]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm, kfence: insert KFENCE hooks for SLAB
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
7e1fa93d
VB
238/*
239 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
240 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
241 * differ during memory hotplug/hotremove operations.
242 * Protected by slab_mutex.
243 */
244static nodemask_t slab_nodes;
245
81819f0f
CL
246/********************************************************************
247 * Core slab cache functions
248 *******************************************************************/
249
2482ddec
KC
250/*
251 * Returns freelist pointer (ptr). With hardening, this is obfuscated
252 * with an XOR of the address where the pointer is held and a per-cache
253 * random number.
254 */
255static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
256 unsigned long ptr_addr)
257{
258#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 259 /*
aa1ef4d7 260 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
261 * Normally, this doesn't cause any issues, as both set_freepointer()
262 * and get_freepointer() are called with a pointer with the same tag.
263 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
264 * example, when __free_slub() iterates over objects in a cache, it
265 * passes untagged pointers to check_object(). check_object() in turns
266 * calls get_freepointer() with an untagged pointer, which causes the
267 * freepointer to be restored incorrectly.
268 */
269 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 270 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
271#else
272 return ptr;
273#endif
274}
275
276/* Returns the freelist pointer recorded at location ptr_addr. */
277static inline void *freelist_dereference(const struct kmem_cache *s,
278 void *ptr_addr)
279{
280 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
281 (unsigned long)ptr_addr);
282}
283
7656c72b
CL
284static inline void *get_freepointer(struct kmem_cache *s, void *object)
285{
aa1ef4d7 286 object = kasan_reset_tag(object);
2482ddec 287 return freelist_dereference(s, object + s->offset);
7656c72b
CL
288}
289
0ad9500e
ED
290static void prefetch_freepointer(const struct kmem_cache *s, void *object)
291{
0882ff91 292 prefetch(object + s->offset);
0ad9500e
ED
293}
294
1393d9a1
CL
295static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
296{
2482ddec 297 unsigned long freepointer_addr;
1393d9a1
CL
298 void *p;
299
8e57f8ac 300 if (!debug_pagealloc_enabled_static())
922d566c
JK
301 return get_freepointer(s, object);
302
2482ddec 303 freepointer_addr = (unsigned long)object + s->offset;
fe557319 304 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 305 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
306}
307
7656c72b
CL
308static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309{
2482ddec
KC
310 unsigned long freeptr_addr = (unsigned long)object + s->offset;
311
ce6fa91b
AP
312#ifdef CONFIG_SLAB_FREELIST_HARDENED
313 BUG_ON(object == fp); /* naive detection of double free or corruption */
314#endif
315
aa1ef4d7 316 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 317 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
318}
319
320/* Loop over all objects in a slab */
224a88be 321#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
322 for (__p = fixup_red_left(__s, __addr); \
323 __p < (__addr) + (__objects) * (__s)->size; \
324 __p += (__s)->size)
7656c72b 325
9736d2a9 326static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 327{
9736d2a9 328 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
329}
330
19af27af 331static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 332 unsigned int size)
834f3d11
CL
333{
334 struct kmem_cache_order_objects x = {
9736d2a9 335 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
336 };
337
338 return x;
339}
340
19af27af 341static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 342{
210b5c06 343 return x.x >> OO_SHIFT;
834f3d11
CL
344}
345
19af27af 346static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 347{
210b5c06 348 return x.x & OO_MASK;
834f3d11
CL
349}
350
881db7fb
CL
351/*
352 * Per slab locking using the pagelock
353 */
354static __always_inline void slab_lock(struct page *page)
355{
48c935ad 356 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
357 bit_spin_lock(PG_locked, &page->flags);
358}
359
360static __always_inline void slab_unlock(struct page *page)
361{
48c935ad 362 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
363 __bit_spin_unlock(PG_locked, &page->flags);
364}
365
1d07171c
CL
366/* Interrupts must be disabled (for the fallback code to work right) */
367static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 void *freelist_old, unsigned long counters_old,
369 void *freelist_new, unsigned long counters_new,
370 const char *n)
371{
372 VM_BUG_ON(!irqs_disabled());
2565409f
HC
373#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 375 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 376 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
377 freelist_old, counters_old,
378 freelist_new, counters_new))
6f6528a1 379 return true;
1d07171c
CL
380 } else
381#endif
382 {
383 slab_lock(page);
d0e0ac97
CG
384 if (page->freelist == freelist_old &&
385 page->counters == counters_old) {
1d07171c 386 page->freelist = freelist_new;
7d27a04b 387 page->counters = counters_new;
1d07171c 388 slab_unlock(page);
6f6528a1 389 return true;
1d07171c
CL
390 }
391 slab_unlock(page);
392 }
393
394 cpu_relax();
395 stat(s, CMPXCHG_DOUBLE_FAIL);
396
397#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 398 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
399#endif
400
6f6528a1 401 return false;
1d07171c
CL
402}
403
b789ef51
CL
404static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 void *freelist_old, unsigned long counters_old,
406 void *freelist_new, unsigned long counters_new,
407 const char *n)
408{
2565409f
HC
409#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 411 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 412 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
413 freelist_old, counters_old,
414 freelist_new, counters_new))
6f6528a1 415 return true;
b789ef51
CL
416 } else
417#endif
418 {
1d07171c
CL
419 unsigned long flags;
420
421 local_irq_save(flags);
881db7fb 422 slab_lock(page);
d0e0ac97
CG
423 if (page->freelist == freelist_old &&
424 page->counters == counters_old) {
b789ef51 425 page->freelist = freelist_new;
7d27a04b 426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
6f6528a1 429 return true;
b789ef51 430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 439 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
440#endif
441
6f6528a1 442 return false;
b789ef51
CL
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
446static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
447static DEFINE_SPINLOCK(object_map_lock);
448
5f80b13a
CL
449/*
450 * Determine a map of object in use on a page.
451 *
881db7fb 452 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
453 * not vanish from under us.
454 */
90e9f6a6 455static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 456 __acquires(&object_map_lock)
5f80b13a
CL
457{
458 void *p;
459 void *addr = page_address(page);
460
90e9f6a6
YZ
461 VM_BUG_ON(!irqs_disabled());
462
463 spin_lock(&object_map_lock);
464
465 bitmap_zero(object_map, page->objects);
466
5f80b13a 467 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 468 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
469
470 return object_map;
471}
472
81aba9e0 473static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
474{
475 VM_BUG_ON(map != object_map);
90e9f6a6 476 spin_unlock(&object_map_lock);
5f80b13a
CL
477}
478
870b1fbb 479static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
480{
481 if (s->flags & SLAB_RED_ZONE)
482 return s->size - s->red_left_pad;
483
484 return s->size;
485}
486
487static inline void *restore_red_left(struct kmem_cache *s, void *p)
488{
489 if (s->flags & SLAB_RED_ZONE)
490 p -= s->red_left_pad;
491
492 return p;
493}
494
41ecc55b
CL
495/*
496 * Debug settings:
497 */
89d3c87e 498#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 499static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 500#else
d50112ed 501static slab_flags_t slub_debug;
f0630fff 502#endif
41ecc55b 503
e17f1dfb 504static char *slub_debug_string;
fa5ec8a1 505static int disable_higher_order_debug;
41ecc55b 506
a79316c6
AR
507/*
508 * slub is about to manipulate internal object metadata. This memory lies
509 * outside the range of the allocated object, so accessing it would normally
510 * be reported by kasan as a bounds error. metadata_access_enable() is used
511 * to tell kasan that these accesses are OK.
512 */
513static inline void metadata_access_enable(void)
514{
515 kasan_disable_current();
516}
517
518static inline void metadata_access_disable(void)
519{
520 kasan_enable_current();
521}
522
81819f0f
CL
523/*
524 * Object debugging
525 */
d86bd1be
JK
526
527/* Verify that a pointer has an address that is valid within a slab page */
528static inline int check_valid_pointer(struct kmem_cache *s,
529 struct page *page, void *object)
530{
531 void *base;
532
533 if (!object)
534 return 1;
535
536 base = page_address(page);
338cfaad 537 object = kasan_reset_tag(object);
d86bd1be
JK
538 object = restore_red_left(s, object);
539 if (object < base || object >= base + page->objects * s->size ||
540 (object - base) % s->size) {
541 return 0;
542 }
543
544 return 1;
545}
546
aa2efd5e
DT
547static void print_section(char *level, char *text, u8 *addr,
548 unsigned int length)
81819f0f 549{
a79316c6 550 metadata_access_enable();
aa1ef4d7
AK
551 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
552 16, 1, addr, length, 1);
a79316c6 553 metadata_access_disable();
81819f0f
CL
554}
555
cbfc35a4
WL
556/*
557 * See comment in calculate_sizes().
558 */
559static inline bool freeptr_outside_object(struct kmem_cache *s)
560{
561 return s->offset >= s->inuse;
562}
563
564/*
565 * Return offset of the end of info block which is inuse + free pointer if
566 * not overlapping with object.
567 */
568static inline unsigned int get_info_end(struct kmem_cache *s)
569{
570 if (freeptr_outside_object(s))
571 return s->inuse + sizeof(void *);
572 else
573 return s->inuse;
574}
575
81819f0f
CL
576static struct track *get_track(struct kmem_cache *s, void *object,
577 enum track_item alloc)
578{
579 struct track *p;
580
cbfc35a4 581 p = object + get_info_end(s);
81819f0f 582
aa1ef4d7 583 return kasan_reset_tag(p + alloc);
81819f0f
CL
584}
585
586static void set_track(struct kmem_cache *s, void *object,
ce71e27c 587 enum track_item alloc, unsigned long addr)
81819f0f 588{
1a00df4a 589 struct track *p = get_track(s, object, alloc);
81819f0f 590
81819f0f 591 if (addr) {
d6543e39 592#ifdef CONFIG_STACKTRACE
79716799 593 unsigned int nr_entries;
d6543e39 594
a79316c6 595 metadata_access_enable();
aa1ef4d7
AK
596 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
597 TRACK_ADDRS_COUNT, 3);
a79316c6 598 metadata_access_disable();
d6543e39 599
79716799
TG
600 if (nr_entries < TRACK_ADDRS_COUNT)
601 p->addrs[nr_entries] = 0;
d6543e39 602#endif
81819f0f
CL
603 p->addr = addr;
604 p->cpu = smp_processor_id();
88e4ccf2 605 p->pid = current->pid;
81819f0f 606 p->when = jiffies;
b8ca7ff7 607 } else {
81819f0f 608 memset(p, 0, sizeof(struct track));
b8ca7ff7 609 }
81819f0f
CL
610}
611
81819f0f
CL
612static void init_tracking(struct kmem_cache *s, void *object)
613{
24922684
CL
614 if (!(s->flags & SLAB_STORE_USER))
615 return;
616
ce71e27c
EGM
617 set_track(s, object, TRACK_FREE, 0UL);
618 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
619}
620
86609d33 621static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
622{
623 if (!t->addr)
624 return;
625
f9f58285 626 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 627 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
628#ifdef CONFIG_STACKTRACE
629 {
630 int i;
631 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
632 if (t->addrs[i])
f9f58285 633 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
634 else
635 break;
636 }
637#endif
24922684
CL
638}
639
e42f174e 640void print_tracking(struct kmem_cache *s, void *object)
24922684 641{
86609d33 642 unsigned long pr_time = jiffies;
24922684
CL
643 if (!(s->flags & SLAB_STORE_USER))
644 return;
645
86609d33
CP
646 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
647 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
648}
649
650static void print_page_info(struct page *page)
651{
f9f58285 652 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 653 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
654
655}
656
657static void slab_bug(struct kmem_cache *s, char *fmt, ...)
658{
ecc42fbe 659 struct va_format vaf;
24922684 660 va_list args;
24922684
CL
661
662 va_start(args, fmt);
ecc42fbe
FF
663 vaf.fmt = fmt;
664 vaf.va = &args;
f9f58285 665 pr_err("=============================================================================\n");
ecc42fbe 666 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 667 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 668
373d4d09 669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 670 va_end(args);
81819f0f
CL
671}
672
24922684
CL
673static void slab_fix(struct kmem_cache *s, char *fmt, ...)
674{
ecc42fbe 675 struct va_format vaf;
24922684 676 va_list args;
24922684
CL
677
678 va_start(args, fmt);
ecc42fbe
FF
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 682 va_end(args);
24922684
CL
683}
684
52f23478 685static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 686 void **freelist, void *nextfree)
52f23478
DZ
687{
688 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
689 !check_valid_pointer(s, page, nextfree) && freelist) {
690 object_err(s, page, *freelist, "Freechain corrupt");
691 *freelist = NULL;
52f23478
DZ
692 slab_fix(s, "Isolate corrupted freechain");
693 return true;
694 }
695
696 return false;
697}
698
24922684 699static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
700{
701 unsigned int off; /* Offset of last byte */
a973e9dd 702 u8 *addr = page_address(page);
24922684
CL
703
704 print_tracking(s, p);
705
706 print_page_info(page);
707
f9f58285
FF
708 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
709 p, p - addr, get_freepointer(s, p));
24922684 710
d86bd1be 711 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
712 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
713 s->red_left_pad);
d86bd1be 714 else if (p > addr + 16)
aa2efd5e 715 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 716
aa2efd5e 717 print_section(KERN_ERR, "Object ", p,
1b473f29 718 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 719 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 720 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 721 s->inuse - s->object_size);
81819f0f 722
cbfc35a4 723 off = get_info_end(s);
81819f0f 724
24922684 725 if (s->flags & SLAB_STORE_USER)
81819f0f 726 off += 2 * sizeof(struct track);
81819f0f 727
80a9201a
AP
728 off += kasan_metadata_size(s);
729
d86bd1be 730 if (off != size_from_object(s))
81819f0f 731 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
732 print_section(KERN_ERR, "Padding ", p + off,
733 size_from_object(s) - off);
24922684
CL
734
735 dump_stack();
81819f0f
CL
736}
737
75c66def 738void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
739 u8 *object, char *reason)
740{
3dc50637 741 slab_bug(s, "%s", reason);
24922684 742 print_trailer(s, page, object);
81819f0f
CL
743}
744
a38965bf 745static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 746 const char *fmt, ...)
81819f0f
CL
747{
748 va_list args;
749 char buf[100];
750
24922684
CL
751 va_start(args, fmt);
752 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 753 va_end(args);
3dc50637 754 slab_bug(s, "%s", buf);
24922684 755 print_page_info(page);
81819f0f
CL
756 dump_stack();
757}
758
f7cb1933 759static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 760{
aa1ef4d7 761 u8 *p = kasan_reset_tag(object);
81819f0f 762
d86bd1be
JK
763 if (s->flags & SLAB_RED_ZONE)
764 memset(p - s->red_left_pad, val, s->red_left_pad);
765
81819f0f 766 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
767 memset(p, POISON_FREE, s->object_size - 1);
768 p[s->object_size - 1] = POISON_END;
81819f0f
CL
769 }
770
771 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 772 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
773}
774
24922684
CL
775static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
776 void *from, void *to)
777{
778 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
779 memset(from, data, to - from);
780}
781
782static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
783 u8 *object, char *what,
06428780 784 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
785{
786 u8 *fault;
787 u8 *end;
e1b70dd1 788 u8 *addr = page_address(page);
24922684 789
a79316c6 790 metadata_access_enable();
aa1ef4d7 791 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 792 metadata_access_disable();
24922684
CL
793 if (!fault)
794 return 1;
795
796 end = start + bytes;
797 while (end > fault && end[-1] == value)
798 end--;
799
800 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
801 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
802 fault, end - 1, fault - addr,
803 fault[0], value);
24922684
CL
804 print_trailer(s, page, object);
805
806 restore_bytes(s, what, value, fault, end);
807 return 0;
81819f0f
CL
808}
809
81819f0f
CL
810/*
811 * Object layout:
812 *
813 * object address
814 * Bytes of the object to be managed.
815 * If the freepointer may overlay the object then the free
cbfc35a4 816 * pointer is at the middle of the object.
672bba3a 817 *
81819f0f
CL
818 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
819 * 0xa5 (POISON_END)
820 *
3b0efdfa 821 * object + s->object_size
81819f0f 822 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 823 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 824 * object_size == inuse.
672bba3a 825 *
81819f0f
CL
826 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
827 * 0xcc (RED_ACTIVE) for objects in use.
828 *
829 * object + s->inuse
672bba3a
CL
830 * Meta data starts here.
831 *
81819f0f
CL
832 * A. Free pointer (if we cannot overwrite object on free)
833 * B. Tracking data for SLAB_STORE_USER
672bba3a 834 * C. Padding to reach required alignment boundary or at mininum
6446faa2 835 * one word if debugging is on to be able to detect writes
672bba3a
CL
836 * before the word boundary.
837 *
838 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
839 *
840 * object + s->size
672bba3a 841 * Nothing is used beyond s->size.
81819f0f 842 *
3b0efdfa 843 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 844 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
845 * may be used with merged slabcaches.
846 */
847
81819f0f
CL
848static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
849{
cbfc35a4 850 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
851
852 if (s->flags & SLAB_STORE_USER)
853 /* We also have user information there */
854 off += 2 * sizeof(struct track);
855
80a9201a
AP
856 off += kasan_metadata_size(s);
857
d86bd1be 858 if (size_from_object(s) == off)
81819f0f
CL
859 return 1;
860
24922684 861 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 862 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
863}
864
39b26464 865/* Check the pad bytes at the end of a slab page */
81819f0f
CL
866static int slab_pad_check(struct kmem_cache *s, struct page *page)
867{
24922684
CL
868 u8 *start;
869 u8 *fault;
870 u8 *end;
5d682681 871 u8 *pad;
24922684
CL
872 int length;
873 int remainder;
81819f0f
CL
874
875 if (!(s->flags & SLAB_POISON))
876 return 1;
877
a973e9dd 878 start = page_address(page);
a50b854e 879 length = page_size(page);
39b26464
CL
880 end = start + length;
881 remainder = length % s->size;
81819f0f
CL
882 if (!remainder)
883 return 1;
884
5d682681 885 pad = end - remainder;
a79316c6 886 metadata_access_enable();
aa1ef4d7 887 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 888 metadata_access_disable();
24922684
CL
889 if (!fault)
890 return 1;
891 while (end > fault && end[-1] == POISON_INUSE)
892 end--;
893
e1b70dd1
MC
894 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
895 fault, end - 1, fault - start);
5d682681 896 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 897
5d682681 898 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 899 return 0;
81819f0f
CL
900}
901
902static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 903 void *object, u8 val)
81819f0f
CL
904{
905 u8 *p = object;
3b0efdfa 906 u8 *endobject = object + s->object_size;
81819f0f
CL
907
908 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
909 if (!check_bytes_and_report(s, page, object, "Redzone",
910 object - s->red_left_pad, val, s->red_left_pad))
911 return 0;
912
24922684 913 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 914 endobject, val, s->inuse - s->object_size))
81819f0f 915 return 0;
81819f0f 916 } else {
3b0efdfa 917 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 918 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
919 endobject, POISON_INUSE,
920 s->inuse - s->object_size);
3adbefee 921 }
81819f0f
CL
922 }
923
924 if (s->flags & SLAB_POISON) {
f7cb1933 925 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 926 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 927 POISON_FREE, s->object_size - 1) ||
24922684 928 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 929 p + s->object_size - 1, POISON_END, 1)))
81819f0f 930 return 0;
81819f0f
CL
931 /*
932 * check_pad_bytes cleans up on its own.
933 */
934 check_pad_bytes(s, page, p);
935 }
936
cbfc35a4 937 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
938 /*
939 * Object and freepointer overlap. Cannot check
940 * freepointer while object is allocated.
941 */
942 return 1;
943
944 /* Check free pointer validity */
945 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
946 object_err(s, page, p, "Freepointer corrupt");
947 /*
9f6c708e 948 * No choice but to zap it and thus lose the remainder
81819f0f 949 * of the free objects in this slab. May cause
672bba3a 950 * another error because the object count is now wrong.
81819f0f 951 */
a973e9dd 952 set_freepointer(s, p, NULL);
81819f0f
CL
953 return 0;
954 }
955 return 1;
956}
957
958static int check_slab(struct kmem_cache *s, struct page *page)
959{
39b26464
CL
960 int maxobj;
961
81819f0f
CL
962 VM_BUG_ON(!irqs_disabled());
963
964 if (!PageSlab(page)) {
24922684 965 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
966 return 0;
967 }
39b26464 968
9736d2a9 969 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
970 if (page->objects > maxobj) {
971 slab_err(s, page, "objects %u > max %u",
f6edde9c 972 page->objects, maxobj);
39b26464
CL
973 return 0;
974 }
975 if (page->inuse > page->objects) {
24922684 976 slab_err(s, page, "inuse %u > max %u",
f6edde9c 977 page->inuse, page->objects);
81819f0f
CL
978 return 0;
979 }
980 /* Slab_pad_check fixes things up after itself */
981 slab_pad_check(s, page);
982 return 1;
983}
984
985/*
672bba3a
CL
986 * Determine if a certain object on a page is on the freelist. Must hold the
987 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
988 */
989static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
990{
991 int nr = 0;
881db7fb 992 void *fp;
81819f0f 993 void *object = NULL;
f6edde9c 994 int max_objects;
81819f0f 995
881db7fb 996 fp = page->freelist;
39b26464 997 while (fp && nr <= page->objects) {
81819f0f
CL
998 if (fp == search)
999 return 1;
1000 if (!check_valid_pointer(s, page, fp)) {
1001 if (object) {
1002 object_err(s, page, object,
1003 "Freechain corrupt");
a973e9dd 1004 set_freepointer(s, object, NULL);
81819f0f 1005 } else {
24922684 1006 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1007 page->freelist = NULL;
39b26464 1008 page->inuse = page->objects;
24922684 1009 slab_fix(s, "Freelist cleared");
81819f0f
CL
1010 return 0;
1011 }
1012 break;
1013 }
1014 object = fp;
1015 fp = get_freepointer(s, object);
1016 nr++;
1017 }
1018
9736d2a9 1019 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1020 if (max_objects > MAX_OBJS_PER_PAGE)
1021 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1022
1023 if (page->objects != max_objects) {
756a025f
JP
1024 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1025 page->objects, max_objects);
224a88be
CL
1026 page->objects = max_objects;
1027 slab_fix(s, "Number of objects adjusted.");
1028 }
39b26464 1029 if (page->inuse != page->objects - nr) {
756a025f
JP
1030 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1031 page->inuse, page->objects - nr);
39b26464 1032 page->inuse = page->objects - nr;
24922684 1033 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1034 }
1035 return search == NULL;
1036}
1037
0121c619
CL
1038static void trace(struct kmem_cache *s, struct page *page, void *object,
1039 int alloc)
3ec09742
CL
1040{
1041 if (s->flags & SLAB_TRACE) {
f9f58285 1042 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1043 s->name,
1044 alloc ? "alloc" : "free",
1045 object, page->inuse,
1046 page->freelist);
1047
1048 if (!alloc)
aa2efd5e 1049 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1050 s->object_size);
3ec09742
CL
1051
1052 dump_stack();
1053 }
1054}
1055
643b1138 1056/*
672bba3a 1057 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1058 */
5cc6eee8
CL
1059static void add_full(struct kmem_cache *s,
1060 struct kmem_cache_node *n, struct page *page)
643b1138 1061{
5cc6eee8
CL
1062 if (!(s->flags & SLAB_STORE_USER))
1063 return;
1064
255d0884 1065 lockdep_assert_held(&n->list_lock);
916ac052 1066 list_add(&page->slab_list, &n->full);
643b1138
CL
1067}
1068
c65c1877 1069static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1070{
643b1138
CL
1071 if (!(s->flags & SLAB_STORE_USER))
1072 return;
1073
255d0884 1074 lockdep_assert_held(&n->list_lock);
916ac052 1075 list_del(&page->slab_list);
643b1138
CL
1076}
1077
0f389ec6
CL
1078/* Tracking of the number of slabs for debugging purposes */
1079static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1080{
1081 struct kmem_cache_node *n = get_node(s, node);
1082
1083 return atomic_long_read(&n->nr_slabs);
1084}
1085
26c02cf0
AB
1086static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1087{
1088 return atomic_long_read(&n->nr_slabs);
1089}
1090
205ab99d 1091static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1092{
1093 struct kmem_cache_node *n = get_node(s, node);
1094
1095 /*
1096 * May be called early in order to allocate a slab for the
1097 * kmem_cache_node structure. Solve the chicken-egg
1098 * dilemma by deferring the increment of the count during
1099 * bootstrap (see early_kmem_cache_node_alloc).
1100 */
338b2642 1101 if (likely(n)) {
0f389ec6 1102 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1103 atomic_long_add(objects, &n->total_objects);
1104 }
0f389ec6 1105}
205ab99d 1106static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1107{
1108 struct kmem_cache_node *n = get_node(s, node);
1109
1110 atomic_long_dec(&n->nr_slabs);
205ab99d 1111 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1112}
1113
1114/* Object debug checks for alloc/free paths */
3ec09742
CL
1115static void setup_object_debug(struct kmem_cache *s, struct page *page,
1116 void *object)
1117{
8fc8d666 1118 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1119 return;
1120
f7cb1933 1121 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1122 init_tracking(s, object);
1123}
1124
a50b854e
MWO
1125static
1126void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1127{
8fc8d666 1128 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1129 return;
1130
1131 metadata_access_enable();
aa1ef4d7 1132 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1133 metadata_access_disable();
1134}
1135
becfda68 1136static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1137 struct page *page, void *object)
81819f0f
CL
1138{
1139 if (!check_slab(s, page))
becfda68 1140 return 0;
81819f0f 1141
81819f0f
CL
1142 if (!check_valid_pointer(s, page, object)) {
1143 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1144 return 0;
81819f0f
CL
1145 }
1146
f7cb1933 1147 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1148 return 0;
1149
1150 return 1;
1151}
1152
1153static noinline int alloc_debug_processing(struct kmem_cache *s,
1154 struct page *page,
1155 void *object, unsigned long addr)
1156{
1157 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1158 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1159 goto bad;
1160 }
81819f0f 1161
3ec09742
CL
1162 /* Success perform special debug activities for allocs */
1163 if (s->flags & SLAB_STORE_USER)
1164 set_track(s, object, TRACK_ALLOC, addr);
1165 trace(s, page, object, 1);
f7cb1933 1166 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1167 return 1;
3ec09742 1168
81819f0f
CL
1169bad:
1170 if (PageSlab(page)) {
1171 /*
1172 * If this is a slab page then lets do the best we can
1173 * to avoid issues in the future. Marking all objects
672bba3a 1174 * as used avoids touching the remaining objects.
81819f0f 1175 */
24922684 1176 slab_fix(s, "Marking all objects used");
39b26464 1177 page->inuse = page->objects;
a973e9dd 1178 page->freelist = NULL;
81819f0f
CL
1179 }
1180 return 0;
1181}
1182
becfda68
LA
1183static inline int free_consistency_checks(struct kmem_cache *s,
1184 struct page *page, void *object, unsigned long addr)
81819f0f 1185{
81819f0f 1186 if (!check_valid_pointer(s, page, object)) {
70d71228 1187 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1188 return 0;
81819f0f
CL
1189 }
1190
1191 if (on_freelist(s, page, object)) {
24922684 1192 object_err(s, page, object, "Object already free");
becfda68 1193 return 0;
81819f0f
CL
1194 }
1195
f7cb1933 1196 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1197 return 0;
81819f0f 1198
1b4f59e3 1199 if (unlikely(s != page->slab_cache)) {
3adbefee 1200 if (!PageSlab(page)) {
756a025f
JP
1201 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1202 object);
1b4f59e3 1203 } else if (!page->slab_cache) {
f9f58285
FF
1204 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1205 object);
70d71228 1206 dump_stack();
06428780 1207 } else
24922684
CL
1208 object_err(s, page, object,
1209 "page slab pointer corrupt.");
becfda68
LA
1210 return 0;
1211 }
1212 return 1;
1213}
1214
1215/* Supports checking bulk free of a constructed freelist */
1216static noinline int free_debug_processing(
1217 struct kmem_cache *s, struct page *page,
1218 void *head, void *tail, int bulk_cnt,
1219 unsigned long addr)
1220{
1221 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1222 void *object = head;
1223 int cnt = 0;
3f649ab7 1224 unsigned long flags;
becfda68
LA
1225 int ret = 0;
1226
1227 spin_lock_irqsave(&n->list_lock, flags);
1228 slab_lock(page);
1229
1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 if (!check_slab(s, page))
1232 goto out;
1233 }
1234
1235next_object:
1236 cnt++;
1237
1238 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1239 if (!free_consistency_checks(s, page, object, addr))
1240 goto out;
81819f0f 1241 }
3ec09742 1242
3ec09742
CL
1243 if (s->flags & SLAB_STORE_USER)
1244 set_track(s, object, TRACK_FREE, addr);
1245 trace(s, page, object, 0);
81084651 1246 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1247 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1248
1249 /* Reached end of constructed freelist yet? */
1250 if (object != tail) {
1251 object = get_freepointer(s, object);
1252 goto next_object;
1253 }
804aa132
LA
1254 ret = 1;
1255
5c2e4bbb 1256out:
81084651
JDB
1257 if (cnt != bulk_cnt)
1258 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1259 bulk_cnt, cnt);
1260
881db7fb 1261 slab_unlock(page);
282acb43 1262 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1263 if (!ret)
1264 slab_fix(s, "Object at 0x%p not freed", object);
1265 return ret;
81819f0f
CL
1266}
1267
e17f1dfb
VB
1268/*
1269 * Parse a block of slub_debug options. Blocks are delimited by ';'
1270 *
1271 * @str: start of block
1272 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1273 * @slabs: return start of list of slabs, or NULL when there's no list
1274 * @init: assume this is initial parsing and not per-kmem-create parsing
1275 *
1276 * returns the start of next block if there's any, or NULL
1277 */
1278static char *
1279parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1280{
e17f1dfb 1281 bool higher_order_disable = false;
f0630fff 1282
e17f1dfb
VB
1283 /* Skip any completely empty blocks */
1284 while (*str && *str == ';')
1285 str++;
1286
1287 if (*str == ',') {
f0630fff
CL
1288 /*
1289 * No options but restriction on slabs. This means full
1290 * debugging for slabs matching a pattern.
1291 */
e17f1dfb 1292 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1293 goto check_slabs;
e17f1dfb
VB
1294 }
1295 *flags = 0;
f0630fff 1296
e17f1dfb
VB
1297 /* Determine which debug features should be switched on */
1298 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1299 switch (tolower(*str)) {
e17f1dfb
VB
1300 case '-':
1301 *flags = 0;
1302 break;
f0630fff 1303 case 'f':
e17f1dfb 1304 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1305 break;
1306 case 'z':
e17f1dfb 1307 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1308 break;
1309 case 'p':
e17f1dfb 1310 *flags |= SLAB_POISON;
f0630fff
CL
1311 break;
1312 case 'u':
e17f1dfb 1313 *flags |= SLAB_STORE_USER;
f0630fff
CL
1314 break;
1315 case 't':
e17f1dfb 1316 *flags |= SLAB_TRACE;
f0630fff 1317 break;
4c13dd3b 1318 case 'a':
e17f1dfb 1319 *flags |= SLAB_FAILSLAB;
4c13dd3b 1320 break;
08303a73
CA
1321 case 'o':
1322 /*
1323 * Avoid enabling debugging on caches if its minimum
1324 * order would increase as a result.
1325 */
e17f1dfb 1326 higher_order_disable = true;
08303a73 1327 break;
f0630fff 1328 default:
e17f1dfb
VB
1329 if (init)
1330 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1331 }
41ecc55b 1332 }
f0630fff 1333check_slabs:
41ecc55b 1334 if (*str == ',')
e17f1dfb
VB
1335 *slabs = ++str;
1336 else
1337 *slabs = NULL;
1338
1339 /* Skip over the slab list */
1340 while (*str && *str != ';')
1341 str++;
1342
1343 /* Skip any completely empty blocks */
1344 while (*str && *str == ';')
1345 str++;
1346
1347 if (init && higher_order_disable)
1348 disable_higher_order_debug = 1;
1349
1350 if (*str)
1351 return str;
1352 else
1353 return NULL;
1354}
1355
1356static int __init setup_slub_debug(char *str)
1357{
1358 slab_flags_t flags;
1359 char *saved_str;
1360 char *slab_list;
1361 bool global_slub_debug_changed = false;
1362 bool slab_list_specified = false;
1363
1364 slub_debug = DEBUG_DEFAULT_FLAGS;
1365 if (*str++ != '=' || !*str)
1366 /*
1367 * No options specified. Switch on full debugging.
1368 */
1369 goto out;
1370
1371 saved_str = str;
1372 while (str) {
1373 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1374
1375 if (!slab_list) {
1376 slub_debug = flags;
1377 global_slub_debug_changed = true;
1378 } else {
1379 slab_list_specified = true;
1380 }
1381 }
1382
1383 /*
1384 * For backwards compatibility, a single list of flags with list of
1385 * slabs means debugging is only enabled for those slabs, so the global
1386 * slub_debug should be 0. We can extended that to multiple lists as
1387 * long as there is no option specifying flags without a slab list.
1388 */
1389 if (slab_list_specified) {
1390 if (!global_slub_debug_changed)
1391 slub_debug = 0;
1392 slub_debug_string = saved_str;
1393 }
f0630fff 1394out:
ca0cab65
VB
1395 if (slub_debug != 0 || slub_debug_string)
1396 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1397 if ((static_branch_unlikely(&init_on_alloc) ||
1398 static_branch_unlikely(&init_on_free)) &&
1399 (slub_debug & SLAB_POISON))
1400 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1401 return 1;
1402}
1403
1404__setup("slub_debug", setup_slub_debug);
1405
c5fd3ca0
AT
1406/*
1407 * kmem_cache_flags - apply debugging options to the cache
1408 * @object_size: the size of an object without meta data
1409 * @flags: flags to set
1410 * @name: name of the cache
c5fd3ca0
AT
1411 *
1412 * Debug option(s) are applied to @flags. In addition to the debug
1413 * option(s), if a slab name (or multiple) is specified i.e.
1414 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1415 * then only the select slabs will receive the debug option(s).
1416 */
0293d1fd 1417slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1418 slab_flags_t flags, const char *name)
41ecc55b 1419{
c5fd3ca0
AT
1420 char *iter;
1421 size_t len;
e17f1dfb
VB
1422 char *next_block;
1423 slab_flags_t block_flags;
ca220593
JB
1424 slab_flags_t slub_debug_local = slub_debug;
1425
1426 /*
1427 * If the slab cache is for debugging (e.g. kmemleak) then
1428 * don't store user (stack trace) information by default,
1429 * but let the user enable it via the command line below.
1430 */
1431 if (flags & SLAB_NOLEAKTRACE)
1432 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1433
c5fd3ca0 1434 len = strlen(name);
e17f1dfb
VB
1435 next_block = slub_debug_string;
1436 /* Go through all blocks of debug options, see if any matches our slab's name */
1437 while (next_block) {
1438 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1439 if (!iter)
1440 continue;
1441 /* Found a block that has a slab list, search it */
1442 while (*iter) {
1443 char *end, *glob;
1444 size_t cmplen;
1445
1446 end = strchrnul(iter, ',');
1447 if (next_block && next_block < end)
1448 end = next_block - 1;
1449
1450 glob = strnchr(iter, end - iter, '*');
1451 if (glob)
1452 cmplen = glob - iter;
1453 else
1454 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1455
e17f1dfb
VB
1456 if (!strncmp(name, iter, cmplen)) {
1457 flags |= block_flags;
1458 return flags;
1459 }
c5fd3ca0 1460
e17f1dfb
VB
1461 if (!*end || *end == ';')
1462 break;
1463 iter = end + 1;
c5fd3ca0 1464 }
c5fd3ca0 1465 }
ba0268a8 1466
ca220593 1467 return flags | slub_debug_local;
41ecc55b 1468}
b4a64718 1469#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1470static inline void setup_object_debug(struct kmem_cache *s,
1471 struct page *page, void *object) {}
a50b854e
MWO
1472static inline
1473void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1474
3ec09742 1475static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1476 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1477
282acb43 1478static inline int free_debug_processing(
81084651
JDB
1479 struct kmem_cache *s, struct page *page,
1480 void *head, void *tail, int bulk_cnt,
282acb43 1481 unsigned long addr) { return 0; }
41ecc55b 1482
41ecc55b
CL
1483static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1484 { return 1; }
1485static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1486 void *object, u8 val) { return 1; }
5cc6eee8
CL
1487static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1488 struct page *page) {}
c65c1877
PZ
1489static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
0293d1fd 1491slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1492 slab_flags_t flags, const char *name)
ba0268a8
CL
1493{
1494 return flags;
1495}
41ecc55b 1496#define slub_debug 0
0f389ec6 1497
fdaa45e9
IM
1498#define disable_higher_order_debug 0
1499
0f389ec6
CL
1500static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1501 { return 0; }
26c02cf0
AB
1502static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1503 { return 0; }
205ab99d
CL
1504static inline void inc_slabs_node(struct kmem_cache *s, int node,
1505 int objects) {}
1506static inline void dec_slabs_node(struct kmem_cache *s, int node,
1507 int objects) {}
7d550c56 1508
52f23478 1509static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1510 void **freelist, void *nextfree)
52f23478
DZ
1511{
1512 return false;
1513}
02e72cc6
AR
1514#endif /* CONFIG_SLUB_DEBUG */
1515
1516/*
1517 * Hooks for other subsystems that check memory allocations. In a typical
1518 * production configuration these hooks all should produce no code at all.
1519 */
0116523c 1520static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1521{
53128245 1522 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1523 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1524 kmemleak_alloc(ptr, size, 1, flags);
53128245 1525 return ptr;
d56791b3
RB
1526}
1527
ee3ce779 1528static __always_inline void kfree_hook(void *x)
d56791b3
RB
1529{
1530 kmemleak_free(x);
027b37b5 1531 kasan_kfree_large(x);
d56791b3
RB
1532}
1533
c3895391 1534static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1535{
1536 kmemleak_free_recursive(x, s->flags);
7d550c56 1537
02e72cc6
AR
1538 /*
1539 * Trouble is that we may no longer disable interrupts in the fast path
1540 * So in order to make the debug calls that expect irqs to be
1541 * disabled we need to disable interrupts temporarily.
1542 */
4675ff05 1543#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1544 {
1545 unsigned long flags;
1546
1547 local_irq_save(flags);
02e72cc6
AR
1548 debug_check_no_locks_freed(x, s->object_size);
1549 local_irq_restore(flags);
1550 }
1551#endif
1552 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1553 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1554
cfbe1636
ME
1555 /* Use KCSAN to help debug racy use-after-free. */
1556 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1557 __kcsan_check_access(x, s->object_size,
1558 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1559
c3895391 1560 /* KASAN might put x into memory quarantine, delaying its reuse */
027b37b5 1561 return kasan_slab_free(s, x);
02e72cc6 1562}
205ab99d 1563
c3895391
AK
1564static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1565 void **head, void **tail)
81084651 1566{
6471384a
AP
1567
1568 void *object;
1569 void *next = *head;
1570 void *old_tail = *tail ? *tail : *head;
1571 int rsize;
1572
aea4df4c
LA
1573 /* Head and tail of the reconstructed freelist */
1574 *head = NULL;
1575 *tail = NULL;
1b7e816f 1576
aea4df4c
LA
1577 do {
1578 object = next;
1579 next = get_freepointer(s, object);
1580
1581 if (slab_want_init_on_free(s)) {
6471384a
AP
1582 /*
1583 * Clear the object and the metadata, but don't touch
1584 * the redzone.
1585 */
aa1ef4d7 1586 memset(kasan_reset_tag(object), 0, s->object_size);
6471384a
AP
1587 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1588 : 0;
aa1ef4d7 1589 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
6471384a 1590 s->size - s->inuse - rsize);
81084651 1591
aea4df4c 1592 }
c3895391
AK
1593 /* If object's reuse doesn't have to be delayed */
1594 if (!slab_free_hook(s, object)) {
1595 /* Move object to the new freelist */
1596 set_freepointer(s, object, *head);
1597 *head = object;
1598 if (!*tail)
1599 *tail = object;
1600 }
1601 } while (object != old_tail);
1602
1603 if (*head == *tail)
1604 *tail = NULL;
1605
1606 return *head != NULL;
81084651
JDB
1607}
1608
4d176711 1609static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1610 void *object)
1611{
1612 setup_object_debug(s, page, object);
4d176711 1613 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1614 if (unlikely(s->ctor)) {
1615 kasan_unpoison_object_data(s, object);
1616 s->ctor(object);
1617 kasan_poison_object_data(s, object);
1618 }
4d176711 1619 return object;
588f8ba9
TG
1620}
1621
81819f0f
CL
1622/*
1623 * Slab allocation and freeing
1624 */
5dfb4175
VD
1625static inline struct page *alloc_slab_page(struct kmem_cache *s,
1626 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1627{
5dfb4175 1628 struct page *page;
19af27af 1629 unsigned int order = oo_order(oo);
65c3376a 1630
2154a336 1631 if (node == NUMA_NO_NODE)
5dfb4175 1632 page = alloc_pages(flags, order);
65c3376a 1633 else
96db800f 1634 page = __alloc_pages_node(node, flags, order);
5dfb4175 1635
5dfb4175 1636 return page;
65c3376a
CL
1637}
1638
210e7a43
TG
1639#ifdef CONFIG_SLAB_FREELIST_RANDOM
1640/* Pre-initialize the random sequence cache */
1641static int init_cache_random_seq(struct kmem_cache *s)
1642{
19af27af 1643 unsigned int count = oo_objects(s->oo);
210e7a43 1644 int err;
210e7a43 1645
a810007a
SR
1646 /* Bailout if already initialised */
1647 if (s->random_seq)
1648 return 0;
1649
210e7a43
TG
1650 err = cache_random_seq_create(s, count, GFP_KERNEL);
1651 if (err) {
1652 pr_err("SLUB: Unable to initialize free list for %s\n",
1653 s->name);
1654 return err;
1655 }
1656
1657 /* Transform to an offset on the set of pages */
1658 if (s->random_seq) {
19af27af
AD
1659 unsigned int i;
1660
210e7a43
TG
1661 for (i = 0; i < count; i++)
1662 s->random_seq[i] *= s->size;
1663 }
1664 return 0;
1665}
1666
1667/* Initialize each random sequence freelist per cache */
1668static void __init init_freelist_randomization(void)
1669{
1670 struct kmem_cache *s;
1671
1672 mutex_lock(&slab_mutex);
1673
1674 list_for_each_entry(s, &slab_caches, list)
1675 init_cache_random_seq(s);
1676
1677 mutex_unlock(&slab_mutex);
1678}
1679
1680/* Get the next entry on the pre-computed freelist randomized */
1681static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1682 unsigned long *pos, void *start,
1683 unsigned long page_limit,
1684 unsigned long freelist_count)
1685{
1686 unsigned int idx;
1687
1688 /*
1689 * If the target page allocation failed, the number of objects on the
1690 * page might be smaller than the usual size defined by the cache.
1691 */
1692 do {
1693 idx = s->random_seq[*pos];
1694 *pos += 1;
1695 if (*pos >= freelist_count)
1696 *pos = 0;
1697 } while (unlikely(idx >= page_limit));
1698
1699 return (char *)start + idx;
1700}
1701
1702/* Shuffle the single linked freelist based on a random pre-computed sequence */
1703static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1704{
1705 void *start;
1706 void *cur;
1707 void *next;
1708 unsigned long idx, pos, page_limit, freelist_count;
1709
1710 if (page->objects < 2 || !s->random_seq)
1711 return false;
1712
1713 freelist_count = oo_objects(s->oo);
1714 pos = get_random_int() % freelist_count;
1715
1716 page_limit = page->objects * s->size;
1717 start = fixup_red_left(s, page_address(page));
1718
1719 /* First entry is used as the base of the freelist */
1720 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1721 freelist_count);
4d176711 1722 cur = setup_object(s, page, cur);
210e7a43
TG
1723 page->freelist = cur;
1724
1725 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1726 next = next_freelist_entry(s, page, &pos, start, page_limit,
1727 freelist_count);
4d176711 1728 next = setup_object(s, page, next);
210e7a43
TG
1729 set_freepointer(s, cur, next);
1730 cur = next;
1731 }
210e7a43
TG
1732 set_freepointer(s, cur, NULL);
1733
1734 return true;
1735}
1736#else
1737static inline int init_cache_random_seq(struct kmem_cache *s)
1738{
1739 return 0;
1740}
1741static inline void init_freelist_randomization(void) { }
1742static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1743{
1744 return false;
1745}
1746#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1747
81819f0f
CL
1748static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1749{
06428780 1750 struct page *page;
834f3d11 1751 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1752 gfp_t alloc_gfp;
4d176711 1753 void *start, *p, *next;
a50b854e 1754 int idx;
210e7a43 1755 bool shuffle;
81819f0f 1756
7e0528da
CL
1757 flags &= gfp_allowed_mask;
1758
d0164adc 1759 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1760 local_irq_enable();
1761
b7a49f0d 1762 flags |= s->allocflags;
e12ba74d 1763
ba52270d
PE
1764 /*
1765 * Let the initial higher-order allocation fail under memory pressure
1766 * so we fall-back to the minimum order allocation.
1767 */
1768 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1769 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1770 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1771
5dfb4175 1772 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1773 if (unlikely(!page)) {
1774 oo = s->min;
80c3a998 1775 alloc_gfp = flags;
65c3376a
CL
1776 /*
1777 * Allocation may have failed due to fragmentation.
1778 * Try a lower order alloc if possible
1779 */
5dfb4175 1780 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1781 if (unlikely(!page))
1782 goto out;
1783 stat(s, ORDER_FALLBACK);
65c3376a 1784 }
5a896d9e 1785
834f3d11 1786 page->objects = oo_objects(oo);
81819f0f 1787
2e9bd483 1788 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1789
1b4f59e3 1790 page->slab_cache = s;
c03f94cc 1791 __SetPageSlab(page);
2f064f34 1792 if (page_is_pfmemalloc(page))
072bb0aa 1793 SetPageSlabPfmemalloc(page);
81819f0f 1794
a7101224 1795 kasan_poison_slab(page);
81819f0f 1796
a7101224 1797 start = page_address(page);
81819f0f 1798
a50b854e 1799 setup_page_debug(s, page, start);
0316bec2 1800
210e7a43
TG
1801 shuffle = shuffle_freelist(s, page);
1802
1803 if (!shuffle) {
4d176711
AK
1804 start = fixup_red_left(s, start);
1805 start = setup_object(s, page, start);
1806 page->freelist = start;
18e50661
AK
1807 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1808 next = p + s->size;
1809 next = setup_object(s, page, next);
1810 set_freepointer(s, p, next);
1811 p = next;
1812 }
1813 set_freepointer(s, p, NULL);
81819f0f 1814 }
81819f0f 1815
e6e82ea1 1816 page->inuse = page->objects;
8cb0a506 1817 page->frozen = 1;
588f8ba9 1818
81819f0f 1819out:
d0164adc 1820 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1821 local_irq_disable();
1822 if (!page)
1823 return NULL;
1824
588f8ba9
TG
1825 inc_slabs_node(s, page_to_nid(page), page->objects);
1826
81819f0f
CL
1827 return page;
1828}
1829
588f8ba9
TG
1830static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1831{
44405099
LL
1832 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1833 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1834
1835 return allocate_slab(s,
1836 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1837}
1838
81819f0f
CL
1839static void __free_slab(struct kmem_cache *s, struct page *page)
1840{
834f3d11
CL
1841 int order = compound_order(page);
1842 int pages = 1 << order;
81819f0f 1843
8fc8d666 1844 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1845 void *p;
1846
1847 slab_pad_check(s, page);
224a88be
CL
1848 for_each_object(p, s, page_address(page),
1849 page->objects)
f7cb1933 1850 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1851 }
1852
072bb0aa 1853 __ClearPageSlabPfmemalloc(page);
49bd5221 1854 __ClearPageSlab(page);
0c06dd75
VB
1855 /* In union with page->mapping where page allocator expects NULL */
1856 page->slab_cache = NULL;
1eb5ac64
NP
1857 if (current->reclaim_state)
1858 current->reclaim_state->reclaimed_slab += pages;
74d555be 1859 unaccount_slab_page(page, order, s);
27ee57c9 1860 __free_pages(page, order);
81819f0f
CL
1861}
1862
1863static void rcu_free_slab(struct rcu_head *h)
1864{
bf68c214 1865 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1866
1b4f59e3 1867 __free_slab(page->slab_cache, page);
81819f0f
CL
1868}
1869
1870static void free_slab(struct kmem_cache *s, struct page *page)
1871{
5f0d5a3a 1872 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1873 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1874 } else
1875 __free_slab(s, page);
1876}
1877
1878static void discard_slab(struct kmem_cache *s, struct page *page)
1879{
205ab99d 1880 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1881 free_slab(s, page);
1882}
1883
1884/*
5cc6eee8 1885 * Management of partially allocated slabs.
81819f0f 1886 */
1e4dd946
SR
1887static inline void
1888__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1889{
e95eed57 1890 n->nr_partial++;
136333d1 1891 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1892 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1893 else
916ac052 1894 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1895}
1896
1e4dd946
SR
1897static inline void add_partial(struct kmem_cache_node *n,
1898 struct page *page, int tail)
62e346a8 1899{
c65c1877 1900 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1901 __add_partial(n, page, tail);
1902}
c65c1877 1903
1e4dd946
SR
1904static inline void remove_partial(struct kmem_cache_node *n,
1905 struct page *page)
1906{
1907 lockdep_assert_held(&n->list_lock);
916ac052 1908 list_del(&page->slab_list);
52b4b950 1909 n->nr_partial--;
1e4dd946
SR
1910}
1911
81819f0f 1912/*
7ced3719
CL
1913 * Remove slab from the partial list, freeze it and
1914 * return the pointer to the freelist.
81819f0f 1915 *
497b66f2 1916 * Returns a list of objects or NULL if it fails.
81819f0f 1917 */
497b66f2 1918static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1919 struct kmem_cache_node *n, struct page *page,
633b0764 1920 int mode, int *objects)
81819f0f 1921{
2cfb7455
CL
1922 void *freelist;
1923 unsigned long counters;
1924 struct page new;
1925
c65c1877
PZ
1926 lockdep_assert_held(&n->list_lock);
1927
2cfb7455
CL
1928 /*
1929 * Zap the freelist and set the frozen bit.
1930 * The old freelist is the list of objects for the
1931 * per cpu allocation list.
1932 */
7ced3719
CL
1933 freelist = page->freelist;
1934 counters = page->counters;
1935 new.counters = counters;
633b0764 1936 *objects = new.objects - new.inuse;
23910c50 1937 if (mode) {
7ced3719 1938 new.inuse = page->objects;
23910c50
PE
1939 new.freelist = NULL;
1940 } else {
1941 new.freelist = freelist;
1942 }
2cfb7455 1943
a0132ac0 1944 VM_BUG_ON(new.frozen);
7ced3719 1945 new.frozen = 1;
2cfb7455 1946
7ced3719 1947 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1948 freelist, counters,
02d7633f 1949 new.freelist, new.counters,
7ced3719 1950 "acquire_slab"))
7ced3719 1951 return NULL;
2cfb7455
CL
1952
1953 remove_partial(n, page);
7ced3719 1954 WARN_ON(!freelist);
49e22585 1955 return freelist;
81819f0f
CL
1956}
1957
633b0764 1958static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1959static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1960
81819f0f 1961/*
672bba3a 1962 * Try to allocate a partial slab from a specific node.
81819f0f 1963 */
8ba00bb6
JK
1964static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1965 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1966{
49e22585
CL
1967 struct page *page, *page2;
1968 void *object = NULL;
e5d9998f 1969 unsigned int available = 0;
633b0764 1970 int objects;
81819f0f
CL
1971
1972 /*
1973 * Racy check. If we mistakenly see no partial slabs then we
1974 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1975 * partial slab and there is none available then get_partial()
672bba3a 1976 * will return NULL.
81819f0f
CL
1977 */
1978 if (!n || !n->nr_partial)
1979 return NULL;
1980
1981 spin_lock(&n->list_lock);
916ac052 1982 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1983 void *t;
49e22585 1984
8ba00bb6
JK
1985 if (!pfmemalloc_match(page, flags))
1986 continue;
1987
633b0764 1988 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1989 if (!t)
8ff60eb0 1990 continue; /* cmpxchg raced */
49e22585 1991
633b0764 1992 available += objects;
12d79634 1993 if (!object) {
49e22585 1994 c->page = page;
49e22585 1995 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1996 object = t;
49e22585 1997 } else {
633b0764 1998 put_cpu_partial(s, page, 0);
8028dcea 1999 stat(s, CPU_PARTIAL_NODE);
49e22585 2000 }
345c905d 2001 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2002 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2003 break;
2004
497b66f2 2005 }
81819f0f 2006 spin_unlock(&n->list_lock);
497b66f2 2007 return object;
81819f0f
CL
2008}
2009
2010/*
672bba3a 2011 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2012 */
de3ec035 2013static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2014 struct kmem_cache_cpu *c)
81819f0f
CL
2015{
2016#ifdef CONFIG_NUMA
2017 struct zonelist *zonelist;
dd1a239f 2018 struct zoneref *z;
54a6eb5c 2019 struct zone *zone;
97a225e6 2020 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2021 void *object;
cc9a6c87 2022 unsigned int cpuset_mems_cookie;
81819f0f
CL
2023
2024 /*
672bba3a
CL
2025 * The defrag ratio allows a configuration of the tradeoffs between
2026 * inter node defragmentation and node local allocations. A lower
2027 * defrag_ratio increases the tendency to do local allocations
2028 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2029 *
672bba3a
CL
2030 * If the defrag_ratio is set to 0 then kmalloc() always
2031 * returns node local objects. If the ratio is higher then kmalloc()
2032 * may return off node objects because partial slabs are obtained
2033 * from other nodes and filled up.
81819f0f 2034 *
43efd3ea
LP
2035 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2036 * (which makes defrag_ratio = 1000) then every (well almost)
2037 * allocation will first attempt to defrag slab caches on other nodes.
2038 * This means scanning over all nodes to look for partial slabs which
2039 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2040 * with available objects.
81819f0f 2041 */
9824601e
CL
2042 if (!s->remote_node_defrag_ratio ||
2043 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2044 return NULL;
2045
cc9a6c87 2046 do {
d26914d1 2047 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2048 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2049 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2050 struct kmem_cache_node *n;
2051
2052 n = get_node(s, zone_to_nid(zone));
2053
dee2f8aa 2054 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2055 n->nr_partial > s->min_partial) {
8ba00bb6 2056 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2057 if (object) {
2058 /*
d26914d1
MG
2059 * Don't check read_mems_allowed_retry()
2060 * here - if mems_allowed was updated in
2061 * parallel, that was a harmless race
2062 * between allocation and the cpuset
2063 * update
cc9a6c87 2064 */
cc9a6c87
MG
2065 return object;
2066 }
c0ff7453 2067 }
81819f0f 2068 }
d26914d1 2069 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2070#endif /* CONFIG_NUMA */
81819f0f
CL
2071 return NULL;
2072}
2073
2074/*
2075 * Get a partial page, lock it and return it.
2076 */
497b66f2 2077static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2078 struct kmem_cache_cpu *c)
81819f0f 2079{
497b66f2 2080 void *object;
a561ce00
JK
2081 int searchnode = node;
2082
2083 if (node == NUMA_NO_NODE)
2084 searchnode = numa_mem_id();
81819f0f 2085
8ba00bb6 2086 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2087 if (object || node != NUMA_NO_NODE)
2088 return object;
81819f0f 2089
acd19fd1 2090 return get_any_partial(s, flags, c);
81819f0f
CL
2091}
2092
923717cb 2093#ifdef CONFIG_PREEMPTION
8a5ec0ba 2094/*
0d645ed1 2095 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2096 * during cmpxchg. The transactions start with the cpu number and are then
2097 * incremented by CONFIG_NR_CPUS.
2098 */
2099#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2100#else
2101/*
2102 * No preemption supported therefore also no need to check for
2103 * different cpus.
2104 */
2105#define TID_STEP 1
2106#endif
2107
2108static inline unsigned long next_tid(unsigned long tid)
2109{
2110 return tid + TID_STEP;
2111}
2112
9d5f0be0 2113#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2114static inline unsigned int tid_to_cpu(unsigned long tid)
2115{
2116 return tid % TID_STEP;
2117}
2118
2119static inline unsigned long tid_to_event(unsigned long tid)
2120{
2121 return tid / TID_STEP;
2122}
9d5f0be0 2123#endif
8a5ec0ba
CL
2124
2125static inline unsigned int init_tid(int cpu)
2126{
2127 return cpu;
2128}
2129
2130static inline void note_cmpxchg_failure(const char *n,
2131 const struct kmem_cache *s, unsigned long tid)
2132{
2133#ifdef SLUB_DEBUG_CMPXCHG
2134 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2135
f9f58285 2136 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2137
923717cb 2138#ifdef CONFIG_PREEMPTION
8a5ec0ba 2139 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2140 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2141 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2142 else
2143#endif
2144 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2145 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2146 tid_to_event(tid), tid_to_event(actual_tid));
2147 else
f9f58285 2148 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2149 actual_tid, tid, next_tid(tid));
2150#endif
4fdccdfb 2151 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2152}
2153
788e1aad 2154static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2155{
8a5ec0ba
CL
2156 int cpu;
2157
2158 for_each_possible_cpu(cpu)
2159 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2160}
2cfb7455 2161
81819f0f
CL
2162/*
2163 * Remove the cpu slab
2164 */
d0e0ac97 2165static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2166 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2167{
2cfb7455 2168 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2169 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2170 int lock = 0, free_delta = 0;
2cfb7455 2171 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2172 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2173 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2174 struct page new;
2175 struct page old;
2176
2177 if (page->freelist) {
84e554e6 2178 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2179 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2180 }
2181
894b8788 2182 /*
d930ff03
VB
2183 * Stage one: Count the objects on cpu's freelist as free_delta and
2184 * remember the last object in freelist_tail for later splicing.
2cfb7455 2185 */
d930ff03
VB
2186 freelist_tail = NULL;
2187 freelist_iter = freelist;
2188 while (freelist_iter) {
2189 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2190
52f23478
DZ
2191 /*
2192 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2193 * 'freelist_iter' is already corrupted. So isolate all objects
2194 * starting at 'freelist_iter' by skipping them.
52f23478 2195 */
d930ff03 2196 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2197 break;
2198
d930ff03
VB
2199 freelist_tail = freelist_iter;
2200 free_delta++;
2cfb7455 2201
d930ff03 2202 freelist_iter = nextfree;
2cfb7455
CL
2203 }
2204
894b8788 2205 /*
d930ff03
VB
2206 * Stage two: Unfreeze the page while splicing the per-cpu
2207 * freelist to the head of page's freelist.
2208 *
2209 * Ensure that the page is unfrozen while the list presence
2210 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2211 *
2212 * We setup the list membership and then perform a cmpxchg
2213 * with the count. If there is a mismatch then the page
2214 * is not unfrozen but the page is on the wrong list.
2215 *
2216 * Then we restart the process which may have to remove
2217 * the page from the list that we just put it on again
2218 * because the number of objects in the slab may have
2219 * changed.
894b8788 2220 */
2cfb7455 2221redo:
894b8788 2222
d930ff03
VB
2223 old.freelist = READ_ONCE(page->freelist);
2224 old.counters = READ_ONCE(page->counters);
a0132ac0 2225 VM_BUG_ON(!old.frozen);
7c2e132c 2226
2cfb7455
CL
2227 /* Determine target state of the slab */
2228 new.counters = old.counters;
d930ff03
VB
2229 if (freelist_tail) {
2230 new.inuse -= free_delta;
2231 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2232 new.freelist = freelist;
2233 } else
2234 new.freelist = old.freelist;
2235
2236 new.frozen = 0;
2237
8a5b20ae 2238 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2239 m = M_FREE;
2240 else if (new.freelist) {
2241 m = M_PARTIAL;
2242 if (!lock) {
2243 lock = 1;
2244 /*
8bb4e7a2 2245 * Taking the spinlock removes the possibility
2cfb7455
CL
2246 * that acquire_slab() will see a slab page that
2247 * is frozen
2248 */
2249 spin_lock(&n->list_lock);
2250 }
2251 } else {
2252 m = M_FULL;
965c4848 2253 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2254 lock = 1;
2255 /*
2256 * This also ensures that the scanning of full
2257 * slabs from diagnostic functions will not see
2258 * any frozen slabs.
2259 */
2260 spin_lock(&n->list_lock);
2261 }
2262 }
2263
2264 if (l != m) {
2cfb7455 2265 if (l == M_PARTIAL)
2cfb7455 2266 remove_partial(n, page);
2cfb7455 2267 else if (l == M_FULL)
c65c1877 2268 remove_full(s, n, page);
2cfb7455 2269
88349a28 2270 if (m == M_PARTIAL)
2cfb7455 2271 add_partial(n, page, tail);
88349a28 2272 else if (m == M_FULL)
2cfb7455 2273 add_full(s, n, page);
2cfb7455
CL
2274 }
2275
2276 l = m;
1d07171c 2277 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2278 old.freelist, old.counters,
2279 new.freelist, new.counters,
2280 "unfreezing slab"))
2281 goto redo;
2282
2cfb7455
CL
2283 if (lock)
2284 spin_unlock(&n->list_lock);
2285
88349a28
WY
2286 if (m == M_PARTIAL)
2287 stat(s, tail);
2288 else if (m == M_FULL)
2289 stat(s, DEACTIVATE_FULL);
2290 else if (m == M_FREE) {
2cfb7455
CL
2291 stat(s, DEACTIVATE_EMPTY);
2292 discard_slab(s, page);
2293 stat(s, FREE_SLAB);
894b8788 2294 }
d4ff6d35
WY
2295
2296 c->page = NULL;
2297 c->freelist = NULL;
81819f0f
CL
2298}
2299
d24ac77f
JK
2300/*
2301 * Unfreeze all the cpu partial slabs.
2302 *
59a09917
CL
2303 * This function must be called with interrupts disabled
2304 * for the cpu using c (or some other guarantee must be there
2305 * to guarantee no concurrent accesses).
d24ac77f 2306 */
59a09917
CL
2307static void unfreeze_partials(struct kmem_cache *s,
2308 struct kmem_cache_cpu *c)
49e22585 2309{
345c905d 2310#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2311 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2312 struct page *page, *discard_page = NULL;
49e22585 2313
4c7ba22e 2314 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2315 struct page new;
2316 struct page old;
2317
4c7ba22e 2318 slub_set_percpu_partial(c, page);
43d77867
JK
2319
2320 n2 = get_node(s, page_to_nid(page));
2321 if (n != n2) {
2322 if (n)
2323 spin_unlock(&n->list_lock);
2324
2325 n = n2;
2326 spin_lock(&n->list_lock);
2327 }
49e22585
CL
2328
2329 do {
2330
2331 old.freelist = page->freelist;
2332 old.counters = page->counters;
a0132ac0 2333 VM_BUG_ON(!old.frozen);
49e22585
CL
2334
2335 new.counters = old.counters;
2336 new.freelist = old.freelist;
2337
2338 new.frozen = 0;
2339
d24ac77f 2340 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2341 old.freelist, old.counters,
2342 new.freelist, new.counters,
2343 "unfreezing slab"));
2344
8a5b20ae 2345 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2346 page->next = discard_page;
2347 discard_page = page;
43d77867
JK
2348 } else {
2349 add_partial(n, page, DEACTIVATE_TO_TAIL);
2350 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2351 }
2352 }
2353
2354 if (n)
2355 spin_unlock(&n->list_lock);
9ada1934
SL
2356
2357 while (discard_page) {
2358 page = discard_page;
2359 discard_page = discard_page->next;
2360
2361 stat(s, DEACTIVATE_EMPTY);
2362 discard_slab(s, page);
2363 stat(s, FREE_SLAB);
2364 }
6dfd1b65 2365#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2366}
2367
2368/*
9234bae9
WY
2369 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2370 * partial page slot if available.
49e22585
CL
2371 *
2372 * If we did not find a slot then simply move all the partials to the
2373 * per node partial list.
2374 */
633b0764 2375static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2376{
345c905d 2377#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2378 struct page *oldpage;
2379 int pages;
2380 int pobjects;
2381
d6e0b7fa 2382 preempt_disable();
49e22585
CL
2383 do {
2384 pages = 0;
2385 pobjects = 0;
2386 oldpage = this_cpu_read(s->cpu_slab->partial);
2387
2388 if (oldpage) {
2389 pobjects = oldpage->pobjects;
2390 pages = oldpage->pages;
bbd4e305 2391 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2392 unsigned long flags;
2393 /*
2394 * partial array is full. Move the existing
2395 * set to the per node partial list.
2396 */
2397 local_irq_save(flags);
59a09917 2398 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2399 local_irq_restore(flags);
e24fc410 2400 oldpage = NULL;
49e22585
CL
2401 pobjects = 0;
2402 pages = 0;
8028dcea 2403 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2404 }
2405 }
2406
2407 pages++;
2408 pobjects += page->objects - page->inuse;
2409
2410 page->pages = pages;
2411 page->pobjects = pobjects;
2412 page->next = oldpage;
2413
d0e0ac97
CG
2414 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2415 != oldpage);
bbd4e305 2416 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2417 unsigned long flags;
2418
2419 local_irq_save(flags);
2420 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2421 local_irq_restore(flags);
2422 }
2423 preempt_enable();
6dfd1b65 2424#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2425}
2426
dfb4f096 2427static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2428{
84e554e6 2429 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2430 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2431
2432 c->tid = next_tid(c->tid);
81819f0f
CL
2433}
2434
2435/*
2436 * Flush cpu slab.
6446faa2 2437 *
81819f0f
CL
2438 * Called from IPI handler with interrupts disabled.
2439 */
0c710013 2440static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2441{
9dfc6e68 2442 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2443
1265ef2d
WY
2444 if (c->page)
2445 flush_slab(s, c);
49e22585 2446
1265ef2d 2447 unfreeze_partials(s, c);
81819f0f
CL
2448}
2449
2450static void flush_cpu_slab(void *d)
2451{
2452 struct kmem_cache *s = d;
81819f0f 2453
dfb4f096 2454 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2455}
2456
a8364d55
GBY
2457static bool has_cpu_slab(int cpu, void *info)
2458{
2459 struct kmem_cache *s = info;
2460 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2461
a93cf07b 2462 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2463}
2464
81819f0f
CL
2465static void flush_all(struct kmem_cache *s)
2466{
cb923159 2467 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2468}
2469
a96a87bf
SAS
2470/*
2471 * Use the cpu notifier to insure that the cpu slabs are flushed when
2472 * necessary.
2473 */
2474static int slub_cpu_dead(unsigned int cpu)
2475{
2476 struct kmem_cache *s;
2477 unsigned long flags;
2478
2479 mutex_lock(&slab_mutex);
2480 list_for_each_entry(s, &slab_caches, list) {
2481 local_irq_save(flags);
2482 __flush_cpu_slab(s, cpu);
2483 local_irq_restore(flags);
2484 }
2485 mutex_unlock(&slab_mutex);
2486 return 0;
2487}
2488
dfb4f096
CL
2489/*
2490 * Check if the objects in a per cpu structure fit numa
2491 * locality expectations.
2492 */
57d437d2 2493static inline int node_match(struct page *page, int node)
dfb4f096
CL
2494{
2495#ifdef CONFIG_NUMA
6159d0f5 2496 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2497 return 0;
2498#endif
2499 return 1;
2500}
2501
9a02d699 2502#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2503static int count_free(struct page *page)
2504{
2505 return page->objects - page->inuse;
2506}
2507
9a02d699
DR
2508static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2509{
2510 return atomic_long_read(&n->total_objects);
2511}
2512#endif /* CONFIG_SLUB_DEBUG */
2513
2514#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2515static unsigned long count_partial(struct kmem_cache_node *n,
2516 int (*get_count)(struct page *))
2517{
2518 unsigned long flags;
2519 unsigned long x = 0;
2520 struct page *page;
2521
2522 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2523 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2524 x += get_count(page);
2525 spin_unlock_irqrestore(&n->list_lock, flags);
2526 return x;
2527}
9a02d699 2528#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2529
781b2ba6
PE
2530static noinline void
2531slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2532{
9a02d699
DR
2533#ifdef CONFIG_SLUB_DEBUG
2534 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2535 DEFAULT_RATELIMIT_BURST);
781b2ba6 2536 int node;
fa45dc25 2537 struct kmem_cache_node *n;
781b2ba6 2538
9a02d699
DR
2539 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2540 return;
2541
5b3810e5
VB
2542 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2543 nid, gfpflags, &gfpflags);
19af27af 2544 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2545 s->name, s->object_size, s->size, oo_order(s->oo),
2546 oo_order(s->min));
781b2ba6 2547
3b0efdfa 2548 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2549 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2550 s->name);
fa5ec8a1 2551
fa45dc25 2552 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2553 unsigned long nr_slabs;
2554 unsigned long nr_objs;
2555 unsigned long nr_free;
2556
26c02cf0
AB
2557 nr_free = count_partial(n, count_free);
2558 nr_slabs = node_nr_slabs(n);
2559 nr_objs = node_nr_objs(n);
781b2ba6 2560
f9f58285 2561 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2562 node, nr_slabs, nr_objs, nr_free);
2563 }
9a02d699 2564#endif
781b2ba6
PE
2565}
2566
497b66f2
CL
2567static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2568 int node, struct kmem_cache_cpu **pc)
2569{
6faa6833 2570 void *freelist;
188fd063
CL
2571 struct kmem_cache_cpu *c = *pc;
2572 struct page *page;
497b66f2 2573
128227e7
MW
2574 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2575
188fd063 2576 freelist = get_partial(s, flags, node, c);
497b66f2 2577
188fd063
CL
2578 if (freelist)
2579 return freelist;
2580
2581 page = new_slab(s, flags, node);
497b66f2 2582 if (page) {
7c8e0181 2583 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2584 if (c->page)
2585 flush_slab(s, c);
2586
2587 /*
2588 * No other reference to the page yet so we can
2589 * muck around with it freely without cmpxchg
2590 */
6faa6833 2591 freelist = page->freelist;
497b66f2
CL
2592 page->freelist = NULL;
2593
2594 stat(s, ALLOC_SLAB);
497b66f2
CL
2595 c->page = page;
2596 *pc = c;
edde82b6 2597 }
497b66f2 2598
6faa6833 2599 return freelist;
497b66f2
CL
2600}
2601
072bb0aa
MG
2602static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2603{
2604 if (unlikely(PageSlabPfmemalloc(page)))
2605 return gfp_pfmemalloc_allowed(gfpflags);
2606
2607 return true;
2608}
2609
213eeb9f 2610/*
d0e0ac97
CG
2611 * Check the page->freelist of a page and either transfer the freelist to the
2612 * per cpu freelist or deactivate the page.
213eeb9f
CL
2613 *
2614 * The page is still frozen if the return value is not NULL.
2615 *
2616 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2617 *
2618 * This function must be called with interrupt disabled.
213eeb9f
CL
2619 */
2620static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2621{
2622 struct page new;
2623 unsigned long counters;
2624 void *freelist;
2625
2626 do {
2627 freelist = page->freelist;
2628 counters = page->counters;
6faa6833 2629
213eeb9f 2630 new.counters = counters;
a0132ac0 2631 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2632
2633 new.inuse = page->objects;
2634 new.frozen = freelist != NULL;
2635
d24ac77f 2636 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2637 freelist, counters,
2638 NULL, new.counters,
2639 "get_freelist"));
2640
2641 return freelist;
2642}
2643
81819f0f 2644/*
894b8788
CL
2645 * Slow path. The lockless freelist is empty or we need to perform
2646 * debugging duties.
2647 *
894b8788
CL
2648 * Processing is still very fast if new objects have been freed to the
2649 * regular freelist. In that case we simply take over the regular freelist
2650 * as the lockless freelist and zap the regular freelist.
81819f0f 2651 *
894b8788
CL
2652 * If that is not working then we fall back to the partial lists. We take the
2653 * first element of the freelist as the object to allocate now and move the
2654 * rest of the freelist to the lockless freelist.
81819f0f 2655 *
894b8788 2656 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2657 * we need to allocate a new slab. This is the slowest path since it involves
2658 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2659 *
2660 * Version of __slab_alloc to use when we know that interrupts are
2661 * already disabled (which is the case for bulk allocation).
81819f0f 2662 */
a380a3c7 2663static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2664 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2665{
6faa6833 2666 void *freelist;
f6e7def7 2667 struct page *page;
81819f0f 2668
9f986d99
AW
2669 stat(s, ALLOC_SLOWPATH);
2670
f6e7def7 2671 page = c->page;
0715e6c5
VB
2672 if (!page) {
2673 /*
2674 * if the node is not online or has no normal memory, just
2675 * ignore the node constraint
2676 */
2677 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2678 !node_isset(node, slab_nodes)))
0715e6c5 2679 node = NUMA_NO_NODE;
81819f0f 2680 goto new_slab;
0715e6c5 2681 }
49e22585 2682redo:
6faa6833 2683
57d437d2 2684 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2685 /*
2686 * same as above but node_match() being false already
2687 * implies node != NUMA_NO_NODE
2688 */
7e1fa93d 2689 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2690 node = NUMA_NO_NODE;
2691 goto redo;
2692 } else {
a561ce00 2693 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2694 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2695 goto new_slab;
2696 }
fc59c053 2697 }
6446faa2 2698
072bb0aa
MG
2699 /*
2700 * By rights, we should be searching for a slab page that was
2701 * PFMEMALLOC but right now, we are losing the pfmemalloc
2702 * information when the page leaves the per-cpu allocator
2703 */
2704 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2705 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2706 goto new_slab;
2707 }
2708
73736e03 2709 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2710 freelist = c->freelist;
2711 if (freelist)
73736e03 2712 goto load_freelist;
03e404af 2713
f6e7def7 2714 freelist = get_freelist(s, page);
6446faa2 2715
6faa6833 2716 if (!freelist) {
03e404af
CL
2717 c->page = NULL;
2718 stat(s, DEACTIVATE_BYPASS);
fc59c053 2719 goto new_slab;
03e404af 2720 }
6446faa2 2721
84e554e6 2722 stat(s, ALLOC_REFILL);
6446faa2 2723
894b8788 2724load_freelist:
507effea
CL
2725 /*
2726 * freelist is pointing to the list of objects to be used.
2727 * page is pointing to the page from which the objects are obtained.
2728 * That page must be frozen for per cpu allocations to work.
2729 */
a0132ac0 2730 VM_BUG_ON(!c->page->frozen);
6faa6833 2731 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2732 c->tid = next_tid(c->tid);
6faa6833 2733 return freelist;
81819f0f 2734
81819f0f 2735new_slab:
2cfb7455 2736
a93cf07b
WY
2737 if (slub_percpu_partial(c)) {
2738 page = c->page = slub_percpu_partial(c);
2739 slub_set_percpu_partial(c, page);
49e22585 2740 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2741 goto redo;
81819f0f
CL
2742 }
2743
188fd063 2744 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2745
f4697436 2746 if (unlikely(!freelist)) {
9a02d699 2747 slab_out_of_memory(s, gfpflags, node);
f4697436 2748 return NULL;
81819f0f 2749 }
2cfb7455 2750
f6e7def7 2751 page = c->page;
5091b74a 2752 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2753 goto load_freelist;
2cfb7455 2754
497b66f2 2755 /* Only entered in the debug case */
d0e0ac97
CG
2756 if (kmem_cache_debug(s) &&
2757 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2758 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2759
d4ff6d35 2760 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2761 return freelist;
894b8788
CL
2762}
2763
a380a3c7
CL
2764/*
2765 * Another one that disabled interrupt and compensates for possible
2766 * cpu changes by refetching the per cpu area pointer.
2767 */
2768static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2769 unsigned long addr, struct kmem_cache_cpu *c)
2770{
2771 void *p;
2772 unsigned long flags;
2773
2774 local_irq_save(flags);
923717cb 2775#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2776 /*
2777 * We may have been preempted and rescheduled on a different
2778 * cpu before disabling interrupts. Need to reload cpu area
2779 * pointer.
2780 */
2781 c = this_cpu_ptr(s->cpu_slab);
2782#endif
2783
2784 p = ___slab_alloc(s, gfpflags, node, addr, c);
2785 local_irq_restore(flags);
2786 return p;
2787}
2788
0f181f9f
AP
2789/*
2790 * If the object has been wiped upon free, make sure it's fully initialized by
2791 * zeroing out freelist pointer.
2792 */
2793static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2794 void *obj)
2795{
2796 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2797 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2798 0, sizeof(void *));
0f181f9f
AP
2799}
2800
894b8788
CL
2801/*
2802 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2803 * have the fastpath folded into their functions. So no function call
2804 * overhead for requests that can be satisfied on the fastpath.
2805 *
2806 * The fastpath works by first checking if the lockless freelist can be used.
2807 * If not then __slab_alloc is called for slow processing.
2808 *
2809 * Otherwise we can simply pick the next object from the lockless free list.
2810 */
2b847c3c 2811static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2812 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2813{
03ec0ed5 2814 void *object;
dfb4f096 2815 struct kmem_cache_cpu *c;
57d437d2 2816 struct page *page;
8a5ec0ba 2817 unsigned long tid;
964d4bd3 2818 struct obj_cgroup *objcg = NULL;
1f84260c 2819
964d4bd3 2820 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2821 if (!s)
773ff60e 2822 return NULL;
8a5ec0ba 2823redo:
8a5ec0ba
CL
2824 /*
2825 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2826 * enabled. We may switch back and forth between cpus while
2827 * reading from one cpu area. That does not matter as long
2828 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2829 *
9aabf810 2830 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2831 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2832 * to check if it is matched or not.
8a5ec0ba 2833 */
9aabf810
JK
2834 do {
2835 tid = this_cpu_read(s->cpu_slab->tid);
2836 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2837 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2838 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2839
2840 /*
2841 * Irqless object alloc/free algorithm used here depends on sequence
2842 * of fetching cpu_slab's data. tid should be fetched before anything
2843 * on c to guarantee that object and page associated with previous tid
2844 * won't be used with current tid. If we fetch tid first, object and
2845 * page could be one associated with next tid and our alloc/free
2846 * request will be failed. In this case, we will retry. So, no problem.
2847 */
2848 barrier();
8a5ec0ba 2849
8a5ec0ba
CL
2850 /*
2851 * The transaction ids are globally unique per cpu and per operation on
2852 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2853 * occurs on the right processor and that there was no operation on the
2854 * linked list in between.
2855 */
8a5ec0ba 2856
9dfc6e68 2857 object = c->freelist;
57d437d2 2858 page = c->page;
22e4663e 2859 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2860 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2861 } else {
0ad9500e
ED
2862 void *next_object = get_freepointer_safe(s, object);
2863
8a5ec0ba 2864 /*
25985edc 2865 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2866 * operation and if we are on the right processor.
2867 *
d0e0ac97
CG
2868 * The cmpxchg does the following atomically (without lock
2869 * semantics!)
8a5ec0ba
CL
2870 * 1. Relocate first pointer to the current per cpu area.
2871 * 2. Verify that tid and freelist have not been changed
2872 * 3. If they were not changed replace tid and freelist
2873 *
d0e0ac97
CG
2874 * Since this is without lock semantics the protection is only
2875 * against code executing on this cpu *not* from access by
2876 * other cpus.
8a5ec0ba 2877 */
933393f5 2878 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2879 s->cpu_slab->freelist, s->cpu_slab->tid,
2880 object, tid,
0ad9500e 2881 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2882
2883 note_cmpxchg_failure("slab_alloc", s, tid);
2884 goto redo;
2885 }
0ad9500e 2886 prefetch_freepointer(s, next_object);
84e554e6 2887 stat(s, ALLOC_FASTPATH);
894b8788 2888 }
0f181f9f 2889
ce5716c6 2890 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2891
6471384a 2892 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
aa1ef4d7 2893 memset(kasan_reset_tag(object), 0, s->object_size);
d07dbea4 2894
964d4bd3 2895 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2896
894b8788 2897 return object;
81819f0f
CL
2898}
2899
2b847c3c
EG
2900static __always_inline void *slab_alloc(struct kmem_cache *s,
2901 gfp_t gfpflags, unsigned long addr)
2902{
2903 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2904}
2905
81819f0f
CL
2906void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2907{
2b847c3c 2908 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2909
d0e0ac97
CG
2910 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2911 s->size, gfpflags);
5b882be4
EGM
2912
2913 return ret;
81819f0f
CL
2914}
2915EXPORT_SYMBOL(kmem_cache_alloc);
2916
0f24f128 2917#ifdef CONFIG_TRACING
4a92379b
RK
2918void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2919{
2b847c3c 2920 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2921 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2922 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2923 return ret;
2924}
2925EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2926#endif
2927
81819f0f
CL
2928#ifdef CONFIG_NUMA
2929void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2930{
2b847c3c 2931 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2932
ca2b84cb 2933 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2934 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2935
2936 return ret;
81819f0f
CL
2937}
2938EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2939
0f24f128 2940#ifdef CONFIG_TRACING
4a92379b 2941void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2942 gfp_t gfpflags,
4a92379b 2943 int node, size_t size)
5b882be4 2944{
2b847c3c 2945 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2946
2947 trace_kmalloc_node(_RET_IP_, ret,
2948 size, s->size, gfpflags, node);
0316bec2 2949
0116523c 2950 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2951 return ret;
5b882be4 2952}
4a92379b 2953EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2954#endif
6dfd1b65 2955#endif /* CONFIG_NUMA */
5b882be4 2956
81819f0f 2957/*
94e4d712 2958 * Slow path handling. This may still be called frequently since objects
894b8788 2959 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2960 *
894b8788
CL
2961 * So we still attempt to reduce cache line usage. Just take the slab
2962 * lock and free the item. If there is no additional partial page
2963 * handling required then we can return immediately.
81819f0f 2964 */
894b8788 2965static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2966 void *head, void *tail, int cnt,
2967 unsigned long addr)
2968
81819f0f
CL
2969{
2970 void *prior;
2cfb7455 2971 int was_frozen;
2cfb7455
CL
2972 struct page new;
2973 unsigned long counters;
2974 struct kmem_cache_node *n = NULL;
3f649ab7 2975 unsigned long flags;
81819f0f 2976
8a5ec0ba 2977 stat(s, FREE_SLOWPATH);
81819f0f 2978
19c7ff9e 2979 if (kmem_cache_debug(s) &&
282acb43 2980 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2981 return;
6446faa2 2982
2cfb7455 2983 do {
837d678d
JK
2984 if (unlikely(n)) {
2985 spin_unlock_irqrestore(&n->list_lock, flags);
2986 n = NULL;
2987 }
2cfb7455
CL
2988 prior = page->freelist;
2989 counters = page->counters;
81084651 2990 set_freepointer(s, tail, prior);
2cfb7455
CL
2991 new.counters = counters;
2992 was_frozen = new.frozen;
81084651 2993 new.inuse -= cnt;
837d678d 2994 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2995
c65c1877 2996 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2997
2998 /*
d0e0ac97
CG
2999 * Slab was on no list before and will be
3000 * partially empty
3001 * We can defer the list move and instead
3002 * freeze it.
49e22585
CL
3003 */
3004 new.frozen = 1;
3005
c65c1877 3006 } else { /* Needs to be taken off a list */
49e22585 3007
b455def2 3008 n = get_node(s, page_to_nid(page));
49e22585
CL
3009 /*
3010 * Speculatively acquire the list_lock.
3011 * If the cmpxchg does not succeed then we may
3012 * drop the list_lock without any processing.
3013 *
3014 * Otherwise the list_lock will synchronize with
3015 * other processors updating the list of slabs.
3016 */
3017 spin_lock_irqsave(&n->list_lock, flags);
3018
3019 }
2cfb7455 3020 }
81819f0f 3021
2cfb7455
CL
3022 } while (!cmpxchg_double_slab(s, page,
3023 prior, counters,
81084651 3024 head, new.counters,
2cfb7455 3025 "__slab_free"));
81819f0f 3026
2cfb7455 3027 if (likely(!n)) {
49e22585 3028
c270cf30
AW
3029 if (likely(was_frozen)) {
3030 /*
3031 * The list lock was not taken therefore no list
3032 * activity can be necessary.
3033 */
3034 stat(s, FREE_FROZEN);
3035 } else if (new.frozen) {
3036 /*
3037 * If we just froze the page then put it onto the
3038 * per cpu partial list.
3039 */
49e22585 3040 put_cpu_partial(s, page, 1);
8028dcea
AS
3041 stat(s, CPU_PARTIAL_FREE);
3042 }
c270cf30 3043
b455def2
L
3044 return;
3045 }
81819f0f 3046
8a5b20ae 3047 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3048 goto slab_empty;
3049
81819f0f 3050 /*
837d678d
JK
3051 * Objects left in the slab. If it was not on the partial list before
3052 * then add it.
81819f0f 3053 */
345c905d 3054 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3055 remove_full(s, n, page);
837d678d
JK
3056 add_partial(n, page, DEACTIVATE_TO_TAIL);
3057 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3058 }
80f08c19 3059 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3060 return;
3061
3062slab_empty:
a973e9dd 3063 if (prior) {
81819f0f 3064 /*
6fbabb20 3065 * Slab on the partial list.
81819f0f 3066 */
5cc6eee8 3067 remove_partial(n, page);
84e554e6 3068 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3069 } else {
6fbabb20 3070 /* Slab must be on the full list */
c65c1877
PZ
3071 remove_full(s, n, page);
3072 }
2cfb7455 3073
80f08c19 3074 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3075 stat(s, FREE_SLAB);
81819f0f 3076 discard_slab(s, page);
81819f0f
CL
3077}
3078
894b8788
CL
3079/*
3080 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3081 * can perform fastpath freeing without additional function calls.
3082 *
3083 * The fastpath is only possible if we are freeing to the current cpu slab
3084 * of this processor. This typically the case if we have just allocated
3085 * the item before.
3086 *
3087 * If fastpath is not possible then fall back to __slab_free where we deal
3088 * with all sorts of special processing.
81084651
JDB
3089 *
3090 * Bulk free of a freelist with several objects (all pointing to the
3091 * same page) possible by specifying head and tail ptr, plus objects
3092 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3093 */
80a9201a
AP
3094static __always_inline void do_slab_free(struct kmem_cache *s,
3095 struct page *page, void *head, void *tail,
3096 int cnt, unsigned long addr)
894b8788 3097{
81084651 3098 void *tail_obj = tail ? : head;
dfb4f096 3099 struct kmem_cache_cpu *c;
8a5ec0ba 3100 unsigned long tid;
964d4bd3 3101
d1b2cf6c 3102 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3103redo:
3104 /*
3105 * Determine the currently cpus per cpu slab.
3106 * The cpu may change afterward. However that does not matter since
3107 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3108 * during the cmpxchg then the free will succeed.
8a5ec0ba 3109 */
9aabf810
JK
3110 do {
3111 tid = this_cpu_read(s->cpu_slab->tid);
3112 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3113 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3114 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3115
9aabf810
JK
3116 /* Same with comment on barrier() in slab_alloc_node() */
3117 barrier();
c016b0bd 3118
442b06bc 3119 if (likely(page == c->page)) {
5076190d
LT
3120 void **freelist = READ_ONCE(c->freelist);
3121
3122 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3123
933393f5 3124 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3125 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3126 freelist, tid,
81084651 3127 head, next_tid(tid)))) {
8a5ec0ba
CL
3128
3129 note_cmpxchg_failure("slab_free", s, tid);
3130 goto redo;
3131 }
84e554e6 3132 stat(s, FREE_FASTPATH);
894b8788 3133 } else
81084651 3134 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3135
894b8788
CL
3136}
3137
80a9201a
AP
3138static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3139 void *head, void *tail, int cnt,
3140 unsigned long addr)
3141{
80a9201a 3142 /*
c3895391
AK
3143 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3144 * to remove objects, whose reuse must be delayed.
80a9201a 3145 */
c3895391
AK
3146 if (slab_free_freelist_hook(s, &head, &tail))
3147 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3148}
3149
2bd926b4 3150#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3151void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3152{
3153 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3154}
3155#endif
3156
81819f0f
CL
3157void kmem_cache_free(struct kmem_cache *s, void *x)
3158{
b9ce5ef4
GC
3159 s = cache_from_obj(s, x);
3160 if (!s)
79576102 3161 return;
81084651 3162 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3163 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3164}
3165EXPORT_SYMBOL(kmem_cache_free);
3166
d0ecd894 3167struct detached_freelist {
fbd02630 3168 struct page *page;
d0ecd894
JDB
3169 void *tail;
3170 void *freelist;
3171 int cnt;
376bf125 3172 struct kmem_cache *s;
d0ecd894 3173};
fbd02630 3174
d0ecd894
JDB
3175/*
3176 * This function progressively scans the array with free objects (with
3177 * a limited look ahead) and extract objects belonging to the same
3178 * page. It builds a detached freelist directly within the given
3179 * page/objects. This can happen without any need for
3180 * synchronization, because the objects are owned by running process.
3181 * The freelist is build up as a single linked list in the objects.
3182 * The idea is, that this detached freelist can then be bulk
3183 * transferred to the real freelist(s), but only requiring a single
3184 * synchronization primitive. Look ahead in the array is limited due
3185 * to performance reasons.
3186 */
376bf125
JDB
3187static inline
3188int build_detached_freelist(struct kmem_cache *s, size_t size,
3189 void **p, struct detached_freelist *df)
d0ecd894
JDB
3190{
3191 size_t first_skipped_index = 0;
3192 int lookahead = 3;
3193 void *object;
ca257195 3194 struct page *page;
fbd02630 3195
d0ecd894
JDB
3196 /* Always re-init detached_freelist */
3197 df->page = NULL;
fbd02630 3198
d0ecd894
JDB
3199 do {
3200 object = p[--size];
ca257195 3201 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3202 } while (!object && size);
3eed034d 3203
d0ecd894
JDB
3204 if (!object)
3205 return 0;
fbd02630 3206
ca257195
JDB
3207 page = virt_to_head_page(object);
3208 if (!s) {
3209 /* Handle kalloc'ed objects */
3210 if (unlikely(!PageSlab(page))) {
3211 BUG_ON(!PageCompound(page));
3212 kfree_hook(object);
4949148a 3213 __free_pages(page, compound_order(page));
ca257195
JDB
3214 p[size] = NULL; /* mark object processed */
3215 return size;
3216 }
3217 /* Derive kmem_cache from object */
3218 df->s = page->slab_cache;
3219 } else {
3220 df->s = cache_from_obj(s, object); /* Support for memcg */
3221 }
376bf125 3222
d0ecd894 3223 /* Start new detached freelist */
ca257195 3224 df->page = page;
376bf125 3225 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3226 df->tail = object;
3227 df->freelist = object;
3228 p[size] = NULL; /* mark object processed */
3229 df->cnt = 1;
3230
3231 while (size) {
3232 object = p[--size];
3233 if (!object)
3234 continue; /* Skip processed objects */
3235
3236 /* df->page is always set at this point */
3237 if (df->page == virt_to_head_page(object)) {
3238 /* Opportunity build freelist */
376bf125 3239 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3240 df->freelist = object;
3241 df->cnt++;
3242 p[size] = NULL; /* mark object processed */
3243
3244 continue;
fbd02630 3245 }
d0ecd894
JDB
3246
3247 /* Limit look ahead search */
3248 if (!--lookahead)
3249 break;
3250
3251 if (!first_skipped_index)
3252 first_skipped_index = size + 1;
fbd02630 3253 }
d0ecd894
JDB
3254
3255 return first_skipped_index;
3256}
3257
d0ecd894 3258/* Note that interrupts must be enabled when calling this function. */
376bf125 3259void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3260{
3261 if (WARN_ON(!size))
3262 return;
3263
d1b2cf6c 3264 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3265 do {
3266 struct detached_freelist df;
3267
3268 size = build_detached_freelist(s, size, p, &df);
84582c8a 3269 if (!df.page)
d0ecd894
JDB
3270 continue;
3271
457c82c3 3272 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3273 } while (likely(size));
484748f0
CL
3274}
3275EXPORT_SYMBOL(kmem_cache_free_bulk);
3276
994eb764 3277/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3278int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3279 void **p)
484748f0 3280{
994eb764
JDB
3281 struct kmem_cache_cpu *c;
3282 int i;
964d4bd3 3283 struct obj_cgroup *objcg = NULL;
994eb764 3284
03ec0ed5 3285 /* memcg and kmem_cache debug support */
964d4bd3 3286 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3287 if (unlikely(!s))
3288 return false;
994eb764
JDB
3289 /*
3290 * Drain objects in the per cpu slab, while disabling local
3291 * IRQs, which protects against PREEMPT and interrupts
3292 * handlers invoking normal fastpath.
3293 */
3294 local_irq_disable();
3295 c = this_cpu_ptr(s->cpu_slab);
3296
3297 for (i = 0; i < size; i++) {
3298 void *object = c->freelist;
3299
ebe909e0 3300 if (unlikely(!object)) {
fd4d9c7d
JH
3301 /*
3302 * We may have removed an object from c->freelist using
3303 * the fastpath in the previous iteration; in that case,
3304 * c->tid has not been bumped yet.
3305 * Since ___slab_alloc() may reenable interrupts while
3306 * allocating memory, we should bump c->tid now.
3307 */
3308 c->tid = next_tid(c->tid);
3309
ebe909e0
JDB
3310 /*
3311 * Invoking slow path likely have side-effect
3312 * of re-populating per CPU c->freelist
3313 */
87098373 3314 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3315 _RET_IP_, c);
87098373
CL
3316 if (unlikely(!p[i]))
3317 goto error;
3318
ebe909e0 3319 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3320 maybe_wipe_obj_freeptr(s, p[i]);
3321
ebe909e0
JDB
3322 continue; /* goto for-loop */
3323 }
994eb764
JDB
3324 c->freelist = get_freepointer(s, object);
3325 p[i] = object;
0f181f9f 3326 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3327 }
3328 c->tid = next_tid(c->tid);
3329 local_irq_enable();
3330
3331 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3332 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3333 int j;
3334
3335 for (j = 0; j < i; j++)
ce5716c6 3336 memset(kasan_reset_tag(p[j]), 0, s->object_size);
994eb764
JDB
3337 }
3338
03ec0ed5 3339 /* memcg and kmem_cache debug support */
964d4bd3 3340 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3341 return i;
87098373 3342error:
87098373 3343 local_irq_enable();
964d4bd3 3344 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3345 __kmem_cache_free_bulk(s, i, p);
865762a8 3346 return 0;
484748f0
CL
3347}
3348EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3349
3350
81819f0f 3351/*
672bba3a
CL
3352 * Object placement in a slab is made very easy because we always start at
3353 * offset 0. If we tune the size of the object to the alignment then we can
3354 * get the required alignment by putting one properly sized object after
3355 * another.
81819f0f
CL
3356 *
3357 * Notice that the allocation order determines the sizes of the per cpu
3358 * caches. Each processor has always one slab available for allocations.
3359 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3360 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3361 * locking overhead.
81819f0f
CL
3362 */
3363
3364/*
3365 * Mininum / Maximum order of slab pages. This influences locking overhead
3366 * and slab fragmentation. A higher order reduces the number of partial slabs
3367 * and increases the number of allocations possible without having to
3368 * take the list_lock.
3369 */
19af27af
AD
3370static unsigned int slub_min_order;
3371static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3372static unsigned int slub_min_objects;
81819f0f 3373
81819f0f
CL
3374/*
3375 * Calculate the order of allocation given an slab object size.
3376 *
672bba3a
CL
3377 * The order of allocation has significant impact on performance and other
3378 * system components. Generally order 0 allocations should be preferred since
3379 * order 0 does not cause fragmentation in the page allocator. Larger objects
3380 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3381 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3382 * would be wasted.
3383 *
3384 * In order to reach satisfactory performance we must ensure that a minimum
3385 * number of objects is in one slab. Otherwise we may generate too much
3386 * activity on the partial lists which requires taking the list_lock. This is
3387 * less a concern for large slabs though which are rarely used.
81819f0f 3388 *
672bba3a
CL
3389 * slub_max_order specifies the order where we begin to stop considering the
3390 * number of objects in a slab as critical. If we reach slub_max_order then
3391 * we try to keep the page order as low as possible. So we accept more waste
3392 * of space in favor of a small page order.
81819f0f 3393 *
672bba3a
CL
3394 * Higher order allocations also allow the placement of more objects in a
3395 * slab and thereby reduce object handling overhead. If the user has
3396 * requested a higher mininum order then we start with that one instead of
3397 * the smallest order which will fit the object.
81819f0f 3398 */
19af27af
AD
3399static inline unsigned int slab_order(unsigned int size,
3400 unsigned int min_objects, unsigned int max_order,
9736d2a9 3401 unsigned int fract_leftover)
81819f0f 3402{
19af27af
AD
3403 unsigned int min_order = slub_min_order;
3404 unsigned int order;
81819f0f 3405
9736d2a9 3406 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3407 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3408
9736d2a9 3409 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3410 order <= max_order; order++) {
81819f0f 3411
19af27af
AD
3412 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3413 unsigned int rem;
81819f0f 3414
9736d2a9 3415 rem = slab_size % size;
81819f0f 3416
5e6d444e 3417 if (rem <= slab_size / fract_leftover)
81819f0f 3418 break;
81819f0f 3419 }
672bba3a 3420
81819f0f
CL
3421 return order;
3422}
3423
9736d2a9 3424static inline int calculate_order(unsigned int size)
5e6d444e 3425{
19af27af
AD
3426 unsigned int order;
3427 unsigned int min_objects;
3428 unsigned int max_objects;
3286222f 3429 unsigned int nr_cpus;
5e6d444e
CL
3430
3431 /*
3432 * Attempt to find best configuration for a slab. This
3433 * works by first attempting to generate a layout with
3434 * the best configuration and backing off gradually.
3435 *
422ff4d7 3436 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3437 * we reduce the minimum objects required in a slab.
3438 */
3439 min_objects = slub_min_objects;
3286222f
VB
3440 if (!min_objects) {
3441 /*
3442 * Some architectures will only update present cpus when
3443 * onlining them, so don't trust the number if it's just 1. But
3444 * we also don't want to use nr_cpu_ids always, as on some other
3445 * architectures, there can be many possible cpus, but never
3446 * onlined. Here we compromise between trying to avoid too high
3447 * order on systems that appear larger than they are, and too
3448 * low order on systems that appear smaller than they are.
3449 */
3450 nr_cpus = num_present_cpus();
3451 if (nr_cpus <= 1)
3452 nr_cpus = nr_cpu_ids;
3453 min_objects = 4 * (fls(nr_cpus) + 1);
3454 }
9736d2a9 3455 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3456 min_objects = min(min_objects, max_objects);
3457
5e6d444e 3458 while (min_objects > 1) {
19af27af
AD
3459 unsigned int fraction;
3460
c124f5b5 3461 fraction = 16;
5e6d444e
CL
3462 while (fraction >= 4) {
3463 order = slab_order(size, min_objects,
9736d2a9 3464 slub_max_order, fraction);
5e6d444e
CL
3465 if (order <= slub_max_order)
3466 return order;
3467 fraction /= 2;
3468 }
5086c389 3469 min_objects--;
5e6d444e
CL
3470 }
3471
3472 /*
3473 * We were unable to place multiple objects in a slab. Now
3474 * lets see if we can place a single object there.
3475 */
9736d2a9 3476 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3477 if (order <= slub_max_order)
3478 return order;
3479
3480 /*
3481 * Doh this slab cannot be placed using slub_max_order.
3482 */
9736d2a9 3483 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3484 if (order < MAX_ORDER)
5e6d444e
CL
3485 return order;
3486 return -ENOSYS;
3487}
3488
5595cffc 3489static void
4053497d 3490init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3491{
3492 n->nr_partial = 0;
81819f0f
CL
3493 spin_lock_init(&n->list_lock);
3494 INIT_LIST_HEAD(&n->partial);
8ab1372f 3495#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3496 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3497 atomic_long_set(&n->total_objects, 0);
643b1138 3498 INIT_LIST_HEAD(&n->full);
8ab1372f 3499#endif
81819f0f
CL
3500}
3501
55136592 3502static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3503{
6c182dc0 3504 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3505 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3506
8a5ec0ba 3507 /*
d4d84fef
CM
3508 * Must align to double word boundary for the double cmpxchg
3509 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3510 */
d4d84fef
CM
3511 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3512 2 * sizeof(void *));
8a5ec0ba
CL
3513
3514 if (!s->cpu_slab)
3515 return 0;
3516
3517 init_kmem_cache_cpus(s);
4c93c355 3518
8a5ec0ba 3519 return 1;
4c93c355 3520}
4c93c355 3521
51df1142
CL
3522static struct kmem_cache *kmem_cache_node;
3523
81819f0f
CL
3524/*
3525 * No kmalloc_node yet so do it by hand. We know that this is the first
3526 * slab on the node for this slabcache. There are no concurrent accesses
3527 * possible.
3528 *
721ae22a
ZYW
3529 * Note that this function only works on the kmem_cache_node
3530 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3531 * memory on a fresh node that has no slab structures yet.
81819f0f 3532 */
55136592 3533static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3534{
3535 struct page *page;
3536 struct kmem_cache_node *n;
3537
51df1142 3538 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3539
51df1142 3540 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3541
3542 BUG_ON(!page);
a2f92ee7 3543 if (page_to_nid(page) != node) {
f9f58285
FF
3544 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3545 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3546 }
3547
81819f0f
CL
3548 n = page->freelist;
3549 BUG_ON(!n);
8ab1372f 3550#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3551 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3552 init_tracking(kmem_cache_node, n);
8ab1372f 3553#endif
12b22386 3554 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3555 GFP_KERNEL);
12b22386
AK
3556 page->freelist = get_freepointer(kmem_cache_node, n);
3557 page->inuse = 1;
3558 page->frozen = 0;
3559 kmem_cache_node->node[node] = n;
4053497d 3560 init_kmem_cache_node(n);
51df1142 3561 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3562
67b6c900 3563 /*
1e4dd946
SR
3564 * No locks need to be taken here as it has just been
3565 * initialized and there is no concurrent access.
67b6c900 3566 */
1e4dd946 3567 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3568}
3569
3570static void free_kmem_cache_nodes(struct kmem_cache *s)
3571{
3572 int node;
fa45dc25 3573 struct kmem_cache_node *n;
81819f0f 3574
fa45dc25 3575 for_each_kmem_cache_node(s, node, n) {
81819f0f 3576 s->node[node] = NULL;
ea37df54 3577 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3578 }
3579}
3580
52b4b950
DS
3581void __kmem_cache_release(struct kmem_cache *s)
3582{
210e7a43 3583 cache_random_seq_destroy(s);
52b4b950
DS
3584 free_percpu(s->cpu_slab);
3585 free_kmem_cache_nodes(s);
3586}
3587
55136592 3588static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3589{
3590 int node;
81819f0f 3591
7e1fa93d 3592 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3593 struct kmem_cache_node *n;
3594
73367bd8 3595 if (slab_state == DOWN) {
55136592 3596 early_kmem_cache_node_alloc(node);
73367bd8
AD
3597 continue;
3598 }
51df1142 3599 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3600 GFP_KERNEL, node);
81819f0f 3601
73367bd8
AD
3602 if (!n) {
3603 free_kmem_cache_nodes(s);
3604 return 0;
81819f0f 3605 }
73367bd8 3606
4053497d 3607 init_kmem_cache_node(n);
ea37df54 3608 s->node[node] = n;
81819f0f
CL
3609 }
3610 return 1;
3611}
81819f0f 3612
c0bdb232 3613static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3614{
3615 if (min < MIN_PARTIAL)
3616 min = MIN_PARTIAL;
3617 else if (min > MAX_PARTIAL)
3618 min = MAX_PARTIAL;
3619 s->min_partial = min;
3620}
3621
e6d0e1dc
WY
3622static void set_cpu_partial(struct kmem_cache *s)
3623{
3624#ifdef CONFIG_SLUB_CPU_PARTIAL
3625 /*
3626 * cpu_partial determined the maximum number of objects kept in the
3627 * per cpu partial lists of a processor.
3628 *
3629 * Per cpu partial lists mainly contain slabs that just have one
3630 * object freed. If they are used for allocation then they can be
3631 * filled up again with minimal effort. The slab will never hit the
3632 * per node partial lists and therefore no locking will be required.
3633 *
3634 * This setting also determines
3635 *
3636 * A) The number of objects from per cpu partial slabs dumped to the
3637 * per node list when we reach the limit.
3638 * B) The number of objects in cpu partial slabs to extract from the
3639 * per node list when we run out of per cpu objects. We only fetch
3640 * 50% to keep some capacity around for frees.
3641 */
3642 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3643 slub_set_cpu_partial(s, 0);
e6d0e1dc 3644 else if (s->size >= PAGE_SIZE)
bbd4e305 3645 slub_set_cpu_partial(s, 2);
e6d0e1dc 3646 else if (s->size >= 1024)
bbd4e305 3647 slub_set_cpu_partial(s, 6);
e6d0e1dc 3648 else if (s->size >= 256)
bbd4e305 3649 slub_set_cpu_partial(s, 13);
e6d0e1dc 3650 else
bbd4e305 3651 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3652#endif
3653}
3654
81819f0f
CL
3655/*
3656 * calculate_sizes() determines the order and the distribution of data within
3657 * a slab object.
3658 */
06b285dc 3659static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3660{
d50112ed 3661 slab_flags_t flags = s->flags;
be4a7988 3662 unsigned int size = s->object_size;
89b83f28 3663 unsigned int freepointer_area;
19af27af 3664 unsigned int order;
81819f0f 3665
d8b42bf5
CL
3666 /*
3667 * Round up object size to the next word boundary. We can only
3668 * place the free pointer at word boundaries and this determines
3669 * the possible location of the free pointer.
3670 */
3671 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3672 /*
3673 * This is the area of the object where a freepointer can be
3674 * safely written. If redzoning adds more to the inuse size, we
3675 * can't use that portion for writing the freepointer, so
3676 * s->offset must be limited within this for the general case.
3677 */
3678 freepointer_area = size;
d8b42bf5
CL
3679
3680#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3681 /*
3682 * Determine if we can poison the object itself. If the user of
3683 * the slab may touch the object after free or before allocation
3684 * then we should never poison the object itself.
3685 */
5f0d5a3a 3686 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3687 !s->ctor)
81819f0f
CL
3688 s->flags |= __OBJECT_POISON;
3689 else
3690 s->flags &= ~__OBJECT_POISON;
3691
81819f0f
CL
3692
3693 /*
672bba3a 3694 * If we are Redzoning then check if there is some space between the
81819f0f 3695 * end of the object and the free pointer. If not then add an
672bba3a 3696 * additional word to have some bytes to store Redzone information.
81819f0f 3697 */
3b0efdfa 3698 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3699 size += sizeof(void *);
41ecc55b 3700#endif
81819f0f
CL
3701
3702 /*
672bba3a
CL
3703 * With that we have determined the number of bytes in actual use
3704 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3705 */
3706 s->inuse = size;
3707
5f0d5a3a 3708 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3709 s->ctor)) {
81819f0f
CL
3710 /*
3711 * Relocate free pointer after the object if it is not
3712 * permitted to overwrite the first word of the object on
3713 * kmem_cache_free.
3714 *
3715 * This is the case if we do RCU, have a constructor or
3716 * destructor or are poisoning the objects.
cbfc35a4
WL
3717 *
3718 * The assumption that s->offset >= s->inuse means free
3719 * pointer is outside of the object is used in the
3720 * freeptr_outside_object() function. If that is no
3721 * longer true, the function needs to be modified.
81819f0f
CL
3722 */
3723 s->offset = size;
3724 size += sizeof(void *);
89b83f28 3725 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3726 /*
3727 * Store freelist pointer near middle of object to keep
3728 * it away from the edges of the object to avoid small
3729 * sized over/underflows from neighboring allocations.
3730 */
89b83f28 3731 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3732 }
3733
c12b3c62 3734#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3735 if (flags & SLAB_STORE_USER)
3736 /*
3737 * Need to store information about allocs and frees after
3738 * the object.
3739 */
3740 size += 2 * sizeof(struct track);
80a9201a 3741#endif
81819f0f 3742
80a9201a
AP
3743 kasan_cache_create(s, &size, &s->flags);
3744#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3745 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3746 /*
3747 * Add some empty padding so that we can catch
3748 * overwrites from earlier objects rather than let
3749 * tracking information or the free pointer be
0211a9c8 3750 * corrupted if a user writes before the start
81819f0f
CL
3751 * of the object.
3752 */
3753 size += sizeof(void *);
d86bd1be
JK
3754
3755 s->red_left_pad = sizeof(void *);
3756 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3757 size += s->red_left_pad;
3758 }
41ecc55b 3759#endif
672bba3a 3760
81819f0f
CL
3761 /*
3762 * SLUB stores one object immediately after another beginning from
3763 * offset 0. In order to align the objects we have to simply size
3764 * each object to conform to the alignment.
3765 */
45906855 3766 size = ALIGN(size, s->align);
81819f0f 3767 s->size = size;
4138fdfc 3768 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3769 if (forced_order >= 0)
3770 order = forced_order;
3771 else
9736d2a9 3772 order = calculate_order(size);
81819f0f 3773
19af27af 3774 if ((int)order < 0)
81819f0f
CL
3775 return 0;
3776
b7a49f0d 3777 s->allocflags = 0;
834f3d11 3778 if (order)
b7a49f0d
CL
3779 s->allocflags |= __GFP_COMP;
3780
3781 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3782 s->allocflags |= GFP_DMA;
b7a49f0d 3783
6d6ea1e9
NB
3784 if (s->flags & SLAB_CACHE_DMA32)
3785 s->allocflags |= GFP_DMA32;
3786
b7a49f0d
CL
3787 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3788 s->allocflags |= __GFP_RECLAIMABLE;
3789
81819f0f
CL
3790 /*
3791 * Determine the number of objects per slab
3792 */
9736d2a9
MW
3793 s->oo = oo_make(order, size);
3794 s->min = oo_make(get_order(size), size);
205ab99d
CL
3795 if (oo_objects(s->oo) > oo_objects(s->max))
3796 s->max = s->oo;
81819f0f 3797
834f3d11 3798 return !!oo_objects(s->oo);
81819f0f
CL
3799}
3800
d50112ed 3801static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3802{
37540008 3803 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3804#ifdef CONFIG_SLAB_FREELIST_HARDENED
3805 s->random = get_random_long();
3806#endif
81819f0f 3807
06b285dc 3808 if (!calculate_sizes(s, -1))
81819f0f 3809 goto error;
3de47213
DR
3810 if (disable_higher_order_debug) {
3811 /*
3812 * Disable debugging flags that store metadata if the min slab
3813 * order increased.
3814 */
3b0efdfa 3815 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3816 s->flags &= ~DEBUG_METADATA_FLAGS;
3817 s->offset = 0;
3818 if (!calculate_sizes(s, -1))
3819 goto error;
3820 }
3821 }
81819f0f 3822
2565409f
HC
3823#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3824 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3825 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3826 /* Enable fast mode */
3827 s->flags |= __CMPXCHG_DOUBLE;
3828#endif
3829
3b89d7d8
DR
3830 /*
3831 * The larger the object size is, the more pages we want on the partial
3832 * list to avoid pounding the page allocator excessively.
3833 */
49e22585
CL
3834 set_min_partial(s, ilog2(s->size) / 2);
3835
e6d0e1dc 3836 set_cpu_partial(s);
49e22585 3837
81819f0f 3838#ifdef CONFIG_NUMA
e2cb96b7 3839 s->remote_node_defrag_ratio = 1000;
81819f0f 3840#endif
210e7a43
TG
3841
3842 /* Initialize the pre-computed randomized freelist if slab is up */
3843 if (slab_state >= UP) {
3844 if (init_cache_random_seq(s))
3845 goto error;
3846 }
3847
55136592 3848 if (!init_kmem_cache_nodes(s))
dfb4f096 3849 goto error;
81819f0f 3850
55136592 3851 if (alloc_kmem_cache_cpus(s))
278b1bb1 3852 return 0;
ff12059e 3853
4c93c355 3854 free_kmem_cache_nodes(s);
81819f0f 3855error:
278b1bb1 3856 return -EINVAL;
81819f0f 3857}
81819f0f 3858
33b12c38 3859static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3860 const char *text)
33b12c38
CL
3861{
3862#ifdef CONFIG_SLUB_DEBUG
3863 void *addr = page_address(page);
55860d96 3864 unsigned long *map;
33b12c38 3865 void *p;
aa456c7a 3866
945cf2b6 3867 slab_err(s, page, text, s->name);
33b12c38 3868 slab_lock(page);
33b12c38 3869
90e9f6a6 3870 map = get_map(s, page);
33b12c38
CL
3871 for_each_object(p, s, addr, page->objects) {
3872
4138fdfc 3873 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3874 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3875 print_tracking(s, p);
3876 }
3877 }
55860d96 3878 put_map(map);
33b12c38
CL
3879 slab_unlock(page);
3880#endif
3881}
3882
81819f0f 3883/*
599870b1 3884 * Attempt to free all partial slabs on a node.
52b4b950
DS
3885 * This is called from __kmem_cache_shutdown(). We must take list_lock
3886 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3887 */
599870b1 3888static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3889{
60398923 3890 LIST_HEAD(discard);
81819f0f
CL
3891 struct page *page, *h;
3892
52b4b950
DS
3893 BUG_ON(irqs_disabled());
3894 spin_lock_irq(&n->list_lock);
916ac052 3895 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3896 if (!page->inuse) {
52b4b950 3897 remove_partial(n, page);
916ac052 3898 list_add(&page->slab_list, &discard);
33b12c38
CL
3899 } else {
3900 list_slab_objects(s, page,
55860d96 3901 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3902 }
33b12c38 3903 }
52b4b950 3904 spin_unlock_irq(&n->list_lock);
60398923 3905
916ac052 3906 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3907 discard_slab(s, page);
81819f0f
CL
3908}
3909
f9e13c0a
SB
3910bool __kmem_cache_empty(struct kmem_cache *s)
3911{
3912 int node;
3913 struct kmem_cache_node *n;
3914
3915 for_each_kmem_cache_node(s, node, n)
3916 if (n->nr_partial || slabs_node(s, node))
3917 return false;
3918 return true;
3919}
3920
81819f0f 3921/*
672bba3a 3922 * Release all resources used by a slab cache.
81819f0f 3923 */
52b4b950 3924int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3925{
3926 int node;
fa45dc25 3927 struct kmem_cache_node *n;
81819f0f
CL
3928
3929 flush_all(s);
81819f0f 3930 /* Attempt to free all objects */
fa45dc25 3931 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3932 free_partial(s, n);
3933 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3934 return 1;
3935 }
81819f0f
CL
3936 return 0;
3937}
3938
8e7f37f2
PM
3939void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3940{
3941 void *base;
3942 int __maybe_unused i;
3943 unsigned int objnr;
3944 void *objp;
3945 void *objp0;
3946 struct kmem_cache *s = page->slab_cache;
3947 struct track __maybe_unused *trackp;
3948
3949 kpp->kp_ptr = object;
3950 kpp->kp_page = page;
3951 kpp->kp_slab_cache = s;
3952 base = page_address(page);
3953 objp0 = kasan_reset_tag(object);
3954#ifdef CONFIG_SLUB_DEBUG
3955 objp = restore_red_left(s, objp0);
3956#else
3957 objp = objp0;
3958#endif
3959 objnr = obj_to_index(s, page, objp);
3960 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3961 objp = base + s->size * objnr;
3962 kpp->kp_objp = objp;
3963 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3964 !(s->flags & SLAB_STORE_USER))
3965 return;
3966#ifdef CONFIG_SLUB_DEBUG
3967 trackp = get_track(s, objp, TRACK_ALLOC);
3968 kpp->kp_ret = (void *)trackp->addr;
3969#ifdef CONFIG_STACKTRACE
3970 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3971 kpp->kp_stack[i] = (void *)trackp->addrs[i];
3972 if (!kpp->kp_stack[i])
3973 break;
3974 }
3975#endif
3976#endif
3977}
3978
81819f0f
CL
3979/********************************************************************
3980 * Kmalloc subsystem
3981 *******************************************************************/
3982
81819f0f
CL
3983static int __init setup_slub_min_order(char *str)
3984{
19af27af 3985 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3986
3987 return 1;
3988}
3989
3990__setup("slub_min_order=", setup_slub_min_order);
3991
3992static int __init setup_slub_max_order(char *str)
3993{
19af27af
AD
3994 get_option(&str, (int *)&slub_max_order);
3995 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3996
3997 return 1;
3998}
3999
4000__setup("slub_max_order=", setup_slub_max_order);
4001
4002static int __init setup_slub_min_objects(char *str)
4003{
19af27af 4004 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4005
4006 return 1;
4007}
4008
4009__setup("slub_min_objects=", setup_slub_min_objects);
4010
81819f0f
CL
4011void *__kmalloc(size_t size, gfp_t flags)
4012{
aadb4bc4 4013 struct kmem_cache *s;
5b882be4 4014 void *ret;
81819f0f 4015
95a05b42 4016 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4017 return kmalloc_large(size, flags);
aadb4bc4 4018
2c59dd65 4019 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4020
4021 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4022 return s;
4023
2b847c3c 4024 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 4025
ca2b84cb 4026 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4027
0116523c 4028 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4029
5b882be4 4030 return ret;
81819f0f
CL
4031}
4032EXPORT_SYMBOL(__kmalloc);
4033
5d1f57e4 4034#ifdef CONFIG_NUMA
f619cfe1
CL
4035static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4036{
b1eeab67 4037 struct page *page;
e4f7c0b4 4038 void *ptr = NULL;
6a486c0a 4039 unsigned int order = get_order(size);
f619cfe1 4040
75f296d9 4041 flags |= __GFP_COMP;
6a486c0a
VB
4042 page = alloc_pages_node(node, flags, order);
4043 if (page) {
e4f7c0b4 4044 ptr = page_address(page);
96403bfe
MS
4045 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4046 PAGE_SIZE << order);
6a486c0a 4047 }
e4f7c0b4 4048
0116523c 4049 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4050}
4051
81819f0f
CL
4052void *__kmalloc_node(size_t size, gfp_t flags, int node)
4053{
aadb4bc4 4054 struct kmem_cache *s;
5b882be4 4055 void *ret;
81819f0f 4056
95a05b42 4057 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4058 ret = kmalloc_large_node(size, flags, node);
4059
ca2b84cb
EGM
4060 trace_kmalloc_node(_RET_IP_, ret,
4061 size, PAGE_SIZE << get_order(size),
4062 flags, node);
5b882be4
EGM
4063
4064 return ret;
4065 }
aadb4bc4 4066
2c59dd65 4067 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4068
4069 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4070 return s;
4071
2b847c3c 4072 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4073
ca2b84cb 4074 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4075
0116523c 4076 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4077
5b882be4 4078 return ret;
81819f0f
CL
4079}
4080EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4081#endif /* CONFIG_NUMA */
81819f0f 4082
ed18adc1
KC
4083#ifdef CONFIG_HARDENED_USERCOPY
4084/*
afcc90f8
KC
4085 * Rejects incorrectly sized objects and objects that are to be copied
4086 * to/from userspace but do not fall entirely within the containing slab
4087 * cache's usercopy region.
ed18adc1
KC
4088 *
4089 * Returns NULL if check passes, otherwise const char * to name of cache
4090 * to indicate an error.
4091 */
f4e6e289
KC
4092void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4093 bool to_user)
ed18adc1
KC
4094{
4095 struct kmem_cache *s;
44065b2e 4096 unsigned int offset;
ed18adc1
KC
4097 size_t object_size;
4098
96fedce2
AK
4099 ptr = kasan_reset_tag(ptr);
4100
ed18adc1
KC
4101 /* Find object and usable object size. */
4102 s = page->slab_cache;
ed18adc1
KC
4103
4104 /* Reject impossible pointers. */
4105 if (ptr < page_address(page))
f4e6e289
KC
4106 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4107 to_user, 0, n);
ed18adc1
KC
4108
4109 /* Find offset within object. */
4110 offset = (ptr - page_address(page)) % s->size;
4111
4112 /* Adjust for redzone and reject if within the redzone. */
59052e89 4113 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4114 if (offset < s->red_left_pad)
f4e6e289
KC
4115 usercopy_abort("SLUB object in left red zone",
4116 s->name, to_user, offset, n);
ed18adc1
KC
4117 offset -= s->red_left_pad;
4118 }
4119
afcc90f8
KC
4120 /* Allow address range falling entirely within usercopy region. */
4121 if (offset >= s->useroffset &&
4122 offset - s->useroffset <= s->usersize &&
4123 n <= s->useroffset - offset + s->usersize)
f4e6e289 4124 return;
ed18adc1 4125
afcc90f8
KC
4126 /*
4127 * If the copy is still within the allocated object, produce
4128 * a warning instead of rejecting the copy. This is intended
4129 * to be a temporary method to find any missing usercopy
4130 * whitelists.
4131 */
4132 object_size = slab_ksize(s);
2d891fbc
KC
4133 if (usercopy_fallback &&
4134 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4135 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4136 return;
4137 }
ed18adc1 4138
f4e6e289 4139 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4140}
4141#endif /* CONFIG_HARDENED_USERCOPY */
4142
10d1f8cb 4143size_t __ksize(const void *object)
81819f0f 4144{
272c1d21 4145 struct page *page;
81819f0f 4146
ef8b4520 4147 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4148 return 0;
4149
294a80a8 4150 page = virt_to_head_page(object);
294a80a8 4151
76994412
PE
4152 if (unlikely(!PageSlab(page))) {
4153 WARN_ON(!PageCompound(page));
a50b854e 4154 return page_size(page);
76994412 4155 }
81819f0f 4156
1b4f59e3 4157 return slab_ksize(page->slab_cache);
81819f0f 4158}
10d1f8cb 4159EXPORT_SYMBOL(__ksize);
81819f0f
CL
4160
4161void kfree(const void *x)
4162{
81819f0f 4163 struct page *page;
5bb983b0 4164 void *object = (void *)x;
81819f0f 4165
2121db74
PE
4166 trace_kfree(_RET_IP_, x);
4167
2408c550 4168 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4169 return;
4170
b49af68f 4171 page = virt_to_head_page(x);
aadb4bc4 4172 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4173 unsigned int order = compound_order(page);
4174
0937502a 4175 BUG_ON(!PageCompound(page));
47adccce 4176 kfree_hook(object);
96403bfe
MS
4177 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4178 -(PAGE_SIZE << order));
6a486c0a 4179 __free_pages(page, order);
aadb4bc4
CL
4180 return;
4181 }
81084651 4182 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4183}
4184EXPORT_SYMBOL(kfree);
4185
832f37f5
VD
4186#define SHRINK_PROMOTE_MAX 32
4187
2086d26a 4188/*
832f37f5
VD
4189 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4190 * up most to the head of the partial lists. New allocations will then
4191 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4192 *
4193 * The slabs with the least items are placed last. This results in them
4194 * being allocated from last increasing the chance that the last objects
4195 * are freed in them.
2086d26a 4196 */
c9fc5864 4197int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4198{
4199 int node;
4200 int i;
4201 struct kmem_cache_node *n;
4202 struct page *page;
4203 struct page *t;
832f37f5
VD
4204 struct list_head discard;
4205 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4206 unsigned long flags;
ce3712d7 4207 int ret = 0;
2086d26a 4208
2086d26a 4209 flush_all(s);
fa45dc25 4210 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4211 INIT_LIST_HEAD(&discard);
4212 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4213 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4214
4215 spin_lock_irqsave(&n->list_lock, flags);
4216
4217 /*
832f37f5 4218 * Build lists of slabs to discard or promote.
2086d26a 4219 *
672bba3a
CL
4220 * Note that concurrent frees may occur while we hold the
4221 * list_lock. page->inuse here is the upper limit.
2086d26a 4222 */
916ac052 4223 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4224 int free = page->objects - page->inuse;
4225
4226 /* Do not reread page->inuse */
4227 barrier();
4228
4229 /* We do not keep full slabs on the list */
4230 BUG_ON(free <= 0);
4231
4232 if (free == page->objects) {
916ac052 4233 list_move(&page->slab_list, &discard);
69cb8e6b 4234 n->nr_partial--;
832f37f5 4235 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4236 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4237 }
4238
2086d26a 4239 /*
832f37f5
VD
4240 * Promote the slabs filled up most to the head of the
4241 * partial list.
2086d26a 4242 */
832f37f5
VD
4243 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4244 list_splice(promote + i, &n->partial);
2086d26a 4245
2086d26a 4246 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4247
4248 /* Release empty slabs */
916ac052 4249 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4250 discard_slab(s, page);
ce3712d7
VD
4251
4252 if (slabs_node(s, node))
4253 ret = 1;
2086d26a
CL
4254 }
4255
ce3712d7 4256 return ret;
2086d26a 4257}
2086d26a 4258
b9049e23
YG
4259static int slab_mem_going_offline_callback(void *arg)
4260{
4261 struct kmem_cache *s;
4262
18004c5d 4263 mutex_lock(&slab_mutex);
b9049e23 4264 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4265 __kmem_cache_shrink(s);
18004c5d 4266 mutex_unlock(&slab_mutex);
b9049e23
YG
4267
4268 return 0;
4269}
4270
4271static void slab_mem_offline_callback(void *arg)
4272{
b9049e23
YG
4273 struct memory_notify *marg = arg;
4274 int offline_node;
4275
b9d5ab25 4276 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4277
4278 /*
4279 * If the node still has available memory. we need kmem_cache_node
4280 * for it yet.
4281 */
4282 if (offline_node < 0)
4283 return;
4284
18004c5d 4285 mutex_lock(&slab_mutex);
7e1fa93d 4286 node_clear(offline_node, slab_nodes);
666716fd
VB
4287 /*
4288 * We no longer free kmem_cache_node structures here, as it would be
4289 * racy with all get_node() users, and infeasible to protect them with
4290 * slab_mutex.
4291 */
18004c5d 4292 mutex_unlock(&slab_mutex);
b9049e23
YG
4293}
4294
4295static int slab_mem_going_online_callback(void *arg)
4296{
4297 struct kmem_cache_node *n;
4298 struct kmem_cache *s;
4299 struct memory_notify *marg = arg;
b9d5ab25 4300 int nid = marg->status_change_nid_normal;
b9049e23
YG
4301 int ret = 0;
4302
4303 /*
4304 * If the node's memory is already available, then kmem_cache_node is
4305 * already created. Nothing to do.
4306 */
4307 if (nid < 0)
4308 return 0;
4309
4310 /*
0121c619 4311 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4312 * allocate a kmem_cache_node structure in order to bring the node
4313 * online.
4314 */
18004c5d 4315 mutex_lock(&slab_mutex);
b9049e23 4316 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4317 /*
4318 * The structure may already exist if the node was previously
4319 * onlined and offlined.
4320 */
4321 if (get_node(s, nid))
4322 continue;
b9049e23
YG
4323 /*
4324 * XXX: kmem_cache_alloc_node will fallback to other nodes
4325 * since memory is not yet available from the node that
4326 * is brought up.
4327 */
8de66a0c 4328 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4329 if (!n) {
4330 ret = -ENOMEM;
4331 goto out;
4332 }
4053497d 4333 init_kmem_cache_node(n);
b9049e23
YG
4334 s->node[nid] = n;
4335 }
7e1fa93d
VB
4336 /*
4337 * Any cache created after this point will also have kmem_cache_node
4338 * initialized for the new node.
4339 */
4340 node_set(nid, slab_nodes);
b9049e23 4341out:
18004c5d 4342 mutex_unlock(&slab_mutex);
b9049e23
YG
4343 return ret;
4344}
4345
4346static int slab_memory_callback(struct notifier_block *self,
4347 unsigned long action, void *arg)
4348{
4349 int ret = 0;
4350
4351 switch (action) {
4352 case MEM_GOING_ONLINE:
4353 ret = slab_mem_going_online_callback(arg);
4354 break;
4355 case MEM_GOING_OFFLINE:
4356 ret = slab_mem_going_offline_callback(arg);
4357 break;
4358 case MEM_OFFLINE:
4359 case MEM_CANCEL_ONLINE:
4360 slab_mem_offline_callback(arg);
4361 break;
4362 case MEM_ONLINE:
4363 case MEM_CANCEL_OFFLINE:
4364 break;
4365 }
dc19f9db
KH
4366 if (ret)
4367 ret = notifier_from_errno(ret);
4368 else
4369 ret = NOTIFY_OK;
b9049e23
YG
4370 return ret;
4371}
4372
3ac38faa
AM
4373static struct notifier_block slab_memory_callback_nb = {
4374 .notifier_call = slab_memory_callback,
4375 .priority = SLAB_CALLBACK_PRI,
4376};
b9049e23 4377
81819f0f
CL
4378/********************************************************************
4379 * Basic setup of slabs
4380 *******************************************************************/
4381
51df1142
CL
4382/*
4383 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4384 * the page allocator. Allocate them properly then fix up the pointers
4385 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4386 */
4387
dffb4d60 4388static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4389{
4390 int node;
dffb4d60 4391 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4392 struct kmem_cache_node *n;
51df1142 4393
dffb4d60 4394 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4395
7d557b3c
GC
4396 /*
4397 * This runs very early, and only the boot processor is supposed to be
4398 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4399 * IPIs around.
4400 */
4401 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4402 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4403 struct page *p;
4404
916ac052 4405 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4406 p->slab_cache = s;
51df1142 4407
607bf324 4408#ifdef CONFIG_SLUB_DEBUG
916ac052 4409 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4410 p->slab_cache = s;
51df1142 4411#endif
51df1142 4412 }
dffb4d60
CL
4413 list_add(&s->list, &slab_caches);
4414 return s;
51df1142
CL
4415}
4416
81819f0f
CL
4417void __init kmem_cache_init(void)
4418{
dffb4d60
CL
4419 static __initdata struct kmem_cache boot_kmem_cache,
4420 boot_kmem_cache_node;
7e1fa93d 4421 int node;
51df1142 4422
fc8d8620
SG
4423 if (debug_guardpage_minorder())
4424 slub_max_order = 0;
4425
dffb4d60
CL
4426 kmem_cache_node = &boot_kmem_cache_node;
4427 kmem_cache = &boot_kmem_cache;
51df1142 4428
7e1fa93d
VB
4429 /*
4430 * Initialize the nodemask for which we will allocate per node
4431 * structures. Here we don't need taking slab_mutex yet.
4432 */
4433 for_each_node_state(node, N_NORMAL_MEMORY)
4434 node_set(node, slab_nodes);
4435
dffb4d60 4436 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4437 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4438
3ac38faa 4439 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4440
4441 /* Able to allocate the per node structures */
4442 slab_state = PARTIAL;
4443
dffb4d60
CL
4444 create_boot_cache(kmem_cache, "kmem_cache",
4445 offsetof(struct kmem_cache, node) +
4446 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4447 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4448
dffb4d60 4449 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4450 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4451
4452 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4453 setup_kmalloc_cache_index_table();
f97d5f63 4454 create_kmalloc_caches(0);
81819f0f 4455
210e7a43
TG
4456 /* Setup random freelists for each cache */
4457 init_freelist_randomization();
4458
a96a87bf
SAS
4459 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4460 slub_cpu_dead);
81819f0f 4461
b9726c26 4462 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4463 cache_line_size(),
81819f0f
CL
4464 slub_min_order, slub_max_order, slub_min_objects,
4465 nr_cpu_ids, nr_node_ids);
4466}
4467
7e85ee0c
PE
4468void __init kmem_cache_init_late(void)
4469{
7e85ee0c
PE
4470}
4471
2633d7a0 4472struct kmem_cache *
f4957d5b 4473__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4474 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4475{
10befea9 4476 struct kmem_cache *s;
81819f0f 4477
a44cb944 4478 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4479 if (s) {
4480 s->refcount++;
84d0ddd6 4481
81819f0f
CL
4482 /*
4483 * Adjust the object sizes so that we clear
4484 * the complete object on kzalloc.
4485 */
1b473f29 4486 s->object_size = max(s->object_size, size);
52ee6d74 4487 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4488
7b8f3b66 4489 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4490 s->refcount--;
cbb79694 4491 s = NULL;
7b8f3b66 4492 }
a0e1d1be 4493 }
6446faa2 4494
cbb79694
CL
4495 return s;
4496}
84c1cf62 4497
d50112ed 4498int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4499{
aac3a166
PE
4500 int err;
4501
4502 err = kmem_cache_open(s, flags);
4503 if (err)
4504 return err;
20cea968 4505
45530c44
CL
4506 /* Mutex is not taken during early boot */
4507 if (slab_state <= UP)
4508 return 0;
4509
aac3a166 4510 err = sysfs_slab_add(s);
aac3a166 4511 if (err)
52b4b950 4512 __kmem_cache_release(s);
20cea968 4513
aac3a166 4514 return err;
81819f0f 4515}
81819f0f 4516
ce71e27c 4517void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4518{
aadb4bc4 4519 struct kmem_cache *s;
94b528d0 4520 void *ret;
aadb4bc4 4521
95a05b42 4522 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4523 return kmalloc_large(size, gfpflags);
4524
2c59dd65 4525 s = kmalloc_slab(size, gfpflags);
81819f0f 4526
2408c550 4527 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4528 return s;
81819f0f 4529
2b847c3c 4530 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4531
25985edc 4532 /* Honor the call site pointer we received. */
ca2b84cb 4533 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4534
4535 return ret;
81819f0f 4536}
fd7cb575 4537EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4538
5d1f57e4 4539#ifdef CONFIG_NUMA
81819f0f 4540void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4541 int node, unsigned long caller)
81819f0f 4542{
aadb4bc4 4543 struct kmem_cache *s;
94b528d0 4544 void *ret;
aadb4bc4 4545
95a05b42 4546 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4547 ret = kmalloc_large_node(size, gfpflags, node);
4548
4549 trace_kmalloc_node(caller, ret,
4550 size, PAGE_SIZE << get_order(size),
4551 gfpflags, node);
4552
4553 return ret;
4554 }
eada35ef 4555
2c59dd65 4556 s = kmalloc_slab(size, gfpflags);
81819f0f 4557
2408c550 4558 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4559 return s;
81819f0f 4560
2b847c3c 4561 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4562
25985edc 4563 /* Honor the call site pointer we received. */
ca2b84cb 4564 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4565
4566 return ret;
81819f0f 4567}
fd7cb575 4568EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4569#endif
81819f0f 4570
ab4d5ed5 4571#ifdef CONFIG_SYSFS
205ab99d
CL
4572static int count_inuse(struct page *page)
4573{
4574 return page->inuse;
4575}
4576
4577static int count_total(struct page *page)
4578{
4579 return page->objects;
4580}
ab4d5ed5 4581#endif
205ab99d 4582
ab4d5ed5 4583#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4584static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4585{
4586 void *p;
a973e9dd 4587 void *addr = page_address(page);
90e9f6a6
YZ
4588 unsigned long *map;
4589
4590 slab_lock(page);
53e15af0 4591
dd98afd4 4592 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4593 goto unlock;
53e15af0
CL
4594
4595 /* Now we know that a valid freelist exists */
90e9f6a6 4596 map = get_map(s, page);
5f80b13a 4597 for_each_object(p, s, addr, page->objects) {
4138fdfc 4598 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4599 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4600
dd98afd4
YZ
4601 if (!check_object(s, page, p, val))
4602 break;
4603 }
90e9f6a6
YZ
4604 put_map(map);
4605unlock:
881db7fb 4606 slab_unlock(page);
53e15af0
CL
4607}
4608
434e245d 4609static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4610 struct kmem_cache_node *n)
53e15af0
CL
4611{
4612 unsigned long count = 0;
4613 struct page *page;
4614 unsigned long flags;
4615
4616 spin_lock_irqsave(&n->list_lock, flags);
4617
916ac052 4618 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4619 validate_slab(s, page);
53e15af0
CL
4620 count++;
4621 }
4622 if (count != n->nr_partial)
f9f58285
FF
4623 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4624 s->name, count, n->nr_partial);
53e15af0
CL
4625
4626 if (!(s->flags & SLAB_STORE_USER))
4627 goto out;
4628
916ac052 4629 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4630 validate_slab(s, page);
53e15af0
CL
4631 count++;
4632 }
4633 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4634 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4635 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4636
4637out:
4638 spin_unlock_irqrestore(&n->list_lock, flags);
4639 return count;
4640}
4641
434e245d 4642static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4643{
4644 int node;
4645 unsigned long count = 0;
fa45dc25 4646 struct kmem_cache_node *n;
53e15af0
CL
4647
4648 flush_all(s);
fa45dc25 4649 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4650 count += validate_slab_node(s, n);
4651
53e15af0
CL
4652 return count;
4653}
88a420e4 4654/*
672bba3a 4655 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4656 * and freed.
4657 */
4658
4659struct location {
4660 unsigned long count;
ce71e27c 4661 unsigned long addr;
45edfa58
CL
4662 long long sum_time;
4663 long min_time;
4664 long max_time;
4665 long min_pid;
4666 long max_pid;
174596a0 4667 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4668 nodemask_t nodes;
88a420e4
CL
4669};
4670
4671struct loc_track {
4672 unsigned long max;
4673 unsigned long count;
4674 struct location *loc;
4675};
4676
4677static void free_loc_track(struct loc_track *t)
4678{
4679 if (t->max)
4680 free_pages((unsigned long)t->loc,
4681 get_order(sizeof(struct location) * t->max));
4682}
4683
68dff6a9 4684static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4685{
4686 struct location *l;
4687 int order;
4688
88a420e4
CL
4689 order = get_order(sizeof(struct location) * max);
4690
68dff6a9 4691 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4692 if (!l)
4693 return 0;
4694
4695 if (t->count) {
4696 memcpy(l, t->loc, sizeof(struct location) * t->count);
4697 free_loc_track(t);
4698 }
4699 t->max = max;
4700 t->loc = l;
4701 return 1;
4702}
4703
4704static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4705 const struct track *track)
88a420e4
CL
4706{
4707 long start, end, pos;
4708 struct location *l;
ce71e27c 4709 unsigned long caddr;
45edfa58 4710 unsigned long age = jiffies - track->when;
88a420e4
CL
4711
4712 start = -1;
4713 end = t->count;
4714
4715 for ( ; ; ) {
4716 pos = start + (end - start + 1) / 2;
4717
4718 /*
4719 * There is nothing at "end". If we end up there
4720 * we need to add something to before end.
4721 */
4722 if (pos == end)
4723 break;
4724
4725 caddr = t->loc[pos].addr;
45edfa58
CL
4726 if (track->addr == caddr) {
4727
4728 l = &t->loc[pos];
4729 l->count++;
4730 if (track->when) {
4731 l->sum_time += age;
4732 if (age < l->min_time)
4733 l->min_time = age;
4734 if (age > l->max_time)
4735 l->max_time = age;
4736
4737 if (track->pid < l->min_pid)
4738 l->min_pid = track->pid;
4739 if (track->pid > l->max_pid)
4740 l->max_pid = track->pid;
4741
174596a0
RR
4742 cpumask_set_cpu(track->cpu,
4743 to_cpumask(l->cpus));
45edfa58
CL
4744 }
4745 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4746 return 1;
4747 }
4748
45edfa58 4749 if (track->addr < caddr)
88a420e4
CL
4750 end = pos;
4751 else
4752 start = pos;
4753 }
4754
4755 /*
672bba3a 4756 * Not found. Insert new tracking element.
88a420e4 4757 */
68dff6a9 4758 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4759 return 0;
4760
4761 l = t->loc + pos;
4762 if (pos < t->count)
4763 memmove(l + 1, l,
4764 (t->count - pos) * sizeof(struct location));
4765 t->count++;
4766 l->count = 1;
45edfa58
CL
4767 l->addr = track->addr;
4768 l->sum_time = age;
4769 l->min_time = age;
4770 l->max_time = age;
4771 l->min_pid = track->pid;
4772 l->max_pid = track->pid;
174596a0
RR
4773 cpumask_clear(to_cpumask(l->cpus));
4774 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4775 nodes_clear(l->nodes);
4776 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4777 return 1;
4778}
4779
4780static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4781 struct page *page, enum track_item alloc)
88a420e4 4782{
a973e9dd 4783 void *addr = page_address(page);
88a420e4 4784 void *p;
90e9f6a6 4785 unsigned long *map;
88a420e4 4786
90e9f6a6 4787 map = get_map(s, page);
224a88be 4788 for_each_object(p, s, addr, page->objects)
4138fdfc 4789 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4790 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4791 put_map(map);
88a420e4
CL
4792}
4793
4794static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4795 enum track_item alloc)
88a420e4 4796{
e374d483 4797 int len = 0;
88a420e4 4798 unsigned long i;
68dff6a9 4799 struct loc_track t = { 0, 0, NULL };
88a420e4 4800 int node;
fa45dc25 4801 struct kmem_cache_node *n;
88a420e4 4802
90e9f6a6
YZ
4803 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4804 GFP_KERNEL)) {
bf16d19a 4805 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4806 }
88a420e4
CL
4807 /* Push back cpu slabs */
4808 flush_all(s);
4809
fa45dc25 4810 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4811 unsigned long flags;
4812 struct page *page;
4813
9e86943b 4814 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4815 continue;
4816
4817 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4818 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4819 process_slab(&t, s, page, alloc);
916ac052 4820 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4821 process_slab(&t, s, page, alloc);
88a420e4
CL
4822 spin_unlock_irqrestore(&n->list_lock, flags);
4823 }
4824
4825 for (i = 0; i < t.count; i++) {
45edfa58 4826 struct location *l = &t.loc[i];
88a420e4 4827
bf16d19a 4828 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4829
4830 if (l->addr)
bf16d19a 4831 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4832 else
bf16d19a
JP
4833 len += sysfs_emit_at(buf, len, "<not-available>");
4834
4835 if (l->sum_time != l->min_time)
4836 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4837 l->min_time,
4838 (long)div_u64(l->sum_time,
4839 l->count),
4840 l->max_time);
4841 else
4842 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4843
4844 if (l->min_pid != l->max_pid)
bf16d19a
JP
4845 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4846 l->min_pid, l->max_pid);
45edfa58 4847 else
bf16d19a
JP
4848 len += sysfs_emit_at(buf, len, " pid=%ld",
4849 l->min_pid);
45edfa58 4850
174596a0 4851 if (num_online_cpus() > 1 &&
bf16d19a
JP
4852 !cpumask_empty(to_cpumask(l->cpus)))
4853 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4854 cpumask_pr_args(to_cpumask(l->cpus)));
4855
4856 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4857 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4858 nodemask_pr_args(&l->nodes));
4859
4860 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4861 }
4862
4863 free_loc_track(&t);
4864 if (!t.count)
bf16d19a
JP
4865 len += sysfs_emit_at(buf, len, "No data\n");
4866
e374d483 4867 return len;
88a420e4 4868}
6dfd1b65 4869#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4870
a5a84755 4871#ifdef SLUB_RESILIENCY_TEST
c07b8183 4872static void __init resiliency_test(void)
a5a84755
CL
4873{
4874 u8 *p;
cc252eae 4875 int type = KMALLOC_NORMAL;
a5a84755 4876
95a05b42 4877 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4878
f9f58285
FF
4879 pr_err("SLUB resiliency testing\n");
4880 pr_err("-----------------------\n");
4881 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4882
4883 p = kzalloc(16, GFP_KERNEL);
4884 p[16] = 0x12;
f9f58285
FF
4885 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4886 p + 16);
a5a84755 4887
cc252eae 4888 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4889
4890 /* Hmmm... The next two are dangerous */
4891 p = kzalloc(32, GFP_KERNEL);
4892 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4893 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4894 p);
4895 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4896
cc252eae 4897 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4898 p = kzalloc(64, GFP_KERNEL);
4899 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4900 *p = 0x56;
f9f58285
FF
4901 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4902 p);
4903 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4904 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4905
f9f58285 4906 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4907 p = kzalloc(128, GFP_KERNEL);
4908 kfree(p);
4909 *p = 0x78;
f9f58285 4910 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4911 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4912
4913 p = kzalloc(256, GFP_KERNEL);
4914 kfree(p);
4915 p[50] = 0x9a;
f9f58285 4916 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4917 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4918
4919 p = kzalloc(512, GFP_KERNEL);
4920 kfree(p);
4921 p[512] = 0xab;
f9f58285 4922 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4923 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4924}
4925#else
4926#ifdef CONFIG_SYSFS
4927static void resiliency_test(void) {};
4928#endif
6dfd1b65 4929#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4930
ab4d5ed5 4931#ifdef CONFIG_SYSFS
81819f0f 4932enum slab_stat_type {
205ab99d
CL
4933 SL_ALL, /* All slabs */
4934 SL_PARTIAL, /* Only partially allocated slabs */
4935 SL_CPU, /* Only slabs used for cpu caches */
4936 SL_OBJECTS, /* Determine allocated objects not slabs */
4937 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4938};
4939
205ab99d 4940#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4941#define SO_PARTIAL (1 << SL_PARTIAL)
4942#define SO_CPU (1 << SL_CPU)
4943#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4944#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4945
62e5c4b4 4946static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4947 char *buf, unsigned long flags)
81819f0f
CL
4948{
4949 unsigned long total = 0;
81819f0f
CL
4950 int node;
4951 int x;
4952 unsigned long *nodes;
bf16d19a 4953 int len = 0;
81819f0f 4954
6396bb22 4955 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4956 if (!nodes)
4957 return -ENOMEM;
81819f0f 4958
205ab99d
CL
4959 if (flags & SO_CPU) {
4960 int cpu;
81819f0f 4961
205ab99d 4962 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4963 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4964 cpu);
ec3ab083 4965 int node;
49e22585 4966 struct page *page;
dfb4f096 4967
4db0c3c2 4968 page = READ_ONCE(c->page);
ec3ab083
CL
4969 if (!page)
4970 continue;
205ab99d 4971
ec3ab083
CL
4972 node = page_to_nid(page);
4973 if (flags & SO_TOTAL)
4974 x = page->objects;
4975 else if (flags & SO_OBJECTS)
4976 x = page->inuse;
4977 else
4978 x = 1;
49e22585 4979
ec3ab083
CL
4980 total += x;
4981 nodes[node] += x;
4982
a93cf07b 4983 page = slub_percpu_partial_read_once(c);
49e22585 4984 if (page) {
8afb1474
LZ
4985 node = page_to_nid(page);
4986 if (flags & SO_TOTAL)
4987 WARN_ON_ONCE(1);
4988 else if (flags & SO_OBJECTS)
4989 WARN_ON_ONCE(1);
4990 else
4991 x = page->pages;
bc6697d8
ED
4992 total += x;
4993 nodes[node] += x;
49e22585 4994 }
81819f0f
CL
4995 }
4996 }
4997
e4f8e513
QC
4998 /*
4999 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5000 * already held which will conflict with an existing lock order:
5001 *
5002 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5003 *
5004 * We don't really need mem_hotplug_lock (to hold off
5005 * slab_mem_going_offline_callback) here because slab's memory hot
5006 * unplug code doesn't destroy the kmem_cache->node[] data.
5007 */
5008
ab4d5ed5 5009#ifdef CONFIG_SLUB_DEBUG
205ab99d 5010 if (flags & SO_ALL) {
fa45dc25
CL
5011 struct kmem_cache_node *n;
5012
5013 for_each_kmem_cache_node(s, node, n) {
205ab99d 5014
d0e0ac97
CG
5015 if (flags & SO_TOTAL)
5016 x = atomic_long_read(&n->total_objects);
5017 else if (flags & SO_OBJECTS)
5018 x = atomic_long_read(&n->total_objects) -
5019 count_partial(n, count_free);
81819f0f 5020 else
205ab99d 5021 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5022 total += x;
5023 nodes[node] += x;
5024 }
5025
ab4d5ed5
CL
5026 } else
5027#endif
5028 if (flags & SO_PARTIAL) {
fa45dc25 5029 struct kmem_cache_node *n;
81819f0f 5030
fa45dc25 5031 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5032 if (flags & SO_TOTAL)
5033 x = count_partial(n, count_total);
5034 else if (flags & SO_OBJECTS)
5035 x = count_partial(n, count_inuse);
81819f0f 5036 else
205ab99d 5037 x = n->nr_partial;
81819f0f
CL
5038 total += x;
5039 nodes[node] += x;
5040 }
5041 }
bf16d19a
JP
5042
5043 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5044#ifdef CONFIG_NUMA
bf16d19a 5045 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5046 if (nodes[node])
bf16d19a
JP
5047 len += sysfs_emit_at(buf, len, " N%d=%lu",
5048 node, nodes[node]);
5049 }
81819f0f 5050#endif
bf16d19a 5051 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5052 kfree(nodes);
bf16d19a
JP
5053
5054 return len;
81819f0f
CL
5055}
5056
81819f0f 5057#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5058#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5059
5060struct slab_attribute {
5061 struct attribute attr;
5062 ssize_t (*show)(struct kmem_cache *s, char *buf);
5063 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5064};
5065
5066#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5067 static struct slab_attribute _name##_attr = \
5068 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5069
5070#define SLAB_ATTR(_name) \
5071 static struct slab_attribute _name##_attr = \
ab067e99 5072 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5073
81819f0f
CL
5074static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5075{
bf16d19a 5076 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5077}
5078SLAB_ATTR_RO(slab_size);
5079
5080static ssize_t align_show(struct kmem_cache *s, char *buf)
5081{
bf16d19a 5082 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5083}
5084SLAB_ATTR_RO(align);
5085
5086static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5087{
bf16d19a 5088 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5089}
5090SLAB_ATTR_RO(object_size);
5091
5092static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5093{
bf16d19a 5094 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5095}
5096SLAB_ATTR_RO(objs_per_slab);
5097
5098static ssize_t order_show(struct kmem_cache *s, char *buf)
5099{
bf16d19a 5100 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5101}
32a6f409 5102SLAB_ATTR_RO(order);
81819f0f 5103
73d342b1
DR
5104static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5105{
bf16d19a 5106 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5107}
5108
5109static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5110 size_t length)
5111{
5112 unsigned long min;
5113 int err;
5114
3dbb95f7 5115 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5116 if (err)
5117 return err;
5118
c0bdb232 5119 set_min_partial(s, min);
73d342b1
DR
5120 return length;
5121}
5122SLAB_ATTR(min_partial);
5123
49e22585
CL
5124static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5125{
bf16d19a 5126 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5127}
5128
5129static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5130 size_t length)
5131{
e5d9998f 5132 unsigned int objects;
49e22585
CL
5133 int err;
5134
e5d9998f 5135 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5136 if (err)
5137 return err;
345c905d 5138 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5139 return -EINVAL;
49e22585 5140
e6d0e1dc 5141 slub_set_cpu_partial(s, objects);
49e22585
CL
5142 flush_all(s);
5143 return length;
5144}
5145SLAB_ATTR(cpu_partial);
5146
81819f0f
CL
5147static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5148{
62c70bce
JP
5149 if (!s->ctor)
5150 return 0;
bf16d19a 5151 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5152}
5153SLAB_ATTR_RO(ctor);
5154
81819f0f
CL
5155static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5156{
bf16d19a 5157 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5158}
5159SLAB_ATTR_RO(aliases);
5160
81819f0f
CL
5161static ssize_t partial_show(struct kmem_cache *s, char *buf)
5162{
d9acf4b7 5163 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5164}
5165SLAB_ATTR_RO(partial);
5166
5167static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5168{
d9acf4b7 5169 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5170}
5171SLAB_ATTR_RO(cpu_slabs);
5172
5173static ssize_t objects_show(struct kmem_cache *s, char *buf)
5174{
205ab99d 5175 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5176}
5177SLAB_ATTR_RO(objects);
5178
205ab99d
CL
5179static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5180{
5181 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5182}
5183SLAB_ATTR_RO(objects_partial);
5184
49e22585
CL
5185static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5186{
5187 int objects = 0;
5188 int pages = 0;
5189 int cpu;
bf16d19a 5190 int len = 0;
49e22585
CL
5191
5192 for_each_online_cpu(cpu) {
a93cf07b
WY
5193 struct page *page;
5194
5195 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5196
5197 if (page) {
5198 pages += page->pages;
5199 objects += page->pobjects;
5200 }
5201 }
5202
bf16d19a 5203 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5204
5205#ifdef CONFIG_SMP
5206 for_each_online_cpu(cpu) {
a93cf07b
WY
5207 struct page *page;
5208
5209 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5210 if (page)
5211 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5212 cpu, page->pobjects, page->pages);
49e22585
CL
5213 }
5214#endif
bf16d19a
JP
5215 len += sysfs_emit_at(buf, len, "\n");
5216
5217 return len;
49e22585
CL
5218}
5219SLAB_ATTR_RO(slabs_cpu_partial);
5220
a5a84755
CL
5221static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5222{
bf16d19a 5223 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5224}
8f58119a 5225SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5226
5227static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5228{
bf16d19a 5229 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5230}
5231SLAB_ATTR_RO(hwcache_align);
5232
5233#ifdef CONFIG_ZONE_DMA
5234static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5235{
bf16d19a 5236 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5237}
5238SLAB_ATTR_RO(cache_dma);
5239#endif
5240
8eb8284b
DW
5241static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5242{
bf16d19a 5243 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5244}
5245SLAB_ATTR_RO(usersize);
5246
a5a84755
CL
5247static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5248{
bf16d19a 5249 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5250}
5251SLAB_ATTR_RO(destroy_by_rcu);
5252
ab4d5ed5 5253#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5254static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5255{
5256 return show_slab_objects(s, buf, SO_ALL);
5257}
5258SLAB_ATTR_RO(slabs);
5259
205ab99d
CL
5260static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5261{
5262 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5263}
5264SLAB_ATTR_RO(total_objects);
5265
81819f0f
CL
5266static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5267{
bf16d19a 5268 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5269}
060807f8 5270SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5271
5272static ssize_t trace_show(struct kmem_cache *s, char *buf)
5273{
bf16d19a 5274 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5275}
060807f8 5276SLAB_ATTR_RO(trace);
81819f0f 5277
81819f0f
CL
5278static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5279{
bf16d19a 5280 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5281}
5282
ad38b5b1 5283SLAB_ATTR_RO(red_zone);
81819f0f
CL
5284
5285static ssize_t poison_show(struct kmem_cache *s, char *buf)
5286{
bf16d19a 5287 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5288}
5289
ad38b5b1 5290SLAB_ATTR_RO(poison);
81819f0f
CL
5291
5292static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5293{
bf16d19a 5294 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5295}
5296
ad38b5b1 5297SLAB_ATTR_RO(store_user);
81819f0f 5298
53e15af0
CL
5299static ssize_t validate_show(struct kmem_cache *s, char *buf)
5300{
5301 return 0;
5302}
5303
5304static ssize_t validate_store(struct kmem_cache *s,
5305 const char *buf, size_t length)
5306{
434e245d
CL
5307 int ret = -EINVAL;
5308
5309 if (buf[0] == '1') {
5310 ret = validate_slab_cache(s);
5311 if (ret >= 0)
5312 ret = length;
5313 }
5314 return ret;
53e15af0
CL
5315}
5316SLAB_ATTR(validate);
a5a84755
CL
5317
5318static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5319{
5320 if (!(s->flags & SLAB_STORE_USER))
5321 return -ENOSYS;
5322 return list_locations(s, buf, TRACK_ALLOC);
5323}
5324SLAB_ATTR_RO(alloc_calls);
5325
5326static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5327{
5328 if (!(s->flags & SLAB_STORE_USER))
5329 return -ENOSYS;
5330 return list_locations(s, buf, TRACK_FREE);
5331}
5332SLAB_ATTR_RO(free_calls);
5333#endif /* CONFIG_SLUB_DEBUG */
5334
5335#ifdef CONFIG_FAILSLAB
5336static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5337{
bf16d19a 5338 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5339}
060807f8 5340SLAB_ATTR_RO(failslab);
ab4d5ed5 5341#endif
53e15af0 5342
2086d26a
CL
5343static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5344{
5345 return 0;
5346}
5347
5348static ssize_t shrink_store(struct kmem_cache *s,
5349 const char *buf, size_t length)
5350{
832f37f5 5351 if (buf[0] == '1')
10befea9 5352 kmem_cache_shrink(s);
832f37f5 5353 else
2086d26a
CL
5354 return -EINVAL;
5355 return length;
5356}
5357SLAB_ATTR(shrink);
5358
81819f0f 5359#ifdef CONFIG_NUMA
9824601e 5360static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5361{
bf16d19a 5362 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5363}
5364
9824601e 5365static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5366 const char *buf, size_t length)
5367{
eb7235eb 5368 unsigned int ratio;
0121c619
CL
5369 int err;
5370
eb7235eb 5371 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5372 if (err)
5373 return err;
eb7235eb
AD
5374 if (ratio > 100)
5375 return -ERANGE;
0121c619 5376
eb7235eb 5377 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5378
81819f0f
CL
5379 return length;
5380}
9824601e 5381SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5382#endif
5383
8ff12cfc 5384#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5385static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5386{
5387 unsigned long sum = 0;
5388 int cpu;
bf16d19a 5389 int len = 0;
6da2ec56 5390 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5391
5392 if (!data)
5393 return -ENOMEM;
5394
5395 for_each_online_cpu(cpu) {
9dfc6e68 5396 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5397
5398 data[cpu] = x;
5399 sum += x;
5400 }
5401
bf16d19a 5402 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5403
50ef37b9 5404#ifdef CONFIG_SMP
8ff12cfc 5405 for_each_online_cpu(cpu) {
bf16d19a
JP
5406 if (data[cpu])
5407 len += sysfs_emit_at(buf, len, " C%d=%u",
5408 cpu, data[cpu]);
8ff12cfc 5409 }
50ef37b9 5410#endif
8ff12cfc 5411 kfree(data);
bf16d19a
JP
5412 len += sysfs_emit_at(buf, len, "\n");
5413
5414 return len;
8ff12cfc
CL
5415}
5416
78eb00cc
DR
5417static void clear_stat(struct kmem_cache *s, enum stat_item si)
5418{
5419 int cpu;
5420
5421 for_each_online_cpu(cpu)
9dfc6e68 5422 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5423}
5424
8ff12cfc
CL
5425#define STAT_ATTR(si, text) \
5426static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5427{ \
5428 return show_stat(s, buf, si); \
5429} \
78eb00cc
DR
5430static ssize_t text##_store(struct kmem_cache *s, \
5431 const char *buf, size_t length) \
5432{ \
5433 if (buf[0] != '0') \
5434 return -EINVAL; \
5435 clear_stat(s, si); \
5436 return length; \
5437} \
5438SLAB_ATTR(text); \
8ff12cfc
CL
5439
5440STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5441STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5442STAT_ATTR(FREE_FASTPATH, free_fastpath);
5443STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5444STAT_ATTR(FREE_FROZEN, free_frozen);
5445STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5446STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5447STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5448STAT_ATTR(ALLOC_SLAB, alloc_slab);
5449STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5450STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5451STAT_ATTR(FREE_SLAB, free_slab);
5452STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5453STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5454STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5455STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5456STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5457STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5458STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5459STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5460STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5461STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5462STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5463STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5464STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5465STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5466#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5467
06428780 5468static struct attribute *slab_attrs[] = {
81819f0f
CL
5469 &slab_size_attr.attr,
5470 &object_size_attr.attr,
5471 &objs_per_slab_attr.attr,
5472 &order_attr.attr,
73d342b1 5473 &min_partial_attr.attr,
49e22585 5474 &cpu_partial_attr.attr,
81819f0f 5475 &objects_attr.attr,
205ab99d 5476 &objects_partial_attr.attr,
81819f0f
CL
5477 &partial_attr.attr,
5478 &cpu_slabs_attr.attr,
5479 &ctor_attr.attr,
81819f0f
CL
5480 &aliases_attr.attr,
5481 &align_attr.attr,
81819f0f
CL
5482 &hwcache_align_attr.attr,
5483 &reclaim_account_attr.attr,
5484 &destroy_by_rcu_attr.attr,
a5a84755 5485 &shrink_attr.attr,
49e22585 5486 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5487#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5488 &total_objects_attr.attr,
5489 &slabs_attr.attr,
5490 &sanity_checks_attr.attr,
5491 &trace_attr.attr,
81819f0f
CL
5492 &red_zone_attr.attr,
5493 &poison_attr.attr,
5494 &store_user_attr.attr,
53e15af0 5495 &validate_attr.attr,
88a420e4
CL
5496 &alloc_calls_attr.attr,
5497 &free_calls_attr.attr,
ab4d5ed5 5498#endif
81819f0f
CL
5499#ifdef CONFIG_ZONE_DMA
5500 &cache_dma_attr.attr,
5501#endif
5502#ifdef CONFIG_NUMA
9824601e 5503 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5504#endif
5505#ifdef CONFIG_SLUB_STATS
5506 &alloc_fastpath_attr.attr,
5507 &alloc_slowpath_attr.attr,
5508 &free_fastpath_attr.attr,
5509 &free_slowpath_attr.attr,
5510 &free_frozen_attr.attr,
5511 &free_add_partial_attr.attr,
5512 &free_remove_partial_attr.attr,
5513 &alloc_from_partial_attr.attr,
5514 &alloc_slab_attr.attr,
5515 &alloc_refill_attr.attr,
e36a2652 5516 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5517 &free_slab_attr.attr,
5518 &cpuslab_flush_attr.attr,
5519 &deactivate_full_attr.attr,
5520 &deactivate_empty_attr.attr,
5521 &deactivate_to_head_attr.attr,
5522 &deactivate_to_tail_attr.attr,
5523 &deactivate_remote_frees_attr.attr,
03e404af 5524 &deactivate_bypass_attr.attr,
65c3376a 5525 &order_fallback_attr.attr,
b789ef51
CL
5526 &cmpxchg_double_fail_attr.attr,
5527 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5528 &cpu_partial_alloc_attr.attr,
5529 &cpu_partial_free_attr.attr,
8028dcea
AS
5530 &cpu_partial_node_attr.attr,
5531 &cpu_partial_drain_attr.attr,
81819f0f 5532#endif
4c13dd3b
DM
5533#ifdef CONFIG_FAILSLAB
5534 &failslab_attr.attr,
5535#endif
8eb8284b 5536 &usersize_attr.attr,
4c13dd3b 5537
81819f0f
CL
5538 NULL
5539};
5540
1fdaaa23 5541static const struct attribute_group slab_attr_group = {
81819f0f
CL
5542 .attrs = slab_attrs,
5543};
5544
5545static ssize_t slab_attr_show(struct kobject *kobj,
5546 struct attribute *attr,
5547 char *buf)
5548{
5549 struct slab_attribute *attribute;
5550 struct kmem_cache *s;
5551 int err;
5552
5553 attribute = to_slab_attr(attr);
5554 s = to_slab(kobj);
5555
5556 if (!attribute->show)
5557 return -EIO;
5558
5559 err = attribute->show(s, buf);
5560
5561 return err;
5562}
5563
5564static ssize_t slab_attr_store(struct kobject *kobj,
5565 struct attribute *attr,
5566 const char *buf, size_t len)
5567{
5568 struct slab_attribute *attribute;
5569 struct kmem_cache *s;
5570 int err;
5571
5572 attribute = to_slab_attr(attr);
5573 s = to_slab(kobj);
5574
5575 if (!attribute->store)
5576 return -EIO;
5577
5578 err = attribute->store(s, buf, len);
81819f0f
CL
5579 return err;
5580}
5581
41a21285
CL
5582static void kmem_cache_release(struct kobject *k)
5583{
5584 slab_kmem_cache_release(to_slab(k));
5585}
5586
52cf25d0 5587static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5588 .show = slab_attr_show,
5589 .store = slab_attr_store,
5590};
5591
5592static struct kobj_type slab_ktype = {
5593 .sysfs_ops = &slab_sysfs_ops,
41a21285 5594 .release = kmem_cache_release,
81819f0f
CL
5595};
5596
27c3a314 5597static struct kset *slab_kset;
81819f0f 5598
9a41707b
VD
5599static inline struct kset *cache_kset(struct kmem_cache *s)
5600{
9a41707b
VD
5601 return slab_kset;
5602}
5603
81819f0f
CL
5604#define ID_STR_LENGTH 64
5605
5606/* Create a unique string id for a slab cache:
6446faa2
CL
5607 *
5608 * Format :[flags-]size
81819f0f
CL
5609 */
5610static char *create_unique_id(struct kmem_cache *s)
5611{
5612 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5613 char *p = name;
5614
5615 BUG_ON(!name);
5616
5617 *p++ = ':';
5618 /*
5619 * First flags affecting slabcache operations. We will only
5620 * get here for aliasable slabs so we do not need to support
5621 * too many flags. The flags here must cover all flags that
5622 * are matched during merging to guarantee that the id is
5623 * unique.
5624 */
5625 if (s->flags & SLAB_CACHE_DMA)
5626 *p++ = 'd';
6d6ea1e9
NB
5627 if (s->flags & SLAB_CACHE_DMA32)
5628 *p++ = 'D';
81819f0f
CL
5629 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5630 *p++ = 'a';
becfda68 5631 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5632 *p++ = 'F';
230e9fc2
VD
5633 if (s->flags & SLAB_ACCOUNT)
5634 *p++ = 'A';
81819f0f
CL
5635 if (p != name + 1)
5636 *p++ = '-';
44065b2e 5637 p += sprintf(p, "%07u", s->size);
2633d7a0 5638
81819f0f
CL
5639 BUG_ON(p > name + ID_STR_LENGTH - 1);
5640 return name;
5641}
5642
5643static int sysfs_slab_add(struct kmem_cache *s)
5644{
5645 int err;
5646 const char *name;
1663f26d 5647 struct kset *kset = cache_kset(s);
45530c44 5648 int unmergeable = slab_unmergeable(s);
81819f0f 5649
1663f26d
TH
5650 if (!kset) {
5651 kobject_init(&s->kobj, &slab_ktype);
5652 return 0;
5653 }
5654
11066386
MC
5655 if (!unmergeable && disable_higher_order_debug &&
5656 (slub_debug & DEBUG_METADATA_FLAGS))
5657 unmergeable = 1;
5658
81819f0f
CL
5659 if (unmergeable) {
5660 /*
5661 * Slabcache can never be merged so we can use the name proper.
5662 * This is typically the case for debug situations. In that
5663 * case we can catch duplicate names easily.
5664 */
27c3a314 5665 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5666 name = s->name;
5667 } else {
5668 /*
5669 * Create a unique name for the slab as a target
5670 * for the symlinks.
5671 */
5672 name = create_unique_id(s);
5673 }
5674
1663f26d 5675 s->kobj.kset = kset;
26e4f205 5676 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5677 if (err)
80da026a 5678 goto out;
81819f0f
CL
5679
5680 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5681 if (err)
5682 goto out_del_kobj;
9a41707b 5683
81819f0f
CL
5684 if (!unmergeable) {
5685 /* Setup first alias */
5686 sysfs_slab_alias(s, s->name);
81819f0f 5687 }
54b6a731
DJ
5688out:
5689 if (!unmergeable)
5690 kfree(name);
5691 return err;
5692out_del_kobj:
5693 kobject_del(&s->kobj);
54b6a731 5694 goto out;
81819f0f
CL
5695}
5696
d50d82fa
MP
5697void sysfs_slab_unlink(struct kmem_cache *s)
5698{
5699 if (slab_state >= FULL)
5700 kobject_del(&s->kobj);
5701}
5702
bf5eb3de
TH
5703void sysfs_slab_release(struct kmem_cache *s)
5704{
5705 if (slab_state >= FULL)
5706 kobject_put(&s->kobj);
81819f0f
CL
5707}
5708
5709/*
5710 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5711 * available lest we lose that information.
81819f0f
CL
5712 */
5713struct saved_alias {
5714 struct kmem_cache *s;
5715 const char *name;
5716 struct saved_alias *next;
5717};
5718
5af328a5 5719static struct saved_alias *alias_list;
81819f0f
CL
5720
5721static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5722{
5723 struct saved_alias *al;
5724
97d06609 5725 if (slab_state == FULL) {
81819f0f
CL
5726 /*
5727 * If we have a leftover link then remove it.
5728 */
27c3a314
GKH
5729 sysfs_remove_link(&slab_kset->kobj, name);
5730 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5731 }
5732
5733 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5734 if (!al)
5735 return -ENOMEM;
5736
5737 al->s = s;
5738 al->name = name;
5739 al->next = alias_list;
5740 alias_list = al;
5741 return 0;
5742}
5743
5744static int __init slab_sysfs_init(void)
5745{
5b95a4ac 5746 struct kmem_cache *s;
81819f0f
CL
5747 int err;
5748
18004c5d 5749 mutex_lock(&slab_mutex);
2bce6485 5750
d7660ce5 5751 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5752 if (!slab_kset) {
18004c5d 5753 mutex_unlock(&slab_mutex);
f9f58285 5754 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5755 return -ENOSYS;
5756 }
5757
97d06609 5758 slab_state = FULL;
26a7bd03 5759
5b95a4ac 5760 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5761 err = sysfs_slab_add(s);
5d540fb7 5762 if (err)
f9f58285
FF
5763 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5764 s->name);
26a7bd03 5765 }
81819f0f
CL
5766
5767 while (alias_list) {
5768 struct saved_alias *al = alias_list;
5769
5770 alias_list = alias_list->next;
5771 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5772 if (err)
f9f58285
FF
5773 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5774 al->name);
81819f0f
CL
5775 kfree(al);
5776 }
5777
18004c5d 5778 mutex_unlock(&slab_mutex);
81819f0f
CL
5779 resiliency_test();
5780 return 0;
5781}
5782
5783__initcall(slab_sysfs_init);
ab4d5ed5 5784#endif /* CONFIG_SYSFS */
57ed3eda
PE
5785
5786/*
5787 * The /proc/slabinfo ABI
5788 */
5b365771 5789#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5790void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5791{
57ed3eda 5792 unsigned long nr_slabs = 0;
205ab99d
CL
5793 unsigned long nr_objs = 0;
5794 unsigned long nr_free = 0;
57ed3eda 5795 int node;
fa45dc25 5796 struct kmem_cache_node *n;
57ed3eda 5797
fa45dc25 5798 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5799 nr_slabs += node_nr_slabs(n);
5800 nr_objs += node_nr_objs(n);
205ab99d 5801 nr_free += count_partial(n, count_free);
57ed3eda
PE
5802 }
5803
0d7561c6
GC
5804 sinfo->active_objs = nr_objs - nr_free;
5805 sinfo->num_objs = nr_objs;
5806 sinfo->active_slabs = nr_slabs;
5807 sinfo->num_slabs = nr_slabs;
5808 sinfo->objects_per_slab = oo_objects(s->oo);
5809 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5810}
5811
0d7561c6 5812void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5813{
7b3c3a50
AD
5814}
5815
b7454ad3
GC
5816ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5817 size_t count, loff_t *ppos)
7b3c3a50 5818{
b7454ad3 5819 return -EIO;
7b3c3a50 5820}
5b365771 5821#endif /* CONFIG_SLUB_DEBUG */