]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm/slub: disable user tracing for kmemleak caches by default
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 251 /*
aa1ef4d7 252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
aa1ef4d7 278 object = kasan_reset_tag(object);
2482ddec 279 return freelist_dereference(s, object + s->offset);
7656c72b
CL
280}
281
0ad9500e
ED
282static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283{
0882ff91 284 prefetch(object + s->offset);
0ad9500e
ED
285}
286
1393d9a1
CL
287static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288{
2482ddec 289 unsigned long freepointer_addr;
1393d9a1
CL
290 void *p;
291
8e57f8ac 292 if (!debug_pagealloc_enabled_static())
922d566c
JK
293 return get_freepointer(s, object);
294
2482ddec 295 freepointer_addr = (unsigned long)object + s->offset;
fe557319 296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 297 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
298}
299
7656c72b
CL
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
2482ddec
KC
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
ce6fa91b
AP
304#ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306#endif
307
aa1ef4d7 308 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
9736d2a9 318static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 319{
9736d2a9 320 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
321}
322
19af27af 323static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 324 unsigned int size)
834f3d11
CL
325{
326 struct kmem_cache_order_objects x = {
9736d2a9 327 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
328 };
329
330 return x;
331}
332
19af27af 333static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 334{
210b5c06 335 return x.x >> OO_SHIFT;
834f3d11
CL
336}
337
19af27af 338static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 339{
210b5c06 340 return x.x & OO_MASK;
834f3d11
CL
341}
342
881db7fb
CL
343/*
344 * Per slab locking using the pagelock
345 */
346static __always_inline void slab_lock(struct page *page)
347{
48c935ad 348 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
349 bit_spin_lock(PG_locked, &page->flags);
350}
351
352static __always_inline void slab_unlock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
1d07171c
CL
358/* Interrupts must be disabled (for the fallback code to work right) */
359static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363{
364 VM_BUG_ON(!irqs_disabled());
2565409f
HC
365#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 367 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 368 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
369 freelist_old, counters_old,
370 freelist_new, counters_new))
6f6528a1 371 return true;
1d07171c
CL
372 } else
373#endif
374 {
375 slab_lock(page);
d0e0ac97
CG
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
1d07171c 378 page->freelist = freelist_new;
7d27a04b 379 page->counters = counters_new;
1d07171c 380 slab_unlock(page);
6f6528a1 381 return true;
1d07171c
CL
382 }
383 slab_unlock(page);
384 }
385
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
388
389#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 390 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
391#endif
392
6f6528a1 393 return false;
1d07171c
CL
394}
395
b789ef51
CL
396static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
400{
2565409f
HC
401#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 403 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 404 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
405 freelist_old, counters_old,
406 freelist_new, counters_new))
6f6528a1 407 return true;
b789ef51
CL
408 } else
409#endif
410 {
1d07171c
CL
411 unsigned long flags;
412
413 local_irq_save(flags);
881db7fb 414 slab_lock(page);
d0e0ac97
CG
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
b789ef51 417 page->freelist = freelist_new;
7d27a04b 418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
6f6528a1 421 return true;
b789ef51 422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 431 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
432#endif
433
6f6528a1 434 return false;
b789ef51
CL
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
438static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
439static DEFINE_SPINLOCK(object_map_lock);
440
5f80b13a
CL
441/*
442 * Determine a map of object in use on a page.
443 *
881db7fb 444 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
445 * not vanish from under us.
446 */
90e9f6a6 447static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 448 __acquires(&object_map_lock)
5f80b13a
CL
449{
450 void *p;
451 void *addr = page_address(page);
452
90e9f6a6
YZ
453 VM_BUG_ON(!irqs_disabled());
454
455 spin_lock(&object_map_lock);
456
457 bitmap_zero(object_map, page->objects);
458
5f80b13a 459 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 460 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
461
462 return object_map;
463}
464
81aba9e0 465static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
466{
467 VM_BUG_ON(map != object_map);
90e9f6a6 468 spin_unlock(&object_map_lock);
5f80b13a
CL
469}
470
870b1fbb 471static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
472{
473 if (s->flags & SLAB_RED_ZONE)
474 return s->size - s->red_left_pad;
475
476 return s->size;
477}
478
479static inline void *restore_red_left(struct kmem_cache *s, void *p)
480{
481 if (s->flags & SLAB_RED_ZONE)
482 p -= s->red_left_pad;
483
484 return p;
485}
486
41ecc55b
CL
487/*
488 * Debug settings:
489 */
89d3c87e 490#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 491static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 492#else
d50112ed 493static slab_flags_t slub_debug;
f0630fff 494#endif
41ecc55b 495
e17f1dfb 496static char *slub_debug_string;
fa5ec8a1 497static int disable_higher_order_debug;
41ecc55b 498
a79316c6
AR
499/*
500 * slub is about to manipulate internal object metadata. This memory lies
501 * outside the range of the allocated object, so accessing it would normally
502 * be reported by kasan as a bounds error. metadata_access_enable() is used
503 * to tell kasan that these accesses are OK.
504 */
505static inline void metadata_access_enable(void)
506{
507 kasan_disable_current();
508}
509
510static inline void metadata_access_disable(void)
511{
512 kasan_enable_current();
513}
514
81819f0f
CL
515/*
516 * Object debugging
517 */
d86bd1be
JK
518
519/* Verify that a pointer has an address that is valid within a slab page */
520static inline int check_valid_pointer(struct kmem_cache *s,
521 struct page *page, void *object)
522{
523 void *base;
524
525 if (!object)
526 return 1;
527
528 base = page_address(page);
338cfaad 529 object = kasan_reset_tag(object);
d86bd1be
JK
530 object = restore_red_left(s, object);
531 if (object < base || object >= base + page->objects * s->size ||
532 (object - base) % s->size) {
533 return 0;
534 }
535
536 return 1;
537}
538
aa2efd5e
DT
539static void print_section(char *level, char *text, u8 *addr,
540 unsigned int length)
81819f0f 541{
a79316c6 542 metadata_access_enable();
aa1ef4d7
AK
543 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
544 16, 1, addr, length, 1);
a79316c6 545 metadata_access_disable();
81819f0f
CL
546}
547
cbfc35a4
WL
548/*
549 * See comment in calculate_sizes().
550 */
551static inline bool freeptr_outside_object(struct kmem_cache *s)
552{
553 return s->offset >= s->inuse;
554}
555
556/*
557 * Return offset of the end of info block which is inuse + free pointer if
558 * not overlapping with object.
559 */
560static inline unsigned int get_info_end(struct kmem_cache *s)
561{
562 if (freeptr_outside_object(s))
563 return s->inuse + sizeof(void *);
564 else
565 return s->inuse;
566}
567
81819f0f
CL
568static struct track *get_track(struct kmem_cache *s, void *object,
569 enum track_item alloc)
570{
571 struct track *p;
572
cbfc35a4 573 p = object + get_info_end(s);
81819f0f 574
aa1ef4d7 575 return kasan_reset_tag(p + alloc);
81819f0f
CL
576}
577
578static void set_track(struct kmem_cache *s, void *object,
ce71e27c 579 enum track_item alloc, unsigned long addr)
81819f0f 580{
1a00df4a 581 struct track *p = get_track(s, object, alloc);
81819f0f 582
81819f0f 583 if (addr) {
d6543e39 584#ifdef CONFIG_STACKTRACE
79716799 585 unsigned int nr_entries;
d6543e39 586
a79316c6 587 metadata_access_enable();
aa1ef4d7
AK
588 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
589 TRACK_ADDRS_COUNT, 3);
a79316c6 590 metadata_access_disable();
d6543e39 591
79716799
TG
592 if (nr_entries < TRACK_ADDRS_COUNT)
593 p->addrs[nr_entries] = 0;
d6543e39 594#endif
81819f0f
CL
595 p->addr = addr;
596 p->cpu = smp_processor_id();
88e4ccf2 597 p->pid = current->pid;
81819f0f 598 p->when = jiffies;
b8ca7ff7 599 } else {
81819f0f 600 memset(p, 0, sizeof(struct track));
b8ca7ff7 601 }
81819f0f
CL
602}
603
81819f0f
CL
604static void init_tracking(struct kmem_cache *s, void *object)
605{
24922684
CL
606 if (!(s->flags & SLAB_STORE_USER))
607 return;
608
ce71e27c
EGM
609 set_track(s, object, TRACK_FREE, 0UL);
610 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
611}
612
86609d33 613static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
614{
615 if (!t->addr)
616 return;
617
f9f58285 618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 619 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
620#ifdef CONFIG_STACKTRACE
621 {
622 int i;
623 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
624 if (t->addrs[i])
f9f58285 625 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
626 else
627 break;
628 }
629#endif
24922684
CL
630}
631
e42f174e 632void print_tracking(struct kmem_cache *s, void *object)
24922684 633{
86609d33 634 unsigned long pr_time = jiffies;
24922684
CL
635 if (!(s->flags & SLAB_STORE_USER))
636 return;
637
86609d33
CP
638 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
639 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
640}
641
642static void print_page_info(struct page *page)
643{
f9f58285 644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 645 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
646
647}
648
649static void slab_bug(struct kmem_cache *s, char *fmt, ...)
650{
ecc42fbe 651 struct va_format vaf;
24922684 652 va_list args;
24922684
CL
653
654 va_start(args, fmt);
ecc42fbe
FF
655 vaf.fmt = fmt;
656 vaf.va = &args;
f9f58285 657 pr_err("=============================================================================\n");
ecc42fbe 658 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 659 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 660
373d4d09 661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 662 va_end(args);
81819f0f
CL
663}
664
24922684
CL
665static void slab_fix(struct kmem_cache *s, char *fmt, ...)
666{
ecc42fbe 667 struct va_format vaf;
24922684 668 va_list args;
24922684
CL
669
670 va_start(args, fmt);
ecc42fbe
FF
671 vaf.fmt = fmt;
672 vaf.va = &args;
673 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 674 va_end(args);
24922684
CL
675}
676
52f23478 677static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 678 void **freelist, void *nextfree)
52f23478
DZ
679{
680 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
681 !check_valid_pointer(s, page, nextfree) && freelist) {
682 object_err(s, page, *freelist, "Freechain corrupt");
683 *freelist = NULL;
52f23478
DZ
684 slab_fix(s, "Isolate corrupted freechain");
685 return true;
686 }
687
688 return false;
689}
690
24922684 691static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
692{
693 unsigned int off; /* Offset of last byte */
a973e9dd 694 u8 *addr = page_address(page);
24922684
CL
695
696 print_tracking(s, p);
697
698 print_page_info(page);
699
f9f58285
FF
700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 p, p - addr, get_freepointer(s, p));
24922684 702
d86bd1be 703 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
704 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
705 s->red_left_pad);
d86bd1be 706 else if (p > addr + 16)
aa2efd5e 707 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 708
aa2efd5e 709 print_section(KERN_ERR, "Object ", p,
1b473f29 710 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 711 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 712 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 713 s->inuse - s->object_size);
81819f0f 714
cbfc35a4 715 off = get_info_end(s);
81819f0f 716
24922684 717 if (s->flags & SLAB_STORE_USER)
81819f0f 718 off += 2 * sizeof(struct track);
81819f0f 719
80a9201a
AP
720 off += kasan_metadata_size(s);
721
d86bd1be 722 if (off != size_from_object(s))
81819f0f 723 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
724 print_section(KERN_ERR, "Padding ", p + off,
725 size_from_object(s) - off);
24922684
CL
726
727 dump_stack();
81819f0f
CL
728}
729
75c66def 730void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
731 u8 *object, char *reason)
732{
3dc50637 733 slab_bug(s, "%s", reason);
24922684 734 print_trailer(s, page, object);
81819f0f
CL
735}
736
a38965bf 737static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 738 const char *fmt, ...)
81819f0f
CL
739{
740 va_list args;
741 char buf[100];
742
24922684
CL
743 va_start(args, fmt);
744 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 745 va_end(args);
3dc50637 746 slab_bug(s, "%s", buf);
24922684 747 print_page_info(page);
81819f0f
CL
748 dump_stack();
749}
750
f7cb1933 751static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 752{
aa1ef4d7 753 u8 *p = kasan_reset_tag(object);
81819f0f 754
d86bd1be
JK
755 if (s->flags & SLAB_RED_ZONE)
756 memset(p - s->red_left_pad, val, s->red_left_pad);
757
81819f0f 758 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
759 memset(p, POISON_FREE, s->object_size - 1);
760 p[s->object_size - 1] = POISON_END;
81819f0f
CL
761 }
762
763 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 764 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
765}
766
24922684
CL
767static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
768 void *from, void *to)
769{
770 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
771 memset(from, data, to - from);
772}
773
774static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
775 u8 *object, char *what,
06428780 776 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
777{
778 u8 *fault;
779 u8 *end;
e1b70dd1 780 u8 *addr = page_address(page);
24922684 781
a79316c6 782 metadata_access_enable();
aa1ef4d7 783 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 784 metadata_access_disable();
24922684
CL
785 if (!fault)
786 return 1;
787
788 end = start + bytes;
789 while (end > fault && end[-1] == value)
790 end--;
791
792 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 fault, end - 1, fault - addr,
795 fault[0], value);
24922684
CL
796 print_trailer(s, page, object);
797
798 restore_bytes(s, what, value, fault, end);
799 return 0;
81819f0f
CL
800}
801
81819f0f
CL
802/*
803 * Object layout:
804 *
805 * object address
806 * Bytes of the object to be managed.
807 * If the freepointer may overlay the object then the free
cbfc35a4 808 * pointer is at the middle of the object.
672bba3a 809 *
81819f0f
CL
810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
811 * 0xa5 (POISON_END)
812 *
3b0efdfa 813 * object + s->object_size
81819f0f 814 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 815 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 816 * object_size == inuse.
672bba3a 817 *
81819f0f
CL
818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819 * 0xcc (RED_ACTIVE) for objects in use.
820 *
821 * object + s->inuse
672bba3a
CL
822 * Meta data starts here.
823 *
81819f0f
CL
824 * A. Free pointer (if we cannot overwrite object on free)
825 * B. Tracking data for SLAB_STORE_USER
672bba3a 826 * C. Padding to reach required alignment boundary or at mininum
6446faa2 827 * one word if debugging is on to be able to detect writes
672bba3a
CL
828 * before the word boundary.
829 *
830 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
831 *
832 * object + s->size
672bba3a 833 * Nothing is used beyond s->size.
81819f0f 834 *
3b0efdfa 835 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 836 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
837 * may be used with merged slabcaches.
838 */
839
81819f0f
CL
840static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
841{
cbfc35a4 842 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
843
844 if (s->flags & SLAB_STORE_USER)
845 /* We also have user information there */
846 off += 2 * sizeof(struct track);
847
80a9201a
AP
848 off += kasan_metadata_size(s);
849
d86bd1be 850 if (size_from_object(s) == off)
81819f0f
CL
851 return 1;
852
24922684 853 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 854 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
855}
856
39b26464 857/* Check the pad bytes at the end of a slab page */
81819f0f
CL
858static int slab_pad_check(struct kmem_cache *s, struct page *page)
859{
24922684
CL
860 u8 *start;
861 u8 *fault;
862 u8 *end;
5d682681 863 u8 *pad;
24922684
CL
864 int length;
865 int remainder;
81819f0f
CL
866
867 if (!(s->flags & SLAB_POISON))
868 return 1;
869
a973e9dd 870 start = page_address(page);
a50b854e 871 length = page_size(page);
39b26464
CL
872 end = start + length;
873 remainder = length % s->size;
81819f0f
CL
874 if (!remainder)
875 return 1;
876
5d682681 877 pad = end - remainder;
a79316c6 878 metadata_access_enable();
aa1ef4d7 879 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 880 metadata_access_disable();
24922684
CL
881 if (!fault)
882 return 1;
883 while (end > fault && end[-1] == POISON_INUSE)
884 end--;
885
e1b70dd1
MC
886 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 fault, end - 1, fault - start);
5d682681 888 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 889
5d682681 890 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 891 return 0;
81819f0f
CL
892}
893
894static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 895 void *object, u8 val)
81819f0f
CL
896{
897 u8 *p = object;
3b0efdfa 898 u8 *endobject = object + s->object_size;
81819f0f
CL
899
900 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
901 if (!check_bytes_and_report(s, page, object, "Redzone",
902 object - s->red_left_pad, val, s->red_left_pad))
903 return 0;
904
24922684 905 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 906 endobject, val, s->inuse - s->object_size))
81819f0f 907 return 0;
81819f0f 908 } else {
3b0efdfa 909 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 910 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
911 endobject, POISON_INUSE,
912 s->inuse - s->object_size);
3adbefee 913 }
81819f0f
CL
914 }
915
916 if (s->flags & SLAB_POISON) {
f7cb1933 917 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 918 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 919 POISON_FREE, s->object_size - 1) ||
24922684 920 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 921 p + s->object_size - 1, POISON_END, 1)))
81819f0f 922 return 0;
81819f0f
CL
923 /*
924 * check_pad_bytes cleans up on its own.
925 */
926 check_pad_bytes(s, page, p);
927 }
928
cbfc35a4 929 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
930 /*
931 * Object and freepointer overlap. Cannot check
932 * freepointer while object is allocated.
933 */
934 return 1;
935
936 /* Check free pointer validity */
937 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
938 object_err(s, page, p, "Freepointer corrupt");
939 /*
9f6c708e 940 * No choice but to zap it and thus lose the remainder
81819f0f 941 * of the free objects in this slab. May cause
672bba3a 942 * another error because the object count is now wrong.
81819f0f 943 */
a973e9dd 944 set_freepointer(s, p, NULL);
81819f0f
CL
945 return 0;
946 }
947 return 1;
948}
949
950static int check_slab(struct kmem_cache *s, struct page *page)
951{
39b26464
CL
952 int maxobj;
953
81819f0f
CL
954 VM_BUG_ON(!irqs_disabled());
955
956 if (!PageSlab(page)) {
24922684 957 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
958 return 0;
959 }
39b26464 960
9736d2a9 961 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
962 if (page->objects > maxobj) {
963 slab_err(s, page, "objects %u > max %u",
f6edde9c 964 page->objects, maxobj);
39b26464
CL
965 return 0;
966 }
967 if (page->inuse > page->objects) {
24922684 968 slab_err(s, page, "inuse %u > max %u",
f6edde9c 969 page->inuse, page->objects);
81819f0f
CL
970 return 0;
971 }
972 /* Slab_pad_check fixes things up after itself */
973 slab_pad_check(s, page);
974 return 1;
975}
976
977/*
672bba3a
CL
978 * Determine if a certain object on a page is on the freelist. Must hold the
979 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
980 */
981static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
982{
983 int nr = 0;
881db7fb 984 void *fp;
81819f0f 985 void *object = NULL;
f6edde9c 986 int max_objects;
81819f0f 987
881db7fb 988 fp = page->freelist;
39b26464 989 while (fp && nr <= page->objects) {
81819f0f
CL
990 if (fp == search)
991 return 1;
992 if (!check_valid_pointer(s, page, fp)) {
993 if (object) {
994 object_err(s, page, object,
995 "Freechain corrupt");
a973e9dd 996 set_freepointer(s, object, NULL);
81819f0f 997 } else {
24922684 998 slab_err(s, page, "Freepointer corrupt");
a973e9dd 999 page->freelist = NULL;
39b26464 1000 page->inuse = page->objects;
24922684 1001 slab_fix(s, "Freelist cleared");
81819f0f
CL
1002 return 0;
1003 }
1004 break;
1005 }
1006 object = fp;
1007 fp = get_freepointer(s, object);
1008 nr++;
1009 }
1010
9736d2a9 1011 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1012 if (max_objects > MAX_OBJS_PER_PAGE)
1013 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1014
1015 if (page->objects != max_objects) {
756a025f
JP
1016 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1017 page->objects, max_objects);
224a88be
CL
1018 page->objects = max_objects;
1019 slab_fix(s, "Number of objects adjusted.");
1020 }
39b26464 1021 if (page->inuse != page->objects - nr) {
756a025f
JP
1022 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1023 page->inuse, page->objects - nr);
39b26464 1024 page->inuse = page->objects - nr;
24922684 1025 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1026 }
1027 return search == NULL;
1028}
1029
0121c619
CL
1030static void trace(struct kmem_cache *s, struct page *page, void *object,
1031 int alloc)
3ec09742
CL
1032{
1033 if (s->flags & SLAB_TRACE) {
f9f58285 1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1035 s->name,
1036 alloc ? "alloc" : "free",
1037 object, page->inuse,
1038 page->freelist);
1039
1040 if (!alloc)
aa2efd5e 1041 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1042 s->object_size);
3ec09742
CL
1043
1044 dump_stack();
1045 }
1046}
1047
643b1138 1048/*
672bba3a 1049 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1050 */
5cc6eee8
CL
1051static void add_full(struct kmem_cache *s,
1052 struct kmem_cache_node *n, struct page *page)
643b1138 1053{
5cc6eee8
CL
1054 if (!(s->flags & SLAB_STORE_USER))
1055 return;
1056
255d0884 1057 lockdep_assert_held(&n->list_lock);
916ac052 1058 list_add(&page->slab_list, &n->full);
643b1138
CL
1059}
1060
c65c1877 1061static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1062{
643b1138
CL
1063 if (!(s->flags & SLAB_STORE_USER))
1064 return;
1065
255d0884 1066 lockdep_assert_held(&n->list_lock);
916ac052 1067 list_del(&page->slab_list);
643b1138
CL
1068}
1069
0f389ec6
CL
1070/* Tracking of the number of slabs for debugging purposes */
1071static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072{
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 return atomic_long_read(&n->nr_slabs);
1076}
1077
26c02cf0
AB
1078static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079{
1080 return atomic_long_read(&n->nr_slabs);
1081}
1082
205ab99d 1083static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1084{
1085 struct kmem_cache_node *n = get_node(s, node);
1086
1087 /*
1088 * May be called early in order to allocate a slab for the
1089 * kmem_cache_node structure. Solve the chicken-egg
1090 * dilemma by deferring the increment of the count during
1091 * bootstrap (see early_kmem_cache_node_alloc).
1092 */
338b2642 1093 if (likely(n)) {
0f389ec6 1094 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1095 atomic_long_add(objects, &n->total_objects);
1096 }
0f389ec6 1097}
205ab99d 1098static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1099{
1100 struct kmem_cache_node *n = get_node(s, node);
1101
1102 atomic_long_dec(&n->nr_slabs);
205ab99d 1103 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1104}
1105
1106/* Object debug checks for alloc/free paths */
3ec09742
CL
1107static void setup_object_debug(struct kmem_cache *s, struct page *page,
1108 void *object)
1109{
8fc8d666 1110 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1111 return;
1112
f7cb1933 1113 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1114 init_tracking(s, object);
1115}
1116
a50b854e
MWO
1117static
1118void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1119{
8fc8d666 1120 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1121 return;
1122
1123 metadata_access_enable();
aa1ef4d7 1124 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1125 metadata_access_disable();
1126}
1127
becfda68 1128static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1129 struct page *page, void *object)
81819f0f
CL
1130{
1131 if (!check_slab(s, page))
becfda68 1132 return 0;
81819f0f 1133
81819f0f
CL
1134 if (!check_valid_pointer(s, page, object)) {
1135 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1136 return 0;
81819f0f
CL
1137 }
1138
f7cb1933 1139 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1140 return 0;
1141
1142 return 1;
1143}
1144
1145static noinline int alloc_debug_processing(struct kmem_cache *s,
1146 struct page *page,
1147 void *object, unsigned long addr)
1148{
1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1150 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1151 goto bad;
1152 }
81819f0f 1153
3ec09742
CL
1154 /* Success perform special debug activities for allocs */
1155 if (s->flags & SLAB_STORE_USER)
1156 set_track(s, object, TRACK_ALLOC, addr);
1157 trace(s, page, object, 1);
f7cb1933 1158 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1159 return 1;
3ec09742 1160
81819f0f
CL
1161bad:
1162 if (PageSlab(page)) {
1163 /*
1164 * If this is a slab page then lets do the best we can
1165 * to avoid issues in the future. Marking all objects
672bba3a 1166 * as used avoids touching the remaining objects.
81819f0f 1167 */
24922684 1168 slab_fix(s, "Marking all objects used");
39b26464 1169 page->inuse = page->objects;
a973e9dd 1170 page->freelist = NULL;
81819f0f
CL
1171 }
1172 return 0;
1173}
1174
becfda68
LA
1175static inline int free_consistency_checks(struct kmem_cache *s,
1176 struct page *page, void *object, unsigned long addr)
81819f0f 1177{
81819f0f 1178 if (!check_valid_pointer(s, page, object)) {
70d71228 1179 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1180 return 0;
81819f0f
CL
1181 }
1182
1183 if (on_freelist(s, page, object)) {
24922684 1184 object_err(s, page, object, "Object already free");
becfda68 1185 return 0;
81819f0f
CL
1186 }
1187
f7cb1933 1188 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1189 return 0;
81819f0f 1190
1b4f59e3 1191 if (unlikely(s != page->slab_cache)) {
3adbefee 1192 if (!PageSlab(page)) {
756a025f
JP
1193 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1194 object);
1b4f59e3 1195 } else if (!page->slab_cache) {
f9f58285
FF
1196 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1197 object);
70d71228 1198 dump_stack();
06428780 1199 } else
24922684
CL
1200 object_err(s, page, object,
1201 "page slab pointer corrupt.");
becfda68
LA
1202 return 0;
1203 }
1204 return 1;
1205}
1206
1207/* Supports checking bulk free of a constructed freelist */
1208static noinline int free_debug_processing(
1209 struct kmem_cache *s, struct page *page,
1210 void *head, void *tail, int bulk_cnt,
1211 unsigned long addr)
1212{
1213 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1214 void *object = head;
1215 int cnt = 0;
3f649ab7 1216 unsigned long flags;
becfda68
LA
1217 int ret = 0;
1218
1219 spin_lock_irqsave(&n->list_lock, flags);
1220 slab_lock(page);
1221
1222 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1223 if (!check_slab(s, page))
1224 goto out;
1225 }
1226
1227next_object:
1228 cnt++;
1229
1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 if (!free_consistency_checks(s, page, object, addr))
1232 goto out;
81819f0f 1233 }
3ec09742 1234
3ec09742
CL
1235 if (s->flags & SLAB_STORE_USER)
1236 set_track(s, object, TRACK_FREE, addr);
1237 trace(s, page, object, 0);
81084651 1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1239 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1240
1241 /* Reached end of constructed freelist yet? */
1242 if (object != tail) {
1243 object = get_freepointer(s, object);
1244 goto next_object;
1245 }
804aa132
LA
1246 ret = 1;
1247
5c2e4bbb 1248out:
81084651
JDB
1249 if (cnt != bulk_cnt)
1250 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1251 bulk_cnt, cnt);
1252
881db7fb 1253 slab_unlock(page);
282acb43 1254 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1255 if (!ret)
1256 slab_fix(s, "Object at 0x%p not freed", object);
1257 return ret;
81819f0f
CL
1258}
1259
e17f1dfb
VB
1260/*
1261 * Parse a block of slub_debug options. Blocks are delimited by ';'
1262 *
1263 * @str: start of block
1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265 * @slabs: return start of list of slabs, or NULL when there's no list
1266 * @init: assume this is initial parsing and not per-kmem-create parsing
1267 *
1268 * returns the start of next block if there's any, or NULL
1269 */
1270static char *
1271parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1272{
e17f1dfb 1273 bool higher_order_disable = false;
f0630fff 1274
e17f1dfb
VB
1275 /* Skip any completely empty blocks */
1276 while (*str && *str == ';')
1277 str++;
1278
1279 if (*str == ',') {
f0630fff
CL
1280 /*
1281 * No options but restriction on slabs. This means full
1282 * debugging for slabs matching a pattern.
1283 */
e17f1dfb 1284 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1285 goto check_slabs;
e17f1dfb
VB
1286 }
1287 *flags = 0;
f0630fff 1288
e17f1dfb
VB
1289 /* Determine which debug features should be switched on */
1290 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1291 switch (tolower(*str)) {
e17f1dfb
VB
1292 case '-':
1293 *flags = 0;
1294 break;
f0630fff 1295 case 'f':
e17f1dfb 1296 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1297 break;
1298 case 'z':
e17f1dfb 1299 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1300 break;
1301 case 'p':
e17f1dfb 1302 *flags |= SLAB_POISON;
f0630fff
CL
1303 break;
1304 case 'u':
e17f1dfb 1305 *flags |= SLAB_STORE_USER;
f0630fff
CL
1306 break;
1307 case 't':
e17f1dfb 1308 *flags |= SLAB_TRACE;
f0630fff 1309 break;
4c13dd3b 1310 case 'a':
e17f1dfb 1311 *flags |= SLAB_FAILSLAB;
4c13dd3b 1312 break;
08303a73
CA
1313 case 'o':
1314 /*
1315 * Avoid enabling debugging on caches if its minimum
1316 * order would increase as a result.
1317 */
e17f1dfb 1318 higher_order_disable = true;
08303a73 1319 break;
f0630fff 1320 default:
e17f1dfb
VB
1321 if (init)
1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1323 }
41ecc55b 1324 }
f0630fff 1325check_slabs:
41ecc55b 1326 if (*str == ',')
e17f1dfb
VB
1327 *slabs = ++str;
1328 else
1329 *slabs = NULL;
1330
1331 /* Skip over the slab list */
1332 while (*str && *str != ';')
1333 str++;
1334
1335 /* Skip any completely empty blocks */
1336 while (*str && *str == ';')
1337 str++;
1338
1339 if (init && higher_order_disable)
1340 disable_higher_order_debug = 1;
1341
1342 if (*str)
1343 return str;
1344 else
1345 return NULL;
1346}
1347
1348static int __init setup_slub_debug(char *str)
1349{
1350 slab_flags_t flags;
1351 char *saved_str;
1352 char *slab_list;
1353 bool global_slub_debug_changed = false;
1354 bool slab_list_specified = false;
1355
1356 slub_debug = DEBUG_DEFAULT_FLAGS;
1357 if (*str++ != '=' || !*str)
1358 /*
1359 * No options specified. Switch on full debugging.
1360 */
1361 goto out;
1362
1363 saved_str = str;
1364 while (str) {
1365 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1366
1367 if (!slab_list) {
1368 slub_debug = flags;
1369 global_slub_debug_changed = true;
1370 } else {
1371 slab_list_specified = true;
1372 }
1373 }
1374
1375 /*
1376 * For backwards compatibility, a single list of flags with list of
1377 * slabs means debugging is only enabled for those slabs, so the global
1378 * slub_debug should be 0. We can extended that to multiple lists as
1379 * long as there is no option specifying flags without a slab list.
1380 */
1381 if (slab_list_specified) {
1382 if (!global_slub_debug_changed)
1383 slub_debug = 0;
1384 slub_debug_string = saved_str;
1385 }
f0630fff 1386out:
ca0cab65
VB
1387 if (slub_debug != 0 || slub_debug_string)
1388 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1389 if ((static_branch_unlikely(&init_on_alloc) ||
1390 static_branch_unlikely(&init_on_free)) &&
1391 (slub_debug & SLAB_POISON))
1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1393 return 1;
1394}
1395
1396__setup("slub_debug", setup_slub_debug);
1397
c5fd3ca0
AT
1398/*
1399 * kmem_cache_flags - apply debugging options to the cache
1400 * @object_size: the size of an object without meta data
1401 * @flags: flags to set
1402 * @name: name of the cache
c5fd3ca0
AT
1403 *
1404 * Debug option(s) are applied to @flags. In addition to the debug
1405 * option(s), if a slab name (or multiple) is specified i.e.
1406 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1407 * then only the select slabs will receive the debug option(s).
1408 */
0293d1fd 1409slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1410 slab_flags_t flags, const char *name)
41ecc55b 1411{
c5fd3ca0
AT
1412 char *iter;
1413 size_t len;
e17f1dfb
VB
1414 char *next_block;
1415 slab_flags_t block_flags;
ca220593
JB
1416 slab_flags_t slub_debug_local = slub_debug;
1417
1418 /*
1419 * If the slab cache is for debugging (e.g. kmemleak) then
1420 * don't store user (stack trace) information by default,
1421 * but let the user enable it via the command line below.
1422 */
1423 if (flags & SLAB_NOLEAKTRACE)
1424 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1425
c5fd3ca0 1426 len = strlen(name);
e17f1dfb
VB
1427 next_block = slub_debug_string;
1428 /* Go through all blocks of debug options, see if any matches our slab's name */
1429 while (next_block) {
1430 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1431 if (!iter)
1432 continue;
1433 /* Found a block that has a slab list, search it */
1434 while (*iter) {
1435 char *end, *glob;
1436 size_t cmplen;
1437
1438 end = strchrnul(iter, ',');
1439 if (next_block && next_block < end)
1440 end = next_block - 1;
1441
1442 glob = strnchr(iter, end - iter, '*');
1443 if (glob)
1444 cmplen = glob - iter;
1445 else
1446 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1447
e17f1dfb
VB
1448 if (!strncmp(name, iter, cmplen)) {
1449 flags |= block_flags;
1450 return flags;
1451 }
c5fd3ca0 1452
e17f1dfb
VB
1453 if (!*end || *end == ';')
1454 break;
1455 iter = end + 1;
c5fd3ca0 1456 }
c5fd3ca0 1457 }
ba0268a8 1458
ca220593 1459 return flags | slub_debug_local;
41ecc55b 1460}
b4a64718 1461#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1462static inline void setup_object_debug(struct kmem_cache *s,
1463 struct page *page, void *object) {}
a50b854e
MWO
1464static inline
1465void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1466
3ec09742 1467static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1468 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1469
282acb43 1470static inline int free_debug_processing(
81084651
JDB
1471 struct kmem_cache *s, struct page *page,
1472 void *head, void *tail, int bulk_cnt,
282acb43 1473 unsigned long addr) { return 0; }
41ecc55b 1474
41ecc55b
CL
1475static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1476 { return 1; }
1477static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1478 void *object, u8 val) { return 1; }
5cc6eee8
CL
1479static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1480 struct page *page) {}
c65c1877
PZ
1481static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1482 struct page *page) {}
0293d1fd 1483slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1484 slab_flags_t flags, const char *name)
ba0268a8
CL
1485{
1486 return flags;
1487}
41ecc55b 1488#define slub_debug 0
0f389ec6 1489
fdaa45e9
IM
1490#define disable_higher_order_debug 0
1491
0f389ec6
CL
1492static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1493 { return 0; }
26c02cf0
AB
1494static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1495 { return 0; }
205ab99d
CL
1496static inline void inc_slabs_node(struct kmem_cache *s, int node,
1497 int objects) {}
1498static inline void dec_slabs_node(struct kmem_cache *s, int node,
1499 int objects) {}
7d550c56 1500
52f23478 1501static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1502 void **freelist, void *nextfree)
52f23478
DZ
1503{
1504 return false;
1505}
02e72cc6
AR
1506#endif /* CONFIG_SLUB_DEBUG */
1507
1508/*
1509 * Hooks for other subsystems that check memory allocations. In a typical
1510 * production configuration these hooks all should produce no code at all.
1511 */
0116523c 1512static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1513{
53128245 1514 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1515 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1516 kmemleak_alloc(ptr, size, 1, flags);
53128245 1517 return ptr;
d56791b3
RB
1518}
1519
ee3ce779 1520static __always_inline void kfree_hook(void *x)
d56791b3
RB
1521{
1522 kmemleak_free(x);
ee3ce779 1523 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1524}
1525
c3895391 1526static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1527{
1528 kmemleak_free_recursive(x, s->flags);
7d550c56 1529
02e72cc6
AR
1530 /*
1531 * Trouble is that we may no longer disable interrupts in the fast path
1532 * So in order to make the debug calls that expect irqs to be
1533 * disabled we need to disable interrupts temporarily.
1534 */
4675ff05 1535#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1536 {
1537 unsigned long flags;
1538
1539 local_irq_save(flags);
02e72cc6
AR
1540 debug_check_no_locks_freed(x, s->object_size);
1541 local_irq_restore(flags);
1542 }
1543#endif
1544 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1545 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1546
cfbe1636
ME
1547 /* Use KCSAN to help debug racy use-after-free. */
1548 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1549 __kcsan_check_access(x, s->object_size,
1550 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1551
c3895391
AK
1552 /* KASAN might put x into memory quarantine, delaying its reuse */
1553 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1554}
205ab99d 1555
c3895391
AK
1556static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1557 void **head, void **tail)
81084651 1558{
6471384a
AP
1559
1560 void *object;
1561 void *next = *head;
1562 void *old_tail = *tail ? *tail : *head;
1563 int rsize;
1564
aea4df4c
LA
1565 /* Head and tail of the reconstructed freelist */
1566 *head = NULL;
1567 *tail = NULL;
1b7e816f 1568
aea4df4c
LA
1569 do {
1570 object = next;
1571 next = get_freepointer(s, object);
1572
1573 if (slab_want_init_on_free(s)) {
6471384a
AP
1574 /*
1575 * Clear the object and the metadata, but don't touch
1576 * the redzone.
1577 */
aa1ef4d7 1578 memset(kasan_reset_tag(object), 0, s->object_size);
6471384a
AP
1579 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1580 : 0;
aa1ef4d7 1581 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
6471384a 1582 s->size - s->inuse - rsize);
81084651 1583
aea4df4c 1584 }
c3895391
AK
1585 /* If object's reuse doesn't have to be delayed */
1586 if (!slab_free_hook(s, object)) {
1587 /* Move object to the new freelist */
1588 set_freepointer(s, object, *head);
1589 *head = object;
1590 if (!*tail)
1591 *tail = object;
1592 }
1593 } while (object != old_tail);
1594
1595 if (*head == *tail)
1596 *tail = NULL;
1597
1598 return *head != NULL;
81084651
JDB
1599}
1600
4d176711 1601static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1602 void *object)
1603{
1604 setup_object_debug(s, page, object);
4d176711 1605 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1606 if (unlikely(s->ctor)) {
1607 kasan_unpoison_object_data(s, object);
1608 s->ctor(object);
1609 kasan_poison_object_data(s, object);
1610 }
4d176711 1611 return object;
588f8ba9
TG
1612}
1613
81819f0f
CL
1614/*
1615 * Slab allocation and freeing
1616 */
5dfb4175
VD
1617static inline struct page *alloc_slab_page(struct kmem_cache *s,
1618 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1619{
5dfb4175 1620 struct page *page;
19af27af 1621 unsigned int order = oo_order(oo);
65c3376a 1622
2154a336 1623 if (node == NUMA_NO_NODE)
5dfb4175 1624 page = alloc_pages(flags, order);
65c3376a 1625 else
96db800f 1626 page = __alloc_pages_node(node, flags, order);
5dfb4175 1627
5dfb4175 1628 return page;
65c3376a
CL
1629}
1630
210e7a43
TG
1631#ifdef CONFIG_SLAB_FREELIST_RANDOM
1632/* Pre-initialize the random sequence cache */
1633static int init_cache_random_seq(struct kmem_cache *s)
1634{
19af27af 1635 unsigned int count = oo_objects(s->oo);
210e7a43 1636 int err;
210e7a43 1637
a810007a
SR
1638 /* Bailout if already initialised */
1639 if (s->random_seq)
1640 return 0;
1641
210e7a43
TG
1642 err = cache_random_seq_create(s, count, GFP_KERNEL);
1643 if (err) {
1644 pr_err("SLUB: Unable to initialize free list for %s\n",
1645 s->name);
1646 return err;
1647 }
1648
1649 /* Transform to an offset on the set of pages */
1650 if (s->random_seq) {
19af27af
AD
1651 unsigned int i;
1652
210e7a43
TG
1653 for (i = 0; i < count; i++)
1654 s->random_seq[i] *= s->size;
1655 }
1656 return 0;
1657}
1658
1659/* Initialize each random sequence freelist per cache */
1660static void __init init_freelist_randomization(void)
1661{
1662 struct kmem_cache *s;
1663
1664 mutex_lock(&slab_mutex);
1665
1666 list_for_each_entry(s, &slab_caches, list)
1667 init_cache_random_seq(s);
1668
1669 mutex_unlock(&slab_mutex);
1670}
1671
1672/* Get the next entry on the pre-computed freelist randomized */
1673static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1674 unsigned long *pos, void *start,
1675 unsigned long page_limit,
1676 unsigned long freelist_count)
1677{
1678 unsigned int idx;
1679
1680 /*
1681 * If the target page allocation failed, the number of objects on the
1682 * page might be smaller than the usual size defined by the cache.
1683 */
1684 do {
1685 idx = s->random_seq[*pos];
1686 *pos += 1;
1687 if (*pos >= freelist_count)
1688 *pos = 0;
1689 } while (unlikely(idx >= page_limit));
1690
1691 return (char *)start + idx;
1692}
1693
1694/* Shuffle the single linked freelist based on a random pre-computed sequence */
1695static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1696{
1697 void *start;
1698 void *cur;
1699 void *next;
1700 unsigned long idx, pos, page_limit, freelist_count;
1701
1702 if (page->objects < 2 || !s->random_seq)
1703 return false;
1704
1705 freelist_count = oo_objects(s->oo);
1706 pos = get_random_int() % freelist_count;
1707
1708 page_limit = page->objects * s->size;
1709 start = fixup_red_left(s, page_address(page));
1710
1711 /* First entry is used as the base of the freelist */
1712 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1713 freelist_count);
4d176711 1714 cur = setup_object(s, page, cur);
210e7a43
TG
1715 page->freelist = cur;
1716
1717 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1718 next = next_freelist_entry(s, page, &pos, start, page_limit,
1719 freelist_count);
4d176711 1720 next = setup_object(s, page, next);
210e7a43
TG
1721 set_freepointer(s, cur, next);
1722 cur = next;
1723 }
210e7a43
TG
1724 set_freepointer(s, cur, NULL);
1725
1726 return true;
1727}
1728#else
1729static inline int init_cache_random_seq(struct kmem_cache *s)
1730{
1731 return 0;
1732}
1733static inline void init_freelist_randomization(void) { }
1734static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1735{
1736 return false;
1737}
1738#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1739
81819f0f
CL
1740static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1741{
06428780 1742 struct page *page;
834f3d11 1743 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1744 gfp_t alloc_gfp;
4d176711 1745 void *start, *p, *next;
a50b854e 1746 int idx;
210e7a43 1747 bool shuffle;
81819f0f 1748
7e0528da
CL
1749 flags &= gfp_allowed_mask;
1750
d0164adc 1751 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1752 local_irq_enable();
1753
b7a49f0d 1754 flags |= s->allocflags;
e12ba74d 1755
ba52270d
PE
1756 /*
1757 * Let the initial higher-order allocation fail under memory pressure
1758 * so we fall-back to the minimum order allocation.
1759 */
1760 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1761 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1762 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1763
5dfb4175 1764 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1765 if (unlikely(!page)) {
1766 oo = s->min;
80c3a998 1767 alloc_gfp = flags;
65c3376a
CL
1768 /*
1769 * Allocation may have failed due to fragmentation.
1770 * Try a lower order alloc if possible
1771 */
5dfb4175 1772 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1773 if (unlikely(!page))
1774 goto out;
1775 stat(s, ORDER_FALLBACK);
65c3376a 1776 }
5a896d9e 1777
834f3d11 1778 page->objects = oo_objects(oo);
81819f0f 1779
1f3147b4
RG
1780 account_slab_page(page, oo_order(oo), s);
1781
1b4f59e3 1782 page->slab_cache = s;
c03f94cc 1783 __SetPageSlab(page);
2f064f34 1784 if (page_is_pfmemalloc(page))
072bb0aa 1785 SetPageSlabPfmemalloc(page);
81819f0f 1786
a7101224 1787 kasan_poison_slab(page);
81819f0f 1788
a7101224 1789 start = page_address(page);
81819f0f 1790
a50b854e 1791 setup_page_debug(s, page, start);
0316bec2 1792
210e7a43
TG
1793 shuffle = shuffle_freelist(s, page);
1794
1795 if (!shuffle) {
4d176711
AK
1796 start = fixup_red_left(s, start);
1797 start = setup_object(s, page, start);
1798 page->freelist = start;
18e50661
AK
1799 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1800 next = p + s->size;
1801 next = setup_object(s, page, next);
1802 set_freepointer(s, p, next);
1803 p = next;
1804 }
1805 set_freepointer(s, p, NULL);
81819f0f 1806 }
81819f0f 1807
e6e82ea1 1808 page->inuse = page->objects;
8cb0a506 1809 page->frozen = 1;
588f8ba9 1810
81819f0f 1811out:
d0164adc 1812 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1813 local_irq_disable();
1814 if (!page)
1815 return NULL;
1816
588f8ba9
TG
1817 inc_slabs_node(s, page_to_nid(page), page->objects);
1818
81819f0f
CL
1819 return page;
1820}
1821
588f8ba9
TG
1822static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1823{
44405099
LL
1824 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1825 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1826
1827 return allocate_slab(s,
1828 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1829}
1830
81819f0f
CL
1831static void __free_slab(struct kmem_cache *s, struct page *page)
1832{
834f3d11
CL
1833 int order = compound_order(page);
1834 int pages = 1 << order;
81819f0f 1835
8fc8d666 1836 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1837 void *p;
1838
1839 slab_pad_check(s, page);
224a88be
CL
1840 for_each_object(p, s, page_address(page),
1841 page->objects)
f7cb1933 1842 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1843 }
1844
072bb0aa 1845 __ClearPageSlabPfmemalloc(page);
49bd5221 1846 __ClearPageSlab(page);
0c06dd75
VB
1847 /* In union with page->mapping where page allocator expects NULL */
1848 page->slab_cache = NULL;
1eb5ac64
NP
1849 if (current->reclaim_state)
1850 current->reclaim_state->reclaimed_slab += pages;
74d555be 1851 unaccount_slab_page(page, order, s);
27ee57c9 1852 __free_pages(page, order);
81819f0f
CL
1853}
1854
1855static void rcu_free_slab(struct rcu_head *h)
1856{
bf68c214 1857 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1858
1b4f59e3 1859 __free_slab(page->slab_cache, page);
81819f0f
CL
1860}
1861
1862static void free_slab(struct kmem_cache *s, struct page *page)
1863{
5f0d5a3a 1864 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1865 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1866 } else
1867 __free_slab(s, page);
1868}
1869
1870static void discard_slab(struct kmem_cache *s, struct page *page)
1871{
205ab99d 1872 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1873 free_slab(s, page);
1874}
1875
1876/*
5cc6eee8 1877 * Management of partially allocated slabs.
81819f0f 1878 */
1e4dd946
SR
1879static inline void
1880__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1881{
e95eed57 1882 n->nr_partial++;
136333d1 1883 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1884 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1885 else
916ac052 1886 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1887}
1888
1e4dd946
SR
1889static inline void add_partial(struct kmem_cache_node *n,
1890 struct page *page, int tail)
62e346a8 1891{
c65c1877 1892 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1893 __add_partial(n, page, tail);
1894}
c65c1877 1895
1e4dd946
SR
1896static inline void remove_partial(struct kmem_cache_node *n,
1897 struct page *page)
1898{
1899 lockdep_assert_held(&n->list_lock);
916ac052 1900 list_del(&page->slab_list);
52b4b950 1901 n->nr_partial--;
1e4dd946
SR
1902}
1903
81819f0f 1904/*
7ced3719
CL
1905 * Remove slab from the partial list, freeze it and
1906 * return the pointer to the freelist.
81819f0f 1907 *
497b66f2 1908 * Returns a list of objects or NULL if it fails.
81819f0f 1909 */
497b66f2 1910static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1911 struct kmem_cache_node *n, struct page *page,
633b0764 1912 int mode, int *objects)
81819f0f 1913{
2cfb7455
CL
1914 void *freelist;
1915 unsigned long counters;
1916 struct page new;
1917
c65c1877
PZ
1918 lockdep_assert_held(&n->list_lock);
1919
2cfb7455
CL
1920 /*
1921 * Zap the freelist and set the frozen bit.
1922 * The old freelist is the list of objects for the
1923 * per cpu allocation list.
1924 */
7ced3719
CL
1925 freelist = page->freelist;
1926 counters = page->counters;
1927 new.counters = counters;
633b0764 1928 *objects = new.objects - new.inuse;
23910c50 1929 if (mode) {
7ced3719 1930 new.inuse = page->objects;
23910c50
PE
1931 new.freelist = NULL;
1932 } else {
1933 new.freelist = freelist;
1934 }
2cfb7455 1935
a0132ac0 1936 VM_BUG_ON(new.frozen);
7ced3719 1937 new.frozen = 1;
2cfb7455 1938
7ced3719 1939 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1940 freelist, counters,
02d7633f 1941 new.freelist, new.counters,
7ced3719 1942 "acquire_slab"))
7ced3719 1943 return NULL;
2cfb7455
CL
1944
1945 remove_partial(n, page);
7ced3719 1946 WARN_ON(!freelist);
49e22585 1947 return freelist;
81819f0f
CL
1948}
1949
633b0764 1950static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1951static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1952
81819f0f 1953/*
672bba3a 1954 * Try to allocate a partial slab from a specific node.
81819f0f 1955 */
8ba00bb6
JK
1956static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1957 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1958{
49e22585
CL
1959 struct page *page, *page2;
1960 void *object = NULL;
e5d9998f 1961 unsigned int available = 0;
633b0764 1962 int objects;
81819f0f
CL
1963
1964 /*
1965 * Racy check. If we mistakenly see no partial slabs then we
1966 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1967 * partial slab and there is none available then get_partial()
672bba3a 1968 * will return NULL.
81819f0f
CL
1969 */
1970 if (!n || !n->nr_partial)
1971 return NULL;
1972
1973 spin_lock(&n->list_lock);
916ac052 1974 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1975 void *t;
49e22585 1976
8ba00bb6
JK
1977 if (!pfmemalloc_match(page, flags))
1978 continue;
1979
633b0764 1980 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1981 if (!t)
8ff60eb0 1982 continue; /* cmpxchg raced */
49e22585 1983
633b0764 1984 available += objects;
12d79634 1985 if (!object) {
49e22585 1986 c->page = page;
49e22585 1987 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1988 object = t;
49e22585 1989 } else {
633b0764 1990 put_cpu_partial(s, page, 0);
8028dcea 1991 stat(s, CPU_PARTIAL_NODE);
49e22585 1992 }
345c905d 1993 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1994 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1995 break;
1996
497b66f2 1997 }
81819f0f 1998 spin_unlock(&n->list_lock);
497b66f2 1999 return object;
81819f0f
CL
2000}
2001
2002/*
672bba3a 2003 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2004 */
de3ec035 2005static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2006 struct kmem_cache_cpu *c)
81819f0f
CL
2007{
2008#ifdef CONFIG_NUMA
2009 struct zonelist *zonelist;
dd1a239f 2010 struct zoneref *z;
54a6eb5c 2011 struct zone *zone;
97a225e6 2012 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2013 void *object;
cc9a6c87 2014 unsigned int cpuset_mems_cookie;
81819f0f
CL
2015
2016 /*
672bba3a
CL
2017 * The defrag ratio allows a configuration of the tradeoffs between
2018 * inter node defragmentation and node local allocations. A lower
2019 * defrag_ratio increases the tendency to do local allocations
2020 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2021 *
672bba3a
CL
2022 * If the defrag_ratio is set to 0 then kmalloc() always
2023 * returns node local objects. If the ratio is higher then kmalloc()
2024 * may return off node objects because partial slabs are obtained
2025 * from other nodes and filled up.
81819f0f 2026 *
43efd3ea
LP
2027 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2028 * (which makes defrag_ratio = 1000) then every (well almost)
2029 * allocation will first attempt to defrag slab caches on other nodes.
2030 * This means scanning over all nodes to look for partial slabs which
2031 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2032 * with available objects.
81819f0f 2033 */
9824601e
CL
2034 if (!s->remote_node_defrag_ratio ||
2035 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2036 return NULL;
2037
cc9a6c87 2038 do {
d26914d1 2039 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2040 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2041 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2042 struct kmem_cache_node *n;
2043
2044 n = get_node(s, zone_to_nid(zone));
2045
dee2f8aa 2046 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2047 n->nr_partial > s->min_partial) {
8ba00bb6 2048 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2049 if (object) {
2050 /*
d26914d1
MG
2051 * Don't check read_mems_allowed_retry()
2052 * here - if mems_allowed was updated in
2053 * parallel, that was a harmless race
2054 * between allocation and the cpuset
2055 * update
cc9a6c87 2056 */
cc9a6c87
MG
2057 return object;
2058 }
c0ff7453 2059 }
81819f0f 2060 }
d26914d1 2061 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2062#endif /* CONFIG_NUMA */
81819f0f
CL
2063 return NULL;
2064}
2065
2066/*
2067 * Get a partial page, lock it and return it.
2068 */
497b66f2 2069static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2070 struct kmem_cache_cpu *c)
81819f0f 2071{
497b66f2 2072 void *object;
a561ce00
JK
2073 int searchnode = node;
2074
2075 if (node == NUMA_NO_NODE)
2076 searchnode = numa_mem_id();
81819f0f 2077
8ba00bb6 2078 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2079 if (object || node != NUMA_NO_NODE)
2080 return object;
81819f0f 2081
acd19fd1 2082 return get_any_partial(s, flags, c);
81819f0f
CL
2083}
2084
923717cb 2085#ifdef CONFIG_PREEMPTION
8a5ec0ba 2086/*
0d645ed1 2087 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2088 * during cmpxchg. The transactions start with the cpu number and are then
2089 * incremented by CONFIG_NR_CPUS.
2090 */
2091#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2092#else
2093/*
2094 * No preemption supported therefore also no need to check for
2095 * different cpus.
2096 */
2097#define TID_STEP 1
2098#endif
2099
2100static inline unsigned long next_tid(unsigned long tid)
2101{
2102 return tid + TID_STEP;
2103}
2104
9d5f0be0 2105#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2106static inline unsigned int tid_to_cpu(unsigned long tid)
2107{
2108 return tid % TID_STEP;
2109}
2110
2111static inline unsigned long tid_to_event(unsigned long tid)
2112{
2113 return tid / TID_STEP;
2114}
9d5f0be0 2115#endif
8a5ec0ba
CL
2116
2117static inline unsigned int init_tid(int cpu)
2118{
2119 return cpu;
2120}
2121
2122static inline void note_cmpxchg_failure(const char *n,
2123 const struct kmem_cache *s, unsigned long tid)
2124{
2125#ifdef SLUB_DEBUG_CMPXCHG
2126 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2127
f9f58285 2128 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2129
923717cb 2130#ifdef CONFIG_PREEMPTION
8a5ec0ba 2131 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2132 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2133 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2134 else
2135#endif
2136 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2137 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2138 tid_to_event(tid), tid_to_event(actual_tid));
2139 else
f9f58285 2140 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2141 actual_tid, tid, next_tid(tid));
2142#endif
4fdccdfb 2143 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2144}
2145
788e1aad 2146static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2147{
8a5ec0ba
CL
2148 int cpu;
2149
2150 for_each_possible_cpu(cpu)
2151 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2152}
2cfb7455 2153
81819f0f
CL
2154/*
2155 * Remove the cpu slab
2156 */
d0e0ac97 2157static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2158 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2159{
2cfb7455 2160 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2161 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2162 int lock = 0;
2163 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2164 void *nextfree;
136333d1 2165 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2166 struct page new;
2167 struct page old;
2168
2169 if (page->freelist) {
84e554e6 2170 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2171 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2172 }
2173
894b8788 2174 /*
2cfb7455
CL
2175 * Stage one: Free all available per cpu objects back
2176 * to the page freelist while it is still frozen. Leave the
2177 * last one.
2178 *
2179 * There is no need to take the list->lock because the page
2180 * is still frozen.
2181 */
2182 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2183 void *prior;
2184 unsigned long counters;
2185
52f23478
DZ
2186 /*
2187 * If 'nextfree' is invalid, it is possible that the object at
2188 * 'freelist' is already corrupted. So isolate all objects
2189 * starting at 'freelist'.
2190 */
dc07a728 2191 if (freelist_corrupted(s, page, &freelist, nextfree))
52f23478
DZ
2192 break;
2193
2cfb7455
CL
2194 do {
2195 prior = page->freelist;
2196 counters = page->counters;
2197 set_freepointer(s, freelist, prior);
2198 new.counters = counters;
2199 new.inuse--;
a0132ac0 2200 VM_BUG_ON(!new.frozen);
2cfb7455 2201
1d07171c 2202 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2203 prior, counters,
2204 freelist, new.counters,
2205 "drain percpu freelist"));
2206
2207 freelist = nextfree;
2208 }
2209
894b8788 2210 /*
2cfb7455
CL
2211 * Stage two: Ensure that the page is unfrozen while the
2212 * list presence reflects the actual number of objects
2213 * during unfreeze.
2214 *
2215 * We setup the list membership and then perform a cmpxchg
2216 * with the count. If there is a mismatch then the page
2217 * is not unfrozen but the page is on the wrong list.
2218 *
2219 * Then we restart the process which may have to remove
2220 * the page from the list that we just put it on again
2221 * because the number of objects in the slab may have
2222 * changed.
894b8788 2223 */
2cfb7455 2224redo:
894b8788 2225
2cfb7455
CL
2226 old.freelist = page->freelist;
2227 old.counters = page->counters;
a0132ac0 2228 VM_BUG_ON(!old.frozen);
7c2e132c 2229
2cfb7455
CL
2230 /* Determine target state of the slab */
2231 new.counters = old.counters;
2232 if (freelist) {
2233 new.inuse--;
2234 set_freepointer(s, freelist, old.freelist);
2235 new.freelist = freelist;
2236 } else
2237 new.freelist = old.freelist;
2238
2239 new.frozen = 0;
2240
8a5b20ae 2241 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2242 m = M_FREE;
2243 else if (new.freelist) {
2244 m = M_PARTIAL;
2245 if (!lock) {
2246 lock = 1;
2247 /*
8bb4e7a2 2248 * Taking the spinlock removes the possibility
2cfb7455
CL
2249 * that acquire_slab() will see a slab page that
2250 * is frozen
2251 */
2252 spin_lock(&n->list_lock);
2253 }
2254 } else {
2255 m = M_FULL;
965c4848 2256 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2257 lock = 1;
2258 /*
2259 * This also ensures that the scanning of full
2260 * slabs from diagnostic functions will not see
2261 * any frozen slabs.
2262 */
2263 spin_lock(&n->list_lock);
2264 }
2265 }
2266
2267 if (l != m) {
2cfb7455 2268 if (l == M_PARTIAL)
2cfb7455 2269 remove_partial(n, page);
2cfb7455 2270 else if (l == M_FULL)
c65c1877 2271 remove_full(s, n, page);
2cfb7455 2272
88349a28 2273 if (m == M_PARTIAL)
2cfb7455 2274 add_partial(n, page, tail);
88349a28 2275 else if (m == M_FULL)
2cfb7455 2276 add_full(s, n, page);
2cfb7455
CL
2277 }
2278
2279 l = m;
1d07171c 2280 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2281 old.freelist, old.counters,
2282 new.freelist, new.counters,
2283 "unfreezing slab"))
2284 goto redo;
2285
2cfb7455
CL
2286 if (lock)
2287 spin_unlock(&n->list_lock);
2288
88349a28
WY
2289 if (m == M_PARTIAL)
2290 stat(s, tail);
2291 else if (m == M_FULL)
2292 stat(s, DEACTIVATE_FULL);
2293 else if (m == M_FREE) {
2cfb7455
CL
2294 stat(s, DEACTIVATE_EMPTY);
2295 discard_slab(s, page);
2296 stat(s, FREE_SLAB);
894b8788 2297 }
d4ff6d35
WY
2298
2299 c->page = NULL;
2300 c->freelist = NULL;
81819f0f
CL
2301}
2302
d24ac77f
JK
2303/*
2304 * Unfreeze all the cpu partial slabs.
2305 *
59a09917
CL
2306 * This function must be called with interrupts disabled
2307 * for the cpu using c (or some other guarantee must be there
2308 * to guarantee no concurrent accesses).
d24ac77f 2309 */
59a09917
CL
2310static void unfreeze_partials(struct kmem_cache *s,
2311 struct kmem_cache_cpu *c)
49e22585 2312{
345c905d 2313#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2314 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2315 struct page *page, *discard_page = NULL;
49e22585 2316
4c7ba22e 2317 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2318 struct page new;
2319 struct page old;
2320
4c7ba22e 2321 slub_set_percpu_partial(c, page);
43d77867
JK
2322
2323 n2 = get_node(s, page_to_nid(page));
2324 if (n != n2) {
2325 if (n)
2326 spin_unlock(&n->list_lock);
2327
2328 n = n2;
2329 spin_lock(&n->list_lock);
2330 }
49e22585
CL
2331
2332 do {
2333
2334 old.freelist = page->freelist;
2335 old.counters = page->counters;
a0132ac0 2336 VM_BUG_ON(!old.frozen);
49e22585
CL
2337
2338 new.counters = old.counters;
2339 new.freelist = old.freelist;
2340
2341 new.frozen = 0;
2342
d24ac77f 2343 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2344 old.freelist, old.counters,
2345 new.freelist, new.counters,
2346 "unfreezing slab"));
2347
8a5b20ae 2348 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2349 page->next = discard_page;
2350 discard_page = page;
43d77867
JK
2351 } else {
2352 add_partial(n, page, DEACTIVATE_TO_TAIL);
2353 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2354 }
2355 }
2356
2357 if (n)
2358 spin_unlock(&n->list_lock);
9ada1934
SL
2359
2360 while (discard_page) {
2361 page = discard_page;
2362 discard_page = discard_page->next;
2363
2364 stat(s, DEACTIVATE_EMPTY);
2365 discard_slab(s, page);
2366 stat(s, FREE_SLAB);
2367 }
6dfd1b65 2368#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2369}
2370
2371/*
9234bae9
WY
2372 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2373 * partial page slot if available.
49e22585
CL
2374 *
2375 * If we did not find a slot then simply move all the partials to the
2376 * per node partial list.
2377 */
633b0764 2378static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2379{
345c905d 2380#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2381 struct page *oldpage;
2382 int pages;
2383 int pobjects;
2384
d6e0b7fa 2385 preempt_disable();
49e22585
CL
2386 do {
2387 pages = 0;
2388 pobjects = 0;
2389 oldpage = this_cpu_read(s->cpu_slab->partial);
2390
2391 if (oldpage) {
2392 pobjects = oldpage->pobjects;
2393 pages = oldpage->pages;
bbd4e305 2394 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2395 unsigned long flags;
2396 /*
2397 * partial array is full. Move the existing
2398 * set to the per node partial list.
2399 */
2400 local_irq_save(flags);
59a09917 2401 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2402 local_irq_restore(flags);
e24fc410 2403 oldpage = NULL;
49e22585
CL
2404 pobjects = 0;
2405 pages = 0;
8028dcea 2406 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2407 }
2408 }
2409
2410 pages++;
2411 pobjects += page->objects - page->inuse;
2412
2413 page->pages = pages;
2414 page->pobjects = pobjects;
2415 page->next = oldpage;
2416
d0e0ac97
CG
2417 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2418 != oldpage);
bbd4e305 2419 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2420 unsigned long flags;
2421
2422 local_irq_save(flags);
2423 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2424 local_irq_restore(flags);
2425 }
2426 preempt_enable();
6dfd1b65 2427#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2428}
2429
dfb4f096 2430static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2431{
84e554e6 2432 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2433 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2434
2435 c->tid = next_tid(c->tid);
81819f0f
CL
2436}
2437
2438/*
2439 * Flush cpu slab.
6446faa2 2440 *
81819f0f
CL
2441 * Called from IPI handler with interrupts disabled.
2442 */
0c710013 2443static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2444{
9dfc6e68 2445 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2446
1265ef2d
WY
2447 if (c->page)
2448 flush_slab(s, c);
49e22585 2449
1265ef2d 2450 unfreeze_partials(s, c);
81819f0f
CL
2451}
2452
2453static void flush_cpu_slab(void *d)
2454{
2455 struct kmem_cache *s = d;
81819f0f 2456
dfb4f096 2457 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2458}
2459
a8364d55
GBY
2460static bool has_cpu_slab(int cpu, void *info)
2461{
2462 struct kmem_cache *s = info;
2463 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2464
a93cf07b 2465 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2466}
2467
81819f0f
CL
2468static void flush_all(struct kmem_cache *s)
2469{
cb923159 2470 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2471}
2472
a96a87bf
SAS
2473/*
2474 * Use the cpu notifier to insure that the cpu slabs are flushed when
2475 * necessary.
2476 */
2477static int slub_cpu_dead(unsigned int cpu)
2478{
2479 struct kmem_cache *s;
2480 unsigned long flags;
2481
2482 mutex_lock(&slab_mutex);
2483 list_for_each_entry(s, &slab_caches, list) {
2484 local_irq_save(flags);
2485 __flush_cpu_slab(s, cpu);
2486 local_irq_restore(flags);
2487 }
2488 mutex_unlock(&slab_mutex);
2489 return 0;
2490}
2491
dfb4f096
CL
2492/*
2493 * Check if the objects in a per cpu structure fit numa
2494 * locality expectations.
2495 */
57d437d2 2496static inline int node_match(struct page *page, int node)
dfb4f096
CL
2497{
2498#ifdef CONFIG_NUMA
6159d0f5 2499 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2500 return 0;
2501#endif
2502 return 1;
2503}
2504
9a02d699 2505#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2506static int count_free(struct page *page)
2507{
2508 return page->objects - page->inuse;
2509}
2510
9a02d699
DR
2511static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2512{
2513 return atomic_long_read(&n->total_objects);
2514}
2515#endif /* CONFIG_SLUB_DEBUG */
2516
2517#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2518static unsigned long count_partial(struct kmem_cache_node *n,
2519 int (*get_count)(struct page *))
2520{
2521 unsigned long flags;
2522 unsigned long x = 0;
2523 struct page *page;
2524
2525 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2526 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2527 x += get_count(page);
2528 spin_unlock_irqrestore(&n->list_lock, flags);
2529 return x;
2530}
9a02d699 2531#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2532
781b2ba6
PE
2533static noinline void
2534slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2535{
9a02d699
DR
2536#ifdef CONFIG_SLUB_DEBUG
2537 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2538 DEFAULT_RATELIMIT_BURST);
781b2ba6 2539 int node;
fa45dc25 2540 struct kmem_cache_node *n;
781b2ba6 2541
9a02d699
DR
2542 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2543 return;
2544
5b3810e5
VB
2545 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2546 nid, gfpflags, &gfpflags);
19af27af 2547 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2548 s->name, s->object_size, s->size, oo_order(s->oo),
2549 oo_order(s->min));
781b2ba6 2550
3b0efdfa 2551 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2552 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2553 s->name);
fa5ec8a1 2554
fa45dc25 2555 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2556 unsigned long nr_slabs;
2557 unsigned long nr_objs;
2558 unsigned long nr_free;
2559
26c02cf0
AB
2560 nr_free = count_partial(n, count_free);
2561 nr_slabs = node_nr_slabs(n);
2562 nr_objs = node_nr_objs(n);
781b2ba6 2563
f9f58285 2564 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2565 node, nr_slabs, nr_objs, nr_free);
2566 }
9a02d699 2567#endif
781b2ba6
PE
2568}
2569
497b66f2
CL
2570static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2571 int node, struct kmem_cache_cpu **pc)
2572{
6faa6833 2573 void *freelist;
188fd063
CL
2574 struct kmem_cache_cpu *c = *pc;
2575 struct page *page;
497b66f2 2576
128227e7
MW
2577 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2578
188fd063 2579 freelist = get_partial(s, flags, node, c);
497b66f2 2580
188fd063
CL
2581 if (freelist)
2582 return freelist;
2583
2584 page = new_slab(s, flags, node);
497b66f2 2585 if (page) {
7c8e0181 2586 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2587 if (c->page)
2588 flush_slab(s, c);
2589
2590 /*
2591 * No other reference to the page yet so we can
2592 * muck around with it freely without cmpxchg
2593 */
6faa6833 2594 freelist = page->freelist;
497b66f2
CL
2595 page->freelist = NULL;
2596
2597 stat(s, ALLOC_SLAB);
497b66f2
CL
2598 c->page = page;
2599 *pc = c;
edde82b6 2600 }
497b66f2 2601
6faa6833 2602 return freelist;
497b66f2
CL
2603}
2604
072bb0aa
MG
2605static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2606{
2607 if (unlikely(PageSlabPfmemalloc(page)))
2608 return gfp_pfmemalloc_allowed(gfpflags);
2609
2610 return true;
2611}
2612
213eeb9f 2613/*
d0e0ac97
CG
2614 * Check the page->freelist of a page and either transfer the freelist to the
2615 * per cpu freelist or deactivate the page.
213eeb9f
CL
2616 *
2617 * The page is still frozen if the return value is not NULL.
2618 *
2619 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2620 *
2621 * This function must be called with interrupt disabled.
213eeb9f
CL
2622 */
2623static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2624{
2625 struct page new;
2626 unsigned long counters;
2627 void *freelist;
2628
2629 do {
2630 freelist = page->freelist;
2631 counters = page->counters;
6faa6833 2632
213eeb9f 2633 new.counters = counters;
a0132ac0 2634 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2635
2636 new.inuse = page->objects;
2637 new.frozen = freelist != NULL;
2638
d24ac77f 2639 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2640 freelist, counters,
2641 NULL, new.counters,
2642 "get_freelist"));
2643
2644 return freelist;
2645}
2646
81819f0f 2647/*
894b8788
CL
2648 * Slow path. The lockless freelist is empty or we need to perform
2649 * debugging duties.
2650 *
894b8788
CL
2651 * Processing is still very fast if new objects have been freed to the
2652 * regular freelist. In that case we simply take over the regular freelist
2653 * as the lockless freelist and zap the regular freelist.
81819f0f 2654 *
894b8788
CL
2655 * If that is not working then we fall back to the partial lists. We take the
2656 * first element of the freelist as the object to allocate now and move the
2657 * rest of the freelist to the lockless freelist.
81819f0f 2658 *
894b8788 2659 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2660 * we need to allocate a new slab. This is the slowest path since it involves
2661 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2662 *
2663 * Version of __slab_alloc to use when we know that interrupts are
2664 * already disabled (which is the case for bulk allocation).
81819f0f 2665 */
a380a3c7 2666static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2667 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2668{
6faa6833 2669 void *freelist;
f6e7def7 2670 struct page *page;
81819f0f 2671
9f986d99
AW
2672 stat(s, ALLOC_SLOWPATH);
2673
f6e7def7 2674 page = c->page;
0715e6c5
VB
2675 if (!page) {
2676 /*
2677 * if the node is not online or has no normal memory, just
2678 * ignore the node constraint
2679 */
2680 if (unlikely(node != NUMA_NO_NODE &&
2681 !node_state(node, N_NORMAL_MEMORY)))
2682 node = NUMA_NO_NODE;
81819f0f 2683 goto new_slab;
0715e6c5 2684 }
49e22585 2685redo:
6faa6833 2686
57d437d2 2687 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2688 /*
2689 * same as above but node_match() being false already
2690 * implies node != NUMA_NO_NODE
2691 */
2692 if (!node_state(node, N_NORMAL_MEMORY)) {
2693 node = NUMA_NO_NODE;
2694 goto redo;
2695 } else {
a561ce00 2696 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2697 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2698 goto new_slab;
2699 }
fc59c053 2700 }
6446faa2 2701
072bb0aa
MG
2702 /*
2703 * By rights, we should be searching for a slab page that was
2704 * PFMEMALLOC but right now, we are losing the pfmemalloc
2705 * information when the page leaves the per-cpu allocator
2706 */
2707 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2708 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2709 goto new_slab;
2710 }
2711
73736e03 2712 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2713 freelist = c->freelist;
2714 if (freelist)
73736e03 2715 goto load_freelist;
03e404af 2716
f6e7def7 2717 freelist = get_freelist(s, page);
6446faa2 2718
6faa6833 2719 if (!freelist) {
03e404af
CL
2720 c->page = NULL;
2721 stat(s, DEACTIVATE_BYPASS);
fc59c053 2722 goto new_slab;
03e404af 2723 }
6446faa2 2724
84e554e6 2725 stat(s, ALLOC_REFILL);
6446faa2 2726
894b8788 2727load_freelist:
507effea
CL
2728 /*
2729 * freelist is pointing to the list of objects to be used.
2730 * page is pointing to the page from which the objects are obtained.
2731 * That page must be frozen for per cpu allocations to work.
2732 */
a0132ac0 2733 VM_BUG_ON(!c->page->frozen);
6faa6833 2734 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2735 c->tid = next_tid(c->tid);
6faa6833 2736 return freelist;
81819f0f 2737
81819f0f 2738new_slab:
2cfb7455 2739
a93cf07b
WY
2740 if (slub_percpu_partial(c)) {
2741 page = c->page = slub_percpu_partial(c);
2742 slub_set_percpu_partial(c, page);
49e22585 2743 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2744 goto redo;
81819f0f
CL
2745 }
2746
188fd063 2747 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2748
f4697436 2749 if (unlikely(!freelist)) {
9a02d699 2750 slab_out_of_memory(s, gfpflags, node);
f4697436 2751 return NULL;
81819f0f 2752 }
2cfb7455 2753
f6e7def7 2754 page = c->page;
5091b74a 2755 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2756 goto load_freelist;
2cfb7455 2757
497b66f2 2758 /* Only entered in the debug case */
d0e0ac97
CG
2759 if (kmem_cache_debug(s) &&
2760 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2761 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2762
d4ff6d35 2763 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2764 return freelist;
894b8788
CL
2765}
2766
a380a3c7
CL
2767/*
2768 * Another one that disabled interrupt and compensates for possible
2769 * cpu changes by refetching the per cpu area pointer.
2770 */
2771static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2772 unsigned long addr, struct kmem_cache_cpu *c)
2773{
2774 void *p;
2775 unsigned long flags;
2776
2777 local_irq_save(flags);
923717cb 2778#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2779 /*
2780 * We may have been preempted and rescheduled on a different
2781 * cpu before disabling interrupts. Need to reload cpu area
2782 * pointer.
2783 */
2784 c = this_cpu_ptr(s->cpu_slab);
2785#endif
2786
2787 p = ___slab_alloc(s, gfpflags, node, addr, c);
2788 local_irq_restore(flags);
2789 return p;
2790}
2791
0f181f9f
AP
2792/*
2793 * If the object has been wiped upon free, make sure it's fully initialized by
2794 * zeroing out freelist pointer.
2795 */
2796static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2797 void *obj)
2798{
2799 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2800 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2801 0, sizeof(void *));
0f181f9f
AP
2802}
2803
894b8788
CL
2804/*
2805 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2806 * have the fastpath folded into their functions. So no function call
2807 * overhead for requests that can be satisfied on the fastpath.
2808 *
2809 * The fastpath works by first checking if the lockless freelist can be used.
2810 * If not then __slab_alloc is called for slow processing.
2811 *
2812 * Otherwise we can simply pick the next object from the lockless free list.
2813 */
2b847c3c 2814static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2815 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2816{
03ec0ed5 2817 void *object;
dfb4f096 2818 struct kmem_cache_cpu *c;
57d437d2 2819 struct page *page;
8a5ec0ba 2820 unsigned long tid;
964d4bd3 2821 struct obj_cgroup *objcg = NULL;
1f84260c 2822
964d4bd3 2823 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2824 if (!s)
773ff60e 2825 return NULL;
8a5ec0ba 2826redo:
8a5ec0ba
CL
2827 /*
2828 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2829 * enabled. We may switch back and forth between cpus while
2830 * reading from one cpu area. That does not matter as long
2831 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2832 *
9aabf810 2833 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2834 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2835 * to check if it is matched or not.
8a5ec0ba 2836 */
9aabf810
JK
2837 do {
2838 tid = this_cpu_read(s->cpu_slab->tid);
2839 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2840 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2841 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2842
2843 /*
2844 * Irqless object alloc/free algorithm used here depends on sequence
2845 * of fetching cpu_slab's data. tid should be fetched before anything
2846 * on c to guarantee that object and page associated with previous tid
2847 * won't be used with current tid. If we fetch tid first, object and
2848 * page could be one associated with next tid and our alloc/free
2849 * request will be failed. In this case, we will retry. So, no problem.
2850 */
2851 barrier();
8a5ec0ba 2852
8a5ec0ba
CL
2853 /*
2854 * The transaction ids are globally unique per cpu and per operation on
2855 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2856 * occurs on the right processor and that there was no operation on the
2857 * linked list in between.
2858 */
8a5ec0ba 2859
9dfc6e68 2860 object = c->freelist;
57d437d2 2861 page = c->page;
22e4663e 2862 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2863 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2864 } else {
0ad9500e
ED
2865 void *next_object = get_freepointer_safe(s, object);
2866
8a5ec0ba 2867 /*
25985edc 2868 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2869 * operation and if we are on the right processor.
2870 *
d0e0ac97
CG
2871 * The cmpxchg does the following atomically (without lock
2872 * semantics!)
8a5ec0ba
CL
2873 * 1. Relocate first pointer to the current per cpu area.
2874 * 2. Verify that tid and freelist have not been changed
2875 * 3. If they were not changed replace tid and freelist
2876 *
d0e0ac97
CG
2877 * Since this is without lock semantics the protection is only
2878 * against code executing on this cpu *not* from access by
2879 * other cpus.
8a5ec0ba 2880 */
933393f5 2881 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2882 s->cpu_slab->freelist, s->cpu_slab->tid,
2883 object, tid,
0ad9500e 2884 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2885
2886 note_cmpxchg_failure("slab_alloc", s, tid);
2887 goto redo;
2888 }
0ad9500e 2889 prefetch_freepointer(s, next_object);
84e554e6 2890 stat(s, ALLOC_FASTPATH);
894b8788 2891 }
0f181f9f 2892
ce5716c6 2893 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2894
6471384a 2895 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
aa1ef4d7 2896 memset(kasan_reset_tag(object), 0, s->object_size);
d07dbea4 2897
964d4bd3 2898 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2899
894b8788 2900 return object;
81819f0f
CL
2901}
2902
2b847c3c
EG
2903static __always_inline void *slab_alloc(struct kmem_cache *s,
2904 gfp_t gfpflags, unsigned long addr)
2905{
2906 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2907}
2908
81819f0f
CL
2909void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2910{
2b847c3c 2911 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2912
d0e0ac97
CG
2913 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2914 s->size, gfpflags);
5b882be4
EGM
2915
2916 return ret;
81819f0f
CL
2917}
2918EXPORT_SYMBOL(kmem_cache_alloc);
2919
0f24f128 2920#ifdef CONFIG_TRACING
4a92379b
RK
2921void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2922{
2b847c3c 2923 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2924 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2925 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2926 return ret;
2927}
2928EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2929#endif
2930
81819f0f
CL
2931#ifdef CONFIG_NUMA
2932void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2933{
2b847c3c 2934 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2935
ca2b84cb 2936 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2937 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2938
2939 return ret;
81819f0f
CL
2940}
2941EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2942
0f24f128 2943#ifdef CONFIG_TRACING
4a92379b 2944void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2945 gfp_t gfpflags,
4a92379b 2946 int node, size_t size)
5b882be4 2947{
2b847c3c 2948 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2949
2950 trace_kmalloc_node(_RET_IP_, ret,
2951 size, s->size, gfpflags, node);
0316bec2 2952
0116523c 2953 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2954 return ret;
5b882be4 2955}
4a92379b 2956EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2957#endif
6dfd1b65 2958#endif /* CONFIG_NUMA */
5b882be4 2959
81819f0f 2960/*
94e4d712 2961 * Slow path handling. This may still be called frequently since objects
894b8788 2962 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2963 *
894b8788
CL
2964 * So we still attempt to reduce cache line usage. Just take the slab
2965 * lock and free the item. If there is no additional partial page
2966 * handling required then we can return immediately.
81819f0f 2967 */
894b8788 2968static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2969 void *head, void *tail, int cnt,
2970 unsigned long addr)
2971
81819f0f
CL
2972{
2973 void *prior;
2cfb7455 2974 int was_frozen;
2cfb7455
CL
2975 struct page new;
2976 unsigned long counters;
2977 struct kmem_cache_node *n = NULL;
3f649ab7 2978 unsigned long flags;
81819f0f 2979
8a5ec0ba 2980 stat(s, FREE_SLOWPATH);
81819f0f 2981
19c7ff9e 2982 if (kmem_cache_debug(s) &&
282acb43 2983 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2984 return;
6446faa2 2985
2cfb7455 2986 do {
837d678d
JK
2987 if (unlikely(n)) {
2988 spin_unlock_irqrestore(&n->list_lock, flags);
2989 n = NULL;
2990 }
2cfb7455
CL
2991 prior = page->freelist;
2992 counters = page->counters;
81084651 2993 set_freepointer(s, tail, prior);
2cfb7455
CL
2994 new.counters = counters;
2995 was_frozen = new.frozen;
81084651 2996 new.inuse -= cnt;
837d678d 2997 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2998
c65c1877 2999 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3000
3001 /*
d0e0ac97
CG
3002 * Slab was on no list before and will be
3003 * partially empty
3004 * We can defer the list move and instead
3005 * freeze it.
49e22585
CL
3006 */
3007 new.frozen = 1;
3008
c65c1877 3009 } else { /* Needs to be taken off a list */
49e22585 3010
b455def2 3011 n = get_node(s, page_to_nid(page));
49e22585
CL
3012 /*
3013 * Speculatively acquire the list_lock.
3014 * If the cmpxchg does not succeed then we may
3015 * drop the list_lock without any processing.
3016 *
3017 * Otherwise the list_lock will synchronize with
3018 * other processors updating the list of slabs.
3019 */
3020 spin_lock_irqsave(&n->list_lock, flags);
3021
3022 }
2cfb7455 3023 }
81819f0f 3024
2cfb7455
CL
3025 } while (!cmpxchg_double_slab(s, page,
3026 prior, counters,
81084651 3027 head, new.counters,
2cfb7455 3028 "__slab_free"));
81819f0f 3029
2cfb7455 3030 if (likely(!n)) {
49e22585 3031
c270cf30
AW
3032 if (likely(was_frozen)) {
3033 /*
3034 * The list lock was not taken therefore no list
3035 * activity can be necessary.
3036 */
3037 stat(s, FREE_FROZEN);
3038 } else if (new.frozen) {
3039 /*
3040 * If we just froze the page then put it onto the
3041 * per cpu partial list.
3042 */
49e22585 3043 put_cpu_partial(s, page, 1);
8028dcea
AS
3044 stat(s, CPU_PARTIAL_FREE);
3045 }
c270cf30 3046
b455def2
L
3047 return;
3048 }
81819f0f 3049
8a5b20ae 3050 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3051 goto slab_empty;
3052
81819f0f 3053 /*
837d678d
JK
3054 * Objects left in the slab. If it was not on the partial list before
3055 * then add it.
81819f0f 3056 */
345c905d 3057 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3058 remove_full(s, n, page);
837d678d
JK
3059 add_partial(n, page, DEACTIVATE_TO_TAIL);
3060 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3061 }
80f08c19 3062 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3063 return;
3064
3065slab_empty:
a973e9dd 3066 if (prior) {
81819f0f 3067 /*
6fbabb20 3068 * Slab on the partial list.
81819f0f 3069 */
5cc6eee8 3070 remove_partial(n, page);
84e554e6 3071 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3072 } else {
6fbabb20 3073 /* Slab must be on the full list */
c65c1877
PZ
3074 remove_full(s, n, page);
3075 }
2cfb7455 3076
80f08c19 3077 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3078 stat(s, FREE_SLAB);
81819f0f 3079 discard_slab(s, page);
81819f0f
CL
3080}
3081
894b8788
CL
3082/*
3083 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3084 * can perform fastpath freeing without additional function calls.
3085 *
3086 * The fastpath is only possible if we are freeing to the current cpu slab
3087 * of this processor. This typically the case if we have just allocated
3088 * the item before.
3089 *
3090 * If fastpath is not possible then fall back to __slab_free where we deal
3091 * with all sorts of special processing.
81084651
JDB
3092 *
3093 * Bulk free of a freelist with several objects (all pointing to the
3094 * same page) possible by specifying head and tail ptr, plus objects
3095 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3096 */
80a9201a
AP
3097static __always_inline void do_slab_free(struct kmem_cache *s,
3098 struct page *page, void *head, void *tail,
3099 int cnt, unsigned long addr)
894b8788 3100{
81084651 3101 void *tail_obj = tail ? : head;
dfb4f096 3102 struct kmem_cache_cpu *c;
8a5ec0ba 3103 unsigned long tid;
964d4bd3 3104
d1b2cf6c 3105 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3106redo:
3107 /*
3108 * Determine the currently cpus per cpu slab.
3109 * The cpu may change afterward. However that does not matter since
3110 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3111 * during the cmpxchg then the free will succeed.
8a5ec0ba 3112 */
9aabf810
JK
3113 do {
3114 tid = this_cpu_read(s->cpu_slab->tid);
3115 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3116 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3117 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3118
9aabf810
JK
3119 /* Same with comment on barrier() in slab_alloc_node() */
3120 barrier();
c016b0bd 3121
442b06bc 3122 if (likely(page == c->page)) {
5076190d
LT
3123 void **freelist = READ_ONCE(c->freelist);
3124
3125 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3126
933393f5 3127 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3128 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3129 freelist, tid,
81084651 3130 head, next_tid(tid)))) {
8a5ec0ba
CL
3131
3132 note_cmpxchg_failure("slab_free", s, tid);
3133 goto redo;
3134 }
84e554e6 3135 stat(s, FREE_FASTPATH);
894b8788 3136 } else
81084651 3137 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3138
894b8788
CL
3139}
3140
80a9201a
AP
3141static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3142 void *head, void *tail, int cnt,
3143 unsigned long addr)
3144{
80a9201a 3145 /*
c3895391
AK
3146 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3147 * to remove objects, whose reuse must be delayed.
80a9201a 3148 */
c3895391
AK
3149 if (slab_free_freelist_hook(s, &head, &tail))
3150 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3151}
3152
2bd926b4 3153#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3154void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3155{
3156 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3157}
3158#endif
3159
81819f0f
CL
3160void kmem_cache_free(struct kmem_cache *s, void *x)
3161{
b9ce5ef4
GC
3162 s = cache_from_obj(s, x);
3163 if (!s)
79576102 3164 return;
81084651 3165 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3166 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3167}
3168EXPORT_SYMBOL(kmem_cache_free);
3169
d0ecd894 3170struct detached_freelist {
fbd02630 3171 struct page *page;
d0ecd894
JDB
3172 void *tail;
3173 void *freelist;
3174 int cnt;
376bf125 3175 struct kmem_cache *s;
d0ecd894 3176};
fbd02630 3177
d0ecd894
JDB
3178/*
3179 * This function progressively scans the array with free objects (with
3180 * a limited look ahead) and extract objects belonging to the same
3181 * page. It builds a detached freelist directly within the given
3182 * page/objects. This can happen without any need for
3183 * synchronization, because the objects are owned by running process.
3184 * The freelist is build up as a single linked list in the objects.
3185 * The idea is, that this detached freelist can then be bulk
3186 * transferred to the real freelist(s), but only requiring a single
3187 * synchronization primitive. Look ahead in the array is limited due
3188 * to performance reasons.
3189 */
376bf125
JDB
3190static inline
3191int build_detached_freelist(struct kmem_cache *s, size_t size,
3192 void **p, struct detached_freelist *df)
d0ecd894
JDB
3193{
3194 size_t first_skipped_index = 0;
3195 int lookahead = 3;
3196 void *object;
ca257195 3197 struct page *page;
fbd02630 3198
d0ecd894
JDB
3199 /* Always re-init detached_freelist */
3200 df->page = NULL;
fbd02630 3201
d0ecd894
JDB
3202 do {
3203 object = p[--size];
ca257195 3204 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3205 } while (!object && size);
3eed034d 3206
d0ecd894
JDB
3207 if (!object)
3208 return 0;
fbd02630 3209
ca257195
JDB
3210 page = virt_to_head_page(object);
3211 if (!s) {
3212 /* Handle kalloc'ed objects */
3213 if (unlikely(!PageSlab(page))) {
3214 BUG_ON(!PageCompound(page));
3215 kfree_hook(object);
4949148a 3216 __free_pages(page, compound_order(page));
ca257195
JDB
3217 p[size] = NULL; /* mark object processed */
3218 return size;
3219 }
3220 /* Derive kmem_cache from object */
3221 df->s = page->slab_cache;
3222 } else {
3223 df->s = cache_from_obj(s, object); /* Support for memcg */
3224 }
376bf125 3225
d0ecd894 3226 /* Start new detached freelist */
ca257195 3227 df->page = page;
376bf125 3228 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3229 df->tail = object;
3230 df->freelist = object;
3231 p[size] = NULL; /* mark object processed */
3232 df->cnt = 1;
3233
3234 while (size) {
3235 object = p[--size];
3236 if (!object)
3237 continue; /* Skip processed objects */
3238
3239 /* df->page is always set at this point */
3240 if (df->page == virt_to_head_page(object)) {
3241 /* Opportunity build freelist */
376bf125 3242 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3243 df->freelist = object;
3244 df->cnt++;
3245 p[size] = NULL; /* mark object processed */
3246
3247 continue;
fbd02630 3248 }
d0ecd894
JDB
3249
3250 /* Limit look ahead search */
3251 if (!--lookahead)
3252 break;
3253
3254 if (!first_skipped_index)
3255 first_skipped_index = size + 1;
fbd02630 3256 }
d0ecd894
JDB
3257
3258 return first_skipped_index;
3259}
3260
d0ecd894 3261/* Note that interrupts must be enabled when calling this function. */
376bf125 3262void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3263{
3264 if (WARN_ON(!size))
3265 return;
3266
d1b2cf6c 3267 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3268 do {
3269 struct detached_freelist df;
3270
3271 size = build_detached_freelist(s, size, p, &df);
84582c8a 3272 if (!df.page)
d0ecd894
JDB
3273 continue;
3274
376bf125 3275 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3276 } while (likely(size));
484748f0
CL
3277}
3278EXPORT_SYMBOL(kmem_cache_free_bulk);
3279
994eb764 3280/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3281int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3282 void **p)
484748f0 3283{
994eb764
JDB
3284 struct kmem_cache_cpu *c;
3285 int i;
964d4bd3 3286 struct obj_cgroup *objcg = NULL;
994eb764 3287
03ec0ed5 3288 /* memcg and kmem_cache debug support */
964d4bd3 3289 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3290 if (unlikely(!s))
3291 return false;
994eb764
JDB
3292 /*
3293 * Drain objects in the per cpu slab, while disabling local
3294 * IRQs, which protects against PREEMPT and interrupts
3295 * handlers invoking normal fastpath.
3296 */
3297 local_irq_disable();
3298 c = this_cpu_ptr(s->cpu_slab);
3299
3300 for (i = 0; i < size; i++) {
3301 void *object = c->freelist;
3302
ebe909e0 3303 if (unlikely(!object)) {
fd4d9c7d
JH
3304 /*
3305 * We may have removed an object from c->freelist using
3306 * the fastpath in the previous iteration; in that case,
3307 * c->tid has not been bumped yet.
3308 * Since ___slab_alloc() may reenable interrupts while
3309 * allocating memory, we should bump c->tid now.
3310 */
3311 c->tid = next_tid(c->tid);
3312
ebe909e0
JDB
3313 /*
3314 * Invoking slow path likely have side-effect
3315 * of re-populating per CPU c->freelist
3316 */
87098373 3317 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3318 _RET_IP_, c);
87098373
CL
3319 if (unlikely(!p[i]))
3320 goto error;
3321
ebe909e0 3322 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3323 maybe_wipe_obj_freeptr(s, p[i]);
3324
ebe909e0
JDB
3325 continue; /* goto for-loop */
3326 }
994eb764
JDB
3327 c->freelist = get_freepointer(s, object);
3328 p[i] = object;
0f181f9f 3329 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3330 }
3331 c->tid = next_tid(c->tid);
3332 local_irq_enable();
3333
3334 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3335 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3336 int j;
3337
3338 for (j = 0; j < i; j++)
ce5716c6 3339 memset(kasan_reset_tag(p[j]), 0, s->object_size);
994eb764
JDB
3340 }
3341
03ec0ed5 3342 /* memcg and kmem_cache debug support */
964d4bd3 3343 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3344 return i;
87098373 3345error:
87098373 3346 local_irq_enable();
964d4bd3 3347 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3348 __kmem_cache_free_bulk(s, i, p);
865762a8 3349 return 0;
484748f0
CL
3350}
3351EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3352
3353
81819f0f 3354/*
672bba3a
CL
3355 * Object placement in a slab is made very easy because we always start at
3356 * offset 0. If we tune the size of the object to the alignment then we can
3357 * get the required alignment by putting one properly sized object after
3358 * another.
81819f0f
CL
3359 *
3360 * Notice that the allocation order determines the sizes of the per cpu
3361 * caches. Each processor has always one slab available for allocations.
3362 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3363 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3364 * locking overhead.
81819f0f
CL
3365 */
3366
3367/*
3368 * Mininum / Maximum order of slab pages. This influences locking overhead
3369 * and slab fragmentation. A higher order reduces the number of partial slabs
3370 * and increases the number of allocations possible without having to
3371 * take the list_lock.
3372 */
19af27af
AD
3373static unsigned int slub_min_order;
3374static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3375static unsigned int slub_min_objects;
81819f0f 3376
81819f0f
CL
3377/*
3378 * Calculate the order of allocation given an slab object size.
3379 *
672bba3a
CL
3380 * The order of allocation has significant impact on performance and other
3381 * system components. Generally order 0 allocations should be preferred since
3382 * order 0 does not cause fragmentation in the page allocator. Larger objects
3383 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3384 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3385 * would be wasted.
3386 *
3387 * In order to reach satisfactory performance we must ensure that a minimum
3388 * number of objects is in one slab. Otherwise we may generate too much
3389 * activity on the partial lists which requires taking the list_lock. This is
3390 * less a concern for large slabs though which are rarely used.
81819f0f 3391 *
672bba3a
CL
3392 * slub_max_order specifies the order where we begin to stop considering the
3393 * number of objects in a slab as critical. If we reach slub_max_order then
3394 * we try to keep the page order as low as possible. So we accept more waste
3395 * of space in favor of a small page order.
81819f0f 3396 *
672bba3a
CL
3397 * Higher order allocations also allow the placement of more objects in a
3398 * slab and thereby reduce object handling overhead. If the user has
3399 * requested a higher mininum order then we start with that one instead of
3400 * the smallest order which will fit the object.
81819f0f 3401 */
19af27af
AD
3402static inline unsigned int slab_order(unsigned int size,
3403 unsigned int min_objects, unsigned int max_order,
9736d2a9 3404 unsigned int fract_leftover)
81819f0f 3405{
19af27af
AD
3406 unsigned int min_order = slub_min_order;
3407 unsigned int order;
81819f0f 3408
9736d2a9 3409 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3410 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3411
9736d2a9 3412 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3413 order <= max_order; order++) {
81819f0f 3414
19af27af
AD
3415 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3416 unsigned int rem;
81819f0f 3417
9736d2a9 3418 rem = slab_size % size;
81819f0f 3419
5e6d444e 3420 if (rem <= slab_size / fract_leftover)
81819f0f 3421 break;
81819f0f 3422 }
672bba3a 3423
81819f0f
CL
3424 return order;
3425}
3426
9736d2a9 3427static inline int calculate_order(unsigned int size)
5e6d444e 3428{
19af27af
AD
3429 unsigned int order;
3430 unsigned int min_objects;
3431 unsigned int max_objects;
3286222f 3432 unsigned int nr_cpus;
5e6d444e
CL
3433
3434 /*
3435 * Attempt to find best configuration for a slab. This
3436 * works by first attempting to generate a layout with
3437 * the best configuration and backing off gradually.
3438 *
422ff4d7 3439 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3440 * we reduce the minimum objects required in a slab.
3441 */
3442 min_objects = slub_min_objects;
3286222f
VB
3443 if (!min_objects) {
3444 /*
3445 * Some architectures will only update present cpus when
3446 * onlining them, so don't trust the number if it's just 1. But
3447 * we also don't want to use nr_cpu_ids always, as on some other
3448 * architectures, there can be many possible cpus, but never
3449 * onlined. Here we compromise between trying to avoid too high
3450 * order on systems that appear larger than they are, and too
3451 * low order on systems that appear smaller than they are.
3452 */
3453 nr_cpus = num_present_cpus();
3454 if (nr_cpus <= 1)
3455 nr_cpus = nr_cpu_ids;
3456 min_objects = 4 * (fls(nr_cpus) + 1);
3457 }
9736d2a9 3458 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3459 min_objects = min(min_objects, max_objects);
3460
5e6d444e 3461 while (min_objects > 1) {
19af27af
AD
3462 unsigned int fraction;
3463
c124f5b5 3464 fraction = 16;
5e6d444e
CL
3465 while (fraction >= 4) {
3466 order = slab_order(size, min_objects,
9736d2a9 3467 slub_max_order, fraction);
5e6d444e
CL
3468 if (order <= slub_max_order)
3469 return order;
3470 fraction /= 2;
3471 }
5086c389 3472 min_objects--;
5e6d444e
CL
3473 }
3474
3475 /*
3476 * We were unable to place multiple objects in a slab. Now
3477 * lets see if we can place a single object there.
3478 */
9736d2a9 3479 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3480 if (order <= slub_max_order)
3481 return order;
3482
3483 /*
3484 * Doh this slab cannot be placed using slub_max_order.
3485 */
9736d2a9 3486 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3487 if (order < MAX_ORDER)
5e6d444e
CL
3488 return order;
3489 return -ENOSYS;
3490}
3491
5595cffc 3492static void
4053497d 3493init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3494{
3495 n->nr_partial = 0;
81819f0f
CL
3496 spin_lock_init(&n->list_lock);
3497 INIT_LIST_HEAD(&n->partial);
8ab1372f 3498#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3499 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3500 atomic_long_set(&n->total_objects, 0);
643b1138 3501 INIT_LIST_HEAD(&n->full);
8ab1372f 3502#endif
81819f0f
CL
3503}
3504
55136592 3505static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3506{
6c182dc0 3507 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3508 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3509
8a5ec0ba 3510 /*
d4d84fef
CM
3511 * Must align to double word boundary for the double cmpxchg
3512 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3513 */
d4d84fef
CM
3514 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3515 2 * sizeof(void *));
8a5ec0ba
CL
3516
3517 if (!s->cpu_slab)
3518 return 0;
3519
3520 init_kmem_cache_cpus(s);
4c93c355 3521
8a5ec0ba 3522 return 1;
4c93c355 3523}
4c93c355 3524
51df1142
CL
3525static struct kmem_cache *kmem_cache_node;
3526
81819f0f
CL
3527/*
3528 * No kmalloc_node yet so do it by hand. We know that this is the first
3529 * slab on the node for this slabcache. There are no concurrent accesses
3530 * possible.
3531 *
721ae22a
ZYW
3532 * Note that this function only works on the kmem_cache_node
3533 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3534 * memory on a fresh node that has no slab structures yet.
81819f0f 3535 */
55136592 3536static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3537{
3538 struct page *page;
3539 struct kmem_cache_node *n;
3540
51df1142 3541 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3542
51df1142 3543 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3544
3545 BUG_ON(!page);
a2f92ee7 3546 if (page_to_nid(page) != node) {
f9f58285
FF
3547 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3548 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3549 }
3550
81819f0f
CL
3551 n = page->freelist;
3552 BUG_ON(!n);
8ab1372f 3553#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3554 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3555 init_tracking(kmem_cache_node, n);
8ab1372f 3556#endif
12b22386 3557 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3558 GFP_KERNEL);
12b22386
AK
3559 page->freelist = get_freepointer(kmem_cache_node, n);
3560 page->inuse = 1;
3561 page->frozen = 0;
3562 kmem_cache_node->node[node] = n;
4053497d 3563 init_kmem_cache_node(n);
51df1142 3564 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3565
67b6c900 3566 /*
1e4dd946
SR
3567 * No locks need to be taken here as it has just been
3568 * initialized and there is no concurrent access.
67b6c900 3569 */
1e4dd946 3570 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3571}
3572
3573static void free_kmem_cache_nodes(struct kmem_cache *s)
3574{
3575 int node;
fa45dc25 3576 struct kmem_cache_node *n;
81819f0f 3577
fa45dc25 3578 for_each_kmem_cache_node(s, node, n) {
81819f0f 3579 s->node[node] = NULL;
ea37df54 3580 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3581 }
3582}
3583
52b4b950
DS
3584void __kmem_cache_release(struct kmem_cache *s)
3585{
210e7a43 3586 cache_random_seq_destroy(s);
52b4b950
DS
3587 free_percpu(s->cpu_slab);
3588 free_kmem_cache_nodes(s);
3589}
3590
55136592 3591static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3592{
3593 int node;
81819f0f 3594
f64dc58c 3595 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3596 struct kmem_cache_node *n;
3597
73367bd8 3598 if (slab_state == DOWN) {
55136592 3599 early_kmem_cache_node_alloc(node);
73367bd8
AD
3600 continue;
3601 }
51df1142 3602 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3603 GFP_KERNEL, node);
81819f0f 3604
73367bd8
AD
3605 if (!n) {
3606 free_kmem_cache_nodes(s);
3607 return 0;
81819f0f 3608 }
73367bd8 3609
4053497d 3610 init_kmem_cache_node(n);
ea37df54 3611 s->node[node] = n;
81819f0f
CL
3612 }
3613 return 1;
3614}
81819f0f 3615
c0bdb232 3616static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3617{
3618 if (min < MIN_PARTIAL)
3619 min = MIN_PARTIAL;
3620 else if (min > MAX_PARTIAL)
3621 min = MAX_PARTIAL;
3622 s->min_partial = min;
3623}
3624
e6d0e1dc
WY
3625static void set_cpu_partial(struct kmem_cache *s)
3626{
3627#ifdef CONFIG_SLUB_CPU_PARTIAL
3628 /*
3629 * cpu_partial determined the maximum number of objects kept in the
3630 * per cpu partial lists of a processor.
3631 *
3632 * Per cpu partial lists mainly contain slabs that just have one
3633 * object freed. If they are used for allocation then they can be
3634 * filled up again with minimal effort. The slab will never hit the
3635 * per node partial lists and therefore no locking will be required.
3636 *
3637 * This setting also determines
3638 *
3639 * A) The number of objects from per cpu partial slabs dumped to the
3640 * per node list when we reach the limit.
3641 * B) The number of objects in cpu partial slabs to extract from the
3642 * per node list when we run out of per cpu objects. We only fetch
3643 * 50% to keep some capacity around for frees.
3644 */
3645 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3646 slub_set_cpu_partial(s, 0);
e6d0e1dc 3647 else if (s->size >= PAGE_SIZE)
bbd4e305 3648 slub_set_cpu_partial(s, 2);
e6d0e1dc 3649 else if (s->size >= 1024)
bbd4e305 3650 slub_set_cpu_partial(s, 6);
e6d0e1dc 3651 else if (s->size >= 256)
bbd4e305 3652 slub_set_cpu_partial(s, 13);
e6d0e1dc 3653 else
bbd4e305 3654 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3655#endif
3656}
3657
81819f0f
CL
3658/*
3659 * calculate_sizes() determines the order and the distribution of data within
3660 * a slab object.
3661 */
06b285dc 3662static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3663{
d50112ed 3664 slab_flags_t flags = s->flags;
be4a7988 3665 unsigned int size = s->object_size;
89b83f28 3666 unsigned int freepointer_area;
19af27af 3667 unsigned int order;
81819f0f 3668
d8b42bf5
CL
3669 /*
3670 * Round up object size to the next word boundary. We can only
3671 * place the free pointer at word boundaries and this determines
3672 * the possible location of the free pointer.
3673 */
3674 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3675 /*
3676 * This is the area of the object where a freepointer can be
3677 * safely written. If redzoning adds more to the inuse size, we
3678 * can't use that portion for writing the freepointer, so
3679 * s->offset must be limited within this for the general case.
3680 */
3681 freepointer_area = size;
d8b42bf5
CL
3682
3683#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3684 /*
3685 * Determine if we can poison the object itself. If the user of
3686 * the slab may touch the object after free or before allocation
3687 * then we should never poison the object itself.
3688 */
5f0d5a3a 3689 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3690 !s->ctor)
81819f0f
CL
3691 s->flags |= __OBJECT_POISON;
3692 else
3693 s->flags &= ~__OBJECT_POISON;
3694
81819f0f
CL
3695
3696 /*
672bba3a 3697 * If we are Redzoning then check if there is some space between the
81819f0f 3698 * end of the object and the free pointer. If not then add an
672bba3a 3699 * additional word to have some bytes to store Redzone information.
81819f0f 3700 */
3b0efdfa 3701 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3702 size += sizeof(void *);
41ecc55b 3703#endif
81819f0f
CL
3704
3705 /*
672bba3a
CL
3706 * With that we have determined the number of bytes in actual use
3707 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3708 */
3709 s->inuse = size;
3710
5f0d5a3a 3711 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3712 s->ctor)) {
81819f0f
CL
3713 /*
3714 * Relocate free pointer after the object if it is not
3715 * permitted to overwrite the first word of the object on
3716 * kmem_cache_free.
3717 *
3718 * This is the case if we do RCU, have a constructor or
3719 * destructor or are poisoning the objects.
cbfc35a4
WL
3720 *
3721 * The assumption that s->offset >= s->inuse means free
3722 * pointer is outside of the object is used in the
3723 * freeptr_outside_object() function. If that is no
3724 * longer true, the function needs to be modified.
81819f0f
CL
3725 */
3726 s->offset = size;
3727 size += sizeof(void *);
89b83f28 3728 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3729 /*
3730 * Store freelist pointer near middle of object to keep
3731 * it away from the edges of the object to avoid small
3732 * sized over/underflows from neighboring allocations.
3733 */
89b83f28 3734 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3735 }
3736
c12b3c62 3737#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3738 if (flags & SLAB_STORE_USER)
3739 /*
3740 * Need to store information about allocs and frees after
3741 * the object.
3742 */
3743 size += 2 * sizeof(struct track);
80a9201a 3744#endif
81819f0f 3745
80a9201a
AP
3746 kasan_cache_create(s, &size, &s->flags);
3747#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3748 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3749 /*
3750 * Add some empty padding so that we can catch
3751 * overwrites from earlier objects rather than let
3752 * tracking information or the free pointer be
0211a9c8 3753 * corrupted if a user writes before the start
81819f0f
CL
3754 * of the object.
3755 */
3756 size += sizeof(void *);
d86bd1be
JK
3757
3758 s->red_left_pad = sizeof(void *);
3759 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3760 size += s->red_left_pad;
3761 }
41ecc55b 3762#endif
672bba3a 3763
81819f0f
CL
3764 /*
3765 * SLUB stores one object immediately after another beginning from
3766 * offset 0. In order to align the objects we have to simply size
3767 * each object to conform to the alignment.
3768 */
45906855 3769 size = ALIGN(size, s->align);
81819f0f 3770 s->size = size;
4138fdfc 3771 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3772 if (forced_order >= 0)
3773 order = forced_order;
3774 else
9736d2a9 3775 order = calculate_order(size);
81819f0f 3776
19af27af 3777 if ((int)order < 0)
81819f0f
CL
3778 return 0;
3779
b7a49f0d 3780 s->allocflags = 0;
834f3d11 3781 if (order)
b7a49f0d
CL
3782 s->allocflags |= __GFP_COMP;
3783
3784 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3785 s->allocflags |= GFP_DMA;
b7a49f0d 3786
6d6ea1e9
NB
3787 if (s->flags & SLAB_CACHE_DMA32)
3788 s->allocflags |= GFP_DMA32;
3789
b7a49f0d
CL
3790 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3791 s->allocflags |= __GFP_RECLAIMABLE;
3792
81819f0f
CL
3793 /*
3794 * Determine the number of objects per slab
3795 */
9736d2a9
MW
3796 s->oo = oo_make(order, size);
3797 s->min = oo_make(get_order(size), size);
205ab99d
CL
3798 if (oo_objects(s->oo) > oo_objects(s->max))
3799 s->max = s->oo;
81819f0f 3800
834f3d11 3801 return !!oo_objects(s->oo);
81819f0f
CL
3802}
3803
d50112ed 3804static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3805{
37540008 3806 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3807#ifdef CONFIG_SLAB_FREELIST_HARDENED
3808 s->random = get_random_long();
3809#endif
81819f0f 3810
06b285dc 3811 if (!calculate_sizes(s, -1))
81819f0f 3812 goto error;
3de47213
DR
3813 if (disable_higher_order_debug) {
3814 /*
3815 * Disable debugging flags that store metadata if the min slab
3816 * order increased.
3817 */
3b0efdfa 3818 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3819 s->flags &= ~DEBUG_METADATA_FLAGS;
3820 s->offset = 0;
3821 if (!calculate_sizes(s, -1))
3822 goto error;
3823 }
3824 }
81819f0f 3825
2565409f
HC
3826#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3827 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3828 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3829 /* Enable fast mode */
3830 s->flags |= __CMPXCHG_DOUBLE;
3831#endif
3832
3b89d7d8
DR
3833 /*
3834 * The larger the object size is, the more pages we want on the partial
3835 * list to avoid pounding the page allocator excessively.
3836 */
49e22585
CL
3837 set_min_partial(s, ilog2(s->size) / 2);
3838
e6d0e1dc 3839 set_cpu_partial(s);
49e22585 3840
81819f0f 3841#ifdef CONFIG_NUMA
e2cb96b7 3842 s->remote_node_defrag_ratio = 1000;
81819f0f 3843#endif
210e7a43
TG
3844
3845 /* Initialize the pre-computed randomized freelist if slab is up */
3846 if (slab_state >= UP) {
3847 if (init_cache_random_seq(s))
3848 goto error;
3849 }
3850
55136592 3851 if (!init_kmem_cache_nodes(s))
dfb4f096 3852 goto error;
81819f0f 3853
55136592 3854 if (alloc_kmem_cache_cpus(s))
278b1bb1 3855 return 0;
ff12059e 3856
4c93c355 3857 free_kmem_cache_nodes(s);
81819f0f 3858error:
278b1bb1 3859 return -EINVAL;
81819f0f 3860}
81819f0f 3861
33b12c38 3862static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3863 const char *text)
33b12c38
CL
3864{
3865#ifdef CONFIG_SLUB_DEBUG
3866 void *addr = page_address(page);
55860d96 3867 unsigned long *map;
33b12c38 3868 void *p;
aa456c7a 3869
945cf2b6 3870 slab_err(s, page, text, s->name);
33b12c38 3871 slab_lock(page);
33b12c38 3872
90e9f6a6 3873 map = get_map(s, page);
33b12c38
CL
3874 for_each_object(p, s, addr, page->objects) {
3875
4138fdfc 3876 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3877 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3878 print_tracking(s, p);
3879 }
3880 }
55860d96 3881 put_map(map);
33b12c38
CL
3882 slab_unlock(page);
3883#endif
3884}
3885
81819f0f 3886/*
599870b1 3887 * Attempt to free all partial slabs on a node.
52b4b950
DS
3888 * This is called from __kmem_cache_shutdown(). We must take list_lock
3889 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3890 */
599870b1 3891static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3892{
60398923 3893 LIST_HEAD(discard);
81819f0f
CL
3894 struct page *page, *h;
3895
52b4b950
DS
3896 BUG_ON(irqs_disabled());
3897 spin_lock_irq(&n->list_lock);
916ac052 3898 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3899 if (!page->inuse) {
52b4b950 3900 remove_partial(n, page);
916ac052 3901 list_add(&page->slab_list, &discard);
33b12c38
CL
3902 } else {
3903 list_slab_objects(s, page,
55860d96 3904 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3905 }
33b12c38 3906 }
52b4b950 3907 spin_unlock_irq(&n->list_lock);
60398923 3908
916ac052 3909 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3910 discard_slab(s, page);
81819f0f
CL
3911}
3912
f9e13c0a
SB
3913bool __kmem_cache_empty(struct kmem_cache *s)
3914{
3915 int node;
3916 struct kmem_cache_node *n;
3917
3918 for_each_kmem_cache_node(s, node, n)
3919 if (n->nr_partial || slabs_node(s, node))
3920 return false;
3921 return true;
3922}
3923
81819f0f 3924/*
672bba3a 3925 * Release all resources used by a slab cache.
81819f0f 3926 */
52b4b950 3927int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3928{
3929 int node;
fa45dc25 3930 struct kmem_cache_node *n;
81819f0f
CL
3931
3932 flush_all(s);
81819f0f 3933 /* Attempt to free all objects */
fa45dc25 3934 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3935 free_partial(s, n);
3936 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3937 return 1;
3938 }
81819f0f
CL
3939 return 0;
3940}
3941
8e7f37f2
PM
3942void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3943{
3944 void *base;
3945 int __maybe_unused i;
3946 unsigned int objnr;
3947 void *objp;
3948 void *objp0;
3949 struct kmem_cache *s = page->slab_cache;
3950 struct track __maybe_unused *trackp;
3951
3952 kpp->kp_ptr = object;
3953 kpp->kp_page = page;
3954 kpp->kp_slab_cache = s;
3955 base = page_address(page);
3956 objp0 = kasan_reset_tag(object);
3957#ifdef CONFIG_SLUB_DEBUG
3958 objp = restore_red_left(s, objp0);
3959#else
3960 objp = objp0;
3961#endif
3962 objnr = obj_to_index(s, page, objp);
3963 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3964 objp = base + s->size * objnr;
3965 kpp->kp_objp = objp;
3966 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3967 !(s->flags & SLAB_STORE_USER))
3968 return;
3969#ifdef CONFIG_SLUB_DEBUG
3970 trackp = get_track(s, objp, TRACK_ALLOC);
3971 kpp->kp_ret = (void *)trackp->addr;
3972#ifdef CONFIG_STACKTRACE
3973 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3974 kpp->kp_stack[i] = (void *)trackp->addrs[i];
3975 if (!kpp->kp_stack[i])
3976 break;
3977 }
3978#endif
3979#endif
3980}
3981
81819f0f
CL
3982/********************************************************************
3983 * Kmalloc subsystem
3984 *******************************************************************/
3985
81819f0f
CL
3986static int __init setup_slub_min_order(char *str)
3987{
19af27af 3988 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3989
3990 return 1;
3991}
3992
3993__setup("slub_min_order=", setup_slub_min_order);
3994
3995static int __init setup_slub_max_order(char *str)
3996{
19af27af
AD
3997 get_option(&str, (int *)&slub_max_order);
3998 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3999
4000 return 1;
4001}
4002
4003__setup("slub_max_order=", setup_slub_max_order);
4004
4005static int __init setup_slub_min_objects(char *str)
4006{
19af27af 4007 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4008
4009 return 1;
4010}
4011
4012__setup("slub_min_objects=", setup_slub_min_objects);
4013
81819f0f
CL
4014void *__kmalloc(size_t size, gfp_t flags)
4015{
aadb4bc4 4016 struct kmem_cache *s;
5b882be4 4017 void *ret;
81819f0f 4018
95a05b42 4019 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4020 return kmalloc_large(size, flags);
aadb4bc4 4021
2c59dd65 4022 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4023
4024 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4025 return s;
4026
2b847c3c 4027 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 4028
ca2b84cb 4029 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4030
0116523c 4031 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4032
5b882be4 4033 return ret;
81819f0f
CL
4034}
4035EXPORT_SYMBOL(__kmalloc);
4036
5d1f57e4 4037#ifdef CONFIG_NUMA
f619cfe1
CL
4038static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4039{
b1eeab67 4040 struct page *page;
e4f7c0b4 4041 void *ptr = NULL;
6a486c0a 4042 unsigned int order = get_order(size);
f619cfe1 4043
75f296d9 4044 flags |= __GFP_COMP;
6a486c0a
VB
4045 page = alloc_pages_node(node, flags, order);
4046 if (page) {
e4f7c0b4 4047 ptr = page_address(page);
d42f3245
RG
4048 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4049 PAGE_SIZE << order);
6a486c0a 4050 }
e4f7c0b4 4051
0116523c 4052 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4053}
4054
81819f0f
CL
4055void *__kmalloc_node(size_t size, gfp_t flags, int node)
4056{
aadb4bc4 4057 struct kmem_cache *s;
5b882be4 4058 void *ret;
81819f0f 4059
95a05b42 4060 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4061 ret = kmalloc_large_node(size, flags, node);
4062
ca2b84cb
EGM
4063 trace_kmalloc_node(_RET_IP_, ret,
4064 size, PAGE_SIZE << get_order(size),
4065 flags, node);
5b882be4
EGM
4066
4067 return ret;
4068 }
aadb4bc4 4069
2c59dd65 4070 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4071
4072 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4073 return s;
4074
2b847c3c 4075 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4076
ca2b84cb 4077 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4078
0116523c 4079 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4080
5b882be4 4081 return ret;
81819f0f
CL
4082}
4083EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4084#endif /* CONFIG_NUMA */
81819f0f 4085
ed18adc1
KC
4086#ifdef CONFIG_HARDENED_USERCOPY
4087/*
afcc90f8
KC
4088 * Rejects incorrectly sized objects and objects that are to be copied
4089 * to/from userspace but do not fall entirely within the containing slab
4090 * cache's usercopy region.
ed18adc1
KC
4091 *
4092 * Returns NULL if check passes, otherwise const char * to name of cache
4093 * to indicate an error.
4094 */
f4e6e289
KC
4095void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4096 bool to_user)
ed18adc1
KC
4097{
4098 struct kmem_cache *s;
44065b2e 4099 unsigned int offset;
ed18adc1
KC
4100 size_t object_size;
4101
96fedce2
AK
4102 ptr = kasan_reset_tag(ptr);
4103
ed18adc1
KC
4104 /* Find object and usable object size. */
4105 s = page->slab_cache;
ed18adc1
KC
4106
4107 /* Reject impossible pointers. */
4108 if (ptr < page_address(page))
f4e6e289
KC
4109 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4110 to_user, 0, n);
ed18adc1
KC
4111
4112 /* Find offset within object. */
4113 offset = (ptr - page_address(page)) % s->size;
4114
4115 /* Adjust for redzone and reject if within the redzone. */
59052e89 4116 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4117 if (offset < s->red_left_pad)
f4e6e289
KC
4118 usercopy_abort("SLUB object in left red zone",
4119 s->name, to_user, offset, n);
ed18adc1
KC
4120 offset -= s->red_left_pad;
4121 }
4122
afcc90f8
KC
4123 /* Allow address range falling entirely within usercopy region. */
4124 if (offset >= s->useroffset &&
4125 offset - s->useroffset <= s->usersize &&
4126 n <= s->useroffset - offset + s->usersize)
f4e6e289 4127 return;
ed18adc1 4128
afcc90f8
KC
4129 /*
4130 * If the copy is still within the allocated object, produce
4131 * a warning instead of rejecting the copy. This is intended
4132 * to be a temporary method to find any missing usercopy
4133 * whitelists.
4134 */
4135 object_size = slab_ksize(s);
2d891fbc
KC
4136 if (usercopy_fallback &&
4137 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4138 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4139 return;
4140 }
ed18adc1 4141
f4e6e289 4142 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4143}
4144#endif /* CONFIG_HARDENED_USERCOPY */
4145
10d1f8cb 4146size_t __ksize(const void *object)
81819f0f 4147{
272c1d21 4148 struct page *page;
81819f0f 4149
ef8b4520 4150 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4151 return 0;
4152
294a80a8 4153 page = virt_to_head_page(object);
294a80a8 4154
76994412
PE
4155 if (unlikely(!PageSlab(page))) {
4156 WARN_ON(!PageCompound(page));
a50b854e 4157 return page_size(page);
76994412 4158 }
81819f0f 4159
1b4f59e3 4160 return slab_ksize(page->slab_cache);
81819f0f 4161}
10d1f8cb 4162EXPORT_SYMBOL(__ksize);
81819f0f
CL
4163
4164void kfree(const void *x)
4165{
81819f0f 4166 struct page *page;
5bb983b0 4167 void *object = (void *)x;
81819f0f 4168
2121db74
PE
4169 trace_kfree(_RET_IP_, x);
4170
2408c550 4171 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4172 return;
4173
b49af68f 4174 page = virt_to_head_page(x);
aadb4bc4 4175 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4176 unsigned int order = compound_order(page);
4177
0937502a 4178 BUG_ON(!PageCompound(page));
47adccce 4179 kfree_hook(object);
d42f3245
RG
4180 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4181 -(PAGE_SIZE << order));
6a486c0a 4182 __free_pages(page, order);
aadb4bc4
CL
4183 return;
4184 }
81084651 4185 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4186}
4187EXPORT_SYMBOL(kfree);
4188
832f37f5
VD
4189#define SHRINK_PROMOTE_MAX 32
4190
2086d26a 4191/*
832f37f5
VD
4192 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4193 * up most to the head of the partial lists. New allocations will then
4194 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4195 *
4196 * The slabs with the least items are placed last. This results in them
4197 * being allocated from last increasing the chance that the last objects
4198 * are freed in them.
2086d26a 4199 */
c9fc5864 4200int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4201{
4202 int node;
4203 int i;
4204 struct kmem_cache_node *n;
4205 struct page *page;
4206 struct page *t;
832f37f5
VD
4207 struct list_head discard;
4208 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4209 unsigned long flags;
ce3712d7 4210 int ret = 0;
2086d26a 4211
2086d26a 4212 flush_all(s);
fa45dc25 4213 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4214 INIT_LIST_HEAD(&discard);
4215 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4216 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4217
4218 spin_lock_irqsave(&n->list_lock, flags);
4219
4220 /*
832f37f5 4221 * Build lists of slabs to discard or promote.
2086d26a 4222 *
672bba3a
CL
4223 * Note that concurrent frees may occur while we hold the
4224 * list_lock. page->inuse here is the upper limit.
2086d26a 4225 */
916ac052 4226 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4227 int free = page->objects - page->inuse;
4228
4229 /* Do not reread page->inuse */
4230 barrier();
4231
4232 /* We do not keep full slabs on the list */
4233 BUG_ON(free <= 0);
4234
4235 if (free == page->objects) {
916ac052 4236 list_move(&page->slab_list, &discard);
69cb8e6b 4237 n->nr_partial--;
832f37f5 4238 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4239 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4240 }
4241
2086d26a 4242 /*
832f37f5
VD
4243 * Promote the slabs filled up most to the head of the
4244 * partial list.
2086d26a 4245 */
832f37f5
VD
4246 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4247 list_splice(promote + i, &n->partial);
2086d26a 4248
2086d26a 4249 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4250
4251 /* Release empty slabs */
916ac052 4252 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4253 discard_slab(s, page);
ce3712d7
VD
4254
4255 if (slabs_node(s, node))
4256 ret = 1;
2086d26a
CL
4257 }
4258
ce3712d7 4259 return ret;
2086d26a 4260}
2086d26a 4261
b9049e23
YG
4262static int slab_mem_going_offline_callback(void *arg)
4263{
4264 struct kmem_cache *s;
4265
18004c5d 4266 mutex_lock(&slab_mutex);
b9049e23 4267 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4268 __kmem_cache_shrink(s);
18004c5d 4269 mutex_unlock(&slab_mutex);
b9049e23
YG
4270
4271 return 0;
4272}
4273
4274static void slab_mem_offline_callback(void *arg)
4275{
4276 struct kmem_cache_node *n;
4277 struct kmem_cache *s;
4278 struct memory_notify *marg = arg;
4279 int offline_node;
4280
b9d5ab25 4281 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4282
4283 /*
4284 * If the node still has available memory. we need kmem_cache_node
4285 * for it yet.
4286 */
4287 if (offline_node < 0)
4288 return;
4289
18004c5d 4290 mutex_lock(&slab_mutex);
b9049e23
YG
4291 list_for_each_entry(s, &slab_caches, list) {
4292 n = get_node(s, offline_node);
4293 if (n) {
4294 /*
4295 * if n->nr_slabs > 0, slabs still exist on the node
4296 * that is going down. We were unable to free them,
c9404c9c 4297 * and offline_pages() function shouldn't call this
b9049e23
YG
4298 * callback. So, we must fail.
4299 */
0f389ec6 4300 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4301
4302 s->node[offline_node] = NULL;
8de66a0c 4303 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4304 }
4305 }
18004c5d 4306 mutex_unlock(&slab_mutex);
b9049e23
YG
4307}
4308
4309static int slab_mem_going_online_callback(void *arg)
4310{
4311 struct kmem_cache_node *n;
4312 struct kmem_cache *s;
4313 struct memory_notify *marg = arg;
b9d5ab25 4314 int nid = marg->status_change_nid_normal;
b9049e23
YG
4315 int ret = 0;
4316
4317 /*
4318 * If the node's memory is already available, then kmem_cache_node is
4319 * already created. Nothing to do.
4320 */
4321 if (nid < 0)
4322 return 0;
4323
4324 /*
0121c619 4325 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4326 * allocate a kmem_cache_node structure in order to bring the node
4327 * online.
4328 */
18004c5d 4329 mutex_lock(&slab_mutex);
b9049e23
YG
4330 list_for_each_entry(s, &slab_caches, list) {
4331 /*
4332 * XXX: kmem_cache_alloc_node will fallback to other nodes
4333 * since memory is not yet available from the node that
4334 * is brought up.
4335 */
8de66a0c 4336 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4337 if (!n) {
4338 ret = -ENOMEM;
4339 goto out;
4340 }
4053497d 4341 init_kmem_cache_node(n);
b9049e23
YG
4342 s->node[nid] = n;
4343 }
4344out:
18004c5d 4345 mutex_unlock(&slab_mutex);
b9049e23
YG
4346 return ret;
4347}
4348
4349static int slab_memory_callback(struct notifier_block *self,
4350 unsigned long action, void *arg)
4351{
4352 int ret = 0;
4353
4354 switch (action) {
4355 case MEM_GOING_ONLINE:
4356 ret = slab_mem_going_online_callback(arg);
4357 break;
4358 case MEM_GOING_OFFLINE:
4359 ret = slab_mem_going_offline_callback(arg);
4360 break;
4361 case MEM_OFFLINE:
4362 case MEM_CANCEL_ONLINE:
4363 slab_mem_offline_callback(arg);
4364 break;
4365 case MEM_ONLINE:
4366 case MEM_CANCEL_OFFLINE:
4367 break;
4368 }
dc19f9db
KH
4369 if (ret)
4370 ret = notifier_from_errno(ret);
4371 else
4372 ret = NOTIFY_OK;
b9049e23
YG
4373 return ret;
4374}
4375
3ac38faa
AM
4376static struct notifier_block slab_memory_callback_nb = {
4377 .notifier_call = slab_memory_callback,
4378 .priority = SLAB_CALLBACK_PRI,
4379};
b9049e23 4380
81819f0f
CL
4381/********************************************************************
4382 * Basic setup of slabs
4383 *******************************************************************/
4384
51df1142
CL
4385/*
4386 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4387 * the page allocator. Allocate them properly then fix up the pointers
4388 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4389 */
4390
dffb4d60 4391static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4392{
4393 int node;
dffb4d60 4394 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4395 struct kmem_cache_node *n;
51df1142 4396
dffb4d60 4397 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4398
7d557b3c
GC
4399 /*
4400 * This runs very early, and only the boot processor is supposed to be
4401 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4402 * IPIs around.
4403 */
4404 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4405 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4406 struct page *p;
4407
916ac052 4408 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4409 p->slab_cache = s;
51df1142 4410
607bf324 4411#ifdef CONFIG_SLUB_DEBUG
916ac052 4412 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4413 p->slab_cache = s;
51df1142 4414#endif
51df1142 4415 }
dffb4d60
CL
4416 list_add(&s->list, &slab_caches);
4417 return s;
51df1142
CL
4418}
4419
81819f0f
CL
4420void __init kmem_cache_init(void)
4421{
dffb4d60
CL
4422 static __initdata struct kmem_cache boot_kmem_cache,
4423 boot_kmem_cache_node;
51df1142 4424
fc8d8620
SG
4425 if (debug_guardpage_minorder())
4426 slub_max_order = 0;
4427
dffb4d60
CL
4428 kmem_cache_node = &boot_kmem_cache_node;
4429 kmem_cache = &boot_kmem_cache;
51df1142 4430
dffb4d60 4431 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4432 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4433
3ac38faa 4434 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4435
4436 /* Able to allocate the per node structures */
4437 slab_state = PARTIAL;
4438
dffb4d60
CL
4439 create_boot_cache(kmem_cache, "kmem_cache",
4440 offsetof(struct kmem_cache, node) +
4441 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4442 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4443
dffb4d60 4444 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4445 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4446
4447 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4448 setup_kmalloc_cache_index_table();
f97d5f63 4449 create_kmalloc_caches(0);
81819f0f 4450
210e7a43
TG
4451 /* Setup random freelists for each cache */
4452 init_freelist_randomization();
4453
a96a87bf
SAS
4454 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4455 slub_cpu_dead);
81819f0f 4456
b9726c26 4457 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4458 cache_line_size(),
81819f0f
CL
4459 slub_min_order, slub_max_order, slub_min_objects,
4460 nr_cpu_ids, nr_node_ids);
4461}
4462
7e85ee0c
PE
4463void __init kmem_cache_init_late(void)
4464{
7e85ee0c
PE
4465}
4466
2633d7a0 4467struct kmem_cache *
f4957d5b 4468__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4469 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4470{
10befea9 4471 struct kmem_cache *s;
81819f0f 4472
a44cb944 4473 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4474 if (s) {
4475 s->refcount++;
84d0ddd6 4476
81819f0f
CL
4477 /*
4478 * Adjust the object sizes so that we clear
4479 * the complete object on kzalloc.
4480 */
1b473f29 4481 s->object_size = max(s->object_size, size);
52ee6d74 4482 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4483
7b8f3b66 4484 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4485 s->refcount--;
cbb79694 4486 s = NULL;
7b8f3b66 4487 }
a0e1d1be 4488 }
6446faa2 4489
cbb79694
CL
4490 return s;
4491}
84c1cf62 4492
d50112ed 4493int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4494{
aac3a166
PE
4495 int err;
4496
4497 err = kmem_cache_open(s, flags);
4498 if (err)
4499 return err;
20cea968 4500
45530c44
CL
4501 /* Mutex is not taken during early boot */
4502 if (slab_state <= UP)
4503 return 0;
4504
aac3a166 4505 err = sysfs_slab_add(s);
aac3a166 4506 if (err)
52b4b950 4507 __kmem_cache_release(s);
20cea968 4508
aac3a166 4509 return err;
81819f0f 4510}
81819f0f 4511
ce71e27c 4512void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4513{
aadb4bc4 4514 struct kmem_cache *s;
94b528d0 4515 void *ret;
aadb4bc4 4516
95a05b42 4517 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4518 return kmalloc_large(size, gfpflags);
4519
2c59dd65 4520 s = kmalloc_slab(size, gfpflags);
81819f0f 4521
2408c550 4522 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4523 return s;
81819f0f 4524
2b847c3c 4525 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4526
25985edc 4527 /* Honor the call site pointer we received. */
ca2b84cb 4528 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4529
4530 return ret;
81819f0f 4531}
fd7cb575 4532EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4533
5d1f57e4 4534#ifdef CONFIG_NUMA
81819f0f 4535void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4536 int node, unsigned long caller)
81819f0f 4537{
aadb4bc4 4538 struct kmem_cache *s;
94b528d0 4539 void *ret;
aadb4bc4 4540
95a05b42 4541 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4542 ret = kmalloc_large_node(size, gfpflags, node);
4543
4544 trace_kmalloc_node(caller, ret,
4545 size, PAGE_SIZE << get_order(size),
4546 gfpflags, node);
4547
4548 return ret;
4549 }
eada35ef 4550
2c59dd65 4551 s = kmalloc_slab(size, gfpflags);
81819f0f 4552
2408c550 4553 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4554 return s;
81819f0f 4555
2b847c3c 4556 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4557
25985edc 4558 /* Honor the call site pointer we received. */
ca2b84cb 4559 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4560
4561 return ret;
81819f0f 4562}
fd7cb575 4563EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4564#endif
81819f0f 4565
ab4d5ed5 4566#ifdef CONFIG_SYSFS
205ab99d
CL
4567static int count_inuse(struct page *page)
4568{
4569 return page->inuse;
4570}
4571
4572static int count_total(struct page *page)
4573{
4574 return page->objects;
4575}
ab4d5ed5 4576#endif
205ab99d 4577
ab4d5ed5 4578#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4579static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4580{
4581 void *p;
a973e9dd 4582 void *addr = page_address(page);
90e9f6a6
YZ
4583 unsigned long *map;
4584
4585 slab_lock(page);
53e15af0 4586
dd98afd4 4587 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4588 goto unlock;
53e15af0
CL
4589
4590 /* Now we know that a valid freelist exists */
90e9f6a6 4591 map = get_map(s, page);
5f80b13a 4592 for_each_object(p, s, addr, page->objects) {
4138fdfc 4593 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4594 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4595
dd98afd4
YZ
4596 if (!check_object(s, page, p, val))
4597 break;
4598 }
90e9f6a6
YZ
4599 put_map(map);
4600unlock:
881db7fb 4601 slab_unlock(page);
53e15af0
CL
4602}
4603
434e245d 4604static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4605 struct kmem_cache_node *n)
53e15af0
CL
4606{
4607 unsigned long count = 0;
4608 struct page *page;
4609 unsigned long flags;
4610
4611 spin_lock_irqsave(&n->list_lock, flags);
4612
916ac052 4613 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4614 validate_slab(s, page);
53e15af0
CL
4615 count++;
4616 }
4617 if (count != n->nr_partial)
f9f58285
FF
4618 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4619 s->name, count, n->nr_partial);
53e15af0
CL
4620
4621 if (!(s->flags & SLAB_STORE_USER))
4622 goto out;
4623
916ac052 4624 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4625 validate_slab(s, page);
53e15af0
CL
4626 count++;
4627 }
4628 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4629 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4630 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4631
4632out:
4633 spin_unlock_irqrestore(&n->list_lock, flags);
4634 return count;
4635}
4636
434e245d 4637static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4638{
4639 int node;
4640 unsigned long count = 0;
fa45dc25 4641 struct kmem_cache_node *n;
53e15af0
CL
4642
4643 flush_all(s);
fa45dc25 4644 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4645 count += validate_slab_node(s, n);
4646
53e15af0
CL
4647 return count;
4648}
88a420e4 4649/*
672bba3a 4650 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4651 * and freed.
4652 */
4653
4654struct location {
4655 unsigned long count;
ce71e27c 4656 unsigned long addr;
45edfa58
CL
4657 long long sum_time;
4658 long min_time;
4659 long max_time;
4660 long min_pid;
4661 long max_pid;
174596a0 4662 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4663 nodemask_t nodes;
88a420e4
CL
4664};
4665
4666struct loc_track {
4667 unsigned long max;
4668 unsigned long count;
4669 struct location *loc;
4670};
4671
4672static void free_loc_track(struct loc_track *t)
4673{
4674 if (t->max)
4675 free_pages((unsigned long)t->loc,
4676 get_order(sizeof(struct location) * t->max));
4677}
4678
68dff6a9 4679static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4680{
4681 struct location *l;
4682 int order;
4683
88a420e4
CL
4684 order = get_order(sizeof(struct location) * max);
4685
68dff6a9 4686 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4687 if (!l)
4688 return 0;
4689
4690 if (t->count) {
4691 memcpy(l, t->loc, sizeof(struct location) * t->count);
4692 free_loc_track(t);
4693 }
4694 t->max = max;
4695 t->loc = l;
4696 return 1;
4697}
4698
4699static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4700 const struct track *track)
88a420e4
CL
4701{
4702 long start, end, pos;
4703 struct location *l;
ce71e27c 4704 unsigned long caddr;
45edfa58 4705 unsigned long age = jiffies - track->when;
88a420e4
CL
4706
4707 start = -1;
4708 end = t->count;
4709
4710 for ( ; ; ) {
4711 pos = start + (end - start + 1) / 2;
4712
4713 /*
4714 * There is nothing at "end". If we end up there
4715 * we need to add something to before end.
4716 */
4717 if (pos == end)
4718 break;
4719
4720 caddr = t->loc[pos].addr;
45edfa58
CL
4721 if (track->addr == caddr) {
4722
4723 l = &t->loc[pos];
4724 l->count++;
4725 if (track->when) {
4726 l->sum_time += age;
4727 if (age < l->min_time)
4728 l->min_time = age;
4729 if (age > l->max_time)
4730 l->max_time = age;
4731
4732 if (track->pid < l->min_pid)
4733 l->min_pid = track->pid;
4734 if (track->pid > l->max_pid)
4735 l->max_pid = track->pid;
4736
174596a0
RR
4737 cpumask_set_cpu(track->cpu,
4738 to_cpumask(l->cpus));
45edfa58
CL
4739 }
4740 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4741 return 1;
4742 }
4743
45edfa58 4744 if (track->addr < caddr)
88a420e4
CL
4745 end = pos;
4746 else
4747 start = pos;
4748 }
4749
4750 /*
672bba3a 4751 * Not found. Insert new tracking element.
88a420e4 4752 */
68dff6a9 4753 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4754 return 0;
4755
4756 l = t->loc + pos;
4757 if (pos < t->count)
4758 memmove(l + 1, l,
4759 (t->count - pos) * sizeof(struct location));
4760 t->count++;
4761 l->count = 1;
45edfa58
CL
4762 l->addr = track->addr;
4763 l->sum_time = age;
4764 l->min_time = age;
4765 l->max_time = age;
4766 l->min_pid = track->pid;
4767 l->max_pid = track->pid;
174596a0
RR
4768 cpumask_clear(to_cpumask(l->cpus));
4769 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4770 nodes_clear(l->nodes);
4771 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4772 return 1;
4773}
4774
4775static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4776 struct page *page, enum track_item alloc)
88a420e4 4777{
a973e9dd 4778 void *addr = page_address(page);
88a420e4 4779 void *p;
90e9f6a6 4780 unsigned long *map;
88a420e4 4781
90e9f6a6 4782 map = get_map(s, page);
224a88be 4783 for_each_object(p, s, addr, page->objects)
4138fdfc 4784 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4785 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4786 put_map(map);
88a420e4
CL
4787}
4788
4789static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4790 enum track_item alloc)
88a420e4 4791{
e374d483 4792 int len = 0;
88a420e4 4793 unsigned long i;
68dff6a9 4794 struct loc_track t = { 0, 0, NULL };
88a420e4 4795 int node;
fa45dc25 4796 struct kmem_cache_node *n;
88a420e4 4797
90e9f6a6
YZ
4798 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4799 GFP_KERNEL)) {
bf16d19a 4800 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4801 }
88a420e4
CL
4802 /* Push back cpu slabs */
4803 flush_all(s);
4804
fa45dc25 4805 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4806 unsigned long flags;
4807 struct page *page;
4808
9e86943b 4809 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4810 continue;
4811
4812 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4813 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4814 process_slab(&t, s, page, alloc);
916ac052 4815 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4816 process_slab(&t, s, page, alloc);
88a420e4
CL
4817 spin_unlock_irqrestore(&n->list_lock, flags);
4818 }
4819
4820 for (i = 0; i < t.count; i++) {
45edfa58 4821 struct location *l = &t.loc[i];
88a420e4 4822
bf16d19a 4823 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4824
4825 if (l->addr)
bf16d19a 4826 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4827 else
bf16d19a
JP
4828 len += sysfs_emit_at(buf, len, "<not-available>");
4829
4830 if (l->sum_time != l->min_time)
4831 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4832 l->min_time,
4833 (long)div_u64(l->sum_time,
4834 l->count),
4835 l->max_time);
4836 else
4837 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4838
4839 if (l->min_pid != l->max_pid)
bf16d19a
JP
4840 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4841 l->min_pid, l->max_pid);
45edfa58 4842 else
bf16d19a
JP
4843 len += sysfs_emit_at(buf, len, " pid=%ld",
4844 l->min_pid);
45edfa58 4845
174596a0 4846 if (num_online_cpus() > 1 &&
bf16d19a
JP
4847 !cpumask_empty(to_cpumask(l->cpus)))
4848 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4849 cpumask_pr_args(to_cpumask(l->cpus)));
4850
4851 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4852 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4853 nodemask_pr_args(&l->nodes));
4854
4855 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4856 }
4857
4858 free_loc_track(&t);
4859 if (!t.count)
bf16d19a
JP
4860 len += sysfs_emit_at(buf, len, "No data\n");
4861
e374d483 4862 return len;
88a420e4 4863}
6dfd1b65 4864#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4865
a5a84755 4866#ifdef SLUB_RESILIENCY_TEST
c07b8183 4867static void __init resiliency_test(void)
a5a84755
CL
4868{
4869 u8 *p;
cc252eae 4870 int type = KMALLOC_NORMAL;
a5a84755 4871
95a05b42 4872 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4873
f9f58285
FF
4874 pr_err("SLUB resiliency testing\n");
4875 pr_err("-----------------------\n");
4876 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4877
4878 p = kzalloc(16, GFP_KERNEL);
4879 p[16] = 0x12;
f9f58285
FF
4880 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4881 p + 16);
a5a84755 4882
cc252eae 4883 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4884
4885 /* Hmmm... The next two are dangerous */
4886 p = kzalloc(32, GFP_KERNEL);
4887 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4888 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4889 p);
4890 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4891
cc252eae 4892 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4893 p = kzalloc(64, GFP_KERNEL);
4894 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4895 *p = 0x56;
f9f58285
FF
4896 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4897 p);
4898 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4899 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4900
f9f58285 4901 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4902 p = kzalloc(128, GFP_KERNEL);
4903 kfree(p);
4904 *p = 0x78;
f9f58285 4905 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4906 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4907
4908 p = kzalloc(256, GFP_KERNEL);
4909 kfree(p);
4910 p[50] = 0x9a;
f9f58285 4911 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4912 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4913
4914 p = kzalloc(512, GFP_KERNEL);
4915 kfree(p);
4916 p[512] = 0xab;
f9f58285 4917 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4918 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4919}
4920#else
4921#ifdef CONFIG_SYSFS
4922static void resiliency_test(void) {};
4923#endif
6dfd1b65 4924#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4925
ab4d5ed5 4926#ifdef CONFIG_SYSFS
81819f0f 4927enum slab_stat_type {
205ab99d
CL
4928 SL_ALL, /* All slabs */
4929 SL_PARTIAL, /* Only partially allocated slabs */
4930 SL_CPU, /* Only slabs used for cpu caches */
4931 SL_OBJECTS, /* Determine allocated objects not slabs */
4932 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4933};
4934
205ab99d 4935#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4936#define SO_PARTIAL (1 << SL_PARTIAL)
4937#define SO_CPU (1 << SL_CPU)
4938#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4939#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4940
1663f26d
TH
4941#ifdef CONFIG_MEMCG
4942static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4943
4944static int __init setup_slub_memcg_sysfs(char *str)
4945{
4946 int v;
4947
4948 if (get_option(&str, &v) > 0)
4949 memcg_sysfs_enabled = v;
4950
4951 return 1;
4952}
4953
4954__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4955#endif
4956
62e5c4b4 4957static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4958 char *buf, unsigned long flags)
81819f0f
CL
4959{
4960 unsigned long total = 0;
81819f0f
CL
4961 int node;
4962 int x;
4963 unsigned long *nodes;
bf16d19a 4964 int len = 0;
81819f0f 4965
6396bb22 4966 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4967 if (!nodes)
4968 return -ENOMEM;
81819f0f 4969
205ab99d
CL
4970 if (flags & SO_CPU) {
4971 int cpu;
81819f0f 4972
205ab99d 4973 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4974 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4975 cpu);
ec3ab083 4976 int node;
49e22585 4977 struct page *page;
dfb4f096 4978
4db0c3c2 4979 page = READ_ONCE(c->page);
ec3ab083
CL
4980 if (!page)
4981 continue;
205ab99d 4982
ec3ab083
CL
4983 node = page_to_nid(page);
4984 if (flags & SO_TOTAL)
4985 x = page->objects;
4986 else if (flags & SO_OBJECTS)
4987 x = page->inuse;
4988 else
4989 x = 1;
49e22585 4990
ec3ab083
CL
4991 total += x;
4992 nodes[node] += x;
4993
a93cf07b 4994 page = slub_percpu_partial_read_once(c);
49e22585 4995 if (page) {
8afb1474
LZ
4996 node = page_to_nid(page);
4997 if (flags & SO_TOTAL)
4998 WARN_ON_ONCE(1);
4999 else if (flags & SO_OBJECTS)
5000 WARN_ON_ONCE(1);
5001 else
5002 x = page->pages;
bc6697d8
ED
5003 total += x;
5004 nodes[node] += x;
49e22585 5005 }
81819f0f
CL
5006 }
5007 }
5008
e4f8e513
QC
5009 /*
5010 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5011 * already held which will conflict with an existing lock order:
5012 *
5013 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5014 *
5015 * We don't really need mem_hotplug_lock (to hold off
5016 * slab_mem_going_offline_callback) here because slab's memory hot
5017 * unplug code doesn't destroy the kmem_cache->node[] data.
5018 */
5019
ab4d5ed5 5020#ifdef CONFIG_SLUB_DEBUG
205ab99d 5021 if (flags & SO_ALL) {
fa45dc25
CL
5022 struct kmem_cache_node *n;
5023
5024 for_each_kmem_cache_node(s, node, n) {
205ab99d 5025
d0e0ac97
CG
5026 if (flags & SO_TOTAL)
5027 x = atomic_long_read(&n->total_objects);
5028 else if (flags & SO_OBJECTS)
5029 x = atomic_long_read(&n->total_objects) -
5030 count_partial(n, count_free);
81819f0f 5031 else
205ab99d 5032 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5033 total += x;
5034 nodes[node] += x;
5035 }
5036
ab4d5ed5
CL
5037 } else
5038#endif
5039 if (flags & SO_PARTIAL) {
fa45dc25 5040 struct kmem_cache_node *n;
81819f0f 5041
fa45dc25 5042 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5043 if (flags & SO_TOTAL)
5044 x = count_partial(n, count_total);
5045 else if (flags & SO_OBJECTS)
5046 x = count_partial(n, count_inuse);
81819f0f 5047 else
205ab99d 5048 x = n->nr_partial;
81819f0f
CL
5049 total += x;
5050 nodes[node] += x;
5051 }
5052 }
bf16d19a
JP
5053
5054 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5055#ifdef CONFIG_NUMA
bf16d19a 5056 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5057 if (nodes[node])
bf16d19a
JP
5058 len += sysfs_emit_at(buf, len, " N%d=%lu",
5059 node, nodes[node]);
5060 }
81819f0f 5061#endif
bf16d19a 5062 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5063 kfree(nodes);
bf16d19a
JP
5064
5065 return len;
81819f0f
CL
5066}
5067
81819f0f 5068#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5069#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5070
5071struct slab_attribute {
5072 struct attribute attr;
5073 ssize_t (*show)(struct kmem_cache *s, char *buf);
5074 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5075};
5076
5077#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5078 static struct slab_attribute _name##_attr = \
5079 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5080
5081#define SLAB_ATTR(_name) \
5082 static struct slab_attribute _name##_attr = \
ab067e99 5083 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5084
81819f0f
CL
5085static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5086{
bf16d19a 5087 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5088}
5089SLAB_ATTR_RO(slab_size);
5090
5091static ssize_t align_show(struct kmem_cache *s, char *buf)
5092{
bf16d19a 5093 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5094}
5095SLAB_ATTR_RO(align);
5096
5097static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5098{
bf16d19a 5099 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5100}
5101SLAB_ATTR_RO(object_size);
5102
5103static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5104{
bf16d19a 5105 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5106}
5107SLAB_ATTR_RO(objs_per_slab);
5108
5109static ssize_t order_show(struct kmem_cache *s, char *buf)
5110{
bf16d19a 5111 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5112}
32a6f409 5113SLAB_ATTR_RO(order);
81819f0f 5114
73d342b1
DR
5115static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5116{
bf16d19a 5117 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5118}
5119
5120static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5121 size_t length)
5122{
5123 unsigned long min;
5124 int err;
5125
3dbb95f7 5126 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5127 if (err)
5128 return err;
5129
c0bdb232 5130 set_min_partial(s, min);
73d342b1
DR
5131 return length;
5132}
5133SLAB_ATTR(min_partial);
5134
49e22585
CL
5135static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5136{
bf16d19a 5137 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5138}
5139
5140static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5141 size_t length)
5142{
e5d9998f 5143 unsigned int objects;
49e22585
CL
5144 int err;
5145
e5d9998f 5146 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5147 if (err)
5148 return err;
345c905d 5149 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5150 return -EINVAL;
49e22585 5151
e6d0e1dc 5152 slub_set_cpu_partial(s, objects);
49e22585
CL
5153 flush_all(s);
5154 return length;
5155}
5156SLAB_ATTR(cpu_partial);
5157
81819f0f
CL
5158static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5159{
62c70bce
JP
5160 if (!s->ctor)
5161 return 0;
bf16d19a 5162 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5163}
5164SLAB_ATTR_RO(ctor);
5165
81819f0f
CL
5166static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5167{
bf16d19a 5168 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5169}
5170SLAB_ATTR_RO(aliases);
5171
81819f0f
CL
5172static ssize_t partial_show(struct kmem_cache *s, char *buf)
5173{
d9acf4b7 5174 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5175}
5176SLAB_ATTR_RO(partial);
5177
5178static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5179{
d9acf4b7 5180 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5181}
5182SLAB_ATTR_RO(cpu_slabs);
5183
5184static ssize_t objects_show(struct kmem_cache *s, char *buf)
5185{
205ab99d 5186 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5187}
5188SLAB_ATTR_RO(objects);
5189
205ab99d
CL
5190static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5191{
5192 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5193}
5194SLAB_ATTR_RO(objects_partial);
5195
49e22585
CL
5196static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5197{
5198 int objects = 0;
5199 int pages = 0;
5200 int cpu;
bf16d19a 5201 int len = 0;
49e22585
CL
5202
5203 for_each_online_cpu(cpu) {
a93cf07b
WY
5204 struct page *page;
5205
5206 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5207
5208 if (page) {
5209 pages += page->pages;
5210 objects += page->pobjects;
5211 }
5212 }
5213
bf16d19a 5214 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5215
5216#ifdef CONFIG_SMP
5217 for_each_online_cpu(cpu) {
a93cf07b
WY
5218 struct page *page;
5219
5220 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5221 if (page)
5222 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5223 cpu, page->pobjects, page->pages);
49e22585
CL
5224 }
5225#endif
bf16d19a
JP
5226 len += sysfs_emit_at(buf, len, "\n");
5227
5228 return len;
49e22585
CL
5229}
5230SLAB_ATTR_RO(slabs_cpu_partial);
5231
a5a84755
CL
5232static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5233{
bf16d19a 5234 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5235}
8f58119a 5236SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5237
5238static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5239{
bf16d19a 5240 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5241}
5242SLAB_ATTR_RO(hwcache_align);
5243
5244#ifdef CONFIG_ZONE_DMA
5245static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5246{
bf16d19a 5247 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5248}
5249SLAB_ATTR_RO(cache_dma);
5250#endif
5251
8eb8284b
DW
5252static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5253{
bf16d19a 5254 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5255}
5256SLAB_ATTR_RO(usersize);
5257
a5a84755
CL
5258static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5259{
bf16d19a 5260 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5261}
5262SLAB_ATTR_RO(destroy_by_rcu);
5263
ab4d5ed5 5264#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5265static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5266{
5267 return show_slab_objects(s, buf, SO_ALL);
5268}
5269SLAB_ATTR_RO(slabs);
5270
205ab99d
CL
5271static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5272{
5273 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5274}
5275SLAB_ATTR_RO(total_objects);
5276
81819f0f
CL
5277static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5278{
bf16d19a 5279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5280}
060807f8 5281SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5282
5283static ssize_t trace_show(struct kmem_cache *s, char *buf)
5284{
bf16d19a 5285 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5286}
060807f8 5287SLAB_ATTR_RO(trace);
81819f0f 5288
81819f0f
CL
5289static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5290{
bf16d19a 5291 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5292}
5293
ad38b5b1 5294SLAB_ATTR_RO(red_zone);
81819f0f
CL
5295
5296static ssize_t poison_show(struct kmem_cache *s, char *buf)
5297{
bf16d19a 5298 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5299}
5300
ad38b5b1 5301SLAB_ATTR_RO(poison);
81819f0f
CL
5302
5303static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5304{
bf16d19a 5305 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5306}
5307
ad38b5b1 5308SLAB_ATTR_RO(store_user);
81819f0f 5309
53e15af0
CL
5310static ssize_t validate_show(struct kmem_cache *s, char *buf)
5311{
5312 return 0;
5313}
5314
5315static ssize_t validate_store(struct kmem_cache *s,
5316 const char *buf, size_t length)
5317{
434e245d
CL
5318 int ret = -EINVAL;
5319
5320 if (buf[0] == '1') {
5321 ret = validate_slab_cache(s);
5322 if (ret >= 0)
5323 ret = length;
5324 }
5325 return ret;
53e15af0
CL
5326}
5327SLAB_ATTR(validate);
a5a84755
CL
5328
5329static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5330{
5331 if (!(s->flags & SLAB_STORE_USER))
5332 return -ENOSYS;
5333 return list_locations(s, buf, TRACK_ALLOC);
5334}
5335SLAB_ATTR_RO(alloc_calls);
5336
5337static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5338{
5339 if (!(s->flags & SLAB_STORE_USER))
5340 return -ENOSYS;
5341 return list_locations(s, buf, TRACK_FREE);
5342}
5343SLAB_ATTR_RO(free_calls);
5344#endif /* CONFIG_SLUB_DEBUG */
5345
5346#ifdef CONFIG_FAILSLAB
5347static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5348{
bf16d19a 5349 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5350}
060807f8 5351SLAB_ATTR_RO(failslab);
ab4d5ed5 5352#endif
53e15af0 5353
2086d26a
CL
5354static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5355{
5356 return 0;
5357}
5358
5359static ssize_t shrink_store(struct kmem_cache *s,
5360 const char *buf, size_t length)
5361{
832f37f5 5362 if (buf[0] == '1')
10befea9 5363 kmem_cache_shrink(s);
832f37f5 5364 else
2086d26a
CL
5365 return -EINVAL;
5366 return length;
5367}
5368SLAB_ATTR(shrink);
5369
81819f0f 5370#ifdef CONFIG_NUMA
9824601e 5371static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5372{
bf16d19a 5373 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5374}
5375
9824601e 5376static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5377 const char *buf, size_t length)
5378{
eb7235eb 5379 unsigned int ratio;
0121c619
CL
5380 int err;
5381
eb7235eb 5382 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5383 if (err)
5384 return err;
eb7235eb
AD
5385 if (ratio > 100)
5386 return -ERANGE;
0121c619 5387
eb7235eb 5388 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5389
81819f0f
CL
5390 return length;
5391}
9824601e 5392SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5393#endif
5394
8ff12cfc 5395#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5396static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5397{
5398 unsigned long sum = 0;
5399 int cpu;
bf16d19a 5400 int len = 0;
6da2ec56 5401 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5402
5403 if (!data)
5404 return -ENOMEM;
5405
5406 for_each_online_cpu(cpu) {
9dfc6e68 5407 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5408
5409 data[cpu] = x;
5410 sum += x;
5411 }
5412
bf16d19a 5413 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5414
50ef37b9 5415#ifdef CONFIG_SMP
8ff12cfc 5416 for_each_online_cpu(cpu) {
bf16d19a
JP
5417 if (data[cpu])
5418 len += sysfs_emit_at(buf, len, " C%d=%u",
5419 cpu, data[cpu]);
8ff12cfc 5420 }
50ef37b9 5421#endif
8ff12cfc 5422 kfree(data);
bf16d19a
JP
5423 len += sysfs_emit_at(buf, len, "\n");
5424
5425 return len;
8ff12cfc
CL
5426}
5427
78eb00cc
DR
5428static void clear_stat(struct kmem_cache *s, enum stat_item si)
5429{
5430 int cpu;
5431
5432 for_each_online_cpu(cpu)
9dfc6e68 5433 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5434}
5435
8ff12cfc
CL
5436#define STAT_ATTR(si, text) \
5437static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5438{ \
5439 return show_stat(s, buf, si); \
5440} \
78eb00cc
DR
5441static ssize_t text##_store(struct kmem_cache *s, \
5442 const char *buf, size_t length) \
5443{ \
5444 if (buf[0] != '0') \
5445 return -EINVAL; \
5446 clear_stat(s, si); \
5447 return length; \
5448} \
5449SLAB_ATTR(text); \
8ff12cfc
CL
5450
5451STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5452STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5453STAT_ATTR(FREE_FASTPATH, free_fastpath);
5454STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5455STAT_ATTR(FREE_FROZEN, free_frozen);
5456STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5457STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5458STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5459STAT_ATTR(ALLOC_SLAB, alloc_slab);
5460STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5461STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5462STAT_ATTR(FREE_SLAB, free_slab);
5463STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5464STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5465STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5466STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5467STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5468STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5469STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5470STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5471STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5472STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5473STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5474STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5475STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5476STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5477#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5478
06428780 5479static struct attribute *slab_attrs[] = {
81819f0f
CL
5480 &slab_size_attr.attr,
5481 &object_size_attr.attr,
5482 &objs_per_slab_attr.attr,
5483 &order_attr.attr,
73d342b1 5484 &min_partial_attr.attr,
49e22585 5485 &cpu_partial_attr.attr,
81819f0f 5486 &objects_attr.attr,
205ab99d 5487 &objects_partial_attr.attr,
81819f0f
CL
5488 &partial_attr.attr,
5489 &cpu_slabs_attr.attr,
5490 &ctor_attr.attr,
81819f0f
CL
5491 &aliases_attr.attr,
5492 &align_attr.attr,
81819f0f
CL
5493 &hwcache_align_attr.attr,
5494 &reclaim_account_attr.attr,
5495 &destroy_by_rcu_attr.attr,
a5a84755 5496 &shrink_attr.attr,
49e22585 5497 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5498#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5499 &total_objects_attr.attr,
5500 &slabs_attr.attr,
5501 &sanity_checks_attr.attr,
5502 &trace_attr.attr,
81819f0f
CL
5503 &red_zone_attr.attr,
5504 &poison_attr.attr,
5505 &store_user_attr.attr,
53e15af0 5506 &validate_attr.attr,
88a420e4
CL
5507 &alloc_calls_attr.attr,
5508 &free_calls_attr.attr,
ab4d5ed5 5509#endif
81819f0f
CL
5510#ifdef CONFIG_ZONE_DMA
5511 &cache_dma_attr.attr,
5512#endif
5513#ifdef CONFIG_NUMA
9824601e 5514 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5515#endif
5516#ifdef CONFIG_SLUB_STATS
5517 &alloc_fastpath_attr.attr,
5518 &alloc_slowpath_attr.attr,
5519 &free_fastpath_attr.attr,
5520 &free_slowpath_attr.attr,
5521 &free_frozen_attr.attr,
5522 &free_add_partial_attr.attr,
5523 &free_remove_partial_attr.attr,
5524 &alloc_from_partial_attr.attr,
5525 &alloc_slab_attr.attr,
5526 &alloc_refill_attr.attr,
e36a2652 5527 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5528 &free_slab_attr.attr,
5529 &cpuslab_flush_attr.attr,
5530 &deactivate_full_attr.attr,
5531 &deactivate_empty_attr.attr,
5532 &deactivate_to_head_attr.attr,
5533 &deactivate_to_tail_attr.attr,
5534 &deactivate_remote_frees_attr.attr,
03e404af 5535 &deactivate_bypass_attr.attr,
65c3376a 5536 &order_fallback_attr.attr,
b789ef51
CL
5537 &cmpxchg_double_fail_attr.attr,
5538 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5539 &cpu_partial_alloc_attr.attr,
5540 &cpu_partial_free_attr.attr,
8028dcea
AS
5541 &cpu_partial_node_attr.attr,
5542 &cpu_partial_drain_attr.attr,
81819f0f 5543#endif
4c13dd3b
DM
5544#ifdef CONFIG_FAILSLAB
5545 &failslab_attr.attr,
5546#endif
8eb8284b 5547 &usersize_attr.attr,
4c13dd3b 5548
81819f0f
CL
5549 NULL
5550};
5551
1fdaaa23 5552static const struct attribute_group slab_attr_group = {
81819f0f
CL
5553 .attrs = slab_attrs,
5554};
5555
5556static ssize_t slab_attr_show(struct kobject *kobj,
5557 struct attribute *attr,
5558 char *buf)
5559{
5560 struct slab_attribute *attribute;
5561 struct kmem_cache *s;
5562 int err;
5563
5564 attribute = to_slab_attr(attr);
5565 s = to_slab(kobj);
5566
5567 if (!attribute->show)
5568 return -EIO;
5569
5570 err = attribute->show(s, buf);
5571
5572 return err;
5573}
5574
5575static ssize_t slab_attr_store(struct kobject *kobj,
5576 struct attribute *attr,
5577 const char *buf, size_t len)
5578{
5579 struct slab_attribute *attribute;
5580 struct kmem_cache *s;
5581 int err;
5582
5583 attribute = to_slab_attr(attr);
5584 s = to_slab(kobj);
5585
5586 if (!attribute->store)
5587 return -EIO;
5588
5589 err = attribute->store(s, buf, len);
81819f0f
CL
5590 return err;
5591}
5592
41a21285
CL
5593static void kmem_cache_release(struct kobject *k)
5594{
5595 slab_kmem_cache_release(to_slab(k));
5596}
5597
52cf25d0 5598static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5599 .show = slab_attr_show,
5600 .store = slab_attr_store,
5601};
5602
5603static struct kobj_type slab_ktype = {
5604 .sysfs_ops = &slab_sysfs_ops,
41a21285 5605 .release = kmem_cache_release,
81819f0f
CL
5606};
5607
27c3a314 5608static struct kset *slab_kset;
81819f0f 5609
9a41707b
VD
5610static inline struct kset *cache_kset(struct kmem_cache *s)
5611{
9a41707b
VD
5612 return slab_kset;
5613}
5614
81819f0f
CL
5615#define ID_STR_LENGTH 64
5616
5617/* Create a unique string id for a slab cache:
6446faa2
CL
5618 *
5619 * Format :[flags-]size
81819f0f
CL
5620 */
5621static char *create_unique_id(struct kmem_cache *s)
5622{
5623 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5624 char *p = name;
5625
5626 BUG_ON(!name);
5627
5628 *p++ = ':';
5629 /*
5630 * First flags affecting slabcache operations. We will only
5631 * get here for aliasable slabs so we do not need to support
5632 * too many flags. The flags here must cover all flags that
5633 * are matched during merging to guarantee that the id is
5634 * unique.
5635 */
5636 if (s->flags & SLAB_CACHE_DMA)
5637 *p++ = 'd';
6d6ea1e9
NB
5638 if (s->flags & SLAB_CACHE_DMA32)
5639 *p++ = 'D';
81819f0f
CL
5640 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5641 *p++ = 'a';
becfda68 5642 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5643 *p++ = 'F';
230e9fc2
VD
5644 if (s->flags & SLAB_ACCOUNT)
5645 *p++ = 'A';
81819f0f
CL
5646 if (p != name + 1)
5647 *p++ = '-';
44065b2e 5648 p += sprintf(p, "%07u", s->size);
2633d7a0 5649
81819f0f
CL
5650 BUG_ON(p > name + ID_STR_LENGTH - 1);
5651 return name;
5652}
5653
5654static int sysfs_slab_add(struct kmem_cache *s)
5655{
5656 int err;
5657 const char *name;
1663f26d 5658 struct kset *kset = cache_kset(s);
45530c44 5659 int unmergeable = slab_unmergeable(s);
81819f0f 5660
1663f26d
TH
5661 if (!kset) {
5662 kobject_init(&s->kobj, &slab_ktype);
5663 return 0;
5664 }
5665
11066386
MC
5666 if (!unmergeable && disable_higher_order_debug &&
5667 (slub_debug & DEBUG_METADATA_FLAGS))
5668 unmergeable = 1;
5669
81819f0f
CL
5670 if (unmergeable) {
5671 /*
5672 * Slabcache can never be merged so we can use the name proper.
5673 * This is typically the case for debug situations. In that
5674 * case we can catch duplicate names easily.
5675 */
27c3a314 5676 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5677 name = s->name;
5678 } else {
5679 /*
5680 * Create a unique name for the slab as a target
5681 * for the symlinks.
5682 */
5683 name = create_unique_id(s);
5684 }
5685
1663f26d 5686 s->kobj.kset = kset;
26e4f205 5687 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5688 if (err)
80da026a 5689 goto out;
81819f0f
CL
5690
5691 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5692 if (err)
5693 goto out_del_kobj;
9a41707b 5694
81819f0f
CL
5695 if (!unmergeable) {
5696 /* Setup first alias */
5697 sysfs_slab_alias(s, s->name);
81819f0f 5698 }
54b6a731
DJ
5699out:
5700 if (!unmergeable)
5701 kfree(name);
5702 return err;
5703out_del_kobj:
5704 kobject_del(&s->kobj);
54b6a731 5705 goto out;
81819f0f
CL
5706}
5707
d50d82fa
MP
5708void sysfs_slab_unlink(struct kmem_cache *s)
5709{
5710 if (slab_state >= FULL)
5711 kobject_del(&s->kobj);
5712}
5713
bf5eb3de
TH
5714void sysfs_slab_release(struct kmem_cache *s)
5715{
5716 if (slab_state >= FULL)
5717 kobject_put(&s->kobj);
81819f0f
CL
5718}
5719
5720/*
5721 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5722 * available lest we lose that information.
81819f0f
CL
5723 */
5724struct saved_alias {
5725 struct kmem_cache *s;
5726 const char *name;
5727 struct saved_alias *next;
5728};
5729
5af328a5 5730static struct saved_alias *alias_list;
81819f0f
CL
5731
5732static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5733{
5734 struct saved_alias *al;
5735
97d06609 5736 if (slab_state == FULL) {
81819f0f
CL
5737 /*
5738 * If we have a leftover link then remove it.
5739 */
27c3a314
GKH
5740 sysfs_remove_link(&slab_kset->kobj, name);
5741 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5742 }
5743
5744 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5745 if (!al)
5746 return -ENOMEM;
5747
5748 al->s = s;
5749 al->name = name;
5750 al->next = alias_list;
5751 alias_list = al;
5752 return 0;
5753}
5754
5755static int __init slab_sysfs_init(void)
5756{
5b95a4ac 5757 struct kmem_cache *s;
81819f0f
CL
5758 int err;
5759
18004c5d 5760 mutex_lock(&slab_mutex);
2bce6485 5761
d7660ce5 5762 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5763 if (!slab_kset) {
18004c5d 5764 mutex_unlock(&slab_mutex);
f9f58285 5765 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5766 return -ENOSYS;
5767 }
5768
97d06609 5769 slab_state = FULL;
26a7bd03 5770
5b95a4ac 5771 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5772 err = sysfs_slab_add(s);
5d540fb7 5773 if (err)
f9f58285
FF
5774 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5775 s->name);
26a7bd03 5776 }
81819f0f
CL
5777
5778 while (alias_list) {
5779 struct saved_alias *al = alias_list;
5780
5781 alias_list = alias_list->next;
5782 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5783 if (err)
f9f58285
FF
5784 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5785 al->name);
81819f0f
CL
5786 kfree(al);
5787 }
5788
18004c5d 5789 mutex_unlock(&slab_mutex);
81819f0f
CL
5790 resiliency_test();
5791 return 0;
5792}
5793
5794__initcall(slab_sysfs_init);
ab4d5ed5 5795#endif /* CONFIG_SYSFS */
57ed3eda
PE
5796
5797/*
5798 * The /proc/slabinfo ABI
5799 */
5b365771 5800#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5801void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5802{
57ed3eda 5803 unsigned long nr_slabs = 0;
205ab99d
CL
5804 unsigned long nr_objs = 0;
5805 unsigned long nr_free = 0;
57ed3eda 5806 int node;
fa45dc25 5807 struct kmem_cache_node *n;
57ed3eda 5808
fa45dc25 5809 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5810 nr_slabs += node_nr_slabs(n);
5811 nr_objs += node_nr_objs(n);
205ab99d 5812 nr_free += count_partial(n, count_free);
57ed3eda
PE
5813 }
5814
0d7561c6
GC
5815 sinfo->active_objs = nr_objs - nr_free;
5816 sinfo->num_objs = nr_objs;
5817 sinfo->active_slabs = nr_slabs;
5818 sinfo->num_slabs = nr_slabs;
5819 sinfo->objects_per_slab = oo_objects(s->oo);
5820 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5821}
5822
0d7561c6 5823void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5824{
7b3c3a50
AD
5825}
5826
b7454ad3
GC
5827ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5828 size_t count, loff_t *ppos)
7b3c3a50 5829{
b7454ad3 5830 return -EIO;
7b3c3a50 5831}
5b365771 5832#endif /* CONFIG_SLUB_DEBUG */