]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
slub: Add method to verify memory is not freed
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
25985edc 67 * a partial slab. A new slab has no one operating on it and thus there is
81819f0f
CL
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
d6543e39 194#define TRACK_ADDRS_COUNT 16
02cbc874 195struct track {
ce71e27c 196 unsigned long addr; /* Called from address */
d6543e39
BG
197#ifdef CONFIG_STACKTRACE
198 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
199#endif
02cbc874
CL
200 int cpu; /* Was running on cpu */
201 int pid; /* Pid context */
202 unsigned long when; /* When did the operation occur */
203};
204
205enum track_item { TRACK_ALLOC, TRACK_FREE };
206
ab4d5ed5 207#ifdef CONFIG_SYSFS
81819f0f
CL
208static int sysfs_slab_add(struct kmem_cache *);
209static int sysfs_slab_alias(struct kmem_cache *, const char *);
210static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 211
81819f0f 212#else
0c710013
CL
213static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
214static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
215 { return 0; }
151c602f
CL
216static inline void sysfs_slab_remove(struct kmem_cache *s)
217{
84c1cf62 218 kfree(s->name);
151c602f
CL
219 kfree(s);
220}
8ff12cfc 221
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235int slab_is_available(void)
236{
237 return slab_state >= UP;
238}
239
240static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
241{
81819f0f 242 return s->node[node];
81819f0f
CL
243}
244
6446faa2 245/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
a973e9dd 251 if (!object)
02cbc874
CL
252 return 1;
253
a973e9dd 254 base = page_address(page);
39b26464 255 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265 return *(void **)(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->objsize;
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
41ecc55b 345#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
346/*
347 * Determine a map of object in use on a page.
348 *
349 * Slab lock or node listlock must be held to guarantee that the page does
350 * not vanish from under us.
351 */
352static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
353{
354 void *p;
355 void *addr = page_address(page);
356
357 for (p = page->freelist; p; p = get_freepointer(s, p))
358 set_bit(slab_index(p, s, addr), map);
359}
360
41ecc55b
CL
361/*
362 * Debug settings:
363 */
f0630fff
CL
364#ifdef CONFIG_SLUB_DEBUG_ON
365static int slub_debug = DEBUG_DEFAULT_FLAGS;
366#else
41ecc55b 367static int slub_debug;
f0630fff 368#endif
41ecc55b
CL
369
370static char *slub_debug_slabs;
fa5ec8a1 371static int disable_higher_order_debug;
41ecc55b 372
81819f0f
CL
373/*
374 * Object debugging
375 */
376static void print_section(char *text, u8 *addr, unsigned int length)
377{
378 int i, offset;
379 int newline = 1;
380 char ascii[17];
381
382 ascii[16] = 0;
383
384 for (i = 0; i < length; i++) {
385 if (newline) {
24922684 386 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
387 newline = 0;
388 }
06428780 389 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
390 offset = i % 16;
391 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
392 if (offset == 15) {
06428780 393 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
394 newline = 1;
395 }
396 }
397 if (!newline) {
398 i %= 16;
399 while (i < 16) {
06428780 400 printk(KERN_CONT " ");
81819f0f
CL
401 ascii[i] = ' ';
402 i++;
403 }
06428780 404 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
405 }
406}
407
81819f0f
CL
408static struct track *get_track(struct kmem_cache *s, void *object,
409 enum track_item alloc)
410{
411 struct track *p;
412
413 if (s->offset)
414 p = object + s->offset + sizeof(void *);
415 else
416 p = object + s->inuse;
417
418 return p + alloc;
419}
420
421static void set_track(struct kmem_cache *s, void *object,
ce71e27c 422 enum track_item alloc, unsigned long addr)
81819f0f 423{
1a00df4a 424 struct track *p = get_track(s, object, alloc);
81819f0f 425
81819f0f 426 if (addr) {
d6543e39
BG
427#ifdef CONFIG_STACKTRACE
428 struct stack_trace trace;
429 int i;
430
431 trace.nr_entries = 0;
432 trace.max_entries = TRACK_ADDRS_COUNT;
433 trace.entries = p->addrs;
434 trace.skip = 3;
435 save_stack_trace(&trace);
436
437 /* See rant in lockdep.c */
438 if (trace.nr_entries != 0 &&
439 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
440 trace.nr_entries--;
441
442 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
443 p->addrs[i] = 0;
444#endif
81819f0f
CL
445 p->addr = addr;
446 p->cpu = smp_processor_id();
88e4ccf2 447 p->pid = current->pid;
81819f0f
CL
448 p->when = jiffies;
449 } else
450 memset(p, 0, sizeof(struct track));
451}
452
81819f0f
CL
453static void init_tracking(struct kmem_cache *s, void *object)
454{
24922684
CL
455 if (!(s->flags & SLAB_STORE_USER))
456 return;
457
ce71e27c
EGM
458 set_track(s, object, TRACK_FREE, 0UL);
459 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
460}
461
462static void print_track(const char *s, struct track *t)
463{
464 if (!t->addr)
465 return;
466
7daf705f 467 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 468 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
469#ifdef CONFIG_STACKTRACE
470 {
471 int i;
472 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
473 if (t->addrs[i])
474 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
475 else
476 break;
477 }
478#endif
24922684
CL
479}
480
481static void print_tracking(struct kmem_cache *s, void *object)
482{
483 if (!(s->flags & SLAB_STORE_USER))
484 return;
485
486 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
487 print_track("Freed", get_track(s, object, TRACK_FREE));
488}
489
490static void print_page_info(struct page *page)
491{
39b26464
CL
492 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
493 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
494
495}
496
497static void slab_bug(struct kmem_cache *s, char *fmt, ...)
498{
499 va_list args;
500 char buf[100];
501
502 va_start(args, fmt);
503 vsnprintf(buf, sizeof(buf), fmt, args);
504 va_end(args);
505 printk(KERN_ERR "========================================"
506 "=====================================\n");
507 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
508 printk(KERN_ERR "----------------------------------------"
509 "-------------------------------------\n\n");
81819f0f
CL
510}
511
24922684
CL
512static void slab_fix(struct kmem_cache *s, char *fmt, ...)
513{
514 va_list args;
515 char buf[100];
516
517 va_start(args, fmt);
518 vsnprintf(buf, sizeof(buf), fmt, args);
519 va_end(args);
520 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
521}
522
523static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
524{
525 unsigned int off; /* Offset of last byte */
a973e9dd 526 u8 *addr = page_address(page);
24922684
CL
527
528 print_tracking(s, p);
529
530 print_page_info(page);
531
532 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
533 p, p - addr, get_freepointer(s, p));
534
535 if (p > addr + 16)
536 print_section("Bytes b4", p - 16, 16);
537
0ebd652b 538 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
539
540 if (s->flags & SLAB_RED_ZONE)
541 print_section("Redzone", p + s->objsize,
542 s->inuse - s->objsize);
543
81819f0f
CL
544 if (s->offset)
545 off = s->offset + sizeof(void *);
546 else
547 off = s->inuse;
548
24922684 549 if (s->flags & SLAB_STORE_USER)
81819f0f 550 off += 2 * sizeof(struct track);
81819f0f
CL
551
552 if (off != s->size)
553 /* Beginning of the filler is the free pointer */
24922684
CL
554 print_section("Padding", p + off, s->size - off);
555
556 dump_stack();
81819f0f
CL
557}
558
559static void object_err(struct kmem_cache *s, struct page *page,
560 u8 *object, char *reason)
561{
3dc50637 562 slab_bug(s, "%s", reason);
24922684 563 print_trailer(s, page, object);
81819f0f
CL
564}
565
24922684 566static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
567{
568 va_list args;
569 char buf[100];
570
24922684
CL
571 va_start(args, fmt);
572 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 573 va_end(args);
3dc50637 574 slab_bug(s, "%s", buf);
24922684 575 print_page_info(page);
81819f0f
CL
576 dump_stack();
577}
578
f7cb1933 579static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
580{
581 u8 *p = object;
582
583 if (s->flags & __OBJECT_POISON) {
584 memset(p, POISON_FREE, s->objsize - 1);
06428780 585 p[s->objsize - 1] = POISON_END;
81819f0f
CL
586 }
587
588 if (s->flags & SLAB_RED_ZONE)
f7cb1933 589 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
590}
591
24922684 592static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
593{
594 while (bytes) {
595 if (*start != (u8)value)
24922684 596 return start;
81819f0f
CL
597 start++;
598 bytes--;
599 }
24922684
CL
600 return NULL;
601}
602
603static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
604 void *from, void *to)
605{
606 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
607 memset(from, data, to - from);
608}
609
610static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
611 u8 *object, char *what,
06428780 612 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
613{
614 u8 *fault;
615 u8 *end;
616
617 fault = check_bytes(start, value, bytes);
618 if (!fault)
619 return 1;
620
621 end = start + bytes;
622 while (end > fault && end[-1] == value)
623 end--;
624
625 slab_bug(s, "%s overwritten", what);
626 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
627 fault, end - 1, fault[0], value);
628 print_trailer(s, page, object);
629
630 restore_bytes(s, what, value, fault, end);
631 return 0;
81819f0f
CL
632}
633
81819f0f
CL
634/*
635 * Object layout:
636 *
637 * object address
638 * Bytes of the object to be managed.
639 * If the freepointer may overlay the object then the free
640 * pointer is the first word of the object.
672bba3a 641 *
81819f0f
CL
642 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
643 * 0xa5 (POISON_END)
644 *
645 * object + s->objsize
646 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
647 * Padding is extended by another word if Redzoning is enabled and
648 * objsize == inuse.
649 *
81819f0f
CL
650 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
651 * 0xcc (RED_ACTIVE) for objects in use.
652 *
653 * object + s->inuse
672bba3a
CL
654 * Meta data starts here.
655 *
81819f0f
CL
656 * A. Free pointer (if we cannot overwrite object on free)
657 * B. Tracking data for SLAB_STORE_USER
672bba3a 658 * C. Padding to reach required alignment boundary or at mininum
6446faa2 659 * one word if debugging is on to be able to detect writes
672bba3a
CL
660 * before the word boundary.
661 *
662 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
663 *
664 * object + s->size
672bba3a 665 * Nothing is used beyond s->size.
81819f0f 666 *
672bba3a
CL
667 * If slabcaches are merged then the objsize and inuse boundaries are mostly
668 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
669 * may be used with merged slabcaches.
670 */
671
81819f0f
CL
672static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
673{
674 unsigned long off = s->inuse; /* The end of info */
675
676 if (s->offset)
677 /* Freepointer is placed after the object. */
678 off += sizeof(void *);
679
680 if (s->flags & SLAB_STORE_USER)
681 /* We also have user information there */
682 off += 2 * sizeof(struct track);
683
684 if (s->size == off)
685 return 1;
686
24922684
CL
687 return check_bytes_and_report(s, page, p, "Object padding",
688 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
689}
690
39b26464 691/* Check the pad bytes at the end of a slab page */
81819f0f
CL
692static int slab_pad_check(struct kmem_cache *s, struct page *page)
693{
24922684
CL
694 u8 *start;
695 u8 *fault;
696 u8 *end;
697 int length;
698 int remainder;
81819f0f
CL
699
700 if (!(s->flags & SLAB_POISON))
701 return 1;
702
a973e9dd 703 start = page_address(page);
ab9a0f19 704 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
705 end = start + length;
706 remainder = length % s->size;
81819f0f
CL
707 if (!remainder)
708 return 1;
709
39b26464 710 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
711 if (!fault)
712 return 1;
713 while (end > fault && end[-1] == POISON_INUSE)
714 end--;
715
716 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 717 print_section("Padding", end - remainder, remainder);
24922684 718
8a3d271d 719 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 720 return 0;
81819f0f
CL
721}
722
723static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 724 void *object, u8 val)
81819f0f
CL
725{
726 u8 *p = object;
727 u8 *endobject = object + s->objsize;
728
729 if (s->flags & SLAB_RED_ZONE) {
24922684 730 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 731 endobject, val, s->inuse - s->objsize))
81819f0f 732 return 0;
81819f0f 733 } else {
3adbefee
IM
734 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
735 check_bytes_and_report(s, page, p, "Alignment padding",
736 endobject, POISON_INUSE, s->inuse - s->objsize);
737 }
81819f0f
CL
738 }
739
740 if (s->flags & SLAB_POISON) {
f7cb1933 741 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
742 (!check_bytes_and_report(s, page, p, "Poison", p,
743 POISON_FREE, s->objsize - 1) ||
744 !check_bytes_and_report(s, page, p, "Poison",
06428780 745 p + s->objsize - 1, POISON_END, 1)))
81819f0f 746 return 0;
81819f0f
CL
747 /*
748 * check_pad_bytes cleans up on its own.
749 */
750 check_pad_bytes(s, page, p);
751 }
752
f7cb1933 753 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
754 /*
755 * Object and freepointer overlap. Cannot check
756 * freepointer while object is allocated.
757 */
758 return 1;
759
760 /* Check free pointer validity */
761 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
762 object_err(s, page, p, "Freepointer corrupt");
763 /*
9f6c708e 764 * No choice but to zap it and thus lose the remainder
81819f0f 765 * of the free objects in this slab. May cause
672bba3a 766 * another error because the object count is now wrong.
81819f0f 767 */
a973e9dd 768 set_freepointer(s, p, NULL);
81819f0f
CL
769 return 0;
770 }
771 return 1;
772}
773
774static int check_slab(struct kmem_cache *s, struct page *page)
775{
39b26464
CL
776 int maxobj;
777
81819f0f
CL
778 VM_BUG_ON(!irqs_disabled());
779
780 if (!PageSlab(page)) {
24922684 781 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
782 return 0;
783 }
39b26464 784
ab9a0f19 785 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
786 if (page->objects > maxobj) {
787 slab_err(s, page, "objects %u > max %u",
788 s->name, page->objects, maxobj);
789 return 0;
790 }
791 if (page->inuse > page->objects) {
24922684 792 slab_err(s, page, "inuse %u > max %u",
39b26464 793 s->name, page->inuse, page->objects);
81819f0f
CL
794 return 0;
795 }
796 /* Slab_pad_check fixes things up after itself */
797 slab_pad_check(s, page);
798 return 1;
799}
800
801/*
672bba3a
CL
802 * Determine if a certain object on a page is on the freelist. Must hold the
803 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
804 */
805static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
806{
807 int nr = 0;
808 void *fp = page->freelist;
809 void *object = NULL;
224a88be 810 unsigned long max_objects;
81819f0f 811
39b26464 812 while (fp && nr <= page->objects) {
81819f0f
CL
813 if (fp == search)
814 return 1;
815 if (!check_valid_pointer(s, page, fp)) {
816 if (object) {
817 object_err(s, page, object,
818 "Freechain corrupt");
a973e9dd 819 set_freepointer(s, object, NULL);
81819f0f
CL
820 break;
821 } else {
24922684 822 slab_err(s, page, "Freepointer corrupt");
a973e9dd 823 page->freelist = NULL;
39b26464 824 page->inuse = page->objects;
24922684 825 slab_fix(s, "Freelist cleared");
81819f0f
CL
826 return 0;
827 }
828 break;
829 }
830 object = fp;
831 fp = get_freepointer(s, object);
832 nr++;
833 }
834
ab9a0f19 835 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
836 if (max_objects > MAX_OBJS_PER_PAGE)
837 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
838
839 if (page->objects != max_objects) {
840 slab_err(s, page, "Wrong number of objects. Found %d but "
841 "should be %d", page->objects, max_objects);
842 page->objects = max_objects;
843 slab_fix(s, "Number of objects adjusted.");
844 }
39b26464 845 if (page->inuse != page->objects - nr) {
70d71228 846 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
847 "counted were %d", page->inuse, page->objects - nr);
848 page->inuse = page->objects - nr;
24922684 849 slab_fix(s, "Object count adjusted.");
81819f0f
CL
850 }
851 return search == NULL;
852}
853
0121c619
CL
854static void trace(struct kmem_cache *s, struct page *page, void *object,
855 int alloc)
3ec09742
CL
856{
857 if (s->flags & SLAB_TRACE) {
858 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
859 s->name,
860 alloc ? "alloc" : "free",
861 object, page->inuse,
862 page->freelist);
863
864 if (!alloc)
865 print_section("Object", (void *)object, s->objsize);
866
867 dump_stack();
868 }
869}
870
c016b0bd
CL
871/*
872 * Hooks for other subsystems that check memory allocations. In a typical
873 * production configuration these hooks all should produce no code at all.
874 */
875static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
876{
c1d50836 877 flags &= gfp_allowed_mask;
c016b0bd
CL
878 lockdep_trace_alloc(flags);
879 might_sleep_if(flags & __GFP_WAIT);
880
881 return should_failslab(s->objsize, flags, s->flags);
882}
883
884static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
885{
c1d50836 886 flags &= gfp_allowed_mask;
b3d41885 887 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
888 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
889}
890
891static inline void slab_free_hook(struct kmem_cache *s, void *x)
892{
893 kmemleak_free_recursive(x, s->flags);
c016b0bd 894
d3f661d6
CL
895 /*
896 * Trouble is that we may no longer disable interupts in the fast path
897 * So in order to make the debug calls that expect irqs to be
898 * disabled we need to disable interrupts temporarily.
899 */
900#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
901 {
902 unsigned long flags;
903
904 local_irq_save(flags);
905 kmemcheck_slab_free(s, x, s->objsize);
906 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
907 local_irq_restore(flags);
908 }
909#endif
f9b615de
TG
910 if (!(s->flags & SLAB_DEBUG_OBJECTS))
911 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
912}
913
643b1138 914/*
672bba3a 915 * Tracking of fully allocated slabs for debugging purposes.
643b1138 916 */
e95eed57 917static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 918{
643b1138
CL
919 spin_lock(&n->list_lock);
920 list_add(&page->lru, &n->full);
921 spin_unlock(&n->list_lock);
922}
923
924static void remove_full(struct kmem_cache *s, struct page *page)
925{
926 struct kmem_cache_node *n;
927
928 if (!(s->flags & SLAB_STORE_USER))
929 return;
930
931 n = get_node(s, page_to_nid(page));
932
933 spin_lock(&n->list_lock);
934 list_del(&page->lru);
935 spin_unlock(&n->list_lock);
936}
937
0f389ec6
CL
938/* Tracking of the number of slabs for debugging purposes */
939static inline unsigned long slabs_node(struct kmem_cache *s, int node)
940{
941 struct kmem_cache_node *n = get_node(s, node);
942
943 return atomic_long_read(&n->nr_slabs);
944}
945
26c02cf0
AB
946static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
947{
948 return atomic_long_read(&n->nr_slabs);
949}
950
205ab99d 951static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
952{
953 struct kmem_cache_node *n = get_node(s, node);
954
955 /*
956 * May be called early in order to allocate a slab for the
957 * kmem_cache_node structure. Solve the chicken-egg
958 * dilemma by deferring the increment of the count during
959 * bootstrap (see early_kmem_cache_node_alloc).
960 */
7340cc84 961 if (n) {
0f389ec6 962 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
963 atomic_long_add(objects, &n->total_objects);
964 }
0f389ec6 965}
205ab99d 966static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
967{
968 struct kmem_cache_node *n = get_node(s, node);
969
970 atomic_long_dec(&n->nr_slabs);
205ab99d 971 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
972}
973
974/* Object debug checks for alloc/free paths */
3ec09742
CL
975static void setup_object_debug(struct kmem_cache *s, struct page *page,
976 void *object)
977{
978 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
979 return;
980
f7cb1933 981 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
982 init_tracking(s, object);
983}
984
1537066c 985static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 986 void *object, unsigned long addr)
81819f0f
CL
987{
988 if (!check_slab(s, page))
989 goto bad;
990
d692ef6d 991 if (!on_freelist(s, page, object)) {
24922684 992 object_err(s, page, object, "Object already allocated");
70d71228 993 goto bad;
81819f0f
CL
994 }
995
996 if (!check_valid_pointer(s, page, object)) {
997 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 998 goto bad;
81819f0f
CL
999 }
1000
f7cb1933 1001 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1002 goto bad;
81819f0f 1003
3ec09742
CL
1004 /* Success perform special debug activities for allocs */
1005 if (s->flags & SLAB_STORE_USER)
1006 set_track(s, object, TRACK_ALLOC, addr);
1007 trace(s, page, object, 1);
f7cb1933 1008 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1009 return 1;
3ec09742 1010
81819f0f
CL
1011bad:
1012 if (PageSlab(page)) {
1013 /*
1014 * If this is a slab page then lets do the best we can
1015 * to avoid issues in the future. Marking all objects
672bba3a 1016 * as used avoids touching the remaining objects.
81819f0f 1017 */
24922684 1018 slab_fix(s, "Marking all objects used");
39b26464 1019 page->inuse = page->objects;
a973e9dd 1020 page->freelist = NULL;
81819f0f
CL
1021 }
1022 return 0;
1023}
1024
1537066c
CL
1025static noinline int free_debug_processing(struct kmem_cache *s,
1026 struct page *page, void *object, unsigned long addr)
81819f0f
CL
1027{
1028 if (!check_slab(s, page))
1029 goto fail;
1030
1031 if (!check_valid_pointer(s, page, object)) {
70d71228 1032 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1033 goto fail;
1034 }
1035
1036 if (on_freelist(s, page, object)) {
24922684 1037 object_err(s, page, object, "Object already free");
81819f0f
CL
1038 goto fail;
1039 }
1040
f7cb1933 1041 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
1042 return 0;
1043
1044 if (unlikely(s != page->slab)) {
3adbefee 1045 if (!PageSlab(page)) {
70d71228
CL
1046 slab_err(s, page, "Attempt to free object(0x%p) "
1047 "outside of slab", object);
3adbefee 1048 } else if (!page->slab) {
81819f0f 1049 printk(KERN_ERR
70d71228 1050 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1051 object);
70d71228 1052 dump_stack();
06428780 1053 } else
24922684
CL
1054 object_err(s, page, object,
1055 "page slab pointer corrupt.");
81819f0f
CL
1056 goto fail;
1057 }
3ec09742
CL
1058
1059 /* Special debug activities for freeing objects */
8a38082d 1060 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
1061 remove_full(s, page);
1062 if (s->flags & SLAB_STORE_USER)
1063 set_track(s, object, TRACK_FREE, addr);
1064 trace(s, page, object, 0);
f7cb1933 1065 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1066 return 1;
3ec09742 1067
81819f0f 1068fail:
24922684 1069 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1070 return 0;
1071}
1072
41ecc55b
CL
1073static int __init setup_slub_debug(char *str)
1074{
f0630fff
CL
1075 slub_debug = DEBUG_DEFAULT_FLAGS;
1076 if (*str++ != '=' || !*str)
1077 /*
1078 * No options specified. Switch on full debugging.
1079 */
1080 goto out;
1081
1082 if (*str == ',')
1083 /*
1084 * No options but restriction on slabs. This means full
1085 * debugging for slabs matching a pattern.
1086 */
1087 goto check_slabs;
1088
fa5ec8a1
DR
1089 if (tolower(*str) == 'o') {
1090 /*
1091 * Avoid enabling debugging on caches if its minimum order
1092 * would increase as a result.
1093 */
1094 disable_higher_order_debug = 1;
1095 goto out;
1096 }
1097
f0630fff
CL
1098 slub_debug = 0;
1099 if (*str == '-')
1100 /*
1101 * Switch off all debugging measures.
1102 */
1103 goto out;
1104
1105 /*
1106 * Determine which debug features should be switched on
1107 */
06428780 1108 for (; *str && *str != ','; str++) {
f0630fff
CL
1109 switch (tolower(*str)) {
1110 case 'f':
1111 slub_debug |= SLAB_DEBUG_FREE;
1112 break;
1113 case 'z':
1114 slub_debug |= SLAB_RED_ZONE;
1115 break;
1116 case 'p':
1117 slub_debug |= SLAB_POISON;
1118 break;
1119 case 'u':
1120 slub_debug |= SLAB_STORE_USER;
1121 break;
1122 case 't':
1123 slub_debug |= SLAB_TRACE;
1124 break;
4c13dd3b
DM
1125 case 'a':
1126 slub_debug |= SLAB_FAILSLAB;
1127 break;
f0630fff
CL
1128 default:
1129 printk(KERN_ERR "slub_debug option '%c' "
06428780 1130 "unknown. skipped\n", *str);
f0630fff 1131 }
41ecc55b
CL
1132 }
1133
f0630fff 1134check_slabs:
41ecc55b
CL
1135 if (*str == ',')
1136 slub_debug_slabs = str + 1;
f0630fff 1137out:
41ecc55b
CL
1138 return 1;
1139}
1140
1141__setup("slub_debug", setup_slub_debug);
1142
ba0268a8
CL
1143static unsigned long kmem_cache_flags(unsigned long objsize,
1144 unsigned long flags, const char *name,
51cc5068 1145 void (*ctor)(void *))
41ecc55b
CL
1146{
1147 /*
e153362a 1148 * Enable debugging if selected on the kernel commandline.
41ecc55b 1149 */
e153362a 1150 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1151 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1152 flags |= slub_debug;
ba0268a8
CL
1153
1154 return flags;
41ecc55b
CL
1155}
1156#else
3ec09742
CL
1157static inline void setup_object_debug(struct kmem_cache *s,
1158 struct page *page, void *object) {}
41ecc55b 1159
3ec09742 1160static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1161 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1162
3ec09742 1163static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1164 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1165
41ecc55b
CL
1166static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1167 { return 1; }
1168static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1169 void *object, u8 val) { return 1; }
3ec09742 1170static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1171static inline unsigned long kmem_cache_flags(unsigned long objsize,
1172 unsigned long flags, const char *name,
51cc5068 1173 void (*ctor)(void *))
ba0268a8
CL
1174{
1175 return flags;
1176}
41ecc55b 1177#define slub_debug 0
0f389ec6 1178
fdaa45e9
IM
1179#define disable_higher_order_debug 0
1180
0f389ec6
CL
1181static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1182 { return 0; }
26c02cf0
AB
1183static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1184 { return 0; }
205ab99d
CL
1185static inline void inc_slabs_node(struct kmem_cache *s, int node,
1186 int objects) {}
1187static inline void dec_slabs_node(struct kmem_cache *s, int node,
1188 int objects) {}
7d550c56
CL
1189
1190static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1191 { return 0; }
1192
1193static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1194 void *object) {}
1195
1196static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1197
ab4d5ed5 1198#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1199
81819f0f
CL
1200/*
1201 * Slab allocation and freeing
1202 */
65c3376a
CL
1203static inline struct page *alloc_slab_page(gfp_t flags, int node,
1204 struct kmem_cache_order_objects oo)
1205{
1206 int order = oo_order(oo);
1207
b1eeab67
VN
1208 flags |= __GFP_NOTRACK;
1209
2154a336 1210 if (node == NUMA_NO_NODE)
65c3376a
CL
1211 return alloc_pages(flags, order);
1212 else
6b65aaf3 1213 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1214}
1215
81819f0f
CL
1216static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1217{
06428780 1218 struct page *page;
834f3d11 1219 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1220 gfp_t alloc_gfp;
81819f0f 1221
b7a49f0d 1222 flags |= s->allocflags;
e12ba74d 1223
ba52270d
PE
1224 /*
1225 * Let the initial higher-order allocation fail under memory pressure
1226 * so we fall-back to the minimum order allocation.
1227 */
1228 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1229
1230 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1231 if (unlikely(!page)) {
1232 oo = s->min;
1233 /*
1234 * Allocation may have failed due to fragmentation.
1235 * Try a lower order alloc if possible
1236 */
1237 page = alloc_slab_page(flags, node, oo);
1238 if (!page)
1239 return NULL;
81819f0f 1240
84e554e6 1241 stat(s, ORDER_FALLBACK);
65c3376a 1242 }
5a896d9e
VN
1243
1244 if (kmemcheck_enabled
5086c389 1245 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1246 int pages = 1 << oo_order(oo);
1247
1248 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1249
1250 /*
1251 * Objects from caches that have a constructor don't get
1252 * cleared when they're allocated, so we need to do it here.
1253 */
1254 if (s->ctor)
1255 kmemcheck_mark_uninitialized_pages(page, pages);
1256 else
1257 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1258 }
1259
834f3d11 1260 page->objects = oo_objects(oo);
81819f0f
CL
1261 mod_zone_page_state(page_zone(page),
1262 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1263 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1264 1 << oo_order(oo));
81819f0f
CL
1265
1266 return page;
1267}
1268
1269static void setup_object(struct kmem_cache *s, struct page *page,
1270 void *object)
1271{
3ec09742 1272 setup_object_debug(s, page, object);
4f104934 1273 if (unlikely(s->ctor))
51cc5068 1274 s->ctor(object);
81819f0f
CL
1275}
1276
1277static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1278{
1279 struct page *page;
81819f0f 1280 void *start;
81819f0f
CL
1281 void *last;
1282 void *p;
1283
6cb06229 1284 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1285
6cb06229
CL
1286 page = allocate_slab(s,
1287 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1288 if (!page)
1289 goto out;
1290
205ab99d 1291 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1292 page->slab = s;
1293 page->flags |= 1 << PG_slab;
81819f0f
CL
1294
1295 start = page_address(page);
81819f0f
CL
1296
1297 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1298 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1299
1300 last = start;
224a88be 1301 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1302 setup_object(s, page, last);
1303 set_freepointer(s, last, p);
1304 last = p;
1305 }
1306 setup_object(s, page, last);
a973e9dd 1307 set_freepointer(s, last, NULL);
81819f0f
CL
1308
1309 page->freelist = start;
1310 page->inuse = 0;
1311out:
81819f0f
CL
1312 return page;
1313}
1314
1315static void __free_slab(struct kmem_cache *s, struct page *page)
1316{
834f3d11
CL
1317 int order = compound_order(page);
1318 int pages = 1 << order;
81819f0f 1319
af537b0a 1320 if (kmem_cache_debug(s)) {
81819f0f
CL
1321 void *p;
1322
1323 slab_pad_check(s, page);
224a88be
CL
1324 for_each_object(p, s, page_address(page),
1325 page->objects)
f7cb1933 1326 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1327 }
1328
b1eeab67 1329 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1330
81819f0f
CL
1331 mod_zone_page_state(page_zone(page),
1332 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1333 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1334 -pages);
81819f0f 1335
49bd5221
CL
1336 __ClearPageSlab(page);
1337 reset_page_mapcount(page);
1eb5ac64
NP
1338 if (current->reclaim_state)
1339 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1340 __free_pages(page, order);
81819f0f
CL
1341}
1342
da9a638c
LJ
1343#define need_reserve_slab_rcu \
1344 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1345
81819f0f
CL
1346static void rcu_free_slab(struct rcu_head *h)
1347{
1348 struct page *page;
1349
da9a638c
LJ
1350 if (need_reserve_slab_rcu)
1351 page = virt_to_head_page(h);
1352 else
1353 page = container_of((struct list_head *)h, struct page, lru);
1354
81819f0f
CL
1355 __free_slab(page->slab, page);
1356}
1357
1358static void free_slab(struct kmem_cache *s, struct page *page)
1359{
1360 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1361 struct rcu_head *head;
1362
1363 if (need_reserve_slab_rcu) {
1364 int order = compound_order(page);
1365 int offset = (PAGE_SIZE << order) - s->reserved;
1366
1367 VM_BUG_ON(s->reserved != sizeof(*head));
1368 head = page_address(page) + offset;
1369 } else {
1370 /*
1371 * RCU free overloads the RCU head over the LRU
1372 */
1373 head = (void *)&page->lru;
1374 }
81819f0f
CL
1375
1376 call_rcu(head, rcu_free_slab);
1377 } else
1378 __free_slab(s, page);
1379}
1380
1381static void discard_slab(struct kmem_cache *s, struct page *page)
1382{
205ab99d 1383 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1384 free_slab(s, page);
1385}
1386
1387/*
1388 * Per slab locking using the pagelock
1389 */
1390static __always_inline void slab_lock(struct page *page)
1391{
1392 bit_spin_lock(PG_locked, &page->flags);
1393}
1394
1395static __always_inline void slab_unlock(struct page *page)
1396{
a76d3546 1397 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1398}
1399
1400static __always_inline int slab_trylock(struct page *page)
1401{
1402 int rc = 1;
1403
1404 rc = bit_spin_trylock(PG_locked, &page->flags);
1405 return rc;
1406}
1407
1408/*
1409 * Management of partially allocated slabs
1410 */
7c2e132c
CL
1411static void add_partial(struct kmem_cache_node *n,
1412 struct page *page, int tail)
81819f0f 1413{
e95eed57
CL
1414 spin_lock(&n->list_lock);
1415 n->nr_partial++;
7c2e132c
CL
1416 if (tail)
1417 list_add_tail(&page->lru, &n->partial);
1418 else
1419 list_add(&page->lru, &n->partial);
81819f0f
CL
1420 spin_unlock(&n->list_lock);
1421}
1422
62e346a8
CL
1423static inline void __remove_partial(struct kmem_cache_node *n,
1424 struct page *page)
1425{
1426 list_del(&page->lru);
1427 n->nr_partial--;
1428}
1429
0121c619 1430static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1431{
1432 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1433
1434 spin_lock(&n->list_lock);
62e346a8 1435 __remove_partial(n, page);
81819f0f
CL
1436 spin_unlock(&n->list_lock);
1437}
1438
1439/*
672bba3a 1440 * Lock slab and remove from the partial list.
81819f0f 1441 *
672bba3a 1442 * Must hold list_lock.
81819f0f 1443 */
0121c619
CL
1444static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1445 struct page *page)
81819f0f
CL
1446{
1447 if (slab_trylock(page)) {
62e346a8 1448 __remove_partial(n, page);
8a38082d 1449 __SetPageSlubFrozen(page);
81819f0f
CL
1450 return 1;
1451 }
1452 return 0;
1453}
1454
1455/*
672bba3a 1456 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1457 */
1458static struct page *get_partial_node(struct kmem_cache_node *n)
1459{
1460 struct page *page;
1461
1462 /*
1463 * Racy check. If we mistakenly see no partial slabs then we
1464 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1465 * partial slab and there is none available then get_partials()
1466 * will return NULL.
81819f0f
CL
1467 */
1468 if (!n || !n->nr_partial)
1469 return NULL;
1470
1471 spin_lock(&n->list_lock);
1472 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1473 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1474 goto out;
1475 page = NULL;
1476out:
1477 spin_unlock(&n->list_lock);
1478 return page;
1479}
1480
1481/*
672bba3a 1482 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1483 */
1484static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1485{
1486#ifdef CONFIG_NUMA
1487 struct zonelist *zonelist;
dd1a239f 1488 struct zoneref *z;
54a6eb5c
MG
1489 struct zone *zone;
1490 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1491 struct page *page;
1492
1493 /*
672bba3a
CL
1494 * The defrag ratio allows a configuration of the tradeoffs between
1495 * inter node defragmentation and node local allocations. A lower
1496 * defrag_ratio increases the tendency to do local allocations
1497 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1498 *
672bba3a
CL
1499 * If the defrag_ratio is set to 0 then kmalloc() always
1500 * returns node local objects. If the ratio is higher then kmalloc()
1501 * may return off node objects because partial slabs are obtained
1502 * from other nodes and filled up.
81819f0f 1503 *
6446faa2 1504 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1505 * defrag_ratio = 1000) then every (well almost) allocation will
1506 * first attempt to defrag slab caches on other nodes. This means
1507 * scanning over all nodes to look for partial slabs which may be
1508 * expensive if we do it every time we are trying to find a slab
1509 * with available objects.
81819f0f 1510 */
9824601e
CL
1511 if (!s->remote_node_defrag_ratio ||
1512 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1513 return NULL;
1514
c0ff7453 1515 get_mems_allowed();
0e88460d 1516 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1517 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1518 struct kmem_cache_node *n;
1519
54a6eb5c 1520 n = get_node(s, zone_to_nid(zone));
81819f0f 1521
54a6eb5c 1522 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1523 n->nr_partial > s->min_partial) {
81819f0f 1524 page = get_partial_node(n);
c0ff7453
MX
1525 if (page) {
1526 put_mems_allowed();
81819f0f 1527 return page;
c0ff7453 1528 }
81819f0f
CL
1529 }
1530 }
c0ff7453 1531 put_mems_allowed();
81819f0f
CL
1532#endif
1533 return NULL;
1534}
1535
1536/*
1537 * Get a partial page, lock it and return it.
1538 */
1539static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1540{
1541 struct page *page;
2154a336 1542 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1543
1544 page = get_partial_node(get_node(s, searchnode));
33de04ec 1545 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1546 return page;
1547
1548 return get_any_partial(s, flags);
1549}
1550
1551/*
1552 * Move a page back to the lists.
1553 *
1554 * Must be called with the slab lock held.
1555 *
1556 * On exit the slab lock will have been dropped.
1557 */
7c2e132c 1558static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1559 __releases(bitlock)
81819f0f 1560{
e95eed57
CL
1561 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1562
8a38082d 1563 __ClearPageSlubFrozen(page);
81819f0f 1564 if (page->inuse) {
e95eed57 1565
a973e9dd 1566 if (page->freelist) {
7c2e132c 1567 add_partial(n, page, tail);
84e554e6 1568 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1569 } else {
84e554e6 1570 stat(s, DEACTIVATE_FULL);
af537b0a 1571 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1572 add_full(n, page);
1573 }
81819f0f
CL
1574 slab_unlock(page);
1575 } else {
84e554e6 1576 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1577 if (n->nr_partial < s->min_partial) {
e95eed57 1578 /*
672bba3a
CL
1579 * Adding an empty slab to the partial slabs in order
1580 * to avoid page allocator overhead. This slab needs
1581 * to come after the other slabs with objects in
6446faa2
CL
1582 * so that the others get filled first. That way the
1583 * size of the partial list stays small.
1584 *
0121c619
CL
1585 * kmem_cache_shrink can reclaim any empty slabs from
1586 * the partial list.
e95eed57 1587 */
7c2e132c 1588 add_partial(n, page, 1);
e95eed57
CL
1589 slab_unlock(page);
1590 } else {
1591 slab_unlock(page);
84e554e6 1592 stat(s, FREE_SLAB);
e95eed57
CL
1593 discard_slab(s, page);
1594 }
81819f0f
CL
1595 }
1596}
1597
8a5ec0ba
CL
1598#ifdef CONFIG_PREEMPT
1599/*
1600 * Calculate the next globally unique transaction for disambiguiation
1601 * during cmpxchg. The transactions start with the cpu number and are then
1602 * incremented by CONFIG_NR_CPUS.
1603 */
1604#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1605#else
1606/*
1607 * No preemption supported therefore also no need to check for
1608 * different cpus.
1609 */
1610#define TID_STEP 1
1611#endif
1612
1613static inline unsigned long next_tid(unsigned long tid)
1614{
1615 return tid + TID_STEP;
1616}
1617
1618static inline unsigned int tid_to_cpu(unsigned long tid)
1619{
1620 return tid % TID_STEP;
1621}
1622
1623static inline unsigned long tid_to_event(unsigned long tid)
1624{
1625 return tid / TID_STEP;
1626}
1627
1628static inline unsigned int init_tid(int cpu)
1629{
1630 return cpu;
1631}
1632
1633static inline void note_cmpxchg_failure(const char *n,
1634 const struct kmem_cache *s, unsigned long tid)
1635{
1636#ifdef SLUB_DEBUG_CMPXCHG
1637 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1638
1639 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1640
1641#ifdef CONFIG_PREEMPT
1642 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1643 printk("due to cpu change %d -> %d\n",
1644 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1645 else
1646#endif
1647 if (tid_to_event(tid) != tid_to_event(actual_tid))
1648 printk("due to cpu running other code. Event %ld->%ld\n",
1649 tid_to_event(tid), tid_to_event(actual_tid));
1650 else
1651 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1652 actual_tid, tid, next_tid(tid));
1653#endif
4fdccdfb 1654 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1655}
1656
8a5ec0ba
CL
1657void init_kmem_cache_cpus(struct kmem_cache *s)
1658{
8a5ec0ba
CL
1659 int cpu;
1660
1661 for_each_possible_cpu(cpu)
1662 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1663}
81819f0f
CL
1664/*
1665 * Remove the cpu slab
1666 */
dfb4f096 1667static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1668 __releases(bitlock)
81819f0f 1669{
dfb4f096 1670 struct page *page = c->page;
7c2e132c 1671 int tail = 1;
8ff12cfc 1672
b773ad73 1673 if (page->freelist)
84e554e6 1674 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1675 /*
6446faa2 1676 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1677 * because both freelists are empty. So this is unlikely
1678 * to occur.
1679 */
a973e9dd 1680 while (unlikely(c->freelist)) {
894b8788
CL
1681 void **object;
1682
7c2e132c
CL
1683 tail = 0; /* Hot objects. Put the slab first */
1684
894b8788 1685 /* Retrieve object from cpu_freelist */
dfb4f096 1686 object = c->freelist;
ff12059e 1687 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1688
1689 /* And put onto the regular freelist */
ff12059e 1690 set_freepointer(s, object, page->freelist);
894b8788
CL
1691 page->freelist = object;
1692 page->inuse--;
1693 }
dfb4f096 1694 c->page = NULL;
8a5ec0ba 1695 c->tid = next_tid(c->tid);
7c2e132c 1696 unfreeze_slab(s, page, tail);
81819f0f
CL
1697}
1698
dfb4f096 1699static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1700{
84e554e6 1701 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1702 slab_lock(c->page);
1703 deactivate_slab(s, c);
81819f0f
CL
1704}
1705
1706/*
1707 * Flush cpu slab.
6446faa2 1708 *
81819f0f
CL
1709 * Called from IPI handler with interrupts disabled.
1710 */
0c710013 1711static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1712{
9dfc6e68 1713 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1714
dfb4f096
CL
1715 if (likely(c && c->page))
1716 flush_slab(s, c);
81819f0f
CL
1717}
1718
1719static void flush_cpu_slab(void *d)
1720{
1721 struct kmem_cache *s = d;
81819f0f 1722
dfb4f096 1723 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1724}
1725
1726static void flush_all(struct kmem_cache *s)
1727{
15c8b6c1 1728 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1729}
1730
dfb4f096
CL
1731/*
1732 * Check if the objects in a per cpu structure fit numa
1733 * locality expectations.
1734 */
1735static inline int node_match(struct kmem_cache_cpu *c, int node)
1736{
1737#ifdef CONFIG_NUMA
2154a336 1738 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1739 return 0;
1740#endif
1741 return 1;
1742}
1743
781b2ba6
PE
1744static int count_free(struct page *page)
1745{
1746 return page->objects - page->inuse;
1747}
1748
1749static unsigned long count_partial(struct kmem_cache_node *n,
1750 int (*get_count)(struct page *))
1751{
1752 unsigned long flags;
1753 unsigned long x = 0;
1754 struct page *page;
1755
1756 spin_lock_irqsave(&n->list_lock, flags);
1757 list_for_each_entry(page, &n->partial, lru)
1758 x += get_count(page);
1759 spin_unlock_irqrestore(&n->list_lock, flags);
1760 return x;
1761}
1762
26c02cf0
AB
1763static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1764{
1765#ifdef CONFIG_SLUB_DEBUG
1766 return atomic_long_read(&n->total_objects);
1767#else
1768 return 0;
1769#endif
1770}
1771
781b2ba6
PE
1772static noinline void
1773slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1774{
1775 int node;
1776
1777 printk(KERN_WARNING
1778 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1779 nid, gfpflags);
1780 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1781 "default order: %d, min order: %d\n", s->name, s->objsize,
1782 s->size, oo_order(s->oo), oo_order(s->min));
1783
fa5ec8a1
DR
1784 if (oo_order(s->min) > get_order(s->objsize))
1785 printk(KERN_WARNING " %s debugging increased min order, use "
1786 "slub_debug=O to disable.\n", s->name);
1787
781b2ba6
PE
1788 for_each_online_node(node) {
1789 struct kmem_cache_node *n = get_node(s, node);
1790 unsigned long nr_slabs;
1791 unsigned long nr_objs;
1792 unsigned long nr_free;
1793
1794 if (!n)
1795 continue;
1796
26c02cf0
AB
1797 nr_free = count_partial(n, count_free);
1798 nr_slabs = node_nr_slabs(n);
1799 nr_objs = node_nr_objs(n);
781b2ba6
PE
1800
1801 printk(KERN_WARNING
1802 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1803 node, nr_slabs, nr_objs, nr_free);
1804 }
1805}
1806
81819f0f 1807/*
894b8788
CL
1808 * Slow path. The lockless freelist is empty or we need to perform
1809 * debugging duties.
1810 *
1811 * Interrupts are disabled.
81819f0f 1812 *
894b8788
CL
1813 * Processing is still very fast if new objects have been freed to the
1814 * regular freelist. In that case we simply take over the regular freelist
1815 * as the lockless freelist and zap the regular freelist.
81819f0f 1816 *
894b8788
CL
1817 * If that is not working then we fall back to the partial lists. We take the
1818 * first element of the freelist as the object to allocate now and move the
1819 * rest of the freelist to the lockless freelist.
81819f0f 1820 *
894b8788 1821 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1822 * we need to allocate a new slab. This is the slowest path since it involves
1823 * a call to the page allocator and the setup of a new slab.
81819f0f 1824 */
ce71e27c
EGM
1825static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1826 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1827{
81819f0f 1828 void **object;
01ad8a7b 1829 struct page *page;
8a5ec0ba
CL
1830 unsigned long flags;
1831
1832 local_irq_save(flags);
1833#ifdef CONFIG_PREEMPT
1834 /*
1835 * We may have been preempted and rescheduled on a different
1836 * cpu before disabling interrupts. Need to reload cpu area
1837 * pointer.
1838 */
1839 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1840#endif
81819f0f 1841
e72e9c23
LT
1842 /* We handle __GFP_ZERO in the caller */
1843 gfpflags &= ~__GFP_ZERO;
1844
01ad8a7b
CL
1845 page = c->page;
1846 if (!page)
81819f0f
CL
1847 goto new_slab;
1848
01ad8a7b 1849 slab_lock(page);
dfb4f096 1850 if (unlikely(!node_match(c, node)))
81819f0f 1851 goto another_slab;
6446faa2 1852
84e554e6 1853 stat(s, ALLOC_REFILL);
6446faa2 1854
894b8788 1855load_freelist:
01ad8a7b 1856 object = page->freelist;
a973e9dd 1857 if (unlikely(!object))
81819f0f 1858 goto another_slab;
af537b0a 1859 if (kmem_cache_debug(s))
81819f0f
CL
1860 goto debug;
1861
ff12059e 1862 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1863 page->inuse = page->objects;
1864 page->freelist = NULL;
01ad8a7b 1865
01ad8a7b 1866 slab_unlock(page);
8a5ec0ba
CL
1867 c->tid = next_tid(c->tid);
1868 local_irq_restore(flags);
84e554e6 1869 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1870 return object;
1871
1872another_slab:
dfb4f096 1873 deactivate_slab(s, c);
81819f0f
CL
1874
1875new_slab:
01ad8a7b
CL
1876 page = get_partial(s, gfpflags, node);
1877 if (page) {
84e554e6 1878 stat(s, ALLOC_FROM_PARTIAL);
dc1fb7f4
CL
1879 c->node = page_to_nid(page);
1880 c->page = page;
894b8788 1881 goto load_freelist;
81819f0f
CL
1882 }
1883
c1d50836 1884 gfpflags &= gfp_allowed_mask;
b811c202
CL
1885 if (gfpflags & __GFP_WAIT)
1886 local_irq_enable();
1887
01ad8a7b 1888 page = new_slab(s, gfpflags, node);
b811c202
CL
1889
1890 if (gfpflags & __GFP_WAIT)
1891 local_irq_disable();
1892
01ad8a7b 1893 if (page) {
9dfc6e68 1894 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1895 stat(s, ALLOC_SLAB);
05aa3450 1896 if (c->page)
dfb4f096 1897 flush_slab(s, c);
01ad8a7b
CL
1898
1899 slab_lock(page);
1900 __SetPageSlubFrozen(page);
bd07d87f
DR
1901 c->node = page_to_nid(page);
1902 c->page = page;
4b6f0750 1903 goto load_freelist;
81819f0f 1904 }
95f85989
PE
1905 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1906 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1907 local_irq_restore(flags);
71c7a06f 1908 return NULL;
81819f0f 1909debug:
01ad8a7b 1910 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1911 goto another_slab;
894b8788 1912
01ad8a7b
CL
1913 page->inuse++;
1914 page->freelist = get_freepointer(s, object);
442b06bc
CL
1915 deactivate_slab(s, c);
1916 c->page = NULL;
15b7c514 1917 c->node = NUMA_NO_NODE;
a71ae47a
CL
1918 local_irq_restore(flags);
1919 return object;
894b8788
CL
1920}
1921
1922/*
1923 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1924 * have the fastpath folded into their functions. So no function call
1925 * overhead for requests that can be satisfied on the fastpath.
1926 *
1927 * The fastpath works by first checking if the lockless freelist can be used.
1928 * If not then __slab_alloc is called for slow processing.
1929 *
1930 * Otherwise we can simply pick the next object from the lockless free list.
1931 */
06428780 1932static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1933 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1934{
894b8788 1935 void **object;
dfb4f096 1936 struct kmem_cache_cpu *c;
8a5ec0ba 1937 unsigned long tid;
1f84260c 1938
c016b0bd 1939 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1940 return NULL;
1f84260c 1941
8a5ec0ba 1942redo:
8a5ec0ba
CL
1943
1944 /*
1945 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1946 * enabled. We may switch back and forth between cpus while
1947 * reading from one cpu area. That does not matter as long
1948 * as we end up on the original cpu again when doing the cmpxchg.
1949 */
9dfc6e68 1950 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1951
8a5ec0ba
CL
1952 /*
1953 * The transaction ids are globally unique per cpu and per operation on
1954 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1955 * occurs on the right processor and that there was no operation on the
1956 * linked list in between.
1957 */
1958 tid = c->tid;
1959 barrier();
8a5ec0ba 1960
9dfc6e68 1961 object = c->freelist;
9dfc6e68 1962 if (unlikely(!object || !node_match(c, node)))
894b8788 1963
dfb4f096 1964 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1965
1966 else {
8a5ec0ba 1967 /*
25985edc 1968 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
1969 * operation and if we are on the right processor.
1970 *
1971 * The cmpxchg does the following atomically (without lock semantics!)
1972 * 1. Relocate first pointer to the current per cpu area.
1973 * 2. Verify that tid and freelist have not been changed
1974 * 3. If they were not changed replace tid and freelist
1975 *
1976 * Since this is without lock semantics the protection is only against
1977 * code executing on this cpu *not* from access by other cpus.
1978 */
30106b8c 1979 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
1980 s->cpu_slab->freelist, s->cpu_slab->tid,
1981 object, tid,
1393d9a1 1982 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
1983
1984 note_cmpxchg_failure("slab_alloc", s, tid);
1985 goto redo;
1986 }
84e554e6 1987 stat(s, ALLOC_FASTPATH);
894b8788 1988 }
8a5ec0ba 1989
74e2134f 1990 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1991 memset(object, 0, s->objsize);
d07dbea4 1992
c016b0bd 1993 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1994
894b8788 1995 return object;
81819f0f
CL
1996}
1997
1998void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1999{
2154a336 2000 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2001
ca2b84cb 2002 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2003
2004 return ret;
81819f0f
CL
2005}
2006EXPORT_SYMBOL(kmem_cache_alloc);
2007
0f24f128 2008#ifdef CONFIG_TRACING
4a92379b
RK
2009void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2010{
2011 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2012 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2013 return ret;
2014}
2015EXPORT_SYMBOL(kmem_cache_alloc_trace);
2016
2017void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2018{
4a92379b
RK
2019 void *ret = kmalloc_order(size, flags, order);
2020 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2021 return ret;
5b882be4 2022}
4a92379b 2023EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2024#endif
2025
81819f0f
CL
2026#ifdef CONFIG_NUMA
2027void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2028{
5b882be4
EGM
2029 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2030
ca2b84cb
EGM
2031 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2032 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2033
2034 return ret;
81819f0f
CL
2035}
2036EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2037
0f24f128 2038#ifdef CONFIG_TRACING
4a92379b 2039void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2040 gfp_t gfpflags,
4a92379b 2041 int node, size_t size)
5b882be4 2042{
4a92379b
RK
2043 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2044
2045 trace_kmalloc_node(_RET_IP_, ret,
2046 size, s->size, gfpflags, node);
2047 return ret;
5b882be4 2048}
4a92379b 2049EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2050#endif
5d1f57e4 2051#endif
5b882be4 2052
81819f0f 2053/*
894b8788
CL
2054 * Slow patch handling. This may still be called frequently since objects
2055 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2056 *
894b8788
CL
2057 * So we still attempt to reduce cache line usage. Just take the slab
2058 * lock and free the item. If there is no additional partial page
2059 * handling required then we can return immediately.
81819f0f 2060 */
894b8788 2061static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2062 void *x, unsigned long addr)
81819f0f
CL
2063{
2064 void *prior;
2065 void **object = (void *)x;
8a5ec0ba 2066 unsigned long flags;
81819f0f 2067
8a5ec0ba 2068 local_irq_save(flags);
81819f0f 2069 slab_lock(page);
8a5ec0ba 2070 stat(s, FREE_SLOWPATH);
81819f0f 2071
8dc16c6c
CL
2072 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2073 goto out_unlock;
6446faa2 2074
ff12059e
CL
2075 prior = page->freelist;
2076 set_freepointer(s, object, prior);
81819f0f
CL
2077 page->freelist = object;
2078 page->inuse--;
2079
8a38082d 2080 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2081 stat(s, FREE_FROZEN);
81819f0f 2082 goto out_unlock;
8ff12cfc 2083 }
81819f0f
CL
2084
2085 if (unlikely(!page->inuse))
2086 goto slab_empty;
2087
2088 /*
6446faa2 2089 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2090 * then add it.
2091 */
a973e9dd 2092 if (unlikely(!prior)) {
7c2e132c 2093 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2094 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2095 }
81819f0f
CL
2096
2097out_unlock:
2098 slab_unlock(page);
8a5ec0ba 2099 local_irq_restore(flags);
81819f0f
CL
2100 return;
2101
2102slab_empty:
a973e9dd 2103 if (prior) {
81819f0f 2104 /*
672bba3a 2105 * Slab still on the partial list.
81819f0f
CL
2106 */
2107 remove_partial(s, page);
84e554e6 2108 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2109 }
81819f0f 2110 slab_unlock(page);
8a5ec0ba 2111 local_irq_restore(flags);
84e554e6 2112 stat(s, FREE_SLAB);
81819f0f 2113 discard_slab(s, page);
81819f0f
CL
2114}
2115
894b8788
CL
2116/*
2117 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2118 * can perform fastpath freeing without additional function calls.
2119 *
2120 * The fastpath is only possible if we are freeing to the current cpu slab
2121 * of this processor. This typically the case if we have just allocated
2122 * the item before.
2123 *
2124 * If fastpath is not possible then fall back to __slab_free where we deal
2125 * with all sorts of special processing.
2126 */
06428780 2127static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2128 struct page *page, void *x, unsigned long addr)
894b8788
CL
2129{
2130 void **object = (void *)x;
dfb4f096 2131 struct kmem_cache_cpu *c;
8a5ec0ba 2132 unsigned long tid;
1f84260c 2133
c016b0bd
CL
2134 slab_free_hook(s, x);
2135
8a5ec0ba 2136redo:
a24c5a0e 2137
8a5ec0ba
CL
2138 /*
2139 * Determine the currently cpus per cpu slab.
2140 * The cpu may change afterward. However that does not matter since
2141 * data is retrieved via this pointer. If we are on the same cpu
2142 * during the cmpxchg then the free will succedd.
2143 */
9dfc6e68 2144 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2145
8a5ec0ba
CL
2146 tid = c->tid;
2147 barrier();
c016b0bd 2148
442b06bc 2149 if (likely(page == c->page)) {
ff12059e 2150 set_freepointer(s, object, c->freelist);
8a5ec0ba 2151
30106b8c 2152 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2153 s->cpu_slab->freelist, s->cpu_slab->tid,
2154 c->freelist, tid,
2155 object, next_tid(tid)))) {
2156
2157 note_cmpxchg_failure("slab_free", s, tid);
2158 goto redo;
2159 }
84e554e6 2160 stat(s, FREE_FASTPATH);
894b8788 2161 } else
ff12059e 2162 __slab_free(s, page, x, addr);
894b8788 2163
894b8788
CL
2164}
2165
81819f0f
CL
2166void kmem_cache_free(struct kmem_cache *s, void *x)
2167{
77c5e2d0 2168 struct page *page;
81819f0f 2169
b49af68f 2170 page = virt_to_head_page(x);
81819f0f 2171
ce71e27c 2172 slab_free(s, page, x, _RET_IP_);
5b882be4 2173
ca2b84cb 2174 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2175}
2176EXPORT_SYMBOL(kmem_cache_free);
2177
81819f0f 2178/*
672bba3a
CL
2179 * Object placement in a slab is made very easy because we always start at
2180 * offset 0. If we tune the size of the object to the alignment then we can
2181 * get the required alignment by putting one properly sized object after
2182 * another.
81819f0f
CL
2183 *
2184 * Notice that the allocation order determines the sizes of the per cpu
2185 * caches. Each processor has always one slab available for allocations.
2186 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2187 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2188 * locking overhead.
81819f0f
CL
2189 */
2190
2191/*
2192 * Mininum / Maximum order of slab pages. This influences locking overhead
2193 * and slab fragmentation. A higher order reduces the number of partial slabs
2194 * and increases the number of allocations possible without having to
2195 * take the list_lock.
2196 */
2197static int slub_min_order;
114e9e89 2198static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2199static int slub_min_objects;
81819f0f
CL
2200
2201/*
2202 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2203 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2204 */
2205static int slub_nomerge;
2206
81819f0f
CL
2207/*
2208 * Calculate the order of allocation given an slab object size.
2209 *
672bba3a
CL
2210 * The order of allocation has significant impact on performance and other
2211 * system components. Generally order 0 allocations should be preferred since
2212 * order 0 does not cause fragmentation in the page allocator. Larger objects
2213 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2214 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2215 * would be wasted.
2216 *
2217 * In order to reach satisfactory performance we must ensure that a minimum
2218 * number of objects is in one slab. Otherwise we may generate too much
2219 * activity on the partial lists which requires taking the list_lock. This is
2220 * less a concern for large slabs though which are rarely used.
81819f0f 2221 *
672bba3a
CL
2222 * slub_max_order specifies the order where we begin to stop considering the
2223 * number of objects in a slab as critical. If we reach slub_max_order then
2224 * we try to keep the page order as low as possible. So we accept more waste
2225 * of space in favor of a small page order.
81819f0f 2226 *
672bba3a
CL
2227 * Higher order allocations also allow the placement of more objects in a
2228 * slab and thereby reduce object handling overhead. If the user has
2229 * requested a higher mininum order then we start with that one instead of
2230 * the smallest order which will fit the object.
81819f0f 2231 */
5e6d444e 2232static inline int slab_order(int size, int min_objects,
ab9a0f19 2233 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2234{
2235 int order;
2236 int rem;
6300ea75 2237 int min_order = slub_min_order;
81819f0f 2238
ab9a0f19 2239 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2240 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2241
6300ea75 2242 for (order = max(min_order,
5e6d444e
CL
2243 fls(min_objects * size - 1) - PAGE_SHIFT);
2244 order <= max_order; order++) {
81819f0f 2245
5e6d444e 2246 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2247
ab9a0f19 2248 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2249 continue;
2250
ab9a0f19 2251 rem = (slab_size - reserved) % size;
81819f0f 2252
5e6d444e 2253 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2254 break;
2255
2256 }
672bba3a 2257
81819f0f
CL
2258 return order;
2259}
2260
ab9a0f19 2261static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2262{
2263 int order;
2264 int min_objects;
2265 int fraction;
e8120ff1 2266 int max_objects;
5e6d444e
CL
2267
2268 /*
2269 * Attempt to find best configuration for a slab. This
2270 * works by first attempting to generate a layout with
2271 * the best configuration and backing off gradually.
2272 *
2273 * First we reduce the acceptable waste in a slab. Then
2274 * we reduce the minimum objects required in a slab.
2275 */
2276 min_objects = slub_min_objects;
9b2cd506
CL
2277 if (!min_objects)
2278 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2279 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2280 min_objects = min(min_objects, max_objects);
2281
5e6d444e 2282 while (min_objects > 1) {
c124f5b5 2283 fraction = 16;
5e6d444e
CL
2284 while (fraction >= 4) {
2285 order = slab_order(size, min_objects,
ab9a0f19 2286 slub_max_order, fraction, reserved);
5e6d444e
CL
2287 if (order <= slub_max_order)
2288 return order;
2289 fraction /= 2;
2290 }
5086c389 2291 min_objects--;
5e6d444e
CL
2292 }
2293
2294 /*
2295 * We were unable to place multiple objects in a slab. Now
2296 * lets see if we can place a single object there.
2297 */
ab9a0f19 2298 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2299 if (order <= slub_max_order)
2300 return order;
2301
2302 /*
2303 * Doh this slab cannot be placed using slub_max_order.
2304 */
ab9a0f19 2305 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2306 if (order < MAX_ORDER)
5e6d444e
CL
2307 return order;
2308 return -ENOSYS;
2309}
2310
81819f0f 2311/*
672bba3a 2312 * Figure out what the alignment of the objects will be.
81819f0f
CL
2313 */
2314static unsigned long calculate_alignment(unsigned long flags,
2315 unsigned long align, unsigned long size)
2316{
2317 /*
6446faa2
CL
2318 * If the user wants hardware cache aligned objects then follow that
2319 * suggestion if the object is sufficiently large.
81819f0f 2320 *
6446faa2
CL
2321 * The hardware cache alignment cannot override the specified
2322 * alignment though. If that is greater then use it.
81819f0f 2323 */
b6210386
NP
2324 if (flags & SLAB_HWCACHE_ALIGN) {
2325 unsigned long ralign = cache_line_size();
2326 while (size <= ralign / 2)
2327 ralign /= 2;
2328 align = max(align, ralign);
2329 }
81819f0f
CL
2330
2331 if (align < ARCH_SLAB_MINALIGN)
b6210386 2332 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2333
2334 return ALIGN(align, sizeof(void *));
2335}
2336
5595cffc
PE
2337static void
2338init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2339{
2340 n->nr_partial = 0;
81819f0f
CL
2341 spin_lock_init(&n->list_lock);
2342 INIT_LIST_HEAD(&n->partial);
8ab1372f 2343#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2344 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2345 atomic_long_set(&n->total_objects, 0);
643b1138 2346 INIT_LIST_HEAD(&n->full);
8ab1372f 2347#endif
81819f0f
CL
2348}
2349
55136592 2350static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2351{
6c182dc0
CL
2352 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2353 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2354
8a5ec0ba
CL
2355#ifdef CONFIG_CMPXCHG_LOCAL
2356 /*
2357 * Must align to double word boundary for the double cmpxchg instructions
2358 * to work.
2359 */
2360 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2361#else
2362 /* Regular alignment is sufficient */
6c182dc0 2363 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
8a5ec0ba
CL
2364#endif
2365
2366 if (!s->cpu_slab)
2367 return 0;
2368
2369 init_kmem_cache_cpus(s);
4c93c355 2370
8a5ec0ba 2371 return 1;
4c93c355 2372}
4c93c355 2373
51df1142
CL
2374static struct kmem_cache *kmem_cache_node;
2375
81819f0f
CL
2376/*
2377 * No kmalloc_node yet so do it by hand. We know that this is the first
2378 * slab on the node for this slabcache. There are no concurrent accesses
2379 * possible.
2380 *
2381 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2382 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2383 * memory on a fresh node that has no slab structures yet.
81819f0f 2384 */
55136592 2385static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2386{
2387 struct page *page;
2388 struct kmem_cache_node *n;
ba84c73c 2389 unsigned long flags;
81819f0f 2390
51df1142 2391 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2392
51df1142 2393 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2394
2395 BUG_ON(!page);
a2f92ee7
CL
2396 if (page_to_nid(page) != node) {
2397 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2398 "node %d\n", node);
2399 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2400 "in order to be able to continue\n");
2401 }
2402
81819f0f
CL
2403 n = page->freelist;
2404 BUG_ON(!n);
51df1142 2405 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2406 page->inuse++;
51df1142 2407 kmem_cache_node->node[node] = n;
8ab1372f 2408#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2409 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2410 init_tracking(kmem_cache_node, n);
8ab1372f 2411#endif
51df1142
CL
2412 init_kmem_cache_node(n, kmem_cache_node);
2413 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2414
ba84c73c 2415 /*
2416 * lockdep requires consistent irq usage for each lock
2417 * so even though there cannot be a race this early in
2418 * the boot sequence, we still disable irqs.
2419 */
2420 local_irq_save(flags);
7c2e132c 2421 add_partial(n, page, 0);
ba84c73c 2422 local_irq_restore(flags);
81819f0f
CL
2423}
2424
2425static void free_kmem_cache_nodes(struct kmem_cache *s)
2426{
2427 int node;
2428
f64dc58c 2429 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2430 struct kmem_cache_node *n = s->node[node];
51df1142 2431
73367bd8 2432 if (n)
51df1142
CL
2433 kmem_cache_free(kmem_cache_node, n);
2434
81819f0f
CL
2435 s->node[node] = NULL;
2436 }
2437}
2438
55136592 2439static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2440{
2441 int node;
81819f0f 2442
f64dc58c 2443 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2444 struct kmem_cache_node *n;
2445
73367bd8 2446 if (slab_state == DOWN) {
55136592 2447 early_kmem_cache_node_alloc(node);
73367bd8
AD
2448 continue;
2449 }
51df1142 2450 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2451 GFP_KERNEL, node);
81819f0f 2452
73367bd8
AD
2453 if (!n) {
2454 free_kmem_cache_nodes(s);
2455 return 0;
81819f0f 2456 }
73367bd8 2457
81819f0f 2458 s->node[node] = n;
5595cffc 2459 init_kmem_cache_node(n, s);
81819f0f
CL
2460 }
2461 return 1;
2462}
81819f0f 2463
c0bdb232 2464static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2465{
2466 if (min < MIN_PARTIAL)
2467 min = MIN_PARTIAL;
2468 else if (min > MAX_PARTIAL)
2469 min = MAX_PARTIAL;
2470 s->min_partial = min;
2471}
2472
81819f0f
CL
2473/*
2474 * calculate_sizes() determines the order and the distribution of data within
2475 * a slab object.
2476 */
06b285dc 2477static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2478{
2479 unsigned long flags = s->flags;
2480 unsigned long size = s->objsize;
2481 unsigned long align = s->align;
834f3d11 2482 int order;
81819f0f 2483
d8b42bf5
CL
2484 /*
2485 * Round up object size to the next word boundary. We can only
2486 * place the free pointer at word boundaries and this determines
2487 * the possible location of the free pointer.
2488 */
2489 size = ALIGN(size, sizeof(void *));
2490
2491#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2492 /*
2493 * Determine if we can poison the object itself. If the user of
2494 * the slab may touch the object after free or before allocation
2495 * then we should never poison the object itself.
2496 */
2497 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2498 !s->ctor)
81819f0f
CL
2499 s->flags |= __OBJECT_POISON;
2500 else
2501 s->flags &= ~__OBJECT_POISON;
2502
81819f0f
CL
2503
2504 /*
672bba3a 2505 * If we are Redzoning then check if there is some space between the
81819f0f 2506 * end of the object and the free pointer. If not then add an
672bba3a 2507 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2508 */
2509 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2510 size += sizeof(void *);
41ecc55b 2511#endif
81819f0f
CL
2512
2513 /*
672bba3a
CL
2514 * With that we have determined the number of bytes in actual use
2515 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2516 */
2517 s->inuse = size;
2518
2519 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2520 s->ctor)) {
81819f0f
CL
2521 /*
2522 * Relocate free pointer after the object if it is not
2523 * permitted to overwrite the first word of the object on
2524 * kmem_cache_free.
2525 *
2526 * This is the case if we do RCU, have a constructor or
2527 * destructor or are poisoning the objects.
2528 */
2529 s->offset = size;
2530 size += sizeof(void *);
2531 }
2532
c12b3c62 2533#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2534 if (flags & SLAB_STORE_USER)
2535 /*
2536 * Need to store information about allocs and frees after
2537 * the object.
2538 */
2539 size += 2 * sizeof(struct track);
2540
be7b3fbc 2541 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2542 /*
2543 * Add some empty padding so that we can catch
2544 * overwrites from earlier objects rather than let
2545 * tracking information or the free pointer be
0211a9c8 2546 * corrupted if a user writes before the start
81819f0f
CL
2547 * of the object.
2548 */
2549 size += sizeof(void *);
41ecc55b 2550#endif
672bba3a 2551
81819f0f
CL
2552 /*
2553 * Determine the alignment based on various parameters that the
65c02d4c
CL
2554 * user specified and the dynamic determination of cache line size
2555 * on bootup.
81819f0f
CL
2556 */
2557 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2558 s->align = align;
81819f0f
CL
2559
2560 /*
2561 * SLUB stores one object immediately after another beginning from
2562 * offset 0. In order to align the objects we have to simply size
2563 * each object to conform to the alignment.
2564 */
2565 size = ALIGN(size, align);
2566 s->size = size;
06b285dc
CL
2567 if (forced_order >= 0)
2568 order = forced_order;
2569 else
ab9a0f19 2570 order = calculate_order(size, s->reserved);
81819f0f 2571
834f3d11 2572 if (order < 0)
81819f0f
CL
2573 return 0;
2574
b7a49f0d 2575 s->allocflags = 0;
834f3d11 2576 if (order)
b7a49f0d
CL
2577 s->allocflags |= __GFP_COMP;
2578
2579 if (s->flags & SLAB_CACHE_DMA)
2580 s->allocflags |= SLUB_DMA;
2581
2582 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2583 s->allocflags |= __GFP_RECLAIMABLE;
2584
81819f0f
CL
2585 /*
2586 * Determine the number of objects per slab
2587 */
ab9a0f19
LJ
2588 s->oo = oo_make(order, size, s->reserved);
2589 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2590 if (oo_objects(s->oo) > oo_objects(s->max))
2591 s->max = s->oo;
81819f0f 2592
834f3d11 2593 return !!oo_objects(s->oo);
81819f0f
CL
2594
2595}
2596
55136592 2597static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2598 const char *name, size_t size,
2599 size_t align, unsigned long flags,
51cc5068 2600 void (*ctor)(void *))
81819f0f
CL
2601{
2602 memset(s, 0, kmem_size);
2603 s->name = name;
2604 s->ctor = ctor;
81819f0f 2605 s->objsize = size;
81819f0f 2606 s->align = align;
ba0268a8 2607 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2608 s->reserved = 0;
81819f0f 2609
da9a638c
LJ
2610 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2611 s->reserved = sizeof(struct rcu_head);
81819f0f 2612
06b285dc 2613 if (!calculate_sizes(s, -1))
81819f0f 2614 goto error;
3de47213
DR
2615 if (disable_higher_order_debug) {
2616 /*
2617 * Disable debugging flags that store metadata if the min slab
2618 * order increased.
2619 */
2620 if (get_order(s->size) > get_order(s->objsize)) {
2621 s->flags &= ~DEBUG_METADATA_FLAGS;
2622 s->offset = 0;
2623 if (!calculate_sizes(s, -1))
2624 goto error;
2625 }
2626 }
81819f0f 2627
3b89d7d8
DR
2628 /*
2629 * The larger the object size is, the more pages we want on the partial
2630 * list to avoid pounding the page allocator excessively.
2631 */
c0bdb232 2632 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2633 s->refcount = 1;
2634#ifdef CONFIG_NUMA
e2cb96b7 2635 s->remote_node_defrag_ratio = 1000;
81819f0f 2636#endif
55136592 2637 if (!init_kmem_cache_nodes(s))
dfb4f096 2638 goto error;
81819f0f 2639
55136592 2640 if (alloc_kmem_cache_cpus(s))
81819f0f 2641 return 1;
ff12059e 2642
4c93c355 2643 free_kmem_cache_nodes(s);
81819f0f
CL
2644error:
2645 if (flags & SLAB_PANIC)
2646 panic("Cannot create slab %s size=%lu realsize=%u "
2647 "order=%u offset=%u flags=%lx\n",
834f3d11 2648 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2649 s->offset, flags);
2650 return 0;
2651}
81819f0f 2652
81819f0f
CL
2653/*
2654 * Determine the size of a slab object
2655 */
2656unsigned int kmem_cache_size(struct kmem_cache *s)
2657{
2658 return s->objsize;
2659}
2660EXPORT_SYMBOL(kmem_cache_size);
2661
33b12c38
CL
2662static void list_slab_objects(struct kmem_cache *s, struct page *page,
2663 const char *text)
2664{
2665#ifdef CONFIG_SLUB_DEBUG
2666 void *addr = page_address(page);
2667 void *p;
a5dd5c11
NK
2668 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2669 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2670 if (!map)
2671 return;
33b12c38
CL
2672 slab_err(s, page, "%s", text);
2673 slab_lock(page);
33b12c38 2674
5f80b13a 2675 get_map(s, page, map);
33b12c38
CL
2676 for_each_object(p, s, addr, page->objects) {
2677
2678 if (!test_bit(slab_index(p, s, addr), map)) {
2679 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2680 p, p - addr);
2681 print_tracking(s, p);
2682 }
2683 }
2684 slab_unlock(page);
bbd7d57b 2685 kfree(map);
33b12c38
CL
2686#endif
2687}
2688
81819f0f 2689/*
599870b1 2690 * Attempt to free all partial slabs on a node.
81819f0f 2691 */
599870b1 2692static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2693{
81819f0f
CL
2694 unsigned long flags;
2695 struct page *page, *h;
2696
2697 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2698 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2699 if (!page->inuse) {
62e346a8 2700 __remove_partial(n, page);
81819f0f 2701 discard_slab(s, page);
33b12c38
CL
2702 } else {
2703 list_slab_objects(s, page,
2704 "Objects remaining on kmem_cache_close()");
599870b1 2705 }
33b12c38 2706 }
81819f0f 2707 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2708}
2709
2710/*
672bba3a 2711 * Release all resources used by a slab cache.
81819f0f 2712 */
0c710013 2713static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2714{
2715 int node;
2716
2717 flush_all(s);
9dfc6e68 2718 free_percpu(s->cpu_slab);
81819f0f 2719 /* Attempt to free all objects */
f64dc58c 2720 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2721 struct kmem_cache_node *n = get_node(s, node);
2722
599870b1
CL
2723 free_partial(s, n);
2724 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2725 return 1;
2726 }
2727 free_kmem_cache_nodes(s);
2728 return 0;
2729}
2730
2731/*
2732 * Close a cache and release the kmem_cache structure
2733 * (must be used for caches created using kmem_cache_create)
2734 */
2735void kmem_cache_destroy(struct kmem_cache *s)
2736{
2737 down_write(&slub_lock);
2738 s->refcount--;
2739 if (!s->refcount) {
2740 list_del(&s->list);
d629d819
PE
2741 if (kmem_cache_close(s)) {
2742 printk(KERN_ERR "SLUB %s: %s called for cache that "
2743 "still has objects.\n", s->name, __func__);
2744 dump_stack();
2745 }
d76b1590
ED
2746 if (s->flags & SLAB_DESTROY_BY_RCU)
2747 rcu_barrier();
81819f0f 2748 sysfs_slab_remove(s);
2bce6485
CL
2749 }
2750 up_write(&slub_lock);
81819f0f
CL
2751}
2752EXPORT_SYMBOL(kmem_cache_destroy);
2753
2754/********************************************************************
2755 * Kmalloc subsystem
2756 *******************************************************************/
2757
51df1142 2758struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2759EXPORT_SYMBOL(kmalloc_caches);
2760
51df1142
CL
2761static struct kmem_cache *kmem_cache;
2762
55136592 2763#ifdef CONFIG_ZONE_DMA
51df1142 2764static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2765#endif
2766
81819f0f
CL
2767static int __init setup_slub_min_order(char *str)
2768{
06428780 2769 get_option(&str, &slub_min_order);
81819f0f
CL
2770
2771 return 1;
2772}
2773
2774__setup("slub_min_order=", setup_slub_min_order);
2775
2776static int __init setup_slub_max_order(char *str)
2777{
06428780 2778 get_option(&str, &slub_max_order);
818cf590 2779 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2780
2781 return 1;
2782}
2783
2784__setup("slub_max_order=", setup_slub_max_order);
2785
2786static int __init setup_slub_min_objects(char *str)
2787{
06428780 2788 get_option(&str, &slub_min_objects);
81819f0f
CL
2789
2790 return 1;
2791}
2792
2793__setup("slub_min_objects=", setup_slub_min_objects);
2794
2795static int __init setup_slub_nomerge(char *str)
2796{
2797 slub_nomerge = 1;
2798 return 1;
2799}
2800
2801__setup("slub_nomerge", setup_slub_nomerge);
2802
51df1142
CL
2803static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2804 int size, unsigned int flags)
81819f0f 2805{
51df1142
CL
2806 struct kmem_cache *s;
2807
2808 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2809
83b519e8
PE
2810 /*
2811 * This function is called with IRQs disabled during early-boot on
2812 * single CPU so there's no need to take slub_lock here.
2813 */
55136592 2814 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2815 flags, NULL))
81819f0f
CL
2816 goto panic;
2817
2818 list_add(&s->list, &slab_caches);
51df1142 2819 return s;
81819f0f
CL
2820
2821panic:
2822 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2823 return NULL;
81819f0f
CL
2824}
2825
f1b26339
CL
2826/*
2827 * Conversion table for small slabs sizes / 8 to the index in the
2828 * kmalloc array. This is necessary for slabs < 192 since we have non power
2829 * of two cache sizes there. The size of larger slabs can be determined using
2830 * fls.
2831 */
2832static s8 size_index[24] = {
2833 3, /* 8 */
2834 4, /* 16 */
2835 5, /* 24 */
2836 5, /* 32 */
2837 6, /* 40 */
2838 6, /* 48 */
2839 6, /* 56 */
2840 6, /* 64 */
2841 1, /* 72 */
2842 1, /* 80 */
2843 1, /* 88 */
2844 1, /* 96 */
2845 7, /* 104 */
2846 7, /* 112 */
2847 7, /* 120 */
2848 7, /* 128 */
2849 2, /* 136 */
2850 2, /* 144 */
2851 2, /* 152 */
2852 2, /* 160 */
2853 2, /* 168 */
2854 2, /* 176 */
2855 2, /* 184 */
2856 2 /* 192 */
2857};
2858
acdfcd04
AK
2859static inline int size_index_elem(size_t bytes)
2860{
2861 return (bytes - 1) / 8;
2862}
2863
81819f0f
CL
2864static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2865{
f1b26339 2866 int index;
81819f0f 2867
f1b26339
CL
2868 if (size <= 192) {
2869 if (!size)
2870 return ZERO_SIZE_PTR;
81819f0f 2871
acdfcd04 2872 index = size_index[size_index_elem(size)];
aadb4bc4 2873 } else
f1b26339 2874 index = fls(size - 1);
81819f0f
CL
2875
2876#ifdef CONFIG_ZONE_DMA
f1b26339 2877 if (unlikely((flags & SLUB_DMA)))
51df1142 2878 return kmalloc_dma_caches[index];
f1b26339 2879
81819f0f 2880#endif
51df1142 2881 return kmalloc_caches[index];
81819f0f
CL
2882}
2883
2884void *__kmalloc(size_t size, gfp_t flags)
2885{
aadb4bc4 2886 struct kmem_cache *s;
5b882be4 2887 void *ret;
81819f0f 2888
ffadd4d0 2889 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2890 return kmalloc_large(size, flags);
aadb4bc4
CL
2891
2892 s = get_slab(size, flags);
2893
2894 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2895 return s;
2896
2154a336 2897 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2898
ca2b84cb 2899 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2900
2901 return ret;
81819f0f
CL
2902}
2903EXPORT_SYMBOL(__kmalloc);
2904
5d1f57e4 2905#ifdef CONFIG_NUMA
f619cfe1
CL
2906static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2907{
b1eeab67 2908 struct page *page;
e4f7c0b4 2909 void *ptr = NULL;
f619cfe1 2910
b1eeab67
VN
2911 flags |= __GFP_COMP | __GFP_NOTRACK;
2912 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2913 if (page)
e4f7c0b4
CM
2914 ptr = page_address(page);
2915
2916 kmemleak_alloc(ptr, size, 1, flags);
2917 return ptr;
f619cfe1
CL
2918}
2919
81819f0f
CL
2920void *__kmalloc_node(size_t size, gfp_t flags, int node)
2921{
aadb4bc4 2922 struct kmem_cache *s;
5b882be4 2923 void *ret;
81819f0f 2924
057685cf 2925 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2926 ret = kmalloc_large_node(size, flags, node);
2927
ca2b84cb
EGM
2928 trace_kmalloc_node(_RET_IP_, ret,
2929 size, PAGE_SIZE << get_order(size),
2930 flags, node);
5b882be4
EGM
2931
2932 return ret;
2933 }
aadb4bc4
CL
2934
2935 s = get_slab(size, flags);
2936
2937 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2938 return s;
2939
5b882be4
EGM
2940 ret = slab_alloc(s, flags, node, _RET_IP_);
2941
ca2b84cb 2942 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2943
2944 return ret;
81819f0f
CL
2945}
2946EXPORT_SYMBOL(__kmalloc_node);
2947#endif
2948
2949size_t ksize(const void *object)
2950{
272c1d21 2951 struct page *page;
81819f0f 2952
ef8b4520 2953 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2954 return 0;
2955
294a80a8 2956 page = virt_to_head_page(object);
294a80a8 2957
76994412
PE
2958 if (unlikely(!PageSlab(page))) {
2959 WARN_ON(!PageCompound(page));
294a80a8 2960 return PAGE_SIZE << compound_order(page);
76994412 2961 }
81819f0f 2962
b3d41885 2963 return slab_ksize(page->slab);
81819f0f 2964}
b1aabecd 2965EXPORT_SYMBOL(ksize);
81819f0f 2966
d18a90dd
BG
2967#ifdef CONFIG_SLUB_DEBUG
2968bool verify_mem_not_deleted(const void *x)
2969{
2970 struct page *page;
2971 void *object = (void *)x;
2972 unsigned long flags;
2973 bool rv;
2974
2975 if (unlikely(ZERO_OR_NULL_PTR(x)))
2976 return false;
2977
2978 local_irq_save(flags);
2979
2980 page = virt_to_head_page(x);
2981 if (unlikely(!PageSlab(page))) {
2982 /* maybe it was from stack? */
2983 rv = true;
2984 goto out_unlock;
2985 }
2986
2987 slab_lock(page);
2988 if (on_freelist(page->slab, page, object)) {
2989 object_err(page->slab, page, object, "Object is on free-list");
2990 rv = false;
2991 } else {
2992 rv = true;
2993 }
2994 slab_unlock(page);
2995
2996out_unlock:
2997 local_irq_restore(flags);
2998 return rv;
2999}
3000EXPORT_SYMBOL(verify_mem_not_deleted);
3001#endif
3002
81819f0f
CL
3003void kfree(const void *x)
3004{
81819f0f 3005 struct page *page;
5bb983b0 3006 void *object = (void *)x;
81819f0f 3007
2121db74
PE
3008 trace_kfree(_RET_IP_, x);
3009
2408c550 3010 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3011 return;
3012
b49af68f 3013 page = virt_to_head_page(x);
aadb4bc4 3014 if (unlikely(!PageSlab(page))) {
0937502a 3015 BUG_ON(!PageCompound(page));
e4f7c0b4 3016 kmemleak_free(x);
aadb4bc4
CL
3017 put_page(page);
3018 return;
3019 }
ce71e27c 3020 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3021}
3022EXPORT_SYMBOL(kfree);
3023
2086d26a 3024/*
672bba3a
CL
3025 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3026 * the remaining slabs by the number of items in use. The slabs with the
3027 * most items in use come first. New allocations will then fill those up
3028 * and thus they can be removed from the partial lists.
3029 *
3030 * The slabs with the least items are placed last. This results in them
3031 * being allocated from last increasing the chance that the last objects
3032 * are freed in them.
2086d26a
CL
3033 */
3034int kmem_cache_shrink(struct kmem_cache *s)
3035{
3036 int node;
3037 int i;
3038 struct kmem_cache_node *n;
3039 struct page *page;
3040 struct page *t;
205ab99d 3041 int objects = oo_objects(s->max);
2086d26a 3042 struct list_head *slabs_by_inuse =
834f3d11 3043 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3044 unsigned long flags;
3045
3046 if (!slabs_by_inuse)
3047 return -ENOMEM;
3048
3049 flush_all(s);
f64dc58c 3050 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3051 n = get_node(s, node);
3052
3053 if (!n->nr_partial)
3054 continue;
3055
834f3d11 3056 for (i = 0; i < objects; i++)
2086d26a
CL
3057 INIT_LIST_HEAD(slabs_by_inuse + i);
3058
3059 spin_lock_irqsave(&n->list_lock, flags);
3060
3061 /*
672bba3a 3062 * Build lists indexed by the items in use in each slab.
2086d26a 3063 *
672bba3a
CL
3064 * Note that concurrent frees may occur while we hold the
3065 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3066 */
3067 list_for_each_entry_safe(page, t, &n->partial, lru) {
3068 if (!page->inuse && slab_trylock(page)) {
3069 /*
3070 * Must hold slab lock here because slab_free
3071 * may have freed the last object and be
3072 * waiting to release the slab.
3073 */
62e346a8 3074 __remove_partial(n, page);
2086d26a
CL
3075 slab_unlock(page);
3076 discard_slab(s, page);
3077 } else {
fcda3d89
CL
3078 list_move(&page->lru,
3079 slabs_by_inuse + page->inuse);
2086d26a
CL
3080 }
3081 }
3082
2086d26a 3083 /*
672bba3a
CL
3084 * Rebuild the partial list with the slabs filled up most
3085 * first and the least used slabs at the end.
2086d26a 3086 */
834f3d11 3087 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3088 list_splice(slabs_by_inuse + i, n->partial.prev);
3089
2086d26a
CL
3090 spin_unlock_irqrestore(&n->list_lock, flags);
3091 }
3092
3093 kfree(slabs_by_inuse);
3094 return 0;
3095}
3096EXPORT_SYMBOL(kmem_cache_shrink);
3097
92a5bbc1 3098#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3099static int slab_mem_going_offline_callback(void *arg)
3100{
3101 struct kmem_cache *s;
3102
3103 down_read(&slub_lock);
3104 list_for_each_entry(s, &slab_caches, list)
3105 kmem_cache_shrink(s);
3106 up_read(&slub_lock);
3107
3108 return 0;
3109}
3110
3111static void slab_mem_offline_callback(void *arg)
3112{
3113 struct kmem_cache_node *n;
3114 struct kmem_cache *s;
3115 struct memory_notify *marg = arg;
3116 int offline_node;
3117
3118 offline_node = marg->status_change_nid;
3119
3120 /*
3121 * If the node still has available memory. we need kmem_cache_node
3122 * for it yet.
3123 */
3124 if (offline_node < 0)
3125 return;
3126
3127 down_read(&slub_lock);
3128 list_for_each_entry(s, &slab_caches, list) {
3129 n = get_node(s, offline_node);
3130 if (n) {
3131 /*
3132 * if n->nr_slabs > 0, slabs still exist on the node
3133 * that is going down. We were unable to free them,
c9404c9c 3134 * and offline_pages() function shouldn't call this
b9049e23
YG
3135 * callback. So, we must fail.
3136 */
0f389ec6 3137 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3138
3139 s->node[offline_node] = NULL;
8de66a0c 3140 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3141 }
3142 }
3143 up_read(&slub_lock);
3144}
3145
3146static int slab_mem_going_online_callback(void *arg)
3147{
3148 struct kmem_cache_node *n;
3149 struct kmem_cache *s;
3150 struct memory_notify *marg = arg;
3151 int nid = marg->status_change_nid;
3152 int ret = 0;
3153
3154 /*
3155 * If the node's memory is already available, then kmem_cache_node is
3156 * already created. Nothing to do.
3157 */
3158 if (nid < 0)
3159 return 0;
3160
3161 /*
0121c619 3162 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3163 * allocate a kmem_cache_node structure in order to bring the node
3164 * online.
3165 */
3166 down_read(&slub_lock);
3167 list_for_each_entry(s, &slab_caches, list) {
3168 /*
3169 * XXX: kmem_cache_alloc_node will fallback to other nodes
3170 * since memory is not yet available from the node that
3171 * is brought up.
3172 */
8de66a0c 3173 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3174 if (!n) {
3175 ret = -ENOMEM;
3176 goto out;
3177 }
5595cffc 3178 init_kmem_cache_node(n, s);
b9049e23
YG
3179 s->node[nid] = n;
3180 }
3181out:
3182 up_read(&slub_lock);
3183 return ret;
3184}
3185
3186static int slab_memory_callback(struct notifier_block *self,
3187 unsigned long action, void *arg)
3188{
3189 int ret = 0;
3190
3191 switch (action) {
3192 case MEM_GOING_ONLINE:
3193 ret = slab_mem_going_online_callback(arg);
3194 break;
3195 case MEM_GOING_OFFLINE:
3196 ret = slab_mem_going_offline_callback(arg);
3197 break;
3198 case MEM_OFFLINE:
3199 case MEM_CANCEL_ONLINE:
3200 slab_mem_offline_callback(arg);
3201 break;
3202 case MEM_ONLINE:
3203 case MEM_CANCEL_OFFLINE:
3204 break;
3205 }
dc19f9db
KH
3206 if (ret)
3207 ret = notifier_from_errno(ret);
3208 else
3209 ret = NOTIFY_OK;
b9049e23
YG
3210 return ret;
3211}
3212
3213#endif /* CONFIG_MEMORY_HOTPLUG */
3214
81819f0f
CL
3215/********************************************************************
3216 * Basic setup of slabs
3217 *******************************************************************/
3218
51df1142
CL
3219/*
3220 * Used for early kmem_cache structures that were allocated using
3221 * the page allocator
3222 */
3223
3224static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3225{
3226 int node;
3227
3228 list_add(&s->list, &slab_caches);
3229 s->refcount = -1;
3230
3231 for_each_node_state(node, N_NORMAL_MEMORY) {
3232 struct kmem_cache_node *n = get_node(s, node);
3233 struct page *p;
3234
3235 if (n) {
3236 list_for_each_entry(p, &n->partial, lru)
3237 p->slab = s;
3238
607bf324 3239#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3240 list_for_each_entry(p, &n->full, lru)
3241 p->slab = s;
3242#endif
3243 }
3244 }
3245}
3246
81819f0f
CL
3247void __init kmem_cache_init(void)
3248{
3249 int i;
4b356be0 3250 int caches = 0;
51df1142
CL
3251 struct kmem_cache *temp_kmem_cache;
3252 int order;
51df1142
CL
3253 struct kmem_cache *temp_kmem_cache_node;
3254 unsigned long kmalloc_size;
3255
3256 kmem_size = offsetof(struct kmem_cache, node) +
3257 nr_node_ids * sizeof(struct kmem_cache_node *);
3258
3259 /* Allocate two kmem_caches from the page allocator */
3260 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3261 order = get_order(2 * kmalloc_size);
3262 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3263
81819f0f
CL
3264 /*
3265 * Must first have the slab cache available for the allocations of the
672bba3a 3266 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3267 * kmem_cache_open for slab_state == DOWN.
3268 */
51df1142
CL
3269 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3270
3271 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3272 sizeof(struct kmem_cache_node),
3273 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3274
0c40ba4f 3275 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3276
3277 /* Able to allocate the per node structures */
3278 slab_state = PARTIAL;
3279
51df1142
CL
3280 temp_kmem_cache = kmem_cache;
3281 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3282 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3283 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3284 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3285
51df1142
CL
3286 /*
3287 * Allocate kmem_cache_node properly from the kmem_cache slab.
3288 * kmem_cache_node is separately allocated so no need to
3289 * update any list pointers.
3290 */
3291 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3292
51df1142
CL
3293 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3294 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3295
3296 kmem_cache_bootstrap_fixup(kmem_cache_node);
3297
3298 caches++;
51df1142
CL
3299 kmem_cache_bootstrap_fixup(kmem_cache);
3300 caches++;
3301 /* Free temporary boot structure */
3302 free_pages((unsigned long)temp_kmem_cache, order);
3303
3304 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3305
3306 /*
3307 * Patch up the size_index table if we have strange large alignment
3308 * requirements for the kmalloc array. This is only the case for
6446faa2 3309 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3310 *
3311 * Largest permitted alignment is 256 bytes due to the way we
3312 * handle the index determination for the smaller caches.
3313 *
3314 * Make sure that nothing crazy happens if someone starts tinkering
3315 * around with ARCH_KMALLOC_MINALIGN
3316 */
3317 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3318 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3319
acdfcd04
AK
3320 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3321 int elem = size_index_elem(i);
3322 if (elem >= ARRAY_SIZE(size_index))
3323 break;
3324 size_index[elem] = KMALLOC_SHIFT_LOW;
3325 }
f1b26339 3326
acdfcd04
AK
3327 if (KMALLOC_MIN_SIZE == 64) {
3328 /*
3329 * The 96 byte size cache is not used if the alignment
3330 * is 64 byte.
3331 */
3332 for (i = 64 + 8; i <= 96; i += 8)
3333 size_index[size_index_elem(i)] = 7;
3334 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3335 /*
3336 * The 192 byte sized cache is not used if the alignment
3337 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3338 * instead.
3339 */
3340 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3341 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3342 }
3343
51df1142
CL
3344 /* Caches that are not of the two-to-the-power-of size */
3345 if (KMALLOC_MIN_SIZE <= 32) {
3346 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3347 caches++;
3348 }
3349
3350 if (KMALLOC_MIN_SIZE <= 64) {
3351 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3352 caches++;
3353 }
3354
3355 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3356 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3357 caches++;
3358 }
3359
81819f0f
CL
3360 slab_state = UP;
3361
3362 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3363 if (KMALLOC_MIN_SIZE <= 32) {
3364 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3365 BUG_ON(!kmalloc_caches[1]->name);
3366 }
3367
3368 if (KMALLOC_MIN_SIZE <= 64) {
3369 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3370 BUG_ON(!kmalloc_caches[2]->name);
3371 }
3372
d7278bd7
CL
3373 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3374 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3375
3376 BUG_ON(!s);
51df1142 3377 kmalloc_caches[i]->name = s;
d7278bd7 3378 }
81819f0f
CL
3379
3380#ifdef CONFIG_SMP
3381 register_cpu_notifier(&slab_notifier);
9dfc6e68 3382#endif
81819f0f 3383
55136592 3384#ifdef CONFIG_ZONE_DMA
51df1142
CL
3385 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3386 struct kmem_cache *s = kmalloc_caches[i];
55136592 3387
51df1142 3388 if (s && s->size) {
55136592
CL
3389 char *name = kasprintf(GFP_NOWAIT,
3390 "dma-kmalloc-%d", s->objsize);
3391
3392 BUG_ON(!name);
51df1142
CL
3393 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3394 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3395 }
3396 }
3397#endif
3adbefee
IM
3398 printk(KERN_INFO
3399 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3400 " CPUs=%d, Nodes=%d\n",
3401 caches, cache_line_size(),
81819f0f
CL
3402 slub_min_order, slub_max_order, slub_min_objects,
3403 nr_cpu_ids, nr_node_ids);
3404}
3405
7e85ee0c
PE
3406void __init kmem_cache_init_late(void)
3407{
7e85ee0c
PE
3408}
3409
81819f0f
CL
3410/*
3411 * Find a mergeable slab cache
3412 */
3413static int slab_unmergeable(struct kmem_cache *s)
3414{
3415 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3416 return 1;
3417
c59def9f 3418 if (s->ctor)
81819f0f
CL
3419 return 1;
3420
8ffa6875
CL
3421 /*
3422 * We may have set a slab to be unmergeable during bootstrap.
3423 */
3424 if (s->refcount < 0)
3425 return 1;
3426
81819f0f
CL
3427 return 0;
3428}
3429
3430static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3431 size_t align, unsigned long flags, const char *name,
51cc5068 3432 void (*ctor)(void *))
81819f0f 3433{
5b95a4ac 3434 struct kmem_cache *s;
81819f0f
CL
3435
3436 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3437 return NULL;
3438
c59def9f 3439 if (ctor)
81819f0f
CL
3440 return NULL;
3441
3442 size = ALIGN(size, sizeof(void *));
3443 align = calculate_alignment(flags, align, size);
3444 size = ALIGN(size, align);
ba0268a8 3445 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3446
5b95a4ac 3447 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3448 if (slab_unmergeable(s))
3449 continue;
3450
3451 if (size > s->size)
3452 continue;
3453
ba0268a8 3454 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3455 continue;
3456 /*
3457 * Check if alignment is compatible.
3458 * Courtesy of Adrian Drzewiecki
3459 */
06428780 3460 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3461 continue;
3462
3463 if (s->size - size >= sizeof(void *))
3464 continue;
3465
3466 return s;
3467 }
3468 return NULL;
3469}
3470
3471struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3472 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3473{
3474 struct kmem_cache *s;
84c1cf62 3475 char *n;
81819f0f 3476
fe1ff49d
BH
3477 if (WARN_ON(!name))
3478 return NULL;
3479
81819f0f 3480 down_write(&slub_lock);
ba0268a8 3481 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3482 if (s) {
3483 s->refcount++;
3484 /*
3485 * Adjust the object sizes so that we clear
3486 * the complete object on kzalloc.
3487 */
3488 s->objsize = max(s->objsize, (int)size);
3489 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3490
7b8f3b66 3491 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3492 s->refcount--;
81819f0f 3493 goto err;
7b8f3b66 3494 }
2bce6485 3495 up_write(&slub_lock);
a0e1d1be
CL
3496 return s;
3497 }
6446faa2 3498
84c1cf62
PE
3499 n = kstrdup(name, GFP_KERNEL);
3500 if (!n)
3501 goto err;
3502
a0e1d1be
CL
3503 s = kmalloc(kmem_size, GFP_KERNEL);
3504 if (s) {
84c1cf62 3505 if (kmem_cache_open(s, n,
c59def9f 3506 size, align, flags, ctor)) {
81819f0f 3507 list_add(&s->list, &slab_caches);
7b8f3b66 3508 if (sysfs_slab_add(s)) {
7b8f3b66 3509 list_del(&s->list);
84c1cf62 3510 kfree(n);
7b8f3b66 3511 kfree(s);
a0e1d1be 3512 goto err;
7b8f3b66 3513 }
2bce6485 3514 up_write(&slub_lock);
a0e1d1be
CL
3515 return s;
3516 }
84c1cf62 3517 kfree(n);
a0e1d1be 3518 kfree(s);
81819f0f 3519 }
68cee4f1 3520err:
81819f0f 3521 up_write(&slub_lock);
81819f0f 3522
81819f0f
CL
3523 if (flags & SLAB_PANIC)
3524 panic("Cannot create slabcache %s\n", name);
3525 else
3526 s = NULL;
3527 return s;
3528}
3529EXPORT_SYMBOL(kmem_cache_create);
3530
81819f0f 3531#ifdef CONFIG_SMP
81819f0f 3532/*
672bba3a
CL
3533 * Use the cpu notifier to insure that the cpu slabs are flushed when
3534 * necessary.
81819f0f
CL
3535 */
3536static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3537 unsigned long action, void *hcpu)
3538{
3539 long cpu = (long)hcpu;
5b95a4ac
CL
3540 struct kmem_cache *s;
3541 unsigned long flags;
81819f0f
CL
3542
3543 switch (action) {
3544 case CPU_UP_CANCELED:
8bb78442 3545 case CPU_UP_CANCELED_FROZEN:
81819f0f 3546 case CPU_DEAD:
8bb78442 3547 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3548 down_read(&slub_lock);
3549 list_for_each_entry(s, &slab_caches, list) {
3550 local_irq_save(flags);
3551 __flush_cpu_slab(s, cpu);
3552 local_irq_restore(flags);
3553 }
3554 up_read(&slub_lock);
81819f0f
CL
3555 break;
3556 default:
3557 break;
3558 }
3559 return NOTIFY_OK;
3560}
3561
06428780 3562static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3563 .notifier_call = slab_cpuup_callback
06428780 3564};
81819f0f
CL
3565
3566#endif
3567
ce71e27c 3568void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3569{
aadb4bc4 3570 struct kmem_cache *s;
94b528d0 3571 void *ret;
aadb4bc4 3572
ffadd4d0 3573 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3574 return kmalloc_large(size, gfpflags);
3575
aadb4bc4 3576 s = get_slab(size, gfpflags);
81819f0f 3577
2408c550 3578 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3579 return s;
81819f0f 3580
2154a336 3581 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3582
25985edc 3583 /* Honor the call site pointer we received. */
ca2b84cb 3584 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3585
3586 return ret;
81819f0f
CL
3587}
3588
5d1f57e4 3589#ifdef CONFIG_NUMA
81819f0f 3590void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3591 int node, unsigned long caller)
81819f0f 3592{
aadb4bc4 3593 struct kmem_cache *s;
94b528d0 3594 void *ret;
aadb4bc4 3595
d3e14aa3
XF
3596 if (unlikely(size > SLUB_MAX_SIZE)) {
3597 ret = kmalloc_large_node(size, gfpflags, node);
3598
3599 trace_kmalloc_node(caller, ret,
3600 size, PAGE_SIZE << get_order(size),
3601 gfpflags, node);
3602
3603 return ret;
3604 }
eada35ef 3605
aadb4bc4 3606 s = get_slab(size, gfpflags);
81819f0f 3607
2408c550 3608 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3609 return s;
81819f0f 3610
94b528d0
EGM
3611 ret = slab_alloc(s, gfpflags, node, caller);
3612
25985edc 3613 /* Honor the call site pointer we received. */
ca2b84cb 3614 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3615
3616 return ret;
81819f0f 3617}
5d1f57e4 3618#endif
81819f0f 3619
ab4d5ed5 3620#ifdef CONFIG_SYSFS
205ab99d
CL
3621static int count_inuse(struct page *page)
3622{
3623 return page->inuse;
3624}
3625
3626static int count_total(struct page *page)
3627{
3628 return page->objects;
3629}
ab4d5ed5 3630#endif
205ab99d 3631
ab4d5ed5 3632#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3633static int validate_slab(struct kmem_cache *s, struct page *page,
3634 unsigned long *map)
53e15af0
CL
3635{
3636 void *p;
a973e9dd 3637 void *addr = page_address(page);
53e15af0
CL
3638
3639 if (!check_slab(s, page) ||
3640 !on_freelist(s, page, NULL))
3641 return 0;
3642
3643 /* Now we know that a valid freelist exists */
39b26464 3644 bitmap_zero(map, page->objects);
53e15af0 3645
5f80b13a
CL
3646 get_map(s, page, map);
3647 for_each_object(p, s, addr, page->objects) {
3648 if (test_bit(slab_index(p, s, addr), map))
3649 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3650 return 0;
53e15af0
CL
3651 }
3652
224a88be 3653 for_each_object(p, s, addr, page->objects)
7656c72b 3654 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3655 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3656 return 0;
3657 return 1;
3658}
3659
434e245d
CL
3660static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3661 unsigned long *map)
53e15af0
CL
3662{
3663 if (slab_trylock(page)) {
434e245d 3664 validate_slab(s, page, map);
53e15af0
CL
3665 slab_unlock(page);
3666 } else
3667 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3668 s->name, page);
53e15af0
CL
3669}
3670
434e245d
CL
3671static int validate_slab_node(struct kmem_cache *s,
3672 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3673{
3674 unsigned long count = 0;
3675 struct page *page;
3676 unsigned long flags;
3677
3678 spin_lock_irqsave(&n->list_lock, flags);
3679
3680 list_for_each_entry(page, &n->partial, lru) {
434e245d 3681 validate_slab_slab(s, page, map);
53e15af0
CL
3682 count++;
3683 }
3684 if (count != n->nr_partial)
3685 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3686 "counter=%ld\n", s->name, count, n->nr_partial);
3687
3688 if (!(s->flags & SLAB_STORE_USER))
3689 goto out;
3690
3691 list_for_each_entry(page, &n->full, lru) {
434e245d 3692 validate_slab_slab(s, page, map);
53e15af0
CL
3693 count++;
3694 }
3695 if (count != atomic_long_read(&n->nr_slabs))
3696 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3697 "counter=%ld\n", s->name, count,
3698 atomic_long_read(&n->nr_slabs));
3699
3700out:
3701 spin_unlock_irqrestore(&n->list_lock, flags);
3702 return count;
3703}
3704
434e245d 3705static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3706{
3707 int node;
3708 unsigned long count = 0;
205ab99d 3709 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3710 sizeof(unsigned long), GFP_KERNEL);
3711
3712 if (!map)
3713 return -ENOMEM;
53e15af0
CL
3714
3715 flush_all(s);
f64dc58c 3716 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3717 struct kmem_cache_node *n = get_node(s, node);
3718
434e245d 3719 count += validate_slab_node(s, n, map);
53e15af0 3720 }
434e245d 3721 kfree(map);
53e15af0
CL
3722 return count;
3723}
88a420e4 3724/*
672bba3a 3725 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3726 * and freed.
3727 */
3728
3729struct location {
3730 unsigned long count;
ce71e27c 3731 unsigned long addr;
45edfa58
CL
3732 long long sum_time;
3733 long min_time;
3734 long max_time;
3735 long min_pid;
3736 long max_pid;
174596a0 3737 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3738 nodemask_t nodes;
88a420e4
CL
3739};
3740
3741struct loc_track {
3742 unsigned long max;
3743 unsigned long count;
3744 struct location *loc;
3745};
3746
3747static void free_loc_track(struct loc_track *t)
3748{
3749 if (t->max)
3750 free_pages((unsigned long)t->loc,
3751 get_order(sizeof(struct location) * t->max));
3752}
3753
68dff6a9 3754static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3755{
3756 struct location *l;
3757 int order;
3758
88a420e4
CL
3759 order = get_order(sizeof(struct location) * max);
3760
68dff6a9 3761 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3762 if (!l)
3763 return 0;
3764
3765 if (t->count) {
3766 memcpy(l, t->loc, sizeof(struct location) * t->count);
3767 free_loc_track(t);
3768 }
3769 t->max = max;
3770 t->loc = l;
3771 return 1;
3772}
3773
3774static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3775 const struct track *track)
88a420e4
CL
3776{
3777 long start, end, pos;
3778 struct location *l;
ce71e27c 3779 unsigned long caddr;
45edfa58 3780 unsigned long age = jiffies - track->when;
88a420e4
CL
3781
3782 start = -1;
3783 end = t->count;
3784
3785 for ( ; ; ) {
3786 pos = start + (end - start + 1) / 2;
3787
3788 /*
3789 * There is nothing at "end". If we end up there
3790 * we need to add something to before end.
3791 */
3792 if (pos == end)
3793 break;
3794
3795 caddr = t->loc[pos].addr;
45edfa58
CL
3796 if (track->addr == caddr) {
3797
3798 l = &t->loc[pos];
3799 l->count++;
3800 if (track->when) {
3801 l->sum_time += age;
3802 if (age < l->min_time)
3803 l->min_time = age;
3804 if (age > l->max_time)
3805 l->max_time = age;
3806
3807 if (track->pid < l->min_pid)
3808 l->min_pid = track->pid;
3809 if (track->pid > l->max_pid)
3810 l->max_pid = track->pid;
3811
174596a0
RR
3812 cpumask_set_cpu(track->cpu,
3813 to_cpumask(l->cpus));
45edfa58
CL
3814 }
3815 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3816 return 1;
3817 }
3818
45edfa58 3819 if (track->addr < caddr)
88a420e4
CL
3820 end = pos;
3821 else
3822 start = pos;
3823 }
3824
3825 /*
672bba3a 3826 * Not found. Insert new tracking element.
88a420e4 3827 */
68dff6a9 3828 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3829 return 0;
3830
3831 l = t->loc + pos;
3832 if (pos < t->count)
3833 memmove(l + 1, l,
3834 (t->count - pos) * sizeof(struct location));
3835 t->count++;
3836 l->count = 1;
45edfa58
CL
3837 l->addr = track->addr;
3838 l->sum_time = age;
3839 l->min_time = age;
3840 l->max_time = age;
3841 l->min_pid = track->pid;
3842 l->max_pid = track->pid;
174596a0
RR
3843 cpumask_clear(to_cpumask(l->cpus));
3844 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3845 nodes_clear(l->nodes);
3846 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3847 return 1;
3848}
3849
3850static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3851 struct page *page, enum track_item alloc,
a5dd5c11 3852 unsigned long *map)
88a420e4 3853{
a973e9dd 3854 void *addr = page_address(page);
88a420e4
CL
3855 void *p;
3856
39b26464 3857 bitmap_zero(map, page->objects);
5f80b13a 3858 get_map(s, page, map);
88a420e4 3859
224a88be 3860 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3861 if (!test_bit(slab_index(p, s, addr), map))
3862 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3863}
3864
3865static int list_locations(struct kmem_cache *s, char *buf,
3866 enum track_item alloc)
3867{
e374d483 3868 int len = 0;
88a420e4 3869 unsigned long i;
68dff6a9 3870 struct loc_track t = { 0, 0, NULL };
88a420e4 3871 int node;
bbd7d57b
ED
3872 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3873 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3874
bbd7d57b
ED
3875 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3876 GFP_TEMPORARY)) {
3877 kfree(map);
68dff6a9 3878 return sprintf(buf, "Out of memory\n");
bbd7d57b 3879 }
88a420e4
CL
3880 /* Push back cpu slabs */
3881 flush_all(s);
3882
f64dc58c 3883 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3884 struct kmem_cache_node *n = get_node(s, node);
3885 unsigned long flags;
3886 struct page *page;
3887
9e86943b 3888 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3889 continue;
3890
3891 spin_lock_irqsave(&n->list_lock, flags);
3892 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3893 process_slab(&t, s, page, alloc, map);
88a420e4 3894 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3895 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3896 spin_unlock_irqrestore(&n->list_lock, flags);
3897 }
3898
3899 for (i = 0; i < t.count; i++) {
45edfa58 3900 struct location *l = &t.loc[i];
88a420e4 3901
9c246247 3902 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3903 break;
e374d483 3904 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3905
3906 if (l->addr)
62c70bce 3907 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3908 else
e374d483 3909 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3910
3911 if (l->sum_time != l->min_time) {
e374d483 3912 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3913 l->min_time,
3914 (long)div_u64(l->sum_time, l->count),
3915 l->max_time);
45edfa58 3916 } else
e374d483 3917 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3918 l->min_time);
3919
3920 if (l->min_pid != l->max_pid)
e374d483 3921 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3922 l->min_pid, l->max_pid);
3923 else
e374d483 3924 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3925 l->min_pid);
3926
174596a0
RR
3927 if (num_online_cpus() > 1 &&
3928 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3929 len < PAGE_SIZE - 60) {
3930 len += sprintf(buf + len, " cpus=");
3931 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3932 to_cpumask(l->cpus));
45edfa58
CL
3933 }
3934
62bc62a8 3935 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3936 len < PAGE_SIZE - 60) {
3937 len += sprintf(buf + len, " nodes=");
3938 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3939 l->nodes);
3940 }
3941
e374d483 3942 len += sprintf(buf + len, "\n");
88a420e4
CL
3943 }
3944
3945 free_loc_track(&t);
bbd7d57b 3946 kfree(map);
88a420e4 3947 if (!t.count)
e374d483
HH
3948 len += sprintf(buf, "No data\n");
3949 return len;
88a420e4 3950}
ab4d5ed5 3951#endif
88a420e4 3952
a5a84755
CL
3953#ifdef SLUB_RESILIENCY_TEST
3954static void resiliency_test(void)
3955{
3956 u8 *p;
3957
3958 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3959
3960 printk(KERN_ERR "SLUB resiliency testing\n");
3961 printk(KERN_ERR "-----------------------\n");
3962 printk(KERN_ERR "A. Corruption after allocation\n");
3963
3964 p = kzalloc(16, GFP_KERNEL);
3965 p[16] = 0x12;
3966 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3967 " 0x12->0x%p\n\n", p + 16);
3968
3969 validate_slab_cache(kmalloc_caches[4]);
3970
3971 /* Hmmm... The next two are dangerous */
3972 p = kzalloc(32, GFP_KERNEL);
3973 p[32 + sizeof(void *)] = 0x34;
3974 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3975 " 0x34 -> -0x%p\n", p);
3976 printk(KERN_ERR
3977 "If allocated object is overwritten then not detectable\n\n");
3978
3979 validate_slab_cache(kmalloc_caches[5]);
3980 p = kzalloc(64, GFP_KERNEL);
3981 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3982 *p = 0x56;
3983 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3984 p);
3985 printk(KERN_ERR
3986 "If allocated object is overwritten then not detectable\n\n");
3987 validate_slab_cache(kmalloc_caches[6]);
3988
3989 printk(KERN_ERR "\nB. Corruption after free\n");
3990 p = kzalloc(128, GFP_KERNEL);
3991 kfree(p);
3992 *p = 0x78;
3993 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3994 validate_slab_cache(kmalloc_caches[7]);
3995
3996 p = kzalloc(256, GFP_KERNEL);
3997 kfree(p);
3998 p[50] = 0x9a;
3999 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4000 p);
4001 validate_slab_cache(kmalloc_caches[8]);
4002
4003 p = kzalloc(512, GFP_KERNEL);
4004 kfree(p);
4005 p[512] = 0xab;
4006 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4007 validate_slab_cache(kmalloc_caches[9]);
4008}
4009#else
4010#ifdef CONFIG_SYSFS
4011static void resiliency_test(void) {};
4012#endif
4013#endif
4014
ab4d5ed5 4015#ifdef CONFIG_SYSFS
81819f0f 4016enum slab_stat_type {
205ab99d
CL
4017 SL_ALL, /* All slabs */
4018 SL_PARTIAL, /* Only partially allocated slabs */
4019 SL_CPU, /* Only slabs used for cpu caches */
4020 SL_OBJECTS, /* Determine allocated objects not slabs */
4021 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4022};
4023
205ab99d 4024#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4025#define SO_PARTIAL (1 << SL_PARTIAL)
4026#define SO_CPU (1 << SL_CPU)
4027#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4028#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4029
62e5c4b4
CG
4030static ssize_t show_slab_objects(struct kmem_cache *s,
4031 char *buf, unsigned long flags)
81819f0f
CL
4032{
4033 unsigned long total = 0;
81819f0f
CL
4034 int node;
4035 int x;
4036 unsigned long *nodes;
4037 unsigned long *per_cpu;
4038
4039 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4040 if (!nodes)
4041 return -ENOMEM;
81819f0f
CL
4042 per_cpu = nodes + nr_node_ids;
4043
205ab99d
CL
4044 if (flags & SO_CPU) {
4045 int cpu;
81819f0f 4046
205ab99d 4047 for_each_possible_cpu(cpu) {
9dfc6e68 4048 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4049
205ab99d
CL
4050 if (!c || c->node < 0)
4051 continue;
4052
4053 if (c->page) {
4054 if (flags & SO_TOTAL)
4055 x = c->page->objects;
4056 else if (flags & SO_OBJECTS)
4057 x = c->page->inuse;
81819f0f
CL
4058 else
4059 x = 1;
205ab99d 4060
81819f0f 4061 total += x;
205ab99d 4062 nodes[c->node] += x;
81819f0f 4063 }
205ab99d 4064 per_cpu[c->node]++;
81819f0f
CL
4065 }
4066 }
4067
04d94879 4068 lock_memory_hotplug();
ab4d5ed5 4069#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4070 if (flags & SO_ALL) {
4071 for_each_node_state(node, N_NORMAL_MEMORY) {
4072 struct kmem_cache_node *n = get_node(s, node);
4073
4074 if (flags & SO_TOTAL)
4075 x = atomic_long_read(&n->total_objects);
4076 else if (flags & SO_OBJECTS)
4077 x = atomic_long_read(&n->total_objects) -
4078 count_partial(n, count_free);
81819f0f 4079
81819f0f 4080 else
205ab99d 4081 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4082 total += x;
4083 nodes[node] += x;
4084 }
4085
ab4d5ed5
CL
4086 } else
4087#endif
4088 if (flags & SO_PARTIAL) {
205ab99d
CL
4089 for_each_node_state(node, N_NORMAL_MEMORY) {
4090 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4091
205ab99d
CL
4092 if (flags & SO_TOTAL)
4093 x = count_partial(n, count_total);
4094 else if (flags & SO_OBJECTS)
4095 x = count_partial(n, count_inuse);
81819f0f 4096 else
205ab99d 4097 x = n->nr_partial;
81819f0f
CL
4098 total += x;
4099 nodes[node] += x;
4100 }
4101 }
81819f0f
CL
4102 x = sprintf(buf, "%lu", total);
4103#ifdef CONFIG_NUMA
f64dc58c 4104 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4105 if (nodes[node])
4106 x += sprintf(buf + x, " N%d=%lu",
4107 node, nodes[node]);
4108#endif
04d94879 4109 unlock_memory_hotplug();
81819f0f
CL
4110 kfree(nodes);
4111 return x + sprintf(buf + x, "\n");
4112}
4113
ab4d5ed5 4114#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4115static int any_slab_objects(struct kmem_cache *s)
4116{
4117 int node;
81819f0f 4118
dfb4f096 4119 for_each_online_node(node) {
81819f0f
CL
4120 struct kmem_cache_node *n = get_node(s, node);
4121
dfb4f096
CL
4122 if (!n)
4123 continue;
4124
4ea33e2d 4125 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4126 return 1;
4127 }
4128 return 0;
4129}
ab4d5ed5 4130#endif
81819f0f
CL
4131
4132#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4133#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4134
4135struct slab_attribute {
4136 struct attribute attr;
4137 ssize_t (*show)(struct kmem_cache *s, char *buf);
4138 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4139};
4140
4141#define SLAB_ATTR_RO(_name) \
4142 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4143
4144#define SLAB_ATTR(_name) \
4145 static struct slab_attribute _name##_attr = \
4146 __ATTR(_name, 0644, _name##_show, _name##_store)
4147
81819f0f
CL
4148static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4149{
4150 return sprintf(buf, "%d\n", s->size);
4151}
4152SLAB_ATTR_RO(slab_size);
4153
4154static ssize_t align_show(struct kmem_cache *s, char *buf)
4155{
4156 return sprintf(buf, "%d\n", s->align);
4157}
4158SLAB_ATTR_RO(align);
4159
4160static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4161{
4162 return sprintf(buf, "%d\n", s->objsize);
4163}
4164SLAB_ATTR_RO(object_size);
4165
4166static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4167{
834f3d11 4168 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4169}
4170SLAB_ATTR_RO(objs_per_slab);
4171
06b285dc
CL
4172static ssize_t order_store(struct kmem_cache *s,
4173 const char *buf, size_t length)
4174{
0121c619
CL
4175 unsigned long order;
4176 int err;
4177
4178 err = strict_strtoul(buf, 10, &order);
4179 if (err)
4180 return err;
06b285dc
CL
4181
4182 if (order > slub_max_order || order < slub_min_order)
4183 return -EINVAL;
4184
4185 calculate_sizes(s, order);
4186 return length;
4187}
4188
81819f0f
CL
4189static ssize_t order_show(struct kmem_cache *s, char *buf)
4190{
834f3d11 4191 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4192}
06b285dc 4193SLAB_ATTR(order);
81819f0f 4194
73d342b1
DR
4195static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4196{
4197 return sprintf(buf, "%lu\n", s->min_partial);
4198}
4199
4200static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4201 size_t length)
4202{
4203 unsigned long min;
4204 int err;
4205
4206 err = strict_strtoul(buf, 10, &min);
4207 if (err)
4208 return err;
4209
c0bdb232 4210 set_min_partial(s, min);
73d342b1
DR
4211 return length;
4212}
4213SLAB_ATTR(min_partial);
4214
81819f0f
CL
4215static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4216{
62c70bce
JP
4217 if (!s->ctor)
4218 return 0;
4219 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4220}
4221SLAB_ATTR_RO(ctor);
4222
81819f0f
CL
4223static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4224{
4225 return sprintf(buf, "%d\n", s->refcount - 1);
4226}
4227SLAB_ATTR_RO(aliases);
4228
81819f0f
CL
4229static ssize_t partial_show(struct kmem_cache *s, char *buf)
4230{
d9acf4b7 4231 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4232}
4233SLAB_ATTR_RO(partial);
4234
4235static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4236{
d9acf4b7 4237 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4238}
4239SLAB_ATTR_RO(cpu_slabs);
4240
4241static ssize_t objects_show(struct kmem_cache *s, char *buf)
4242{
205ab99d 4243 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4244}
4245SLAB_ATTR_RO(objects);
4246
205ab99d
CL
4247static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4248{
4249 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4250}
4251SLAB_ATTR_RO(objects_partial);
4252
a5a84755
CL
4253static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4254{
4255 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4256}
4257
4258static ssize_t reclaim_account_store(struct kmem_cache *s,
4259 const char *buf, size_t length)
4260{
4261 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4262 if (buf[0] == '1')
4263 s->flags |= SLAB_RECLAIM_ACCOUNT;
4264 return length;
4265}
4266SLAB_ATTR(reclaim_account);
4267
4268static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4269{
4270 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4271}
4272SLAB_ATTR_RO(hwcache_align);
4273
4274#ifdef CONFIG_ZONE_DMA
4275static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4276{
4277 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4278}
4279SLAB_ATTR_RO(cache_dma);
4280#endif
4281
4282static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4283{
4284 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4285}
4286SLAB_ATTR_RO(destroy_by_rcu);
4287
ab9a0f19
LJ
4288static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4289{
4290 return sprintf(buf, "%d\n", s->reserved);
4291}
4292SLAB_ATTR_RO(reserved);
4293
ab4d5ed5 4294#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4295static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4296{
4297 return show_slab_objects(s, buf, SO_ALL);
4298}
4299SLAB_ATTR_RO(slabs);
4300
205ab99d
CL
4301static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4302{
4303 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4304}
4305SLAB_ATTR_RO(total_objects);
4306
81819f0f
CL
4307static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4308{
4309 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4310}
4311
4312static ssize_t sanity_checks_store(struct kmem_cache *s,
4313 const char *buf, size_t length)
4314{
4315 s->flags &= ~SLAB_DEBUG_FREE;
4316 if (buf[0] == '1')
4317 s->flags |= SLAB_DEBUG_FREE;
4318 return length;
4319}
4320SLAB_ATTR(sanity_checks);
4321
4322static ssize_t trace_show(struct kmem_cache *s, char *buf)
4323{
4324 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4325}
4326
4327static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4328 size_t length)
4329{
4330 s->flags &= ~SLAB_TRACE;
4331 if (buf[0] == '1')
4332 s->flags |= SLAB_TRACE;
4333 return length;
4334}
4335SLAB_ATTR(trace);
4336
81819f0f
CL
4337static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4338{
4339 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4340}
4341
4342static ssize_t red_zone_store(struct kmem_cache *s,
4343 const char *buf, size_t length)
4344{
4345 if (any_slab_objects(s))
4346 return -EBUSY;
4347
4348 s->flags &= ~SLAB_RED_ZONE;
4349 if (buf[0] == '1')
4350 s->flags |= SLAB_RED_ZONE;
06b285dc 4351 calculate_sizes(s, -1);
81819f0f
CL
4352 return length;
4353}
4354SLAB_ATTR(red_zone);
4355
4356static ssize_t poison_show(struct kmem_cache *s, char *buf)
4357{
4358 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4359}
4360
4361static ssize_t poison_store(struct kmem_cache *s,
4362 const char *buf, size_t length)
4363{
4364 if (any_slab_objects(s))
4365 return -EBUSY;
4366
4367 s->flags &= ~SLAB_POISON;
4368 if (buf[0] == '1')
4369 s->flags |= SLAB_POISON;
06b285dc 4370 calculate_sizes(s, -1);
81819f0f
CL
4371 return length;
4372}
4373SLAB_ATTR(poison);
4374
4375static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4376{
4377 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4378}
4379
4380static ssize_t store_user_store(struct kmem_cache *s,
4381 const char *buf, size_t length)
4382{
4383 if (any_slab_objects(s))
4384 return -EBUSY;
4385
4386 s->flags &= ~SLAB_STORE_USER;
4387 if (buf[0] == '1')
4388 s->flags |= SLAB_STORE_USER;
06b285dc 4389 calculate_sizes(s, -1);
81819f0f
CL
4390 return length;
4391}
4392SLAB_ATTR(store_user);
4393
53e15af0
CL
4394static ssize_t validate_show(struct kmem_cache *s, char *buf)
4395{
4396 return 0;
4397}
4398
4399static ssize_t validate_store(struct kmem_cache *s,
4400 const char *buf, size_t length)
4401{
434e245d
CL
4402 int ret = -EINVAL;
4403
4404 if (buf[0] == '1') {
4405 ret = validate_slab_cache(s);
4406 if (ret >= 0)
4407 ret = length;
4408 }
4409 return ret;
53e15af0
CL
4410}
4411SLAB_ATTR(validate);
a5a84755
CL
4412
4413static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4414{
4415 if (!(s->flags & SLAB_STORE_USER))
4416 return -ENOSYS;
4417 return list_locations(s, buf, TRACK_ALLOC);
4418}
4419SLAB_ATTR_RO(alloc_calls);
4420
4421static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4422{
4423 if (!(s->flags & SLAB_STORE_USER))
4424 return -ENOSYS;
4425 return list_locations(s, buf, TRACK_FREE);
4426}
4427SLAB_ATTR_RO(free_calls);
4428#endif /* CONFIG_SLUB_DEBUG */
4429
4430#ifdef CONFIG_FAILSLAB
4431static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4432{
4433 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4434}
4435
4436static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4437 size_t length)
4438{
4439 s->flags &= ~SLAB_FAILSLAB;
4440 if (buf[0] == '1')
4441 s->flags |= SLAB_FAILSLAB;
4442 return length;
4443}
4444SLAB_ATTR(failslab);
ab4d5ed5 4445#endif
53e15af0 4446
2086d26a
CL
4447static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4448{
4449 return 0;
4450}
4451
4452static ssize_t shrink_store(struct kmem_cache *s,
4453 const char *buf, size_t length)
4454{
4455 if (buf[0] == '1') {
4456 int rc = kmem_cache_shrink(s);
4457
4458 if (rc)
4459 return rc;
4460 } else
4461 return -EINVAL;
4462 return length;
4463}
4464SLAB_ATTR(shrink);
4465
81819f0f 4466#ifdef CONFIG_NUMA
9824601e 4467static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4468{
9824601e 4469 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4470}
4471
9824601e 4472static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4473 const char *buf, size_t length)
4474{
0121c619
CL
4475 unsigned long ratio;
4476 int err;
4477
4478 err = strict_strtoul(buf, 10, &ratio);
4479 if (err)
4480 return err;
4481
e2cb96b7 4482 if (ratio <= 100)
0121c619 4483 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4484
81819f0f
CL
4485 return length;
4486}
9824601e 4487SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4488#endif
4489
8ff12cfc 4490#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4491static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4492{
4493 unsigned long sum = 0;
4494 int cpu;
4495 int len;
4496 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4497
4498 if (!data)
4499 return -ENOMEM;
4500
4501 for_each_online_cpu(cpu) {
9dfc6e68 4502 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4503
4504 data[cpu] = x;
4505 sum += x;
4506 }
4507
4508 len = sprintf(buf, "%lu", sum);
4509
50ef37b9 4510#ifdef CONFIG_SMP
8ff12cfc
CL
4511 for_each_online_cpu(cpu) {
4512 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4513 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4514 }
50ef37b9 4515#endif
8ff12cfc
CL
4516 kfree(data);
4517 return len + sprintf(buf + len, "\n");
4518}
4519
78eb00cc
DR
4520static void clear_stat(struct kmem_cache *s, enum stat_item si)
4521{
4522 int cpu;
4523
4524 for_each_online_cpu(cpu)
9dfc6e68 4525 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4526}
4527
8ff12cfc
CL
4528#define STAT_ATTR(si, text) \
4529static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4530{ \
4531 return show_stat(s, buf, si); \
4532} \
78eb00cc
DR
4533static ssize_t text##_store(struct kmem_cache *s, \
4534 const char *buf, size_t length) \
4535{ \
4536 if (buf[0] != '0') \
4537 return -EINVAL; \
4538 clear_stat(s, si); \
4539 return length; \
4540} \
4541SLAB_ATTR(text); \
8ff12cfc
CL
4542
4543STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4544STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4545STAT_ATTR(FREE_FASTPATH, free_fastpath);
4546STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4547STAT_ATTR(FREE_FROZEN, free_frozen);
4548STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4549STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4550STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4551STAT_ATTR(ALLOC_SLAB, alloc_slab);
4552STAT_ATTR(ALLOC_REFILL, alloc_refill);
4553STAT_ATTR(FREE_SLAB, free_slab);
4554STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4555STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4556STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4557STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4558STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4559STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4560STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4561#endif
4562
06428780 4563static struct attribute *slab_attrs[] = {
81819f0f
CL
4564 &slab_size_attr.attr,
4565 &object_size_attr.attr,
4566 &objs_per_slab_attr.attr,
4567 &order_attr.attr,
73d342b1 4568 &min_partial_attr.attr,
81819f0f 4569 &objects_attr.attr,
205ab99d 4570 &objects_partial_attr.attr,
81819f0f
CL
4571 &partial_attr.attr,
4572 &cpu_slabs_attr.attr,
4573 &ctor_attr.attr,
81819f0f
CL
4574 &aliases_attr.attr,
4575 &align_attr.attr,
81819f0f
CL
4576 &hwcache_align_attr.attr,
4577 &reclaim_account_attr.attr,
4578 &destroy_by_rcu_attr.attr,
a5a84755 4579 &shrink_attr.attr,
ab9a0f19 4580 &reserved_attr.attr,
ab4d5ed5 4581#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4582 &total_objects_attr.attr,
4583 &slabs_attr.attr,
4584 &sanity_checks_attr.attr,
4585 &trace_attr.attr,
81819f0f
CL
4586 &red_zone_attr.attr,
4587 &poison_attr.attr,
4588 &store_user_attr.attr,
53e15af0 4589 &validate_attr.attr,
88a420e4
CL
4590 &alloc_calls_attr.attr,
4591 &free_calls_attr.attr,
ab4d5ed5 4592#endif
81819f0f
CL
4593#ifdef CONFIG_ZONE_DMA
4594 &cache_dma_attr.attr,
4595#endif
4596#ifdef CONFIG_NUMA
9824601e 4597 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4598#endif
4599#ifdef CONFIG_SLUB_STATS
4600 &alloc_fastpath_attr.attr,
4601 &alloc_slowpath_attr.attr,
4602 &free_fastpath_attr.attr,
4603 &free_slowpath_attr.attr,
4604 &free_frozen_attr.attr,
4605 &free_add_partial_attr.attr,
4606 &free_remove_partial_attr.attr,
4607 &alloc_from_partial_attr.attr,
4608 &alloc_slab_attr.attr,
4609 &alloc_refill_attr.attr,
4610 &free_slab_attr.attr,
4611 &cpuslab_flush_attr.attr,
4612 &deactivate_full_attr.attr,
4613 &deactivate_empty_attr.attr,
4614 &deactivate_to_head_attr.attr,
4615 &deactivate_to_tail_attr.attr,
4616 &deactivate_remote_frees_attr.attr,
65c3376a 4617 &order_fallback_attr.attr,
81819f0f 4618#endif
4c13dd3b
DM
4619#ifdef CONFIG_FAILSLAB
4620 &failslab_attr.attr,
4621#endif
4622
81819f0f
CL
4623 NULL
4624};
4625
4626static struct attribute_group slab_attr_group = {
4627 .attrs = slab_attrs,
4628};
4629
4630static ssize_t slab_attr_show(struct kobject *kobj,
4631 struct attribute *attr,
4632 char *buf)
4633{
4634 struct slab_attribute *attribute;
4635 struct kmem_cache *s;
4636 int err;
4637
4638 attribute = to_slab_attr(attr);
4639 s = to_slab(kobj);
4640
4641 if (!attribute->show)
4642 return -EIO;
4643
4644 err = attribute->show(s, buf);
4645
4646 return err;
4647}
4648
4649static ssize_t slab_attr_store(struct kobject *kobj,
4650 struct attribute *attr,
4651 const char *buf, size_t len)
4652{
4653 struct slab_attribute *attribute;
4654 struct kmem_cache *s;
4655 int err;
4656
4657 attribute = to_slab_attr(attr);
4658 s = to_slab(kobj);
4659
4660 if (!attribute->store)
4661 return -EIO;
4662
4663 err = attribute->store(s, buf, len);
4664
4665 return err;
4666}
4667
151c602f
CL
4668static void kmem_cache_release(struct kobject *kobj)
4669{
4670 struct kmem_cache *s = to_slab(kobj);
4671
84c1cf62 4672 kfree(s->name);
151c602f
CL
4673 kfree(s);
4674}
4675
52cf25d0 4676static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4677 .show = slab_attr_show,
4678 .store = slab_attr_store,
4679};
4680
4681static struct kobj_type slab_ktype = {
4682 .sysfs_ops = &slab_sysfs_ops,
151c602f 4683 .release = kmem_cache_release
81819f0f
CL
4684};
4685
4686static int uevent_filter(struct kset *kset, struct kobject *kobj)
4687{
4688 struct kobj_type *ktype = get_ktype(kobj);
4689
4690 if (ktype == &slab_ktype)
4691 return 1;
4692 return 0;
4693}
4694
9cd43611 4695static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4696 .filter = uevent_filter,
4697};
4698
27c3a314 4699static struct kset *slab_kset;
81819f0f
CL
4700
4701#define ID_STR_LENGTH 64
4702
4703/* Create a unique string id for a slab cache:
6446faa2
CL
4704 *
4705 * Format :[flags-]size
81819f0f
CL
4706 */
4707static char *create_unique_id(struct kmem_cache *s)
4708{
4709 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4710 char *p = name;
4711
4712 BUG_ON(!name);
4713
4714 *p++ = ':';
4715 /*
4716 * First flags affecting slabcache operations. We will only
4717 * get here for aliasable slabs so we do not need to support
4718 * too many flags. The flags here must cover all flags that
4719 * are matched during merging to guarantee that the id is
4720 * unique.
4721 */
4722 if (s->flags & SLAB_CACHE_DMA)
4723 *p++ = 'd';
4724 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4725 *p++ = 'a';
4726 if (s->flags & SLAB_DEBUG_FREE)
4727 *p++ = 'F';
5a896d9e
VN
4728 if (!(s->flags & SLAB_NOTRACK))
4729 *p++ = 't';
81819f0f
CL
4730 if (p != name + 1)
4731 *p++ = '-';
4732 p += sprintf(p, "%07d", s->size);
4733 BUG_ON(p > name + ID_STR_LENGTH - 1);
4734 return name;
4735}
4736
4737static int sysfs_slab_add(struct kmem_cache *s)
4738{
4739 int err;
4740 const char *name;
4741 int unmergeable;
4742
4743 if (slab_state < SYSFS)
4744 /* Defer until later */
4745 return 0;
4746
4747 unmergeable = slab_unmergeable(s);
4748 if (unmergeable) {
4749 /*
4750 * Slabcache can never be merged so we can use the name proper.
4751 * This is typically the case for debug situations. In that
4752 * case we can catch duplicate names easily.
4753 */
27c3a314 4754 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4755 name = s->name;
4756 } else {
4757 /*
4758 * Create a unique name for the slab as a target
4759 * for the symlinks.
4760 */
4761 name = create_unique_id(s);
4762 }
4763
27c3a314 4764 s->kobj.kset = slab_kset;
1eada11c
GKH
4765 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4766 if (err) {
4767 kobject_put(&s->kobj);
81819f0f 4768 return err;
1eada11c 4769 }
81819f0f
CL
4770
4771 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4772 if (err) {
4773 kobject_del(&s->kobj);
4774 kobject_put(&s->kobj);
81819f0f 4775 return err;
5788d8ad 4776 }
81819f0f
CL
4777 kobject_uevent(&s->kobj, KOBJ_ADD);
4778 if (!unmergeable) {
4779 /* Setup first alias */
4780 sysfs_slab_alias(s, s->name);
4781 kfree(name);
4782 }
4783 return 0;
4784}
4785
4786static void sysfs_slab_remove(struct kmem_cache *s)
4787{
2bce6485
CL
4788 if (slab_state < SYSFS)
4789 /*
4790 * Sysfs has not been setup yet so no need to remove the
4791 * cache from sysfs.
4792 */
4793 return;
4794
81819f0f
CL
4795 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4796 kobject_del(&s->kobj);
151c602f 4797 kobject_put(&s->kobj);
81819f0f
CL
4798}
4799
4800/*
4801 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4802 * available lest we lose that information.
81819f0f
CL
4803 */
4804struct saved_alias {
4805 struct kmem_cache *s;
4806 const char *name;
4807 struct saved_alias *next;
4808};
4809
5af328a5 4810static struct saved_alias *alias_list;
81819f0f
CL
4811
4812static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4813{
4814 struct saved_alias *al;
4815
4816 if (slab_state == SYSFS) {
4817 /*
4818 * If we have a leftover link then remove it.
4819 */
27c3a314
GKH
4820 sysfs_remove_link(&slab_kset->kobj, name);
4821 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4822 }
4823
4824 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4825 if (!al)
4826 return -ENOMEM;
4827
4828 al->s = s;
4829 al->name = name;
4830 al->next = alias_list;
4831 alias_list = al;
4832 return 0;
4833}
4834
4835static int __init slab_sysfs_init(void)
4836{
5b95a4ac 4837 struct kmem_cache *s;
81819f0f
CL
4838 int err;
4839
2bce6485
CL
4840 down_write(&slub_lock);
4841
0ff21e46 4842 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4843 if (!slab_kset) {
2bce6485 4844 up_write(&slub_lock);
81819f0f
CL
4845 printk(KERN_ERR "Cannot register slab subsystem.\n");
4846 return -ENOSYS;
4847 }
4848
26a7bd03
CL
4849 slab_state = SYSFS;
4850
5b95a4ac 4851 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4852 err = sysfs_slab_add(s);
5d540fb7
CL
4853 if (err)
4854 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4855 " to sysfs\n", s->name);
26a7bd03 4856 }
81819f0f
CL
4857
4858 while (alias_list) {
4859 struct saved_alias *al = alias_list;
4860
4861 alias_list = alias_list->next;
4862 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4863 if (err)
4864 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4865 " %s to sysfs\n", s->name);
81819f0f
CL
4866 kfree(al);
4867 }
4868
2bce6485 4869 up_write(&slub_lock);
81819f0f
CL
4870 resiliency_test();
4871 return 0;
4872}
4873
4874__initcall(slab_sysfs_init);
ab4d5ed5 4875#endif /* CONFIG_SYSFS */
57ed3eda
PE
4876
4877/*
4878 * The /proc/slabinfo ABI
4879 */
158a9624 4880#ifdef CONFIG_SLABINFO
57ed3eda
PE
4881static void print_slabinfo_header(struct seq_file *m)
4882{
4883 seq_puts(m, "slabinfo - version: 2.1\n");
4884 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4885 "<objperslab> <pagesperslab>");
4886 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4887 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4888 seq_putc(m, '\n');
4889}
4890
4891static void *s_start(struct seq_file *m, loff_t *pos)
4892{
4893 loff_t n = *pos;
4894
4895 down_read(&slub_lock);
4896 if (!n)
4897 print_slabinfo_header(m);
4898
4899 return seq_list_start(&slab_caches, *pos);
4900}
4901
4902static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4903{
4904 return seq_list_next(p, &slab_caches, pos);
4905}
4906
4907static void s_stop(struct seq_file *m, void *p)
4908{
4909 up_read(&slub_lock);
4910}
4911
4912static int s_show(struct seq_file *m, void *p)
4913{
4914 unsigned long nr_partials = 0;
4915 unsigned long nr_slabs = 0;
4916 unsigned long nr_inuse = 0;
205ab99d
CL
4917 unsigned long nr_objs = 0;
4918 unsigned long nr_free = 0;
57ed3eda
PE
4919 struct kmem_cache *s;
4920 int node;
4921
4922 s = list_entry(p, struct kmem_cache, list);
4923
4924 for_each_online_node(node) {
4925 struct kmem_cache_node *n = get_node(s, node);
4926
4927 if (!n)
4928 continue;
4929
4930 nr_partials += n->nr_partial;
4931 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4932 nr_objs += atomic_long_read(&n->total_objects);
4933 nr_free += count_partial(n, count_free);
57ed3eda
PE
4934 }
4935
205ab99d 4936 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4937
4938 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4939 nr_objs, s->size, oo_objects(s->oo),
4940 (1 << oo_order(s->oo)));
57ed3eda
PE
4941 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4942 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4943 0UL);
4944 seq_putc(m, '\n');
4945 return 0;
4946}
4947
7b3c3a50 4948static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4949 .start = s_start,
4950 .next = s_next,
4951 .stop = s_stop,
4952 .show = s_show,
4953};
4954
7b3c3a50
AD
4955static int slabinfo_open(struct inode *inode, struct file *file)
4956{
4957 return seq_open(file, &slabinfo_op);
4958}
4959
4960static const struct file_operations proc_slabinfo_operations = {
4961 .open = slabinfo_open,
4962 .read = seq_read,
4963 .llseek = seq_lseek,
4964 .release = seq_release,
4965};
4966
4967static int __init slab_proc_init(void)
4968{
cf5d1131 4969 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4970 return 0;
4971}
4972module_init(slab_proc_init);
158a9624 4973#endif /* CONFIG_SLABINFO */