]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
mm/slub.c: pack red_left_pad with another int to save a word
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
02cbc874
CL
197/*
198 * Tracking user of a slab.
199 */
d6543e39 200#define TRACK_ADDRS_COUNT 16
02cbc874 201struct track {
ce71e27c 202 unsigned long addr; /* Called from address */
d6543e39
BG
203#ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205#endif
02cbc874
CL
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209};
210
211enum track_item { TRACK_ALLOC, TRACK_FREE };
212
ab4d5ed5 213#ifdef CONFIG_SYSFS
81819f0f
CL
214static int sysfs_slab_add(struct kmem_cache *);
215static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 217static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 218#else
0c710013
CL
219static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 { return 0; }
107dab5c 222static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 223static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
224#endif
225
4fdccdfb 226static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
227{
228#ifdef CONFIG_SLUB_STATS
88da03a6
CL
229 /*
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
232 */
233 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
234#endif
235}
236
81819f0f
CL
237/********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
240
7656c72b
CL
241static inline void *get_freepointer(struct kmem_cache *s, void *object)
242{
243 return *(void **)(object + s->offset);
244}
245
0ad9500e
ED
246static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247{
248 prefetch(object + s->offset);
249}
250
1393d9a1
CL
251static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252{
253 void *p;
254
922d566c
JK
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s, object);
257
1393d9a1 258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
259 return p;
260}
261
7656c72b
CL
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be 268#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
271 __p += (__s)->size)
7656c72b 272
54266640 273#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
54266640 277
7656c72b
CL
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
ab9a0f19
LJ
284static inline int order_objects(int order, unsigned long size, int reserved)
285{
286 return ((PAGE_SIZE << order) - reserved) / size;
287}
288
834f3d11 289static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 290 unsigned long size, int reserved)
834f3d11
CL
291{
292 struct kmem_cache_order_objects x = {
ab9a0f19 293 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x >> OO_SHIFT;
834f3d11
CL
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x & OO_MASK;
834f3d11
CL
307}
308
881db7fb
CL
309/*
310 * Per slab locking using the pagelock
311 */
312static __always_inline void slab_lock(struct page *page)
313{
48c935ad 314 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
315 bit_spin_lock(PG_locked, &page->flags);
316}
317
318static __always_inline void slab_unlock(struct page *page)
319{
48c935ad 320 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
321 __bit_spin_unlock(PG_locked, &page->flags);
322}
323
a0320865
DH
324static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325{
326 struct page tmp;
327 tmp.counters = counters_new;
328 /*
329 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
332 * be careful and only assign to the fields we need.
333 */
334 page->frozen = tmp.frozen;
335 page->inuse = tmp.inuse;
336 page->objects = tmp.objects;
337}
338
1d07171c
CL
339/* Interrupts must be disabled (for the fallback code to work right) */
340static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 void *freelist_old, unsigned long counters_old,
342 void *freelist_new, unsigned long counters_new,
343 const char *n)
344{
345 VM_BUG_ON(!irqs_disabled());
2565409f
HC
346#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 348 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 349 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
350 freelist_old, counters_old,
351 freelist_new, counters_new))
6f6528a1 352 return true;
1d07171c
CL
353 } else
354#endif
355 {
356 slab_lock(page);
d0e0ac97
CG
357 if (page->freelist == freelist_old &&
358 page->counters == counters_old) {
1d07171c 359 page->freelist = freelist_new;
a0320865 360 set_page_slub_counters(page, counters_new);
1d07171c 361 slab_unlock(page);
6f6528a1 362 return true;
1d07171c
CL
363 }
364 slab_unlock(page);
365 }
366
367 cpu_relax();
368 stat(s, CMPXCHG_DOUBLE_FAIL);
369
370#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 371 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
372#endif
373
6f6528a1 374 return false;
1d07171c
CL
375}
376
b789ef51
CL
377static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 void *freelist_old, unsigned long counters_old,
379 void *freelist_new, unsigned long counters_new,
380 const char *n)
381{
2565409f
HC
382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 384 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 385 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
386 freelist_old, counters_old,
387 freelist_new, counters_new))
6f6528a1 388 return true;
b789ef51
CL
389 } else
390#endif
391 {
1d07171c
CL
392 unsigned long flags;
393
394 local_irq_save(flags);
881db7fb 395 slab_lock(page);
d0e0ac97
CG
396 if (page->freelist == freelist_old &&
397 page->counters == counters_old) {
b789ef51 398 page->freelist = freelist_new;
a0320865 399 set_page_slub_counters(page, counters_new);
881db7fb 400 slab_unlock(page);
1d07171c 401 local_irq_restore(flags);
6f6528a1 402 return true;
b789ef51 403 }
881db7fb 404 slab_unlock(page);
1d07171c 405 local_irq_restore(flags);
b789ef51
CL
406 }
407
408 cpu_relax();
409 stat(s, CMPXCHG_DOUBLE_FAIL);
410
411#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 412 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
413#endif
414
6f6528a1 415 return false;
b789ef51
CL
416}
417
41ecc55b 418#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
419/*
420 * Determine a map of object in use on a page.
421 *
881db7fb 422 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
423 * not vanish from under us.
424 */
425static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426{
427 void *p;
428 void *addr = page_address(page);
429
430 for (p = page->freelist; p; p = get_freepointer(s, p))
431 set_bit(slab_index(p, s, addr), map);
432}
433
d86bd1be
JK
434static inline int size_from_object(struct kmem_cache *s)
435{
436 if (s->flags & SLAB_RED_ZONE)
437 return s->size - s->red_left_pad;
438
439 return s->size;
440}
441
442static inline void *restore_red_left(struct kmem_cache *s, void *p)
443{
444 if (s->flags & SLAB_RED_ZONE)
445 p -= s->red_left_pad;
446
447 return p;
448}
449
41ecc55b
CL
450/*
451 * Debug settings:
452 */
89d3c87e 453#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
454static int slub_debug = DEBUG_DEFAULT_FLAGS;
455#else
41ecc55b 456static int slub_debug;
f0630fff 457#endif
41ecc55b
CL
458
459static char *slub_debug_slabs;
fa5ec8a1 460static int disable_higher_order_debug;
41ecc55b 461
a79316c6
AR
462/*
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
467 */
468static inline void metadata_access_enable(void)
469{
470 kasan_disable_current();
471}
472
473static inline void metadata_access_disable(void)
474{
475 kasan_enable_current();
476}
477
81819f0f
CL
478/*
479 * Object debugging
480 */
d86bd1be
JK
481
482/* Verify that a pointer has an address that is valid within a slab page */
483static inline int check_valid_pointer(struct kmem_cache *s,
484 struct page *page, void *object)
485{
486 void *base;
487
488 if (!object)
489 return 1;
490
491 base = page_address(page);
492 object = restore_red_left(s, object);
493 if (object < base || object >= base + page->objects * s->size ||
494 (object - base) % s->size) {
495 return 0;
496 }
497
498 return 1;
499}
500
aa2efd5e
DT
501static void print_section(char *level, char *text, u8 *addr,
502 unsigned int length)
81819f0f 503{
a79316c6 504 metadata_access_enable();
aa2efd5e 505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 506 length, 1);
a79316c6 507 metadata_access_disable();
81819f0f
CL
508}
509
81819f0f
CL
510static struct track *get_track(struct kmem_cache *s, void *object,
511 enum track_item alloc)
512{
513 struct track *p;
514
515 if (s->offset)
516 p = object + s->offset + sizeof(void *);
517 else
518 p = object + s->inuse;
519
520 return p + alloc;
521}
522
523static void set_track(struct kmem_cache *s, void *object,
ce71e27c 524 enum track_item alloc, unsigned long addr)
81819f0f 525{
1a00df4a 526 struct track *p = get_track(s, object, alloc);
81819f0f 527
81819f0f 528 if (addr) {
d6543e39
BG
529#ifdef CONFIG_STACKTRACE
530 struct stack_trace trace;
531 int i;
532
533 trace.nr_entries = 0;
534 trace.max_entries = TRACK_ADDRS_COUNT;
535 trace.entries = p->addrs;
536 trace.skip = 3;
a79316c6 537 metadata_access_enable();
d6543e39 538 save_stack_trace(&trace);
a79316c6 539 metadata_access_disable();
d6543e39
BG
540
541 /* See rant in lockdep.c */
542 if (trace.nr_entries != 0 &&
543 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 trace.nr_entries--;
545
546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 p->addrs[i] = 0;
548#endif
81819f0f
CL
549 p->addr = addr;
550 p->cpu = smp_processor_id();
88e4ccf2 551 p->pid = current->pid;
81819f0f
CL
552 p->when = jiffies;
553 } else
554 memset(p, 0, sizeof(struct track));
555}
556
81819f0f
CL
557static void init_tracking(struct kmem_cache *s, void *object)
558{
24922684
CL
559 if (!(s->flags & SLAB_STORE_USER))
560 return;
561
ce71e27c
EGM
562 set_track(s, object, TRACK_FREE, 0UL);
563 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
564}
565
566static void print_track(const char *s, struct track *t)
567{
568 if (!t->addr)
569 return;
570
f9f58285
FF
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
573#ifdef CONFIG_STACKTRACE
574 {
575 int i;
576 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 if (t->addrs[i])
f9f58285 578 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
579 else
580 break;
581 }
582#endif
24922684
CL
583}
584
585static void print_tracking(struct kmem_cache *s, void *object)
586{
587 if (!(s->flags & SLAB_STORE_USER))
588 return;
589
590 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 print_track("Freed", get_track(s, object, TRACK_FREE));
592}
593
594static void print_page_info(struct page *page)
595{
f9f58285 596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 597 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
598
599}
600
601static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602{
ecc42fbe 603 struct va_format vaf;
24922684 604 va_list args;
24922684
CL
605
606 va_start(args, fmt);
ecc42fbe
FF
607 vaf.fmt = fmt;
608 vaf.va = &args;
f9f58285 609 pr_err("=============================================================================\n");
ecc42fbe 610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 611 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 612
373d4d09 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 614 va_end(args);
81819f0f
CL
615}
616
24922684
CL
617static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618{
ecc42fbe 619 struct va_format vaf;
24922684 620 va_list args;
24922684
CL
621
622 va_start(args, fmt);
ecc42fbe
FF
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 626 va_end(args);
24922684
CL
627}
628
629static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
630{
631 unsigned int off; /* Offset of last byte */
a973e9dd 632 u8 *addr = page_address(page);
24922684
CL
633
634 print_tracking(s, p);
635
636 print_page_info(page);
637
f9f58285
FF
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p, p - addr, get_freepointer(s, p));
24922684 640
d86bd1be 641 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 s->red_left_pad);
d86bd1be 644 else if (p > addr + 16)
aa2efd5e 645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 646
aa2efd5e
DT
647 print_section(KERN_ERR, "Object ", p,
648 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 649 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 650 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 651 s->inuse - s->object_size);
81819f0f 652
81819f0f
CL
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
24922684 658 if (s->flags & SLAB_STORE_USER)
81819f0f 659 off += 2 * sizeof(struct track);
81819f0f 660
80a9201a
AP
661 off += kasan_metadata_size(s);
662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
665 print_section(KERN_ERR, "Padding ", p + off,
666 size_from_object(s) - off);
24922684
CL
667
668 dump_stack();
81819f0f
CL
669}
670
75c66def 671void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
672 u8 *object, char *reason)
673{
3dc50637 674 slab_bug(s, "%s", reason);
24922684 675 print_trailer(s, page, object);
81819f0f
CL
676}
677
d0e0ac97
CG
678static void slab_err(struct kmem_cache *s, struct page *page,
679 const char *fmt, ...)
81819f0f
CL
680{
681 va_list args;
682 char buf[100];
683
24922684
CL
684 va_start(args, fmt);
685 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 686 va_end(args);
3dc50637 687 slab_bug(s, "%s", buf);
24922684 688 print_page_info(page);
81819f0f
CL
689 dump_stack();
690}
691
f7cb1933 692static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
693{
694 u8 *p = object;
695
d86bd1be
JK
696 if (s->flags & SLAB_RED_ZONE)
697 memset(p - s->red_left_pad, val, s->red_left_pad);
698
81819f0f 699 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
700 memset(p, POISON_FREE, s->object_size - 1);
701 p[s->object_size - 1] = POISON_END;
81819f0f
CL
702 }
703
704 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 705 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
706}
707
24922684
CL
708static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 void *from, void *to)
710{
711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 memset(from, data, to - from);
713}
714
715static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 u8 *object, char *what,
06428780 717 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
718{
719 u8 *fault;
720 u8 *end;
721
a79316c6 722 metadata_access_enable();
79824820 723 fault = memchr_inv(start, value, bytes);
a79316c6 724 metadata_access_disable();
24922684
CL
725 if (!fault)
726 return 1;
727
728 end = start + bytes;
729 while (end > fault && end[-1] == value)
730 end--;
731
732 slab_bug(s, "%s overwritten", what);
f9f58285 733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
734 fault, end - 1, fault[0], value);
735 print_trailer(s, page, object);
736
737 restore_bytes(s, what, value, fault, end);
738 return 0;
81819f0f
CL
739}
740
81819f0f
CL
741/*
742 * Object layout:
743 *
744 * object address
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
672bba3a 748 *
81819f0f
CL
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * 0xa5 (POISON_END)
751 *
3b0efdfa 752 * object + s->object_size
81819f0f 753 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 754 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 755 * object_size == inuse.
672bba3a 756 *
81819f0f
CL
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
759 *
760 * object + s->inuse
672bba3a
CL
761 * Meta data starts here.
762 *
81819f0f
CL
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
672bba3a 765 * C. Padding to reach required alignment boundary or at mininum
6446faa2 766 * one word if debugging is on to be able to detect writes
672bba3a
CL
767 * before the word boundary.
768 *
769 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
770 *
771 * object + s->size
672bba3a 772 * Nothing is used beyond s->size.
81819f0f 773 *
3b0efdfa 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 775 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
776 * may be used with merged slabcaches.
777 */
778
81819f0f
CL
779static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780{
781 unsigned long off = s->inuse; /* The end of info */
782
783 if (s->offset)
784 /* Freepointer is placed after the object. */
785 off += sizeof(void *);
786
787 if (s->flags & SLAB_STORE_USER)
788 /* We also have user information there */
789 off += 2 * sizeof(struct track);
790
80a9201a
AP
791 off += kasan_metadata_size(s);
792
d86bd1be 793 if (size_from_object(s) == off)
81819f0f
CL
794 return 1;
795
24922684 796 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 797 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
798}
799
39b26464 800/* Check the pad bytes at the end of a slab page */
81819f0f
CL
801static int slab_pad_check(struct kmem_cache *s, struct page *page)
802{
24922684
CL
803 u8 *start;
804 u8 *fault;
805 u8 *end;
806 int length;
807 int remainder;
81819f0f
CL
808
809 if (!(s->flags & SLAB_POISON))
810 return 1;
811
a973e9dd 812 start = page_address(page);
ab9a0f19 813 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
814 end = start + length;
815 remainder = length % s->size;
81819f0f
CL
816 if (!remainder)
817 return 1;
818
a79316c6 819 metadata_access_enable();
79824820 820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 821 metadata_access_disable();
24922684
CL
822 if (!fault)
823 return 1;
824 while (end > fault && end[-1] == POISON_INUSE)
825 end--;
826
827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 828 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 829
8a3d271d 830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 831 return 0;
81819f0f
CL
832}
833
834static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 835 void *object, u8 val)
81819f0f
CL
836{
837 u8 *p = object;
3b0efdfa 838 u8 *endobject = object + s->object_size;
81819f0f
CL
839
840 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
841 if (!check_bytes_and_report(s, page, object, "Redzone",
842 object - s->red_left_pad, val, s->red_left_pad))
843 return 0;
844
24922684 845 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 846 endobject, val, s->inuse - s->object_size))
81819f0f 847 return 0;
81819f0f 848 } else {
3b0efdfa 849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 850 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
851 endobject, POISON_INUSE,
852 s->inuse - s->object_size);
3adbefee 853 }
81819f0f
CL
854 }
855
856 if (s->flags & SLAB_POISON) {
f7cb1933 857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 858 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 859 POISON_FREE, s->object_size - 1) ||
24922684 860 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 861 p + s->object_size - 1, POISON_END, 1)))
81819f0f 862 return 0;
81819f0f
CL
863 /*
864 * check_pad_bytes cleans up on its own.
865 */
866 check_pad_bytes(s, page, p);
867 }
868
f7cb1933 869 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
870 /*
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
873 */
874 return 1;
875
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 object_err(s, page, p, "Freepointer corrupt");
879 /*
9f6c708e 880 * No choice but to zap it and thus lose the remainder
81819f0f 881 * of the free objects in this slab. May cause
672bba3a 882 * another error because the object count is now wrong.
81819f0f 883 */
a973e9dd 884 set_freepointer(s, p, NULL);
81819f0f
CL
885 return 0;
886 }
887 return 1;
888}
889
890static int check_slab(struct kmem_cache *s, struct page *page)
891{
39b26464
CL
892 int maxobj;
893
81819f0f
CL
894 VM_BUG_ON(!irqs_disabled());
895
896 if (!PageSlab(page)) {
24922684 897 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
898 return 0;
899 }
39b26464 900
ab9a0f19 901 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
902 if (page->objects > maxobj) {
903 slab_err(s, page, "objects %u > max %u",
f6edde9c 904 page->objects, maxobj);
39b26464
CL
905 return 0;
906 }
907 if (page->inuse > page->objects) {
24922684 908 slab_err(s, page, "inuse %u > max %u",
f6edde9c 909 page->inuse, page->objects);
81819f0f
CL
910 return 0;
911 }
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s, page);
914 return 1;
915}
916
917/*
672bba3a
CL
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
920 */
921static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922{
923 int nr = 0;
881db7fb 924 void *fp;
81819f0f 925 void *object = NULL;
f6edde9c 926 int max_objects;
81819f0f 927
881db7fb 928 fp = page->freelist;
39b26464 929 while (fp && nr <= page->objects) {
81819f0f
CL
930 if (fp == search)
931 return 1;
932 if (!check_valid_pointer(s, page, fp)) {
933 if (object) {
934 object_err(s, page, object,
935 "Freechain corrupt");
a973e9dd 936 set_freepointer(s, object, NULL);
81819f0f 937 } else {
24922684 938 slab_err(s, page, "Freepointer corrupt");
a973e9dd 939 page->freelist = NULL;
39b26464 940 page->inuse = page->objects;
24922684 941 slab_fix(s, "Freelist cleared");
81819f0f
CL
942 return 0;
943 }
944 break;
945 }
946 object = fp;
947 fp = get_freepointer(s, object);
948 nr++;
949 }
950
ab9a0f19 951 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
952 if (max_objects > MAX_OBJS_PER_PAGE)
953 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
954
955 if (page->objects != max_objects) {
756a025f
JP
956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 page->objects, max_objects);
224a88be
CL
958 page->objects = max_objects;
959 slab_fix(s, "Number of objects adjusted.");
960 }
39b26464 961 if (page->inuse != page->objects - nr) {
756a025f
JP
962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 page->inuse, page->objects - nr);
39b26464 964 page->inuse = page->objects - nr;
24922684 965 slab_fix(s, "Object count adjusted.");
81819f0f
CL
966 }
967 return search == NULL;
968}
969
0121c619
CL
970static void trace(struct kmem_cache *s, struct page *page, void *object,
971 int alloc)
3ec09742
CL
972{
973 if (s->flags & SLAB_TRACE) {
f9f58285 974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
975 s->name,
976 alloc ? "alloc" : "free",
977 object, page->inuse,
978 page->freelist);
979
980 if (!alloc)
aa2efd5e 981 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 982 s->object_size);
3ec09742
CL
983
984 dump_stack();
985 }
986}
987
643b1138 988/*
672bba3a 989 * Tracking of fully allocated slabs for debugging purposes.
643b1138 990 */
5cc6eee8
CL
991static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
643b1138 993{
5cc6eee8
CL
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
255d0884 997 lockdep_assert_held(&n->list_lock);
643b1138 998 list_add(&page->lru, &n->full);
643b1138
CL
999}
1000
c65c1877 1001static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1002{
643b1138
CL
1003 if (!(s->flags & SLAB_STORE_USER))
1004 return;
1005
255d0884 1006 lockdep_assert_held(&n->list_lock);
643b1138 1007 list_del(&page->lru);
643b1138
CL
1008}
1009
0f389ec6
CL
1010/* Tracking of the number of slabs for debugging purposes */
1011static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016}
1017
26c02cf0
AB
1018static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019{
1020 return atomic_long_read(&n->nr_slabs);
1021}
1022
205ab99d 1023static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1024{
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
338b2642 1033 if (likely(n)) {
0f389ec6 1034 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1035 atomic_long_add(objects, &n->total_objects);
1036 }
0f389ec6 1037}
205ab99d 1038static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1039{
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
205ab99d 1043 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1044}
1045
1046/* Object debug checks for alloc/free paths */
3ec09742
CL
1047static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049{
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
f7cb1933 1053 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1054 init_tracking(s, object);
1055}
1056
becfda68 1057static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1058 struct page *page,
ce71e27c 1059 void *object, unsigned long addr)
81819f0f
CL
1060{
1061 if (!check_slab(s, page))
becfda68 1062 return 0;
81819f0f 1063
81819f0f
CL
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1066 return 0;
81819f0f
CL
1067 }
1068
f7cb1933 1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1070 return 0;
1071
1072 return 1;
1073}
1074
1075static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 struct page *page,
1077 void *object, unsigned long addr)
1078{
1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 if (!alloc_consistency_checks(s, page, object, addr))
1081 goto bad;
1082 }
81819f0f 1083
3ec09742
CL
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
f7cb1933 1088 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1089 return 1;
3ec09742 1090
81819f0f
CL
1091bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
672bba3a 1096 * as used avoids touching the remaining objects.
81819f0f 1097 */
24922684 1098 slab_fix(s, "Marking all objects used");
39b26464 1099 page->inuse = page->objects;
a973e9dd 1100 page->freelist = NULL;
81819f0f
CL
1101 }
1102 return 0;
1103}
1104
becfda68
LA
1105static inline int free_consistency_checks(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
81819f0f 1107{
81819f0f 1108 if (!check_valid_pointer(s, page, object)) {
70d71228 1109 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1110 return 0;
81819f0f
CL
1111 }
1112
1113 if (on_freelist(s, page, object)) {
24922684 1114 object_err(s, page, object, "Object already free");
becfda68 1115 return 0;
81819f0f
CL
1116 }
1117
f7cb1933 1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1119 return 0;
81819f0f 1120
1b4f59e3 1121 if (unlikely(s != page->slab_cache)) {
3adbefee 1122 if (!PageSlab(page)) {
756a025f
JP
1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 object);
1b4f59e3 1125 } else if (!page->slab_cache) {
f9f58285
FF
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object);
70d71228 1128 dump_stack();
06428780 1129 } else
24922684
CL
1130 object_err(s, page, object,
1131 "page slab pointer corrupt.");
becfda68
LA
1132 return 0;
1133 }
1134 return 1;
1135}
1136
1137/* Supports checking bulk free of a constructed freelist */
1138static noinline int free_debug_processing(
1139 struct kmem_cache *s, struct page *page,
1140 void *head, void *tail, int bulk_cnt,
1141 unsigned long addr)
1142{
1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 void *object = head;
1145 int cnt = 0;
1146 unsigned long uninitialized_var(flags);
1147 int ret = 0;
1148
1149 spin_lock_irqsave(&n->list_lock, flags);
1150 slab_lock(page);
1151
1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 if (!check_slab(s, page))
1154 goto out;
1155 }
1156
1157next_object:
1158 cnt++;
1159
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!free_consistency_checks(s, page, object, addr))
1162 goto out;
81819f0f 1163 }
3ec09742 1164
3ec09742
CL
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_FREE, addr);
1167 trace(s, page, object, 0);
81084651 1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1169 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1170
1171 /* Reached end of constructed freelist yet? */
1172 if (object != tail) {
1173 object = get_freepointer(s, object);
1174 goto next_object;
1175 }
804aa132
LA
1176 ret = 1;
1177
5c2e4bbb 1178out:
81084651
JDB
1179 if (cnt != bulk_cnt)
1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 bulk_cnt, cnt);
1182
881db7fb 1183 slab_unlock(page);
282acb43 1184 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1185 if (!ret)
1186 slab_fix(s, "Object at 0x%p not freed", object);
1187 return ret;
81819f0f
CL
1188}
1189
41ecc55b
CL
1190static int __init setup_slub_debug(char *str)
1191{
f0630fff
CL
1192 slub_debug = DEBUG_DEFAULT_FLAGS;
1193 if (*str++ != '=' || !*str)
1194 /*
1195 * No options specified. Switch on full debugging.
1196 */
1197 goto out;
1198
1199 if (*str == ',')
1200 /*
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1203 */
1204 goto check_slabs;
1205
1206 slub_debug = 0;
1207 if (*str == '-')
1208 /*
1209 * Switch off all debugging measures.
1210 */
1211 goto out;
1212
1213 /*
1214 * Determine which debug features should be switched on
1215 */
06428780 1216 for (; *str && *str != ','; str++) {
f0630fff
CL
1217 switch (tolower(*str)) {
1218 case 'f':
becfda68 1219 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1220 break;
1221 case 'z':
1222 slub_debug |= SLAB_RED_ZONE;
1223 break;
1224 case 'p':
1225 slub_debug |= SLAB_POISON;
1226 break;
1227 case 'u':
1228 slub_debug |= SLAB_STORE_USER;
1229 break;
1230 case 't':
1231 slub_debug |= SLAB_TRACE;
1232 break;
4c13dd3b
DM
1233 case 'a':
1234 slub_debug |= SLAB_FAILSLAB;
1235 break;
08303a73
CA
1236 case 'o':
1237 /*
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1240 */
1241 disable_higher_order_debug = 1;
1242 break;
f0630fff 1243 default:
f9f58285
FF
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1245 *str);
f0630fff 1246 }
41ecc55b
CL
1247 }
1248
f0630fff 1249check_slabs:
41ecc55b
CL
1250 if (*str == ',')
1251 slub_debug_slabs = str + 1;
f0630fff 1252out:
41ecc55b
CL
1253 return 1;
1254}
1255
1256__setup("slub_debug", setup_slub_debug);
1257
423c929c 1258unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1259 unsigned long flags, const char *name,
51cc5068 1260 void (*ctor)(void *))
41ecc55b
CL
1261{
1262 /*
e153362a 1263 * Enable debugging if selected on the kernel commandline.
41ecc55b 1264 */
c6f58d9b
CL
1265 if (slub_debug && (!slub_debug_slabs || (name &&
1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1267 flags |= slub_debug;
ba0268a8
CL
1268
1269 return flags;
41ecc55b 1270}
b4a64718 1271#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1272static inline void setup_object_debug(struct kmem_cache *s,
1273 struct page *page, void *object) {}
41ecc55b 1274
3ec09742 1275static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1276 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1277
282acb43 1278static inline int free_debug_processing(
81084651
JDB
1279 struct kmem_cache *s, struct page *page,
1280 void *head, void *tail, int bulk_cnt,
282acb43 1281 unsigned long addr) { return 0; }
41ecc55b 1282
41ecc55b
CL
1283static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 { return 1; }
1285static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1286 void *object, u8 val) { return 1; }
5cc6eee8
CL
1287static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
c65c1877
PZ
1289static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 struct page *page) {}
423c929c 1291unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1292 unsigned long flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
ba0268a8
CL
1294{
1295 return flags;
1296}
41ecc55b 1297#define slub_debug 0
0f389ec6 1298
fdaa45e9
IM
1299#define disable_higher_order_debug 0
1300
0f389ec6
CL
1301static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 { return 0; }
26c02cf0
AB
1303static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 { return 0; }
205ab99d
CL
1305static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 int objects) {}
7d550c56 1309
02e72cc6
AR
1310#endif /* CONFIG_SLUB_DEBUG */
1311
1312/*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
d56791b3
RB
1316static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317{
1318 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1319 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1320}
1321
1322static inline void kfree_hook(const void *x)
1323{
1324 kmemleak_free(x);
0316bec2 1325 kasan_kfree_large(x);
d56791b3
RB
1326}
1327
80a9201a 1328static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1329{
80a9201a
AP
1330 void *freeptr;
1331
d56791b3 1332 kmemleak_free_recursive(x, s->flags);
7d550c56 1333
02e72cc6
AR
1334 /*
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1338 */
1339#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 {
1341 unsigned long flags;
1342
1343 local_irq_save(flags);
1344 kmemcheck_slab_free(s, x, s->object_size);
1345 debug_check_no_locks_freed(x, s->object_size);
1346 local_irq_restore(flags);
1347 }
1348#endif
1349 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1351
80a9201a
AP
1352 freeptr = get_freepointer(s, x);
1353 /*
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1356 */
0316bec2 1357 kasan_slab_free(s, x);
80a9201a 1358 return freeptr;
02e72cc6 1359}
205ab99d 1360
81084651
JDB
1361static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 void *head, void *tail)
1363{
1364/*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1367 */
1368#if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1373
1374 void *object = head;
1375 void *tail_obj = tail ? : head;
80a9201a 1376 void *freeptr;
81084651
JDB
1377
1378 do {
80a9201a
AP
1379 freeptr = slab_free_hook(s, object);
1380 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1381#endif
1382}
1383
588f8ba9
TG
1384static void setup_object(struct kmem_cache *s, struct page *page,
1385 void *object)
1386{
1387 setup_object_debug(s, page, object);
b3cbd9bf 1388 kasan_init_slab_obj(s, object);
588f8ba9
TG
1389 if (unlikely(s->ctor)) {
1390 kasan_unpoison_object_data(s, object);
1391 s->ctor(object);
1392 kasan_poison_object_data(s, object);
1393 }
1394}
1395
81819f0f
CL
1396/*
1397 * Slab allocation and freeing
1398 */
5dfb4175
VD
1399static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1401{
5dfb4175 1402 struct page *page;
65c3376a
CL
1403 int order = oo_order(oo);
1404
b1eeab67
VN
1405 flags |= __GFP_NOTRACK;
1406
2154a336 1407 if (node == NUMA_NO_NODE)
5dfb4175 1408 page = alloc_pages(flags, order);
65c3376a 1409 else
96db800f 1410 page = __alloc_pages_node(node, flags, order);
5dfb4175 1411
f3ccb2c4
VD
1412 if (page && memcg_charge_slab(page, flags, order, s)) {
1413 __free_pages(page, order);
1414 page = NULL;
1415 }
5dfb4175
VD
1416
1417 return page;
65c3376a
CL
1418}
1419
210e7a43
TG
1420#ifdef CONFIG_SLAB_FREELIST_RANDOM
1421/* Pre-initialize the random sequence cache */
1422static int init_cache_random_seq(struct kmem_cache *s)
1423{
1424 int err;
1425 unsigned long i, count = oo_objects(s->oo);
1426
a810007a
SR
1427 /* Bailout if already initialised */
1428 if (s->random_seq)
1429 return 0;
1430
210e7a43
TG
1431 err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 if (err) {
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1434 s->name);
1435 return err;
1436 }
1437
1438 /* Transform to an offset on the set of pages */
1439 if (s->random_seq) {
1440 for (i = 0; i < count; i++)
1441 s->random_seq[i] *= s->size;
1442 }
1443 return 0;
1444}
1445
1446/* Initialize each random sequence freelist per cache */
1447static void __init init_freelist_randomization(void)
1448{
1449 struct kmem_cache *s;
1450
1451 mutex_lock(&slab_mutex);
1452
1453 list_for_each_entry(s, &slab_caches, list)
1454 init_cache_random_seq(s);
1455
1456 mutex_unlock(&slab_mutex);
1457}
1458
1459/* Get the next entry on the pre-computed freelist randomized */
1460static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 unsigned long *pos, void *start,
1462 unsigned long page_limit,
1463 unsigned long freelist_count)
1464{
1465 unsigned int idx;
1466
1467 /*
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1470 */
1471 do {
1472 idx = s->random_seq[*pos];
1473 *pos += 1;
1474 if (*pos >= freelist_count)
1475 *pos = 0;
1476 } while (unlikely(idx >= page_limit));
1477
1478 return (char *)start + idx;
1479}
1480
1481/* Shuffle the single linked freelist based on a random pre-computed sequence */
1482static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483{
1484 void *start;
1485 void *cur;
1486 void *next;
1487 unsigned long idx, pos, page_limit, freelist_count;
1488
1489 if (page->objects < 2 || !s->random_seq)
1490 return false;
1491
1492 freelist_count = oo_objects(s->oo);
1493 pos = get_random_int() % freelist_count;
1494
1495 page_limit = page->objects * s->size;
1496 start = fixup_red_left(s, page_address(page));
1497
1498 /* First entry is used as the base of the freelist */
1499 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 page->freelist = cur;
1502
1503 for (idx = 1; idx < page->objects; idx++) {
1504 setup_object(s, page, cur);
1505 next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 freelist_count);
1507 set_freepointer(s, cur, next);
1508 cur = next;
1509 }
1510 setup_object(s, page, cur);
1511 set_freepointer(s, cur, NULL);
1512
1513 return true;
1514}
1515#else
1516static inline int init_cache_random_seq(struct kmem_cache *s)
1517{
1518 return 0;
1519}
1520static inline void init_freelist_randomization(void) { }
1521static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522{
1523 return false;
1524}
1525#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
81819f0f
CL
1527static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528{
06428780 1529 struct page *page;
834f3d11 1530 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1531 gfp_t alloc_gfp;
588f8ba9
TG
1532 void *start, *p;
1533 int idx, order;
210e7a43 1534 bool shuffle;
81819f0f 1535
7e0528da
CL
1536 flags &= gfp_allowed_mask;
1537
d0164adc 1538 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1539 local_irq_enable();
1540
b7a49f0d 1541 flags |= s->allocflags;
e12ba74d 1542
ba52270d
PE
1543 /*
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1546 */
1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1550
5dfb4175 1551 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1552 if (unlikely(!page)) {
1553 oo = s->min;
80c3a998 1554 alloc_gfp = flags;
65c3376a
CL
1555 /*
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1558 */
5dfb4175 1559 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1560 if (unlikely(!page))
1561 goto out;
1562 stat(s, ORDER_FALLBACK);
65c3376a 1563 }
5a896d9e 1564
588f8ba9
TG
1565 if (kmemcheck_enabled &&
1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1567 int pages = 1 << oo_order(oo);
1568
80c3a998 1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1570
1571 /*
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1574 */
1575 if (s->ctor)
1576 kmemcheck_mark_uninitialized_pages(page, pages);
1577 else
1578 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1579 }
1580
834f3d11 1581 page->objects = oo_objects(oo);
81819f0f 1582
1f458cbf 1583 order = compound_order(page);
1b4f59e3 1584 page->slab_cache = s;
c03f94cc 1585 __SetPageSlab(page);
2f064f34 1586 if (page_is_pfmemalloc(page))
072bb0aa 1587 SetPageSlabPfmemalloc(page);
81819f0f
CL
1588
1589 start = page_address(page);
81819f0f
CL
1590
1591 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1592 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1593
0316bec2
AR
1594 kasan_poison_slab(page);
1595
210e7a43
TG
1596 shuffle = shuffle_freelist(s, page);
1597
1598 if (!shuffle) {
1599 for_each_object_idx(p, idx, s, start, page->objects) {
1600 setup_object(s, page, p);
1601 if (likely(idx < page->objects))
1602 set_freepointer(s, p, p + s->size);
1603 else
1604 set_freepointer(s, p, NULL);
1605 }
1606 page->freelist = fixup_red_left(s, start);
81819f0f 1607 }
81819f0f 1608
e6e82ea1 1609 page->inuse = page->objects;
8cb0a506 1610 page->frozen = 1;
588f8ba9 1611
81819f0f 1612out:
d0164adc 1613 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1614 local_irq_disable();
1615 if (!page)
1616 return NULL;
1617
1618 mod_zone_page_state(page_zone(page),
1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 1 << oo_order(oo));
1622
1623 inc_slabs_node(s, page_to_nid(page), page->objects);
1624
81819f0f
CL
1625 return page;
1626}
1627
588f8ba9
TG
1628static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629{
1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1632 flags &= ~GFP_SLAB_BUG_MASK;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1635 dump_stack();
588f8ba9
TG
1636 }
1637
1638 return allocate_slab(s,
1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640}
1641
81819f0f
CL
1642static void __free_slab(struct kmem_cache *s, struct page *page)
1643{
834f3d11
CL
1644 int order = compound_order(page);
1645 int pages = 1 << order;
81819f0f 1646
becfda68 1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1648 void *p;
1649
1650 slab_pad_check(s, page);
224a88be
CL
1651 for_each_object(p, s, page_address(page),
1652 page->objects)
f7cb1933 1653 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1654 }
1655
b1eeab67 1656 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1657
81819f0f
CL
1658 mod_zone_page_state(page_zone(page),
1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1661 -pages);
81819f0f 1662
072bb0aa 1663 __ClearPageSlabPfmemalloc(page);
49bd5221 1664 __ClearPageSlab(page);
1f458cbf 1665
22b751c3 1666 page_mapcount_reset(page);
1eb5ac64
NP
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1669 memcg_uncharge_slab(page, order, s);
1670 __free_pages(page, order);
81819f0f
CL
1671}
1672
da9a638c
LJ
1673#define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
81819f0f
CL
1676static void rcu_free_slab(struct rcu_head *h)
1677{
1678 struct page *page;
1679
da9a638c
LJ
1680 if (need_reserve_slab_rcu)
1681 page = virt_to_head_page(h);
1682 else
1683 page = container_of((struct list_head *)h, struct page, lru);
1684
1b4f59e3 1685 __free_slab(page->slab_cache, page);
81819f0f
CL
1686}
1687
1688static void free_slab(struct kmem_cache *s, struct page *page)
1689{
5f0d5a3a 1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1691 struct rcu_head *head;
1692
1693 if (need_reserve_slab_rcu) {
1694 int order = compound_order(page);
1695 int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697 VM_BUG_ON(s->reserved != sizeof(*head));
1698 head = page_address(page) + offset;
1699 } else {
bc4f610d 1700 head = &page->rcu_head;
da9a638c 1701 }
81819f0f
CL
1702
1703 call_rcu(head, rcu_free_slab);
1704 } else
1705 __free_slab(s, page);
1706}
1707
1708static void discard_slab(struct kmem_cache *s, struct page *page)
1709{
205ab99d 1710 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1711 free_slab(s, page);
1712}
1713
1714/*
5cc6eee8 1715 * Management of partially allocated slabs.
81819f0f 1716 */
1e4dd946
SR
1717static inline void
1718__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1719{
e95eed57 1720 n->nr_partial++;
136333d1 1721 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1722 list_add_tail(&page->lru, &n->partial);
1723 else
1724 list_add(&page->lru, &n->partial);
81819f0f
CL
1725}
1726
1e4dd946
SR
1727static inline void add_partial(struct kmem_cache_node *n,
1728 struct page *page, int tail)
62e346a8 1729{
c65c1877 1730 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1731 __add_partial(n, page, tail);
1732}
c65c1877 1733
1e4dd946
SR
1734static inline void remove_partial(struct kmem_cache_node *n,
1735 struct page *page)
1736{
1737 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1738 list_del(&page->lru);
1739 n->nr_partial--;
1e4dd946
SR
1740}
1741
81819f0f 1742/*
7ced3719
CL
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
81819f0f 1745 *
497b66f2 1746 * Returns a list of objects or NULL if it fails.
81819f0f 1747 */
497b66f2 1748static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1749 struct kmem_cache_node *n, struct page *page,
633b0764 1750 int mode, int *objects)
81819f0f 1751{
2cfb7455
CL
1752 void *freelist;
1753 unsigned long counters;
1754 struct page new;
1755
c65c1877
PZ
1756 lockdep_assert_held(&n->list_lock);
1757
2cfb7455
CL
1758 /*
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1762 */
7ced3719
CL
1763 freelist = page->freelist;
1764 counters = page->counters;
1765 new.counters = counters;
633b0764 1766 *objects = new.objects - new.inuse;
23910c50 1767 if (mode) {
7ced3719 1768 new.inuse = page->objects;
23910c50
PE
1769 new.freelist = NULL;
1770 } else {
1771 new.freelist = freelist;
1772 }
2cfb7455 1773
a0132ac0 1774 VM_BUG_ON(new.frozen);
7ced3719 1775 new.frozen = 1;
2cfb7455 1776
7ced3719 1777 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1778 freelist, counters,
02d7633f 1779 new.freelist, new.counters,
7ced3719 1780 "acquire_slab"))
7ced3719 1781 return NULL;
2cfb7455
CL
1782
1783 remove_partial(n, page);
7ced3719 1784 WARN_ON(!freelist);
49e22585 1785 return freelist;
81819f0f
CL
1786}
1787
633b0764 1788static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1789static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1790
81819f0f 1791/*
672bba3a 1792 * Try to allocate a partial slab from a specific node.
81819f0f 1793 */
8ba00bb6
JK
1794static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1796{
49e22585
CL
1797 struct page *page, *page2;
1798 void *object = NULL;
633b0764
JK
1799 int available = 0;
1800 int objects;
81819f0f
CL
1801
1802 /*
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1805 * partial slab and there is none available then get_partials()
1806 * will return NULL.
81819f0f
CL
1807 */
1808 if (!n || !n->nr_partial)
1809 return NULL;
1810
1811 spin_lock(&n->list_lock);
49e22585 1812 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1813 void *t;
49e22585 1814
8ba00bb6
JK
1815 if (!pfmemalloc_match(page, flags))
1816 continue;
1817
633b0764 1818 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1819 if (!t)
1820 break;
1821
633b0764 1822 available += objects;
12d79634 1823 if (!object) {
49e22585 1824 c->page = page;
49e22585 1825 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1826 object = t;
49e22585 1827 } else {
633b0764 1828 put_cpu_partial(s, page, 0);
8028dcea 1829 stat(s, CPU_PARTIAL_NODE);
49e22585 1830 }
345c905d
JK
1831 if (!kmem_cache_has_cpu_partial(s)
1832 || available > s->cpu_partial / 2)
49e22585
CL
1833 break;
1834
497b66f2 1835 }
81819f0f 1836 spin_unlock(&n->list_lock);
497b66f2 1837 return object;
81819f0f
CL
1838}
1839
1840/*
672bba3a 1841 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1842 */
de3ec035 1843static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1844 struct kmem_cache_cpu *c)
81819f0f
CL
1845{
1846#ifdef CONFIG_NUMA
1847 struct zonelist *zonelist;
dd1a239f 1848 struct zoneref *z;
54a6eb5c
MG
1849 struct zone *zone;
1850 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1851 void *object;
cc9a6c87 1852 unsigned int cpuset_mems_cookie;
81819f0f
CL
1853
1854 /*
672bba3a
CL
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1859 *
672bba3a
CL
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
81819f0f 1864 *
43efd3ea
LP
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1870 * with available objects.
81819f0f 1871 */
9824601e
CL
1872 if (!s->remote_node_defrag_ratio ||
1873 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1874 return NULL;
1875
cc9a6c87 1876 do {
d26914d1 1877 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1878 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 struct kmem_cache_node *n;
1881
1882 n = get_node(s, zone_to_nid(zone));
1883
dee2f8aa 1884 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1885 n->nr_partial > s->min_partial) {
8ba00bb6 1886 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1887 if (object) {
1888 /*
d26914d1
MG
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1893 * update
cc9a6c87 1894 */
cc9a6c87
MG
1895 return object;
1896 }
c0ff7453 1897 }
81819f0f 1898 }
d26914d1 1899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1900#endif
1901 return NULL;
1902}
1903
1904/*
1905 * Get a partial page, lock it and return it.
1906 */
497b66f2 1907static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1908 struct kmem_cache_cpu *c)
81819f0f 1909{
497b66f2 1910 void *object;
a561ce00
JK
1911 int searchnode = node;
1912
1913 if (node == NUMA_NO_NODE)
1914 searchnode = numa_mem_id();
1915 else if (!node_present_pages(node))
1916 searchnode = node_to_mem_node(node);
81819f0f 1917
8ba00bb6 1918 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1919 if (object || node != NUMA_NO_NODE)
1920 return object;
81819f0f 1921
acd19fd1 1922 return get_any_partial(s, flags, c);
81819f0f
CL
1923}
1924
8a5ec0ba
CL
1925#ifdef CONFIG_PREEMPT
1926/*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932#else
1933/*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937#define TID_STEP 1
1938#endif
1939
1940static inline unsigned long next_tid(unsigned long tid)
1941{
1942 return tid + TID_STEP;
1943}
1944
1945static inline unsigned int tid_to_cpu(unsigned long tid)
1946{
1947 return tid % TID_STEP;
1948}
1949
1950static inline unsigned long tid_to_event(unsigned long tid)
1951{
1952 return tid / TID_STEP;
1953}
1954
1955static inline unsigned int init_tid(int cpu)
1956{
1957 return cpu;
1958}
1959
1960static inline void note_cmpxchg_failure(const char *n,
1961 const struct kmem_cache *s, unsigned long tid)
1962{
1963#ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
f9f58285 1966 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1967
1968#ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1970 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1971 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 else
1973#endif
1974 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1976 tid_to_event(tid), tid_to_event(actual_tid));
1977 else
f9f58285 1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1979 actual_tid, tid, next_tid(tid));
1980#endif
4fdccdfb 1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1982}
1983
788e1aad 1984static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1985{
8a5ec0ba
CL
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1990}
2cfb7455 1991
81819f0f
CL
1992/*
1993 * Remove the cpu slab
1994 */
d0e0ac97 1995static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 1996 void *freelist, struct kmem_cache_cpu *c)
81819f0f 1997{
2cfb7455 1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 int lock = 0;
2001 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2002 void *nextfree;
136333d1 2003 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2004 struct page new;
2005 struct page old;
2006
2007 if (page->freelist) {
84e554e6 2008 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2009 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2010 }
2011
894b8788 2012 /*
2cfb7455
CL
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2015 * last one.
2016 *
2017 * There is no need to take the list->lock because the page
2018 * is still frozen.
2019 */
2020 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 void *prior;
2022 unsigned long counters;
2023
2024 do {
2025 prior = page->freelist;
2026 counters = page->counters;
2027 set_freepointer(s, freelist, prior);
2028 new.counters = counters;
2029 new.inuse--;
a0132ac0 2030 VM_BUG_ON(!new.frozen);
2cfb7455 2031
1d07171c 2032 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2033 prior, counters,
2034 freelist, new.counters,
2035 "drain percpu freelist"));
2036
2037 freelist = nextfree;
2038 }
2039
894b8788 2040 /*
2cfb7455
CL
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2043 * during unfreeze.
2044 *
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2048 *
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2052 * changed.
894b8788 2053 */
2cfb7455 2054redo:
894b8788 2055
2cfb7455
CL
2056 old.freelist = page->freelist;
2057 old.counters = page->counters;
a0132ac0 2058 VM_BUG_ON(!old.frozen);
7c2e132c 2059
2cfb7455
CL
2060 /* Determine target state of the slab */
2061 new.counters = old.counters;
2062 if (freelist) {
2063 new.inuse--;
2064 set_freepointer(s, freelist, old.freelist);
2065 new.freelist = freelist;
2066 } else
2067 new.freelist = old.freelist;
2068
2069 new.frozen = 0;
2070
8a5b20ae 2071 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2072 m = M_FREE;
2073 else if (new.freelist) {
2074 m = M_PARTIAL;
2075 if (!lock) {
2076 lock = 1;
2077 /*
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2080 * is frozen
2081 */
2082 spin_lock(&n->list_lock);
2083 }
2084 } else {
2085 m = M_FULL;
2086 if (kmem_cache_debug(s) && !lock) {
2087 lock = 1;
2088 /*
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2091 * any frozen slabs.
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 }
2096
2097 if (l != m) {
2098
2099 if (l == M_PARTIAL)
2100
2101 remove_partial(n, page);
2102
2103 else if (l == M_FULL)
894b8788 2104
c65c1877 2105 remove_full(s, n, page);
2cfb7455
CL
2106
2107 if (m == M_PARTIAL) {
2108
2109 add_partial(n, page, tail);
136333d1 2110 stat(s, tail);
2cfb7455
CL
2111
2112 } else if (m == M_FULL) {
894b8788 2113
2cfb7455
CL
2114 stat(s, DEACTIVATE_FULL);
2115 add_full(s, n, page);
2116
2117 }
2118 }
2119
2120 l = m;
1d07171c 2121 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2122 old.freelist, old.counters,
2123 new.freelist, new.counters,
2124 "unfreezing slab"))
2125 goto redo;
2126
2cfb7455
CL
2127 if (lock)
2128 spin_unlock(&n->list_lock);
2129
2130 if (m == M_FREE) {
2131 stat(s, DEACTIVATE_EMPTY);
2132 discard_slab(s, page);
2133 stat(s, FREE_SLAB);
894b8788 2134 }
d4ff6d35
WY
2135
2136 c->page = NULL;
2137 c->freelist = NULL;
81819f0f
CL
2138}
2139
d24ac77f
JK
2140/*
2141 * Unfreeze all the cpu partial slabs.
2142 *
59a09917
CL
2143 * This function must be called with interrupts disabled
2144 * for the cpu using c (or some other guarantee must be there
2145 * to guarantee no concurrent accesses).
d24ac77f 2146 */
59a09917
CL
2147static void unfreeze_partials(struct kmem_cache *s,
2148 struct kmem_cache_cpu *c)
49e22585 2149{
345c905d 2150#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2151 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2152 struct page *page, *discard_page = NULL;
49e22585
CL
2153
2154 while ((page = c->partial)) {
49e22585
CL
2155 struct page new;
2156 struct page old;
2157
2158 c->partial = page->next;
43d77867
JK
2159
2160 n2 = get_node(s, page_to_nid(page));
2161 if (n != n2) {
2162 if (n)
2163 spin_unlock(&n->list_lock);
2164
2165 n = n2;
2166 spin_lock(&n->list_lock);
2167 }
49e22585
CL
2168
2169 do {
2170
2171 old.freelist = page->freelist;
2172 old.counters = page->counters;
a0132ac0 2173 VM_BUG_ON(!old.frozen);
49e22585
CL
2174
2175 new.counters = old.counters;
2176 new.freelist = old.freelist;
2177
2178 new.frozen = 0;
2179
d24ac77f 2180 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2181 old.freelist, old.counters,
2182 new.freelist, new.counters,
2183 "unfreezing slab"));
2184
8a5b20ae 2185 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2186 page->next = discard_page;
2187 discard_page = page;
43d77867
JK
2188 } else {
2189 add_partial(n, page, DEACTIVATE_TO_TAIL);
2190 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2191 }
2192 }
2193
2194 if (n)
2195 spin_unlock(&n->list_lock);
9ada1934
SL
2196
2197 while (discard_page) {
2198 page = discard_page;
2199 discard_page = discard_page->next;
2200
2201 stat(s, DEACTIVATE_EMPTY);
2202 discard_slab(s, page);
2203 stat(s, FREE_SLAB);
2204 }
345c905d 2205#endif
49e22585
CL
2206}
2207
2208/*
2209 * Put a page that was just frozen (in __slab_free) into a partial page
2210 * slot if available. This is done without interrupts disabled and without
2211 * preemption disabled. The cmpxchg is racy and may put the partial page
2212 * onto a random cpus partial slot.
2213 *
2214 * If we did not find a slot then simply move all the partials to the
2215 * per node partial list.
2216 */
633b0764 2217static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2218{
345c905d 2219#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2220 struct page *oldpage;
2221 int pages;
2222 int pobjects;
2223
d6e0b7fa 2224 preempt_disable();
49e22585
CL
2225 do {
2226 pages = 0;
2227 pobjects = 0;
2228 oldpage = this_cpu_read(s->cpu_slab->partial);
2229
2230 if (oldpage) {
2231 pobjects = oldpage->pobjects;
2232 pages = oldpage->pages;
2233 if (drain && pobjects > s->cpu_partial) {
2234 unsigned long flags;
2235 /*
2236 * partial array is full. Move the existing
2237 * set to the per node partial list.
2238 */
2239 local_irq_save(flags);
59a09917 2240 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2241 local_irq_restore(flags);
e24fc410 2242 oldpage = NULL;
49e22585
CL
2243 pobjects = 0;
2244 pages = 0;
8028dcea 2245 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2246 }
2247 }
2248
2249 pages++;
2250 pobjects += page->objects - page->inuse;
2251
2252 page->pages = pages;
2253 page->pobjects = pobjects;
2254 page->next = oldpage;
2255
d0e0ac97
CG
2256 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2257 != oldpage);
d6e0b7fa
VD
2258 if (unlikely(!s->cpu_partial)) {
2259 unsigned long flags;
2260
2261 local_irq_save(flags);
2262 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2263 local_irq_restore(flags);
2264 }
2265 preempt_enable();
345c905d 2266#endif
49e22585
CL
2267}
2268
dfb4f096 2269static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2270{
84e554e6 2271 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2272 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2273
2274 c->tid = next_tid(c->tid);
81819f0f
CL
2275}
2276
2277/*
2278 * Flush cpu slab.
6446faa2 2279 *
81819f0f
CL
2280 * Called from IPI handler with interrupts disabled.
2281 */
0c710013 2282static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2283{
9dfc6e68 2284 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2285
49e22585
CL
2286 if (likely(c)) {
2287 if (c->page)
2288 flush_slab(s, c);
2289
59a09917 2290 unfreeze_partials(s, c);
49e22585 2291 }
81819f0f
CL
2292}
2293
2294static void flush_cpu_slab(void *d)
2295{
2296 struct kmem_cache *s = d;
81819f0f 2297
dfb4f096 2298 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2299}
2300
a8364d55
GBY
2301static bool has_cpu_slab(int cpu, void *info)
2302{
2303 struct kmem_cache *s = info;
2304 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2305
02e1a9cd 2306 return c->page || c->partial;
a8364d55
GBY
2307}
2308
81819f0f
CL
2309static void flush_all(struct kmem_cache *s)
2310{
a8364d55 2311 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2312}
2313
a96a87bf
SAS
2314/*
2315 * Use the cpu notifier to insure that the cpu slabs are flushed when
2316 * necessary.
2317 */
2318static int slub_cpu_dead(unsigned int cpu)
2319{
2320 struct kmem_cache *s;
2321 unsigned long flags;
2322
2323 mutex_lock(&slab_mutex);
2324 list_for_each_entry(s, &slab_caches, list) {
2325 local_irq_save(flags);
2326 __flush_cpu_slab(s, cpu);
2327 local_irq_restore(flags);
2328 }
2329 mutex_unlock(&slab_mutex);
2330 return 0;
2331}
2332
dfb4f096
CL
2333/*
2334 * Check if the objects in a per cpu structure fit numa
2335 * locality expectations.
2336 */
57d437d2 2337static inline int node_match(struct page *page, int node)
dfb4f096
CL
2338{
2339#ifdef CONFIG_NUMA
4d7868e6 2340 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2341 return 0;
2342#endif
2343 return 1;
2344}
2345
9a02d699 2346#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2347static int count_free(struct page *page)
2348{
2349 return page->objects - page->inuse;
2350}
2351
9a02d699
DR
2352static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2353{
2354 return atomic_long_read(&n->total_objects);
2355}
2356#endif /* CONFIG_SLUB_DEBUG */
2357
2358#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2359static unsigned long count_partial(struct kmem_cache_node *n,
2360 int (*get_count)(struct page *))
2361{
2362 unsigned long flags;
2363 unsigned long x = 0;
2364 struct page *page;
2365
2366 spin_lock_irqsave(&n->list_lock, flags);
2367 list_for_each_entry(page, &n->partial, lru)
2368 x += get_count(page);
2369 spin_unlock_irqrestore(&n->list_lock, flags);
2370 return x;
2371}
9a02d699 2372#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2373
781b2ba6
PE
2374static noinline void
2375slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2376{
9a02d699
DR
2377#ifdef CONFIG_SLUB_DEBUG
2378 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2379 DEFAULT_RATELIMIT_BURST);
781b2ba6 2380 int node;
fa45dc25 2381 struct kmem_cache_node *n;
781b2ba6 2382
9a02d699
DR
2383 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2384 return;
2385
5b3810e5
VB
2386 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2387 nid, gfpflags, &gfpflags);
f9f58285
FF
2388 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2389 s->name, s->object_size, s->size, oo_order(s->oo),
2390 oo_order(s->min));
781b2ba6 2391
3b0efdfa 2392 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2393 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2394 s->name);
fa5ec8a1 2395
fa45dc25 2396 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2397 unsigned long nr_slabs;
2398 unsigned long nr_objs;
2399 unsigned long nr_free;
2400
26c02cf0
AB
2401 nr_free = count_partial(n, count_free);
2402 nr_slabs = node_nr_slabs(n);
2403 nr_objs = node_nr_objs(n);
781b2ba6 2404
f9f58285 2405 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2406 node, nr_slabs, nr_objs, nr_free);
2407 }
9a02d699 2408#endif
781b2ba6
PE
2409}
2410
497b66f2
CL
2411static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2412 int node, struct kmem_cache_cpu **pc)
2413{
6faa6833 2414 void *freelist;
188fd063
CL
2415 struct kmem_cache_cpu *c = *pc;
2416 struct page *page;
497b66f2 2417
188fd063 2418 freelist = get_partial(s, flags, node, c);
497b66f2 2419
188fd063
CL
2420 if (freelist)
2421 return freelist;
2422
2423 page = new_slab(s, flags, node);
497b66f2 2424 if (page) {
7c8e0181 2425 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2426 if (c->page)
2427 flush_slab(s, c);
2428
2429 /*
2430 * No other reference to the page yet so we can
2431 * muck around with it freely without cmpxchg
2432 */
6faa6833 2433 freelist = page->freelist;
497b66f2
CL
2434 page->freelist = NULL;
2435
2436 stat(s, ALLOC_SLAB);
497b66f2
CL
2437 c->page = page;
2438 *pc = c;
2439 } else
6faa6833 2440 freelist = NULL;
497b66f2 2441
6faa6833 2442 return freelist;
497b66f2
CL
2443}
2444
072bb0aa
MG
2445static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2446{
2447 if (unlikely(PageSlabPfmemalloc(page)))
2448 return gfp_pfmemalloc_allowed(gfpflags);
2449
2450 return true;
2451}
2452
213eeb9f 2453/*
d0e0ac97
CG
2454 * Check the page->freelist of a page and either transfer the freelist to the
2455 * per cpu freelist or deactivate the page.
213eeb9f
CL
2456 *
2457 * The page is still frozen if the return value is not NULL.
2458 *
2459 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2460 *
2461 * This function must be called with interrupt disabled.
213eeb9f
CL
2462 */
2463static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2464{
2465 struct page new;
2466 unsigned long counters;
2467 void *freelist;
2468
2469 do {
2470 freelist = page->freelist;
2471 counters = page->counters;
6faa6833 2472
213eeb9f 2473 new.counters = counters;
a0132ac0 2474 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2475
2476 new.inuse = page->objects;
2477 new.frozen = freelist != NULL;
2478
d24ac77f 2479 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2480 freelist, counters,
2481 NULL, new.counters,
2482 "get_freelist"));
2483
2484 return freelist;
2485}
2486
81819f0f 2487/*
894b8788
CL
2488 * Slow path. The lockless freelist is empty or we need to perform
2489 * debugging duties.
2490 *
894b8788
CL
2491 * Processing is still very fast if new objects have been freed to the
2492 * regular freelist. In that case we simply take over the regular freelist
2493 * as the lockless freelist and zap the regular freelist.
81819f0f 2494 *
894b8788
CL
2495 * If that is not working then we fall back to the partial lists. We take the
2496 * first element of the freelist as the object to allocate now and move the
2497 * rest of the freelist to the lockless freelist.
81819f0f 2498 *
894b8788 2499 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2500 * we need to allocate a new slab. This is the slowest path since it involves
2501 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2502 *
2503 * Version of __slab_alloc to use when we know that interrupts are
2504 * already disabled (which is the case for bulk allocation).
81819f0f 2505 */
a380a3c7 2506static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2507 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2508{
6faa6833 2509 void *freelist;
f6e7def7 2510 struct page *page;
81819f0f 2511
f6e7def7
CL
2512 page = c->page;
2513 if (!page)
81819f0f 2514 goto new_slab;
49e22585 2515redo:
6faa6833 2516
57d437d2 2517 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2518 int searchnode = node;
2519
2520 if (node != NUMA_NO_NODE && !node_present_pages(node))
2521 searchnode = node_to_mem_node(node);
2522
2523 if (unlikely(!node_match(page, searchnode))) {
2524 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2525 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2526 goto new_slab;
2527 }
fc59c053 2528 }
6446faa2 2529
072bb0aa
MG
2530 /*
2531 * By rights, we should be searching for a slab page that was
2532 * PFMEMALLOC but right now, we are losing the pfmemalloc
2533 * information when the page leaves the per-cpu allocator
2534 */
2535 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2536 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2537 goto new_slab;
2538 }
2539
73736e03 2540 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2541 freelist = c->freelist;
2542 if (freelist)
73736e03 2543 goto load_freelist;
03e404af 2544
f6e7def7 2545 freelist = get_freelist(s, page);
6446faa2 2546
6faa6833 2547 if (!freelist) {
03e404af
CL
2548 c->page = NULL;
2549 stat(s, DEACTIVATE_BYPASS);
fc59c053 2550 goto new_slab;
03e404af 2551 }
6446faa2 2552
84e554e6 2553 stat(s, ALLOC_REFILL);
6446faa2 2554
894b8788 2555load_freelist:
507effea
CL
2556 /*
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2560 */
a0132ac0 2561 VM_BUG_ON(!c->page->frozen);
6faa6833 2562 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2563 c->tid = next_tid(c->tid);
6faa6833 2564 return freelist;
81819f0f 2565
81819f0f 2566new_slab:
2cfb7455 2567
49e22585 2568 if (c->partial) {
f6e7def7
CL
2569 page = c->page = c->partial;
2570 c->partial = page->next;
49e22585 2571 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2572 goto redo;
81819f0f
CL
2573 }
2574
188fd063 2575 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2576
f4697436 2577 if (unlikely(!freelist)) {
9a02d699 2578 slab_out_of_memory(s, gfpflags, node);
f4697436 2579 return NULL;
81819f0f 2580 }
2cfb7455 2581
f6e7def7 2582 page = c->page;
5091b74a 2583 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2584 goto load_freelist;
2cfb7455 2585
497b66f2 2586 /* Only entered in the debug case */
d0e0ac97
CG
2587 if (kmem_cache_debug(s) &&
2588 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2589 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2590
d4ff6d35 2591 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2592 return freelist;
894b8788
CL
2593}
2594
a380a3c7
CL
2595/*
2596 * Another one that disabled interrupt and compensates for possible
2597 * cpu changes by refetching the per cpu area pointer.
2598 */
2599static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2600 unsigned long addr, struct kmem_cache_cpu *c)
2601{
2602 void *p;
2603 unsigned long flags;
2604
2605 local_irq_save(flags);
2606#ifdef CONFIG_PREEMPT
2607 /*
2608 * We may have been preempted and rescheduled on a different
2609 * cpu before disabling interrupts. Need to reload cpu area
2610 * pointer.
2611 */
2612 c = this_cpu_ptr(s->cpu_slab);
2613#endif
2614
2615 p = ___slab_alloc(s, gfpflags, node, addr, c);
2616 local_irq_restore(flags);
2617 return p;
2618}
2619
894b8788
CL
2620/*
2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622 * have the fastpath folded into their functions. So no function call
2623 * overhead for requests that can be satisfied on the fastpath.
2624 *
2625 * The fastpath works by first checking if the lockless freelist can be used.
2626 * If not then __slab_alloc is called for slow processing.
2627 *
2628 * Otherwise we can simply pick the next object from the lockless free list.
2629 */
2b847c3c 2630static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2631 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2632{
03ec0ed5 2633 void *object;
dfb4f096 2634 struct kmem_cache_cpu *c;
57d437d2 2635 struct page *page;
8a5ec0ba 2636 unsigned long tid;
1f84260c 2637
8135be5a
VD
2638 s = slab_pre_alloc_hook(s, gfpflags);
2639 if (!s)
773ff60e 2640 return NULL;
8a5ec0ba 2641redo:
8a5ec0ba
CL
2642 /*
2643 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644 * enabled. We may switch back and forth between cpus while
2645 * reading from one cpu area. That does not matter as long
2646 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2647 *
9aabf810
JK
2648 * We should guarantee that tid and kmem_cache are retrieved on
2649 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650 * to check if it is matched or not.
8a5ec0ba 2651 */
9aabf810
JK
2652 do {
2653 tid = this_cpu_read(s->cpu_slab->tid);
2654 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2655 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2656 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2657
2658 /*
2659 * Irqless object alloc/free algorithm used here depends on sequence
2660 * of fetching cpu_slab's data. tid should be fetched before anything
2661 * on c to guarantee that object and page associated with previous tid
2662 * won't be used with current tid. If we fetch tid first, object and
2663 * page could be one associated with next tid and our alloc/free
2664 * request will be failed. In this case, we will retry. So, no problem.
2665 */
2666 barrier();
8a5ec0ba 2667
8a5ec0ba
CL
2668 /*
2669 * The transaction ids are globally unique per cpu and per operation on
2670 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671 * occurs on the right processor and that there was no operation on the
2672 * linked list in between.
2673 */
8a5ec0ba 2674
9dfc6e68 2675 object = c->freelist;
57d437d2 2676 page = c->page;
8eae1492 2677 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2678 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2679 stat(s, ALLOC_SLOWPATH);
2680 } else {
0ad9500e
ED
2681 void *next_object = get_freepointer_safe(s, object);
2682
8a5ec0ba 2683 /*
25985edc 2684 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2685 * operation and if we are on the right processor.
2686 *
d0e0ac97
CG
2687 * The cmpxchg does the following atomically (without lock
2688 * semantics!)
8a5ec0ba
CL
2689 * 1. Relocate first pointer to the current per cpu area.
2690 * 2. Verify that tid and freelist have not been changed
2691 * 3. If they were not changed replace tid and freelist
2692 *
d0e0ac97
CG
2693 * Since this is without lock semantics the protection is only
2694 * against code executing on this cpu *not* from access by
2695 * other cpus.
8a5ec0ba 2696 */
933393f5 2697 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2698 s->cpu_slab->freelist, s->cpu_slab->tid,
2699 object, tid,
0ad9500e 2700 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2701
2702 note_cmpxchg_failure("slab_alloc", s, tid);
2703 goto redo;
2704 }
0ad9500e 2705 prefetch_freepointer(s, next_object);
84e554e6 2706 stat(s, ALLOC_FASTPATH);
894b8788 2707 }
8a5ec0ba 2708
74e2134f 2709 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2710 memset(object, 0, s->object_size);
d07dbea4 2711
03ec0ed5 2712 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2713
894b8788 2714 return object;
81819f0f
CL
2715}
2716
2b847c3c
EG
2717static __always_inline void *slab_alloc(struct kmem_cache *s,
2718 gfp_t gfpflags, unsigned long addr)
2719{
2720 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2721}
2722
81819f0f
CL
2723void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2724{
2b847c3c 2725 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2726
d0e0ac97
CG
2727 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2728 s->size, gfpflags);
5b882be4
EGM
2729
2730 return ret;
81819f0f
CL
2731}
2732EXPORT_SYMBOL(kmem_cache_alloc);
2733
0f24f128 2734#ifdef CONFIG_TRACING
4a92379b
RK
2735void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2736{
2b847c3c 2737 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2738 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2739 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2740 return ret;
2741}
2742EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2743#endif
2744
81819f0f
CL
2745#ifdef CONFIG_NUMA
2746void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2747{
2b847c3c 2748 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2749
ca2b84cb 2750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2751 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2752
2753 return ret;
81819f0f
CL
2754}
2755EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2756
0f24f128 2757#ifdef CONFIG_TRACING
4a92379b 2758void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2759 gfp_t gfpflags,
4a92379b 2760 int node, size_t size)
5b882be4 2761{
2b847c3c 2762 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2763
2764 trace_kmalloc_node(_RET_IP_, ret,
2765 size, s->size, gfpflags, node);
0316bec2 2766
505f5dcb 2767 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2768 return ret;
5b882be4 2769}
4a92379b 2770EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2771#endif
5d1f57e4 2772#endif
5b882be4 2773
81819f0f 2774/*
94e4d712 2775 * Slow path handling. This may still be called frequently since objects
894b8788 2776 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2777 *
894b8788
CL
2778 * So we still attempt to reduce cache line usage. Just take the slab
2779 * lock and free the item. If there is no additional partial page
2780 * handling required then we can return immediately.
81819f0f 2781 */
894b8788 2782static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2783 void *head, void *tail, int cnt,
2784 unsigned long addr)
2785
81819f0f
CL
2786{
2787 void *prior;
2cfb7455 2788 int was_frozen;
2cfb7455
CL
2789 struct page new;
2790 unsigned long counters;
2791 struct kmem_cache_node *n = NULL;
61728d1e 2792 unsigned long uninitialized_var(flags);
81819f0f 2793
8a5ec0ba 2794 stat(s, FREE_SLOWPATH);
81819f0f 2795
19c7ff9e 2796 if (kmem_cache_debug(s) &&
282acb43 2797 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2798 return;
6446faa2 2799
2cfb7455 2800 do {
837d678d
JK
2801 if (unlikely(n)) {
2802 spin_unlock_irqrestore(&n->list_lock, flags);
2803 n = NULL;
2804 }
2cfb7455
CL
2805 prior = page->freelist;
2806 counters = page->counters;
81084651 2807 set_freepointer(s, tail, prior);
2cfb7455
CL
2808 new.counters = counters;
2809 was_frozen = new.frozen;
81084651 2810 new.inuse -= cnt;
837d678d 2811 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2812
c65c1877 2813 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2814
2815 /*
d0e0ac97
CG
2816 * Slab was on no list before and will be
2817 * partially empty
2818 * We can defer the list move and instead
2819 * freeze it.
49e22585
CL
2820 */
2821 new.frozen = 1;
2822
c65c1877 2823 } else { /* Needs to be taken off a list */
49e22585 2824
b455def2 2825 n = get_node(s, page_to_nid(page));
49e22585
CL
2826 /*
2827 * Speculatively acquire the list_lock.
2828 * If the cmpxchg does not succeed then we may
2829 * drop the list_lock without any processing.
2830 *
2831 * Otherwise the list_lock will synchronize with
2832 * other processors updating the list of slabs.
2833 */
2834 spin_lock_irqsave(&n->list_lock, flags);
2835
2836 }
2cfb7455 2837 }
81819f0f 2838
2cfb7455
CL
2839 } while (!cmpxchg_double_slab(s, page,
2840 prior, counters,
81084651 2841 head, new.counters,
2cfb7455 2842 "__slab_free"));
81819f0f 2843
2cfb7455 2844 if (likely(!n)) {
49e22585
CL
2845
2846 /*
2847 * If we just froze the page then put it onto the
2848 * per cpu partial list.
2849 */
8028dcea 2850 if (new.frozen && !was_frozen) {
49e22585 2851 put_cpu_partial(s, page, 1);
8028dcea
AS
2852 stat(s, CPU_PARTIAL_FREE);
2853 }
49e22585 2854 /*
2cfb7455
CL
2855 * The list lock was not taken therefore no list
2856 * activity can be necessary.
2857 */
b455def2
L
2858 if (was_frozen)
2859 stat(s, FREE_FROZEN);
2860 return;
2861 }
81819f0f 2862
8a5b20ae 2863 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2864 goto slab_empty;
2865
81819f0f 2866 /*
837d678d
JK
2867 * Objects left in the slab. If it was not on the partial list before
2868 * then add it.
81819f0f 2869 */
345c905d
JK
2870 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2871 if (kmem_cache_debug(s))
c65c1877 2872 remove_full(s, n, page);
837d678d
JK
2873 add_partial(n, page, DEACTIVATE_TO_TAIL);
2874 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2875 }
80f08c19 2876 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2877 return;
2878
2879slab_empty:
a973e9dd 2880 if (prior) {
81819f0f 2881 /*
6fbabb20 2882 * Slab on the partial list.
81819f0f 2883 */
5cc6eee8 2884 remove_partial(n, page);
84e554e6 2885 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2886 } else {
6fbabb20 2887 /* Slab must be on the full list */
c65c1877
PZ
2888 remove_full(s, n, page);
2889 }
2cfb7455 2890
80f08c19 2891 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2892 stat(s, FREE_SLAB);
81819f0f 2893 discard_slab(s, page);
81819f0f
CL
2894}
2895
894b8788
CL
2896/*
2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898 * can perform fastpath freeing without additional function calls.
2899 *
2900 * The fastpath is only possible if we are freeing to the current cpu slab
2901 * of this processor. This typically the case if we have just allocated
2902 * the item before.
2903 *
2904 * If fastpath is not possible then fall back to __slab_free where we deal
2905 * with all sorts of special processing.
81084651
JDB
2906 *
2907 * Bulk free of a freelist with several objects (all pointing to the
2908 * same page) possible by specifying head and tail ptr, plus objects
2909 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2910 */
80a9201a
AP
2911static __always_inline void do_slab_free(struct kmem_cache *s,
2912 struct page *page, void *head, void *tail,
2913 int cnt, unsigned long addr)
894b8788 2914{
81084651 2915 void *tail_obj = tail ? : head;
dfb4f096 2916 struct kmem_cache_cpu *c;
8a5ec0ba 2917 unsigned long tid;
8a5ec0ba
CL
2918redo:
2919 /*
2920 * Determine the currently cpus per cpu slab.
2921 * The cpu may change afterward. However that does not matter since
2922 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2923 * during the cmpxchg then the free will succeed.
8a5ec0ba 2924 */
9aabf810
JK
2925 do {
2926 tid = this_cpu_read(s->cpu_slab->tid);
2927 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2928 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2929 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2930
9aabf810
JK
2931 /* Same with comment on barrier() in slab_alloc_node() */
2932 barrier();
c016b0bd 2933
442b06bc 2934 if (likely(page == c->page)) {
81084651 2935 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2936
933393f5 2937 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2938 s->cpu_slab->freelist, s->cpu_slab->tid,
2939 c->freelist, tid,
81084651 2940 head, next_tid(tid)))) {
8a5ec0ba
CL
2941
2942 note_cmpxchg_failure("slab_free", s, tid);
2943 goto redo;
2944 }
84e554e6 2945 stat(s, FREE_FASTPATH);
894b8788 2946 } else
81084651 2947 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2948
894b8788
CL
2949}
2950
80a9201a
AP
2951static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2952 void *head, void *tail, int cnt,
2953 unsigned long addr)
2954{
2955 slab_free_freelist_hook(s, head, tail);
2956 /*
2957 * slab_free_freelist_hook() could have put the items into quarantine.
2958 * If so, no need to free them.
2959 */
5f0d5a3a 2960 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2961 return;
2962 do_slab_free(s, page, head, tail, cnt, addr);
2963}
2964
2965#ifdef CONFIG_KASAN
2966void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2967{
2968 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2969}
2970#endif
2971
81819f0f
CL
2972void kmem_cache_free(struct kmem_cache *s, void *x)
2973{
b9ce5ef4
GC
2974 s = cache_from_obj(s, x);
2975 if (!s)
79576102 2976 return;
81084651 2977 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2978 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2979}
2980EXPORT_SYMBOL(kmem_cache_free);
2981
d0ecd894 2982struct detached_freelist {
fbd02630 2983 struct page *page;
d0ecd894
JDB
2984 void *tail;
2985 void *freelist;
2986 int cnt;
376bf125 2987 struct kmem_cache *s;
d0ecd894 2988};
fbd02630 2989
d0ecd894
JDB
2990/*
2991 * This function progressively scans the array with free objects (with
2992 * a limited look ahead) and extract objects belonging to the same
2993 * page. It builds a detached freelist directly within the given
2994 * page/objects. This can happen without any need for
2995 * synchronization, because the objects are owned by running process.
2996 * The freelist is build up as a single linked list in the objects.
2997 * The idea is, that this detached freelist can then be bulk
2998 * transferred to the real freelist(s), but only requiring a single
2999 * synchronization primitive. Look ahead in the array is limited due
3000 * to performance reasons.
3001 */
376bf125
JDB
3002static inline
3003int build_detached_freelist(struct kmem_cache *s, size_t size,
3004 void **p, struct detached_freelist *df)
d0ecd894
JDB
3005{
3006 size_t first_skipped_index = 0;
3007 int lookahead = 3;
3008 void *object;
ca257195 3009 struct page *page;
fbd02630 3010
d0ecd894
JDB
3011 /* Always re-init detached_freelist */
3012 df->page = NULL;
fbd02630 3013
d0ecd894
JDB
3014 do {
3015 object = p[--size];
ca257195 3016 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3017 } while (!object && size);
3eed034d 3018
d0ecd894
JDB
3019 if (!object)
3020 return 0;
fbd02630 3021
ca257195
JDB
3022 page = virt_to_head_page(object);
3023 if (!s) {
3024 /* Handle kalloc'ed objects */
3025 if (unlikely(!PageSlab(page))) {
3026 BUG_ON(!PageCompound(page));
3027 kfree_hook(object);
4949148a 3028 __free_pages(page, compound_order(page));
ca257195
JDB
3029 p[size] = NULL; /* mark object processed */
3030 return size;
3031 }
3032 /* Derive kmem_cache from object */
3033 df->s = page->slab_cache;
3034 } else {
3035 df->s = cache_from_obj(s, object); /* Support for memcg */
3036 }
376bf125 3037
d0ecd894 3038 /* Start new detached freelist */
ca257195 3039 df->page = page;
376bf125 3040 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3041 df->tail = object;
3042 df->freelist = object;
3043 p[size] = NULL; /* mark object processed */
3044 df->cnt = 1;
3045
3046 while (size) {
3047 object = p[--size];
3048 if (!object)
3049 continue; /* Skip processed objects */
3050
3051 /* df->page is always set at this point */
3052 if (df->page == virt_to_head_page(object)) {
3053 /* Opportunity build freelist */
376bf125 3054 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3055 df->freelist = object;
3056 df->cnt++;
3057 p[size] = NULL; /* mark object processed */
3058
3059 continue;
fbd02630 3060 }
d0ecd894
JDB
3061
3062 /* Limit look ahead search */
3063 if (!--lookahead)
3064 break;
3065
3066 if (!first_skipped_index)
3067 first_skipped_index = size + 1;
fbd02630 3068 }
d0ecd894
JDB
3069
3070 return first_skipped_index;
3071}
3072
d0ecd894 3073/* Note that interrupts must be enabled when calling this function. */
376bf125 3074void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3075{
3076 if (WARN_ON(!size))
3077 return;
3078
3079 do {
3080 struct detached_freelist df;
3081
3082 size = build_detached_freelist(s, size, p, &df);
84582c8a 3083 if (!df.page)
d0ecd894
JDB
3084 continue;
3085
376bf125 3086 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3087 } while (likely(size));
484748f0
CL
3088}
3089EXPORT_SYMBOL(kmem_cache_free_bulk);
3090
994eb764 3091/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3092int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3093 void **p)
484748f0 3094{
994eb764
JDB
3095 struct kmem_cache_cpu *c;
3096 int i;
3097
03ec0ed5
JDB
3098 /* memcg and kmem_cache debug support */
3099 s = slab_pre_alloc_hook(s, flags);
3100 if (unlikely(!s))
3101 return false;
994eb764
JDB
3102 /*
3103 * Drain objects in the per cpu slab, while disabling local
3104 * IRQs, which protects against PREEMPT and interrupts
3105 * handlers invoking normal fastpath.
3106 */
3107 local_irq_disable();
3108 c = this_cpu_ptr(s->cpu_slab);
3109
3110 for (i = 0; i < size; i++) {
3111 void *object = c->freelist;
3112
ebe909e0 3113 if (unlikely(!object)) {
ebe909e0
JDB
3114 /*
3115 * Invoking slow path likely have side-effect
3116 * of re-populating per CPU c->freelist
3117 */
87098373 3118 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3119 _RET_IP_, c);
87098373
CL
3120 if (unlikely(!p[i]))
3121 goto error;
3122
ebe909e0
JDB
3123 c = this_cpu_ptr(s->cpu_slab);
3124 continue; /* goto for-loop */
3125 }
994eb764
JDB
3126 c->freelist = get_freepointer(s, object);
3127 p[i] = object;
3128 }
3129 c->tid = next_tid(c->tid);
3130 local_irq_enable();
3131
3132 /* Clear memory outside IRQ disabled fastpath loop */
3133 if (unlikely(flags & __GFP_ZERO)) {
3134 int j;
3135
3136 for (j = 0; j < i; j++)
3137 memset(p[j], 0, s->object_size);
3138 }
3139
03ec0ed5
JDB
3140 /* memcg and kmem_cache debug support */
3141 slab_post_alloc_hook(s, flags, size, p);
865762a8 3142 return i;
87098373 3143error:
87098373 3144 local_irq_enable();
03ec0ed5
JDB
3145 slab_post_alloc_hook(s, flags, i, p);
3146 __kmem_cache_free_bulk(s, i, p);
865762a8 3147 return 0;
484748f0
CL
3148}
3149EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3150
3151
81819f0f 3152/*
672bba3a
CL
3153 * Object placement in a slab is made very easy because we always start at
3154 * offset 0. If we tune the size of the object to the alignment then we can
3155 * get the required alignment by putting one properly sized object after
3156 * another.
81819f0f
CL
3157 *
3158 * Notice that the allocation order determines the sizes of the per cpu
3159 * caches. Each processor has always one slab available for allocations.
3160 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3161 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3162 * locking overhead.
81819f0f
CL
3163 */
3164
3165/*
3166 * Mininum / Maximum order of slab pages. This influences locking overhead
3167 * and slab fragmentation. A higher order reduces the number of partial slabs
3168 * and increases the number of allocations possible without having to
3169 * take the list_lock.
3170 */
3171static int slub_min_order;
114e9e89 3172static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3173static int slub_min_objects;
81819f0f 3174
81819f0f
CL
3175/*
3176 * Calculate the order of allocation given an slab object size.
3177 *
672bba3a
CL
3178 * The order of allocation has significant impact on performance and other
3179 * system components. Generally order 0 allocations should be preferred since
3180 * order 0 does not cause fragmentation in the page allocator. Larger objects
3181 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3182 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3183 * would be wasted.
3184 *
3185 * In order to reach satisfactory performance we must ensure that a minimum
3186 * number of objects is in one slab. Otherwise we may generate too much
3187 * activity on the partial lists which requires taking the list_lock. This is
3188 * less a concern for large slabs though which are rarely used.
81819f0f 3189 *
672bba3a
CL
3190 * slub_max_order specifies the order where we begin to stop considering the
3191 * number of objects in a slab as critical. If we reach slub_max_order then
3192 * we try to keep the page order as low as possible. So we accept more waste
3193 * of space in favor of a small page order.
81819f0f 3194 *
672bba3a
CL
3195 * Higher order allocations also allow the placement of more objects in a
3196 * slab and thereby reduce object handling overhead. If the user has
3197 * requested a higher mininum order then we start with that one instead of
3198 * the smallest order which will fit the object.
81819f0f 3199 */
5e6d444e 3200static inline int slab_order(int size, int min_objects,
ab9a0f19 3201 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3202{
3203 int order;
3204 int rem;
6300ea75 3205 int min_order = slub_min_order;
81819f0f 3206
ab9a0f19 3207 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3208 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3209
9f835703 3210 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3211 order <= max_order; order++) {
81819f0f 3212
5e6d444e 3213 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3214
ab9a0f19 3215 rem = (slab_size - reserved) % size;
81819f0f 3216
5e6d444e 3217 if (rem <= slab_size / fract_leftover)
81819f0f 3218 break;
81819f0f 3219 }
672bba3a 3220
81819f0f
CL
3221 return order;
3222}
3223
ab9a0f19 3224static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3225{
3226 int order;
3227 int min_objects;
3228 int fraction;
e8120ff1 3229 int max_objects;
5e6d444e
CL
3230
3231 /*
3232 * Attempt to find best configuration for a slab. This
3233 * works by first attempting to generate a layout with
3234 * the best configuration and backing off gradually.
3235 *
422ff4d7 3236 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3237 * we reduce the minimum objects required in a slab.
3238 */
3239 min_objects = slub_min_objects;
9b2cd506
CL
3240 if (!min_objects)
3241 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3242 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3243 min_objects = min(min_objects, max_objects);
3244
5e6d444e 3245 while (min_objects > 1) {
c124f5b5 3246 fraction = 16;
5e6d444e
CL
3247 while (fraction >= 4) {
3248 order = slab_order(size, min_objects,
ab9a0f19 3249 slub_max_order, fraction, reserved);
5e6d444e
CL
3250 if (order <= slub_max_order)
3251 return order;
3252 fraction /= 2;
3253 }
5086c389 3254 min_objects--;
5e6d444e
CL
3255 }
3256
3257 /*
3258 * We were unable to place multiple objects in a slab. Now
3259 * lets see if we can place a single object there.
3260 */
ab9a0f19 3261 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3262 if (order <= slub_max_order)
3263 return order;
3264
3265 /*
3266 * Doh this slab cannot be placed using slub_max_order.
3267 */
ab9a0f19 3268 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3269 if (order < MAX_ORDER)
5e6d444e
CL
3270 return order;
3271 return -ENOSYS;
3272}
3273
5595cffc 3274static void
4053497d 3275init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3276{
3277 n->nr_partial = 0;
81819f0f
CL
3278 spin_lock_init(&n->list_lock);
3279 INIT_LIST_HEAD(&n->partial);
8ab1372f 3280#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3281 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3282 atomic_long_set(&n->total_objects, 0);
643b1138 3283 INIT_LIST_HEAD(&n->full);
8ab1372f 3284#endif
81819f0f
CL
3285}
3286
55136592 3287static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3288{
6c182dc0 3289 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3290 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3291
8a5ec0ba 3292 /*
d4d84fef
CM
3293 * Must align to double word boundary for the double cmpxchg
3294 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3295 */
d4d84fef
CM
3296 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3297 2 * sizeof(void *));
8a5ec0ba
CL
3298
3299 if (!s->cpu_slab)
3300 return 0;
3301
3302 init_kmem_cache_cpus(s);
4c93c355 3303
8a5ec0ba 3304 return 1;
4c93c355 3305}
4c93c355 3306
51df1142
CL
3307static struct kmem_cache *kmem_cache_node;
3308
81819f0f
CL
3309/*
3310 * No kmalloc_node yet so do it by hand. We know that this is the first
3311 * slab on the node for this slabcache. There are no concurrent accesses
3312 * possible.
3313 *
721ae22a
ZYW
3314 * Note that this function only works on the kmem_cache_node
3315 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3316 * memory on a fresh node that has no slab structures yet.
81819f0f 3317 */
55136592 3318static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3319{
3320 struct page *page;
3321 struct kmem_cache_node *n;
3322
51df1142 3323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3324
51df1142 3325 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3326
3327 BUG_ON(!page);
a2f92ee7 3328 if (page_to_nid(page) != node) {
f9f58285
FF
3329 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3331 }
3332
81819f0f
CL
3333 n = page->freelist;
3334 BUG_ON(!n);
51df1142 3335 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3336 page->inuse = 1;
8cb0a506 3337 page->frozen = 0;
51df1142 3338 kmem_cache_node->node[node] = n;
8ab1372f 3339#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3340 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3341 init_tracking(kmem_cache_node, n);
8ab1372f 3342#endif
505f5dcb
AP
3343 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3344 GFP_KERNEL);
4053497d 3345 init_kmem_cache_node(n);
51df1142 3346 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3347
67b6c900 3348 /*
1e4dd946
SR
3349 * No locks need to be taken here as it has just been
3350 * initialized and there is no concurrent access.
67b6c900 3351 */
1e4dd946 3352 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3353}
3354
3355static void free_kmem_cache_nodes(struct kmem_cache *s)
3356{
3357 int node;
fa45dc25 3358 struct kmem_cache_node *n;
81819f0f 3359
fa45dc25
CL
3360 for_each_kmem_cache_node(s, node, n) {
3361 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3362 s->node[node] = NULL;
3363 }
3364}
3365
52b4b950
DS
3366void __kmem_cache_release(struct kmem_cache *s)
3367{
210e7a43 3368 cache_random_seq_destroy(s);
52b4b950
DS
3369 free_percpu(s->cpu_slab);
3370 free_kmem_cache_nodes(s);
3371}
3372
55136592 3373static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3374{
3375 int node;
81819f0f 3376
f64dc58c 3377 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3378 struct kmem_cache_node *n;
3379
73367bd8 3380 if (slab_state == DOWN) {
55136592 3381 early_kmem_cache_node_alloc(node);
73367bd8
AD
3382 continue;
3383 }
51df1142 3384 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3385 GFP_KERNEL, node);
81819f0f 3386
73367bd8
AD
3387 if (!n) {
3388 free_kmem_cache_nodes(s);
3389 return 0;
81819f0f 3390 }
73367bd8 3391
81819f0f 3392 s->node[node] = n;
4053497d 3393 init_kmem_cache_node(n);
81819f0f
CL
3394 }
3395 return 1;
3396}
81819f0f 3397
c0bdb232 3398static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3399{
3400 if (min < MIN_PARTIAL)
3401 min = MIN_PARTIAL;
3402 else if (min > MAX_PARTIAL)
3403 min = MAX_PARTIAL;
3404 s->min_partial = min;
3405}
3406
81819f0f
CL
3407/*
3408 * calculate_sizes() determines the order and the distribution of data within
3409 * a slab object.
3410 */
06b285dc 3411static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3412{
3413 unsigned long flags = s->flags;
80a9201a 3414 size_t size = s->object_size;
834f3d11 3415 int order;
81819f0f 3416
d8b42bf5
CL
3417 /*
3418 * Round up object size to the next word boundary. We can only
3419 * place the free pointer at word boundaries and this determines
3420 * the possible location of the free pointer.
3421 */
3422 size = ALIGN(size, sizeof(void *));
3423
3424#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3425 /*
3426 * Determine if we can poison the object itself. If the user of
3427 * the slab may touch the object after free or before allocation
3428 * then we should never poison the object itself.
3429 */
5f0d5a3a 3430 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3431 !s->ctor)
81819f0f
CL
3432 s->flags |= __OBJECT_POISON;
3433 else
3434 s->flags &= ~__OBJECT_POISON;
3435
81819f0f
CL
3436
3437 /*
672bba3a 3438 * If we are Redzoning then check if there is some space between the
81819f0f 3439 * end of the object and the free pointer. If not then add an
672bba3a 3440 * additional word to have some bytes to store Redzone information.
81819f0f 3441 */
3b0efdfa 3442 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3443 size += sizeof(void *);
41ecc55b 3444#endif
81819f0f
CL
3445
3446 /*
672bba3a
CL
3447 * With that we have determined the number of bytes in actual use
3448 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3449 */
3450 s->inuse = size;
3451
5f0d5a3a 3452 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3453 s->ctor)) {
81819f0f
CL
3454 /*
3455 * Relocate free pointer after the object if it is not
3456 * permitted to overwrite the first word of the object on
3457 * kmem_cache_free.
3458 *
3459 * This is the case if we do RCU, have a constructor or
3460 * destructor or are poisoning the objects.
3461 */
3462 s->offset = size;
3463 size += sizeof(void *);
3464 }
3465
c12b3c62 3466#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3467 if (flags & SLAB_STORE_USER)
3468 /*
3469 * Need to store information about allocs and frees after
3470 * the object.
3471 */
3472 size += 2 * sizeof(struct track);
80a9201a 3473#endif
81819f0f 3474
80a9201a
AP
3475 kasan_cache_create(s, &size, &s->flags);
3476#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3477 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3478 /*
3479 * Add some empty padding so that we can catch
3480 * overwrites from earlier objects rather than let
3481 * tracking information or the free pointer be
0211a9c8 3482 * corrupted if a user writes before the start
81819f0f
CL
3483 * of the object.
3484 */
3485 size += sizeof(void *);
d86bd1be
JK
3486
3487 s->red_left_pad = sizeof(void *);
3488 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3489 size += s->red_left_pad;
3490 }
41ecc55b 3491#endif
672bba3a 3492
81819f0f
CL
3493 /*
3494 * SLUB stores one object immediately after another beginning from
3495 * offset 0. In order to align the objects we have to simply size
3496 * each object to conform to the alignment.
3497 */
45906855 3498 size = ALIGN(size, s->align);
81819f0f 3499 s->size = size;
06b285dc
CL
3500 if (forced_order >= 0)
3501 order = forced_order;
3502 else
ab9a0f19 3503 order = calculate_order(size, s->reserved);
81819f0f 3504
834f3d11 3505 if (order < 0)
81819f0f
CL
3506 return 0;
3507
b7a49f0d 3508 s->allocflags = 0;
834f3d11 3509 if (order)
b7a49f0d
CL
3510 s->allocflags |= __GFP_COMP;
3511
3512 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3513 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3514
3515 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3516 s->allocflags |= __GFP_RECLAIMABLE;
3517
81819f0f
CL
3518 /*
3519 * Determine the number of objects per slab
3520 */
ab9a0f19
LJ
3521 s->oo = oo_make(order, size, s->reserved);
3522 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3523 if (oo_objects(s->oo) > oo_objects(s->max))
3524 s->max = s->oo;
81819f0f 3525
834f3d11 3526 return !!oo_objects(s->oo);
81819f0f
CL
3527}
3528
8a13a4cc 3529static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3530{
8a13a4cc 3531 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3532 s->reserved = 0;
81819f0f 3533
5f0d5a3a 3534 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3535 s->reserved = sizeof(struct rcu_head);
81819f0f 3536
06b285dc 3537 if (!calculate_sizes(s, -1))
81819f0f 3538 goto error;
3de47213
DR
3539 if (disable_higher_order_debug) {
3540 /*
3541 * Disable debugging flags that store metadata if the min slab
3542 * order increased.
3543 */
3b0efdfa 3544 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3545 s->flags &= ~DEBUG_METADATA_FLAGS;
3546 s->offset = 0;
3547 if (!calculate_sizes(s, -1))
3548 goto error;
3549 }
3550 }
81819f0f 3551
2565409f
HC
3552#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3553 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3554 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3555 /* Enable fast mode */
3556 s->flags |= __CMPXCHG_DOUBLE;
3557#endif
3558
3b89d7d8
DR
3559 /*
3560 * The larger the object size is, the more pages we want on the partial
3561 * list to avoid pounding the page allocator excessively.
3562 */
49e22585
CL
3563 set_min_partial(s, ilog2(s->size) / 2);
3564
3565 /*
3566 * cpu_partial determined the maximum number of objects kept in the
3567 * per cpu partial lists of a processor.
3568 *
3569 * Per cpu partial lists mainly contain slabs that just have one
3570 * object freed. If they are used for allocation then they can be
3571 * filled up again with minimal effort. The slab will never hit the
3572 * per node partial lists and therefore no locking will be required.
3573 *
3574 * This setting also determines
3575 *
3576 * A) The number of objects from per cpu partial slabs dumped to the
3577 * per node list when we reach the limit.
9f264904 3578 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3579 * per node list when we run out of per cpu objects. We only fetch
3580 * 50% to keep some capacity around for frees.
49e22585 3581 */
345c905d 3582 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3583 s->cpu_partial = 0;
3584 else if (s->size >= PAGE_SIZE)
49e22585
CL
3585 s->cpu_partial = 2;
3586 else if (s->size >= 1024)
3587 s->cpu_partial = 6;
3588 else if (s->size >= 256)
3589 s->cpu_partial = 13;
3590 else
3591 s->cpu_partial = 30;
3592
81819f0f 3593#ifdef CONFIG_NUMA
e2cb96b7 3594 s->remote_node_defrag_ratio = 1000;
81819f0f 3595#endif
210e7a43
TG
3596
3597 /* Initialize the pre-computed randomized freelist if slab is up */
3598 if (slab_state >= UP) {
3599 if (init_cache_random_seq(s))
3600 goto error;
3601 }
3602
55136592 3603 if (!init_kmem_cache_nodes(s))
dfb4f096 3604 goto error;
81819f0f 3605
55136592 3606 if (alloc_kmem_cache_cpus(s))
278b1bb1 3607 return 0;
ff12059e 3608
4c93c355 3609 free_kmem_cache_nodes(s);
81819f0f
CL
3610error:
3611 if (flags & SLAB_PANIC)
756a025f
JP
3612 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3613 s->name, (unsigned long)s->size, s->size,
3614 oo_order(s->oo), s->offset, flags);
278b1bb1 3615 return -EINVAL;
81819f0f 3616}
81819f0f 3617
33b12c38
CL
3618static void list_slab_objects(struct kmem_cache *s, struct page *page,
3619 const char *text)
3620{
3621#ifdef CONFIG_SLUB_DEBUG
3622 void *addr = page_address(page);
3623 void *p;
a5dd5c11
NK
3624 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3625 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3626 if (!map)
3627 return;
945cf2b6 3628 slab_err(s, page, text, s->name);
33b12c38 3629 slab_lock(page);
33b12c38 3630
5f80b13a 3631 get_map(s, page, map);
33b12c38
CL
3632 for_each_object(p, s, addr, page->objects) {
3633
3634 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3635 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3636 print_tracking(s, p);
3637 }
3638 }
3639 slab_unlock(page);
bbd7d57b 3640 kfree(map);
33b12c38
CL
3641#endif
3642}
3643
81819f0f 3644/*
599870b1 3645 * Attempt to free all partial slabs on a node.
52b4b950
DS
3646 * This is called from __kmem_cache_shutdown(). We must take list_lock
3647 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3648 */
599870b1 3649static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3650{
60398923 3651 LIST_HEAD(discard);
81819f0f
CL
3652 struct page *page, *h;
3653
52b4b950
DS
3654 BUG_ON(irqs_disabled());
3655 spin_lock_irq(&n->list_lock);
33b12c38 3656 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3657 if (!page->inuse) {
52b4b950 3658 remove_partial(n, page);
60398923 3659 list_add(&page->lru, &discard);
33b12c38
CL
3660 } else {
3661 list_slab_objects(s, page,
52b4b950 3662 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3663 }
33b12c38 3664 }
52b4b950 3665 spin_unlock_irq(&n->list_lock);
60398923
CW
3666
3667 list_for_each_entry_safe(page, h, &discard, lru)
3668 discard_slab(s, page);
81819f0f
CL
3669}
3670
3671/*
672bba3a 3672 * Release all resources used by a slab cache.
81819f0f 3673 */
52b4b950 3674int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3675{
3676 int node;
fa45dc25 3677 struct kmem_cache_node *n;
81819f0f
CL
3678
3679 flush_all(s);
81819f0f 3680 /* Attempt to free all objects */
fa45dc25 3681 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3682 free_partial(s, n);
3683 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3684 return 1;
3685 }
bf5eb3de 3686 sysfs_slab_remove(s);
81819f0f
CL
3687 return 0;
3688}
3689
81819f0f
CL
3690/********************************************************************
3691 * Kmalloc subsystem
3692 *******************************************************************/
3693
81819f0f
CL
3694static int __init setup_slub_min_order(char *str)
3695{
06428780 3696 get_option(&str, &slub_min_order);
81819f0f
CL
3697
3698 return 1;
3699}
3700
3701__setup("slub_min_order=", setup_slub_min_order);
3702
3703static int __init setup_slub_max_order(char *str)
3704{
06428780 3705 get_option(&str, &slub_max_order);
818cf590 3706 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3707
3708 return 1;
3709}
3710
3711__setup("slub_max_order=", setup_slub_max_order);
3712
3713static int __init setup_slub_min_objects(char *str)
3714{
06428780 3715 get_option(&str, &slub_min_objects);
81819f0f
CL
3716
3717 return 1;
3718}
3719
3720__setup("slub_min_objects=", setup_slub_min_objects);
3721
81819f0f
CL
3722void *__kmalloc(size_t size, gfp_t flags)
3723{
aadb4bc4 3724 struct kmem_cache *s;
5b882be4 3725 void *ret;
81819f0f 3726
95a05b42 3727 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3728 return kmalloc_large(size, flags);
aadb4bc4 3729
2c59dd65 3730 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3731
3732 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3733 return s;
3734
2b847c3c 3735 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3736
ca2b84cb 3737 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3738
505f5dcb 3739 kasan_kmalloc(s, ret, size, flags);
0316bec2 3740
5b882be4 3741 return ret;
81819f0f
CL
3742}
3743EXPORT_SYMBOL(__kmalloc);
3744
5d1f57e4 3745#ifdef CONFIG_NUMA
f619cfe1
CL
3746static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3747{
b1eeab67 3748 struct page *page;
e4f7c0b4 3749 void *ptr = NULL;
f619cfe1 3750
52383431 3751 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3752 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3753 if (page)
e4f7c0b4
CM
3754 ptr = page_address(page);
3755
d56791b3 3756 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3757 return ptr;
f619cfe1
CL
3758}
3759
81819f0f
CL
3760void *__kmalloc_node(size_t size, gfp_t flags, int node)
3761{
aadb4bc4 3762 struct kmem_cache *s;
5b882be4 3763 void *ret;
81819f0f 3764
95a05b42 3765 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3766 ret = kmalloc_large_node(size, flags, node);
3767
ca2b84cb
EGM
3768 trace_kmalloc_node(_RET_IP_, ret,
3769 size, PAGE_SIZE << get_order(size),
3770 flags, node);
5b882be4
EGM
3771
3772 return ret;
3773 }
aadb4bc4 3774
2c59dd65 3775 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3776
3777 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3778 return s;
3779
2b847c3c 3780 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3781
ca2b84cb 3782 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3783
505f5dcb 3784 kasan_kmalloc(s, ret, size, flags);
0316bec2 3785
5b882be4 3786 return ret;
81819f0f
CL
3787}
3788EXPORT_SYMBOL(__kmalloc_node);
3789#endif
3790
ed18adc1
KC
3791#ifdef CONFIG_HARDENED_USERCOPY
3792/*
3793 * Rejects objects that are incorrectly sized.
3794 *
3795 * Returns NULL if check passes, otherwise const char * to name of cache
3796 * to indicate an error.
3797 */
3798const char *__check_heap_object(const void *ptr, unsigned long n,
3799 struct page *page)
3800{
3801 struct kmem_cache *s;
3802 unsigned long offset;
3803 size_t object_size;
3804
3805 /* Find object and usable object size. */
3806 s = page->slab_cache;
3807 object_size = slab_ksize(s);
3808
3809 /* Reject impossible pointers. */
3810 if (ptr < page_address(page))
3811 return s->name;
3812
3813 /* Find offset within object. */
3814 offset = (ptr - page_address(page)) % s->size;
3815
3816 /* Adjust for redzone and reject if within the redzone. */
3817 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3818 if (offset < s->red_left_pad)
3819 return s->name;
3820 offset -= s->red_left_pad;
3821 }
3822
3823 /* Allow address range falling entirely within object size. */
3824 if (offset <= object_size && n <= object_size - offset)
3825 return NULL;
3826
3827 return s->name;
3828}
3829#endif /* CONFIG_HARDENED_USERCOPY */
3830
0316bec2 3831static size_t __ksize(const void *object)
81819f0f 3832{
272c1d21 3833 struct page *page;
81819f0f 3834
ef8b4520 3835 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3836 return 0;
3837
294a80a8 3838 page = virt_to_head_page(object);
294a80a8 3839
76994412
PE
3840 if (unlikely(!PageSlab(page))) {
3841 WARN_ON(!PageCompound(page));
294a80a8 3842 return PAGE_SIZE << compound_order(page);
76994412 3843 }
81819f0f 3844
1b4f59e3 3845 return slab_ksize(page->slab_cache);
81819f0f 3846}
0316bec2
AR
3847
3848size_t ksize(const void *object)
3849{
3850 size_t size = __ksize(object);
3851 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3852 * so we need to unpoison this area.
3853 */
3854 kasan_unpoison_shadow(object, size);
0316bec2
AR
3855 return size;
3856}
b1aabecd 3857EXPORT_SYMBOL(ksize);
81819f0f
CL
3858
3859void kfree(const void *x)
3860{
81819f0f 3861 struct page *page;
5bb983b0 3862 void *object = (void *)x;
81819f0f 3863
2121db74
PE
3864 trace_kfree(_RET_IP_, x);
3865
2408c550 3866 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3867 return;
3868
b49af68f 3869 page = virt_to_head_page(x);
aadb4bc4 3870 if (unlikely(!PageSlab(page))) {
0937502a 3871 BUG_ON(!PageCompound(page));
d56791b3 3872 kfree_hook(x);
4949148a 3873 __free_pages(page, compound_order(page));
aadb4bc4
CL
3874 return;
3875 }
81084651 3876 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3877}
3878EXPORT_SYMBOL(kfree);
3879
832f37f5
VD
3880#define SHRINK_PROMOTE_MAX 32
3881
2086d26a 3882/*
832f37f5
VD
3883 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3884 * up most to the head of the partial lists. New allocations will then
3885 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3886 *
3887 * The slabs with the least items are placed last. This results in them
3888 * being allocated from last increasing the chance that the last objects
3889 * are freed in them.
2086d26a 3890 */
c9fc5864 3891int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3892{
3893 int node;
3894 int i;
3895 struct kmem_cache_node *n;
3896 struct page *page;
3897 struct page *t;
832f37f5
VD
3898 struct list_head discard;
3899 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3900 unsigned long flags;
ce3712d7 3901 int ret = 0;
2086d26a 3902
2086d26a 3903 flush_all(s);
fa45dc25 3904 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3905 INIT_LIST_HEAD(&discard);
3906 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3907 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3908
3909 spin_lock_irqsave(&n->list_lock, flags);
3910
3911 /*
832f37f5 3912 * Build lists of slabs to discard or promote.
2086d26a 3913 *
672bba3a
CL
3914 * Note that concurrent frees may occur while we hold the
3915 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3916 */
3917 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3918 int free = page->objects - page->inuse;
3919
3920 /* Do not reread page->inuse */
3921 barrier();
3922
3923 /* We do not keep full slabs on the list */
3924 BUG_ON(free <= 0);
3925
3926 if (free == page->objects) {
3927 list_move(&page->lru, &discard);
69cb8e6b 3928 n->nr_partial--;
832f37f5
VD
3929 } else if (free <= SHRINK_PROMOTE_MAX)
3930 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3931 }
3932
2086d26a 3933 /*
832f37f5
VD
3934 * Promote the slabs filled up most to the head of the
3935 * partial list.
2086d26a 3936 */
832f37f5
VD
3937 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3938 list_splice(promote + i, &n->partial);
2086d26a 3939
2086d26a 3940 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3941
3942 /* Release empty slabs */
832f37f5 3943 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3944 discard_slab(s, page);
ce3712d7
VD
3945
3946 if (slabs_node(s, node))
3947 ret = 1;
2086d26a
CL
3948 }
3949
ce3712d7 3950 return ret;
2086d26a 3951}
2086d26a 3952
c9fc5864 3953#ifdef CONFIG_MEMCG
01fb58bc
TH
3954static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3955{
50862ce7
TH
3956 /*
3957 * Called with all the locks held after a sched RCU grace period.
3958 * Even if @s becomes empty after shrinking, we can't know that @s
3959 * doesn't have allocations already in-flight and thus can't
3960 * destroy @s until the associated memcg is released.
3961 *
3962 * However, let's remove the sysfs files for empty caches here.
3963 * Each cache has a lot of interface files which aren't
3964 * particularly useful for empty draining caches; otherwise, we can
3965 * easily end up with millions of unnecessary sysfs files on
3966 * systems which have a lot of memory and transient cgroups.
3967 */
3968 if (!__kmem_cache_shrink(s))
3969 sysfs_slab_remove(s);
01fb58bc
TH
3970}
3971
c9fc5864
TH
3972void __kmemcg_cache_deactivate(struct kmem_cache *s)
3973{
3974 /*
3975 * Disable empty slabs caching. Used to avoid pinning offline
3976 * memory cgroups by kmem pages that can be freed.
3977 */
3978 s->cpu_partial = 0;
3979 s->min_partial = 0;
3980
3981 /*
3982 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 3983 * we have to make sure the change is visible before shrinking.
c9fc5864 3984 */
01fb58bc 3985 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
3986}
3987#endif
3988
b9049e23
YG
3989static int slab_mem_going_offline_callback(void *arg)
3990{
3991 struct kmem_cache *s;
3992
18004c5d 3993 mutex_lock(&slab_mutex);
b9049e23 3994 list_for_each_entry(s, &slab_caches, list)
c9fc5864 3995 __kmem_cache_shrink(s);
18004c5d 3996 mutex_unlock(&slab_mutex);
b9049e23
YG
3997
3998 return 0;
3999}
4000
4001static void slab_mem_offline_callback(void *arg)
4002{
4003 struct kmem_cache_node *n;
4004 struct kmem_cache *s;
4005 struct memory_notify *marg = arg;
4006 int offline_node;
4007
b9d5ab25 4008 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4009
4010 /*
4011 * If the node still has available memory. we need kmem_cache_node
4012 * for it yet.
4013 */
4014 if (offline_node < 0)
4015 return;
4016
18004c5d 4017 mutex_lock(&slab_mutex);
b9049e23
YG
4018 list_for_each_entry(s, &slab_caches, list) {
4019 n = get_node(s, offline_node);
4020 if (n) {
4021 /*
4022 * if n->nr_slabs > 0, slabs still exist on the node
4023 * that is going down. We were unable to free them,
c9404c9c 4024 * and offline_pages() function shouldn't call this
b9049e23
YG
4025 * callback. So, we must fail.
4026 */
0f389ec6 4027 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4028
4029 s->node[offline_node] = NULL;
8de66a0c 4030 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4031 }
4032 }
18004c5d 4033 mutex_unlock(&slab_mutex);
b9049e23
YG
4034}
4035
4036static int slab_mem_going_online_callback(void *arg)
4037{
4038 struct kmem_cache_node *n;
4039 struct kmem_cache *s;
4040 struct memory_notify *marg = arg;
b9d5ab25 4041 int nid = marg->status_change_nid_normal;
b9049e23
YG
4042 int ret = 0;
4043
4044 /*
4045 * If the node's memory is already available, then kmem_cache_node is
4046 * already created. Nothing to do.
4047 */
4048 if (nid < 0)
4049 return 0;
4050
4051 /*
0121c619 4052 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4053 * allocate a kmem_cache_node structure in order to bring the node
4054 * online.
4055 */
18004c5d 4056 mutex_lock(&slab_mutex);
b9049e23
YG
4057 list_for_each_entry(s, &slab_caches, list) {
4058 /*
4059 * XXX: kmem_cache_alloc_node will fallback to other nodes
4060 * since memory is not yet available from the node that
4061 * is brought up.
4062 */
8de66a0c 4063 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4064 if (!n) {
4065 ret = -ENOMEM;
4066 goto out;
4067 }
4053497d 4068 init_kmem_cache_node(n);
b9049e23
YG
4069 s->node[nid] = n;
4070 }
4071out:
18004c5d 4072 mutex_unlock(&slab_mutex);
b9049e23
YG
4073 return ret;
4074}
4075
4076static int slab_memory_callback(struct notifier_block *self,
4077 unsigned long action, void *arg)
4078{
4079 int ret = 0;
4080
4081 switch (action) {
4082 case MEM_GOING_ONLINE:
4083 ret = slab_mem_going_online_callback(arg);
4084 break;
4085 case MEM_GOING_OFFLINE:
4086 ret = slab_mem_going_offline_callback(arg);
4087 break;
4088 case MEM_OFFLINE:
4089 case MEM_CANCEL_ONLINE:
4090 slab_mem_offline_callback(arg);
4091 break;
4092 case MEM_ONLINE:
4093 case MEM_CANCEL_OFFLINE:
4094 break;
4095 }
dc19f9db
KH
4096 if (ret)
4097 ret = notifier_from_errno(ret);
4098 else
4099 ret = NOTIFY_OK;
b9049e23
YG
4100 return ret;
4101}
4102
3ac38faa
AM
4103static struct notifier_block slab_memory_callback_nb = {
4104 .notifier_call = slab_memory_callback,
4105 .priority = SLAB_CALLBACK_PRI,
4106};
b9049e23 4107
81819f0f
CL
4108/********************************************************************
4109 * Basic setup of slabs
4110 *******************************************************************/
4111
51df1142
CL
4112/*
4113 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4114 * the page allocator. Allocate them properly then fix up the pointers
4115 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4116 */
4117
dffb4d60 4118static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4119{
4120 int node;
dffb4d60 4121 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4122 struct kmem_cache_node *n;
51df1142 4123
dffb4d60 4124 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4125
7d557b3c
GC
4126 /*
4127 * This runs very early, and only the boot processor is supposed to be
4128 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4129 * IPIs around.
4130 */
4131 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4132 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4133 struct page *p;
4134
fa45dc25
CL
4135 list_for_each_entry(p, &n->partial, lru)
4136 p->slab_cache = s;
51df1142 4137
607bf324 4138#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4139 list_for_each_entry(p, &n->full, lru)
4140 p->slab_cache = s;
51df1142 4141#endif
51df1142 4142 }
f7ce3190 4143 slab_init_memcg_params(s);
dffb4d60 4144 list_add(&s->list, &slab_caches);
510ded33 4145 memcg_link_cache(s);
dffb4d60 4146 return s;
51df1142
CL
4147}
4148
81819f0f
CL
4149void __init kmem_cache_init(void)
4150{
dffb4d60
CL
4151 static __initdata struct kmem_cache boot_kmem_cache,
4152 boot_kmem_cache_node;
51df1142 4153
fc8d8620
SG
4154 if (debug_guardpage_minorder())
4155 slub_max_order = 0;
4156
dffb4d60
CL
4157 kmem_cache_node = &boot_kmem_cache_node;
4158 kmem_cache = &boot_kmem_cache;
51df1142 4159
dffb4d60
CL
4160 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4161 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4162
3ac38faa 4163 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4164
4165 /* Able to allocate the per node structures */
4166 slab_state = PARTIAL;
4167
dffb4d60
CL
4168 create_boot_cache(kmem_cache, "kmem_cache",
4169 offsetof(struct kmem_cache, node) +
4170 nr_node_ids * sizeof(struct kmem_cache_node *),
4171 SLAB_HWCACHE_ALIGN);
8a13a4cc 4172
dffb4d60 4173 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4174
51df1142
CL
4175 /*
4176 * Allocate kmem_cache_node properly from the kmem_cache slab.
4177 * kmem_cache_node is separately allocated so no need to
4178 * update any list pointers.
4179 */
dffb4d60 4180 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4181
4182 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4183 setup_kmalloc_cache_index_table();
f97d5f63 4184 create_kmalloc_caches(0);
81819f0f 4185
210e7a43
TG
4186 /* Setup random freelists for each cache */
4187 init_freelist_randomization();
4188
a96a87bf
SAS
4189 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4190 slub_cpu_dead);
81819f0f 4191
f9f58285 4192 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4193 cache_line_size(),
81819f0f
CL
4194 slub_min_order, slub_max_order, slub_min_objects,
4195 nr_cpu_ids, nr_node_ids);
4196}
4197
7e85ee0c
PE
4198void __init kmem_cache_init_late(void)
4199{
7e85ee0c
PE
4200}
4201
2633d7a0 4202struct kmem_cache *
a44cb944
VD
4203__kmem_cache_alias(const char *name, size_t size, size_t align,
4204 unsigned long flags, void (*ctor)(void *))
81819f0f 4205{
426589f5 4206 struct kmem_cache *s, *c;
81819f0f 4207
a44cb944 4208 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4209 if (s) {
4210 s->refcount++;
84d0ddd6 4211
81819f0f
CL
4212 /*
4213 * Adjust the object sizes so that we clear
4214 * the complete object on kzalloc.
4215 */
3b0efdfa 4216 s->object_size = max(s->object_size, (int)size);
81819f0f 4217 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4218
426589f5 4219 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4220 c->object_size = s->object_size;
4221 c->inuse = max_t(int, c->inuse,
4222 ALIGN(size, sizeof(void *)));
4223 }
4224
7b8f3b66 4225 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4226 s->refcount--;
cbb79694 4227 s = NULL;
7b8f3b66 4228 }
a0e1d1be 4229 }
6446faa2 4230
cbb79694
CL
4231 return s;
4232}
84c1cf62 4233
8a13a4cc 4234int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4235{
aac3a166
PE
4236 int err;
4237
4238 err = kmem_cache_open(s, flags);
4239 if (err)
4240 return err;
20cea968 4241
45530c44
CL
4242 /* Mutex is not taken during early boot */
4243 if (slab_state <= UP)
4244 return 0;
4245
107dab5c 4246 memcg_propagate_slab_attrs(s);
aac3a166 4247 err = sysfs_slab_add(s);
aac3a166 4248 if (err)
52b4b950 4249 __kmem_cache_release(s);
20cea968 4250
aac3a166 4251 return err;
81819f0f 4252}
81819f0f 4253
ce71e27c 4254void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4255{
aadb4bc4 4256 struct kmem_cache *s;
94b528d0 4257 void *ret;
aadb4bc4 4258
95a05b42 4259 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4260 return kmalloc_large(size, gfpflags);
4261
2c59dd65 4262 s = kmalloc_slab(size, gfpflags);
81819f0f 4263
2408c550 4264 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4265 return s;
81819f0f 4266
2b847c3c 4267 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4268
25985edc 4269 /* Honor the call site pointer we received. */
ca2b84cb 4270 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4271
4272 return ret;
81819f0f
CL
4273}
4274
5d1f57e4 4275#ifdef CONFIG_NUMA
81819f0f 4276void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4277 int node, unsigned long caller)
81819f0f 4278{
aadb4bc4 4279 struct kmem_cache *s;
94b528d0 4280 void *ret;
aadb4bc4 4281
95a05b42 4282 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4283 ret = kmalloc_large_node(size, gfpflags, node);
4284
4285 trace_kmalloc_node(caller, ret,
4286 size, PAGE_SIZE << get_order(size),
4287 gfpflags, node);
4288
4289 return ret;
4290 }
eada35ef 4291
2c59dd65 4292 s = kmalloc_slab(size, gfpflags);
81819f0f 4293
2408c550 4294 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4295 return s;
81819f0f 4296
2b847c3c 4297 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4298
25985edc 4299 /* Honor the call site pointer we received. */
ca2b84cb 4300 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4301
4302 return ret;
81819f0f 4303}
5d1f57e4 4304#endif
81819f0f 4305
ab4d5ed5 4306#ifdef CONFIG_SYSFS
205ab99d
CL
4307static int count_inuse(struct page *page)
4308{
4309 return page->inuse;
4310}
4311
4312static int count_total(struct page *page)
4313{
4314 return page->objects;
4315}
ab4d5ed5 4316#endif
205ab99d 4317
ab4d5ed5 4318#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4319static int validate_slab(struct kmem_cache *s, struct page *page,
4320 unsigned long *map)
53e15af0
CL
4321{
4322 void *p;
a973e9dd 4323 void *addr = page_address(page);
53e15af0
CL
4324
4325 if (!check_slab(s, page) ||
4326 !on_freelist(s, page, NULL))
4327 return 0;
4328
4329 /* Now we know that a valid freelist exists */
39b26464 4330 bitmap_zero(map, page->objects);
53e15af0 4331
5f80b13a
CL
4332 get_map(s, page, map);
4333 for_each_object(p, s, addr, page->objects) {
4334 if (test_bit(slab_index(p, s, addr), map))
4335 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4336 return 0;
53e15af0
CL
4337 }
4338
224a88be 4339 for_each_object(p, s, addr, page->objects)
7656c72b 4340 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4341 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4342 return 0;
4343 return 1;
4344}
4345
434e245d
CL
4346static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4347 unsigned long *map)
53e15af0 4348{
881db7fb
CL
4349 slab_lock(page);
4350 validate_slab(s, page, map);
4351 slab_unlock(page);
53e15af0
CL
4352}
4353
434e245d
CL
4354static int validate_slab_node(struct kmem_cache *s,
4355 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4356{
4357 unsigned long count = 0;
4358 struct page *page;
4359 unsigned long flags;
4360
4361 spin_lock_irqsave(&n->list_lock, flags);
4362
4363 list_for_each_entry(page, &n->partial, lru) {
434e245d 4364 validate_slab_slab(s, page, map);
53e15af0
CL
4365 count++;
4366 }
4367 if (count != n->nr_partial)
f9f58285
FF
4368 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4369 s->name, count, n->nr_partial);
53e15af0
CL
4370
4371 if (!(s->flags & SLAB_STORE_USER))
4372 goto out;
4373
4374 list_for_each_entry(page, &n->full, lru) {
434e245d 4375 validate_slab_slab(s, page, map);
53e15af0
CL
4376 count++;
4377 }
4378 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4379 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4380 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4381
4382out:
4383 spin_unlock_irqrestore(&n->list_lock, flags);
4384 return count;
4385}
4386
434e245d 4387static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4388{
4389 int node;
4390 unsigned long count = 0;
205ab99d 4391 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4392 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4393 struct kmem_cache_node *n;
434e245d
CL
4394
4395 if (!map)
4396 return -ENOMEM;
53e15af0
CL
4397
4398 flush_all(s);
fa45dc25 4399 for_each_kmem_cache_node(s, node, n)
434e245d 4400 count += validate_slab_node(s, n, map);
434e245d 4401 kfree(map);
53e15af0
CL
4402 return count;
4403}
88a420e4 4404/*
672bba3a 4405 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4406 * and freed.
4407 */
4408
4409struct location {
4410 unsigned long count;
ce71e27c 4411 unsigned long addr;
45edfa58
CL
4412 long long sum_time;
4413 long min_time;
4414 long max_time;
4415 long min_pid;
4416 long max_pid;
174596a0 4417 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4418 nodemask_t nodes;
88a420e4
CL
4419};
4420
4421struct loc_track {
4422 unsigned long max;
4423 unsigned long count;
4424 struct location *loc;
4425};
4426
4427static void free_loc_track(struct loc_track *t)
4428{
4429 if (t->max)
4430 free_pages((unsigned long)t->loc,
4431 get_order(sizeof(struct location) * t->max));
4432}
4433
68dff6a9 4434static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4435{
4436 struct location *l;
4437 int order;
4438
88a420e4
CL
4439 order = get_order(sizeof(struct location) * max);
4440
68dff6a9 4441 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4442 if (!l)
4443 return 0;
4444
4445 if (t->count) {
4446 memcpy(l, t->loc, sizeof(struct location) * t->count);
4447 free_loc_track(t);
4448 }
4449 t->max = max;
4450 t->loc = l;
4451 return 1;
4452}
4453
4454static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4455 const struct track *track)
88a420e4
CL
4456{
4457 long start, end, pos;
4458 struct location *l;
ce71e27c 4459 unsigned long caddr;
45edfa58 4460 unsigned long age = jiffies - track->when;
88a420e4
CL
4461
4462 start = -1;
4463 end = t->count;
4464
4465 for ( ; ; ) {
4466 pos = start + (end - start + 1) / 2;
4467
4468 /*
4469 * There is nothing at "end". If we end up there
4470 * we need to add something to before end.
4471 */
4472 if (pos == end)
4473 break;
4474
4475 caddr = t->loc[pos].addr;
45edfa58
CL
4476 if (track->addr == caddr) {
4477
4478 l = &t->loc[pos];
4479 l->count++;
4480 if (track->when) {
4481 l->sum_time += age;
4482 if (age < l->min_time)
4483 l->min_time = age;
4484 if (age > l->max_time)
4485 l->max_time = age;
4486
4487 if (track->pid < l->min_pid)
4488 l->min_pid = track->pid;
4489 if (track->pid > l->max_pid)
4490 l->max_pid = track->pid;
4491
174596a0
RR
4492 cpumask_set_cpu(track->cpu,
4493 to_cpumask(l->cpus));
45edfa58
CL
4494 }
4495 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4496 return 1;
4497 }
4498
45edfa58 4499 if (track->addr < caddr)
88a420e4
CL
4500 end = pos;
4501 else
4502 start = pos;
4503 }
4504
4505 /*
672bba3a 4506 * Not found. Insert new tracking element.
88a420e4 4507 */
68dff6a9 4508 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4509 return 0;
4510
4511 l = t->loc + pos;
4512 if (pos < t->count)
4513 memmove(l + 1, l,
4514 (t->count - pos) * sizeof(struct location));
4515 t->count++;
4516 l->count = 1;
45edfa58
CL
4517 l->addr = track->addr;
4518 l->sum_time = age;
4519 l->min_time = age;
4520 l->max_time = age;
4521 l->min_pid = track->pid;
4522 l->max_pid = track->pid;
174596a0
RR
4523 cpumask_clear(to_cpumask(l->cpus));
4524 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4525 nodes_clear(l->nodes);
4526 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4527 return 1;
4528}
4529
4530static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4531 struct page *page, enum track_item alloc,
a5dd5c11 4532 unsigned long *map)
88a420e4 4533{
a973e9dd 4534 void *addr = page_address(page);
88a420e4
CL
4535 void *p;
4536
39b26464 4537 bitmap_zero(map, page->objects);
5f80b13a 4538 get_map(s, page, map);
88a420e4 4539
224a88be 4540 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4541 if (!test_bit(slab_index(p, s, addr), map))
4542 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4543}
4544
4545static int list_locations(struct kmem_cache *s, char *buf,
4546 enum track_item alloc)
4547{
e374d483 4548 int len = 0;
88a420e4 4549 unsigned long i;
68dff6a9 4550 struct loc_track t = { 0, 0, NULL };
88a420e4 4551 int node;
bbd7d57b
ED
4552 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4553 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4554 struct kmem_cache_node *n;
88a420e4 4555
bbd7d57b
ED
4556 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4557 GFP_TEMPORARY)) {
4558 kfree(map);
68dff6a9 4559 return sprintf(buf, "Out of memory\n");
bbd7d57b 4560 }
88a420e4
CL
4561 /* Push back cpu slabs */
4562 flush_all(s);
4563
fa45dc25 4564 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4565 unsigned long flags;
4566 struct page *page;
4567
9e86943b 4568 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4569 continue;
4570
4571 spin_lock_irqsave(&n->list_lock, flags);
4572 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4573 process_slab(&t, s, page, alloc, map);
88a420e4 4574 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4575 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4576 spin_unlock_irqrestore(&n->list_lock, flags);
4577 }
4578
4579 for (i = 0; i < t.count; i++) {
45edfa58 4580 struct location *l = &t.loc[i];
88a420e4 4581
9c246247 4582 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4583 break;
e374d483 4584 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4585
4586 if (l->addr)
62c70bce 4587 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4588 else
e374d483 4589 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4590
4591 if (l->sum_time != l->min_time) {
e374d483 4592 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4593 l->min_time,
4594 (long)div_u64(l->sum_time, l->count),
4595 l->max_time);
45edfa58 4596 } else
e374d483 4597 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4598 l->min_time);
4599
4600 if (l->min_pid != l->max_pid)
e374d483 4601 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4602 l->min_pid, l->max_pid);
4603 else
e374d483 4604 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4605 l->min_pid);
4606
174596a0
RR
4607 if (num_online_cpus() > 1 &&
4608 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4609 len < PAGE_SIZE - 60)
4610 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4611 " cpus=%*pbl",
4612 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4613
62bc62a8 4614 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4615 len < PAGE_SIZE - 60)
4616 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4617 " nodes=%*pbl",
4618 nodemask_pr_args(&l->nodes));
45edfa58 4619
e374d483 4620 len += sprintf(buf + len, "\n");
88a420e4
CL
4621 }
4622
4623 free_loc_track(&t);
bbd7d57b 4624 kfree(map);
88a420e4 4625 if (!t.count)
e374d483
HH
4626 len += sprintf(buf, "No data\n");
4627 return len;
88a420e4 4628}
ab4d5ed5 4629#endif
88a420e4 4630
a5a84755 4631#ifdef SLUB_RESILIENCY_TEST
c07b8183 4632static void __init resiliency_test(void)
a5a84755
CL
4633{
4634 u8 *p;
4635
95a05b42 4636 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4637
f9f58285
FF
4638 pr_err("SLUB resiliency testing\n");
4639 pr_err("-----------------------\n");
4640 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4641
4642 p = kzalloc(16, GFP_KERNEL);
4643 p[16] = 0x12;
f9f58285
FF
4644 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4645 p + 16);
a5a84755
CL
4646
4647 validate_slab_cache(kmalloc_caches[4]);
4648
4649 /* Hmmm... The next two are dangerous */
4650 p = kzalloc(32, GFP_KERNEL);
4651 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4652 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4653 p);
4654 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4655
4656 validate_slab_cache(kmalloc_caches[5]);
4657 p = kzalloc(64, GFP_KERNEL);
4658 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4659 *p = 0x56;
f9f58285
FF
4660 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4661 p);
4662 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4663 validate_slab_cache(kmalloc_caches[6]);
4664
f9f58285 4665 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4666 p = kzalloc(128, GFP_KERNEL);
4667 kfree(p);
4668 *p = 0x78;
f9f58285 4669 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4670 validate_slab_cache(kmalloc_caches[7]);
4671
4672 p = kzalloc(256, GFP_KERNEL);
4673 kfree(p);
4674 p[50] = 0x9a;
f9f58285 4675 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4676 validate_slab_cache(kmalloc_caches[8]);
4677
4678 p = kzalloc(512, GFP_KERNEL);
4679 kfree(p);
4680 p[512] = 0xab;
f9f58285 4681 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4682 validate_slab_cache(kmalloc_caches[9]);
4683}
4684#else
4685#ifdef CONFIG_SYSFS
4686static void resiliency_test(void) {};
4687#endif
4688#endif
4689
ab4d5ed5 4690#ifdef CONFIG_SYSFS
81819f0f 4691enum slab_stat_type {
205ab99d
CL
4692 SL_ALL, /* All slabs */
4693 SL_PARTIAL, /* Only partially allocated slabs */
4694 SL_CPU, /* Only slabs used for cpu caches */
4695 SL_OBJECTS, /* Determine allocated objects not slabs */
4696 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4697};
4698
205ab99d 4699#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4700#define SO_PARTIAL (1 << SL_PARTIAL)
4701#define SO_CPU (1 << SL_CPU)
4702#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4703#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4704
1663f26d
TH
4705#ifdef CONFIG_MEMCG
4706static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4707
4708static int __init setup_slub_memcg_sysfs(char *str)
4709{
4710 int v;
4711
4712 if (get_option(&str, &v) > 0)
4713 memcg_sysfs_enabled = v;
4714
4715 return 1;
4716}
4717
4718__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4719#endif
4720
62e5c4b4
CG
4721static ssize_t show_slab_objects(struct kmem_cache *s,
4722 char *buf, unsigned long flags)
81819f0f
CL
4723{
4724 unsigned long total = 0;
81819f0f
CL
4725 int node;
4726 int x;
4727 unsigned long *nodes;
81819f0f 4728
e35e1a97 4729 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4730 if (!nodes)
4731 return -ENOMEM;
81819f0f 4732
205ab99d
CL
4733 if (flags & SO_CPU) {
4734 int cpu;
81819f0f 4735
205ab99d 4736 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4737 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4738 cpu);
ec3ab083 4739 int node;
49e22585 4740 struct page *page;
dfb4f096 4741
4db0c3c2 4742 page = READ_ONCE(c->page);
ec3ab083
CL
4743 if (!page)
4744 continue;
205ab99d 4745
ec3ab083
CL
4746 node = page_to_nid(page);
4747 if (flags & SO_TOTAL)
4748 x = page->objects;
4749 else if (flags & SO_OBJECTS)
4750 x = page->inuse;
4751 else
4752 x = 1;
49e22585 4753
ec3ab083
CL
4754 total += x;
4755 nodes[node] += x;
4756
4db0c3c2 4757 page = READ_ONCE(c->partial);
49e22585 4758 if (page) {
8afb1474
LZ
4759 node = page_to_nid(page);
4760 if (flags & SO_TOTAL)
4761 WARN_ON_ONCE(1);
4762 else if (flags & SO_OBJECTS)
4763 WARN_ON_ONCE(1);
4764 else
4765 x = page->pages;
bc6697d8
ED
4766 total += x;
4767 nodes[node] += x;
49e22585 4768 }
81819f0f
CL
4769 }
4770 }
4771
bfc8c901 4772 get_online_mems();
ab4d5ed5 4773#ifdef CONFIG_SLUB_DEBUG
205ab99d 4774 if (flags & SO_ALL) {
fa45dc25
CL
4775 struct kmem_cache_node *n;
4776
4777 for_each_kmem_cache_node(s, node, n) {
205ab99d 4778
d0e0ac97
CG
4779 if (flags & SO_TOTAL)
4780 x = atomic_long_read(&n->total_objects);
4781 else if (flags & SO_OBJECTS)
4782 x = atomic_long_read(&n->total_objects) -
4783 count_partial(n, count_free);
81819f0f 4784 else
205ab99d 4785 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4786 total += x;
4787 nodes[node] += x;
4788 }
4789
ab4d5ed5
CL
4790 } else
4791#endif
4792 if (flags & SO_PARTIAL) {
fa45dc25 4793 struct kmem_cache_node *n;
81819f0f 4794
fa45dc25 4795 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4796 if (flags & SO_TOTAL)
4797 x = count_partial(n, count_total);
4798 else if (flags & SO_OBJECTS)
4799 x = count_partial(n, count_inuse);
81819f0f 4800 else
205ab99d 4801 x = n->nr_partial;
81819f0f
CL
4802 total += x;
4803 nodes[node] += x;
4804 }
4805 }
81819f0f
CL
4806 x = sprintf(buf, "%lu", total);
4807#ifdef CONFIG_NUMA
fa45dc25 4808 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4809 if (nodes[node])
4810 x += sprintf(buf + x, " N%d=%lu",
4811 node, nodes[node]);
4812#endif
bfc8c901 4813 put_online_mems();
81819f0f
CL
4814 kfree(nodes);
4815 return x + sprintf(buf + x, "\n");
4816}
4817
ab4d5ed5 4818#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4819static int any_slab_objects(struct kmem_cache *s)
4820{
4821 int node;
fa45dc25 4822 struct kmem_cache_node *n;
81819f0f 4823
fa45dc25 4824 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4825 if (atomic_long_read(&n->total_objects))
81819f0f 4826 return 1;
fa45dc25 4827
81819f0f
CL
4828 return 0;
4829}
ab4d5ed5 4830#endif
81819f0f
CL
4831
4832#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4833#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4834
4835struct slab_attribute {
4836 struct attribute attr;
4837 ssize_t (*show)(struct kmem_cache *s, char *buf);
4838 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4839};
4840
4841#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4842 static struct slab_attribute _name##_attr = \
4843 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4844
4845#define SLAB_ATTR(_name) \
4846 static struct slab_attribute _name##_attr = \
ab067e99 4847 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4848
81819f0f
CL
4849static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4850{
4851 return sprintf(buf, "%d\n", s->size);
4852}
4853SLAB_ATTR_RO(slab_size);
4854
4855static ssize_t align_show(struct kmem_cache *s, char *buf)
4856{
4857 return sprintf(buf, "%d\n", s->align);
4858}
4859SLAB_ATTR_RO(align);
4860
4861static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4862{
3b0efdfa 4863 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4864}
4865SLAB_ATTR_RO(object_size);
4866
4867static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4868{
834f3d11 4869 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4870}
4871SLAB_ATTR_RO(objs_per_slab);
4872
06b285dc
CL
4873static ssize_t order_store(struct kmem_cache *s,
4874 const char *buf, size_t length)
4875{
0121c619
CL
4876 unsigned long order;
4877 int err;
4878
3dbb95f7 4879 err = kstrtoul(buf, 10, &order);
0121c619
CL
4880 if (err)
4881 return err;
06b285dc
CL
4882
4883 if (order > slub_max_order || order < slub_min_order)
4884 return -EINVAL;
4885
4886 calculate_sizes(s, order);
4887 return length;
4888}
4889
81819f0f
CL
4890static ssize_t order_show(struct kmem_cache *s, char *buf)
4891{
834f3d11 4892 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4893}
06b285dc 4894SLAB_ATTR(order);
81819f0f 4895
73d342b1
DR
4896static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4897{
4898 return sprintf(buf, "%lu\n", s->min_partial);
4899}
4900
4901static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4902 size_t length)
4903{
4904 unsigned long min;
4905 int err;
4906
3dbb95f7 4907 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4908 if (err)
4909 return err;
4910
c0bdb232 4911 set_min_partial(s, min);
73d342b1
DR
4912 return length;
4913}
4914SLAB_ATTR(min_partial);
4915
49e22585
CL
4916static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4917{
4918 return sprintf(buf, "%u\n", s->cpu_partial);
4919}
4920
4921static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4922 size_t length)
4923{
4924 unsigned long objects;
4925 int err;
4926
3dbb95f7 4927 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4928 if (err)
4929 return err;
345c905d 4930 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4931 return -EINVAL;
49e22585
CL
4932
4933 s->cpu_partial = objects;
4934 flush_all(s);
4935 return length;
4936}
4937SLAB_ATTR(cpu_partial);
4938
81819f0f
CL
4939static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4940{
62c70bce
JP
4941 if (!s->ctor)
4942 return 0;
4943 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4944}
4945SLAB_ATTR_RO(ctor);
4946
81819f0f
CL
4947static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4948{
4307c14f 4949 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4950}
4951SLAB_ATTR_RO(aliases);
4952
81819f0f
CL
4953static ssize_t partial_show(struct kmem_cache *s, char *buf)
4954{
d9acf4b7 4955 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4956}
4957SLAB_ATTR_RO(partial);
4958
4959static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4960{
d9acf4b7 4961 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4962}
4963SLAB_ATTR_RO(cpu_slabs);
4964
4965static ssize_t objects_show(struct kmem_cache *s, char *buf)
4966{
205ab99d 4967 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4968}
4969SLAB_ATTR_RO(objects);
4970
205ab99d
CL
4971static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4972{
4973 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4974}
4975SLAB_ATTR_RO(objects_partial);
4976
49e22585
CL
4977static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4978{
4979 int objects = 0;
4980 int pages = 0;
4981 int cpu;
4982 int len;
4983
4984 for_each_online_cpu(cpu) {
4985 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4986
4987 if (page) {
4988 pages += page->pages;
4989 objects += page->pobjects;
4990 }
4991 }
4992
4993 len = sprintf(buf, "%d(%d)", objects, pages);
4994
4995#ifdef CONFIG_SMP
4996 for_each_online_cpu(cpu) {
4997 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4998
4999 if (page && len < PAGE_SIZE - 20)
5000 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5001 page->pobjects, page->pages);
5002 }
5003#endif
5004 return len + sprintf(buf + len, "\n");
5005}
5006SLAB_ATTR_RO(slabs_cpu_partial);
5007
a5a84755
CL
5008static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5009{
5010 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5011}
5012
5013static ssize_t reclaim_account_store(struct kmem_cache *s,
5014 const char *buf, size_t length)
5015{
5016 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5017 if (buf[0] == '1')
5018 s->flags |= SLAB_RECLAIM_ACCOUNT;
5019 return length;
5020}
5021SLAB_ATTR(reclaim_account);
5022
5023static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5024{
5025 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5026}
5027SLAB_ATTR_RO(hwcache_align);
5028
5029#ifdef CONFIG_ZONE_DMA
5030static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5031{
5032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5033}
5034SLAB_ATTR_RO(cache_dma);
5035#endif
5036
5037static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5038{
5f0d5a3a 5039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5040}
5041SLAB_ATTR_RO(destroy_by_rcu);
5042
ab9a0f19
LJ
5043static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5044{
5045 return sprintf(buf, "%d\n", s->reserved);
5046}
5047SLAB_ATTR_RO(reserved);
5048
ab4d5ed5 5049#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5050static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5051{
5052 return show_slab_objects(s, buf, SO_ALL);
5053}
5054SLAB_ATTR_RO(slabs);
5055
205ab99d
CL
5056static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5057{
5058 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5059}
5060SLAB_ATTR_RO(total_objects);
5061
81819f0f
CL
5062static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5063{
becfda68 5064 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5065}
5066
5067static ssize_t sanity_checks_store(struct kmem_cache *s,
5068 const char *buf, size_t length)
5069{
becfda68 5070 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5071 if (buf[0] == '1') {
5072 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5073 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5074 }
81819f0f
CL
5075 return length;
5076}
5077SLAB_ATTR(sanity_checks);
5078
5079static ssize_t trace_show(struct kmem_cache *s, char *buf)
5080{
5081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5082}
5083
5084static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5085 size_t length)
5086{
c9e16131
CL
5087 /*
5088 * Tracing a merged cache is going to give confusing results
5089 * as well as cause other issues like converting a mergeable
5090 * cache into an umergeable one.
5091 */
5092 if (s->refcount > 1)
5093 return -EINVAL;
5094
81819f0f 5095 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5096 if (buf[0] == '1') {
5097 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5098 s->flags |= SLAB_TRACE;
b789ef51 5099 }
81819f0f
CL
5100 return length;
5101}
5102SLAB_ATTR(trace);
5103
81819f0f
CL
5104static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5105{
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5107}
5108
5109static ssize_t red_zone_store(struct kmem_cache *s,
5110 const char *buf, size_t length)
5111{
5112 if (any_slab_objects(s))
5113 return -EBUSY;
5114
5115 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5116 if (buf[0] == '1') {
81819f0f 5117 s->flags |= SLAB_RED_ZONE;
b789ef51 5118 }
06b285dc 5119 calculate_sizes(s, -1);
81819f0f
CL
5120 return length;
5121}
5122SLAB_ATTR(red_zone);
5123
5124static ssize_t poison_show(struct kmem_cache *s, char *buf)
5125{
5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5127}
5128
5129static ssize_t poison_store(struct kmem_cache *s,
5130 const char *buf, size_t length)
5131{
5132 if (any_slab_objects(s))
5133 return -EBUSY;
5134
5135 s->flags &= ~SLAB_POISON;
b789ef51 5136 if (buf[0] == '1') {
81819f0f 5137 s->flags |= SLAB_POISON;
b789ef51 5138 }
06b285dc 5139 calculate_sizes(s, -1);
81819f0f
CL
5140 return length;
5141}
5142SLAB_ATTR(poison);
5143
5144static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5145{
5146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5147}
5148
5149static ssize_t store_user_store(struct kmem_cache *s,
5150 const char *buf, size_t length)
5151{
5152 if (any_slab_objects(s))
5153 return -EBUSY;
5154
5155 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5156 if (buf[0] == '1') {
5157 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5158 s->flags |= SLAB_STORE_USER;
b789ef51 5159 }
06b285dc 5160 calculate_sizes(s, -1);
81819f0f
CL
5161 return length;
5162}
5163SLAB_ATTR(store_user);
5164
53e15af0
CL
5165static ssize_t validate_show(struct kmem_cache *s, char *buf)
5166{
5167 return 0;
5168}
5169
5170static ssize_t validate_store(struct kmem_cache *s,
5171 const char *buf, size_t length)
5172{
434e245d
CL
5173 int ret = -EINVAL;
5174
5175 if (buf[0] == '1') {
5176 ret = validate_slab_cache(s);
5177 if (ret >= 0)
5178 ret = length;
5179 }
5180 return ret;
53e15af0
CL
5181}
5182SLAB_ATTR(validate);
a5a84755
CL
5183
5184static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5185{
5186 if (!(s->flags & SLAB_STORE_USER))
5187 return -ENOSYS;
5188 return list_locations(s, buf, TRACK_ALLOC);
5189}
5190SLAB_ATTR_RO(alloc_calls);
5191
5192static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5193{
5194 if (!(s->flags & SLAB_STORE_USER))
5195 return -ENOSYS;
5196 return list_locations(s, buf, TRACK_FREE);
5197}
5198SLAB_ATTR_RO(free_calls);
5199#endif /* CONFIG_SLUB_DEBUG */
5200
5201#ifdef CONFIG_FAILSLAB
5202static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5203{
5204 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5205}
5206
5207static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5208 size_t length)
5209{
c9e16131
CL
5210 if (s->refcount > 1)
5211 return -EINVAL;
5212
a5a84755
CL
5213 s->flags &= ~SLAB_FAILSLAB;
5214 if (buf[0] == '1')
5215 s->flags |= SLAB_FAILSLAB;
5216 return length;
5217}
5218SLAB_ATTR(failslab);
ab4d5ed5 5219#endif
53e15af0 5220
2086d26a
CL
5221static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5222{
5223 return 0;
5224}
5225
5226static ssize_t shrink_store(struct kmem_cache *s,
5227 const char *buf, size_t length)
5228{
832f37f5
VD
5229 if (buf[0] == '1')
5230 kmem_cache_shrink(s);
5231 else
2086d26a
CL
5232 return -EINVAL;
5233 return length;
5234}
5235SLAB_ATTR(shrink);
5236
81819f0f 5237#ifdef CONFIG_NUMA
9824601e 5238static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5239{
9824601e 5240 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5241}
5242
9824601e 5243static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5244 const char *buf, size_t length)
5245{
0121c619
CL
5246 unsigned long ratio;
5247 int err;
5248
3dbb95f7 5249 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5250 if (err)
5251 return err;
5252
e2cb96b7 5253 if (ratio <= 100)
0121c619 5254 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5255
81819f0f
CL
5256 return length;
5257}
9824601e 5258SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5259#endif
5260
8ff12cfc 5261#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5262static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5263{
5264 unsigned long sum = 0;
5265 int cpu;
5266 int len;
5267 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5268
5269 if (!data)
5270 return -ENOMEM;
5271
5272 for_each_online_cpu(cpu) {
9dfc6e68 5273 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5274
5275 data[cpu] = x;
5276 sum += x;
5277 }
5278
5279 len = sprintf(buf, "%lu", sum);
5280
50ef37b9 5281#ifdef CONFIG_SMP
8ff12cfc
CL
5282 for_each_online_cpu(cpu) {
5283 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5284 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5285 }
50ef37b9 5286#endif
8ff12cfc
CL
5287 kfree(data);
5288 return len + sprintf(buf + len, "\n");
5289}
5290
78eb00cc
DR
5291static void clear_stat(struct kmem_cache *s, enum stat_item si)
5292{
5293 int cpu;
5294
5295 for_each_online_cpu(cpu)
9dfc6e68 5296 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5297}
5298
8ff12cfc
CL
5299#define STAT_ATTR(si, text) \
5300static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5301{ \
5302 return show_stat(s, buf, si); \
5303} \
78eb00cc
DR
5304static ssize_t text##_store(struct kmem_cache *s, \
5305 const char *buf, size_t length) \
5306{ \
5307 if (buf[0] != '0') \
5308 return -EINVAL; \
5309 clear_stat(s, si); \
5310 return length; \
5311} \
5312SLAB_ATTR(text); \
8ff12cfc
CL
5313
5314STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5315STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5316STAT_ATTR(FREE_FASTPATH, free_fastpath);
5317STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5318STAT_ATTR(FREE_FROZEN, free_frozen);
5319STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5320STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5321STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5322STAT_ATTR(ALLOC_SLAB, alloc_slab);
5323STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5324STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5325STAT_ATTR(FREE_SLAB, free_slab);
5326STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5327STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5328STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5329STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5330STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5331STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5332STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5333STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5334STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5335STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5336STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5337STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5338STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5339STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5340#endif
5341
06428780 5342static struct attribute *slab_attrs[] = {
81819f0f
CL
5343 &slab_size_attr.attr,
5344 &object_size_attr.attr,
5345 &objs_per_slab_attr.attr,
5346 &order_attr.attr,
73d342b1 5347 &min_partial_attr.attr,
49e22585 5348 &cpu_partial_attr.attr,
81819f0f 5349 &objects_attr.attr,
205ab99d 5350 &objects_partial_attr.attr,
81819f0f
CL
5351 &partial_attr.attr,
5352 &cpu_slabs_attr.attr,
5353 &ctor_attr.attr,
81819f0f
CL
5354 &aliases_attr.attr,
5355 &align_attr.attr,
81819f0f
CL
5356 &hwcache_align_attr.attr,
5357 &reclaim_account_attr.attr,
5358 &destroy_by_rcu_attr.attr,
a5a84755 5359 &shrink_attr.attr,
ab9a0f19 5360 &reserved_attr.attr,
49e22585 5361 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5362#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5363 &total_objects_attr.attr,
5364 &slabs_attr.attr,
5365 &sanity_checks_attr.attr,
5366 &trace_attr.attr,
81819f0f
CL
5367 &red_zone_attr.attr,
5368 &poison_attr.attr,
5369 &store_user_attr.attr,
53e15af0 5370 &validate_attr.attr,
88a420e4
CL
5371 &alloc_calls_attr.attr,
5372 &free_calls_attr.attr,
ab4d5ed5 5373#endif
81819f0f
CL
5374#ifdef CONFIG_ZONE_DMA
5375 &cache_dma_attr.attr,
5376#endif
5377#ifdef CONFIG_NUMA
9824601e 5378 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5379#endif
5380#ifdef CONFIG_SLUB_STATS
5381 &alloc_fastpath_attr.attr,
5382 &alloc_slowpath_attr.attr,
5383 &free_fastpath_attr.attr,
5384 &free_slowpath_attr.attr,
5385 &free_frozen_attr.attr,
5386 &free_add_partial_attr.attr,
5387 &free_remove_partial_attr.attr,
5388 &alloc_from_partial_attr.attr,
5389 &alloc_slab_attr.attr,
5390 &alloc_refill_attr.attr,
e36a2652 5391 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5392 &free_slab_attr.attr,
5393 &cpuslab_flush_attr.attr,
5394 &deactivate_full_attr.attr,
5395 &deactivate_empty_attr.attr,
5396 &deactivate_to_head_attr.attr,
5397 &deactivate_to_tail_attr.attr,
5398 &deactivate_remote_frees_attr.attr,
03e404af 5399 &deactivate_bypass_attr.attr,
65c3376a 5400 &order_fallback_attr.attr,
b789ef51
CL
5401 &cmpxchg_double_fail_attr.attr,
5402 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5403 &cpu_partial_alloc_attr.attr,
5404 &cpu_partial_free_attr.attr,
8028dcea
AS
5405 &cpu_partial_node_attr.attr,
5406 &cpu_partial_drain_attr.attr,
81819f0f 5407#endif
4c13dd3b
DM
5408#ifdef CONFIG_FAILSLAB
5409 &failslab_attr.attr,
5410#endif
5411
81819f0f
CL
5412 NULL
5413};
5414
5415static struct attribute_group slab_attr_group = {
5416 .attrs = slab_attrs,
5417};
5418
5419static ssize_t slab_attr_show(struct kobject *kobj,
5420 struct attribute *attr,
5421 char *buf)
5422{
5423 struct slab_attribute *attribute;
5424 struct kmem_cache *s;
5425 int err;
5426
5427 attribute = to_slab_attr(attr);
5428 s = to_slab(kobj);
5429
5430 if (!attribute->show)
5431 return -EIO;
5432
5433 err = attribute->show(s, buf);
5434
5435 return err;
5436}
5437
5438static ssize_t slab_attr_store(struct kobject *kobj,
5439 struct attribute *attr,
5440 const char *buf, size_t len)
5441{
5442 struct slab_attribute *attribute;
5443 struct kmem_cache *s;
5444 int err;
5445
5446 attribute = to_slab_attr(attr);
5447 s = to_slab(kobj);
5448
5449 if (!attribute->store)
5450 return -EIO;
5451
5452 err = attribute->store(s, buf, len);
127424c8 5453#ifdef CONFIG_MEMCG
107dab5c 5454 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5455 struct kmem_cache *c;
81819f0f 5456
107dab5c
GC
5457 mutex_lock(&slab_mutex);
5458 if (s->max_attr_size < len)
5459 s->max_attr_size = len;
5460
ebe945c2
GC
5461 /*
5462 * This is a best effort propagation, so this function's return
5463 * value will be determined by the parent cache only. This is
5464 * basically because not all attributes will have a well
5465 * defined semantics for rollbacks - most of the actions will
5466 * have permanent effects.
5467 *
5468 * Returning the error value of any of the children that fail
5469 * is not 100 % defined, in the sense that users seeing the
5470 * error code won't be able to know anything about the state of
5471 * the cache.
5472 *
5473 * Only returning the error code for the parent cache at least
5474 * has well defined semantics. The cache being written to
5475 * directly either failed or succeeded, in which case we loop
5476 * through the descendants with best-effort propagation.
5477 */
426589f5
VD
5478 for_each_memcg_cache(c, s)
5479 attribute->store(c, buf, len);
107dab5c
GC
5480 mutex_unlock(&slab_mutex);
5481 }
5482#endif
81819f0f
CL
5483 return err;
5484}
5485
107dab5c
GC
5486static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5487{
127424c8 5488#ifdef CONFIG_MEMCG
107dab5c
GC
5489 int i;
5490 char *buffer = NULL;
93030d83 5491 struct kmem_cache *root_cache;
107dab5c 5492
93030d83 5493 if (is_root_cache(s))
107dab5c
GC
5494 return;
5495
f7ce3190 5496 root_cache = s->memcg_params.root_cache;
93030d83 5497
107dab5c
GC
5498 /*
5499 * This mean this cache had no attribute written. Therefore, no point
5500 * in copying default values around
5501 */
93030d83 5502 if (!root_cache->max_attr_size)
107dab5c
GC
5503 return;
5504
5505 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5506 char mbuf[64];
5507 char *buf;
5508 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5509 ssize_t len;
107dab5c
GC
5510
5511 if (!attr || !attr->store || !attr->show)
5512 continue;
5513
5514 /*
5515 * It is really bad that we have to allocate here, so we will
5516 * do it only as a fallback. If we actually allocate, though,
5517 * we can just use the allocated buffer until the end.
5518 *
5519 * Most of the slub attributes will tend to be very small in
5520 * size, but sysfs allows buffers up to a page, so they can
5521 * theoretically happen.
5522 */
5523 if (buffer)
5524 buf = buffer;
93030d83 5525 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5526 buf = mbuf;
5527 else {
5528 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5529 if (WARN_ON(!buffer))
5530 continue;
5531 buf = buffer;
5532 }
5533
478fe303
TG
5534 len = attr->show(root_cache, buf);
5535 if (len > 0)
5536 attr->store(s, buf, len);
107dab5c
GC
5537 }
5538
5539 if (buffer)
5540 free_page((unsigned long)buffer);
5541#endif
5542}
5543
41a21285
CL
5544static void kmem_cache_release(struct kobject *k)
5545{
5546 slab_kmem_cache_release(to_slab(k));
5547}
5548
52cf25d0 5549static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5550 .show = slab_attr_show,
5551 .store = slab_attr_store,
5552};
5553
5554static struct kobj_type slab_ktype = {
5555 .sysfs_ops = &slab_sysfs_ops,
41a21285 5556 .release = kmem_cache_release,
81819f0f
CL
5557};
5558
5559static int uevent_filter(struct kset *kset, struct kobject *kobj)
5560{
5561 struct kobj_type *ktype = get_ktype(kobj);
5562
5563 if (ktype == &slab_ktype)
5564 return 1;
5565 return 0;
5566}
5567
9cd43611 5568static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5569 .filter = uevent_filter,
5570};
5571
27c3a314 5572static struct kset *slab_kset;
81819f0f 5573
9a41707b
VD
5574static inline struct kset *cache_kset(struct kmem_cache *s)
5575{
127424c8 5576#ifdef CONFIG_MEMCG
9a41707b 5577 if (!is_root_cache(s))
f7ce3190 5578 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5579#endif
5580 return slab_kset;
5581}
5582
81819f0f
CL
5583#define ID_STR_LENGTH 64
5584
5585/* Create a unique string id for a slab cache:
6446faa2
CL
5586 *
5587 * Format :[flags-]size
81819f0f
CL
5588 */
5589static char *create_unique_id(struct kmem_cache *s)
5590{
5591 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5592 char *p = name;
5593
5594 BUG_ON(!name);
5595
5596 *p++ = ':';
5597 /*
5598 * First flags affecting slabcache operations. We will only
5599 * get here for aliasable slabs so we do not need to support
5600 * too many flags. The flags here must cover all flags that
5601 * are matched during merging to guarantee that the id is
5602 * unique.
5603 */
5604 if (s->flags & SLAB_CACHE_DMA)
5605 *p++ = 'd';
5606 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5607 *p++ = 'a';
becfda68 5608 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5609 *p++ = 'F';
5a896d9e
VN
5610 if (!(s->flags & SLAB_NOTRACK))
5611 *p++ = 't';
230e9fc2
VD
5612 if (s->flags & SLAB_ACCOUNT)
5613 *p++ = 'A';
81819f0f
CL
5614 if (p != name + 1)
5615 *p++ = '-';
5616 p += sprintf(p, "%07d", s->size);
2633d7a0 5617
81819f0f
CL
5618 BUG_ON(p > name + ID_STR_LENGTH - 1);
5619 return name;
5620}
5621
3b7b3140
TH
5622static void sysfs_slab_remove_workfn(struct work_struct *work)
5623{
5624 struct kmem_cache *s =
5625 container_of(work, struct kmem_cache, kobj_remove_work);
5626
5627 if (!s->kobj.state_in_sysfs)
5628 /*
5629 * For a memcg cache, this may be called during
5630 * deactivation and again on shutdown. Remove only once.
5631 * A cache is never shut down before deactivation is
5632 * complete, so no need to worry about synchronization.
5633 */
5634 return;
5635
5636#ifdef CONFIG_MEMCG
5637 kset_unregister(s->memcg_kset);
5638#endif
5639 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5640 kobject_del(&s->kobj);
5641 kobject_put(&s->kobj);
5642}
5643
81819f0f
CL
5644static int sysfs_slab_add(struct kmem_cache *s)
5645{
5646 int err;
5647 const char *name;
1663f26d 5648 struct kset *kset = cache_kset(s);
45530c44 5649 int unmergeable = slab_unmergeable(s);
81819f0f 5650
3b7b3140
TH
5651 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5652
1663f26d
TH
5653 if (!kset) {
5654 kobject_init(&s->kobj, &slab_ktype);
5655 return 0;
5656 }
5657
81819f0f
CL
5658 if (unmergeable) {
5659 /*
5660 * Slabcache can never be merged so we can use the name proper.
5661 * This is typically the case for debug situations. In that
5662 * case we can catch duplicate names easily.
5663 */
27c3a314 5664 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5665 name = s->name;
5666 } else {
5667 /*
5668 * Create a unique name for the slab as a target
5669 * for the symlinks.
5670 */
5671 name = create_unique_id(s);
5672 }
5673
1663f26d 5674 s->kobj.kset = kset;
26e4f205 5675 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5676 if (err)
80da026a 5677 goto out;
81819f0f
CL
5678
5679 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5680 if (err)
5681 goto out_del_kobj;
9a41707b 5682
127424c8 5683#ifdef CONFIG_MEMCG
1663f26d 5684 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5685 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5686 if (!s->memcg_kset) {
54b6a731
DJ
5687 err = -ENOMEM;
5688 goto out_del_kobj;
9a41707b
VD
5689 }
5690 }
5691#endif
5692
81819f0f
CL
5693 kobject_uevent(&s->kobj, KOBJ_ADD);
5694 if (!unmergeable) {
5695 /* Setup first alias */
5696 sysfs_slab_alias(s, s->name);
81819f0f 5697 }
54b6a731
DJ
5698out:
5699 if (!unmergeable)
5700 kfree(name);
5701 return err;
5702out_del_kobj:
5703 kobject_del(&s->kobj);
54b6a731 5704 goto out;
81819f0f
CL
5705}
5706
bf5eb3de 5707static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5708{
97d06609 5709 if (slab_state < FULL)
2bce6485
CL
5710 /*
5711 * Sysfs has not been setup yet so no need to remove the
5712 * cache from sysfs.
5713 */
5714 return;
5715
3b7b3140
TH
5716 kobject_get(&s->kobj);
5717 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5718}
5719
5720void sysfs_slab_release(struct kmem_cache *s)
5721{
5722 if (slab_state >= FULL)
5723 kobject_put(&s->kobj);
81819f0f
CL
5724}
5725
5726/*
5727 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5728 * available lest we lose that information.
81819f0f
CL
5729 */
5730struct saved_alias {
5731 struct kmem_cache *s;
5732 const char *name;
5733 struct saved_alias *next;
5734};
5735
5af328a5 5736static struct saved_alias *alias_list;
81819f0f
CL
5737
5738static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5739{
5740 struct saved_alias *al;
5741
97d06609 5742 if (slab_state == FULL) {
81819f0f
CL
5743 /*
5744 * If we have a leftover link then remove it.
5745 */
27c3a314
GKH
5746 sysfs_remove_link(&slab_kset->kobj, name);
5747 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5748 }
5749
5750 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5751 if (!al)
5752 return -ENOMEM;
5753
5754 al->s = s;
5755 al->name = name;
5756 al->next = alias_list;
5757 alias_list = al;
5758 return 0;
5759}
5760
5761static int __init slab_sysfs_init(void)
5762{
5b95a4ac 5763 struct kmem_cache *s;
81819f0f
CL
5764 int err;
5765
18004c5d 5766 mutex_lock(&slab_mutex);
2bce6485 5767
0ff21e46 5768 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5769 if (!slab_kset) {
18004c5d 5770 mutex_unlock(&slab_mutex);
f9f58285 5771 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5772 return -ENOSYS;
5773 }
5774
97d06609 5775 slab_state = FULL;
26a7bd03 5776
5b95a4ac 5777 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5778 err = sysfs_slab_add(s);
5d540fb7 5779 if (err)
f9f58285
FF
5780 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5781 s->name);
26a7bd03 5782 }
81819f0f
CL
5783
5784 while (alias_list) {
5785 struct saved_alias *al = alias_list;
5786
5787 alias_list = alias_list->next;
5788 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5789 if (err)
f9f58285
FF
5790 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5791 al->name);
81819f0f
CL
5792 kfree(al);
5793 }
5794
18004c5d 5795 mutex_unlock(&slab_mutex);
81819f0f
CL
5796 resiliency_test();
5797 return 0;
5798}
5799
5800__initcall(slab_sysfs_init);
ab4d5ed5 5801#endif /* CONFIG_SYSFS */
57ed3eda
PE
5802
5803/*
5804 * The /proc/slabinfo ABI
5805 */
158a9624 5806#ifdef CONFIG_SLABINFO
0d7561c6 5807void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5808{
57ed3eda 5809 unsigned long nr_slabs = 0;
205ab99d
CL
5810 unsigned long nr_objs = 0;
5811 unsigned long nr_free = 0;
57ed3eda 5812 int node;
fa45dc25 5813 struct kmem_cache_node *n;
57ed3eda 5814
fa45dc25 5815 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5816 nr_slabs += node_nr_slabs(n);
5817 nr_objs += node_nr_objs(n);
205ab99d 5818 nr_free += count_partial(n, count_free);
57ed3eda
PE
5819 }
5820
0d7561c6
GC
5821 sinfo->active_objs = nr_objs - nr_free;
5822 sinfo->num_objs = nr_objs;
5823 sinfo->active_slabs = nr_slabs;
5824 sinfo->num_slabs = nr_slabs;
5825 sinfo->objects_per_slab = oo_objects(s->oo);
5826 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5827}
5828
0d7561c6 5829void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5830{
7b3c3a50
AD
5831}
5832
b7454ad3
GC
5833ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5834 size_t count, loff_t *ppos)
7b3c3a50 5835{
b7454ad3 5836 return -EIO;
7b3c3a50 5837}
158a9624 5838#endif /* CONFIG_SLABINFO */