]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
SLUB: Drop write permission to /proc/slabinfo
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
06f22f13 24#include <linux/kmemleak.h>
81819f0f
CL
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
81819f0f
CL
32
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
5577bd8a 111#ifdef CONFIG_SLUB_DEBUG
8a38082d 112#define SLABDEBUG 1
5577bd8a
CL
113#else
114#define SLABDEBUG 0
115#endif
116
81819f0f
CL
117/*
118 * Issues still to be resolved:
119 *
81819f0f
CL
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
81819f0f
CL
122 * - Variable sizing of the per node arrays
123 */
124
125/* Enable to test recovery from slab corruption on boot */
126#undef SLUB_RESILIENCY_TEST
127
2086d26a
CL
128/*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
76be8950 132#define MIN_PARTIAL 5
e95eed57 133
2086d26a
CL
134/*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139#define MAX_PARTIAL 10
140
81819f0f
CL
141#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
672bba3a 143
fa5ec8a1 144/*
3de47213
DR
145 * Debugging flags that require metadata to be stored in the slab. These get
146 * disabled when slub_debug=O is used and a cache's min order increases with
147 * metadata.
fa5ec8a1 148 */
3de47213 149#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 150
81819f0f
CL
151/*
152 * Set of flags that will prevent slab merging
153 */
154#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 155 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
156
157#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 158 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
159
160#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 161#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
162#endif
163
164#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 165#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
166#endif
167
210b5c06
CG
168#define OO_SHIFT 16
169#define OO_MASK ((1 << OO_SHIFT) - 1)
170#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171
81819f0f 172/* Internal SLUB flags */
1ceef402
CL
173#define __OBJECT_POISON 0x80000000 /* Poison object */
174#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
175
176static int kmem_size = sizeof(struct kmem_cache);
177
178#ifdef CONFIG_SMP
179static struct notifier_block slab_notifier;
180#endif
181
182static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 185 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
186 SYSFS /* Sysfs up */
187} slab_state = DOWN;
188
189/* A list of all slab caches on the system */
190static DECLARE_RWSEM(slub_lock);
5af328a5 191static LIST_HEAD(slab_caches);
81819f0f 192
02cbc874
CL
193/*
194 * Tracking user of a slab.
195 */
196struct track {
ce71e27c 197 unsigned long addr; /* Called from address */
02cbc874
CL
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
201};
202
203enum track_item { TRACK_ALLOC, TRACK_FREE };
204
f6acb635 205#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
206static int sysfs_slab_add(struct kmem_cache *);
207static int sysfs_slab_alias(struct kmem_cache *, const char *);
208static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 209
81819f0f 210#else
0c710013
CL
211static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
151c602f
CL
214static inline void sysfs_slab_remove(struct kmem_cache *s)
215{
216 kfree(s);
217}
8ff12cfc 218
81819f0f
CL
219#endif
220
8ff12cfc
CL
221static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
222{
223#ifdef CONFIG_SLUB_STATS
224 c->stat[si]++;
225#endif
226}
227
81819f0f
CL
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232int slab_is_available(void)
233{
234 return slab_state >= UP;
235}
236
237static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238{
239#ifdef CONFIG_NUMA
240 return s->node[node];
241#else
242 return &s->local_node;
243#endif
244}
245
dfb4f096
CL
246static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
247{
4c93c355
CL
248#ifdef CONFIG_SMP
249 return s->cpu_slab[cpu];
250#else
251 return &s->cpu_slab;
252#endif
dfb4f096
CL
253}
254
6446faa2 255/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
256static inline int check_valid_pointer(struct kmem_cache *s,
257 struct page *page, const void *object)
258{
259 void *base;
260
a973e9dd 261 if (!object)
02cbc874
CL
262 return 1;
263
a973e9dd 264 base = page_address(page);
39b26464 265 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
266 (object - base) % s->size) {
267 return 0;
268 }
269
270 return 1;
271}
272
7656c72b
CL
273/*
274 * Slow version of get and set free pointer.
275 *
276 * This version requires touching the cache lines of kmem_cache which
277 * we avoid to do in the fast alloc free paths. There we obtain the offset
278 * from the page struct.
279 */
280static inline void *get_freepointer(struct kmem_cache *s, void *object)
281{
282 return *(void **)(object + s->offset);
283}
284
285static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
286{
287 *(void **)(object + s->offset) = fp;
288}
289
290/* Loop over all objects in a slab */
224a88be
CL
291#define for_each_object(__p, __s, __addr, __objects) \
292 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
293 __p += (__s)->size)
294
295/* Scan freelist */
296#define for_each_free_object(__p, __s, __free) \
a973e9dd 297 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
298
299/* Determine object index from a given position */
300static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
301{
302 return (p - addr) / s->size;
303}
304
834f3d11
CL
305static inline struct kmem_cache_order_objects oo_make(int order,
306 unsigned long size)
307{
308 struct kmem_cache_order_objects x = {
210b5c06 309 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
310 };
311
312 return x;
313}
314
315static inline int oo_order(struct kmem_cache_order_objects x)
316{
210b5c06 317 return x.x >> OO_SHIFT;
834f3d11
CL
318}
319
320static inline int oo_objects(struct kmem_cache_order_objects x)
321{
210b5c06 322 return x.x & OO_MASK;
834f3d11
CL
323}
324
41ecc55b
CL
325#ifdef CONFIG_SLUB_DEBUG
326/*
327 * Debug settings:
328 */
f0630fff
CL
329#ifdef CONFIG_SLUB_DEBUG_ON
330static int slub_debug = DEBUG_DEFAULT_FLAGS;
331#else
41ecc55b 332static int slub_debug;
f0630fff 333#endif
41ecc55b
CL
334
335static char *slub_debug_slabs;
fa5ec8a1 336static int disable_higher_order_debug;
41ecc55b 337
81819f0f
CL
338/*
339 * Object debugging
340 */
341static void print_section(char *text, u8 *addr, unsigned int length)
342{
343 int i, offset;
344 int newline = 1;
345 char ascii[17];
346
347 ascii[16] = 0;
348
349 for (i = 0; i < length; i++) {
350 if (newline) {
24922684 351 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
352 newline = 0;
353 }
06428780 354 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
355 offset = i % 16;
356 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
357 if (offset == 15) {
06428780 358 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
359 newline = 1;
360 }
361 }
362 if (!newline) {
363 i %= 16;
364 while (i < 16) {
06428780 365 printk(KERN_CONT " ");
81819f0f
CL
366 ascii[i] = ' ';
367 i++;
368 }
06428780 369 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
370 }
371}
372
81819f0f
CL
373static struct track *get_track(struct kmem_cache *s, void *object,
374 enum track_item alloc)
375{
376 struct track *p;
377
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
382
383 return p + alloc;
384}
385
386static void set_track(struct kmem_cache *s, void *object,
ce71e27c 387 enum track_item alloc, unsigned long addr)
81819f0f 388{
1a00df4a 389 struct track *p = get_track(s, object, alloc);
81819f0f 390
81819f0f
CL
391 if (addr) {
392 p->addr = addr;
393 p->cpu = smp_processor_id();
88e4ccf2 394 p->pid = current->pid;
81819f0f
CL
395 p->when = jiffies;
396 } else
397 memset(p, 0, sizeof(struct track));
398}
399
81819f0f
CL
400static void init_tracking(struct kmem_cache *s, void *object)
401{
24922684
CL
402 if (!(s->flags & SLAB_STORE_USER))
403 return;
404
ce71e27c
EGM
405 set_track(s, object, TRACK_FREE, 0UL);
406 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
407}
408
409static void print_track(const char *s, struct track *t)
410{
411 if (!t->addr)
412 return;
413
7daf705f 414 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 415 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
416}
417
418static void print_tracking(struct kmem_cache *s, void *object)
419{
420 if (!(s->flags & SLAB_STORE_USER))
421 return;
422
423 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
424 print_track("Freed", get_track(s, object, TRACK_FREE));
425}
426
427static void print_page_info(struct page *page)
428{
39b26464
CL
429 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
430 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
431
432}
433
434static void slab_bug(struct kmem_cache *s, char *fmt, ...)
435{
436 va_list args;
437 char buf[100];
438
439 va_start(args, fmt);
440 vsnprintf(buf, sizeof(buf), fmt, args);
441 va_end(args);
442 printk(KERN_ERR "========================================"
443 "=====================================\n");
444 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
445 printk(KERN_ERR "----------------------------------------"
446 "-------------------------------------\n\n");
81819f0f
CL
447}
448
24922684
CL
449static void slab_fix(struct kmem_cache *s, char *fmt, ...)
450{
451 va_list args;
452 char buf[100];
453
454 va_start(args, fmt);
455 vsnprintf(buf, sizeof(buf), fmt, args);
456 va_end(args);
457 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
458}
459
460static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
461{
462 unsigned int off; /* Offset of last byte */
a973e9dd 463 u8 *addr = page_address(page);
24922684
CL
464
465 print_tracking(s, p);
466
467 print_page_info(page);
468
469 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
470 p, p - addr, get_freepointer(s, p));
471
472 if (p > addr + 16)
473 print_section("Bytes b4", p - 16, 16);
474
0ebd652b 475 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
476
477 if (s->flags & SLAB_RED_ZONE)
478 print_section("Redzone", p + s->objsize,
479 s->inuse - s->objsize);
480
81819f0f
CL
481 if (s->offset)
482 off = s->offset + sizeof(void *);
483 else
484 off = s->inuse;
485
24922684 486 if (s->flags & SLAB_STORE_USER)
81819f0f 487 off += 2 * sizeof(struct track);
81819f0f
CL
488
489 if (off != s->size)
490 /* Beginning of the filler is the free pointer */
24922684
CL
491 print_section("Padding", p + off, s->size - off);
492
493 dump_stack();
81819f0f
CL
494}
495
496static void object_err(struct kmem_cache *s, struct page *page,
497 u8 *object, char *reason)
498{
3dc50637 499 slab_bug(s, "%s", reason);
24922684 500 print_trailer(s, page, object);
81819f0f
CL
501}
502
24922684 503static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
504{
505 va_list args;
506 char buf[100];
507
24922684
CL
508 va_start(args, fmt);
509 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 510 va_end(args);
3dc50637 511 slab_bug(s, "%s", buf);
24922684 512 print_page_info(page);
81819f0f
CL
513 dump_stack();
514}
515
516static void init_object(struct kmem_cache *s, void *object, int active)
517{
518 u8 *p = object;
519
520 if (s->flags & __OBJECT_POISON) {
521 memset(p, POISON_FREE, s->objsize - 1);
06428780 522 p[s->objsize - 1] = POISON_END;
81819f0f
CL
523 }
524
525 if (s->flags & SLAB_RED_ZONE)
526 memset(p + s->objsize,
527 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
528 s->inuse - s->objsize);
529}
530
24922684 531static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
532{
533 while (bytes) {
534 if (*start != (u8)value)
24922684 535 return start;
81819f0f
CL
536 start++;
537 bytes--;
538 }
24922684
CL
539 return NULL;
540}
541
542static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
543 void *from, void *to)
544{
545 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
546 memset(from, data, to - from);
547}
548
549static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
550 u8 *object, char *what,
06428780 551 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
552{
553 u8 *fault;
554 u8 *end;
555
556 fault = check_bytes(start, value, bytes);
557 if (!fault)
558 return 1;
559
560 end = start + bytes;
561 while (end > fault && end[-1] == value)
562 end--;
563
564 slab_bug(s, "%s overwritten", what);
565 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
566 fault, end - 1, fault[0], value);
567 print_trailer(s, page, object);
568
569 restore_bytes(s, what, value, fault, end);
570 return 0;
81819f0f
CL
571}
572
81819f0f
CL
573/*
574 * Object layout:
575 *
576 * object address
577 * Bytes of the object to be managed.
578 * If the freepointer may overlay the object then the free
579 * pointer is the first word of the object.
672bba3a 580 *
81819f0f
CL
581 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
582 * 0xa5 (POISON_END)
583 *
584 * object + s->objsize
585 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
586 * Padding is extended by another word if Redzoning is enabled and
587 * objsize == inuse.
588 *
81819f0f
CL
589 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
590 * 0xcc (RED_ACTIVE) for objects in use.
591 *
592 * object + s->inuse
672bba3a
CL
593 * Meta data starts here.
594 *
81819f0f
CL
595 * A. Free pointer (if we cannot overwrite object on free)
596 * B. Tracking data for SLAB_STORE_USER
672bba3a 597 * C. Padding to reach required alignment boundary or at mininum
6446faa2 598 * one word if debugging is on to be able to detect writes
672bba3a
CL
599 * before the word boundary.
600 *
601 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
602 *
603 * object + s->size
672bba3a 604 * Nothing is used beyond s->size.
81819f0f 605 *
672bba3a
CL
606 * If slabcaches are merged then the objsize and inuse boundaries are mostly
607 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
608 * may be used with merged slabcaches.
609 */
610
81819f0f
CL
611static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
612{
613 unsigned long off = s->inuse; /* The end of info */
614
615 if (s->offset)
616 /* Freepointer is placed after the object. */
617 off += sizeof(void *);
618
619 if (s->flags & SLAB_STORE_USER)
620 /* We also have user information there */
621 off += 2 * sizeof(struct track);
622
623 if (s->size == off)
624 return 1;
625
24922684
CL
626 return check_bytes_and_report(s, page, p, "Object padding",
627 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
628}
629
39b26464 630/* Check the pad bytes at the end of a slab page */
81819f0f
CL
631static int slab_pad_check(struct kmem_cache *s, struct page *page)
632{
24922684
CL
633 u8 *start;
634 u8 *fault;
635 u8 *end;
636 int length;
637 int remainder;
81819f0f
CL
638
639 if (!(s->flags & SLAB_POISON))
640 return 1;
641
a973e9dd 642 start = page_address(page);
834f3d11 643 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
644 end = start + length;
645 remainder = length % s->size;
81819f0f
CL
646 if (!remainder)
647 return 1;
648
39b26464 649 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
650 if (!fault)
651 return 1;
652 while (end > fault && end[-1] == POISON_INUSE)
653 end--;
654
655 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 656 print_section("Padding", end - remainder, remainder);
24922684
CL
657
658 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
659 return 0;
81819f0f
CL
660}
661
662static int check_object(struct kmem_cache *s, struct page *page,
663 void *object, int active)
664{
665 u8 *p = object;
666 u8 *endobject = object + s->objsize;
667
668 if (s->flags & SLAB_RED_ZONE) {
669 unsigned int red =
670 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
671
24922684
CL
672 if (!check_bytes_and_report(s, page, object, "Redzone",
673 endobject, red, s->inuse - s->objsize))
81819f0f 674 return 0;
81819f0f 675 } else {
3adbefee
IM
676 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
677 check_bytes_and_report(s, page, p, "Alignment padding",
678 endobject, POISON_INUSE, s->inuse - s->objsize);
679 }
81819f0f
CL
680 }
681
682 if (s->flags & SLAB_POISON) {
683 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
684 (!check_bytes_and_report(s, page, p, "Poison", p,
685 POISON_FREE, s->objsize - 1) ||
686 !check_bytes_and_report(s, page, p, "Poison",
06428780 687 p + s->objsize - 1, POISON_END, 1)))
81819f0f 688 return 0;
81819f0f
CL
689 /*
690 * check_pad_bytes cleans up on its own.
691 */
692 check_pad_bytes(s, page, p);
693 }
694
695 if (!s->offset && active)
696 /*
697 * Object and freepointer overlap. Cannot check
698 * freepointer while object is allocated.
699 */
700 return 1;
701
702 /* Check free pointer validity */
703 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
704 object_err(s, page, p, "Freepointer corrupt");
705 /*
9f6c708e 706 * No choice but to zap it and thus lose the remainder
81819f0f 707 * of the free objects in this slab. May cause
672bba3a 708 * another error because the object count is now wrong.
81819f0f 709 */
a973e9dd 710 set_freepointer(s, p, NULL);
81819f0f
CL
711 return 0;
712 }
713 return 1;
714}
715
716static int check_slab(struct kmem_cache *s, struct page *page)
717{
39b26464
CL
718 int maxobj;
719
81819f0f
CL
720 VM_BUG_ON(!irqs_disabled());
721
722 if (!PageSlab(page)) {
24922684 723 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
724 return 0;
725 }
39b26464
CL
726
727 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
728 if (page->objects > maxobj) {
729 slab_err(s, page, "objects %u > max %u",
730 s->name, page->objects, maxobj);
731 return 0;
732 }
733 if (page->inuse > page->objects) {
24922684 734 slab_err(s, page, "inuse %u > max %u",
39b26464 735 s->name, page->inuse, page->objects);
81819f0f
CL
736 return 0;
737 }
738 /* Slab_pad_check fixes things up after itself */
739 slab_pad_check(s, page);
740 return 1;
741}
742
743/*
672bba3a
CL
744 * Determine if a certain object on a page is on the freelist. Must hold the
745 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
746 */
747static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
748{
749 int nr = 0;
750 void *fp = page->freelist;
751 void *object = NULL;
224a88be 752 unsigned long max_objects;
81819f0f 753
39b26464 754 while (fp && nr <= page->objects) {
81819f0f
CL
755 if (fp == search)
756 return 1;
757 if (!check_valid_pointer(s, page, fp)) {
758 if (object) {
759 object_err(s, page, object,
760 "Freechain corrupt");
a973e9dd 761 set_freepointer(s, object, NULL);
81819f0f
CL
762 break;
763 } else {
24922684 764 slab_err(s, page, "Freepointer corrupt");
a973e9dd 765 page->freelist = NULL;
39b26464 766 page->inuse = page->objects;
24922684 767 slab_fix(s, "Freelist cleared");
81819f0f
CL
768 return 0;
769 }
770 break;
771 }
772 object = fp;
773 fp = get_freepointer(s, object);
774 nr++;
775 }
776
224a88be 777 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
778 if (max_objects > MAX_OBJS_PER_PAGE)
779 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
780
781 if (page->objects != max_objects) {
782 slab_err(s, page, "Wrong number of objects. Found %d but "
783 "should be %d", page->objects, max_objects);
784 page->objects = max_objects;
785 slab_fix(s, "Number of objects adjusted.");
786 }
39b26464 787 if (page->inuse != page->objects - nr) {
70d71228 788 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
789 "counted were %d", page->inuse, page->objects - nr);
790 page->inuse = page->objects - nr;
24922684 791 slab_fix(s, "Object count adjusted.");
81819f0f
CL
792 }
793 return search == NULL;
794}
795
0121c619
CL
796static void trace(struct kmem_cache *s, struct page *page, void *object,
797 int alloc)
3ec09742
CL
798{
799 if (s->flags & SLAB_TRACE) {
800 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
801 s->name,
802 alloc ? "alloc" : "free",
803 object, page->inuse,
804 page->freelist);
805
806 if (!alloc)
807 print_section("Object", (void *)object, s->objsize);
808
809 dump_stack();
810 }
811}
812
643b1138 813/*
672bba3a 814 * Tracking of fully allocated slabs for debugging purposes.
643b1138 815 */
e95eed57 816static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 817{
643b1138
CL
818 spin_lock(&n->list_lock);
819 list_add(&page->lru, &n->full);
820 spin_unlock(&n->list_lock);
821}
822
823static void remove_full(struct kmem_cache *s, struct page *page)
824{
825 struct kmem_cache_node *n;
826
827 if (!(s->flags & SLAB_STORE_USER))
828 return;
829
830 n = get_node(s, page_to_nid(page));
831
832 spin_lock(&n->list_lock);
833 list_del(&page->lru);
834 spin_unlock(&n->list_lock);
835}
836
0f389ec6
CL
837/* Tracking of the number of slabs for debugging purposes */
838static inline unsigned long slabs_node(struct kmem_cache *s, int node)
839{
840 struct kmem_cache_node *n = get_node(s, node);
841
842 return atomic_long_read(&n->nr_slabs);
843}
844
26c02cf0
AB
845static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
846{
847 return atomic_long_read(&n->nr_slabs);
848}
849
205ab99d 850static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
851{
852 struct kmem_cache_node *n = get_node(s, node);
853
854 /*
855 * May be called early in order to allocate a slab for the
856 * kmem_cache_node structure. Solve the chicken-egg
857 * dilemma by deferring the increment of the count during
858 * bootstrap (see early_kmem_cache_node_alloc).
859 */
205ab99d 860 if (!NUMA_BUILD || n) {
0f389ec6 861 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
862 atomic_long_add(objects, &n->total_objects);
863 }
0f389ec6 864}
205ab99d 865static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
866{
867 struct kmem_cache_node *n = get_node(s, node);
868
869 atomic_long_dec(&n->nr_slabs);
205ab99d 870 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
871}
872
873/* Object debug checks for alloc/free paths */
3ec09742
CL
874static void setup_object_debug(struct kmem_cache *s, struct page *page,
875 void *object)
876{
877 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
878 return;
879
880 init_object(s, object, 0);
881 init_tracking(s, object);
882}
883
884static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 885 void *object, unsigned long addr)
81819f0f
CL
886{
887 if (!check_slab(s, page))
888 goto bad;
889
d692ef6d 890 if (!on_freelist(s, page, object)) {
24922684 891 object_err(s, page, object, "Object already allocated");
70d71228 892 goto bad;
81819f0f
CL
893 }
894
895 if (!check_valid_pointer(s, page, object)) {
896 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 897 goto bad;
81819f0f
CL
898 }
899
d692ef6d 900 if (!check_object(s, page, object, 0))
81819f0f 901 goto bad;
81819f0f 902
3ec09742
CL
903 /* Success perform special debug activities for allocs */
904 if (s->flags & SLAB_STORE_USER)
905 set_track(s, object, TRACK_ALLOC, addr);
906 trace(s, page, object, 1);
907 init_object(s, object, 1);
81819f0f 908 return 1;
3ec09742 909
81819f0f
CL
910bad:
911 if (PageSlab(page)) {
912 /*
913 * If this is a slab page then lets do the best we can
914 * to avoid issues in the future. Marking all objects
672bba3a 915 * as used avoids touching the remaining objects.
81819f0f 916 */
24922684 917 slab_fix(s, "Marking all objects used");
39b26464 918 page->inuse = page->objects;
a973e9dd 919 page->freelist = NULL;
81819f0f
CL
920 }
921 return 0;
922}
923
3ec09742 924static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 925 void *object, unsigned long addr)
81819f0f
CL
926{
927 if (!check_slab(s, page))
928 goto fail;
929
930 if (!check_valid_pointer(s, page, object)) {
70d71228 931 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
932 goto fail;
933 }
934
935 if (on_freelist(s, page, object)) {
24922684 936 object_err(s, page, object, "Object already free");
81819f0f
CL
937 goto fail;
938 }
939
940 if (!check_object(s, page, object, 1))
941 return 0;
942
943 if (unlikely(s != page->slab)) {
3adbefee 944 if (!PageSlab(page)) {
70d71228
CL
945 slab_err(s, page, "Attempt to free object(0x%p) "
946 "outside of slab", object);
3adbefee 947 } else if (!page->slab) {
81819f0f 948 printk(KERN_ERR
70d71228 949 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 950 object);
70d71228 951 dump_stack();
06428780 952 } else
24922684
CL
953 object_err(s, page, object,
954 "page slab pointer corrupt.");
81819f0f
CL
955 goto fail;
956 }
3ec09742
CL
957
958 /* Special debug activities for freeing objects */
8a38082d 959 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
960 remove_full(s, page);
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_FREE, addr);
963 trace(s, page, object, 0);
964 init_object(s, object, 0);
81819f0f 965 return 1;
3ec09742 966
81819f0f 967fail:
24922684 968 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
969 return 0;
970}
971
41ecc55b
CL
972static int __init setup_slub_debug(char *str)
973{
f0630fff
CL
974 slub_debug = DEBUG_DEFAULT_FLAGS;
975 if (*str++ != '=' || !*str)
976 /*
977 * No options specified. Switch on full debugging.
978 */
979 goto out;
980
981 if (*str == ',')
982 /*
983 * No options but restriction on slabs. This means full
984 * debugging for slabs matching a pattern.
985 */
986 goto check_slabs;
987
fa5ec8a1
DR
988 if (tolower(*str) == 'o') {
989 /*
990 * Avoid enabling debugging on caches if its minimum order
991 * would increase as a result.
992 */
993 disable_higher_order_debug = 1;
994 goto out;
995 }
996
f0630fff
CL
997 slub_debug = 0;
998 if (*str == '-')
999 /*
1000 * Switch off all debugging measures.
1001 */
1002 goto out;
1003
1004 /*
1005 * Determine which debug features should be switched on
1006 */
06428780 1007 for (; *str && *str != ','; str++) {
f0630fff
CL
1008 switch (tolower(*str)) {
1009 case 'f':
1010 slub_debug |= SLAB_DEBUG_FREE;
1011 break;
1012 case 'z':
1013 slub_debug |= SLAB_RED_ZONE;
1014 break;
1015 case 'p':
1016 slub_debug |= SLAB_POISON;
1017 break;
1018 case 'u':
1019 slub_debug |= SLAB_STORE_USER;
1020 break;
1021 case 't':
1022 slub_debug |= SLAB_TRACE;
1023 break;
1024 default:
1025 printk(KERN_ERR "slub_debug option '%c' "
06428780 1026 "unknown. skipped\n", *str);
f0630fff 1027 }
41ecc55b
CL
1028 }
1029
f0630fff 1030check_slabs:
41ecc55b
CL
1031 if (*str == ',')
1032 slub_debug_slabs = str + 1;
f0630fff 1033out:
41ecc55b
CL
1034 return 1;
1035}
1036
1037__setup("slub_debug", setup_slub_debug);
1038
ba0268a8
CL
1039static unsigned long kmem_cache_flags(unsigned long objsize,
1040 unsigned long flags, const char *name,
51cc5068 1041 void (*ctor)(void *))
41ecc55b
CL
1042{
1043 /*
e153362a 1044 * Enable debugging if selected on the kernel commandline.
41ecc55b 1045 */
3de47213
DR
1046 if (slub_debug && (!slub_debug_slabs ||
1047 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1048 flags |= slub_debug;
ba0268a8
CL
1049
1050 return flags;
41ecc55b
CL
1051}
1052#else
3ec09742
CL
1053static inline void setup_object_debug(struct kmem_cache *s,
1054 struct page *page, void *object) {}
41ecc55b 1055
3ec09742 1056static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1057 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1058
3ec09742 1059static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1060 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1061
41ecc55b
CL
1062static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1063 { return 1; }
1064static inline int check_object(struct kmem_cache *s, struct page *page,
1065 void *object, int active) { return 1; }
3ec09742 1066static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1067static inline unsigned long kmem_cache_flags(unsigned long objsize,
1068 unsigned long flags, const char *name,
51cc5068 1069 void (*ctor)(void *))
ba0268a8
CL
1070{
1071 return flags;
1072}
41ecc55b 1073#define slub_debug 0
0f389ec6
CL
1074
1075static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1076 { return 0; }
26c02cf0
AB
1077static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1078 { return 0; }
205ab99d
CL
1079static inline void inc_slabs_node(struct kmem_cache *s, int node,
1080 int objects) {}
1081static inline void dec_slabs_node(struct kmem_cache *s, int node,
1082 int objects) {}
41ecc55b 1083#endif
205ab99d 1084
81819f0f
CL
1085/*
1086 * Slab allocation and freeing
1087 */
65c3376a
CL
1088static inline struct page *alloc_slab_page(gfp_t flags, int node,
1089 struct kmem_cache_order_objects oo)
1090{
1091 int order = oo_order(oo);
1092
b1eeab67
VN
1093 flags |= __GFP_NOTRACK;
1094
65c3376a
CL
1095 if (node == -1)
1096 return alloc_pages(flags, order);
1097 else
1098 return alloc_pages_node(node, flags, order);
1099}
1100
81819f0f
CL
1101static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1102{
06428780 1103 struct page *page;
834f3d11 1104 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1105 gfp_t alloc_gfp;
81819f0f 1106
b7a49f0d 1107 flags |= s->allocflags;
e12ba74d 1108
ba52270d
PE
1109 /*
1110 * Let the initial higher-order allocation fail under memory pressure
1111 * so we fall-back to the minimum order allocation.
1112 */
1113 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1114
1115 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1116 if (unlikely(!page)) {
1117 oo = s->min;
1118 /*
1119 * Allocation may have failed due to fragmentation.
1120 * Try a lower order alloc if possible
1121 */
1122 page = alloc_slab_page(flags, node, oo);
1123 if (!page)
1124 return NULL;
81819f0f 1125
65c3376a
CL
1126 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1127 }
5a896d9e
VN
1128
1129 if (kmemcheck_enabled
1130 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1131 {
b1eeab67
VN
1132 int pages = 1 << oo_order(oo);
1133
1134 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1135
1136 /*
1137 * Objects from caches that have a constructor don't get
1138 * cleared when they're allocated, so we need to do it here.
1139 */
1140 if (s->ctor)
1141 kmemcheck_mark_uninitialized_pages(page, pages);
1142 else
1143 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1144 }
1145
834f3d11 1146 page->objects = oo_objects(oo);
81819f0f
CL
1147 mod_zone_page_state(page_zone(page),
1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1150 1 << oo_order(oo));
81819f0f
CL
1151
1152 return page;
1153}
1154
1155static void setup_object(struct kmem_cache *s, struct page *page,
1156 void *object)
1157{
3ec09742 1158 setup_object_debug(s, page, object);
4f104934 1159 if (unlikely(s->ctor))
51cc5068 1160 s->ctor(object);
81819f0f
CL
1161}
1162
1163static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1164{
1165 struct page *page;
81819f0f 1166 void *start;
81819f0f
CL
1167 void *last;
1168 void *p;
1169
6cb06229 1170 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1171
6cb06229
CL
1172 page = allocate_slab(s,
1173 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1174 if (!page)
1175 goto out;
1176
205ab99d 1177 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1178 page->slab = s;
1179 page->flags |= 1 << PG_slab;
1180 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1182 __SetPageSlubDebug(page);
81819f0f
CL
1183
1184 start = page_address(page);
81819f0f
CL
1185
1186 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1187 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1188
1189 last = start;
224a88be 1190 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1191 setup_object(s, page, last);
1192 set_freepointer(s, last, p);
1193 last = p;
1194 }
1195 setup_object(s, page, last);
a973e9dd 1196 set_freepointer(s, last, NULL);
81819f0f
CL
1197
1198 page->freelist = start;
1199 page->inuse = 0;
1200out:
81819f0f
CL
1201 return page;
1202}
1203
1204static void __free_slab(struct kmem_cache *s, struct page *page)
1205{
834f3d11
CL
1206 int order = compound_order(page);
1207 int pages = 1 << order;
81819f0f 1208
8a38082d 1209 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1210 void *p;
1211
1212 slab_pad_check(s, page);
224a88be
CL
1213 for_each_object(p, s, page_address(page),
1214 page->objects)
81819f0f 1215 check_object(s, page, p, 0);
8a38082d 1216 __ClearPageSlubDebug(page);
81819f0f
CL
1217 }
1218
b1eeab67 1219 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1220
81819f0f
CL
1221 mod_zone_page_state(page_zone(page),
1222 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1223 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1224 -pages);
81819f0f 1225
49bd5221
CL
1226 __ClearPageSlab(page);
1227 reset_page_mapcount(page);
1eb5ac64
NP
1228 if (current->reclaim_state)
1229 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1230 __free_pages(page, order);
81819f0f
CL
1231}
1232
1233static void rcu_free_slab(struct rcu_head *h)
1234{
1235 struct page *page;
1236
1237 page = container_of((struct list_head *)h, struct page, lru);
1238 __free_slab(page->slab, page);
1239}
1240
1241static void free_slab(struct kmem_cache *s, struct page *page)
1242{
1243 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1244 /*
1245 * RCU free overloads the RCU head over the LRU
1246 */
1247 struct rcu_head *head = (void *)&page->lru;
1248
1249 call_rcu(head, rcu_free_slab);
1250 } else
1251 __free_slab(s, page);
1252}
1253
1254static void discard_slab(struct kmem_cache *s, struct page *page)
1255{
205ab99d 1256 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1257 free_slab(s, page);
1258}
1259
1260/*
1261 * Per slab locking using the pagelock
1262 */
1263static __always_inline void slab_lock(struct page *page)
1264{
1265 bit_spin_lock(PG_locked, &page->flags);
1266}
1267
1268static __always_inline void slab_unlock(struct page *page)
1269{
a76d3546 1270 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1271}
1272
1273static __always_inline int slab_trylock(struct page *page)
1274{
1275 int rc = 1;
1276
1277 rc = bit_spin_trylock(PG_locked, &page->flags);
1278 return rc;
1279}
1280
1281/*
1282 * Management of partially allocated slabs
1283 */
7c2e132c
CL
1284static void add_partial(struct kmem_cache_node *n,
1285 struct page *page, int tail)
81819f0f 1286{
e95eed57
CL
1287 spin_lock(&n->list_lock);
1288 n->nr_partial++;
7c2e132c
CL
1289 if (tail)
1290 list_add_tail(&page->lru, &n->partial);
1291 else
1292 list_add(&page->lru, &n->partial);
81819f0f
CL
1293 spin_unlock(&n->list_lock);
1294}
1295
0121c619 1296static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1297{
1298 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1299
1300 spin_lock(&n->list_lock);
1301 list_del(&page->lru);
1302 n->nr_partial--;
1303 spin_unlock(&n->list_lock);
1304}
1305
1306/*
672bba3a 1307 * Lock slab and remove from the partial list.
81819f0f 1308 *
672bba3a 1309 * Must hold list_lock.
81819f0f 1310 */
0121c619
CL
1311static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1312 struct page *page)
81819f0f
CL
1313{
1314 if (slab_trylock(page)) {
1315 list_del(&page->lru);
1316 n->nr_partial--;
8a38082d 1317 __SetPageSlubFrozen(page);
81819f0f
CL
1318 return 1;
1319 }
1320 return 0;
1321}
1322
1323/*
672bba3a 1324 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1325 */
1326static struct page *get_partial_node(struct kmem_cache_node *n)
1327{
1328 struct page *page;
1329
1330 /*
1331 * Racy check. If we mistakenly see no partial slabs then we
1332 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1333 * partial slab and there is none available then get_partials()
1334 * will return NULL.
81819f0f
CL
1335 */
1336 if (!n || !n->nr_partial)
1337 return NULL;
1338
1339 spin_lock(&n->list_lock);
1340 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1341 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1342 goto out;
1343 page = NULL;
1344out:
1345 spin_unlock(&n->list_lock);
1346 return page;
1347}
1348
1349/*
672bba3a 1350 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1351 */
1352static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1353{
1354#ifdef CONFIG_NUMA
1355 struct zonelist *zonelist;
dd1a239f 1356 struct zoneref *z;
54a6eb5c
MG
1357 struct zone *zone;
1358 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1359 struct page *page;
1360
1361 /*
672bba3a
CL
1362 * The defrag ratio allows a configuration of the tradeoffs between
1363 * inter node defragmentation and node local allocations. A lower
1364 * defrag_ratio increases the tendency to do local allocations
1365 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1366 *
672bba3a
CL
1367 * If the defrag_ratio is set to 0 then kmalloc() always
1368 * returns node local objects. If the ratio is higher then kmalloc()
1369 * may return off node objects because partial slabs are obtained
1370 * from other nodes and filled up.
81819f0f 1371 *
6446faa2 1372 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1373 * defrag_ratio = 1000) then every (well almost) allocation will
1374 * first attempt to defrag slab caches on other nodes. This means
1375 * scanning over all nodes to look for partial slabs which may be
1376 * expensive if we do it every time we are trying to find a slab
1377 * with available objects.
81819f0f 1378 */
9824601e
CL
1379 if (!s->remote_node_defrag_ratio ||
1380 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1381 return NULL;
1382
0e88460d 1383 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1384 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1385 struct kmem_cache_node *n;
1386
54a6eb5c 1387 n = get_node(s, zone_to_nid(zone));
81819f0f 1388
54a6eb5c 1389 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1390 n->nr_partial > s->min_partial) {
81819f0f
CL
1391 page = get_partial_node(n);
1392 if (page)
1393 return page;
1394 }
1395 }
1396#endif
1397 return NULL;
1398}
1399
1400/*
1401 * Get a partial page, lock it and return it.
1402 */
1403static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1404{
1405 struct page *page;
1406 int searchnode = (node == -1) ? numa_node_id() : node;
1407
1408 page = get_partial_node(get_node(s, searchnode));
1409 if (page || (flags & __GFP_THISNODE))
1410 return page;
1411
1412 return get_any_partial(s, flags);
1413}
1414
1415/*
1416 * Move a page back to the lists.
1417 *
1418 * Must be called with the slab lock held.
1419 *
1420 * On exit the slab lock will have been dropped.
1421 */
7c2e132c 1422static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1423{
e95eed57 1424 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1425 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1426
8a38082d 1427 __ClearPageSlubFrozen(page);
81819f0f 1428 if (page->inuse) {
e95eed57 1429
a973e9dd 1430 if (page->freelist) {
7c2e132c 1431 add_partial(n, page, tail);
8ff12cfc
CL
1432 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1433 } else {
1434 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1435 if (SLABDEBUG && PageSlubDebug(page) &&
1436 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1437 add_full(n, page);
1438 }
81819f0f
CL
1439 slab_unlock(page);
1440 } else {
8ff12cfc 1441 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1442 if (n->nr_partial < s->min_partial) {
e95eed57 1443 /*
672bba3a
CL
1444 * Adding an empty slab to the partial slabs in order
1445 * to avoid page allocator overhead. This slab needs
1446 * to come after the other slabs with objects in
6446faa2
CL
1447 * so that the others get filled first. That way the
1448 * size of the partial list stays small.
1449 *
0121c619
CL
1450 * kmem_cache_shrink can reclaim any empty slabs from
1451 * the partial list.
e95eed57 1452 */
7c2e132c 1453 add_partial(n, page, 1);
e95eed57
CL
1454 slab_unlock(page);
1455 } else {
1456 slab_unlock(page);
8ff12cfc 1457 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1458 discard_slab(s, page);
1459 }
81819f0f
CL
1460 }
1461}
1462
1463/*
1464 * Remove the cpu slab
1465 */
dfb4f096 1466static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1467{
dfb4f096 1468 struct page *page = c->page;
7c2e132c 1469 int tail = 1;
8ff12cfc 1470
b773ad73 1471 if (page->freelist)
8ff12cfc 1472 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1473 /*
6446faa2 1474 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1475 * because both freelists are empty. So this is unlikely
1476 * to occur.
1477 */
a973e9dd 1478 while (unlikely(c->freelist)) {
894b8788
CL
1479 void **object;
1480
7c2e132c
CL
1481 tail = 0; /* Hot objects. Put the slab first */
1482
894b8788 1483 /* Retrieve object from cpu_freelist */
dfb4f096 1484 object = c->freelist;
b3fba8da 1485 c->freelist = c->freelist[c->offset];
894b8788
CL
1486
1487 /* And put onto the regular freelist */
b3fba8da 1488 object[c->offset] = page->freelist;
894b8788
CL
1489 page->freelist = object;
1490 page->inuse--;
1491 }
dfb4f096 1492 c->page = NULL;
7c2e132c 1493 unfreeze_slab(s, page, tail);
81819f0f
CL
1494}
1495
dfb4f096 1496static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1497{
8ff12cfc 1498 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1499 slab_lock(c->page);
1500 deactivate_slab(s, c);
81819f0f
CL
1501}
1502
1503/*
1504 * Flush cpu slab.
6446faa2 1505 *
81819f0f
CL
1506 * Called from IPI handler with interrupts disabled.
1507 */
0c710013 1508static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1509{
dfb4f096 1510 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1511
dfb4f096
CL
1512 if (likely(c && c->page))
1513 flush_slab(s, c);
81819f0f
CL
1514}
1515
1516static void flush_cpu_slab(void *d)
1517{
1518 struct kmem_cache *s = d;
81819f0f 1519
dfb4f096 1520 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1521}
1522
1523static void flush_all(struct kmem_cache *s)
1524{
15c8b6c1 1525 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1526}
1527
dfb4f096
CL
1528/*
1529 * Check if the objects in a per cpu structure fit numa
1530 * locality expectations.
1531 */
1532static inline int node_match(struct kmem_cache_cpu *c, int node)
1533{
1534#ifdef CONFIG_NUMA
1535 if (node != -1 && c->node != node)
1536 return 0;
1537#endif
1538 return 1;
1539}
1540
781b2ba6
PE
1541static int count_free(struct page *page)
1542{
1543 return page->objects - page->inuse;
1544}
1545
1546static unsigned long count_partial(struct kmem_cache_node *n,
1547 int (*get_count)(struct page *))
1548{
1549 unsigned long flags;
1550 unsigned long x = 0;
1551 struct page *page;
1552
1553 spin_lock_irqsave(&n->list_lock, flags);
1554 list_for_each_entry(page, &n->partial, lru)
1555 x += get_count(page);
1556 spin_unlock_irqrestore(&n->list_lock, flags);
1557 return x;
1558}
1559
26c02cf0
AB
1560static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1561{
1562#ifdef CONFIG_SLUB_DEBUG
1563 return atomic_long_read(&n->total_objects);
1564#else
1565 return 0;
1566#endif
1567}
1568
781b2ba6
PE
1569static noinline void
1570slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1571{
1572 int node;
1573
1574 printk(KERN_WARNING
1575 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1576 nid, gfpflags);
1577 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1578 "default order: %d, min order: %d\n", s->name, s->objsize,
1579 s->size, oo_order(s->oo), oo_order(s->min));
1580
fa5ec8a1
DR
1581 if (oo_order(s->min) > get_order(s->objsize))
1582 printk(KERN_WARNING " %s debugging increased min order, use "
1583 "slub_debug=O to disable.\n", s->name);
1584
781b2ba6
PE
1585 for_each_online_node(node) {
1586 struct kmem_cache_node *n = get_node(s, node);
1587 unsigned long nr_slabs;
1588 unsigned long nr_objs;
1589 unsigned long nr_free;
1590
1591 if (!n)
1592 continue;
1593
26c02cf0
AB
1594 nr_free = count_partial(n, count_free);
1595 nr_slabs = node_nr_slabs(n);
1596 nr_objs = node_nr_objs(n);
781b2ba6
PE
1597
1598 printk(KERN_WARNING
1599 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600 node, nr_slabs, nr_objs, nr_free);
1601 }
1602}
1603
81819f0f 1604/*
894b8788
CL
1605 * Slow path. The lockless freelist is empty or we need to perform
1606 * debugging duties.
1607 *
1608 * Interrupts are disabled.
81819f0f 1609 *
894b8788
CL
1610 * Processing is still very fast if new objects have been freed to the
1611 * regular freelist. In that case we simply take over the regular freelist
1612 * as the lockless freelist and zap the regular freelist.
81819f0f 1613 *
894b8788
CL
1614 * If that is not working then we fall back to the partial lists. We take the
1615 * first element of the freelist as the object to allocate now and move the
1616 * rest of the freelist to the lockless freelist.
81819f0f 1617 *
894b8788 1618 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1619 * we need to allocate a new slab. This is the slowest path since it involves
1620 * a call to the page allocator and the setup of a new slab.
81819f0f 1621 */
ce71e27c
EGM
1622static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1623 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1624{
81819f0f 1625 void **object;
dfb4f096 1626 struct page *new;
81819f0f 1627
e72e9c23
LT
1628 /* We handle __GFP_ZERO in the caller */
1629 gfpflags &= ~__GFP_ZERO;
1630
dfb4f096 1631 if (!c->page)
81819f0f
CL
1632 goto new_slab;
1633
dfb4f096
CL
1634 slab_lock(c->page);
1635 if (unlikely(!node_match(c, node)))
81819f0f 1636 goto another_slab;
6446faa2 1637
8ff12cfc 1638 stat(c, ALLOC_REFILL);
6446faa2 1639
894b8788 1640load_freelist:
dfb4f096 1641 object = c->page->freelist;
a973e9dd 1642 if (unlikely(!object))
81819f0f 1643 goto another_slab;
8a38082d 1644 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1645 goto debug;
1646
b3fba8da 1647 c->freelist = object[c->offset];
39b26464 1648 c->page->inuse = c->page->objects;
a973e9dd 1649 c->page->freelist = NULL;
dfb4f096 1650 c->node = page_to_nid(c->page);
1f84260c 1651unlock_out:
dfb4f096 1652 slab_unlock(c->page);
8ff12cfc 1653 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1654 return object;
1655
1656another_slab:
dfb4f096 1657 deactivate_slab(s, c);
81819f0f
CL
1658
1659new_slab:
dfb4f096
CL
1660 new = get_partial(s, gfpflags, node);
1661 if (new) {
1662 c->page = new;
8ff12cfc 1663 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1664 goto load_freelist;
81819f0f
CL
1665 }
1666
b811c202
CL
1667 if (gfpflags & __GFP_WAIT)
1668 local_irq_enable();
1669
dfb4f096 1670 new = new_slab(s, gfpflags, node);
b811c202
CL
1671
1672 if (gfpflags & __GFP_WAIT)
1673 local_irq_disable();
1674
dfb4f096
CL
1675 if (new) {
1676 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1677 stat(c, ALLOC_SLAB);
05aa3450 1678 if (c->page)
dfb4f096 1679 flush_slab(s, c);
dfb4f096 1680 slab_lock(new);
8a38082d 1681 __SetPageSlubFrozen(new);
dfb4f096 1682 c->page = new;
4b6f0750 1683 goto load_freelist;
81819f0f 1684 }
95f85989
PE
1685 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1686 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1687 return NULL;
81819f0f 1688debug:
dfb4f096 1689 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1690 goto another_slab;
894b8788 1691
dfb4f096 1692 c->page->inuse++;
b3fba8da 1693 c->page->freelist = object[c->offset];
ee3c72a1 1694 c->node = -1;
1f84260c 1695 goto unlock_out;
894b8788
CL
1696}
1697
1698/*
1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700 * have the fastpath folded into their functions. So no function call
1701 * overhead for requests that can be satisfied on the fastpath.
1702 *
1703 * The fastpath works by first checking if the lockless freelist can be used.
1704 * If not then __slab_alloc is called for slow processing.
1705 *
1706 * Otherwise we can simply pick the next object from the lockless free list.
1707 */
06428780 1708static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1709 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1710{
894b8788 1711 void **object;
dfb4f096 1712 struct kmem_cache_cpu *c;
1f84260c 1713 unsigned long flags;
bdb21928 1714 unsigned int objsize;
1f84260c 1715
dcce284a 1716 gfpflags &= gfp_allowed_mask;
7e85ee0c 1717
cf40bd16 1718 lockdep_trace_alloc(gfpflags);
89124d70 1719 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1720
773ff60e
AM
1721 if (should_failslab(s->objsize, gfpflags))
1722 return NULL;
1f84260c 1723
894b8788 1724 local_irq_save(flags);
dfb4f096 1725 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1726 objsize = c->objsize;
a973e9dd 1727 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1728
dfb4f096 1729 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1730
1731 else {
dfb4f096 1732 object = c->freelist;
b3fba8da 1733 c->freelist = object[c->offset];
8ff12cfc 1734 stat(c, ALLOC_FASTPATH);
894b8788
CL
1735 }
1736 local_irq_restore(flags);
d07dbea4
CL
1737
1738 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1739 memset(object, 0, objsize);
d07dbea4 1740
5a896d9e 1741 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
06f22f13 1742 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
5a896d9e 1743
894b8788 1744 return object;
81819f0f
CL
1745}
1746
1747void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1748{
5b882be4
EGM
1749 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1750
ca2b84cb 1751 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1752
1753 return ret;
81819f0f
CL
1754}
1755EXPORT_SYMBOL(kmem_cache_alloc);
1756
5b882be4
EGM
1757#ifdef CONFIG_KMEMTRACE
1758void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1759{
1760 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1761}
1762EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1763#endif
1764
81819f0f
CL
1765#ifdef CONFIG_NUMA
1766void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1767{
5b882be4
EGM
1768 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1769
ca2b84cb
EGM
1770 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1771 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1772
1773 return ret;
81819f0f
CL
1774}
1775EXPORT_SYMBOL(kmem_cache_alloc_node);
1776#endif
1777
5b882be4
EGM
1778#ifdef CONFIG_KMEMTRACE
1779void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1780 gfp_t gfpflags,
1781 int node)
1782{
1783 return slab_alloc(s, gfpflags, node, _RET_IP_);
1784}
1785EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1786#endif
1787
81819f0f 1788/*
894b8788
CL
1789 * Slow patch handling. This may still be called frequently since objects
1790 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1791 *
894b8788
CL
1792 * So we still attempt to reduce cache line usage. Just take the slab
1793 * lock and free the item. If there is no additional partial page
1794 * handling required then we can return immediately.
81819f0f 1795 */
894b8788 1796static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1797 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1798{
1799 void *prior;
1800 void **object = (void *)x;
8ff12cfc 1801 struct kmem_cache_cpu *c;
81819f0f 1802
8ff12cfc
CL
1803 c = get_cpu_slab(s, raw_smp_processor_id());
1804 stat(c, FREE_SLOWPATH);
81819f0f
CL
1805 slab_lock(page);
1806
8a38082d 1807 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1808 goto debug;
6446faa2 1809
81819f0f 1810checks_ok:
b3fba8da 1811 prior = object[offset] = page->freelist;
81819f0f
CL
1812 page->freelist = object;
1813 page->inuse--;
1814
8a38082d 1815 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1816 stat(c, FREE_FROZEN);
81819f0f 1817 goto out_unlock;
8ff12cfc 1818 }
81819f0f
CL
1819
1820 if (unlikely(!page->inuse))
1821 goto slab_empty;
1822
1823 /*
6446faa2 1824 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1825 * then add it.
1826 */
a973e9dd 1827 if (unlikely(!prior)) {
7c2e132c 1828 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1829 stat(c, FREE_ADD_PARTIAL);
1830 }
81819f0f
CL
1831
1832out_unlock:
1833 slab_unlock(page);
81819f0f
CL
1834 return;
1835
1836slab_empty:
a973e9dd 1837 if (prior) {
81819f0f 1838 /*
672bba3a 1839 * Slab still on the partial list.
81819f0f
CL
1840 */
1841 remove_partial(s, page);
8ff12cfc
CL
1842 stat(c, FREE_REMOVE_PARTIAL);
1843 }
81819f0f 1844 slab_unlock(page);
8ff12cfc 1845 stat(c, FREE_SLAB);
81819f0f 1846 discard_slab(s, page);
81819f0f
CL
1847 return;
1848
1849debug:
3ec09742 1850 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1851 goto out_unlock;
77c5e2d0 1852 goto checks_ok;
81819f0f
CL
1853}
1854
894b8788
CL
1855/*
1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857 * can perform fastpath freeing without additional function calls.
1858 *
1859 * The fastpath is only possible if we are freeing to the current cpu slab
1860 * of this processor. This typically the case if we have just allocated
1861 * the item before.
1862 *
1863 * If fastpath is not possible then fall back to __slab_free where we deal
1864 * with all sorts of special processing.
1865 */
06428780 1866static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1867 struct page *page, void *x, unsigned long addr)
894b8788
CL
1868{
1869 void **object = (void *)x;
dfb4f096 1870 struct kmem_cache_cpu *c;
1f84260c
CL
1871 unsigned long flags;
1872
06f22f13 1873 kmemleak_free_recursive(x, s->flags);
894b8788 1874 local_irq_save(flags);
dfb4f096 1875 c = get_cpu_slab(s, smp_processor_id());
5a896d9e 1876 kmemcheck_slab_free(s, object, c->objsize);
27d9e4e9 1877 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1879 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1880 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1881 object[c->offset] = c->freelist;
dfb4f096 1882 c->freelist = object;
8ff12cfc 1883 stat(c, FREE_FASTPATH);
894b8788 1884 } else
b3fba8da 1885 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1886
1887 local_irq_restore(flags);
1888}
1889
81819f0f
CL
1890void kmem_cache_free(struct kmem_cache *s, void *x)
1891{
77c5e2d0 1892 struct page *page;
81819f0f 1893
b49af68f 1894 page = virt_to_head_page(x);
81819f0f 1895
ce71e27c 1896 slab_free(s, page, x, _RET_IP_);
5b882be4 1897
ca2b84cb 1898 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1899}
1900EXPORT_SYMBOL(kmem_cache_free);
1901
e9beef18 1902/* Figure out on which slab page the object resides */
81819f0f
CL
1903static struct page *get_object_page(const void *x)
1904{
b49af68f 1905 struct page *page = virt_to_head_page(x);
81819f0f
CL
1906
1907 if (!PageSlab(page))
1908 return NULL;
1909
1910 return page;
1911}
1912
1913/*
672bba3a
CL
1914 * Object placement in a slab is made very easy because we always start at
1915 * offset 0. If we tune the size of the object to the alignment then we can
1916 * get the required alignment by putting one properly sized object after
1917 * another.
81819f0f
CL
1918 *
1919 * Notice that the allocation order determines the sizes of the per cpu
1920 * caches. Each processor has always one slab available for allocations.
1921 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1922 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1923 * locking overhead.
81819f0f
CL
1924 */
1925
1926/*
1927 * Mininum / Maximum order of slab pages. This influences locking overhead
1928 * and slab fragmentation. A higher order reduces the number of partial slabs
1929 * and increases the number of allocations possible without having to
1930 * take the list_lock.
1931 */
1932static int slub_min_order;
114e9e89 1933static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1934static int slub_min_objects;
81819f0f
CL
1935
1936/*
1937 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1938 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1939 */
1940static int slub_nomerge;
1941
81819f0f
CL
1942/*
1943 * Calculate the order of allocation given an slab object size.
1944 *
672bba3a
CL
1945 * The order of allocation has significant impact on performance and other
1946 * system components. Generally order 0 allocations should be preferred since
1947 * order 0 does not cause fragmentation in the page allocator. Larger objects
1948 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1949 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1950 * would be wasted.
1951 *
1952 * In order to reach satisfactory performance we must ensure that a minimum
1953 * number of objects is in one slab. Otherwise we may generate too much
1954 * activity on the partial lists which requires taking the list_lock. This is
1955 * less a concern for large slabs though which are rarely used.
81819f0f 1956 *
672bba3a
CL
1957 * slub_max_order specifies the order where we begin to stop considering the
1958 * number of objects in a slab as critical. If we reach slub_max_order then
1959 * we try to keep the page order as low as possible. So we accept more waste
1960 * of space in favor of a small page order.
81819f0f 1961 *
672bba3a
CL
1962 * Higher order allocations also allow the placement of more objects in a
1963 * slab and thereby reduce object handling overhead. If the user has
1964 * requested a higher mininum order then we start with that one instead of
1965 * the smallest order which will fit the object.
81819f0f 1966 */
5e6d444e
CL
1967static inline int slab_order(int size, int min_objects,
1968 int max_order, int fract_leftover)
81819f0f
CL
1969{
1970 int order;
1971 int rem;
6300ea75 1972 int min_order = slub_min_order;
81819f0f 1973
210b5c06
CG
1974 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1975 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1976
6300ea75 1977 for (order = max(min_order,
5e6d444e
CL
1978 fls(min_objects * size - 1) - PAGE_SHIFT);
1979 order <= max_order; order++) {
81819f0f 1980
5e6d444e 1981 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1982
5e6d444e 1983 if (slab_size < min_objects * size)
81819f0f
CL
1984 continue;
1985
1986 rem = slab_size % size;
1987
5e6d444e 1988 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1989 break;
1990
1991 }
672bba3a 1992
81819f0f
CL
1993 return order;
1994}
1995
5e6d444e
CL
1996static inline int calculate_order(int size)
1997{
1998 int order;
1999 int min_objects;
2000 int fraction;
e8120ff1 2001 int max_objects;
5e6d444e
CL
2002
2003 /*
2004 * Attempt to find best configuration for a slab. This
2005 * works by first attempting to generate a layout with
2006 * the best configuration and backing off gradually.
2007 *
2008 * First we reduce the acceptable waste in a slab. Then
2009 * we reduce the minimum objects required in a slab.
2010 */
2011 min_objects = slub_min_objects;
9b2cd506
CL
2012 if (!min_objects)
2013 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2014 max_objects = (PAGE_SIZE << slub_max_order)/size;
2015 min_objects = min(min_objects, max_objects);
2016
5e6d444e 2017 while (min_objects > 1) {
c124f5b5 2018 fraction = 16;
5e6d444e
CL
2019 while (fraction >= 4) {
2020 order = slab_order(size, min_objects,
2021 slub_max_order, fraction);
2022 if (order <= slub_max_order)
2023 return order;
2024 fraction /= 2;
2025 }
e8120ff1 2026 min_objects --;
5e6d444e
CL
2027 }
2028
2029 /*
2030 * We were unable to place multiple objects in a slab. Now
2031 * lets see if we can place a single object there.
2032 */
2033 order = slab_order(size, 1, slub_max_order, 1);
2034 if (order <= slub_max_order)
2035 return order;
2036
2037 /*
2038 * Doh this slab cannot be placed using slub_max_order.
2039 */
2040 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2041 if (order < MAX_ORDER)
5e6d444e
CL
2042 return order;
2043 return -ENOSYS;
2044}
2045
81819f0f 2046/*
672bba3a 2047 * Figure out what the alignment of the objects will be.
81819f0f
CL
2048 */
2049static unsigned long calculate_alignment(unsigned long flags,
2050 unsigned long align, unsigned long size)
2051{
2052 /*
6446faa2
CL
2053 * If the user wants hardware cache aligned objects then follow that
2054 * suggestion if the object is sufficiently large.
81819f0f 2055 *
6446faa2
CL
2056 * The hardware cache alignment cannot override the specified
2057 * alignment though. If that is greater then use it.
81819f0f 2058 */
b6210386
NP
2059 if (flags & SLAB_HWCACHE_ALIGN) {
2060 unsigned long ralign = cache_line_size();
2061 while (size <= ralign / 2)
2062 ralign /= 2;
2063 align = max(align, ralign);
2064 }
81819f0f
CL
2065
2066 if (align < ARCH_SLAB_MINALIGN)
b6210386 2067 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2068
2069 return ALIGN(align, sizeof(void *));
2070}
2071
dfb4f096
CL
2072static void init_kmem_cache_cpu(struct kmem_cache *s,
2073 struct kmem_cache_cpu *c)
2074{
2075 c->page = NULL;
a973e9dd 2076 c->freelist = NULL;
dfb4f096 2077 c->node = 0;
42a9fdbb
CL
2078 c->offset = s->offset / sizeof(void *);
2079 c->objsize = s->objsize;
62f75532
PE
2080#ifdef CONFIG_SLUB_STATS
2081 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2082#endif
dfb4f096
CL
2083}
2084
5595cffc
PE
2085static void
2086init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2087{
2088 n->nr_partial = 0;
81819f0f
CL
2089 spin_lock_init(&n->list_lock);
2090 INIT_LIST_HEAD(&n->partial);
8ab1372f 2091#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2092 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2093 atomic_long_set(&n->total_objects, 0);
643b1138 2094 INIT_LIST_HEAD(&n->full);
8ab1372f 2095#endif
81819f0f
CL
2096}
2097
4c93c355
CL
2098#ifdef CONFIG_SMP
2099/*
2100 * Per cpu array for per cpu structures.
2101 *
2102 * The per cpu array places all kmem_cache_cpu structures from one processor
2103 * close together meaning that it becomes possible that multiple per cpu
2104 * structures are contained in one cacheline. This may be particularly
2105 * beneficial for the kmalloc caches.
2106 *
2107 * A desktop system typically has around 60-80 slabs. With 100 here we are
2108 * likely able to get per cpu structures for all caches from the array defined
2109 * here. We must be able to cover all kmalloc caches during bootstrap.
2110 *
2111 * If the per cpu array is exhausted then fall back to kmalloc
2112 * of individual cachelines. No sharing is possible then.
2113 */
2114#define NR_KMEM_CACHE_CPU 100
2115
2116static DEFINE_PER_CPU(struct kmem_cache_cpu,
2117 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2118
2119static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2120static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2121
2122static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2123 int cpu, gfp_t flags)
2124{
2125 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2126
2127 if (c)
2128 per_cpu(kmem_cache_cpu_free, cpu) =
2129 (void *)c->freelist;
2130 else {
2131 /* Table overflow: So allocate ourselves */
2132 c = kmalloc_node(
2133 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2134 flags, cpu_to_node(cpu));
2135 if (!c)
2136 return NULL;
2137 }
2138
2139 init_kmem_cache_cpu(s, c);
2140 return c;
2141}
2142
2143static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2144{
2145 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2146 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2147 kfree(c);
2148 return;
2149 }
2150 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2151 per_cpu(kmem_cache_cpu_free, cpu) = c;
2152}
2153
2154static void free_kmem_cache_cpus(struct kmem_cache *s)
2155{
2156 int cpu;
2157
2158 for_each_online_cpu(cpu) {
2159 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2160
2161 if (c) {
2162 s->cpu_slab[cpu] = NULL;
2163 free_kmem_cache_cpu(c, cpu);
2164 }
2165 }
2166}
2167
2168static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2169{
2170 int cpu;
2171
2172 for_each_online_cpu(cpu) {
2173 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2174
2175 if (c)
2176 continue;
2177
2178 c = alloc_kmem_cache_cpu(s, cpu, flags);
2179 if (!c) {
2180 free_kmem_cache_cpus(s);
2181 return 0;
2182 }
2183 s->cpu_slab[cpu] = c;
2184 }
2185 return 1;
2186}
2187
2188/*
2189 * Initialize the per cpu array.
2190 */
2191static void init_alloc_cpu_cpu(int cpu)
2192{
2193 int i;
2194
174596a0 2195 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2196 return;
2197
2198 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2199 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2200
174596a0 2201 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2202}
2203
2204static void __init init_alloc_cpu(void)
2205{
2206 int cpu;
2207
2208 for_each_online_cpu(cpu)
2209 init_alloc_cpu_cpu(cpu);
2210 }
2211
2212#else
2213static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2214static inline void init_alloc_cpu(void) {}
2215
2216static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2217{
2218 init_kmem_cache_cpu(s, &s->cpu_slab);
2219 return 1;
2220}
2221#endif
2222
81819f0f
CL
2223#ifdef CONFIG_NUMA
2224/*
2225 * No kmalloc_node yet so do it by hand. We know that this is the first
2226 * slab on the node for this slabcache. There are no concurrent accesses
2227 * possible.
2228 *
2229 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231 * memory on a fresh node that has no slab structures yet.
81819f0f 2232 */
0094de92 2233static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2234{
2235 struct page *page;
2236 struct kmem_cache_node *n;
ba84c73c 2237 unsigned long flags;
81819f0f
CL
2238
2239 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2240
a2f92ee7 2241 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2242
2243 BUG_ON(!page);
a2f92ee7
CL
2244 if (page_to_nid(page) != node) {
2245 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2246 "node %d\n", node);
2247 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2248 "in order to be able to continue\n");
2249 }
2250
81819f0f
CL
2251 n = page->freelist;
2252 BUG_ON(!n);
2253 page->freelist = get_freepointer(kmalloc_caches, n);
2254 page->inuse++;
2255 kmalloc_caches->node[node] = n;
8ab1372f 2256#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2257 init_object(kmalloc_caches, n, 1);
2258 init_tracking(kmalloc_caches, n);
8ab1372f 2259#endif
5595cffc 2260 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2261 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2262
ba84c73c 2263 /*
2264 * lockdep requires consistent irq usage for each lock
2265 * so even though there cannot be a race this early in
2266 * the boot sequence, we still disable irqs.
2267 */
2268 local_irq_save(flags);
7c2e132c 2269 add_partial(n, page, 0);
ba84c73c 2270 local_irq_restore(flags);
81819f0f
CL
2271}
2272
2273static void free_kmem_cache_nodes(struct kmem_cache *s)
2274{
2275 int node;
2276
f64dc58c 2277 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2278 struct kmem_cache_node *n = s->node[node];
2279 if (n && n != &s->local_node)
2280 kmem_cache_free(kmalloc_caches, n);
2281 s->node[node] = NULL;
2282 }
2283}
2284
2285static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2286{
2287 int node;
2288 int local_node;
2289
2290 if (slab_state >= UP)
2291 local_node = page_to_nid(virt_to_page(s));
2292 else
2293 local_node = 0;
2294
f64dc58c 2295 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2296 struct kmem_cache_node *n;
2297
2298 if (local_node == node)
2299 n = &s->local_node;
2300 else {
2301 if (slab_state == DOWN) {
0094de92 2302 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2303 continue;
2304 }
2305 n = kmem_cache_alloc_node(kmalloc_caches,
2306 gfpflags, node);
2307
2308 if (!n) {
2309 free_kmem_cache_nodes(s);
2310 return 0;
2311 }
2312
2313 }
2314 s->node[node] = n;
5595cffc 2315 init_kmem_cache_node(n, s);
81819f0f
CL
2316 }
2317 return 1;
2318}
2319#else
2320static void free_kmem_cache_nodes(struct kmem_cache *s)
2321{
2322}
2323
2324static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2325{
5595cffc 2326 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2327 return 1;
2328}
2329#endif
2330
c0bdb232 2331static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2332{
2333 if (min < MIN_PARTIAL)
2334 min = MIN_PARTIAL;
2335 else if (min > MAX_PARTIAL)
2336 min = MAX_PARTIAL;
2337 s->min_partial = min;
2338}
2339
81819f0f
CL
2340/*
2341 * calculate_sizes() determines the order and the distribution of data within
2342 * a slab object.
2343 */
06b285dc 2344static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2345{
2346 unsigned long flags = s->flags;
2347 unsigned long size = s->objsize;
2348 unsigned long align = s->align;
834f3d11 2349 int order;
81819f0f 2350
d8b42bf5
CL
2351 /*
2352 * Round up object size to the next word boundary. We can only
2353 * place the free pointer at word boundaries and this determines
2354 * the possible location of the free pointer.
2355 */
2356 size = ALIGN(size, sizeof(void *));
2357
2358#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2359 /*
2360 * Determine if we can poison the object itself. If the user of
2361 * the slab may touch the object after free or before allocation
2362 * then we should never poison the object itself.
2363 */
2364 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2365 !s->ctor)
81819f0f
CL
2366 s->flags |= __OBJECT_POISON;
2367 else
2368 s->flags &= ~__OBJECT_POISON;
2369
81819f0f
CL
2370
2371 /*
672bba3a 2372 * If we are Redzoning then check if there is some space between the
81819f0f 2373 * end of the object and the free pointer. If not then add an
672bba3a 2374 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2375 */
2376 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2377 size += sizeof(void *);
41ecc55b 2378#endif
81819f0f
CL
2379
2380 /*
672bba3a
CL
2381 * With that we have determined the number of bytes in actual use
2382 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2383 */
2384 s->inuse = size;
2385
2386 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2387 s->ctor)) {
81819f0f
CL
2388 /*
2389 * Relocate free pointer after the object if it is not
2390 * permitted to overwrite the first word of the object on
2391 * kmem_cache_free.
2392 *
2393 * This is the case if we do RCU, have a constructor or
2394 * destructor or are poisoning the objects.
2395 */
2396 s->offset = size;
2397 size += sizeof(void *);
2398 }
2399
c12b3c62 2400#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2401 if (flags & SLAB_STORE_USER)
2402 /*
2403 * Need to store information about allocs and frees after
2404 * the object.
2405 */
2406 size += 2 * sizeof(struct track);
2407
be7b3fbc 2408 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2409 /*
2410 * Add some empty padding so that we can catch
2411 * overwrites from earlier objects rather than let
2412 * tracking information or the free pointer be
0211a9c8 2413 * corrupted if a user writes before the start
81819f0f
CL
2414 * of the object.
2415 */
2416 size += sizeof(void *);
41ecc55b 2417#endif
672bba3a 2418
81819f0f
CL
2419 /*
2420 * Determine the alignment based on various parameters that the
65c02d4c
CL
2421 * user specified and the dynamic determination of cache line size
2422 * on bootup.
81819f0f
CL
2423 */
2424 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2425 s->align = align;
81819f0f
CL
2426
2427 /*
2428 * SLUB stores one object immediately after another beginning from
2429 * offset 0. In order to align the objects we have to simply size
2430 * each object to conform to the alignment.
2431 */
2432 size = ALIGN(size, align);
2433 s->size = size;
06b285dc
CL
2434 if (forced_order >= 0)
2435 order = forced_order;
2436 else
2437 order = calculate_order(size);
81819f0f 2438
834f3d11 2439 if (order < 0)
81819f0f
CL
2440 return 0;
2441
b7a49f0d 2442 s->allocflags = 0;
834f3d11 2443 if (order)
b7a49f0d
CL
2444 s->allocflags |= __GFP_COMP;
2445
2446 if (s->flags & SLAB_CACHE_DMA)
2447 s->allocflags |= SLUB_DMA;
2448
2449 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2450 s->allocflags |= __GFP_RECLAIMABLE;
2451
81819f0f
CL
2452 /*
2453 * Determine the number of objects per slab
2454 */
834f3d11 2455 s->oo = oo_make(order, size);
65c3376a 2456 s->min = oo_make(get_order(size), size);
205ab99d
CL
2457 if (oo_objects(s->oo) > oo_objects(s->max))
2458 s->max = s->oo;
81819f0f 2459
834f3d11 2460 return !!oo_objects(s->oo);
81819f0f
CL
2461
2462}
2463
81819f0f
CL
2464static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2465 const char *name, size_t size,
2466 size_t align, unsigned long flags,
51cc5068 2467 void (*ctor)(void *))
81819f0f
CL
2468{
2469 memset(s, 0, kmem_size);
2470 s->name = name;
2471 s->ctor = ctor;
81819f0f 2472 s->objsize = size;
81819f0f 2473 s->align = align;
ba0268a8 2474 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2475
06b285dc 2476 if (!calculate_sizes(s, -1))
81819f0f 2477 goto error;
3de47213
DR
2478 if (disable_higher_order_debug) {
2479 /*
2480 * Disable debugging flags that store metadata if the min slab
2481 * order increased.
2482 */
2483 if (get_order(s->size) > get_order(s->objsize)) {
2484 s->flags &= ~DEBUG_METADATA_FLAGS;
2485 s->offset = 0;
2486 if (!calculate_sizes(s, -1))
2487 goto error;
2488 }
2489 }
81819f0f 2490
3b89d7d8
DR
2491 /*
2492 * The larger the object size is, the more pages we want on the partial
2493 * list to avoid pounding the page allocator excessively.
2494 */
c0bdb232 2495 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2496 s->refcount = 1;
2497#ifdef CONFIG_NUMA
e2cb96b7 2498 s->remote_node_defrag_ratio = 1000;
81819f0f 2499#endif
dfb4f096
CL
2500 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2501 goto error;
81819f0f 2502
dfb4f096 2503 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2504 return 1;
4c93c355 2505 free_kmem_cache_nodes(s);
81819f0f
CL
2506error:
2507 if (flags & SLAB_PANIC)
2508 panic("Cannot create slab %s size=%lu realsize=%u "
2509 "order=%u offset=%u flags=%lx\n",
834f3d11 2510 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2511 s->offset, flags);
2512 return 0;
2513}
81819f0f
CL
2514
2515/*
2516 * Check if a given pointer is valid
2517 */
2518int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2519{
06428780 2520 struct page *page;
81819f0f
CL
2521
2522 page = get_object_page(object);
2523
2524 if (!page || s != page->slab)
2525 /* No slab or wrong slab */
2526 return 0;
2527
abcd08a6 2528 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2529 return 0;
2530
2531 /*
2532 * We could also check if the object is on the slabs freelist.
2533 * But this would be too expensive and it seems that the main
6446faa2 2534 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2535 * to a certain slab.
2536 */
2537 return 1;
2538}
2539EXPORT_SYMBOL(kmem_ptr_validate);
2540
2541/*
2542 * Determine the size of a slab object
2543 */
2544unsigned int kmem_cache_size(struct kmem_cache *s)
2545{
2546 return s->objsize;
2547}
2548EXPORT_SYMBOL(kmem_cache_size);
2549
2550const char *kmem_cache_name(struct kmem_cache *s)
2551{
2552 return s->name;
2553}
2554EXPORT_SYMBOL(kmem_cache_name);
2555
33b12c38
CL
2556static void list_slab_objects(struct kmem_cache *s, struct page *page,
2557 const char *text)
2558{
2559#ifdef CONFIG_SLUB_DEBUG
2560 void *addr = page_address(page);
2561 void *p;
2562 DECLARE_BITMAP(map, page->objects);
2563
2564 bitmap_zero(map, page->objects);
2565 slab_err(s, page, "%s", text);
2566 slab_lock(page);
2567 for_each_free_object(p, s, page->freelist)
2568 set_bit(slab_index(p, s, addr), map);
2569
2570 for_each_object(p, s, addr, page->objects) {
2571
2572 if (!test_bit(slab_index(p, s, addr), map)) {
2573 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2574 p, p - addr);
2575 print_tracking(s, p);
2576 }
2577 }
2578 slab_unlock(page);
2579#endif
2580}
2581
81819f0f 2582/*
599870b1 2583 * Attempt to free all partial slabs on a node.
81819f0f 2584 */
599870b1 2585static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2586{
81819f0f
CL
2587 unsigned long flags;
2588 struct page *page, *h;
2589
2590 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2591 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2592 if (!page->inuse) {
2593 list_del(&page->lru);
2594 discard_slab(s, page);
599870b1 2595 n->nr_partial--;
33b12c38
CL
2596 } else {
2597 list_slab_objects(s, page,
2598 "Objects remaining on kmem_cache_close()");
599870b1 2599 }
33b12c38 2600 }
81819f0f 2601 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2602}
2603
2604/*
672bba3a 2605 * Release all resources used by a slab cache.
81819f0f 2606 */
0c710013 2607static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2608{
2609 int node;
2610
2611 flush_all(s);
2612
2613 /* Attempt to free all objects */
4c93c355 2614 free_kmem_cache_cpus(s);
f64dc58c 2615 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2616 struct kmem_cache_node *n = get_node(s, node);
2617
599870b1
CL
2618 free_partial(s, n);
2619 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2620 return 1;
2621 }
2622 free_kmem_cache_nodes(s);
2623 return 0;
2624}
2625
2626/*
2627 * Close a cache and release the kmem_cache structure
2628 * (must be used for caches created using kmem_cache_create)
2629 */
2630void kmem_cache_destroy(struct kmem_cache *s)
2631{
7ed9f7e5
PM
2632 if (s->flags & SLAB_DESTROY_BY_RCU)
2633 rcu_barrier();
81819f0f
CL
2634 down_write(&slub_lock);
2635 s->refcount--;
2636 if (!s->refcount) {
2637 list_del(&s->list);
a0e1d1be 2638 up_write(&slub_lock);
d629d819
PE
2639 if (kmem_cache_close(s)) {
2640 printk(KERN_ERR "SLUB %s: %s called for cache that "
2641 "still has objects.\n", s->name, __func__);
2642 dump_stack();
2643 }
81819f0f 2644 sysfs_slab_remove(s);
a0e1d1be
CL
2645 } else
2646 up_write(&slub_lock);
81819f0f
CL
2647}
2648EXPORT_SYMBOL(kmem_cache_destroy);
2649
2650/********************************************************************
2651 * Kmalloc subsystem
2652 *******************************************************************/
2653
ffadd4d0 2654struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2655EXPORT_SYMBOL(kmalloc_caches);
2656
81819f0f
CL
2657static int __init setup_slub_min_order(char *str)
2658{
06428780 2659 get_option(&str, &slub_min_order);
81819f0f
CL
2660
2661 return 1;
2662}
2663
2664__setup("slub_min_order=", setup_slub_min_order);
2665
2666static int __init setup_slub_max_order(char *str)
2667{
06428780 2668 get_option(&str, &slub_max_order);
818cf590 2669 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2670
2671 return 1;
2672}
2673
2674__setup("slub_max_order=", setup_slub_max_order);
2675
2676static int __init setup_slub_min_objects(char *str)
2677{
06428780 2678 get_option(&str, &slub_min_objects);
81819f0f
CL
2679
2680 return 1;
2681}
2682
2683__setup("slub_min_objects=", setup_slub_min_objects);
2684
2685static int __init setup_slub_nomerge(char *str)
2686{
2687 slub_nomerge = 1;
2688 return 1;
2689}
2690
2691__setup("slub_nomerge", setup_slub_nomerge);
2692
81819f0f
CL
2693static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2694 const char *name, int size, gfp_t gfp_flags)
2695{
2696 unsigned int flags = 0;
2697
2698 if (gfp_flags & SLUB_DMA)
2699 flags = SLAB_CACHE_DMA;
2700
83b519e8
PE
2701 /*
2702 * This function is called with IRQs disabled during early-boot on
2703 * single CPU so there's no need to take slub_lock here.
2704 */
81819f0f 2705 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2706 flags, NULL))
81819f0f
CL
2707 goto panic;
2708
2709 list_add(&s->list, &slab_caches);
83b519e8 2710
81819f0f
CL
2711 if (sysfs_slab_add(s))
2712 goto panic;
2713 return s;
2714
2715panic:
2716 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2717}
2718
2e443fd0 2719#ifdef CONFIG_ZONE_DMA
ffadd4d0 2720static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2721
2722static void sysfs_add_func(struct work_struct *w)
2723{
2724 struct kmem_cache *s;
2725
2726 down_write(&slub_lock);
2727 list_for_each_entry(s, &slab_caches, list) {
2728 if (s->flags & __SYSFS_ADD_DEFERRED) {
2729 s->flags &= ~__SYSFS_ADD_DEFERRED;
2730 sysfs_slab_add(s);
2731 }
2732 }
2733 up_write(&slub_lock);
2734}
2735
2736static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2737
2e443fd0
CL
2738static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2739{
2740 struct kmem_cache *s;
2e443fd0
CL
2741 char *text;
2742 size_t realsize;
964cf35c 2743 unsigned long slabflags;
2e443fd0
CL
2744
2745 s = kmalloc_caches_dma[index];
2746 if (s)
2747 return s;
2748
2749 /* Dynamically create dma cache */
1ceef402
CL
2750 if (flags & __GFP_WAIT)
2751 down_write(&slub_lock);
2752 else {
2753 if (!down_write_trylock(&slub_lock))
2754 goto out;
2755 }
2756
2757 if (kmalloc_caches_dma[index])
2758 goto unlock_out;
2e443fd0 2759
7b55f620 2760 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2761 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2762 (unsigned int)realsize);
1ceef402
CL
2763 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2764
964cf35c
NP
2765 /*
2766 * Must defer sysfs creation to a workqueue because we don't know
2767 * what context we are called from. Before sysfs comes up, we don't
2768 * need to do anything because our sysfs initcall will start by
2769 * adding all existing slabs to sysfs.
2770 */
5caf5c7d 2771 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2772 if (slab_state >= SYSFS)
2773 slabflags |= __SYSFS_ADD_DEFERRED;
2774
1ceef402 2775 if (!s || !text || !kmem_cache_open(s, flags, text,
964cf35c 2776 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
1ceef402
CL
2777 kfree(s);
2778 kfree(text);
2779 goto unlock_out;
dfce8648 2780 }
1ceef402
CL
2781
2782 list_add(&s->list, &slab_caches);
2783 kmalloc_caches_dma[index] = s;
2784
964cf35c
NP
2785 if (slab_state >= SYSFS)
2786 schedule_work(&sysfs_add_work);
1ceef402
CL
2787
2788unlock_out:
dfce8648 2789 up_write(&slub_lock);
1ceef402 2790out:
dfce8648 2791 return kmalloc_caches_dma[index];
2e443fd0
CL
2792}
2793#endif
2794
f1b26339
CL
2795/*
2796 * Conversion table for small slabs sizes / 8 to the index in the
2797 * kmalloc array. This is necessary for slabs < 192 since we have non power
2798 * of two cache sizes there. The size of larger slabs can be determined using
2799 * fls.
2800 */
2801static s8 size_index[24] = {
2802 3, /* 8 */
2803 4, /* 16 */
2804 5, /* 24 */
2805 5, /* 32 */
2806 6, /* 40 */
2807 6, /* 48 */
2808 6, /* 56 */
2809 6, /* 64 */
2810 1, /* 72 */
2811 1, /* 80 */
2812 1, /* 88 */
2813 1, /* 96 */
2814 7, /* 104 */
2815 7, /* 112 */
2816 7, /* 120 */
2817 7, /* 128 */
2818 2, /* 136 */
2819 2, /* 144 */
2820 2, /* 152 */
2821 2, /* 160 */
2822 2, /* 168 */
2823 2, /* 176 */
2824 2, /* 184 */
2825 2 /* 192 */
2826};
2827
81819f0f
CL
2828static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2829{
f1b26339 2830 int index;
81819f0f 2831
f1b26339
CL
2832 if (size <= 192) {
2833 if (!size)
2834 return ZERO_SIZE_PTR;
81819f0f 2835
f1b26339 2836 index = size_index[(size - 1) / 8];
aadb4bc4 2837 } else
f1b26339 2838 index = fls(size - 1);
81819f0f
CL
2839
2840#ifdef CONFIG_ZONE_DMA
f1b26339 2841 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2842 return dma_kmalloc_cache(index, flags);
f1b26339 2843
81819f0f
CL
2844#endif
2845 return &kmalloc_caches[index];
2846}
2847
2848void *__kmalloc(size_t size, gfp_t flags)
2849{
aadb4bc4 2850 struct kmem_cache *s;
5b882be4 2851 void *ret;
81819f0f 2852
ffadd4d0 2853 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2854 return kmalloc_large(size, flags);
aadb4bc4
CL
2855
2856 s = get_slab(size, flags);
2857
2858 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2859 return s;
2860
5b882be4
EGM
2861 ret = slab_alloc(s, flags, -1, _RET_IP_);
2862
ca2b84cb 2863 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2864
2865 return ret;
81819f0f
CL
2866}
2867EXPORT_SYMBOL(__kmalloc);
2868
f619cfe1
CL
2869static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2870{
b1eeab67 2871 struct page *page;
f619cfe1 2872
b1eeab67
VN
2873 flags |= __GFP_COMP | __GFP_NOTRACK;
2874 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1
CL
2875 if (page)
2876 return page_address(page);
2877 else
2878 return NULL;
2879}
2880
81819f0f
CL
2881#ifdef CONFIG_NUMA
2882void *__kmalloc_node(size_t size, gfp_t flags, int node)
2883{
aadb4bc4 2884 struct kmem_cache *s;
5b882be4 2885 void *ret;
81819f0f 2886
057685cf 2887 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2888 ret = kmalloc_large_node(size, flags, node);
2889
ca2b84cb
EGM
2890 trace_kmalloc_node(_RET_IP_, ret,
2891 size, PAGE_SIZE << get_order(size),
2892 flags, node);
5b882be4
EGM
2893
2894 return ret;
2895 }
aadb4bc4
CL
2896
2897 s = get_slab(size, flags);
2898
2899 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2900 return s;
2901
5b882be4
EGM
2902 ret = slab_alloc(s, flags, node, _RET_IP_);
2903
ca2b84cb 2904 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2905
2906 return ret;
81819f0f
CL
2907}
2908EXPORT_SYMBOL(__kmalloc_node);
2909#endif
2910
2911size_t ksize(const void *object)
2912{
272c1d21 2913 struct page *page;
81819f0f
CL
2914 struct kmem_cache *s;
2915
ef8b4520 2916 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2917 return 0;
2918
294a80a8 2919 page = virt_to_head_page(object);
294a80a8 2920
76994412
PE
2921 if (unlikely(!PageSlab(page))) {
2922 WARN_ON(!PageCompound(page));
294a80a8 2923 return PAGE_SIZE << compound_order(page);
76994412 2924 }
81819f0f 2925 s = page->slab;
81819f0f 2926
ae20bfda 2927#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2928 /*
2929 * Debugging requires use of the padding between object
2930 * and whatever may come after it.
2931 */
2932 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2933 return s->objsize;
2934
ae20bfda 2935#endif
81819f0f
CL
2936 /*
2937 * If we have the need to store the freelist pointer
2938 * back there or track user information then we can
2939 * only use the space before that information.
2940 */
2941 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2942 return s->inuse;
81819f0f
CL
2943 /*
2944 * Else we can use all the padding etc for the allocation
2945 */
2946 return s->size;
2947}
b1aabecd 2948EXPORT_SYMBOL(ksize);
81819f0f
CL
2949
2950void kfree(const void *x)
2951{
81819f0f 2952 struct page *page;
5bb983b0 2953 void *object = (void *)x;
81819f0f 2954
2121db74
PE
2955 trace_kfree(_RET_IP_, x);
2956
2408c550 2957 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2958 return;
2959
b49af68f 2960 page = virt_to_head_page(x);
aadb4bc4 2961 if (unlikely(!PageSlab(page))) {
0937502a 2962 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2963 put_page(page);
2964 return;
2965 }
ce71e27c 2966 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2967}
2968EXPORT_SYMBOL(kfree);
2969
2086d26a 2970/*
672bba3a
CL
2971 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2972 * the remaining slabs by the number of items in use. The slabs with the
2973 * most items in use come first. New allocations will then fill those up
2974 * and thus they can be removed from the partial lists.
2975 *
2976 * The slabs with the least items are placed last. This results in them
2977 * being allocated from last increasing the chance that the last objects
2978 * are freed in them.
2086d26a
CL
2979 */
2980int kmem_cache_shrink(struct kmem_cache *s)
2981{
2982 int node;
2983 int i;
2984 struct kmem_cache_node *n;
2985 struct page *page;
2986 struct page *t;
205ab99d 2987 int objects = oo_objects(s->max);
2086d26a 2988 struct list_head *slabs_by_inuse =
834f3d11 2989 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2990 unsigned long flags;
2991
2992 if (!slabs_by_inuse)
2993 return -ENOMEM;
2994
2995 flush_all(s);
f64dc58c 2996 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2997 n = get_node(s, node);
2998
2999 if (!n->nr_partial)
3000 continue;
3001
834f3d11 3002 for (i = 0; i < objects; i++)
2086d26a
CL
3003 INIT_LIST_HEAD(slabs_by_inuse + i);
3004
3005 spin_lock_irqsave(&n->list_lock, flags);
3006
3007 /*
672bba3a 3008 * Build lists indexed by the items in use in each slab.
2086d26a 3009 *
672bba3a
CL
3010 * Note that concurrent frees may occur while we hold the
3011 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3012 */
3013 list_for_each_entry_safe(page, t, &n->partial, lru) {
3014 if (!page->inuse && slab_trylock(page)) {
3015 /*
3016 * Must hold slab lock here because slab_free
3017 * may have freed the last object and be
3018 * waiting to release the slab.
3019 */
3020 list_del(&page->lru);
3021 n->nr_partial--;
3022 slab_unlock(page);
3023 discard_slab(s, page);
3024 } else {
fcda3d89
CL
3025 list_move(&page->lru,
3026 slabs_by_inuse + page->inuse);
2086d26a
CL
3027 }
3028 }
3029
2086d26a 3030 /*
672bba3a
CL
3031 * Rebuild the partial list with the slabs filled up most
3032 * first and the least used slabs at the end.
2086d26a 3033 */
834f3d11 3034 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3035 list_splice(slabs_by_inuse + i, n->partial.prev);
3036
2086d26a
CL
3037 spin_unlock_irqrestore(&n->list_lock, flags);
3038 }
3039
3040 kfree(slabs_by_inuse);
3041 return 0;
3042}
3043EXPORT_SYMBOL(kmem_cache_shrink);
3044
b9049e23
YG
3045#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3046static int slab_mem_going_offline_callback(void *arg)
3047{
3048 struct kmem_cache *s;
3049
3050 down_read(&slub_lock);
3051 list_for_each_entry(s, &slab_caches, list)
3052 kmem_cache_shrink(s);
3053 up_read(&slub_lock);
3054
3055 return 0;
3056}
3057
3058static void slab_mem_offline_callback(void *arg)
3059{
3060 struct kmem_cache_node *n;
3061 struct kmem_cache *s;
3062 struct memory_notify *marg = arg;
3063 int offline_node;
3064
3065 offline_node = marg->status_change_nid;
3066
3067 /*
3068 * If the node still has available memory. we need kmem_cache_node
3069 * for it yet.
3070 */
3071 if (offline_node < 0)
3072 return;
3073
3074 down_read(&slub_lock);
3075 list_for_each_entry(s, &slab_caches, list) {
3076 n = get_node(s, offline_node);
3077 if (n) {
3078 /*
3079 * if n->nr_slabs > 0, slabs still exist on the node
3080 * that is going down. We were unable to free them,
3081 * and offline_pages() function shoudn't call this
3082 * callback. So, we must fail.
3083 */
0f389ec6 3084 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3085
3086 s->node[offline_node] = NULL;
3087 kmem_cache_free(kmalloc_caches, n);
3088 }
3089 }
3090 up_read(&slub_lock);
3091}
3092
3093static int slab_mem_going_online_callback(void *arg)
3094{
3095 struct kmem_cache_node *n;
3096 struct kmem_cache *s;
3097 struct memory_notify *marg = arg;
3098 int nid = marg->status_change_nid;
3099 int ret = 0;
3100
3101 /*
3102 * If the node's memory is already available, then kmem_cache_node is
3103 * already created. Nothing to do.
3104 */
3105 if (nid < 0)
3106 return 0;
3107
3108 /*
0121c619 3109 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3110 * allocate a kmem_cache_node structure in order to bring the node
3111 * online.
3112 */
3113 down_read(&slub_lock);
3114 list_for_each_entry(s, &slab_caches, list) {
3115 /*
3116 * XXX: kmem_cache_alloc_node will fallback to other nodes
3117 * since memory is not yet available from the node that
3118 * is brought up.
3119 */
3120 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3121 if (!n) {
3122 ret = -ENOMEM;
3123 goto out;
3124 }
5595cffc 3125 init_kmem_cache_node(n, s);
b9049e23
YG
3126 s->node[nid] = n;
3127 }
3128out:
3129 up_read(&slub_lock);
3130 return ret;
3131}
3132
3133static int slab_memory_callback(struct notifier_block *self,
3134 unsigned long action, void *arg)
3135{
3136 int ret = 0;
3137
3138 switch (action) {
3139 case MEM_GOING_ONLINE:
3140 ret = slab_mem_going_online_callback(arg);
3141 break;
3142 case MEM_GOING_OFFLINE:
3143 ret = slab_mem_going_offline_callback(arg);
3144 break;
3145 case MEM_OFFLINE:
3146 case MEM_CANCEL_ONLINE:
3147 slab_mem_offline_callback(arg);
3148 break;
3149 case MEM_ONLINE:
3150 case MEM_CANCEL_OFFLINE:
3151 break;
3152 }
dc19f9db
KH
3153 if (ret)
3154 ret = notifier_from_errno(ret);
3155 else
3156 ret = NOTIFY_OK;
b9049e23
YG
3157 return ret;
3158}
3159
3160#endif /* CONFIG_MEMORY_HOTPLUG */
3161
81819f0f
CL
3162/********************************************************************
3163 * Basic setup of slabs
3164 *******************************************************************/
3165
3166void __init kmem_cache_init(void)
3167{
3168 int i;
4b356be0 3169 int caches = 0;
81819f0f 3170
4c93c355
CL
3171 init_alloc_cpu();
3172
81819f0f
CL
3173#ifdef CONFIG_NUMA
3174 /*
3175 * Must first have the slab cache available for the allocations of the
672bba3a 3176 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3177 * kmem_cache_open for slab_state == DOWN.
3178 */
3179 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3180 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3181 kmalloc_caches[0].refcount = -1;
4b356be0 3182 caches++;
b9049e23 3183
0c40ba4f 3184 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3185#endif
3186
3187 /* Able to allocate the per node structures */
3188 slab_state = PARTIAL;
3189
3190 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3191 if (KMALLOC_MIN_SIZE <= 64) {
3192 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3193 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3194 caches++;
4b356be0 3195 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3196 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3197 caches++;
3198 }
81819f0f 3199
ffadd4d0 3200 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3201 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3202 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3203 caches++;
3204 }
81819f0f 3205
f1b26339
CL
3206
3207 /*
3208 * Patch up the size_index table if we have strange large alignment
3209 * requirements for the kmalloc array. This is only the case for
6446faa2 3210 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3211 *
3212 * Largest permitted alignment is 256 bytes due to the way we
3213 * handle the index determination for the smaller caches.
3214 *
3215 * Make sure that nothing crazy happens if someone starts tinkering
3216 * around with ARCH_KMALLOC_MINALIGN
3217 */
3218 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3219 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3220
12ad6843 3221 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3222 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3223
41d54d3b
CL
3224 if (KMALLOC_MIN_SIZE == 128) {
3225 /*
3226 * The 192 byte sized cache is not used if the alignment
3227 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3228 * instead.
3229 */
3230 for (i = 128 + 8; i <= 192; i += 8)
3231 size_index[(i - 1) / 8] = 8;
3232 }
3233
81819f0f
CL
3234 slab_state = UP;
3235
3236 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3237 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3238 kmalloc_caches[i]. name =
83b519e8 3239 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3240
3241#ifdef CONFIG_SMP
3242 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3243 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3244 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3245#else
3246 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3247#endif
3248
3adbefee
IM
3249 printk(KERN_INFO
3250 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3251 " CPUs=%d, Nodes=%d\n",
3252 caches, cache_line_size(),
81819f0f
CL
3253 slub_min_order, slub_max_order, slub_min_objects,
3254 nr_cpu_ids, nr_node_ids);
3255}
3256
7e85ee0c
PE
3257void __init kmem_cache_init_late(void)
3258{
7e85ee0c
PE
3259}
3260
81819f0f
CL
3261/*
3262 * Find a mergeable slab cache
3263 */
3264static int slab_unmergeable(struct kmem_cache *s)
3265{
3266 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3267 return 1;
3268
c59def9f 3269 if (s->ctor)
81819f0f
CL
3270 return 1;
3271
8ffa6875
CL
3272 /*
3273 * We may have set a slab to be unmergeable during bootstrap.
3274 */
3275 if (s->refcount < 0)
3276 return 1;
3277
81819f0f
CL
3278 return 0;
3279}
3280
3281static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3282 size_t align, unsigned long flags, const char *name,
51cc5068 3283 void (*ctor)(void *))
81819f0f 3284{
5b95a4ac 3285 struct kmem_cache *s;
81819f0f
CL
3286
3287 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3288 return NULL;
3289
c59def9f 3290 if (ctor)
81819f0f
CL
3291 return NULL;
3292
3293 size = ALIGN(size, sizeof(void *));
3294 align = calculate_alignment(flags, align, size);
3295 size = ALIGN(size, align);
ba0268a8 3296 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3297
5b95a4ac 3298 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3299 if (slab_unmergeable(s))
3300 continue;
3301
3302 if (size > s->size)
3303 continue;
3304
ba0268a8 3305 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3306 continue;
3307 /*
3308 * Check if alignment is compatible.
3309 * Courtesy of Adrian Drzewiecki
3310 */
06428780 3311 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3312 continue;
3313
3314 if (s->size - size >= sizeof(void *))
3315 continue;
3316
3317 return s;
3318 }
3319 return NULL;
3320}
3321
3322struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3323 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3324{
3325 struct kmem_cache *s;
3326
3327 down_write(&slub_lock);
ba0268a8 3328 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3329 if (s) {
42a9fdbb
CL
3330 int cpu;
3331
81819f0f
CL
3332 s->refcount++;
3333 /*
3334 * Adjust the object sizes so that we clear
3335 * the complete object on kzalloc.
3336 */
3337 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3338
3339 /*
3340 * And then we need to update the object size in the
3341 * per cpu structures
3342 */
3343 for_each_online_cpu(cpu)
3344 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3345
81819f0f 3346 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3347 up_write(&slub_lock);
6446faa2 3348
7b8f3b66
DR
3349 if (sysfs_slab_alias(s, name)) {
3350 down_write(&slub_lock);
3351 s->refcount--;
3352 up_write(&slub_lock);
81819f0f 3353 goto err;
7b8f3b66 3354 }
a0e1d1be
CL
3355 return s;
3356 }
6446faa2 3357
a0e1d1be
CL
3358 s = kmalloc(kmem_size, GFP_KERNEL);
3359 if (s) {
3360 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3361 size, align, flags, ctor)) {
81819f0f 3362 list_add(&s->list, &slab_caches);
a0e1d1be 3363 up_write(&slub_lock);
7b8f3b66
DR
3364 if (sysfs_slab_add(s)) {
3365 down_write(&slub_lock);
3366 list_del(&s->list);
3367 up_write(&slub_lock);
3368 kfree(s);
a0e1d1be 3369 goto err;
7b8f3b66 3370 }
a0e1d1be
CL
3371 return s;
3372 }
3373 kfree(s);
81819f0f
CL
3374 }
3375 up_write(&slub_lock);
81819f0f
CL
3376
3377err:
81819f0f
CL
3378 if (flags & SLAB_PANIC)
3379 panic("Cannot create slabcache %s\n", name);
3380 else
3381 s = NULL;
3382 return s;
3383}
3384EXPORT_SYMBOL(kmem_cache_create);
3385
81819f0f 3386#ifdef CONFIG_SMP
81819f0f 3387/*
672bba3a
CL
3388 * Use the cpu notifier to insure that the cpu slabs are flushed when
3389 * necessary.
81819f0f
CL
3390 */
3391static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3392 unsigned long action, void *hcpu)
3393{
3394 long cpu = (long)hcpu;
5b95a4ac
CL
3395 struct kmem_cache *s;
3396 unsigned long flags;
81819f0f
CL
3397
3398 switch (action) {
4c93c355
CL
3399 case CPU_UP_PREPARE:
3400 case CPU_UP_PREPARE_FROZEN:
3401 init_alloc_cpu_cpu(cpu);
3402 down_read(&slub_lock);
3403 list_for_each_entry(s, &slab_caches, list)
3404 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3405 GFP_KERNEL);
3406 up_read(&slub_lock);
3407 break;
3408
81819f0f 3409 case CPU_UP_CANCELED:
8bb78442 3410 case CPU_UP_CANCELED_FROZEN:
81819f0f 3411 case CPU_DEAD:
8bb78442 3412 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3413 down_read(&slub_lock);
3414 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3415 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3416
5b95a4ac
CL
3417 local_irq_save(flags);
3418 __flush_cpu_slab(s, cpu);
3419 local_irq_restore(flags);
4c93c355
CL
3420 free_kmem_cache_cpu(c, cpu);
3421 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3422 }
3423 up_read(&slub_lock);
81819f0f
CL
3424 break;
3425 default:
3426 break;
3427 }
3428 return NOTIFY_OK;
3429}
3430
06428780 3431static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3432 .notifier_call = slab_cpuup_callback
06428780 3433};
81819f0f
CL
3434
3435#endif
3436
ce71e27c 3437void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3438{
aadb4bc4 3439 struct kmem_cache *s;
94b528d0 3440 void *ret;
aadb4bc4 3441
ffadd4d0 3442 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3443 return kmalloc_large(size, gfpflags);
3444
aadb4bc4 3445 s = get_slab(size, gfpflags);
81819f0f 3446
2408c550 3447 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3448 return s;
81819f0f 3449
94b528d0
EGM
3450 ret = slab_alloc(s, gfpflags, -1, caller);
3451
3452 /* Honor the call site pointer we recieved. */
ca2b84cb 3453 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3454
3455 return ret;
81819f0f
CL
3456}
3457
3458void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3459 int node, unsigned long caller)
81819f0f 3460{
aadb4bc4 3461 struct kmem_cache *s;
94b528d0 3462 void *ret;
aadb4bc4 3463
ffadd4d0 3464 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3465 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3466
aadb4bc4 3467 s = get_slab(size, gfpflags);
81819f0f 3468
2408c550 3469 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3470 return s;
81819f0f 3471
94b528d0
EGM
3472 ret = slab_alloc(s, gfpflags, node, caller);
3473
3474 /* Honor the call site pointer we recieved. */
ca2b84cb 3475 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3476
3477 return ret;
81819f0f
CL
3478}
3479
f6acb635 3480#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3481static int count_inuse(struct page *page)
3482{
3483 return page->inuse;
3484}
3485
3486static int count_total(struct page *page)
3487{
3488 return page->objects;
3489}
3490
434e245d
CL
3491static int validate_slab(struct kmem_cache *s, struct page *page,
3492 unsigned long *map)
53e15af0
CL
3493{
3494 void *p;
a973e9dd 3495 void *addr = page_address(page);
53e15af0
CL
3496
3497 if (!check_slab(s, page) ||
3498 !on_freelist(s, page, NULL))
3499 return 0;
3500
3501 /* Now we know that a valid freelist exists */
39b26464 3502 bitmap_zero(map, page->objects);
53e15af0 3503
7656c72b
CL
3504 for_each_free_object(p, s, page->freelist) {
3505 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3506 if (!check_object(s, page, p, 0))
3507 return 0;
3508 }
3509
224a88be 3510 for_each_object(p, s, addr, page->objects)
7656c72b 3511 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3512 if (!check_object(s, page, p, 1))
3513 return 0;
3514 return 1;
3515}
3516
434e245d
CL
3517static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3518 unsigned long *map)
53e15af0
CL
3519{
3520 if (slab_trylock(page)) {
434e245d 3521 validate_slab(s, page, map);
53e15af0
CL
3522 slab_unlock(page);
3523 } else
3524 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3525 s->name, page);
3526
3527 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3528 if (!PageSlubDebug(page))
3529 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3530 "on slab 0x%p\n", s->name, page);
3531 } else {
8a38082d
AW
3532 if (PageSlubDebug(page))
3533 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3534 "slab 0x%p\n", s->name, page);
3535 }
3536}
3537
434e245d
CL
3538static int validate_slab_node(struct kmem_cache *s,
3539 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3540{
3541 unsigned long count = 0;
3542 struct page *page;
3543 unsigned long flags;
3544
3545 spin_lock_irqsave(&n->list_lock, flags);
3546
3547 list_for_each_entry(page, &n->partial, lru) {
434e245d 3548 validate_slab_slab(s, page, map);
53e15af0
CL
3549 count++;
3550 }
3551 if (count != n->nr_partial)
3552 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3553 "counter=%ld\n", s->name, count, n->nr_partial);
3554
3555 if (!(s->flags & SLAB_STORE_USER))
3556 goto out;
3557
3558 list_for_each_entry(page, &n->full, lru) {
434e245d 3559 validate_slab_slab(s, page, map);
53e15af0
CL
3560 count++;
3561 }
3562 if (count != atomic_long_read(&n->nr_slabs))
3563 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3564 "counter=%ld\n", s->name, count,
3565 atomic_long_read(&n->nr_slabs));
3566
3567out:
3568 spin_unlock_irqrestore(&n->list_lock, flags);
3569 return count;
3570}
3571
434e245d 3572static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3573{
3574 int node;
3575 unsigned long count = 0;
205ab99d 3576 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3577 sizeof(unsigned long), GFP_KERNEL);
3578
3579 if (!map)
3580 return -ENOMEM;
53e15af0
CL
3581
3582 flush_all(s);
f64dc58c 3583 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3584 struct kmem_cache_node *n = get_node(s, node);
3585
434e245d 3586 count += validate_slab_node(s, n, map);
53e15af0 3587 }
434e245d 3588 kfree(map);
53e15af0
CL
3589 return count;
3590}
3591
b3459709
CL
3592#ifdef SLUB_RESILIENCY_TEST
3593static void resiliency_test(void)
3594{
3595 u8 *p;
3596
3597 printk(KERN_ERR "SLUB resiliency testing\n");
3598 printk(KERN_ERR "-----------------------\n");
3599 printk(KERN_ERR "A. Corruption after allocation\n");
3600
3601 p = kzalloc(16, GFP_KERNEL);
3602 p[16] = 0x12;
3603 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3604 " 0x12->0x%p\n\n", p + 16);
3605
3606 validate_slab_cache(kmalloc_caches + 4);
3607
3608 /* Hmmm... The next two are dangerous */
3609 p = kzalloc(32, GFP_KERNEL);
3610 p[32 + sizeof(void *)] = 0x34;
3611 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3612 " 0x34 -> -0x%p\n", p);
3613 printk(KERN_ERR
3614 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3615
3616 validate_slab_cache(kmalloc_caches + 5);
3617 p = kzalloc(64, GFP_KERNEL);
3618 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3619 *p = 0x56;
3620 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3621 p);
3adbefee
IM
3622 printk(KERN_ERR
3623 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3624 validate_slab_cache(kmalloc_caches + 6);
3625
3626 printk(KERN_ERR "\nB. Corruption after free\n");
3627 p = kzalloc(128, GFP_KERNEL);
3628 kfree(p);
3629 *p = 0x78;
3630 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3631 validate_slab_cache(kmalloc_caches + 7);
3632
3633 p = kzalloc(256, GFP_KERNEL);
3634 kfree(p);
3635 p[50] = 0x9a;
3adbefee
IM
3636 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3637 p);
b3459709
CL
3638 validate_slab_cache(kmalloc_caches + 8);
3639
3640 p = kzalloc(512, GFP_KERNEL);
3641 kfree(p);
3642 p[512] = 0xab;
3643 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3644 validate_slab_cache(kmalloc_caches + 9);
3645}
3646#else
3647static void resiliency_test(void) {};
3648#endif
3649
88a420e4 3650/*
672bba3a 3651 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3652 * and freed.
3653 */
3654
3655struct location {
3656 unsigned long count;
ce71e27c 3657 unsigned long addr;
45edfa58
CL
3658 long long sum_time;
3659 long min_time;
3660 long max_time;
3661 long min_pid;
3662 long max_pid;
174596a0 3663 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3664 nodemask_t nodes;
88a420e4
CL
3665};
3666
3667struct loc_track {
3668 unsigned long max;
3669 unsigned long count;
3670 struct location *loc;
3671};
3672
3673static void free_loc_track(struct loc_track *t)
3674{
3675 if (t->max)
3676 free_pages((unsigned long)t->loc,
3677 get_order(sizeof(struct location) * t->max));
3678}
3679
68dff6a9 3680static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3681{
3682 struct location *l;
3683 int order;
3684
88a420e4
CL
3685 order = get_order(sizeof(struct location) * max);
3686
68dff6a9 3687 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3688 if (!l)
3689 return 0;
3690
3691 if (t->count) {
3692 memcpy(l, t->loc, sizeof(struct location) * t->count);
3693 free_loc_track(t);
3694 }
3695 t->max = max;
3696 t->loc = l;
3697 return 1;
3698}
3699
3700static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3701 const struct track *track)
88a420e4
CL
3702{
3703 long start, end, pos;
3704 struct location *l;
ce71e27c 3705 unsigned long caddr;
45edfa58 3706 unsigned long age = jiffies - track->when;
88a420e4
CL
3707
3708 start = -1;
3709 end = t->count;
3710
3711 for ( ; ; ) {
3712 pos = start + (end - start + 1) / 2;
3713
3714 /*
3715 * There is nothing at "end". If we end up there
3716 * we need to add something to before end.
3717 */
3718 if (pos == end)
3719 break;
3720
3721 caddr = t->loc[pos].addr;
45edfa58
CL
3722 if (track->addr == caddr) {
3723
3724 l = &t->loc[pos];
3725 l->count++;
3726 if (track->when) {
3727 l->sum_time += age;
3728 if (age < l->min_time)
3729 l->min_time = age;
3730 if (age > l->max_time)
3731 l->max_time = age;
3732
3733 if (track->pid < l->min_pid)
3734 l->min_pid = track->pid;
3735 if (track->pid > l->max_pid)
3736 l->max_pid = track->pid;
3737
174596a0
RR
3738 cpumask_set_cpu(track->cpu,
3739 to_cpumask(l->cpus));
45edfa58
CL
3740 }
3741 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3742 return 1;
3743 }
3744
45edfa58 3745 if (track->addr < caddr)
88a420e4
CL
3746 end = pos;
3747 else
3748 start = pos;
3749 }
3750
3751 /*
672bba3a 3752 * Not found. Insert new tracking element.
88a420e4 3753 */
68dff6a9 3754 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3755 return 0;
3756
3757 l = t->loc + pos;
3758 if (pos < t->count)
3759 memmove(l + 1, l,
3760 (t->count - pos) * sizeof(struct location));
3761 t->count++;
3762 l->count = 1;
45edfa58
CL
3763 l->addr = track->addr;
3764 l->sum_time = age;
3765 l->min_time = age;
3766 l->max_time = age;
3767 l->min_pid = track->pid;
3768 l->max_pid = track->pid;
174596a0
RR
3769 cpumask_clear(to_cpumask(l->cpus));
3770 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3771 nodes_clear(l->nodes);
3772 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3773 return 1;
3774}
3775
3776static void process_slab(struct loc_track *t, struct kmem_cache *s,
3777 struct page *page, enum track_item alloc)
3778{
a973e9dd 3779 void *addr = page_address(page);
39b26464 3780 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3781 void *p;
3782
39b26464 3783 bitmap_zero(map, page->objects);
7656c72b
CL
3784 for_each_free_object(p, s, page->freelist)
3785 set_bit(slab_index(p, s, addr), map);
88a420e4 3786
224a88be 3787 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3788 if (!test_bit(slab_index(p, s, addr), map))
3789 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3790}
3791
3792static int list_locations(struct kmem_cache *s, char *buf,
3793 enum track_item alloc)
3794{
e374d483 3795 int len = 0;
88a420e4 3796 unsigned long i;
68dff6a9 3797 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3798 int node;
3799
68dff6a9 3800 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3801 GFP_TEMPORARY))
68dff6a9 3802 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3803
3804 /* Push back cpu slabs */
3805 flush_all(s);
3806
f64dc58c 3807 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3808 struct kmem_cache_node *n = get_node(s, node);
3809 unsigned long flags;
3810 struct page *page;
3811
9e86943b 3812 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3813 continue;
3814
3815 spin_lock_irqsave(&n->list_lock, flags);
3816 list_for_each_entry(page, &n->partial, lru)
3817 process_slab(&t, s, page, alloc);
3818 list_for_each_entry(page, &n->full, lru)
3819 process_slab(&t, s, page, alloc);
3820 spin_unlock_irqrestore(&n->list_lock, flags);
3821 }
3822
3823 for (i = 0; i < t.count; i++) {
45edfa58 3824 struct location *l = &t.loc[i];
88a420e4 3825
9c246247 3826 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3827 break;
e374d483 3828 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3829
3830 if (l->addr)
e374d483 3831 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3832 else
e374d483 3833 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3834
3835 if (l->sum_time != l->min_time) {
e374d483 3836 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3837 l->min_time,
3838 (long)div_u64(l->sum_time, l->count),
3839 l->max_time);
45edfa58 3840 } else
e374d483 3841 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3842 l->min_time);
3843
3844 if (l->min_pid != l->max_pid)
e374d483 3845 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3846 l->min_pid, l->max_pid);
3847 else
e374d483 3848 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3849 l->min_pid);
3850
174596a0
RR
3851 if (num_online_cpus() > 1 &&
3852 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3853 len < PAGE_SIZE - 60) {
3854 len += sprintf(buf + len, " cpus=");
3855 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3856 to_cpumask(l->cpus));
45edfa58
CL
3857 }
3858
62bc62a8 3859 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3860 len < PAGE_SIZE - 60) {
3861 len += sprintf(buf + len, " nodes=");
3862 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3863 l->nodes);
3864 }
3865
e374d483 3866 len += sprintf(buf + len, "\n");
88a420e4
CL
3867 }
3868
3869 free_loc_track(&t);
3870 if (!t.count)
e374d483
HH
3871 len += sprintf(buf, "No data\n");
3872 return len;
88a420e4
CL
3873}
3874
81819f0f 3875enum slab_stat_type {
205ab99d
CL
3876 SL_ALL, /* All slabs */
3877 SL_PARTIAL, /* Only partially allocated slabs */
3878 SL_CPU, /* Only slabs used for cpu caches */
3879 SL_OBJECTS, /* Determine allocated objects not slabs */
3880 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3881};
3882
205ab99d 3883#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3884#define SO_PARTIAL (1 << SL_PARTIAL)
3885#define SO_CPU (1 << SL_CPU)
3886#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3887#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3888
62e5c4b4
CG
3889static ssize_t show_slab_objects(struct kmem_cache *s,
3890 char *buf, unsigned long flags)
81819f0f
CL
3891{
3892 unsigned long total = 0;
81819f0f
CL
3893 int node;
3894 int x;
3895 unsigned long *nodes;
3896 unsigned long *per_cpu;
3897
3898 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3899 if (!nodes)
3900 return -ENOMEM;
81819f0f
CL
3901 per_cpu = nodes + nr_node_ids;
3902
205ab99d
CL
3903 if (flags & SO_CPU) {
3904 int cpu;
81819f0f 3905
205ab99d
CL
3906 for_each_possible_cpu(cpu) {
3907 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3908
205ab99d
CL
3909 if (!c || c->node < 0)
3910 continue;
3911
3912 if (c->page) {
3913 if (flags & SO_TOTAL)
3914 x = c->page->objects;
3915 else if (flags & SO_OBJECTS)
3916 x = c->page->inuse;
81819f0f
CL
3917 else
3918 x = 1;
205ab99d 3919
81819f0f 3920 total += x;
205ab99d 3921 nodes[c->node] += x;
81819f0f 3922 }
205ab99d 3923 per_cpu[c->node]++;
81819f0f
CL
3924 }
3925 }
3926
205ab99d
CL
3927 if (flags & SO_ALL) {
3928 for_each_node_state(node, N_NORMAL_MEMORY) {
3929 struct kmem_cache_node *n = get_node(s, node);
3930
3931 if (flags & SO_TOTAL)
3932 x = atomic_long_read(&n->total_objects);
3933 else if (flags & SO_OBJECTS)
3934 x = atomic_long_read(&n->total_objects) -
3935 count_partial(n, count_free);
81819f0f 3936
81819f0f 3937 else
205ab99d 3938 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3939 total += x;
3940 nodes[node] += x;
3941 }
3942
205ab99d
CL
3943 } else if (flags & SO_PARTIAL) {
3944 for_each_node_state(node, N_NORMAL_MEMORY) {
3945 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3946
205ab99d
CL
3947 if (flags & SO_TOTAL)
3948 x = count_partial(n, count_total);
3949 else if (flags & SO_OBJECTS)
3950 x = count_partial(n, count_inuse);
81819f0f 3951 else
205ab99d 3952 x = n->nr_partial;
81819f0f
CL
3953 total += x;
3954 nodes[node] += x;
3955 }
3956 }
81819f0f
CL
3957 x = sprintf(buf, "%lu", total);
3958#ifdef CONFIG_NUMA
f64dc58c 3959 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3960 if (nodes[node])
3961 x += sprintf(buf + x, " N%d=%lu",
3962 node, nodes[node]);
3963#endif
3964 kfree(nodes);
3965 return x + sprintf(buf + x, "\n");
3966}
3967
3968static int any_slab_objects(struct kmem_cache *s)
3969{
3970 int node;
81819f0f 3971
dfb4f096 3972 for_each_online_node(node) {
81819f0f
CL
3973 struct kmem_cache_node *n = get_node(s, node);
3974
dfb4f096
CL
3975 if (!n)
3976 continue;
3977
4ea33e2d 3978 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3979 return 1;
3980 }
3981 return 0;
3982}
3983
3984#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3985#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3986
3987struct slab_attribute {
3988 struct attribute attr;
3989 ssize_t (*show)(struct kmem_cache *s, char *buf);
3990 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3991};
3992
3993#define SLAB_ATTR_RO(_name) \
3994 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3995
3996#define SLAB_ATTR(_name) \
3997 static struct slab_attribute _name##_attr = \
3998 __ATTR(_name, 0644, _name##_show, _name##_store)
3999
81819f0f
CL
4000static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4001{
4002 return sprintf(buf, "%d\n", s->size);
4003}
4004SLAB_ATTR_RO(slab_size);
4005
4006static ssize_t align_show(struct kmem_cache *s, char *buf)
4007{
4008 return sprintf(buf, "%d\n", s->align);
4009}
4010SLAB_ATTR_RO(align);
4011
4012static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4013{
4014 return sprintf(buf, "%d\n", s->objsize);
4015}
4016SLAB_ATTR_RO(object_size);
4017
4018static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4019{
834f3d11 4020 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4021}
4022SLAB_ATTR_RO(objs_per_slab);
4023
06b285dc
CL
4024static ssize_t order_store(struct kmem_cache *s,
4025 const char *buf, size_t length)
4026{
0121c619
CL
4027 unsigned long order;
4028 int err;
4029
4030 err = strict_strtoul(buf, 10, &order);
4031 if (err)
4032 return err;
06b285dc
CL
4033
4034 if (order > slub_max_order || order < slub_min_order)
4035 return -EINVAL;
4036
4037 calculate_sizes(s, order);
4038 return length;
4039}
4040
81819f0f
CL
4041static ssize_t order_show(struct kmem_cache *s, char *buf)
4042{
834f3d11 4043 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4044}
06b285dc 4045SLAB_ATTR(order);
81819f0f 4046
73d342b1
DR
4047static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4048{
4049 return sprintf(buf, "%lu\n", s->min_partial);
4050}
4051
4052static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4053 size_t length)
4054{
4055 unsigned long min;
4056 int err;
4057
4058 err = strict_strtoul(buf, 10, &min);
4059 if (err)
4060 return err;
4061
c0bdb232 4062 set_min_partial(s, min);
73d342b1
DR
4063 return length;
4064}
4065SLAB_ATTR(min_partial);
4066
81819f0f
CL
4067static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4068{
4069 if (s->ctor) {
4070 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4071
4072 return n + sprintf(buf + n, "\n");
4073 }
4074 return 0;
4075}
4076SLAB_ATTR_RO(ctor);
4077
81819f0f
CL
4078static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4079{
4080 return sprintf(buf, "%d\n", s->refcount - 1);
4081}
4082SLAB_ATTR_RO(aliases);
4083
4084static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4085{
205ab99d 4086 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
4087}
4088SLAB_ATTR_RO(slabs);
4089
4090static ssize_t partial_show(struct kmem_cache *s, char *buf)
4091{
d9acf4b7 4092 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4093}
4094SLAB_ATTR_RO(partial);
4095
4096static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4097{
d9acf4b7 4098 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4099}
4100SLAB_ATTR_RO(cpu_slabs);
4101
4102static ssize_t objects_show(struct kmem_cache *s, char *buf)
4103{
205ab99d 4104 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4105}
4106SLAB_ATTR_RO(objects);
4107
205ab99d
CL
4108static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4109{
4110 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4111}
4112SLAB_ATTR_RO(objects_partial);
4113
4114static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4115{
4116 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4117}
4118SLAB_ATTR_RO(total_objects);
4119
81819f0f
CL
4120static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4121{
4122 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4123}
4124
4125static ssize_t sanity_checks_store(struct kmem_cache *s,
4126 const char *buf, size_t length)
4127{
4128 s->flags &= ~SLAB_DEBUG_FREE;
4129 if (buf[0] == '1')
4130 s->flags |= SLAB_DEBUG_FREE;
4131 return length;
4132}
4133SLAB_ATTR(sanity_checks);
4134
4135static ssize_t trace_show(struct kmem_cache *s, char *buf)
4136{
4137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4138}
4139
4140static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4141 size_t length)
4142{
4143 s->flags &= ~SLAB_TRACE;
4144 if (buf[0] == '1')
4145 s->flags |= SLAB_TRACE;
4146 return length;
4147}
4148SLAB_ATTR(trace);
4149
4150static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4151{
4152 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4153}
4154
4155static ssize_t reclaim_account_store(struct kmem_cache *s,
4156 const char *buf, size_t length)
4157{
4158 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4159 if (buf[0] == '1')
4160 s->flags |= SLAB_RECLAIM_ACCOUNT;
4161 return length;
4162}
4163SLAB_ATTR(reclaim_account);
4164
4165static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4166{
5af60839 4167 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4168}
4169SLAB_ATTR_RO(hwcache_align);
4170
4171#ifdef CONFIG_ZONE_DMA
4172static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4173{
4174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4175}
4176SLAB_ATTR_RO(cache_dma);
4177#endif
4178
4179static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4180{
4181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4182}
4183SLAB_ATTR_RO(destroy_by_rcu);
4184
4185static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4186{
4187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4188}
4189
4190static ssize_t red_zone_store(struct kmem_cache *s,
4191 const char *buf, size_t length)
4192{
4193 if (any_slab_objects(s))
4194 return -EBUSY;
4195
4196 s->flags &= ~SLAB_RED_ZONE;
4197 if (buf[0] == '1')
4198 s->flags |= SLAB_RED_ZONE;
06b285dc 4199 calculate_sizes(s, -1);
81819f0f
CL
4200 return length;
4201}
4202SLAB_ATTR(red_zone);
4203
4204static ssize_t poison_show(struct kmem_cache *s, char *buf)
4205{
4206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4207}
4208
4209static ssize_t poison_store(struct kmem_cache *s,
4210 const char *buf, size_t length)
4211{
4212 if (any_slab_objects(s))
4213 return -EBUSY;
4214
4215 s->flags &= ~SLAB_POISON;
4216 if (buf[0] == '1')
4217 s->flags |= SLAB_POISON;
06b285dc 4218 calculate_sizes(s, -1);
81819f0f
CL
4219 return length;
4220}
4221SLAB_ATTR(poison);
4222
4223static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4224{
4225 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4226}
4227
4228static ssize_t store_user_store(struct kmem_cache *s,
4229 const char *buf, size_t length)
4230{
4231 if (any_slab_objects(s))
4232 return -EBUSY;
4233
4234 s->flags &= ~SLAB_STORE_USER;
4235 if (buf[0] == '1')
4236 s->flags |= SLAB_STORE_USER;
06b285dc 4237 calculate_sizes(s, -1);
81819f0f
CL
4238 return length;
4239}
4240SLAB_ATTR(store_user);
4241
53e15af0
CL
4242static ssize_t validate_show(struct kmem_cache *s, char *buf)
4243{
4244 return 0;
4245}
4246
4247static ssize_t validate_store(struct kmem_cache *s,
4248 const char *buf, size_t length)
4249{
434e245d
CL
4250 int ret = -EINVAL;
4251
4252 if (buf[0] == '1') {
4253 ret = validate_slab_cache(s);
4254 if (ret >= 0)
4255 ret = length;
4256 }
4257 return ret;
53e15af0
CL
4258}
4259SLAB_ATTR(validate);
4260
2086d26a
CL
4261static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4262{
4263 return 0;
4264}
4265
4266static ssize_t shrink_store(struct kmem_cache *s,
4267 const char *buf, size_t length)
4268{
4269 if (buf[0] == '1') {
4270 int rc = kmem_cache_shrink(s);
4271
4272 if (rc)
4273 return rc;
4274 } else
4275 return -EINVAL;
4276 return length;
4277}
4278SLAB_ATTR(shrink);
4279
88a420e4
CL
4280static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4281{
4282 if (!(s->flags & SLAB_STORE_USER))
4283 return -ENOSYS;
4284 return list_locations(s, buf, TRACK_ALLOC);
4285}
4286SLAB_ATTR_RO(alloc_calls);
4287
4288static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4289{
4290 if (!(s->flags & SLAB_STORE_USER))
4291 return -ENOSYS;
4292 return list_locations(s, buf, TRACK_FREE);
4293}
4294SLAB_ATTR_RO(free_calls);
4295
81819f0f 4296#ifdef CONFIG_NUMA
9824601e 4297static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4298{
9824601e 4299 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4300}
4301
9824601e 4302static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4303 const char *buf, size_t length)
4304{
0121c619
CL
4305 unsigned long ratio;
4306 int err;
4307
4308 err = strict_strtoul(buf, 10, &ratio);
4309 if (err)
4310 return err;
4311
e2cb96b7 4312 if (ratio <= 100)
0121c619 4313 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4314
81819f0f
CL
4315 return length;
4316}
9824601e 4317SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4318#endif
4319
8ff12cfc 4320#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4321static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4322{
4323 unsigned long sum = 0;
4324 int cpu;
4325 int len;
4326 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4327
4328 if (!data)
4329 return -ENOMEM;
4330
4331 for_each_online_cpu(cpu) {
4332 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4333
4334 data[cpu] = x;
4335 sum += x;
4336 }
4337
4338 len = sprintf(buf, "%lu", sum);
4339
50ef37b9 4340#ifdef CONFIG_SMP
8ff12cfc
CL
4341 for_each_online_cpu(cpu) {
4342 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4343 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4344 }
50ef37b9 4345#endif
8ff12cfc
CL
4346 kfree(data);
4347 return len + sprintf(buf + len, "\n");
4348}
4349
4350#define STAT_ATTR(si, text) \
4351static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4352{ \
4353 return show_stat(s, buf, si); \
4354} \
4355SLAB_ATTR_RO(text); \
4356
4357STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4358STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4359STAT_ATTR(FREE_FASTPATH, free_fastpath);
4360STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4361STAT_ATTR(FREE_FROZEN, free_frozen);
4362STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4363STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4364STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4365STAT_ATTR(ALLOC_SLAB, alloc_slab);
4366STAT_ATTR(ALLOC_REFILL, alloc_refill);
4367STAT_ATTR(FREE_SLAB, free_slab);
4368STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4369STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4370STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4371STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4372STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4373STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4374STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4375#endif
4376
06428780 4377static struct attribute *slab_attrs[] = {
81819f0f
CL
4378 &slab_size_attr.attr,
4379 &object_size_attr.attr,
4380 &objs_per_slab_attr.attr,
4381 &order_attr.attr,
73d342b1 4382 &min_partial_attr.attr,
81819f0f 4383 &objects_attr.attr,
205ab99d
CL
4384 &objects_partial_attr.attr,
4385 &total_objects_attr.attr,
81819f0f
CL
4386 &slabs_attr.attr,
4387 &partial_attr.attr,
4388 &cpu_slabs_attr.attr,
4389 &ctor_attr.attr,
81819f0f
CL
4390 &aliases_attr.attr,
4391 &align_attr.attr,
4392 &sanity_checks_attr.attr,
4393 &trace_attr.attr,
4394 &hwcache_align_attr.attr,
4395 &reclaim_account_attr.attr,
4396 &destroy_by_rcu_attr.attr,
4397 &red_zone_attr.attr,
4398 &poison_attr.attr,
4399 &store_user_attr.attr,
53e15af0 4400 &validate_attr.attr,
2086d26a 4401 &shrink_attr.attr,
88a420e4
CL
4402 &alloc_calls_attr.attr,
4403 &free_calls_attr.attr,
81819f0f
CL
4404#ifdef CONFIG_ZONE_DMA
4405 &cache_dma_attr.attr,
4406#endif
4407#ifdef CONFIG_NUMA
9824601e 4408 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4409#endif
4410#ifdef CONFIG_SLUB_STATS
4411 &alloc_fastpath_attr.attr,
4412 &alloc_slowpath_attr.attr,
4413 &free_fastpath_attr.attr,
4414 &free_slowpath_attr.attr,
4415 &free_frozen_attr.attr,
4416 &free_add_partial_attr.attr,
4417 &free_remove_partial_attr.attr,
4418 &alloc_from_partial_attr.attr,
4419 &alloc_slab_attr.attr,
4420 &alloc_refill_attr.attr,
4421 &free_slab_attr.attr,
4422 &cpuslab_flush_attr.attr,
4423 &deactivate_full_attr.attr,
4424 &deactivate_empty_attr.attr,
4425 &deactivate_to_head_attr.attr,
4426 &deactivate_to_tail_attr.attr,
4427 &deactivate_remote_frees_attr.attr,
65c3376a 4428 &order_fallback_attr.attr,
81819f0f
CL
4429#endif
4430 NULL
4431};
4432
4433static struct attribute_group slab_attr_group = {
4434 .attrs = slab_attrs,
4435};
4436
4437static ssize_t slab_attr_show(struct kobject *kobj,
4438 struct attribute *attr,
4439 char *buf)
4440{
4441 struct slab_attribute *attribute;
4442 struct kmem_cache *s;
4443 int err;
4444
4445 attribute = to_slab_attr(attr);
4446 s = to_slab(kobj);
4447
4448 if (!attribute->show)
4449 return -EIO;
4450
4451 err = attribute->show(s, buf);
4452
4453 return err;
4454}
4455
4456static ssize_t slab_attr_store(struct kobject *kobj,
4457 struct attribute *attr,
4458 const char *buf, size_t len)
4459{
4460 struct slab_attribute *attribute;
4461 struct kmem_cache *s;
4462 int err;
4463
4464 attribute = to_slab_attr(attr);
4465 s = to_slab(kobj);
4466
4467 if (!attribute->store)
4468 return -EIO;
4469
4470 err = attribute->store(s, buf, len);
4471
4472 return err;
4473}
4474
151c602f
CL
4475static void kmem_cache_release(struct kobject *kobj)
4476{
4477 struct kmem_cache *s = to_slab(kobj);
4478
4479 kfree(s);
4480}
4481
81819f0f
CL
4482static struct sysfs_ops slab_sysfs_ops = {
4483 .show = slab_attr_show,
4484 .store = slab_attr_store,
4485};
4486
4487static struct kobj_type slab_ktype = {
4488 .sysfs_ops = &slab_sysfs_ops,
151c602f 4489 .release = kmem_cache_release
81819f0f
CL
4490};
4491
4492static int uevent_filter(struct kset *kset, struct kobject *kobj)
4493{
4494 struct kobj_type *ktype = get_ktype(kobj);
4495
4496 if (ktype == &slab_ktype)
4497 return 1;
4498 return 0;
4499}
4500
4501static struct kset_uevent_ops slab_uevent_ops = {
4502 .filter = uevent_filter,
4503};
4504
27c3a314 4505static struct kset *slab_kset;
81819f0f
CL
4506
4507#define ID_STR_LENGTH 64
4508
4509/* Create a unique string id for a slab cache:
6446faa2
CL
4510 *
4511 * Format :[flags-]size
81819f0f
CL
4512 */
4513static char *create_unique_id(struct kmem_cache *s)
4514{
4515 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4516 char *p = name;
4517
4518 BUG_ON(!name);
4519
4520 *p++ = ':';
4521 /*
4522 * First flags affecting slabcache operations. We will only
4523 * get here for aliasable slabs so we do not need to support
4524 * too many flags. The flags here must cover all flags that
4525 * are matched during merging to guarantee that the id is
4526 * unique.
4527 */
4528 if (s->flags & SLAB_CACHE_DMA)
4529 *p++ = 'd';
4530 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4531 *p++ = 'a';
4532 if (s->flags & SLAB_DEBUG_FREE)
4533 *p++ = 'F';
5a896d9e
VN
4534 if (!(s->flags & SLAB_NOTRACK))
4535 *p++ = 't';
81819f0f
CL
4536 if (p != name + 1)
4537 *p++ = '-';
4538 p += sprintf(p, "%07d", s->size);
4539 BUG_ON(p > name + ID_STR_LENGTH - 1);
4540 return name;
4541}
4542
4543static int sysfs_slab_add(struct kmem_cache *s)
4544{
4545 int err;
4546 const char *name;
4547 int unmergeable;
4548
4549 if (slab_state < SYSFS)
4550 /* Defer until later */
4551 return 0;
4552
4553 unmergeable = slab_unmergeable(s);
4554 if (unmergeable) {
4555 /*
4556 * Slabcache can never be merged so we can use the name proper.
4557 * This is typically the case for debug situations. In that
4558 * case we can catch duplicate names easily.
4559 */
27c3a314 4560 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4561 name = s->name;
4562 } else {
4563 /*
4564 * Create a unique name for the slab as a target
4565 * for the symlinks.
4566 */
4567 name = create_unique_id(s);
4568 }
4569
27c3a314 4570 s->kobj.kset = slab_kset;
1eada11c
GKH
4571 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4572 if (err) {
4573 kobject_put(&s->kobj);
81819f0f 4574 return err;
1eada11c 4575 }
81819f0f
CL
4576
4577 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4578 if (err)
4579 return err;
4580 kobject_uevent(&s->kobj, KOBJ_ADD);
4581 if (!unmergeable) {
4582 /* Setup first alias */
4583 sysfs_slab_alias(s, s->name);
4584 kfree(name);
4585 }
4586 return 0;
4587}
4588
4589static void sysfs_slab_remove(struct kmem_cache *s)
4590{
4591 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4592 kobject_del(&s->kobj);
151c602f 4593 kobject_put(&s->kobj);
81819f0f
CL
4594}
4595
4596/*
4597 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4598 * available lest we lose that information.
81819f0f
CL
4599 */
4600struct saved_alias {
4601 struct kmem_cache *s;
4602 const char *name;
4603 struct saved_alias *next;
4604};
4605
5af328a5 4606static struct saved_alias *alias_list;
81819f0f
CL
4607
4608static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4609{
4610 struct saved_alias *al;
4611
4612 if (slab_state == SYSFS) {
4613 /*
4614 * If we have a leftover link then remove it.
4615 */
27c3a314
GKH
4616 sysfs_remove_link(&slab_kset->kobj, name);
4617 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4618 }
4619
4620 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4621 if (!al)
4622 return -ENOMEM;
4623
4624 al->s = s;
4625 al->name = name;
4626 al->next = alias_list;
4627 alias_list = al;
4628 return 0;
4629}
4630
4631static int __init slab_sysfs_init(void)
4632{
5b95a4ac 4633 struct kmem_cache *s;
81819f0f
CL
4634 int err;
4635
0ff21e46 4636 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4637 if (!slab_kset) {
81819f0f
CL
4638 printk(KERN_ERR "Cannot register slab subsystem.\n");
4639 return -ENOSYS;
4640 }
4641
26a7bd03
CL
4642 slab_state = SYSFS;
4643
5b95a4ac 4644 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4645 err = sysfs_slab_add(s);
5d540fb7
CL
4646 if (err)
4647 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4648 " to sysfs\n", s->name);
26a7bd03 4649 }
81819f0f
CL
4650
4651 while (alias_list) {
4652 struct saved_alias *al = alias_list;
4653
4654 alias_list = alias_list->next;
4655 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4656 if (err)
4657 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4658 " %s to sysfs\n", s->name);
81819f0f
CL
4659 kfree(al);
4660 }
4661
4662 resiliency_test();
4663 return 0;
4664}
4665
4666__initcall(slab_sysfs_init);
81819f0f 4667#endif
57ed3eda
PE
4668
4669/*
4670 * The /proc/slabinfo ABI
4671 */
158a9624 4672#ifdef CONFIG_SLABINFO
57ed3eda
PE
4673static void print_slabinfo_header(struct seq_file *m)
4674{
4675 seq_puts(m, "slabinfo - version: 2.1\n");
4676 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4677 "<objperslab> <pagesperslab>");
4678 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4679 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4680 seq_putc(m, '\n');
4681}
4682
4683static void *s_start(struct seq_file *m, loff_t *pos)
4684{
4685 loff_t n = *pos;
4686
4687 down_read(&slub_lock);
4688 if (!n)
4689 print_slabinfo_header(m);
4690
4691 return seq_list_start(&slab_caches, *pos);
4692}
4693
4694static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4695{
4696 return seq_list_next(p, &slab_caches, pos);
4697}
4698
4699static void s_stop(struct seq_file *m, void *p)
4700{
4701 up_read(&slub_lock);
4702}
4703
4704static int s_show(struct seq_file *m, void *p)
4705{
4706 unsigned long nr_partials = 0;
4707 unsigned long nr_slabs = 0;
4708 unsigned long nr_inuse = 0;
205ab99d
CL
4709 unsigned long nr_objs = 0;
4710 unsigned long nr_free = 0;
57ed3eda
PE
4711 struct kmem_cache *s;
4712 int node;
4713
4714 s = list_entry(p, struct kmem_cache, list);
4715
4716 for_each_online_node(node) {
4717 struct kmem_cache_node *n = get_node(s, node);
4718
4719 if (!n)
4720 continue;
4721
4722 nr_partials += n->nr_partial;
4723 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4724 nr_objs += atomic_long_read(&n->total_objects);
4725 nr_free += count_partial(n, count_free);
57ed3eda
PE
4726 }
4727
205ab99d 4728 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4729
4730 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4731 nr_objs, s->size, oo_objects(s->oo),
4732 (1 << oo_order(s->oo)));
57ed3eda
PE
4733 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4734 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4735 0UL);
4736 seq_putc(m, '\n');
4737 return 0;
4738}
4739
7b3c3a50 4740static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4741 .start = s_start,
4742 .next = s_next,
4743 .stop = s_stop,
4744 .show = s_show,
4745};
4746
7b3c3a50
AD
4747static int slabinfo_open(struct inode *inode, struct file *file)
4748{
4749 return seq_open(file, &slabinfo_op);
4750}
4751
4752static const struct file_operations proc_slabinfo_operations = {
4753 .open = slabinfo_open,
4754 .read = seq_read,
4755 .llseek = seq_lseek,
4756 .release = seq_release,
4757};
4758
4759static int __init slab_proc_init(void)
4760{
cf5d1131 4761 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4762 return 0;
4763}
4764module_init(slab_proc_init);
158a9624 4765#endif /* CONFIG_SLABINFO */