma_attr.attr,
5493#endif
5494#ifdef CONFIG_NUMA
9824601e 5495 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5496#endif
5497#ifdef CONFIG_SLUB_STATS
5498 &alloc_fastpath_attr.attr,
5499 &alloc_slowpath_attr.attr,
5500 &free_fastpath_attr.attr,
5501 &free_slowpath_attr.attr,
5502 &free_frozen_attr.attr,
5503 &free_add_partial_attr.attr,
5504 &free_remove_partial_attr.attr,
5505 &alloc_from_partial_attr.attr,
5506 &alloc_slab_attr.attr,
5507 &alloc_refill_attr.attr,
e36a2652 5508 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5509 &free_slab_attr.attr,
5510 &cpuslab_flush_attr.attr,
5511 &deactivate_full_attr.attr,
5512 &deactivate_empty_attr.attr,
5513 &deactivate_to_head_attr.attr,
5514 &deactivate_to_tail_attr.attr,
5515 &deactivate_remote_frees_attr.attr,
03e404af 5516 &deactivate_bypass_attr.attr,
65c3376a 5517 &order_fallback_attr.attr,
b789ef51
CL
5518 &cmpxchg_double_fail_attr.attr,
5519 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5520 &cpu_partial_alloc_attr.attr,
5521 &cpu_partial_free_attr.attr,
8028dcea
AS
5522 &cpu_partial_node_attr.attr,
5523 &cpu_partial_drain_attr.attr,
81819f0f 5524#endif
4c13dd3b
DM
5525#ifdef CONFIG_FAILSLAB
5526 &failslab_attr.attr,
5527#endif
8eb8284b 5528 &usersize_attr.attr,
4c13dd3b 5529
81819f0f
CL
5530 NULL
5531};
5532
1fdaaa23 5533static const struct attribute_group slab_attr_group = {
81819f0f
CL
5534 .attrs = slab_attrs,
5535};
5536
5537static ssize_t slab_attr_show(struct kobject *kobj,
5538 struct attribute *attr,
5539 char *buf)
5540{
5541 struct slab_attribute *attribute;
5542 struct kmem_cache *s;
5543 int err;
5544
5545 attribute = to_slab_attr(attr);
5546 s = to_slab(kobj);
5547
5548 if (!attribute->show)
5549 return -EIO;
5550
5551 err = attribute->show(s, buf);
5552
5553 return err;
5554}
5555
5556static ssize_t slab_attr_store(struct kobject *kobj,
5557 struct attribute *attr,
5558 const char *buf, size_t len)
5559{
5560 struct slab_attribute *attribute;
5561 struct kmem_cache *s;
5562 int err;
5563
5564 attribute = to_slab_attr(attr);
5565 s = to_slab(kobj);
5566
5567 if (!attribute->store)
5568 return -EIO;
5569
5570 err = attribute->store(s, buf, len);
127424c8 5571#ifdef CONFIG_MEMCG
107dab5c 5572 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5573 struct kmem_cache *c;
81819f0f 5574
107dab5c
GC
5575 mutex_lock(&slab_mutex);
5576 if (s->max_attr_size < len)
5577 s->max_attr_size = len;
5578
ebe945c2
GC
5579 /*
5580 * This is a best effort propagation, so this function's return
5581 * value will be determined by the parent cache only. This is
5582 * basically because not all attributes will have a well
5583 * defined semantics for rollbacks - most of the actions will
5584 * have permanent effects.
5585 *
5586 * Returning the error value of any of the children that fail
5587 * is not 100 % defined, in the sense that users seeing the
5588 * error code won't be able to know anything about the state of
5589 * the cache.
5590 *
5591 * Only returning the error code for the parent cache at least
5592 * has well defined semantics. The cache being written to
5593 * directly either failed or succeeded, in which case we loop
5594 * through the descendants with best-effort propagation.
5595 */
426589f5
VD
5596 for_each_memcg_cache(c, s)
5597 attribute->store(c, buf, len);
107dab5c
GC
5598 mutex_unlock(&slab_mutex);
5599 }
5600#endif
81819f0f
CL
5601 return err;
5602}
5603
107dab5c
GC
5604static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5605{
127424c8 5606#ifdef CONFIG_MEMCG
107dab5c
GC
5607 int i;
5608 char *buffer = NULL;
93030d83 5609 struct kmem_cache *root_cache;
107dab5c 5610
93030d83 5611 if (is_root_cache(s))
107dab5c
GC
5612 return;
5613
f7ce3190 5614 root_cache = s->memcg_params.root_cache;
93030d83 5615
107dab5c
GC
5616 /*
5617 * This mean this cache had no attribute written. Therefore, no point
5618 * in copying default values around
5619 */
93030d83 5620 if (!root_cache->max_attr_size)
107dab5c
GC
5621 return;
5622
5623 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5624 char mbuf[64];
5625 char *buf;
5626 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5627 ssize_t len;
107dab5c
GC
5628
5629 if (!attr || !attr->store || !attr->show)
5630 continue;
5631
5632 /*
5633 * It is really bad that we have to allocate here, so we will
5634 * do it only as a fallback. If we actually allocate, though,
5635 * we can just use the allocated buffer until the end.
5636 *
5637 * Most of the slub attributes will tend to be very small in
5638 * size, but sysfs allows buffers up to a page, so they can
5639 * theoretically happen.
5640 */
5641 if (buffer)
5642 buf = buffer;
a68ee057
QC
5643 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5644 !IS_ENABLED(CONFIG_SLUB_STATS))
107dab5c
GC
5645 buf = mbuf;
5646 else {
5647 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5648 if (WARN_ON(!buffer))
5649 continue;
5650 buf = buffer;
5651 }
5652
478fe303
TG
5653 len = attr->show(root_cache, buf);
5654 if (len > 0)
5655 attr->store(s, buf, len);
107dab5c
GC
5656 }
5657
5658 if (buffer)
5659 free_page((unsigned long)buffer);
6dfd1b65 5660#endif /* CONFIG_MEMCG */
107dab5c
GC
5661}
5662
41a21285
CL
5663static void kmem_cache_release(struct kobject *k)
5664{
5665 slab_kmem_cache_release(to_slab(k));
5666}
5667
52cf25d0 5668static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5669 .show = slab_attr_show,
5670 .store = slab_attr_store,
5671};
5672
5673static struct kobj_type slab_ktype = {
5674 .sysfs_ops = &slab_sysfs_ops,
41a21285 5675 .release = kmem_cache_release,
81819f0f
CL
5676};
5677
27c3a314 5678static struct kset *slab_kset;
81819f0f 5679
9a41707b
VD
5680static inline struct kset *cache_kset(struct kmem_cache *s)
5681{
127424c8 5682#ifdef CONFIG_MEMCG
9a41707b 5683 if (!is_root_cache(s))
f7ce3190 5684 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5685#endif
5686 return slab_kset;
5687}
5688
81819f0f
CL
5689#define ID_STR_LENGTH 64
5690
5691/* Create a unique string id for a slab cache:
6446faa2
CL
5692 *
5693 * Format :[flags-]size
81819f0f
CL
5694 */
5695static char *create_unique_id(struct kmem_cache *s)
5696{
5697 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5698 char *p = name;
5699
5700 BUG_ON(!name);
5701
5702 *p++ = ':';
5703 /*
5704 * First flags affecting slabcache operations. We will only
5705 * get here for aliasable slabs so we do not need to support
5706 * too many flags. The flags here must cover all flags that
5707 * are matched during merging to guarantee that the id is
5708 * unique.
5709 */
5710 if (s->flags & SLAB_CACHE_DMA)
5711 *p++ = 'd';
6d6ea1e9
NB
5712 if (s->flags & SLAB_CACHE_DMA32)
5713 *p++ = 'D';
81819f0f
CL
5714 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5715 *p++ = 'a';
becfda68 5716 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5717 *p++ = 'F';
230e9fc2
VD
5718 if (s->flags & SLAB_ACCOUNT)
5719 *p++ = 'A';
81819f0f
CL
5720 if (p != name + 1)
5721 *p++ = '-';
44065b2e 5722 p += sprintf(p, "%07u", s->size);
2633d7a0 5723
81819f0f
CL
5724 BUG_ON(p > name + ID_STR_LENGTH - 1);
5725 return name;
5726}
5727
3b7b3140
TH
5728static void sysfs_slab_remove_workfn(struct work_struct *work)
5729{
5730 struct kmem_cache *s =
5731 container_of(work, struct kmem_cache, kobj_remove_work);
5732
5733 if (!s->kobj.state_in_sysfs)
5734 /*
5735 * For a memcg cache, this may be called during
5736 * deactivation and again on shutdown. Remove only once.
5737 * A cache is never shut down before deactivation is
5738 * complete, so no need to worry about synchronization.
5739 */
f6ba4880 5740 goto out;
3b7b3140
TH
5741
5742#ifdef CONFIG_MEMCG
5743 kset_unregister(s->memcg_kset);
5744#endif
f6ba4880 5745out:
3b7b3140
TH
5746 kobject_put(&s->kobj);
5747}
5748
81819f0f
CL
5749static int sysfs_slab_add(struct kmem_cache *s)
5750{
5751 int err;
5752 const char *name;
1663f26d 5753 struct kset *kset = cache_kset(s);
45530c44 5754 int unmergeable = slab_unmergeable(s);
81819f0f 5755
3b7b3140
TH
5756 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5757
1663f26d
TH
5758 if (!kset) {
5759 kobject_init(&s->kobj, &slab_ktype);
5760 return 0;
5761 }
5762
11066386
MC
5763 if (!unmergeable && disable_higher_order_debug &&
5764 (slub_debug & DEBUG_METADATA_FLAGS))
5765 unmergeable = 1;
5766
81819f0f
CL
5767 if (unmergeable) {
5768 /*
5769 * Slabcache can never be merged so we can use the name proper.
5770 * This is typically the case for debug situations. In that
5771 * case we can catch duplicate names easily.
5772 */
27c3a314 5773 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5774 name = s->name;
5775 } else {
5776 /*
5777 * Create a unique name for the slab as a target
5778 * for the symlinks.
5779 */
5780 name = create_unique_id(s);
5781 }
5782
1663f26d 5783 s->kobj.kset = kset;
26e4f205 5784 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5785 if (err) {
5786 kobject_put(&s->kobj);
80da026a 5787 goto out;
dde3c6b7 5788 }
81819f0f
CL
5789
5790 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5791 if (err)
5792 goto out_del_kobj;
9a41707b 5793
127424c8 5794#ifdef CONFIG_MEMCG
1663f26d 5795 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5796 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5797 if (!s->memcg_kset) {
54b6a731
DJ
5798 err = -ENOMEM;
5799 goto out_del_kobj;
9a41707b
VD
5800 }
5801 }
5802#endif
5803
81819f0f
CL
5804 if (!unmergeable) {
5805 /* Setup first alias */
5806 sysfs_slab_alias(s, s->name);
81819f0f 5807 }
54b6a731
DJ
5808out:
5809 if (!unmergeable)
5810 kfree(name);
5811 return err;
5812out_del_kobj:
5813 kobject_del(&s->kobj);
54b6a731 5814 goto out;
81819f0f
CL
5815}
5816
bf5eb3de 5817static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5818{
97d06609 5819 if (slab_state < FULL)
2bce6485
CL
5820 /*
5821 * Sysfs has not been setup yet so no need to remove the
5822 * cache from sysfs.
5823 */
5824 return;
5825
3b7b3140
TH
5826 kobject_get(&s->kobj);
5827 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5828}
5829
d50d82fa
MP
5830void sysfs_slab_unlink(struct kmem_cache *s)
5831{
5832 if (slab_state >= FULL)
5833 kobject_del(&s->kobj);
5834}
5835
bf5eb3de
TH
5836void sysfs_slab_release(struct kmem_cache *s)
5837{
5838 if (slab_state >= FULL)
5839 kobject_put(&s->kobj);
81819f0f
CL
5840}
5841
5842/*
5843 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5844 * available lest we lose that information.
81819f0f
CL
5845 */
5846struct saved_alias {
5847 struct kmem_cache *s;
5848 const char *name;
5849 struct saved_alias *next;
5850};
5851
5af328a5 5852static struct saved_alias *alias_list;
81819f0f
CL
5853
5854static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5855{
5856 struct saved_alias *al;
5857
97d06609 5858 if (slab_state == FULL) {
81819f0f
CL
5859 /*
5860 * If we have a leftover link then remove it.
5861 */
27c3a314
GKH
5862 sysfs_remove_link(&slab_kset->kobj, name);
5863 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5864 }
5865
5866 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5867 if (!al)
5868 return -ENOMEM;
5869
5870 al->s = s;
5871 al->name = name;
5872 al->next = alias_list;
5873 alias_list = al;
5874 return 0;
5875}
5876
5877static int __init slab_sysfs_init(void)
5878{
5b95a4ac 5879 struct kmem_cache *s;
81819f0f
CL
5880 int err;
5881
18004c5d 5882 mutex_lock(&slab_mutex);
2bce6485 5883
d7660ce5 5884 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5885 if (!slab_kset) {
18004c5d 5886 mutex_unlock(&slab_mutex);
f9f58285 5887 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5888 return -ENOSYS;
5889 }
5890
97d06609 5891 slab_state = FULL;
26a7bd03 5892
5b95a4ac 5893 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5894 err = sysfs_slab_add(s);
5d540fb7 5895 if (err)
f9f58285
FF
5896 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5897 s->name);
26a7bd03 5898 }
81819f0f
CL
5899
5900 while (alias_list) {
5901 struct saved_alias *al = alias_list;
5902
5903 alias_list = alias_list->next;
5904 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5905 if (err)
f9f58285
FF
5906 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5907 al->name);
81819f0f
CL
5908 kfree(al);
5909 }
5910
18004c5d 5911 mutex_unlock(&slab_mutex);
81819f0f
CL
5912 resiliency_test();
5913 return 0;
5914}
5915
5916__initcall(slab_sysfs_init);
ab4d5ed5 5917#endif /* CONFIG_SYSFS */
57ed3eda
PE
5918
5919/*
5920 * The /proc/slabinfo ABI
5921 */
5b365771 5922#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5923void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5924{
57ed3eda 5925 unsigned long nr_slabs = 0;
205ab99d
CL
5926 unsigned long nr_objs = 0;
5927 unsigned long nr_free = 0;
57ed3eda 5928 int node;
fa45dc25 5929 struct kmem_cache_node *n;
57ed3eda 5930
fa45dc25 5931 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5932 nr_slabs += node_nr_slabs(n);
5933 nr_objs += node_nr_objs(n);
205ab99d 5934 nr_free += count_partial(n, count_free);
57ed3eda
PE
5935 }
5936
0d7561c6
GC
5937 sinfo->active_objs = nr_objs - nr_free;
5938 sinfo->num_objs = nr_objs;
5939 sinfo->active_slabs = nr_slabs;
5940 sinfo->num_slabs = nr_slabs;
5941 sinfo->objects_per_slab = oo_objects(s->oo);
5942 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5943}
5944
0d7561c6 5945void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5946{
7b3c3a50
AD
5947}
5948
b7454ad3
GC
5949ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5950 size_t count, loff_t *ppos)
7b3c3a50 5951{
b7454ad3 5952 return -EIO;
7b3c3a50 5953}
5b365771 5954#endif /* CONFIG_SLUB_DEBUG */