]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
slab, slub, slob: add slab_flags_t
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
5a896d9e 25#include <linux/kmemcheck.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
3ac7fe5a 30#include <linux/debugobjects.h>
81819f0f 31#include <linux/kallsyms.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
81819f0f 39
4a92379b
RK
40#include <trace/events/kmem.h>
41
072bb0aa
MG
42#include "internal.h"
43
81819f0f
CL
44/*
45 * Lock order:
18004c5d 46 * 1. slab_mutex (Global Mutex)
881db7fb
CL
47 * 2. node->list_lock
48 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 49 *
18004c5d 50 * slab_mutex
881db7fb 51 *
18004c5d 52 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
53 * and to synchronize major metadata changes to slab cache structures.
54 *
55 * The slab_lock is only used for debugging and on arches that do not
56 * have the ability to do a cmpxchg_double. It only protects the second
57 * double word in the page struct. Meaning
58 * A. page->freelist -> List of object free in a page
59 * B. page->counters -> Counters of objects
60 * C. page->frozen -> frozen state
61 *
62 * If a slab is frozen then it is exempt from list management. It is not
63 * on any list. The processor that froze the slab is the one who can
64 * perform list operations on the page. Other processors may put objects
65 * onto the freelist but the processor that froze the slab is the only
66 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * Overloading of page flags that are otherwise used for LRU management.
98 *
4b6f0750
CL
99 * PageActive The slab is frozen and exempt from list processing.
100 * This means that the slab is dedicated to a purpose
101 * such as satisfying allocations for a specific
102 * processor. Objects may be freed in the slab while
103 * it is frozen but slab_free will then skip the usual
104 * list operations. It is up to the processor holding
105 * the slab to integrate the slab into the slab lists
106 * when the slab is no longer needed.
107 *
108 * One use of this flag is to mark slabs that are
109 * used for allocations. Then such a slab becomes a cpu
110 * slab. The cpu slab may be equipped with an additional
dfb4f096 111 * freelist that allows lockless access to
894b8788
CL
112 * free objects in addition to the regular freelist
113 * that requires the slab lock.
81819f0f
CL
114 *
115 * PageError Slab requires special handling due to debug
116 * options set. This moves slab handling out of
894b8788 117 * the fast path and disables lockless freelists.
81819f0f
CL
118 */
119
af537b0a
CL
120static inline int kmem_cache_debug(struct kmem_cache *s)
121{
5577bd8a 122#ifdef CONFIG_SLUB_DEBUG
af537b0a 123 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 124#else
af537b0a 125 return 0;
5577bd8a 126#endif
af537b0a 127}
5577bd8a 128
117d54df 129void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
130{
131 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 p += s->red_left_pad;
133
134 return p;
135}
136
345c905d
JK
137static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138{
139#ifdef CONFIG_SLUB_CPU_PARTIAL
140 return !kmem_cache_debug(s);
141#else
142 return false;
143#endif
144}
145
81819f0f
CL
146/*
147 * Issues still to be resolved:
148 *
81819f0f
CL
149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 *
81819f0f
CL
151 * - Variable sizing of the per node arrays
152 */
153
154/* Enable to test recovery from slab corruption on boot */
155#undef SLUB_RESILIENCY_TEST
156
b789ef51
CL
157/* Enable to log cmpxchg failures */
158#undef SLUB_DEBUG_CMPXCHG
159
2086d26a
CL
160/*
161 * Mininum number of partial slabs. These will be left on the partial
162 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 */
76be8950 164#define MIN_PARTIAL 5
e95eed57 165
2086d26a
CL
166/*
167 * Maximum number of desirable partial slabs.
168 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 169 * sort the partial list by the number of objects in use.
2086d26a
CL
170 */
171#define MAX_PARTIAL 10
172
becfda68 173#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 174 SLAB_POISON | SLAB_STORE_USER)
672bba3a 175
149daaf3
LA
176/*
177 * These debug flags cannot use CMPXCHG because there might be consistency
178 * issues when checking or reading debug information
179 */
180#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
181 SLAB_TRACE)
182
183
fa5ec8a1 184/*
3de47213
DR
185 * Debugging flags that require metadata to be stored in the slab. These get
186 * disabled when slub_debug=O is used and a cache's min order increases with
187 * metadata.
fa5ec8a1 188 */
3de47213 189#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 190
210b5c06
CG
191#define OO_SHIFT 16
192#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 193#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 194
81819f0f 195/* Internal SLUB flags */
d50112ed
AD
196/* Poison object */
197#define __OBJECT_POISON ((slab_flags_t __force)0x80000000UL)
198/* Use cmpxchg_double */
199#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000UL)
81819f0f 200
02cbc874
CL
201/*
202 * Tracking user of a slab.
203 */
d6543e39 204#define TRACK_ADDRS_COUNT 16
02cbc874 205struct track {
ce71e27c 206 unsigned long addr; /* Called from address */
d6543e39
BG
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
02cbc874
CL
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
ab4d5ed5 217#ifdef CONFIG_SYSFS
81819f0f
CL
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 221static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
107dab5c 226static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 227static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
228#endif
229
4fdccdfb 230static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
231{
232#ifdef CONFIG_SLUB_STATS
88da03a6
CL
233 /*
234 * The rmw is racy on a preemptible kernel but this is acceptable, so
235 * avoid this_cpu_add()'s irq-disable overhead.
236 */
237 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
238#endif
239}
240
81819f0f
CL
241/********************************************************************
242 * Core slab cache functions
243 *******************************************************************/
244
2482ddec
KC
245/*
246 * Returns freelist pointer (ptr). With hardening, this is obfuscated
247 * with an XOR of the address where the pointer is held and a per-cache
248 * random number.
249 */
250static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
251 unsigned long ptr_addr)
252{
253#ifdef CONFIG_SLAB_FREELIST_HARDENED
254 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
255#else
256 return ptr;
257#endif
258}
259
260/* Returns the freelist pointer recorded at location ptr_addr. */
261static inline void *freelist_dereference(const struct kmem_cache *s,
262 void *ptr_addr)
263{
264 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
265 (unsigned long)ptr_addr);
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
2482ddec 270 return freelist_dereference(s, object + s->offset);
7656c72b
CL
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
2482ddec
KC
275 if (object)
276 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
277}
278
1393d9a1
CL
279static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
280{
2482ddec 281 unsigned long freepointer_addr;
1393d9a1
CL
282 void *p;
283
922d566c
JK
284 if (!debug_pagealloc_enabled())
285 return get_freepointer(s, object);
286
2482ddec
KC
287 freepointer_addr = (unsigned long)object + s->offset;
288 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
289 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
290}
291
7656c72b
CL
292static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
293{
2482ddec
KC
294 unsigned long freeptr_addr = (unsigned long)object + s->offset;
295
ce6fa91b
AP
296#ifdef CONFIG_SLAB_FREELIST_HARDENED
297 BUG_ON(object == fp); /* naive detection of double free or corruption */
298#endif
299
2482ddec 300 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
301}
302
303/* Loop over all objects in a slab */
224a88be 304#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
305 for (__p = fixup_red_left(__s, __addr); \
306 __p < (__addr) + (__objects) * (__s)->size; \
307 __p += (__s)->size)
7656c72b 308
54266640 309#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
310 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
311 __idx <= __objects; \
312 __p += (__s)->size, __idx++)
54266640 313
7656c72b
CL
314/* Determine object index from a given position */
315static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316{
317 return (p - addr) / s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
48c935ad 350 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
351 bit_spin_lock(PG_locked, &page->flags);
352}
353
354static __always_inline void slab_unlock(struct page *page)
355{
48c935ad 356 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
357 __bit_spin_unlock(PG_locked, &page->flags);
358}
359
a0320865
DH
360static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
361{
362 struct page tmp;
363 tmp.counters = counters_new;
364 /*
365 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
366 * as page->_refcount. If we assign to ->counters directly
367 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
368 * be careful and only assign to the fields we need.
369 */
370 page->frozen = tmp.frozen;
371 page->inuse = tmp.inuse;
372 page->objects = tmp.objects;
373}
374
1d07171c
CL
375/* Interrupts must be disabled (for the fallback code to work right) */
376static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
377 void *freelist_old, unsigned long counters_old,
378 void *freelist_new, unsigned long counters_new,
379 const char *n)
380{
381 VM_BUG_ON(!irqs_disabled());
2565409f
HC
382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 384 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 385 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
386 freelist_old, counters_old,
387 freelist_new, counters_new))
6f6528a1 388 return true;
1d07171c
CL
389 } else
390#endif
391 {
392 slab_lock(page);
d0e0ac97
CG
393 if (page->freelist == freelist_old &&
394 page->counters == counters_old) {
1d07171c 395 page->freelist = freelist_new;
a0320865 396 set_page_slub_counters(page, counters_new);
1d07171c 397 slab_unlock(page);
6f6528a1 398 return true;
1d07171c
CL
399 }
400 slab_unlock(page);
401 }
402
403 cpu_relax();
404 stat(s, CMPXCHG_DOUBLE_FAIL);
405
406#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 407 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
408#endif
409
6f6528a1 410 return false;
1d07171c
CL
411}
412
b789ef51
CL
413static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
414 void *freelist_old, unsigned long counters_old,
415 void *freelist_new, unsigned long counters_new,
416 const char *n)
417{
2565409f
HC
418#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
419 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 420 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 421 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
422 freelist_old, counters_old,
423 freelist_new, counters_new))
6f6528a1 424 return true;
b789ef51
CL
425 } else
426#endif
427 {
1d07171c
CL
428 unsigned long flags;
429
430 local_irq_save(flags);
881db7fb 431 slab_lock(page);
d0e0ac97
CG
432 if (page->freelist == freelist_old &&
433 page->counters == counters_old) {
b789ef51 434 page->freelist = freelist_new;
a0320865 435 set_page_slub_counters(page, counters_new);
881db7fb 436 slab_unlock(page);
1d07171c 437 local_irq_restore(flags);
6f6528a1 438 return true;
b789ef51 439 }
881db7fb 440 slab_unlock(page);
1d07171c 441 local_irq_restore(flags);
b789ef51
CL
442 }
443
444 cpu_relax();
445 stat(s, CMPXCHG_DOUBLE_FAIL);
446
447#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 448 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
449#endif
450
6f6528a1 451 return false;
b789ef51
CL
452}
453
41ecc55b 454#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
455/*
456 * Determine a map of object in use on a page.
457 *
881db7fb 458 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
459 * not vanish from under us.
460 */
461static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
462{
463 void *p;
464 void *addr = page_address(page);
465
466 for (p = page->freelist; p; p = get_freepointer(s, p))
467 set_bit(slab_index(p, s, addr), map);
468}
469
d86bd1be
JK
470static inline int size_from_object(struct kmem_cache *s)
471{
472 if (s->flags & SLAB_RED_ZONE)
473 return s->size - s->red_left_pad;
474
475 return s->size;
476}
477
478static inline void *restore_red_left(struct kmem_cache *s, void *p)
479{
480 if (s->flags & SLAB_RED_ZONE)
481 p -= s->red_left_pad;
482
483 return p;
484}
485
41ecc55b
CL
486/*
487 * Debug settings:
488 */
89d3c87e 489#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 490static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 491#else
d50112ed 492static slab_flags_t slub_debug;
f0630fff 493#endif
41ecc55b
CL
494
495static char *slub_debug_slabs;
fa5ec8a1 496static int disable_higher_order_debug;
41ecc55b 497
a79316c6
AR
498/*
499 * slub is about to manipulate internal object metadata. This memory lies
500 * outside the range of the allocated object, so accessing it would normally
501 * be reported by kasan as a bounds error. metadata_access_enable() is used
502 * to tell kasan that these accesses are OK.
503 */
504static inline void metadata_access_enable(void)
505{
506 kasan_disable_current();
507}
508
509static inline void metadata_access_disable(void)
510{
511 kasan_enable_current();
512}
513
81819f0f
CL
514/*
515 * Object debugging
516 */
d86bd1be
JK
517
518/* Verify that a pointer has an address that is valid within a slab page */
519static inline int check_valid_pointer(struct kmem_cache *s,
520 struct page *page, void *object)
521{
522 void *base;
523
524 if (!object)
525 return 1;
526
527 base = page_address(page);
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
531 return 0;
532 }
533
534 return 1;
535}
536
aa2efd5e
DT
537static void print_section(char *level, char *text, u8 *addr,
538 unsigned int length)
81819f0f 539{
a79316c6 540 metadata_access_enable();
aa2efd5e 541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 542 length, 1);
a79316c6 543 metadata_access_disable();
81819f0f
CL
544}
545
81819f0f
CL
546static struct track *get_track(struct kmem_cache *s, void *object,
547 enum track_item alloc)
548{
549 struct track *p;
550
551 if (s->offset)
552 p = object + s->offset + sizeof(void *);
553 else
554 p = object + s->inuse;
555
556 return p + alloc;
557}
558
559static void set_track(struct kmem_cache *s, void *object,
ce71e27c 560 enum track_item alloc, unsigned long addr)
81819f0f 561{
1a00df4a 562 struct track *p = get_track(s, object, alloc);
81819f0f 563
81819f0f 564 if (addr) {
d6543e39
BG
565#ifdef CONFIG_STACKTRACE
566 struct stack_trace trace;
567 int i;
568
569 trace.nr_entries = 0;
570 trace.max_entries = TRACK_ADDRS_COUNT;
571 trace.entries = p->addrs;
572 trace.skip = 3;
a79316c6 573 metadata_access_enable();
d6543e39 574 save_stack_trace(&trace);
a79316c6 575 metadata_access_disable();
d6543e39
BG
576
577 /* See rant in lockdep.c */
578 if (trace.nr_entries != 0 &&
579 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
580 trace.nr_entries--;
581
582 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
583 p->addrs[i] = 0;
584#endif
81819f0f
CL
585 p->addr = addr;
586 p->cpu = smp_processor_id();
88e4ccf2 587 p->pid = current->pid;
81819f0f
CL
588 p->when = jiffies;
589 } else
590 memset(p, 0, sizeof(struct track));
591}
592
81819f0f
CL
593static void init_tracking(struct kmem_cache *s, void *object)
594{
24922684
CL
595 if (!(s->flags & SLAB_STORE_USER))
596 return;
597
ce71e27c
EGM
598 set_track(s, object, TRACK_FREE, 0UL);
599 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
600}
601
602static void print_track(const char *s, struct track *t)
603{
604 if (!t->addr)
605 return;
606
f9f58285
FF
607 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
608 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
609#ifdef CONFIG_STACKTRACE
610 {
611 int i;
612 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
613 if (t->addrs[i])
f9f58285 614 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
615 else
616 break;
617 }
618#endif
24922684
CL
619}
620
621static void print_tracking(struct kmem_cache *s, void *object)
622{
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
627 print_track("Freed", get_track(s, object, TRACK_FREE));
628}
629
630static void print_page_info(struct page *page)
631{
f9f58285 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 633 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
634
635}
636
637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638{
ecc42fbe 639 struct va_format vaf;
24922684 640 va_list args;
24922684
CL
641
642 va_start(args, fmt);
ecc42fbe
FF
643 vaf.fmt = fmt;
644 vaf.va = &args;
f9f58285 645 pr_err("=============================================================================\n");
ecc42fbe 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 647 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 648
373d4d09 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 650 va_end(args);
81819f0f
CL
651}
652
24922684
CL
653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654{
ecc42fbe 655 struct va_format vaf;
24922684 656 va_list args;
24922684
CL
657
658 va_start(args, fmt);
ecc42fbe
FF
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 662 va_end(args);
24922684
CL
663}
664
665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
666{
667 unsigned int off; /* Offset of last byte */
a973e9dd 668 u8 *addr = page_address(page);
24922684
CL
669
670 print_tracking(s, p);
671
672 print_page_info(page);
673
f9f58285
FF
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
24922684 676
d86bd1be 677 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
d86bd1be 680 else if (p > addr + 16)
aa2efd5e 681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 682
aa2efd5e
DT
683 print_section(KERN_ERR, "Object ", p,
684 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 685 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 687 s->inuse - s->object_size);
81819f0f 688
81819f0f
CL
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
693
24922684 694 if (s->flags & SLAB_STORE_USER)
81819f0f 695 off += 2 * sizeof(struct track);
81819f0f 696
80a9201a
AP
697 off += kasan_metadata_size(s);
698
d86bd1be 699 if (off != size_from_object(s))
81819f0f 700 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
24922684
CL
703
704 dump_stack();
81819f0f
CL
705}
706
75c66def 707void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
708 u8 *object, char *reason)
709{
3dc50637 710 slab_bug(s, "%s", reason);
24922684 711 print_trailer(s, page, object);
81819f0f
CL
712}
713
d0e0ac97
CG
714static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
81819f0f
CL
716{
717 va_list args;
718 char buf[100];
719
24922684
CL
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 722 va_end(args);
3dc50637 723 slab_bug(s, "%s", buf);
24922684 724 print_page_info(page);
81819f0f
CL
725 dump_stack();
726}
727
f7cb1933 728static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
729{
730 u8 *p = object;
731
d86bd1be
JK
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
734
81819f0f 735 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
81819f0f
CL
738 }
739
740 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 741 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
742}
743
24922684
CL
744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
746{
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
749}
750
751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
06428780 753 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
754{
755 u8 *fault;
756 u8 *end;
757
a79316c6 758 metadata_access_enable();
79824820 759 fault = memchr_inv(start, value, bytes);
a79316c6 760 metadata_access_disable();
24922684
CL
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
f9f58285 769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
772
773 restore_bytes(s, what, value, fault, end);
774 return 0;
81819f0f
CL
775}
776
81819f0f
CL
777/*
778 * Object layout:
779 *
780 * object address
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
672bba3a 784 *
81819f0f
CL
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * 0xa5 (POISON_END)
787 *
3b0efdfa 788 * object + s->object_size
81819f0f 789 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 790 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 791 * object_size == inuse.
672bba3a 792 *
81819f0f
CL
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
795 *
796 * object + s->inuse
672bba3a
CL
797 * Meta data starts here.
798 *
81819f0f
CL
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
672bba3a 801 * C. Padding to reach required alignment boundary or at mininum
6446faa2 802 * one word if debugging is on to be able to detect writes
672bba3a
CL
803 * before the word boundary.
804 *
805 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
806 *
807 * object + s->size
672bba3a 808 * Nothing is used beyond s->size.
81819f0f 809 *
3b0efdfa 810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 811 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
812 * may be used with merged slabcaches.
813 */
814
81819f0f
CL
815static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816{
817 unsigned long off = s->inuse; /* The end of info */
818
819 if (s->offset)
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
822
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
826
80a9201a
AP
827 off += kasan_metadata_size(s);
828
d86bd1be 829 if (size_from_object(s) == off)
81819f0f
CL
830 return 1;
831
24922684 832 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 833 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
834}
835
39b26464 836/* Check the pad bytes at the end of a slab page */
81819f0f
CL
837static int slab_pad_check(struct kmem_cache *s, struct page *page)
838{
24922684
CL
839 u8 *start;
840 u8 *fault;
841 u8 *end;
842 int length;
843 int remainder;
81819f0f
CL
844
845 if (!(s->flags & SLAB_POISON))
846 return 1;
847
a973e9dd 848 start = page_address(page);
ab9a0f19 849 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
850 end = start + length;
851 remainder = length % s->size;
81819f0f
CL
852 if (!remainder)
853 return 1;
854
a79316c6 855 metadata_access_enable();
79824820 856 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 857 metadata_access_disable();
24922684
CL
858 if (!fault)
859 return 1;
860 while (end > fault && end[-1] == POISON_INUSE)
861 end--;
862
863 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 864 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 865
8a3d271d 866 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 867 return 0;
81819f0f
CL
868}
869
870static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 871 void *object, u8 val)
81819f0f
CL
872{
873 u8 *p = object;
3b0efdfa 874 u8 *endobject = object + s->object_size;
81819f0f
CL
875
876 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
877 if (!check_bytes_and_report(s, page, object, "Redzone",
878 object - s->red_left_pad, val, s->red_left_pad))
879 return 0;
880
24922684 881 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 882 endobject, val, s->inuse - s->object_size))
81819f0f 883 return 0;
81819f0f 884 } else {
3b0efdfa 885 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 886 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
887 endobject, POISON_INUSE,
888 s->inuse - s->object_size);
3adbefee 889 }
81819f0f
CL
890 }
891
892 if (s->flags & SLAB_POISON) {
f7cb1933 893 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 894 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 895 POISON_FREE, s->object_size - 1) ||
24922684 896 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 897 p + s->object_size - 1, POISON_END, 1)))
81819f0f 898 return 0;
81819f0f
CL
899 /*
900 * check_pad_bytes cleans up on its own.
901 */
902 check_pad_bytes(s, page, p);
903 }
904
f7cb1933 905 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
906 /*
907 * Object and freepointer overlap. Cannot check
908 * freepointer while object is allocated.
909 */
910 return 1;
911
912 /* Check free pointer validity */
913 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
914 object_err(s, page, p, "Freepointer corrupt");
915 /*
9f6c708e 916 * No choice but to zap it and thus lose the remainder
81819f0f 917 * of the free objects in this slab. May cause
672bba3a 918 * another error because the object count is now wrong.
81819f0f 919 */
a973e9dd 920 set_freepointer(s, p, NULL);
81819f0f
CL
921 return 0;
922 }
923 return 1;
924}
925
926static int check_slab(struct kmem_cache *s, struct page *page)
927{
39b26464
CL
928 int maxobj;
929
81819f0f
CL
930 VM_BUG_ON(!irqs_disabled());
931
932 if (!PageSlab(page)) {
24922684 933 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
934 return 0;
935 }
39b26464 936
ab9a0f19 937 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
938 if (page->objects > maxobj) {
939 slab_err(s, page, "objects %u > max %u",
f6edde9c 940 page->objects, maxobj);
39b26464
CL
941 return 0;
942 }
943 if (page->inuse > page->objects) {
24922684 944 slab_err(s, page, "inuse %u > max %u",
f6edde9c 945 page->inuse, page->objects);
81819f0f
CL
946 return 0;
947 }
948 /* Slab_pad_check fixes things up after itself */
949 slab_pad_check(s, page);
950 return 1;
951}
952
953/*
672bba3a
CL
954 * Determine if a certain object on a page is on the freelist. Must hold the
955 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
956 */
957static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
958{
959 int nr = 0;
881db7fb 960 void *fp;
81819f0f 961 void *object = NULL;
f6edde9c 962 int max_objects;
81819f0f 963
881db7fb 964 fp = page->freelist;
39b26464 965 while (fp && nr <= page->objects) {
81819f0f
CL
966 if (fp == search)
967 return 1;
968 if (!check_valid_pointer(s, page, fp)) {
969 if (object) {
970 object_err(s, page, object,
971 "Freechain corrupt");
a973e9dd 972 set_freepointer(s, object, NULL);
81819f0f 973 } else {
24922684 974 slab_err(s, page, "Freepointer corrupt");
a973e9dd 975 page->freelist = NULL;
39b26464 976 page->inuse = page->objects;
24922684 977 slab_fix(s, "Freelist cleared");
81819f0f
CL
978 return 0;
979 }
980 break;
981 }
982 object = fp;
983 fp = get_freepointer(s, object);
984 nr++;
985 }
986
ab9a0f19 987 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
988 if (max_objects > MAX_OBJS_PER_PAGE)
989 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
990
991 if (page->objects != max_objects) {
756a025f
JP
992 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
993 page->objects, max_objects);
224a88be
CL
994 page->objects = max_objects;
995 slab_fix(s, "Number of objects adjusted.");
996 }
39b26464 997 if (page->inuse != page->objects - nr) {
756a025f
JP
998 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
999 page->inuse, page->objects - nr);
39b26464 1000 page->inuse = page->objects - nr;
24922684 1001 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1002 }
1003 return search == NULL;
1004}
1005
0121c619
CL
1006static void trace(struct kmem_cache *s, struct page *page, void *object,
1007 int alloc)
3ec09742
CL
1008{
1009 if (s->flags & SLAB_TRACE) {
f9f58285 1010 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1011 s->name,
1012 alloc ? "alloc" : "free",
1013 object, page->inuse,
1014 page->freelist);
1015
1016 if (!alloc)
aa2efd5e 1017 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1018 s->object_size);
3ec09742
CL
1019
1020 dump_stack();
1021 }
1022}
1023
643b1138 1024/*
672bba3a 1025 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1026 */
5cc6eee8
CL
1027static void add_full(struct kmem_cache *s,
1028 struct kmem_cache_node *n, struct page *page)
643b1138 1029{
5cc6eee8
CL
1030 if (!(s->flags & SLAB_STORE_USER))
1031 return;
1032
255d0884 1033 lockdep_assert_held(&n->list_lock);
643b1138 1034 list_add(&page->lru, &n->full);
643b1138
CL
1035}
1036
c65c1877 1037static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1038{
643b1138
CL
1039 if (!(s->flags & SLAB_STORE_USER))
1040 return;
1041
255d0884 1042 lockdep_assert_held(&n->list_lock);
643b1138 1043 list_del(&page->lru);
643b1138
CL
1044}
1045
0f389ec6
CL
1046/* Tracking of the number of slabs for debugging purposes */
1047static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1048{
1049 struct kmem_cache_node *n = get_node(s, node);
1050
1051 return atomic_long_read(&n->nr_slabs);
1052}
1053
26c02cf0
AB
1054static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1055{
1056 return atomic_long_read(&n->nr_slabs);
1057}
1058
205ab99d 1059static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1060{
1061 struct kmem_cache_node *n = get_node(s, node);
1062
1063 /*
1064 * May be called early in order to allocate a slab for the
1065 * kmem_cache_node structure. Solve the chicken-egg
1066 * dilemma by deferring the increment of the count during
1067 * bootstrap (see early_kmem_cache_node_alloc).
1068 */
338b2642 1069 if (likely(n)) {
0f389ec6 1070 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1071 atomic_long_add(objects, &n->total_objects);
1072 }
0f389ec6 1073}
205ab99d 1074static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1075{
1076 struct kmem_cache_node *n = get_node(s, node);
1077
1078 atomic_long_dec(&n->nr_slabs);
205ab99d 1079 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1080}
1081
1082/* Object debug checks for alloc/free paths */
3ec09742
CL
1083static void setup_object_debug(struct kmem_cache *s, struct page *page,
1084 void *object)
1085{
1086 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1087 return;
1088
f7cb1933 1089 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1090 init_tracking(s, object);
1091}
1092
becfda68 1093static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1094 struct page *page,
ce71e27c 1095 void *object, unsigned long addr)
81819f0f
CL
1096{
1097 if (!check_slab(s, page))
becfda68 1098 return 0;
81819f0f 1099
81819f0f
CL
1100 if (!check_valid_pointer(s, page, object)) {
1101 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1102 return 0;
81819f0f
CL
1103 }
1104
f7cb1933 1105 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1106 return 0;
1107
1108 return 1;
1109}
1110
1111static noinline int alloc_debug_processing(struct kmem_cache *s,
1112 struct page *page,
1113 void *object, unsigned long addr)
1114{
1115 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1116 if (!alloc_consistency_checks(s, page, object, addr))
1117 goto bad;
1118 }
81819f0f 1119
3ec09742
CL
1120 /* Success perform special debug activities for allocs */
1121 if (s->flags & SLAB_STORE_USER)
1122 set_track(s, object, TRACK_ALLOC, addr);
1123 trace(s, page, object, 1);
f7cb1933 1124 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1125 return 1;
3ec09742 1126
81819f0f
CL
1127bad:
1128 if (PageSlab(page)) {
1129 /*
1130 * If this is a slab page then lets do the best we can
1131 * to avoid issues in the future. Marking all objects
672bba3a 1132 * as used avoids touching the remaining objects.
81819f0f 1133 */
24922684 1134 slab_fix(s, "Marking all objects used");
39b26464 1135 page->inuse = page->objects;
a973e9dd 1136 page->freelist = NULL;
81819f0f
CL
1137 }
1138 return 0;
1139}
1140
becfda68
LA
1141static inline int free_consistency_checks(struct kmem_cache *s,
1142 struct page *page, void *object, unsigned long addr)
81819f0f 1143{
81819f0f 1144 if (!check_valid_pointer(s, page, object)) {
70d71228 1145 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1146 return 0;
81819f0f
CL
1147 }
1148
1149 if (on_freelist(s, page, object)) {
24922684 1150 object_err(s, page, object, "Object already free");
becfda68 1151 return 0;
81819f0f
CL
1152 }
1153
f7cb1933 1154 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1155 return 0;
81819f0f 1156
1b4f59e3 1157 if (unlikely(s != page->slab_cache)) {
3adbefee 1158 if (!PageSlab(page)) {
756a025f
JP
1159 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1160 object);
1b4f59e3 1161 } else if (!page->slab_cache) {
f9f58285
FF
1162 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1163 object);
70d71228 1164 dump_stack();
06428780 1165 } else
24922684
CL
1166 object_err(s, page, object,
1167 "page slab pointer corrupt.");
becfda68
LA
1168 return 0;
1169 }
1170 return 1;
1171}
1172
1173/* Supports checking bulk free of a constructed freelist */
1174static noinline int free_debug_processing(
1175 struct kmem_cache *s, struct page *page,
1176 void *head, void *tail, int bulk_cnt,
1177 unsigned long addr)
1178{
1179 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1180 void *object = head;
1181 int cnt = 0;
1182 unsigned long uninitialized_var(flags);
1183 int ret = 0;
1184
1185 spin_lock_irqsave(&n->list_lock, flags);
1186 slab_lock(page);
1187
1188 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1189 if (!check_slab(s, page))
1190 goto out;
1191 }
1192
1193next_object:
1194 cnt++;
1195
1196 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1197 if (!free_consistency_checks(s, page, object, addr))
1198 goto out;
81819f0f 1199 }
3ec09742 1200
3ec09742
CL
1201 if (s->flags & SLAB_STORE_USER)
1202 set_track(s, object, TRACK_FREE, addr);
1203 trace(s, page, object, 0);
81084651 1204 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1205 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1206
1207 /* Reached end of constructed freelist yet? */
1208 if (object != tail) {
1209 object = get_freepointer(s, object);
1210 goto next_object;
1211 }
804aa132
LA
1212 ret = 1;
1213
5c2e4bbb 1214out:
81084651
JDB
1215 if (cnt != bulk_cnt)
1216 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1217 bulk_cnt, cnt);
1218
881db7fb 1219 slab_unlock(page);
282acb43 1220 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1221 if (!ret)
1222 slab_fix(s, "Object at 0x%p not freed", object);
1223 return ret;
81819f0f
CL
1224}
1225
41ecc55b
CL
1226static int __init setup_slub_debug(char *str)
1227{
f0630fff
CL
1228 slub_debug = DEBUG_DEFAULT_FLAGS;
1229 if (*str++ != '=' || !*str)
1230 /*
1231 * No options specified. Switch on full debugging.
1232 */
1233 goto out;
1234
1235 if (*str == ',')
1236 /*
1237 * No options but restriction on slabs. This means full
1238 * debugging for slabs matching a pattern.
1239 */
1240 goto check_slabs;
1241
1242 slub_debug = 0;
1243 if (*str == '-')
1244 /*
1245 * Switch off all debugging measures.
1246 */
1247 goto out;
1248
1249 /*
1250 * Determine which debug features should be switched on
1251 */
06428780 1252 for (; *str && *str != ','; str++) {
f0630fff
CL
1253 switch (tolower(*str)) {
1254 case 'f':
becfda68 1255 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1256 break;
1257 case 'z':
1258 slub_debug |= SLAB_RED_ZONE;
1259 break;
1260 case 'p':
1261 slub_debug |= SLAB_POISON;
1262 break;
1263 case 'u':
1264 slub_debug |= SLAB_STORE_USER;
1265 break;
1266 case 't':
1267 slub_debug |= SLAB_TRACE;
1268 break;
4c13dd3b
DM
1269 case 'a':
1270 slub_debug |= SLAB_FAILSLAB;
1271 break;
08303a73
CA
1272 case 'o':
1273 /*
1274 * Avoid enabling debugging on caches if its minimum
1275 * order would increase as a result.
1276 */
1277 disable_higher_order_debug = 1;
1278 break;
f0630fff 1279 default:
f9f58285
FF
1280 pr_err("slub_debug option '%c' unknown. skipped\n",
1281 *str);
f0630fff 1282 }
41ecc55b
CL
1283 }
1284
f0630fff 1285check_slabs:
41ecc55b
CL
1286 if (*str == ',')
1287 slub_debug_slabs = str + 1;
f0630fff 1288out:
41ecc55b
CL
1289 return 1;
1290}
1291
1292__setup("slub_debug", setup_slub_debug);
1293
d50112ed
AD
1294slab_flags_t kmem_cache_flags(unsigned long object_size,
1295 slab_flags_t flags, const char *name,
51cc5068 1296 void (*ctor)(void *))
41ecc55b
CL
1297{
1298 /*
e153362a 1299 * Enable debugging if selected on the kernel commandline.
41ecc55b 1300 */
c6f58d9b
CL
1301 if (slub_debug && (!slub_debug_slabs || (name &&
1302 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1303 flags |= slub_debug;
ba0268a8
CL
1304
1305 return flags;
41ecc55b 1306}
b4a64718 1307#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1308static inline void setup_object_debug(struct kmem_cache *s,
1309 struct page *page, void *object) {}
41ecc55b 1310
3ec09742 1311static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1312 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1313
282acb43 1314static inline int free_debug_processing(
81084651
JDB
1315 struct kmem_cache *s, struct page *page,
1316 void *head, void *tail, int bulk_cnt,
282acb43 1317 unsigned long addr) { return 0; }
41ecc55b 1318
41ecc55b
CL
1319static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1320 { return 1; }
1321static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1322 void *object, u8 val) { return 1; }
5cc6eee8
CL
1323static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1324 struct page *page) {}
c65c1877
PZ
1325static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
d50112ed
AD
1327slab_flags_t kmem_cache_flags(unsigned long object_size,
1328 slab_flags_t flags, const char *name,
51cc5068 1329 void (*ctor)(void *))
ba0268a8
CL
1330{
1331 return flags;
1332}
41ecc55b 1333#define slub_debug 0
0f389ec6 1334
fdaa45e9
IM
1335#define disable_higher_order_debug 0
1336
0f389ec6
CL
1337static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1338 { return 0; }
26c02cf0
AB
1339static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1340 { return 0; }
205ab99d
CL
1341static inline void inc_slabs_node(struct kmem_cache *s, int node,
1342 int objects) {}
1343static inline void dec_slabs_node(struct kmem_cache *s, int node,
1344 int objects) {}
7d550c56 1345
02e72cc6
AR
1346#endif /* CONFIG_SLUB_DEBUG */
1347
1348/*
1349 * Hooks for other subsystems that check memory allocations. In a typical
1350 * production configuration these hooks all should produce no code at all.
1351 */
d56791b3
RB
1352static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1353{
1354 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1355 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1356}
1357
1358static inline void kfree_hook(const void *x)
1359{
1360 kmemleak_free(x);
0316bec2 1361 kasan_kfree_large(x);
d56791b3
RB
1362}
1363
80a9201a 1364static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1365{
80a9201a
AP
1366 void *freeptr;
1367
d56791b3 1368 kmemleak_free_recursive(x, s->flags);
7d550c56 1369
02e72cc6
AR
1370 /*
1371 * Trouble is that we may no longer disable interrupts in the fast path
1372 * So in order to make the debug calls that expect irqs to be
1373 * disabled we need to disable interrupts temporarily.
1374 */
1375#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1376 {
1377 unsigned long flags;
1378
1379 local_irq_save(flags);
1380 kmemcheck_slab_free(s, x, s->object_size);
1381 debug_check_no_locks_freed(x, s->object_size);
1382 local_irq_restore(flags);
1383 }
1384#endif
1385 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1386 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1387
80a9201a
AP
1388 freeptr = get_freepointer(s, x);
1389 /*
1390 * kasan_slab_free() may put x into memory quarantine, delaying its
1391 * reuse. In this case the object's freelist pointer is changed.
1392 */
0316bec2 1393 kasan_slab_free(s, x);
80a9201a 1394 return freeptr;
02e72cc6 1395}
205ab99d 1396
81084651
JDB
1397static inline void slab_free_freelist_hook(struct kmem_cache *s,
1398 void *head, void *tail)
1399{
1400/*
1401 * Compiler cannot detect this function can be removed if slab_free_hook()
1402 * evaluates to nothing. Thus, catch all relevant config debug options here.
1403 */
1404#if defined(CONFIG_KMEMCHECK) || \
1405 defined(CONFIG_LOCKDEP) || \
1406 defined(CONFIG_DEBUG_KMEMLEAK) || \
1407 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1408 defined(CONFIG_KASAN)
1409
1410 void *object = head;
1411 void *tail_obj = tail ? : head;
80a9201a 1412 void *freeptr;
81084651
JDB
1413
1414 do {
80a9201a
AP
1415 freeptr = slab_free_hook(s, object);
1416 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1417#endif
1418}
1419
588f8ba9
TG
1420static void setup_object(struct kmem_cache *s, struct page *page,
1421 void *object)
1422{
1423 setup_object_debug(s, page, object);
b3cbd9bf 1424 kasan_init_slab_obj(s, object);
588f8ba9
TG
1425 if (unlikely(s->ctor)) {
1426 kasan_unpoison_object_data(s, object);
1427 s->ctor(object);
1428 kasan_poison_object_data(s, object);
1429 }
1430}
1431
81819f0f
CL
1432/*
1433 * Slab allocation and freeing
1434 */
5dfb4175
VD
1435static inline struct page *alloc_slab_page(struct kmem_cache *s,
1436 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1437{
5dfb4175 1438 struct page *page;
65c3376a
CL
1439 int order = oo_order(oo);
1440
b1eeab67
VN
1441 flags |= __GFP_NOTRACK;
1442
2154a336 1443 if (node == NUMA_NO_NODE)
5dfb4175 1444 page = alloc_pages(flags, order);
65c3376a 1445 else
96db800f 1446 page = __alloc_pages_node(node, flags, order);
5dfb4175 1447
f3ccb2c4
VD
1448 if (page && memcg_charge_slab(page, flags, order, s)) {
1449 __free_pages(page, order);
1450 page = NULL;
1451 }
5dfb4175
VD
1452
1453 return page;
65c3376a
CL
1454}
1455
210e7a43
TG
1456#ifdef CONFIG_SLAB_FREELIST_RANDOM
1457/* Pre-initialize the random sequence cache */
1458static int init_cache_random_seq(struct kmem_cache *s)
1459{
1460 int err;
1461 unsigned long i, count = oo_objects(s->oo);
1462
a810007a
SR
1463 /* Bailout if already initialised */
1464 if (s->random_seq)
1465 return 0;
1466
210e7a43
TG
1467 err = cache_random_seq_create(s, count, GFP_KERNEL);
1468 if (err) {
1469 pr_err("SLUB: Unable to initialize free list for %s\n",
1470 s->name);
1471 return err;
1472 }
1473
1474 /* Transform to an offset on the set of pages */
1475 if (s->random_seq) {
1476 for (i = 0; i < count; i++)
1477 s->random_seq[i] *= s->size;
1478 }
1479 return 0;
1480}
1481
1482/* Initialize each random sequence freelist per cache */
1483static void __init init_freelist_randomization(void)
1484{
1485 struct kmem_cache *s;
1486
1487 mutex_lock(&slab_mutex);
1488
1489 list_for_each_entry(s, &slab_caches, list)
1490 init_cache_random_seq(s);
1491
1492 mutex_unlock(&slab_mutex);
1493}
1494
1495/* Get the next entry on the pre-computed freelist randomized */
1496static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1497 unsigned long *pos, void *start,
1498 unsigned long page_limit,
1499 unsigned long freelist_count)
1500{
1501 unsigned int idx;
1502
1503 /*
1504 * If the target page allocation failed, the number of objects on the
1505 * page might be smaller than the usual size defined by the cache.
1506 */
1507 do {
1508 idx = s->random_seq[*pos];
1509 *pos += 1;
1510 if (*pos >= freelist_count)
1511 *pos = 0;
1512 } while (unlikely(idx >= page_limit));
1513
1514 return (char *)start + idx;
1515}
1516
1517/* Shuffle the single linked freelist based on a random pre-computed sequence */
1518static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1519{
1520 void *start;
1521 void *cur;
1522 void *next;
1523 unsigned long idx, pos, page_limit, freelist_count;
1524
1525 if (page->objects < 2 || !s->random_seq)
1526 return false;
1527
1528 freelist_count = oo_objects(s->oo);
1529 pos = get_random_int() % freelist_count;
1530
1531 page_limit = page->objects * s->size;
1532 start = fixup_red_left(s, page_address(page));
1533
1534 /* First entry is used as the base of the freelist */
1535 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1536 freelist_count);
1537 page->freelist = cur;
1538
1539 for (idx = 1; idx < page->objects; idx++) {
1540 setup_object(s, page, cur);
1541 next = next_freelist_entry(s, page, &pos, start, page_limit,
1542 freelist_count);
1543 set_freepointer(s, cur, next);
1544 cur = next;
1545 }
1546 setup_object(s, page, cur);
1547 set_freepointer(s, cur, NULL);
1548
1549 return true;
1550}
1551#else
1552static inline int init_cache_random_seq(struct kmem_cache *s)
1553{
1554 return 0;
1555}
1556static inline void init_freelist_randomization(void) { }
1557static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1558{
1559 return false;
1560}
1561#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1562
81819f0f
CL
1563static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1564{
06428780 1565 struct page *page;
834f3d11 1566 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1567 gfp_t alloc_gfp;
588f8ba9
TG
1568 void *start, *p;
1569 int idx, order;
210e7a43 1570 bool shuffle;
81819f0f 1571
7e0528da
CL
1572 flags &= gfp_allowed_mask;
1573
d0164adc 1574 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1575 local_irq_enable();
1576
b7a49f0d 1577 flags |= s->allocflags;
e12ba74d 1578
ba52270d
PE
1579 /*
1580 * Let the initial higher-order allocation fail under memory pressure
1581 * so we fall-back to the minimum order allocation.
1582 */
1583 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1584 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1585 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1586
5dfb4175 1587 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1588 if (unlikely(!page)) {
1589 oo = s->min;
80c3a998 1590 alloc_gfp = flags;
65c3376a
CL
1591 /*
1592 * Allocation may have failed due to fragmentation.
1593 * Try a lower order alloc if possible
1594 */
5dfb4175 1595 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1596 if (unlikely(!page))
1597 goto out;
1598 stat(s, ORDER_FALLBACK);
65c3376a 1599 }
5a896d9e 1600
588f8ba9
TG
1601 if (kmemcheck_enabled &&
1602 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1603 int pages = 1 << oo_order(oo);
1604
80c3a998 1605 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1606
1607 /*
1608 * Objects from caches that have a constructor don't get
1609 * cleared when they're allocated, so we need to do it here.
1610 */
1611 if (s->ctor)
1612 kmemcheck_mark_uninitialized_pages(page, pages);
1613 else
1614 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1615 }
1616
834f3d11 1617 page->objects = oo_objects(oo);
81819f0f 1618
1f458cbf 1619 order = compound_order(page);
1b4f59e3 1620 page->slab_cache = s;
c03f94cc 1621 __SetPageSlab(page);
2f064f34 1622 if (page_is_pfmemalloc(page))
072bb0aa 1623 SetPageSlabPfmemalloc(page);
81819f0f
CL
1624
1625 start = page_address(page);
81819f0f
CL
1626
1627 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1628 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1629
0316bec2
AR
1630 kasan_poison_slab(page);
1631
210e7a43
TG
1632 shuffle = shuffle_freelist(s, page);
1633
1634 if (!shuffle) {
1635 for_each_object_idx(p, idx, s, start, page->objects) {
1636 setup_object(s, page, p);
1637 if (likely(idx < page->objects))
1638 set_freepointer(s, p, p + s->size);
1639 else
1640 set_freepointer(s, p, NULL);
1641 }
1642 page->freelist = fixup_red_left(s, start);
81819f0f 1643 }
81819f0f 1644
e6e82ea1 1645 page->inuse = page->objects;
8cb0a506 1646 page->frozen = 1;
588f8ba9 1647
81819f0f 1648out:
d0164adc 1649 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1650 local_irq_disable();
1651 if (!page)
1652 return NULL;
1653
7779f212 1654 mod_lruvec_page_state(page,
588f8ba9
TG
1655 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1656 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1657 1 << oo_order(oo));
1658
1659 inc_slabs_node(s, page_to_nid(page), page->objects);
1660
81819f0f
CL
1661 return page;
1662}
1663
588f8ba9
TG
1664static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1665{
1666 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1667 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1668 flags &= ~GFP_SLAB_BUG_MASK;
1669 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1670 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1671 dump_stack();
588f8ba9
TG
1672 }
1673
1674 return allocate_slab(s,
1675 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1676}
1677
81819f0f
CL
1678static void __free_slab(struct kmem_cache *s, struct page *page)
1679{
834f3d11
CL
1680 int order = compound_order(page);
1681 int pages = 1 << order;
81819f0f 1682
becfda68 1683 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1684 void *p;
1685
1686 slab_pad_check(s, page);
224a88be
CL
1687 for_each_object(p, s, page_address(page),
1688 page->objects)
f7cb1933 1689 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1690 }
1691
b1eeab67 1692 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1693
7779f212 1694 mod_lruvec_page_state(page,
81819f0f
CL
1695 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1696 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1697 -pages);
81819f0f 1698
072bb0aa 1699 __ClearPageSlabPfmemalloc(page);
49bd5221 1700 __ClearPageSlab(page);
1f458cbf 1701
22b751c3 1702 page_mapcount_reset(page);
1eb5ac64
NP
1703 if (current->reclaim_state)
1704 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1705 memcg_uncharge_slab(page, order, s);
1706 __free_pages(page, order);
81819f0f
CL
1707}
1708
da9a638c
LJ
1709#define need_reserve_slab_rcu \
1710 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1711
81819f0f
CL
1712static void rcu_free_slab(struct rcu_head *h)
1713{
1714 struct page *page;
1715
da9a638c
LJ
1716 if (need_reserve_slab_rcu)
1717 page = virt_to_head_page(h);
1718 else
1719 page = container_of((struct list_head *)h, struct page, lru);
1720
1b4f59e3 1721 __free_slab(page->slab_cache, page);
81819f0f
CL
1722}
1723
1724static void free_slab(struct kmem_cache *s, struct page *page)
1725{
5f0d5a3a 1726 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1727 struct rcu_head *head;
1728
1729 if (need_reserve_slab_rcu) {
1730 int order = compound_order(page);
1731 int offset = (PAGE_SIZE << order) - s->reserved;
1732
1733 VM_BUG_ON(s->reserved != sizeof(*head));
1734 head = page_address(page) + offset;
1735 } else {
bc4f610d 1736 head = &page->rcu_head;
da9a638c 1737 }
81819f0f
CL
1738
1739 call_rcu(head, rcu_free_slab);
1740 } else
1741 __free_slab(s, page);
1742}
1743
1744static void discard_slab(struct kmem_cache *s, struct page *page)
1745{
205ab99d 1746 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1747 free_slab(s, page);
1748}
1749
1750/*
5cc6eee8 1751 * Management of partially allocated slabs.
81819f0f 1752 */
1e4dd946
SR
1753static inline void
1754__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1755{
e95eed57 1756 n->nr_partial++;
136333d1 1757 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1758 list_add_tail(&page->lru, &n->partial);
1759 else
1760 list_add(&page->lru, &n->partial);
81819f0f
CL
1761}
1762
1e4dd946
SR
1763static inline void add_partial(struct kmem_cache_node *n,
1764 struct page *page, int tail)
62e346a8 1765{
c65c1877 1766 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1767 __add_partial(n, page, tail);
1768}
c65c1877 1769
1e4dd946
SR
1770static inline void remove_partial(struct kmem_cache_node *n,
1771 struct page *page)
1772{
1773 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1774 list_del(&page->lru);
1775 n->nr_partial--;
1e4dd946
SR
1776}
1777
81819f0f 1778/*
7ced3719
CL
1779 * Remove slab from the partial list, freeze it and
1780 * return the pointer to the freelist.
81819f0f 1781 *
497b66f2 1782 * Returns a list of objects or NULL if it fails.
81819f0f 1783 */
497b66f2 1784static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1785 struct kmem_cache_node *n, struct page *page,
633b0764 1786 int mode, int *objects)
81819f0f 1787{
2cfb7455
CL
1788 void *freelist;
1789 unsigned long counters;
1790 struct page new;
1791
c65c1877
PZ
1792 lockdep_assert_held(&n->list_lock);
1793
2cfb7455
CL
1794 /*
1795 * Zap the freelist and set the frozen bit.
1796 * The old freelist is the list of objects for the
1797 * per cpu allocation list.
1798 */
7ced3719
CL
1799 freelist = page->freelist;
1800 counters = page->counters;
1801 new.counters = counters;
633b0764 1802 *objects = new.objects - new.inuse;
23910c50 1803 if (mode) {
7ced3719 1804 new.inuse = page->objects;
23910c50
PE
1805 new.freelist = NULL;
1806 } else {
1807 new.freelist = freelist;
1808 }
2cfb7455 1809
a0132ac0 1810 VM_BUG_ON(new.frozen);
7ced3719 1811 new.frozen = 1;
2cfb7455 1812
7ced3719 1813 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1814 freelist, counters,
02d7633f 1815 new.freelist, new.counters,
7ced3719 1816 "acquire_slab"))
7ced3719 1817 return NULL;
2cfb7455
CL
1818
1819 remove_partial(n, page);
7ced3719 1820 WARN_ON(!freelist);
49e22585 1821 return freelist;
81819f0f
CL
1822}
1823
633b0764 1824static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1825static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1826
81819f0f 1827/*
672bba3a 1828 * Try to allocate a partial slab from a specific node.
81819f0f 1829 */
8ba00bb6
JK
1830static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1831 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1832{
49e22585
CL
1833 struct page *page, *page2;
1834 void *object = NULL;
633b0764
JK
1835 int available = 0;
1836 int objects;
81819f0f
CL
1837
1838 /*
1839 * Racy check. If we mistakenly see no partial slabs then we
1840 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1841 * partial slab and there is none available then get_partials()
1842 * will return NULL.
81819f0f
CL
1843 */
1844 if (!n || !n->nr_partial)
1845 return NULL;
1846
1847 spin_lock(&n->list_lock);
49e22585 1848 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1849 void *t;
49e22585 1850
8ba00bb6
JK
1851 if (!pfmemalloc_match(page, flags))
1852 continue;
1853
633b0764 1854 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1855 if (!t)
1856 break;
1857
633b0764 1858 available += objects;
12d79634 1859 if (!object) {
49e22585 1860 c->page = page;
49e22585 1861 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1862 object = t;
49e22585 1863 } else {
633b0764 1864 put_cpu_partial(s, page, 0);
8028dcea 1865 stat(s, CPU_PARTIAL_NODE);
49e22585 1866 }
345c905d 1867 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1868 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1869 break;
1870
497b66f2 1871 }
81819f0f 1872 spin_unlock(&n->list_lock);
497b66f2 1873 return object;
81819f0f
CL
1874}
1875
1876/*
672bba3a 1877 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1878 */
de3ec035 1879static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1880 struct kmem_cache_cpu *c)
81819f0f
CL
1881{
1882#ifdef CONFIG_NUMA
1883 struct zonelist *zonelist;
dd1a239f 1884 struct zoneref *z;
54a6eb5c
MG
1885 struct zone *zone;
1886 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1887 void *object;
cc9a6c87 1888 unsigned int cpuset_mems_cookie;
81819f0f
CL
1889
1890 /*
672bba3a
CL
1891 * The defrag ratio allows a configuration of the tradeoffs between
1892 * inter node defragmentation and node local allocations. A lower
1893 * defrag_ratio increases the tendency to do local allocations
1894 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1895 *
672bba3a
CL
1896 * If the defrag_ratio is set to 0 then kmalloc() always
1897 * returns node local objects. If the ratio is higher then kmalloc()
1898 * may return off node objects because partial slabs are obtained
1899 * from other nodes and filled up.
81819f0f 1900 *
43efd3ea
LP
1901 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1902 * (which makes defrag_ratio = 1000) then every (well almost)
1903 * allocation will first attempt to defrag slab caches on other nodes.
1904 * This means scanning over all nodes to look for partial slabs which
1905 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1906 * with available objects.
81819f0f 1907 */
9824601e
CL
1908 if (!s->remote_node_defrag_ratio ||
1909 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1910 return NULL;
1911
cc9a6c87 1912 do {
d26914d1 1913 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1914 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1915 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1916 struct kmem_cache_node *n;
1917
1918 n = get_node(s, zone_to_nid(zone));
1919
dee2f8aa 1920 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1921 n->nr_partial > s->min_partial) {
8ba00bb6 1922 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1923 if (object) {
1924 /*
d26914d1
MG
1925 * Don't check read_mems_allowed_retry()
1926 * here - if mems_allowed was updated in
1927 * parallel, that was a harmless race
1928 * between allocation and the cpuset
1929 * update
cc9a6c87 1930 */
cc9a6c87
MG
1931 return object;
1932 }
c0ff7453 1933 }
81819f0f 1934 }
d26914d1 1935 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1936#endif
1937 return NULL;
1938}
1939
1940/*
1941 * Get a partial page, lock it and return it.
1942 */
497b66f2 1943static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1944 struct kmem_cache_cpu *c)
81819f0f 1945{
497b66f2 1946 void *object;
a561ce00
JK
1947 int searchnode = node;
1948
1949 if (node == NUMA_NO_NODE)
1950 searchnode = numa_mem_id();
1951 else if (!node_present_pages(node))
1952 searchnode = node_to_mem_node(node);
81819f0f 1953
8ba00bb6 1954 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1955 if (object || node != NUMA_NO_NODE)
1956 return object;
81819f0f 1957
acd19fd1 1958 return get_any_partial(s, flags, c);
81819f0f
CL
1959}
1960
8a5ec0ba
CL
1961#ifdef CONFIG_PREEMPT
1962/*
1963 * Calculate the next globally unique transaction for disambiguiation
1964 * during cmpxchg. The transactions start with the cpu number and are then
1965 * incremented by CONFIG_NR_CPUS.
1966 */
1967#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1968#else
1969/*
1970 * No preemption supported therefore also no need to check for
1971 * different cpus.
1972 */
1973#define TID_STEP 1
1974#endif
1975
1976static inline unsigned long next_tid(unsigned long tid)
1977{
1978 return tid + TID_STEP;
1979}
1980
1981static inline unsigned int tid_to_cpu(unsigned long tid)
1982{
1983 return tid % TID_STEP;
1984}
1985
1986static inline unsigned long tid_to_event(unsigned long tid)
1987{
1988 return tid / TID_STEP;
1989}
1990
1991static inline unsigned int init_tid(int cpu)
1992{
1993 return cpu;
1994}
1995
1996static inline void note_cmpxchg_failure(const char *n,
1997 const struct kmem_cache *s, unsigned long tid)
1998{
1999#ifdef SLUB_DEBUG_CMPXCHG
2000 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2001
f9f58285 2002 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2003
2004#ifdef CONFIG_PREEMPT
2005 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2006 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2007 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2008 else
2009#endif
2010 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2011 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2012 tid_to_event(tid), tid_to_event(actual_tid));
2013 else
f9f58285 2014 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2015 actual_tid, tid, next_tid(tid));
2016#endif
4fdccdfb 2017 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2018}
2019
788e1aad 2020static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2021{
8a5ec0ba
CL
2022 int cpu;
2023
2024 for_each_possible_cpu(cpu)
2025 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2026}
2cfb7455 2027
81819f0f
CL
2028/*
2029 * Remove the cpu slab
2030 */
d0e0ac97 2031static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2032 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2033{
2cfb7455 2034 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2035 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2036 int lock = 0;
2037 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2038 void *nextfree;
136333d1 2039 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2040 struct page new;
2041 struct page old;
2042
2043 if (page->freelist) {
84e554e6 2044 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2045 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2046 }
2047
894b8788 2048 /*
2cfb7455
CL
2049 * Stage one: Free all available per cpu objects back
2050 * to the page freelist while it is still frozen. Leave the
2051 * last one.
2052 *
2053 * There is no need to take the list->lock because the page
2054 * is still frozen.
2055 */
2056 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2057 void *prior;
2058 unsigned long counters;
2059
2060 do {
2061 prior = page->freelist;
2062 counters = page->counters;
2063 set_freepointer(s, freelist, prior);
2064 new.counters = counters;
2065 new.inuse--;
a0132ac0 2066 VM_BUG_ON(!new.frozen);
2cfb7455 2067
1d07171c 2068 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2069 prior, counters,
2070 freelist, new.counters,
2071 "drain percpu freelist"));
2072
2073 freelist = nextfree;
2074 }
2075
894b8788 2076 /*
2cfb7455
CL
2077 * Stage two: Ensure that the page is unfrozen while the
2078 * list presence reflects the actual number of objects
2079 * during unfreeze.
2080 *
2081 * We setup the list membership and then perform a cmpxchg
2082 * with the count. If there is a mismatch then the page
2083 * is not unfrozen but the page is on the wrong list.
2084 *
2085 * Then we restart the process which may have to remove
2086 * the page from the list that we just put it on again
2087 * because the number of objects in the slab may have
2088 * changed.
894b8788 2089 */
2cfb7455 2090redo:
894b8788 2091
2cfb7455
CL
2092 old.freelist = page->freelist;
2093 old.counters = page->counters;
a0132ac0 2094 VM_BUG_ON(!old.frozen);
7c2e132c 2095
2cfb7455
CL
2096 /* Determine target state of the slab */
2097 new.counters = old.counters;
2098 if (freelist) {
2099 new.inuse--;
2100 set_freepointer(s, freelist, old.freelist);
2101 new.freelist = freelist;
2102 } else
2103 new.freelist = old.freelist;
2104
2105 new.frozen = 0;
2106
8a5b20ae 2107 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2108 m = M_FREE;
2109 else if (new.freelist) {
2110 m = M_PARTIAL;
2111 if (!lock) {
2112 lock = 1;
2113 /*
2114 * Taking the spinlock removes the possiblity
2115 * that acquire_slab() will see a slab page that
2116 * is frozen
2117 */
2118 spin_lock(&n->list_lock);
2119 }
2120 } else {
2121 m = M_FULL;
2122 if (kmem_cache_debug(s) && !lock) {
2123 lock = 1;
2124 /*
2125 * This also ensures that the scanning of full
2126 * slabs from diagnostic functions will not see
2127 * any frozen slabs.
2128 */
2129 spin_lock(&n->list_lock);
2130 }
2131 }
2132
2133 if (l != m) {
2134
2135 if (l == M_PARTIAL)
2136
2137 remove_partial(n, page);
2138
2139 else if (l == M_FULL)
894b8788 2140
c65c1877 2141 remove_full(s, n, page);
2cfb7455
CL
2142
2143 if (m == M_PARTIAL) {
2144
2145 add_partial(n, page, tail);
136333d1 2146 stat(s, tail);
2cfb7455
CL
2147
2148 } else if (m == M_FULL) {
894b8788 2149
2cfb7455
CL
2150 stat(s, DEACTIVATE_FULL);
2151 add_full(s, n, page);
2152
2153 }
2154 }
2155
2156 l = m;
1d07171c 2157 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2158 old.freelist, old.counters,
2159 new.freelist, new.counters,
2160 "unfreezing slab"))
2161 goto redo;
2162
2cfb7455
CL
2163 if (lock)
2164 spin_unlock(&n->list_lock);
2165
2166 if (m == M_FREE) {
2167 stat(s, DEACTIVATE_EMPTY);
2168 discard_slab(s, page);
2169 stat(s, FREE_SLAB);
894b8788 2170 }
d4ff6d35
WY
2171
2172 c->page = NULL;
2173 c->freelist = NULL;
81819f0f
CL
2174}
2175
d24ac77f
JK
2176/*
2177 * Unfreeze all the cpu partial slabs.
2178 *
59a09917
CL
2179 * This function must be called with interrupts disabled
2180 * for the cpu using c (or some other guarantee must be there
2181 * to guarantee no concurrent accesses).
d24ac77f 2182 */
59a09917
CL
2183static void unfreeze_partials(struct kmem_cache *s,
2184 struct kmem_cache_cpu *c)
49e22585 2185{
345c905d 2186#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2187 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2188 struct page *page, *discard_page = NULL;
49e22585
CL
2189
2190 while ((page = c->partial)) {
49e22585
CL
2191 struct page new;
2192 struct page old;
2193
2194 c->partial = page->next;
43d77867
JK
2195
2196 n2 = get_node(s, page_to_nid(page));
2197 if (n != n2) {
2198 if (n)
2199 spin_unlock(&n->list_lock);
2200
2201 n = n2;
2202 spin_lock(&n->list_lock);
2203 }
49e22585
CL
2204
2205 do {
2206
2207 old.freelist = page->freelist;
2208 old.counters = page->counters;
a0132ac0 2209 VM_BUG_ON(!old.frozen);
49e22585
CL
2210
2211 new.counters = old.counters;
2212 new.freelist = old.freelist;
2213
2214 new.frozen = 0;
2215
d24ac77f 2216 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2217 old.freelist, old.counters,
2218 new.freelist, new.counters,
2219 "unfreezing slab"));
2220
8a5b20ae 2221 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2222 page->next = discard_page;
2223 discard_page = page;
43d77867
JK
2224 } else {
2225 add_partial(n, page, DEACTIVATE_TO_TAIL);
2226 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2227 }
2228 }
2229
2230 if (n)
2231 spin_unlock(&n->list_lock);
9ada1934
SL
2232
2233 while (discard_page) {
2234 page = discard_page;
2235 discard_page = discard_page->next;
2236
2237 stat(s, DEACTIVATE_EMPTY);
2238 discard_slab(s, page);
2239 stat(s, FREE_SLAB);
2240 }
345c905d 2241#endif
49e22585
CL
2242}
2243
2244/*
2245 * Put a page that was just frozen (in __slab_free) into a partial page
2246 * slot if available. This is done without interrupts disabled and without
2247 * preemption disabled. The cmpxchg is racy and may put the partial page
2248 * onto a random cpus partial slot.
2249 *
2250 * If we did not find a slot then simply move all the partials to the
2251 * per node partial list.
2252 */
633b0764 2253static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2254{
345c905d 2255#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2256 struct page *oldpage;
2257 int pages;
2258 int pobjects;
2259
d6e0b7fa 2260 preempt_disable();
49e22585
CL
2261 do {
2262 pages = 0;
2263 pobjects = 0;
2264 oldpage = this_cpu_read(s->cpu_slab->partial);
2265
2266 if (oldpage) {
2267 pobjects = oldpage->pobjects;
2268 pages = oldpage->pages;
2269 if (drain && pobjects > s->cpu_partial) {
2270 unsigned long flags;
2271 /*
2272 * partial array is full. Move the existing
2273 * set to the per node partial list.
2274 */
2275 local_irq_save(flags);
59a09917 2276 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2277 local_irq_restore(flags);
e24fc410 2278 oldpage = NULL;
49e22585
CL
2279 pobjects = 0;
2280 pages = 0;
8028dcea 2281 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2282 }
2283 }
2284
2285 pages++;
2286 pobjects += page->objects - page->inuse;
2287
2288 page->pages = pages;
2289 page->pobjects = pobjects;
2290 page->next = oldpage;
2291
d0e0ac97
CG
2292 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2293 != oldpage);
d6e0b7fa
VD
2294 if (unlikely(!s->cpu_partial)) {
2295 unsigned long flags;
2296
2297 local_irq_save(flags);
2298 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2299 local_irq_restore(flags);
2300 }
2301 preempt_enable();
345c905d 2302#endif
49e22585
CL
2303}
2304
dfb4f096 2305static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2306{
84e554e6 2307 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2308 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2309
2310 c->tid = next_tid(c->tid);
81819f0f
CL
2311}
2312
2313/*
2314 * Flush cpu slab.
6446faa2 2315 *
81819f0f
CL
2316 * Called from IPI handler with interrupts disabled.
2317 */
0c710013 2318static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2319{
9dfc6e68 2320 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2321
49e22585
CL
2322 if (likely(c)) {
2323 if (c->page)
2324 flush_slab(s, c);
2325
59a09917 2326 unfreeze_partials(s, c);
49e22585 2327 }
81819f0f
CL
2328}
2329
2330static void flush_cpu_slab(void *d)
2331{
2332 struct kmem_cache *s = d;
81819f0f 2333
dfb4f096 2334 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2335}
2336
a8364d55
GBY
2337static bool has_cpu_slab(int cpu, void *info)
2338{
2339 struct kmem_cache *s = info;
2340 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2341
a93cf07b 2342 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2343}
2344
81819f0f
CL
2345static void flush_all(struct kmem_cache *s)
2346{
a8364d55 2347 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2348}
2349
a96a87bf
SAS
2350/*
2351 * Use the cpu notifier to insure that the cpu slabs are flushed when
2352 * necessary.
2353 */
2354static int slub_cpu_dead(unsigned int cpu)
2355{
2356 struct kmem_cache *s;
2357 unsigned long flags;
2358
2359 mutex_lock(&slab_mutex);
2360 list_for_each_entry(s, &slab_caches, list) {
2361 local_irq_save(flags);
2362 __flush_cpu_slab(s, cpu);
2363 local_irq_restore(flags);
2364 }
2365 mutex_unlock(&slab_mutex);
2366 return 0;
2367}
2368
dfb4f096
CL
2369/*
2370 * Check if the objects in a per cpu structure fit numa
2371 * locality expectations.
2372 */
57d437d2 2373static inline int node_match(struct page *page, int node)
dfb4f096
CL
2374{
2375#ifdef CONFIG_NUMA
4d7868e6 2376 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2377 return 0;
2378#endif
2379 return 1;
2380}
2381
9a02d699 2382#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2383static int count_free(struct page *page)
2384{
2385 return page->objects - page->inuse;
2386}
2387
9a02d699
DR
2388static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2389{
2390 return atomic_long_read(&n->total_objects);
2391}
2392#endif /* CONFIG_SLUB_DEBUG */
2393
2394#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2395static unsigned long count_partial(struct kmem_cache_node *n,
2396 int (*get_count)(struct page *))
2397{
2398 unsigned long flags;
2399 unsigned long x = 0;
2400 struct page *page;
2401
2402 spin_lock_irqsave(&n->list_lock, flags);
2403 list_for_each_entry(page, &n->partial, lru)
2404 x += get_count(page);
2405 spin_unlock_irqrestore(&n->list_lock, flags);
2406 return x;
2407}
9a02d699 2408#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2409
781b2ba6
PE
2410static noinline void
2411slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2412{
9a02d699
DR
2413#ifdef CONFIG_SLUB_DEBUG
2414 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2415 DEFAULT_RATELIMIT_BURST);
781b2ba6 2416 int node;
fa45dc25 2417 struct kmem_cache_node *n;
781b2ba6 2418
9a02d699
DR
2419 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2420 return;
2421
5b3810e5
VB
2422 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2423 nid, gfpflags, &gfpflags);
f9f58285
FF
2424 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2425 s->name, s->object_size, s->size, oo_order(s->oo),
2426 oo_order(s->min));
781b2ba6 2427
3b0efdfa 2428 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2429 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2430 s->name);
fa5ec8a1 2431
fa45dc25 2432 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2433 unsigned long nr_slabs;
2434 unsigned long nr_objs;
2435 unsigned long nr_free;
2436
26c02cf0
AB
2437 nr_free = count_partial(n, count_free);
2438 nr_slabs = node_nr_slabs(n);
2439 nr_objs = node_nr_objs(n);
781b2ba6 2440
f9f58285 2441 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2442 node, nr_slabs, nr_objs, nr_free);
2443 }
9a02d699 2444#endif
781b2ba6
PE
2445}
2446
497b66f2
CL
2447static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2448 int node, struct kmem_cache_cpu **pc)
2449{
6faa6833 2450 void *freelist;
188fd063
CL
2451 struct kmem_cache_cpu *c = *pc;
2452 struct page *page;
497b66f2 2453
188fd063 2454 freelist = get_partial(s, flags, node, c);
497b66f2 2455
188fd063
CL
2456 if (freelist)
2457 return freelist;
2458
2459 page = new_slab(s, flags, node);
497b66f2 2460 if (page) {
7c8e0181 2461 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2462 if (c->page)
2463 flush_slab(s, c);
2464
2465 /*
2466 * No other reference to the page yet so we can
2467 * muck around with it freely without cmpxchg
2468 */
6faa6833 2469 freelist = page->freelist;
497b66f2
CL
2470 page->freelist = NULL;
2471
2472 stat(s, ALLOC_SLAB);
497b66f2
CL
2473 c->page = page;
2474 *pc = c;
2475 } else
6faa6833 2476 freelist = NULL;
497b66f2 2477
6faa6833 2478 return freelist;
497b66f2
CL
2479}
2480
072bb0aa
MG
2481static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2482{
2483 if (unlikely(PageSlabPfmemalloc(page)))
2484 return gfp_pfmemalloc_allowed(gfpflags);
2485
2486 return true;
2487}
2488
213eeb9f 2489/*
d0e0ac97
CG
2490 * Check the page->freelist of a page and either transfer the freelist to the
2491 * per cpu freelist or deactivate the page.
213eeb9f
CL
2492 *
2493 * The page is still frozen if the return value is not NULL.
2494 *
2495 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2496 *
2497 * This function must be called with interrupt disabled.
213eeb9f
CL
2498 */
2499static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2500{
2501 struct page new;
2502 unsigned long counters;
2503 void *freelist;
2504
2505 do {
2506 freelist = page->freelist;
2507 counters = page->counters;
6faa6833 2508
213eeb9f 2509 new.counters = counters;
a0132ac0 2510 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2511
2512 new.inuse = page->objects;
2513 new.frozen = freelist != NULL;
2514
d24ac77f 2515 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2516 freelist, counters,
2517 NULL, new.counters,
2518 "get_freelist"));
2519
2520 return freelist;
2521}
2522
81819f0f 2523/*
894b8788
CL
2524 * Slow path. The lockless freelist is empty or we need to perform
2525 * debugging duties.
2526 *
894b8788
CL
2527 * Processing is still very fast if new objects have been freed to the
2528 * regular freelist. In that case we simply take over the regular freelist
2529 * as the lockless freelist and zap the regular freelist.
81819f0f 2530 *
894b8788
CL
2531 * If that is not working then we fall back to the partial lists. We take the
2532 * first element of the freelist as the object to allocate now and move the
2533 * rest of the freelist to the lockless freelist.
81819f0f 2534 *
894b8788 2535 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2536 * we need to allocate a new slab. This is the slowest path since it involves
2537 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2538 *
2539 * Version of __slab_alloc to use when we know that interrupts are
2540 * already disabled (which is the case for bulk allocation).
81819f0f 2541 */
a380a3c7 2542static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2543 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2544{
6faa6833 2545 void *freelist;
f6e7def7 2546 struct page *page;
81819f0f 2547
f6e7def7
CL
2548 page = c->page;
2549 if (!page)
81819f0f 2550 goto new_slab;
49e22585 2551redo:
6faa6833 2552
57d437d2 2553 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2554 int searchnode = node;
2555
2556 if (node != NUMA_NO_NODE && !node_present_pages(node))
2557 searchnode = node_to_mem_node(node);
2558
2559 if (unlikely(!node_match(page, searchnode))) {
2560 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2561 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2562 goto new_slab;
2563 }
fc59c053 2564 }
6446faa2 2565
072bb0aa
MG
2566 /*
2567 * By rights, we should be searching for a slab page that was
2568 * PFMEMALLOC but right now, we are losing the pfmemalloc
2569 * information when the page leaves the per-cpu allocator
2570 */
2571 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2572 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2573 goto new_slab;
2574 }
2575
73736e03 2576 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2577 freelist = c->freelist;
2578 if (freelist)
73736e03 2579 goto load_freelist;
03e404af 2580
f6e7def7 2581 freelist = get_freelist(s, page);
6446faa2 2582
6faa6833 2583 if (!freelist) {
03e404af
CL
2584 c->page = NULL;
2585 stat(s, DEACTIVATE_BYPASS);
fc59c053 2586 goto new_slab;
03e404af 2587 }
6446faa2 2588
84e554e6 2589 stat(s, ALLOC_REFILL);
6446faa2 2590
894b8788 2591load_freelist:
507effea
CL
2592 /*
2593 * freelist is pointing to the list of objects to be used.
2594 * page is pointing to the page from which the objects are obtained.
2595 * That page must be frozen for per cpu allocations to work.
2596 */
a0132ac0 2597 VM_BUG_ON(!c->page->frozen);
6faa6833 2598 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2599 c->tid = next_tid(c->tid);
6faa6833 2600 return freelist;
81819f0f 2601
81819f0f 2602new_slab:
2cfb7455 2603
a93cf07b
WY
2604 if (slub_percpu_partial(c)) {
2605 page = c->page = slub_percpu_partial(c);
2606 slub_set_percpu_partial(c, page);
49e22585 2607 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2608 goto redo;
81819f0f
CL
2609 }
2610
188fd063 2611 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2612
f4697436 2613 if (unlikely(!freelist)) {
9a02d699 2614 slab_out_of_memory(s, gfpflags, node);
f4697436 2615 return NULL;
81819f0f 2616 }
2cfb7455 2617
f6e7def7 2618 page = c->page;
5091b74a 2619 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2620 goto load_freelist;
2cfb7455 2621
497b66f2 2622 /* Only entered in the debug case */
d0e0ac97
CG
2623 if (kmem_cache_debug(s) &&
2624 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2625 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2626
d4ff6d35 2627 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2628 return freelist;
894b8788
CL
2629}
2630
a380a3c7
CL
2631/*
2632 * Another one that disabled interrupt and compensates for possible
2633 * cpu changes by refetching the per cpu area pointer.
2634 */
2635static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2636 unsigned long addr, struct kmem_cache_cpu *c)
2637{
2638 void *p;
2639 unsigned long flags;
2640
2641 local_irq_save(flags);
2642#ifdef CONFIG_PREEMPT
2643 /*
2644 * We may have been preempted and rescheduled on a different
2645 * cpu before disabling interrupts. Need to reload cpu area
2646 * pointer.
2647 */
2648 c = this_cpu_ptr(s->cpu_slab);
2649#endif
2650
2651 p = ___slab_alloc(s, gfpflags, node, addr, c);
2652 local_irq_restore(flags);
2653 return p;
2654}
2655
894b8788
CL
2656/*
2657 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2658 * have the fastpath folded into their functions. So no function call
2659 * overhead for requests that can be satisfied on the fastpath.
2660 *
2661 * The fastpath works by first checking if the lockless freelist can be used.
2662 * If not then __slab_alloc is called for slow processing.
2663 *
2664 * Otherwise we can simply pick the next object from the lockless free list.
2665 */
2b847c3c 2666static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2667 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2668{
03ec0ed5 2669 void *object;
dfb4f096 2670 struct kmem_cache_cpu *c;
57d437d2 2671 struct page *page;
8a5ec0ba 2672 unsigned long tid;
1f84260c 2673
8135be5a
VD
2674 s = slab_pre_alloc_hook(s, gfpflags);
2675 if (!s)
773ff60e 2676 return NULL;
8a5ec0ba 2677redo:
8a5ec0ba
CL
2678 /*
2679 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2680 * enabled. We may switch back and forth between cpus while
2681 * reading from one cpu area. That does not matter as long
2682 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2683 *
9aabf810
JK
2684 * We should guarantee that tid and kmem_cache are retrieved on
2685 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2686 * to check if it is matched or not.
8a5ec0ba 2687 */
9aabf810
JK
2688 do {
2689 tid = this_cpu_read(s->cpu_slab->tid);
2690 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2691 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2692 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2693
2694 /*
2695 * Irqless object alloc/free algorithm used here depends on sequence
2696 * of fetching cpu_slab's data. tid should be fetched before anything
2697 * on c to guarantee that object and page associated with previous tid
2698 * won't be used with current tid. If we fetch tid first, object and
2699 * page could be one associated with next tid and our alloc/free
2700 * request will be failed. In this case, we will retry. So, no problem.
2701 */
2702 barrier();
8a5ec0ba 2703
8a5ec0ba
CL
2704 /*
2705 * The transaction ids are globally unique per cpu and per operation on
2706 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2707 * occurs on the right processor and that there was no operation on the
2708 * linked list in between.
2709 */
8a5ec0ba 2710
9dfc6e68 2711 object = c->freelist;
57d437d2 2712 page = c->page;
8eae1492 2713 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2714 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2715 stat(s, ALLOC_SLOWPATH);
2716 } else {
0ad9500e
ED
2717 void *next_object = get_freepointer_safe(s, object);
2718
8a5ec0ba 2719 /*
25985edc 2720 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2721 * operation and if we are on the right processor.
2722 *
d0e0ac97
CG
2723 * The cmpxchg does the following atomically (without lock
2724 * semantics!)
8a5ec0ba
CL
2725 * 1. Relocate first pointer to the current per cpu area.
2726 * 2. Verify that tid and freelist have not been changed
2727 * 3. If they were not changed replace tid and freelist
2728 *
d0e0ac97
CG
2729 * Since this is without lock semantics the protection is only
2730 * against code executing on this cpu *not* from access by
2731 * other cpus.
8a5ec0ba 2732 */
933393f5 2733 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2734 s->cpu_slab->freelist, s->cpu_slab->tid,
2735 object, tid,
0ad9500e 2736 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2737
2738 note_cmpxchg_failure("slab_alloc", s, tid);
2739 goto redo;
2740 }
0ad9500e 2741 prefetch_freepointer(s, next_object);
84e554e6 2742 stat(s, ALLOC_FASTPATH);
894b8788 2743 }
8a5ec0ba 2744
74e2134f 2745 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2746 memset(object, 0, s->object_size);
d07dbea4 2747
03ec0ed5 2748 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2749
894b8788 2750 return object;
81819f0f
CL
2751}
2752
2b847c3c
EG
2753static __always_inline void *slab_alloc(struct kmem_cache *s,
2754 gfp_t gfpflags, unsigned long addr)
2755{
2756 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2757}
2758
81819f0f
CL
2759void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2760{
2b847c3c 2761 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2762
d0e0ac97
CG
2763 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2764 s->size, gfpflags);
5b882be4
EGM
2765
2766 return ret;
81819f0f
CL
2767}
2768EXPORT_SYMBOL(kmem_cache_alloc);
2769
0f24f128 2770#ifdef CONFIG_TRACING
4a92379b
RK
2771void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2772{
2b847c3c 2773 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2774 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2775 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2776 return ret;
2777}
2778EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2779#endif
2780
81819f0f
CL
2781#ifdef CONFIG_NUMA
2782void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2783{
2b847c3c 2784 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2785
ca2b84cb 2786 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2787 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2788
2789 return ret;
81819f0f
CL
2790}
2791EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2792
0f24f128 2793#ifdef CONFIG_TRACING
4a92379b 2794void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2795 gfp_t gfpflags,
4a92379b 2796 int node, size_t size)
5b882be4 2797{
2b847c3c 2798 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2799
2800 trace_kmalloc_node(_RET_IP_, ret,
2801 size, s->size, gfpflags, node);
0316bec2 2802
505f5dcb 2803 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2804 return ret;
5b882be4 2805}
4a92379b 2806EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2807#endif
5d1f57e4 2808#endif
5b882be4 2809
81819f0f 2810/*
94e4d712 2811 * Slow path handling. This may still be called frequently since objects
894b8788 2812 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2813 *
894b8788
CL
2814 * So we still attempt to reduce cache line usage. Just take the slab
2815 * lock and free the item. If there is no additional partial page
2816 * handling required then we can return immediately.
81819f0f 2817 */
894b8788 2818static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2819 void *head, void *tail, int cnt,
2820 unsigned long addr)
2821
81819f0f
CL
2822{
2823 void *prior;
2cfb7455 2824 int was_frozen;
2cfb7455
CL
2825 struct page new;
2826 unsigned long counters;
2827 struct kmem_cache_node *n = NULL;
61728d1e 2828 unsigned long uninitialized_var(flags);
81819f0f 2829
8a5ec0ba 2830 stat(s, FREE_SLOWPATH);
81819f0f 2831
19c7ff9e 2832 if (kmem_cache_debug(s) &&
282acb43 2833 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2834 return;
6446faa2 2835
2cfb7455 2836 do {
837d678d
JK
2837 if (unlikely(n)) {
2838 spin_unlock_irqrestore(&n->list_lock, flags);
2839 n = NULL;
2840 }
2cfb7455
CL
2841 prior = page->freelist;
2842 counters = page->counters;
81084651 2843 set_freepointer(s, tail, prior);
2cfb7455
CL
2844 new.counters = counters;
2845 was_frozen = new.frozen;
81084651 2846 new.inuse -= cnt;
837d678d 2847 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2848
c65c1877 2849 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2850
2851 /*
d0e0ac97
CG
2852 * Slab was on no list before and will be
2853 * partially empty
2854 * We can defer the list move and instead
2855 * freeze it.
49e22585
CL
2856 */
2857 new.frozen = 1;
2858
c65c1877 2859 } else { /* Needs to be taken off a list */
49e22585 2860
b455def2 2861 n = get_node(s, page_to_nid(page));
49e22585
CL
2862 /*
2863 * Speculatively acquire the list_lock.
2864 * If the cmpxchg does not succeed then we may
2865 * drop the list_lock without any processing.
2866 *
2867 * Otherwise the list_lock will synchronize with
2868 * other processors updating the list of slabs.
2869 */
2870 spin_lock_irqsave(&n->list_lock, flags);
2871
2872 }
2cfb7455 2873 }
81819f0f 2874
2cfb7455
CL
2875 } while (!cmpxchg_double_slab(s, page,
2876 prior, counters,
81084651 2877 head, new.counters,
2cfb7455 2878 "__slab_free"));
81819f0f 2879
2cfb7455 2880 if (likely(!n)) {
49e22585
CL
2881
2882 /*
2883 * If we just froze the page then put it onto the
2884 * per cpu partial list.
2885 */
8028dcea 2886 if (new.frozen && !was_frozen) {
49e22585 2887 put_cpu_partial(s, page, 1);
8028dcea
AS
2888 stat(s, CPU_PARTIAL_FREE);
2889 }
49e22585 2890 /*
2cfb7455
CL
2891 * The list lock was not taken therefore no list
2892 * activity can be necessary.
2893 */
b455def2
L
2894 if (was_frozen)
2895 stat(s, FREE_FROZEN);
2896 return;
2897 }
81819f0f 2898
8a5b20ae 2899 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2900 goto slab_empty;
2901
81819f0f 2902 /*
837d678d
JK
2903 * Objects left in the slab. If it was not on the partial list before
2904 * then add it.
81819f0f 2905 */
345c905d
JK
2906 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2907 if (kmem_cache_debug(s))
c65c1877 2908 remove_full(s, n, page);
837d678d
JK
2909 add_partial(n, page, DEACTIVATE_TO_TAIL);
2910 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2911 }
80f08c19 2912 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2913 return;
2914
2915slab_empty:
a973e9dd 2916 if (prior) {
81819f0f 2917 /*
6fbabb20 2918 * Slab on the partial list.
81819f0f 2919 */
5cc6eee8 2920 remove_partial(n, page);
84e554e6 2921 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2922 } else {
6fbabb20 2923 /* Slab must be on the full list */
c65c1877
PZ
2924 remove_full(s, n, page);
2925 }
2cfb7455 2926
80f08c19 2927 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2928 stat(s, FREE_SLAB);
81819f0f 2929 discard_slab(s, page);
81819f0f
CL
2930}
2931
894b8788
CL
2932/*
2933 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2934 * can perform fastpath freeing without additional function calls.
2935 *
2936 * The fastpath is only possible if we are freeing to the current cpu slab
2937 * of this processor. This typically the case if we have just allocated
2938 * the item before.
2939 *
2940 * If fastpath is not possible then fall back to __slab_free where we deal
2941 * with all sorts of special processing.
81084651
JDB
2942 *
2943 * Bulk free of a freelist with several objects (all pointing to the
2944 * same page) possible by specifying head and tail ptr, plus objects
2945 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2946 */
80a9201a
AP
2947static __always_inline void do_slab_free(struct kmem_cache *s,
2948 struct page *page, void *head, void *tail,
2949 int cnt, unsigned long addr)
894b8788 2950{
81084651 2951 void *tail_obj = tail ? : head;
dfb4f096 2952 struct kmem_cache_cpu *c;
8a5ec0ba 2953 unsigned long tid;
8a5ec0ba
CL
2954redo:
2955 /*
2956 * Determine the currently cpus per cpu slab.
2957 * The cpu may change afterward. However that does not matter since
2958 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2959 * during the cmpxchg then the free will succeed.
8a5ec0ba 2960 */
9aabf810
JK
2961 do {
2962 tid = this_cpu_read(s->cpu_slab->tid);
2963 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2964 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2965 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2966
9aabf810
JK
2967 /* Same with comment on barrier() in slab_alloc_node() */
2968 barrier();
c016b0bd 2969
442b06bc 2970 if (likely(page == c->page)) {
81084651 2971 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2972
933393f5 2973 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2974 s->cpu_slab->freelist, s->cpu_slab->tid,
2975 c->freelist, tid,
81084651 2976 head, next_tid(tid)))) {
8a5ec0ba
CL
2977
2978 note_cmpxchg_failure("slab_free", s, tid);
2979 goto redo;
2980 }
84e554e6 2981 stat(s, FREE_FASTPATH);
894b8788 2982 } else
81084651 2983 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2984
894b8788
CL
2985}
2986
80a9201a
AP
2987static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2988 void *head, void *tail, int cnt,
2989 unsigned long addr)
2990{
2991 slab_free_freelist_hook(s, head, tail);
2992 /*
2993 * slab_free_freelist_hook() could have put the items into quarantine.
2994 * If so, no need to free them.
2995 */
5f0d5a3a 2996 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2997 return;
2998 do_slab_free(s, page, head, tail, cnt, addr);
2999}
3000
3001#ifdef CONFIG_KASAN
3002void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3003{
3004 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3005}
3006#endif
3007
81819f0f
CL
3008void kmem_cache_free(struct kmem_cache *s, void *x)
3009{
b9ce5ef4
GC
3010 s = cache_from_obj(s, x);
3011 if (!s)
79576102 3012 return;
81084651 3013 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3014 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3015}
3016EXPORT_SYMBOL(kmem_cache_free);
3017
d0ecd894 3018struct detached_freelist {
fbd02630 3019 struct page *page;
d0ecd894
JDB
3020 void *tail;
3021 void *freelist;
3022 int cnt;
376bf125 3023 struct kmem_cache *s;
d0ecd894 3024};
fbd02630 3025
d0ecd894
JDB
3026/*
3027 * This function progressively scans the array with free objects (with
3028 * a limited look ahead) and extract objects belonging to the same
3029 * page. It builds a detached freelist directly within the given
3030 * page/objects. This can happen without any need for
3031 * synchronization, because the objects are owned by running process.
3032 * The freelist is build up as a single linked list in the objects.
3033 * The idea is, that this detached freelist can then be bulk
3034 * transferred to the real freelist(s), but only requiring a single
3035 * synchronization primitive. Look ahead in the array is limited due
3036 * to performance reasons.
3037 */
376bf125
JDB
3038static inline
3039int build_detached_freelist(struct kmem_cache *s, size_t size,
3040 void **p, struct detached_freelist *df)
d0ecd894
JDB
3041{
3042 size_t first_skipped_index = 0;
3043 int lookahead = 3;
3044 void *object;
ca257195 3045 struct page *page;
fbd02630 3046
d0ecd894
JDB
3047 /* Always re-init detached_freelist */
3048 df->page = NULL;
fbd02630 3049
d0ecd894
JDB
3050 do {
3051 object = p[--size];
ca257195 3052 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3053 } while (!object && size);
3eed034d 3054
d0ecd894
JDB
3055 if (!object)
3056 return 0;
fbd02630 3057
ca257195
JDB
3058 page = virt_to_head_page(object);
3059 if (!s) {
3060 /* Handle kalloc'ed objects */
3061 if (unlikely(!PageSlab(page))) {
3062 BUG_ON(!PageCompound(page));
3063 kfree_hook(object);
4949148a 3064 __free_pages(page, compound_order(page));
ca257195
JDB
3065 p[size] = NULL; /* mark object processed */
3066 return size;
3067 }
3068 /* Derive kmem_cache from object */
3069 df->s = page->slab_cache;
3070 } else {
3071 df->s = cache_from_obj(s, object); /* Support for memcg */
3072 }
376bf125 3073
d0ecd894 3074 /* Start new detached freelist */
ca257195 3075 df->page = page;
376bf125 3076 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3077 df->tail = object;
3078 df->freelist = object;
3079 p[size] = NULL; /* mark object processed */
3080 df->cnt = 1;
3081
3082 while (size) {
3083 object = p[--size];
3084 if (!object)
3085 continue; /* Skip processed objects */
3086
3087 /* df->page is always set at this point */
3088 if (df->page == virt_to_head_page(object)) {
3089 /* Opportunity build freelist */
376bf125 3090 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3091 df->freelist = object;
3092 df->cnt++;
3093 p[size] = NULL; /* mark object processed */
3094
3095 continue;
fbd02630 3096 }
d0ecd894
JDB
3097
3098 /* Limit look ahead search */
3099 if (!--lookahead)
3100 break;
3101
3102 if (!first_skipped_index)
3103 first_skipped_index = size + 1;
fbd02630 3104 }
d0ecd894
JDB
3105
3106 return first_skipped_index;
3107}
3108
d0ecd894 3109/* Note that interrupts must be enabled when calling this function. */
376bf125 3110void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3111{
3112 if (WARN_ON(!size))
3113 return;
3114
3115 do {
3116 struct detached_freelist df;
3117
3118 size = build_detached_freelist(s, size, p, &df);
84582c8a 3119 if (!df.page)
d0ecd894
JDB
3120 continue;
3121
376bf125 3122 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3123 } while (likely(size));
484748f0
CL
3124}
3125EXPORT_SYMBOL(kmem_cache_free_bulk);
3126
994eb764 3127/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3128int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3129 void **p)
484748f0 3130{
994eb764
JDB
3131 struct kmem_cache_cpu *c;
3132 int i;
3133
03ec0ed5
JDB
3134 /* memcg and kmem_cache debug support */
3135 s = slab_pre_alloc_hook(s, flags);
3136 if (unlikely(!s))
3137 return false;
994eb764
JDB
3138 /*
3139 * Drain objects in the per cpu slab, while disabling local
3140 * IRQs, which protects against PREEMPT and interrupts
3141 * handlers invoking normal fastpath.
3142 */
3143 local_irq_disable();
3144 c = this_cpu_ptr(s->cpu_slab);
3145
3146 for (i = 0; i < size; i++) {
3147 void *object = c->freelist;
3148
ebe909e0 3149 if (unlikely(!object)) {
ebe909e0
JDB
3150 /*
3151 * Invoking slow path likely have side-effect
3152 * of re-populating per CPU c->freelist
3153 */
87098373 3154 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3155 _RET_IP_, c);
87098373
CL
3156 if (unlikely(!p[i]))
3157 goto error;
3158
ebe909e0
JDB
3159 c = this_cpu_ptr(s->cpu_slab);
3160 continue; /* goto for-loop */
3161 }
994eb764
JDB
3162 c->freelist = get_freepointer(s, object);
3163 p[i] = object;
3164 }
3165 c->tid = next_tid(c->tid);
3166 local_irq_enable();
3167
3168 /* Clear memory outside IRQ disabled fastpath loop */
3169 if (unlikely(flags & __GFP_ZERO)) {
3170 int j;
3171
3172 for (j = 0; j < i; j++)
3173 memset(p[j], 0, s->object_size);
3174 }
3175
03ec0ed5
JDB
3176 /* memcg and kmem_cache debug support */
3177 slab_post_alloc_hook(s, flags, size, p);
865762a8 3178 return i;
87098373 3179error:
87098373 3180 local_irq_enable();
03ec0ed5
JDB
3181 slab_post_alloc_hook(s, flags, i, p);
3182 __kmem_cache_free_bulk(s, i, p);
865762a8 3183 return 0;
484748f0
CL
3184}
3185EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3186
3187
81819f0f 3188/*
672bba3a
CL
3189 * Object placement in a slab is made very easy because we always start at
3190 * offset 0. If we tune the size of the object to the alignment then we can
3191 * get the required alignment by putting one properly sized object after
3192 * another.
81819f0f
CL
3193 *
3194 * Notice that the allocation order determines the sizes of the per cpu
3195 * caches. Each processor has always one slab available for allocations.
3196 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3197 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3198 * locking overhead.
81819f0f
CL
3199 */
3200
3201/*
3202 * Mininum / Maximum order of slab pages. This influences locking overhead
3203 * and slab fragmentation. A higher order reduces the number of partial slabs
3204 * and increases the number of allocations possible without having to
3205 * take the list_lock.
3206 */
3207static int slub_min_order;
114e9e89 3208static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3209static int slub_min_objects;
81819f0f 3210
81819f0f
CL
3211/*
3212 * Calculate the order of allocation given an slab object size.
3213 *
672bba3a
CL
3214 * The order of allocation has significant impact on performance and other
3215 * system components. Generally order 0 allocations should be preferred since
3216 * order 0 does not cause fragmentation in the page allocator. Larger objects
3217 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3218 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3219 * would be wasted.
3220 *
3221 * In order to reach satisfactory performance we must ensure that a minimum
3222 * number of objects is in one slab. Otherwise we may generate too much
3223 * activity on the partial lists which requires taking the list_lock. This is
3224 * less a concern for large slabs though which are rarely used.
81819f0f 3225 *
672bba3a
CL
3226 * slub_max_order specifies the order where we begin to stop considering the
3227 * number of objects in a slab as critical. If we reach slub_max_order then
3228 * we try to keep the page order as low as possible. So we accept more waste
3229 * of space in favor of a small page order.
81819f0f 3230 *
672bba3a
CL
3231 * Higher order allocations also allow the placement of more objects in a
3232 * slab and thereby reduce object handling overhead. If the user has
3233 * requested a higher mininum order then we start with that one instead of
3234 * the smallest order which will fit the object.
81819f0f 3235 */
5e6d444e 3236static inline int slab_order(int size, int min_objects,
ab9a0f19 3237 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3238{
3239 int order;
3240 int rem;
6300ea75 3241 int min_order = slub_min_order;
81819f0f 3242
ab9a0f19 3243 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3244 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3245
9f835703 3246 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3247 order <= max_order; order++) {
81819f0f 3248
5e6d444e 3249 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3250
ab9a0f19 3251 rem = (slab_size - reserved) % size;
81819f0f 3252
5e6d444e 3253 if (rem <= slab_size / fract_leftover)
81819f0f 3254 break;
81819f0f 3255 }
672bba3a 3256
81819f0f
CL
3257 return order;
3258}
3259
ab9a0f19 3260static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3261{
3262 int order;
3263 int min_objects;
3264 int fraction;
e8120ff1 3265 int max_objects;
5e6d444e
CL
3266
3267 /*
3268 * Attempt to find best configuration for a slab. This
3269 * works by first attempting to generate a layout with
3270 * the best configuration and backing off gradually.
3271 *
422ff4d7 3272 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3273 * we reduce the minimum objects required in a slab.
3274 */
3275 min_objects = slub_min_objects;
9b2cd506
CL
3276 if (!min_objects)
3277 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3278 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3279 min_objects = min(min_objects, max_objects);
3280
5e6d444e 3281 while (min_objects > 1) {
c124f5b5 3282 fraction = 16;
5e6d444e
CL
3283 while (fraction >= 4) {
3284 order = slab_order(size, min_objects,
ab9a0f19 3285 slub_max_order, fraction, reserved);
5e6d444e
CL
3286 if (order <= slub_max_order)
3287 return order;
3288 fraction /= 2;
3289 }
5086c389 3290 min_objects--;
5e6d444e
CL
3291 }
3292
3293 /*
3294 * We were unable to place multiple objects in a slab. Now
3295 * lets see if we can place a single object there.
3296 */
ab9a0f19 3297 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3298 if (order <= slub_max_order)
3299 return order;
3300
3301 /*
3302 * Doh this slab cannot be placed using slub_max_order.
3303 */
ab9a0f19 3304 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3305 if (order < MAX_ORDER)
5e6d444e
CL
3306 return order;
3307 return -ENOSYS;
3308}
3309
5595cffc 3310static void
4053497d 3311init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3312{
3313 n->nr_partial = 0;
81819f0f
CL
3314 spin_lock_init(&n->list_lock);
3315 INIT_LIST_HEAD(&n->partial);
8ab1372f 3316#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3317 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3318 atomic_long_set(&n->total_objects, 0);
643b1138 3319 INIT_LIST_HEAD(&n->full);
8ab1372f 3320#endif
81819f0f
CL
3321}
3322
55136592 3323static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3324{
6c182dc0 3325 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3326 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3327
8a5ec0ba 3328 /*
d4d84fef
CM
3329 * Must align to double word boundary for the double cmpxchg
3330 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3331 */
d4d84fef
CM
3332 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3333 2 * sizeof(void *));
8a5ec0ba
CL
3334
3335 if (!s->cpu_slab)
3336 return 0;
3337
3338 init_kmem_cache_cpus(s);
4c93c355 3339
8a5ec0ba 3340 return 1;
4c93c355 3341}
4c93c355 3342
51df1142
CL
3343static struct kmem_cache *kmem_cache_node;
3344
81819f0f
CL
3345/*
3346 * No kmalloc_node yet so do it by hand. We know that this is the first
3347 * slab on the node for this slabcache. There are no concurrent accesses
3348 * possible.
3349 *
721ae22a
ZYW
3350 * Note that this function only works on the kmem_cache_node
3351 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3352 * memory on a fresh node that has no slab structures yet.
81819f0f 3353 */
55136592 3354static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3355{
3356 struct page *page;
3357 struct kmem_cache_node *n;
3358
51df1142 3359 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3360
51df1142 3361 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3362
3363 BUG_ON(!page);
a2f92ee7 3364 if (page_to_nid(page) != node) {
f9f58285
FF
3365 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3366 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3367 }
3368
81819f0f
CL
3369 n = page->freelist;
3370 BUG_ON(!n);
51df1142 3371 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3372 page->inuse = 1;
8cb0a506 3373 page->frozen = 0;
51df1142 3374 kmem_cache_node->node[node] = n;
8ab1372f 3375#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3376 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3377 init_tracking(kmem_cache_node, n);
8ab1372f 3378#endif
505f5dcb
AP
3379 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3380 GFP_KERNEL);
4053497d 3381 init_kmem_cache_node(n);
51df1142 3382 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3383
67b6c900 3384 /*
1e4dd946
SR
3385 * No locks need to be taken here as it has just been
3386 * initialized and there is no concurrent access.
67b6c900 3387 */
1e4dd946 3388 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3389}
3390
3391static void free_kmem_cache_nodes(struct kmem_cache *s)
3392{
3393 int node;
fa45dc25 3394 struct kmem_cache_node *n;
81819f0f 3395
fa45dc25 3396 for_each_kmem_cache_node(s, node, n) {
81819f0f 3397 s->node[node] = NULL;
ea37df54 3398 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3399 }
3400}
3401
52b4b950
DS
3402void __kmem_cache_release(struct kmem_cache *s)
3403{
210e7a43 3404 cache_random_seq_destroy(s);
52b4b950
DS
3405 free_percpu(s->cpu_slab);
3406 free_kmem_cache_nodes(s);
3407}
3408
55136592 3409static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3410{
3411 int node;
81819f0f 3412
f64dc58c 3413 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3414 struct kmem_cache_node *n;
3415
73367bd8 3416 if (slab_state == DOWN) {
55136592 3417 early_kmem_cache_node_alloc(node);
73367bd8
AD
3418 continue;
3419 }
51df1142 3420 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3421 GFP_KERNEL, node);
81819f0f 3422
73367bd8
AD
3423 if (!n) {
3424 free_kmem_cache_nodes(s);
3425 return 0;
81819f0f 3426 }
73367bd8 3427
4053497d 3428 init_kmem_cache_node(n);
ea37df54 3429 s->node[node] = n;
81819f0f
CL
3430 }
3431 return 1;
3432}
81819f0f 3433
c0bdb232 3434static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3435{
3436 if (min < MIN_PARTIAL)
3437 min = MIN_PARTIAL;
3438 else if (min > MAX_PARTIAL)
3439 min = MAX_PARTIAL;
3440 s->min_partial = min;
3441}
3442
e6d0e1dc
WY
3443static void set_cpu_partial(struct kmem_cache *s)
3444{
3445#ifdef CONFIG_SLUB_CPU_PARTIAL
3446 /*
3447 * cpu_partial determined the maximum number of objects kept in the
3448 * per cpu partial lists of a processor.
3449 *
3450 * Per cpu partial lists mainly contain slabs that just have one
3451 * object freed. If they are used for allocation then they can be
3452 * filled up again with minimal effort. The slab will never hit the
3453 * per node partial lists and therefore no locking will be required.
3454 *
3455 * This setting also determines
3456 *
3457 * A) The number of objects from per cpu partial slabs dumped to the
3458 * per node list when we reach the limit.
3459 * B) The number of objects in cpu partial slabs to extract from the
3460 * per node list when we run out of per cpu objects. We only fetch
3461 * 50% to keep some capacity around for frees.
3462 */
3463 if (!kmem_cache_has_cpu_partial(s))
3464 s->cpu_partial = 0;
3465 else if (s->size >= PAGE_SIZE)
3466 s->cpu_partial = 2;
3467 else if (s->size >= 1024)
3468 s->cpu_partial = 6;
3469 else if (s->size >= 256)
3470 s->cpu_partial = 13;
3471 else
3472 s->cpu_partial = 30;
3473#endif
3474}
3475
81819f0f
CL
3476/*
3477 * calculate_sizes() determines the order and the distribution of data within
3478 * a slab object.
3479 */
06b285dc 3480static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3481{
d50112ed 3482 slab_flags_t flags = s->flags;
80a9201a 3483 size_t size = s->object_size;
834f3d11 3484 int order;
81819f0f 3485
d8b42bf5
CL
3486 /*
3487 * Round up object size to the next word boundary. We can only
3488 * place the free pointer at word boundaries and this determines
3489 * the possible location of the free pointer.
3490 */
3491 size = ALIGN(size, sizeof(void *));
3492
3493#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3494 /*
3495 * Determine if we can poison the object itself. If the user of
3496 * the slab may touch the object after free or before allocation
3497 * then we should never poison the object itself.
3498 */
5f0d5a3a 3499 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3500 !s->ctor)
81819f0f
CL
3501 s->flags |= __OBJECT_POISON;
3502 else
3503 s->flags &= ~__OBJECT_POISON;
3504
81819f0f
CL
3505
3506 /*
672bba3a 3507 * If we are Redzoning then check if there is some space between the
81819f0f 3508 * end of the object and the free pointer. If not then add an
672bba3a 3509 * additional word to have some bytes to store Redzone information.
81819f0f 3510 */
3b0efdfa 3511 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3512 size += sizeof(void *);
41ecc55b 3513#endif
81819f0f
CL
3514
3515 /*
672bba3a
CL
3516 * With that we have determined the number of bytes in actual use
3517 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3518 */
3519 s->inuse = size;
3520
5f0d5a3a 3521 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3522 s->ctor)) {
81819f0f
CL
3523 /*
3524 * Relocate free pointer after the object if it is not
3525 * permitted to overwrite the first word of the object on
3526 * kmem_cache_free.
3527 *
3528 * This is the case if we do RCU, have a constructor or
3529 * destructor or are poisoning the objects.
3530 */
3531 s->offset = size;
3532 size += sizeof(void *);
3533 }
3534
c12b3c62 3535#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3536 if (flags & SLAB_STORE_USER)
3537 /*
3538 * Need to store information about allocs and frees after
3539 * the object.
3540 */
3541 size += 2 * sizeof(struct track);
80a9201a 3542#endif
81819f0f 3543
80a9201a
AP
3544 kasan_cache_create(s, &size, &s->flags);
3545#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3546 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3547 /*
3548 * Add some empty padding so that we can catch
3549 * overwrites from earlier objects rather than let
3550 * tracking information or the free pointer be
0211a9c8 3551 * corrupted if a user writes before the start
81819f0f
CL
3552 * of the object.
3553 */
3554 size += sizeof(void *);
d86bd1be
JK
3555
3556 s->red_left_pad = sizeof(void *);
3557 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3558 size += s->red_left_pad;
3559 }
41ecc55b 3560#endif
672bba3a 3561
81819f0f
CL
3562 /*
3563 * SLUB stores one object immediately after another beginning from
3564 * offset 0. In order to align the objects we have to simply size
3565 * each object to conform to the alignment.
3566 */
45906855 3567 size = ALIGN(size, s->align);
81819f0f 3568 s->size = size;
06b285dc
CL
3569 if (forced_order >= 0)
3570 order = forced_order;
3571 else
ab9a0f19 3572 order = calculate_order(size, s->reserved);
81819f0f 3573
834f3d11 3574 if (order < 0)
81819f0f
CL
3575 return 0;
3576
b7a49f0d 3577 s->allocflags = 0;
834f3d11 3578 if (order)
b7a49f0d
CL
3579 s->allocflags |= __GFP_COMP;
3580
3581 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3582 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3583
3584 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3585 s->allocflags |= __GFP_RECLAIMABLE;
3586
81819f0f
CL
3587 /*
3588 * Determine the number of objects per slab
3589 */
ab9a0f19
LJ
3590 s->oo = oo_make(order, size, s->reserved);
3591 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3592 if (oo_objects(s->oo) > oo_objects(s->max))
3593 s->max = s->oo;
81819f0f 3594
834f3d11 3595 return !!oo_objects(s->oo);
81819f0f
CL
3596}
3597
d50112ed 3598static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3599{
8a13a4cc 3600 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3601 s->reserved = 0;
2482ddec
KC
3602#ifdef CONFIG_SLAB_FREELIST_HARDENED
3603 s->random = get_random_long();
3604#endif
81819f0f 3605
5f0d5a3a 3606 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3607 s->reserved = sizeof(struct rcu_head);
81819f0f 3608
06b285dc 3609 if (!calculate_sizes(s, -1))
81819f0f 3610 goto error;
3de47213
DR
3611 if (disable_higher_order_debug) {
3612 /*
3613 * Disable debugging flags that store metadata if the min slab
3614 * order increased.
3615 */
3b0efdfa 3616 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3617 s->flags &= ~DEBUG_METADATA_FLAGS;
3618 s->offset = 0;
3619 if (!calculate_sizes(s, -1))
3620 goto error;
3621 }
3622 }
81819f0f 3623
2565409f
HC
3624#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3625 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3626 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3627 /* Enable fast mode */
3628 s->flags |= __CMPXCHG_DOUBLE;
3629#endif
3630
3b89d7d8
DR
3631 /*
3632 * The larger the object size is, the more pages we want on the partial
3633 * list to avoid pounding the page allocator excessively.
3634 */
49e22585
CL
3635 set_min_partial(s, ilog2(s->size) / 2);
3636
e6d0e1dc 3637 set_cpu_partial(s);
49e22585 3638
81819f0f 3639#ifdef CONFIG_NUMA
e2cb96b7 3640 s->remote_node_defrag_ratio = 1000;
81819f0f 3641#endif
210e7a43
TG
3642
3643 /* Initialize the pre-computed randomized freelist if slab is up */
3644 if (slab_state >= UP) {
3645 if (init_cache_random_seq(s))
3646 goto error;
3647 }
3648
55136592 3649 if (!init_kmem_cache_nodes(s))
dfb4f096 3650 goto error;
81819f0f 3651
55136592 3652 if (alloc_kmem_cache_cpus(s))
278b1bb1 3653 return 0;
ff12059e 3654
4c93c355 3655 free_kmem_cache_nodes(s);
81819f0f
CL
3656error:
3657 if (flags & SLAB_PANIC)
756a025f
JP
3658 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3659 s->name, (unsigned long)s->size, s->size,
3660 oo_order(s->oo), s->offset, flags);
278b1bb1 3661 return -EINVAL;
81819f0f 3662}
81819f0f 3663
33b12c38
CL
3664static void list_slab_objects(struct kmem_cache *s, struct page *page,
3665 const char *text)
3666{
3667#ifdef CONFIG_SLUB_DEBUG
3668 void *addr = page_address(page);
3669 void *p;
a5dd5c11
NK
3670 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3671 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3672 if (!map)
3673 return;
945cf2b6 3674 slab_err(s, page, text, s->name);
33b12c38 3675 slab_lock(page);
33b12c38 3676
5f80b13a 3677 get_map(s, page, map);
33b12c38
CL
3678 for_each_object(p, s, addr, page->objects) {
3679
3680 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3681 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3682 print_tracking(s, p);
3683 }
3684 }
3685 slab_unlock(page);
bbd7d57b 3686 kfree(map);
33b12c38
CL
3687#endif
3688}
3689
81819f0f 3690/*
599870b1 3691 * Attempt to free all partial slabs on a node.
52b4b950
DS
3692 * This is called from __kmem_cache_shutdown(). We must take list_lock
3693 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3694 */
599870b1 3695static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3696{
60398923 3697 LIST_HEAD(discard);
81819f0f
CL
3698 struct page *page, *h;
3699
52b4b950
DS
3700 BUG_ON(irqs_disabled());
3701 spin_lock_irq(&n->list_lock);
33b12c38 3702 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3703 if (!page->inuse) {
52b4b950 3704 remove_partial(n, page);
60398923 3705 list_add(&page->lru, &discard);
33b12c38
CL
3706 } else {
3707 list_slab_objects(s, page,
52b4b950 3708 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3709 }
33b12c38 3710 }
52b4b950 3711 spin_unlock_irq(&n->list_lock);
60398923
CW
3712
3713 list_for_each_entry_safe(page, h, &discard, lru)
3714 discard_slab(s, page);
81819f0f
CL
3715}
3716
3717/*
672bba3a 3718 * Release all resources used by a slab cache.
81819f0f 3719 */
52b4b950 3720int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3721{
3722 int node;
fa45dc25 3723 struct kmem_cache_node *n;
81819f0f
CL
3724
3725 flush_all(s);
81819f0f 3726 /* Attempt to free all objects */
fa45dc25 3727 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3728 free_partial(s, n);
3729 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3730 return 1;
3731 }
bf5eb3de 3732 sysfs_slab_remove(s);
81819f0f
CL
3733 return 0;
3734}
3735
81819f0f
CL
3736/********************************************************************
3737 * Kmalloc subsystem
3738 *******************************************************************/
3739
81819f0f
CL
3740static int __init setup_slub_min_order(char *str)
3741{
06428780 3742 get_option(&str, &slub_min_order);
81819f0f
CL
3743
3744 return 1;
3745}
3746
3747__setup("slub_min_order=", setup_slub_min_order);
3748
3749static int __init setup_slub_max_order(char *str)
3750{
06428780 3751 get_option(&str, &slub_max_order);
818cf590 3752 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3753
3754 return 1;
3755}
3756
3757__setup("slub_max_order=", setup_slub_max_order);
3758
3759static int __init setup_slub_min_objects(char *str)
3760{
06428780 3761 get_option(&str, &slub_min_objects);
81819f0f
CL
3762
3763 return 1;
3764}
3765
3766__setup("slub_min_objects=", setup_slub_min_objects);
3767
81819f0f
CL
3768void *__kmalloc(size_t size, gfp_t flags)
3769{
aadb4bc4 3770 struct kmem_cache *s;
5b882be4 3771 void *ret;
81819f0f 3772
95a05b42 3773 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3774 return kmalloc_large(size, flags);
aadb4bc4 3775
2c59dd65 3776 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3777
3778 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3779 return s;
3780
2b847c3c 3781 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3782
ca2b84cb 3783 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3784
505f5dcb 3785 kasan_kmalloc(s, ret, size, flags);
0316bec2 3786
5b882be4 3787 return ret;
81819f0f
CL
3788}
3789EXPORT_SYMBOL(__kmalloc);
3790
5d1f57e4 3791#ifdef CONFIG_NUMA
f619cfe1
CL
3792static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3793{
b1eeab67 3794 struct page *page;
e4f7c0b4 3795 void *ptr = NULL;
f619cfe1 3796
52383431 3797 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3798 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3799 if (page)
e4f7c0b4
CM
3800 ptr = page_address(page);
3801
d56791b3 3802 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3803 return ptr;
f619cfe1
CL
3804}
3805
81819f0f
CL
3806void *__kmalloc_node(size_t size, gfp_t flags, int node)
3807{
aadb4bc4 3808 struct kmem_cache *s;
5b882be4 3809 void *ret;
81819f0f 3810
95a05b42 3811 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3812 ret = kmalloc_large_node(size, flags, node);
3813
ca2b84cb
EGM
3814 trace_kmalloc_node(_RET_IP_, ret,
3815 size, PAGE_SIZE << get_order(size),
3816 flags, node);
5b882be4
EGM
3817
3818 return ret;
3819 }
aadb4bc4 3820
2c59dd65 3821 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3822
3823 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3824 return s;
3825
2b847c3c 3826 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3827
ca2b84cb 3828 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3829
505f5dcb 3830 kasan_kmalloc(s, ret, size, flags);
0316bec2 3831
5b882be4 3832 return ret;
81819f0f
CL
3833}
3834EXPORT_SYMBOL(__kmalloc_node);
3835#endif
3836
ed18adc1
KC
3837#ifdef CONFIG_HARDENED_USERCOPY
3838/*
3839 * Rejects objects that are incorrectly sized.
3840 *
3841 * Returns NULL if check passes, otherwise const char * to name of cache
3842 * to indicate an error.
3843 */
3844const char *__check_heap_object(const void *ptr, unsigned long n,
3845 struct page *page)
3846{
3847 struct kmem_cache *s;
3848 unsigned long offset;
3849 size_t object_size;
3850
3851 /* Find object and usable object size. */
3852 s = page->slab_cache;
3853 object_size = slab_ksize(s);
3854
3855 /* Reject impossible pointers. */
3856 if (ptr < page_address(page))
3857 return s->name;
3858
3859 /* Find offset within object. */
3860 offset = (ptr - page_address(page)) % s->size;
3861
3862 /* Adjust for redzone and reject if within the redzone. */
3863 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3864 if (offset < s->red_left_pad)
3865 return s->name;
3866 offset -= s->red_left_pad;
3867 }
3868
3869 /* Allow address range falling entirely within object size. */
3870 if (offset <= object_size && n <= object_size - offset)
3871 return NULL;
3872
3873 return s->name;
3874}
3875#endif /* CONFIG_HARDENED_USERCOPY */
3876
0316bec2 3877static size_t __ksize(const void *object)
81819f0f 3878{
272c1d21 3879 struct page *page;
81819f0f 3880
ef8b4520 3881 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3882 return 0;
3883
294a80a8 3884 page = virt_to_head_page(object);
294a80a8 3885
76994412
PE
3886 if (unlikely(!PageSlab(page))) {
3887 WARN_ON(!PageCompound(page));
294a80a8 3888 return PAGE_SIZE << compound_order(page);
76994412 3889 }
81819f0f 3890
1b4f59e3 3891 return slab_ksize(page->slab_cache);
81819f0f 3892}
0316bec2
AR
3893
3894size_t ksize(const void *object)
3895{
3896 size_t size = __ksize(object);
3897 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3898 * so we need to unpoison this area.
3899 */
3900 kasan_unpoison_shadow(object, size);
0316bec2
AR
3901 return size;
3902}
b1aabecd 3903EXPORT_SYMBOL(ksize);
81819f0f
CL
3904
3905void kfree(const void *x)
3906{
81819f0f 3907 struct page *page;
5bb983b0 3908 void *object = (void *)x;
81819f0f 3909
2121db74
PE
3910 trace_kfree(_RET_IP_, x);
3911
2408c550 3912 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3913 return;
3914
b49af68f 3915 page = virt_to_head_page(x);
aadb4bc4 3916 if (unlikely(!PageSlab(page))) {
0937502a 3917 BUG_ON(!PageCompound(page));
d56791b3 3918 kfree_hook(x);
4949148a 3919 __free_pages(page, compound_order(page));
aadb4bc4
CL
3920 return;
3921 }
81084651 3922 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3923}
3924EXPORT_SYMBOL(kfree);
3925
832f37f5
VD
3926#define SHRINK_PROMOTE_MAX 32
3927
2086d26a 3928/*
832f37f5
VD
3929 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3930 * up most to the head of the partial lists. New allocations will then
3931 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3932 *
3933 * The slabs with the least items are placed last. This results in them
3934 * being allocated from last increasing the chance that the last objects
3935 * are freed in them.
2086d26a 3936 */
c9fc5864 3937int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3938{
3939 int node;
3940 int i;
3941 struct kmem_cache_node *n;
3942 struct page *page;
3943 struct page *t;
832f37f5
VD
3944 struct list_head discard;
3945 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3946 unsigned long flags;
ce3712d7 3947 int ret = 0;
2086d26a 3948
2086d26a 3949 flush_all(s);
fa45dc25 3950 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3951 INIT_LIST_HEAD(&discard);
3952 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3953 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3954
3955 spin_lock_irqsave(&n->list_lock, flags);
3956
3957 /*
832f37f5 3958 * Build lists of slabs to discard or promote.
2086d26a 3959 *
672bba3a
CL
3960 * Note that concurrent frees may occur while we hold the
3961 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3962 */
3963 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3964 int free = page->objects - page->inuse;
3965
3966 /* Do not reread page->inuse */
3967 barrier();
3968
3969 /* We do not keep full slabs on the list */
3970 BUG_ON(free <= 0);
3971
3972 if (free == page->objects) {
3973 list_move(&page->lru, &discard);
69cb8e6b 3974 n->nr_partial--;
832f37f5
VD
3975 } else if (free <= SHRINK_PROMOTE_MAX)
3976 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3977 }
3978
2086d26a 3979 /*
832f37f5
VD
3980 * Promote the slabs filled up most to the head of the
3981 * partial list.
2086d26a 3982 */
832f37f5
VD
3983 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3984 list_splice(promote + i, &n->partial);
2086d26a 3985
2086d26a 3986 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3987
3988 /* Release empty slabs */
832f37f5 3989 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3990 discard_slab(s, page);
ce3712d7
VD
3991
3992 if (slabs_node(s, node))
3993 ret = 1;
2086d26a
CL
3994 }
3995
ce3712d7 3996 return ret;
2086d26a 3997}
2086d26a 3998
c9fc5864 3999#ifdef CONFIG_MEMCG
01fb58bc
TH
4000static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4001{
50862ce7
TH
4002 /*
4003 * Called with all the locks held after a sched RCU grace period.
4004 * Even if @s becomes empty after shrinking, we can't know that @s
4005 * doesn't have allocations already in-flight and thus can't
4006 * destroy @s until the associated memcg is released.
4007 *
4008 * However, let's remove the sysfs files for empty caches here.
4009 * Each cache has a lot of interface files which aren't
4010 * particularly useful for empty draining caches; otherwise, we can
4011 * easily end up with millions of unnecessary sysfs files on
4012 * systems which have a lot of memory and transient cgroups.
4013 */
4014 if (!__kmem_cache_shrink(s))
4015 sysfs_slab_remove(s);
01fb58bc
TH
4016}
4017
c9fc5864
TH
4018void __kmemcg_cache_deactivate(struct kmem_cache *s)
4019{
4020 /*
4021 * Disable empty slabs caching. Used to avoid pinning offline
4022 * memory cgroups by kmem pages that can be freed.
4023 */
e6d0e1dc 4024 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4025 s->min_partial = 0;
4026
4027 /*
4028 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4029 * we have to make sure the change is visible before shrinking.
c9fc5864 4030 */
01fb58bc 4031 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4032}
4033#endif
4034
b9049e23
YG
4035static int slab_mem_going_offline_callback(void *arg)
4036{
4037 struct kmem_cache *s;
4038
18004c5d 4039 mutex_lock(&slab_mutex);
b9049e23 4040 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4041 __kmem_cache_shrink(s);
18004c5d 4042 mutex_unlock(&slab_mutex);
b9049e23
YG
4043
4044 return 0;
4045}
4046
4047static void slab_mem_offline_callback(void *arg)
4048{
4049 struct kmem_cache_node *n;
4050 struct kmem_cache *s;
4051 struct memory_notify *marg = arg;
4052 int offline_node;
4053
b9d5ab25 4054 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4055
4056 /*
4057 * If the node still has available memory. we need kmem_cache_node
4058 * for it yet.
4059 */
4060 if (offline_node < 0)
4061 return;
4062
18004c5d 4063 mutex_lock(&slab_mutex);
b9049e23
YG
4064 list_for_each_entry(s, &slab_caches, list) {
4065 n = get_node(s, offline_node);
4066 if (n) {
4067 /*
4068 * if n->nr_slabs > 0, slabs still exist on the node
4069 * that is going down. We were unable to free them,
c9404c9c 4070 * and offline_pages() function shouldn't call this
b9049e23
YG
4071 * callback. So, we must fail.
4072 */
0f389ec6 4073 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4074
4075 s->node[offline_node] = NULL;
8de66a0c 4076 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4077 }
4078 }
18004c5d 4079 mutex_unlock(&slab_mutex);
b9049e23
YG
4080}
4081
4082static int slab_mem_going_online_callback(void *arg)
4083{
4084 struct kmem_cache_node *n;
4085 struct kmem_cache *s;
4086 struct memory_notify *marg = arg;
b9d5ab25 4087 int nid = marg->status_change_nid_normal;
b9049e23
YG
4088 int ret = 0;
4089
4090 /*
4091 * If the node's memory is already available, then kmem_cache_node is
4092 * already created. Nothing to do.
4093 */
4094 if (nid < 0)
4095 return 0;
4096
4097 /*
0121c619 4098 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4099 * allocate a kmem_cache_node structure in order to bring the node
4100 * online.
4101 */
18004c5d 4102 mutex_lock(&slab_mutex);
b9049e23
YG
4103 list_for_each_entry(s, &slab_caches, list) {
4104 /*
4105 * XXX: kmem_cache_alloc_node will fallback to other nodes
4106 * since memory is not yet available from the node that
4107 * is brought up.
4108 */
8de66a0c 4109 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4110 if (!n) {
4111 ret = -ENOMEM;
4112 goto out;
4113 }
4053497d 4114 init_kmem_cache_node(n);
b9049e23
YG
4115 s->node[nid] = n;
4116 }
4117out:
18004c5d 4118 mutex_unlock(&slab_mutex);
b9049e23
YG
4119 return ret;
4120}
4121
4122static int slab_memory_callback(struct notifier_block *self,
4123 unsigned long action, void *arg)
4124{
4125 int ret = 0;
4126
4127 switch (action) {
4128 case MEM_GOING_ONLINE:
4129 ret = slab_mem_going_online_callback(arg);
4130 break;
4131 case MEM_GOING_OFFLINE:
4132 ret = slab_mem_going_offline_callback(arg);
4133 break;
4134 case MEM_OFFLINE:
4135 case MEM_CANCEL_ONLINE:
4136 slab_mem_offline_callback(arg);
4137 break;
4138 case MEM_ONLINE:
4139 case MEM_CANCEL_OFFLINE:
4140 break;
4141 }
dc19f9db
KH
4142 if (ret)
4143 ret = notifier_from_errno(ret);
4144 else
4145 ret = NOTIFY_OK;
b9049e23
YG
4146 return ret;
4147}
4148
3ac38faa
AM
4149static struct notifier_block slab_memory_callback_nb = {
4150 .notifier_call = slab_memory_callback,
4151 .priority = SLAB_CALLBACK_PRI,
4152};
b9049e23 4153
81819f0f
CL
4154/********************************************************************
4155 * Basic setup of slabs
4156 *******************************************************************/
4157
51df1142
CL
4158/*
4159 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4160 * the page allocator. Allocate them properly then fix up the pointers
4161 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4162 */
4163
dffb4d60 4164static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4165{
4166 int node;
dffb4d60 4167 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4168 struct kmem_cache_node *n;
51df1142 4169
dffb4d60 4170 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4171
7d557b3c
GC
4172 /*
4173 * This runs very early, and only the boot processor is supposed to be
4174 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4175 * IPIs around.
4176 */
4177 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4178 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4179 struct page *p;
4180
fa45dc25
CL
4181 list_for_each_entry(p, &n->partial, lru)
4182 p->slab_cache = s;
51df1142 4183
607bf324 4184#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4185 list_for_each_entry(p, &n->full, lru)
4186 p->slab_cache = s;
51df1142 4187#endif
51df1142 4188 }
f7ce3190 4189 slab_init_memcg_params(s);
dffb4d60 4190 list_add(&s->list, &slab_caches);
510ded33 4191 memcg_link_cache(s);
dffb4d60 4192 return s;
51df1142
CL
4193}
4194
81819f0f
CL
4195void __init kmem_cache_init(void)
4196{
dffb4d60
CL
4197 static __initdata struct kmem_cache boot_kmem_cache,
4198 boot_kmem_cache_node;
51df1142 4199
fc8d8620
SG
4200 if (debug_guardpage_minorder())
4201 slub_max_order = 0;
4202
dffb4d60
CL
4203 kmem_cache_node = &boot_kmem_cache_node;
4204 kmem_cache = &boot_kmem_cache;
51df1142 4205
dffb4d60
CL
4206 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4207 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4208
3ac38faa 4209 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4210
4211 /* Able to allocate the per node structures */
4212 slab_state = PARTIAL;
4213
dffb4d60
CL
4214 create_boot_cache(kmem_cache, "kmem_cache",
4215 offsetof(struct kmem_cache, node) +
4216 nr_node_ids * sizeof(struct kmem_cache_node *),
4217 SLAB_HWCACHE_ALIGN);
8a13a4cc 4218
dffb4d60 4219 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4220
51df1142
CL
4221 /*
4222 * Allocate kmem_cache_node properly from the kmem_cache slab.
4223 * kmem_cache_node is separately allocated so no need to
4224 * update any list pointers.
4225 */
dffb4d60 4226 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4227
4228 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4229 setup_kmalloc_cache_index_table();
f97d5f63 4230 create_kmalloc_caches(0);
81819f0f 4231
210e7a43
TG
4232 /* Setup random freelists for each cache */
4233 init_freelist_randomization();
4234
a96a87bf
SAS
4235 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4236 slub_cpu_dead);
81819f0f 4237
9b130ad5 4238 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
f97d5f63 4239 cache_line_size(),
81819f0f
CL
4240 slub_min_order, slub_max_order, slub_min_objects,
4241 nr_cpu_ids, nr_node_ids);
4242}
4243
7e85ee0c
PE
4244void __init kmem_cache_init_late(void)
4245{
7e85ee0c
PE
4246}
4247
2633d7a0 4248struct kmem_cache *
a44cb944 4249__kmem_cache_alias(const char *name, size_t size, size_t align,
d50112ed 4250 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4251{
426589f5 4252 struct kmem_cache *s, *c;
81819f0f 4253
a44cb944 4254 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4255 if (s) {
4256 s->refcount++;
84d0ddd6 4257
81819f0f
CL
4258 /*
4259 * Adjust the object sizes so that we clear
4260 * the complete object on kzalloc.
4261 */
3b0efdfa 4262 s->object_size = max(s->object_size, (int)size);
81819f0f 4263 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4264
426589f5 4265 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4266 c->object_size = s->object_size;
4267 c->inuse = max_t(int, c->inuse,
4268 ALIGN(size, sizeof(void *)));
4269 }
4270
7b8f3b66 4271 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4272 s->refcount--;
cbb79694 4273 s = NULL;
7b8f3b66 4274 }
a0e1d1be 4275 }
6446faa2 4276
cbb79694
CL
4277 return s;
4278}
84c1cf62 4279
d50112ed 4280int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4281{
aac3a166
PE
4282 int err;
4283
4284 err = kmem_cache_open(s, flags);
4285 if (err)
4286 return err;
20cea968 4287
45530c44
CL
4288 /* Mutex is not taken during early boot */
4289 if (slab_state <= UP)
4290 return 0;
4291
107dab5c 4292 memcg_propagate_slab_attrs(s);
aac3a166 4293 err = sysfs_slab_add(s);
aac3a166 4294 if (err)
52b4b950 4295 __kmem_cache_release(s);
20cea968 4296
aac3a166 4297 return err;
81819f0f 4298}
81819f0f 4299
ce71e27c 4300void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4301{
aadb4bc4 4302 struct kmem_cache *s;
94b528d0 4303 void *ret;
aadb4bc4 4304
95a05b42 4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4306 return kmalloc_large(size, gfpflags);
4307
2c59dd65 4308 s = kmalloc_slab(size, gfpflags);
81819f0f 4309
2408c550 4310 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4311 return s;
81819f0f 4312
2b847c3c 4313 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4314
25985edc 4315 /* Honor the call site pointer we received. */
ca2b84cb 4316 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4317
4318 return ret;
81819f0f
CL
4319}
4320
5d1f57e4 4321#ifdef CONFIG_NUMA
81819f0f 4322void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4323 int node, unsigned long caller)
81819f0f 4324{
aadb4bc4 4325 struct kmem_cache *s;
94b528d0 4326 void *ret;
aadb4bc4 4327
95a05b42 4328 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4329 ret = kmalloc_large_node(size, gfpflags, node);
4330
4331 trace_kmalloc_node(caller, ret,
4332 size, PAGE_SIZE << get_order(size),
4333 gfpflags, node);
4334
4335 return ret;
4336 }
eada35ef 4337
2c59dd65 4338 s = kmalloc_slab(size, gfpflags);
81819f0f 4339
2408c550 4340 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4341 return s;
81819f0f 4342
2b847c3c 4343 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4344
25985edc 4345 /* Honor the call site pointer we received. */
ca2b84cb 4346 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4347
4348 return ret;
81819f0f 4349}
5d1f57e4 4350#endif
81819f0f 4351
ab4d5ed5 4352#ifdef CONFIG_SYSFS
205ab99d
CL
4353static int count_inuse(struct page *page)
4354{
4355 return page->inuse;
4356}
4357
4358static int count_total(struct page *page)
4359{
4360 return page->objects;
4361}
ab4d5ed5 4362#endif
205ab99d 4363
ab4d5ed5 4364#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4365static int validate_slab(struct kmem_cache *s, struct page *page,
4366 unsigned long *map)
53e15af0
CL
4367{
4368 void *p;
a973e9dd 4369 void *addr = page_address(page);
53e15af0
CL
4370
4371 if (!check_slab(s, page) ||
4372 !on_freelist(s, page, NULL))
4373 return 0;
4374
4375 /* Now we know that a valid freelist exists */
39b26464 4376 bitmap_zero(map, page->objects);
53e15af0 4377
5f80b13a
CL
4378 get_map(s, page, map);
4379 for_each_object(p, s, addr, page->objects) {
4380 if (test_bit(slab_index(p, s, addr), map))
4381 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4382 return 0;
53e15af0
CL
4383 }
4384
224a88be 4385 for_each_object(p, s, addr, page->objects)
7656c72b 4386 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4387 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4388 return 0;
4389 return 1;
4390}
4391
434e245d
CL
4392static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4393 unsigned long *map)
53e15af0 4394{
881db7fb
CL
4395 slab_lock(page);
4396 validate_slab(s, page, map);
4397 slab_unlock(page);
53e15af0
CL
4398}
4399
434e245d
CL
4400static int validate_slab_node(struct kmem_cache *s,
4401 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4402{
4403 unsigned long count = 0;
4404 struct page *page;
4405 unsigned long flags;
4406
4407 spin_lock_irqsave(&n->list_lock, flags);
4408
4409 list_for_each_entry(page, &n->partial, lru) {
434e245d 4410 validate_slab_slab(s, page, map);
53e15af0
CL
4411 count++;
4412 }
4413 if (count != n->nr_partial)
f9f58285
FF
4414 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4415 s->name, count, n->nr_partial);
53e15af0
CL
4416
4417 if (!(s->flags & SLAB_STORE_USER))
4418 goto out;
4419
4420 list_for_each_entry(page, &n->full, lru) {
434e245d 4421 validate_slab_slab(s, page, map);
53e15af0
CL
4422 count++;
4423 }
4424 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4425 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4426 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4427
4428out:
4429 spin_unlock_irqrestore(&n->list_lock, flags);
4430 return count;
4431}
4432
434e245d 4433static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4434{
4435 int node;
4436 unsigned long count = 0;
205ab99d 4437 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4438 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4439 struct kmem_cache_node *n;
434e245d
CL
4440
4441 if (!map)
4442 return -ENOMEM;
53e15af0
CL
4443
4444 flush_all(s);
fa45dc25 4445 for_each_kmem_cache_node(s, node, n)
434e245d 4446 count += validate_slab_node(s, n, map);
434e245d 4447 kfree(map);
53e15af0
CL
4448 return count;
4449}
88a420e4 4450/*
672bba3a 4451 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4452 * and freed.
4453 */
4454
4455struct location {
4456 unsigned long count;
ce71e27c 4457 unsigned long addr;
45edfa58
CL
4458 long long sum_time;
4459 long min_time;
4460 long max_time;
4461 long min_pid;
4462 long max_pid;
174596a0 4463 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4464 nodemask_t nodes;
88a420e4
CL
4465};
4466
4467struct loc_track {
4468 unsigned long max;
4469 unsigned long count;
4470 struct location *loc;
4471};
4472
4473static void free_loc_track(struct loc_track *t)
4474{
4475 if (t->max)
4476 free_pages((unsigned long)t->loc,
4477 get_order(sizeof(struct location) * t->max));
4478}
4479
68dff6a9 4480static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4481{
4482 struct location *l;
4483 int order;
4484
88a420e4
CL
4485 order = get_order(sizeof(struct location) * max);
4486
68dff6a9 4487 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4488 if (!l)
4489 return 0;
4490
4491 if (t->count) {
4492 memcpy(l, t->loc, sizeof(struct location) * t->count);
4493 free_loc_track(t);
4494 }
4495 t->max = max;
4496 t->loc = l;
4497 return 1;
4498}
4499
4500static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4501 const struct track *track)
88a420e4
CL
4502{
4503 long start, end, pos;
4504 struct location *l;
ce71e27c 4505 unsigned long caddr;
45edfa58 4506 unsigned long age = jiffies - track->when;
88a420e4
CL
4507
4508 start = -1;
4509 end = t->count;
4510
4511 for ( ; ; ) {
4512 pos = start + (end - start + 1) / 2;
4513
4514 /*
4515 * There is nothing at "end". If we end up there
4516 * we need to add something to before end.
4517 */
4518 if (pos == end)
4519 break;
4520
4521 caddr = t->loc[pos].addr;
45edfa58
CL
4522 if (track->addr == caddr) {
4523
4524 l = &t->loc[pos];
4525 l->count++;
4526 if (track->when) {
4527 l->sum_time += age;
4528 if (age < l->min_time)
4529 l->min_time = age;
4530 if (age > l->max_time)
4531 l->max_time = age;
4532
4533 if (track->pid < l->min_pid)
4534 l->min_pid = track->pid;
4535 if (track->pid > l->max_pid)
4536 l->max_pid = track->pid;
4537
174596a0
RR
4538 cpumask_set_cpu(track->cpu,
4539 to_cpumask(l->cpus));
45edfa58
CL
4540 }
4541 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4542 return 1;
4543 }
4544
45edfa58 4545 if (track->addr < caddr)
88a420e4
CL
4546 end = pos;
4547 else
4548 start = pos;
4549 }
4550
4551 /*
672bba3a 4552 * Not found. Insert new tracking element.
88a420e4 4553 */
68dff6a9 4554 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4555 return 0;
4556
4557 l = t->loc + pos;
4558 if (pos < t->count)
4559 memmove(l + 1, l,
4560 (t->count - pos) * sizeof(struct location));
4561 t->count++;
4562 l->count = 1;
45edfa58
CL
4563 l->addr = track->addr;
4564 l->sum_time = age;
4565 l->min_time = age;
4566 l->max_time = age;
4567 l->min_pid = track->pid;
4568 l->max_pid = track->pid;
174596a0
RR
4569 cpumask_clear(to_cpumask(l->cpus));
4570 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4571 nodes_clear(l->nodes);
4572 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4573 return 1;
4574}
4575
4576static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4577 struct page *page, enum track_item alloc,
a5dd5c11 4578 unsigned long *map)
88a420e4 4579{
a973e9dd 4580 void *addr = page_address(page);
88a420e4
CL
4581 void *p;
4582
39b26464 4583 bitmap_zero(map, page->objects);
5f80b13a 4584 get_map(s, page, map);
88a420e4 4585
224a88be 4586 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4587 if (!test_bit(slab_index(p, s, addr), map))
4588 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4589}
4590
4591static int list_locations(struct kmem_cache *s, char *buf,
4592 enum track_item alloc)
4593{
e374d483 4594 int len = 0;
88a420e4 4595 unsigned long i;
68dff6a9 4596 struct loc_track t = { 0, 0, NULL };
88a420e4 4597 int node;
bbd7d57b
ED
4598 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4599 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4600 struct kmem_cache_node *n;
88a420e4 4601
bbd7d57b 4602 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4603 GFP_KERNEL)) {
bbd7d57b 4604 kfree(map);
68dff6a9 4605 return sprintf(buf, "Out of memory\n");
bbd7d57b 4606 }
88a420e4
CL
4607 /* Push back cpu slabs */
4608 flush_all(s);
4609
fa45dc25 4610 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4611 unsigned long flags;
4612 struct page *page;
4613
9e86943b 4614 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4615 continue;
4616
4617 spin_lock_irqsave(&n->list_lock, flags);
4618 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4619 process_slab(&t, s, page, alloc, map);
88a420e4 4620 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4621 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4622 spin_unlock_irqrestore(&n->list_lock, flags);
4623 }
4624
4625 for (i = 0; i < t.count; i++) {
45edfa58 4626 struct location *l = &t.loc[i];
88a420e4 4627
9c246247 4628 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4629 break;
e374d483 4630 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4631
4632 if (l->addr)
62c70bce 4633 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4634 else
e374d483 4635 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4636
4637 if (l->sum_time != l->min_time) {
e374d483 4638 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4639 l->min_time,
4640 (long)div_u64(l->sum_time, l->count),
4641 l->max_time);
45edfa58 4642 } else
e374d483 4643 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4644 l->min_time);
4645
4646 if (l->min_pid != l->max_pid)
e374d483 4647 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4648 l->min_pid, l->max_pid);
4649 else
e374d483 4650 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4651 l->min_pid);
4652
174596a0
RR
4653 if (num_online_cpus() > 1 &&
4654 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4655 len < PAGE_SIZE - 60)
4656 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4657 " cpus=%*pbl",
4658 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4659
62bc62a8 4660 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4661 len < PAGE_SIZE - 60)
4662 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4663 " nodes=%*pbl",
4664 nodemask_pr_args(&l->nodes));
45edfa58 4665
e374d483 4666 len += sprintf(buf + len, "\n");
88a420e4
CL
4667 }
4668
4669 free_loc_track(&t);
bbd7d57b 4670 kfree(map);
88a420e4 4671 if (!t.count)
e374d483
HH
4672 len += sprintf(buf, "No data\n");
4673 return len;
88a420e4 4674}
ab4d5ed5 4675#endif
88a420e4 4676
a5a84755 4677#ifdef SLUB_RESILIENCY_TEST
c07b8183 4678static void __init resiliency_test(void)
a5a84755
CL
4679{
4680 u8 *p;
4681
95a05b42 4682 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4683
f9f58285
FF
4684 pr_err("SLUB resiliency testing\n");
4685 pr_err("-----------------------\n");
4686 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4687
4688 p = kzalloc(16, GFP_KERNEL);
4689 p[16] = 0x12;
f9f58285
FF
4690 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4691 p + 16);
a5a84755
CL
4692
4693 validate_slab_cache(kmalloc_caches[4]);
4694
4695 /* Hmmm... The next two are dangerous */
4696 p = kzalloc(32, GFP_KERNEL);
4697 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4698 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4699 p);
4700 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4701
4702 validate_slab_cache(kmalloc_caches[5]);
4703 p = kzalloc(64, GFP_KERNEL);
4704 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4705 *p = 0x56;
f9f58285
FF
4706 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4707 p);
4708 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4709 validate_slab_cache(kmalloc_caches[6]);
4710
f9f58285 4711 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4712 p = kzalloc(128, GFP_KERNEL);
4713 kfree(p);
4714 *p = 0x78;
f9f58285 4715 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4716 validate_slab_cache(kmalloc_caches[7]);
4717
4718 p = kzalloc(256, GFP_KERNEL);
4719 kfree(p);
4720 p[50] = 0x9a;
f9f58285 4721 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4722 validate_slab_cache(kmalloc_caches[8]);
4723
4724 p = kzalloc(512, GFP_KERNEL);
4725 kfree(p);
4726 p[512] = 0xab;
f9f58285 4727 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4728 validate_slab_cache(kmalloc_caches[9]);
4729}
4730#else
4731#ifdef CONFIG_SYSFS
4732static void resiliency_test(void) {};
4733#endif
4734#endif
4735
ab4d5ed5 4736#ifdef CONFIG_SYSFS
81819f0f 4737enum slab_stat_type {
205ab99d
CL
4738 SL_ALL, /* All slabs */
4739 SL_PARTIAL, /* Only partially allocated slabs */
4740 SL_CPU, /* Only slabs used for cpu caches */
4741 SL_OBJECTS, /* Determine allocated objects not slabs */
4742 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4743};
4744
205ab99d 4745#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4746#define SO_PARTIAL (1 << SL_PARTIAL)
4747#define SO_CPU (1 << SL_CPU)
4748#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4749#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4750
1663f26d
TH
4751#ifdef CONFIG_MEMCG
4752static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4753
4754static int __init setup_slub_memcg_sysfs(char *str)
4755{
4756 int v;
4757
4758 if (get_option(&str, &v) > 0)
4759 memcg_sysfs_enabled = v;
4760
4761 return 1;
4762}
4763
4764__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4765#endif
4766
62e5c4b4
CG
4767static ssize_t show_slab_objects(struct kmem_cache *s,
4768 char *buf, unsigned long flags)
81819f0f
CL
4769{
4770 unsigned long total = 0;
81819f0f
CL
4771 int node;
4772 int x;
4773 unsigned long *nodes;
81819f0f 4774
e35e1a97 4775 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4776 if (!nodes)
4777 return -ENOMEM;
81819f0f 4778
205ab99d
CL
4779 if (flags & SO_CPU) {
4780 int cpu;
81819f0f 4781
205ab99d 4782 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4783 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4784 cpu);
ec3ab083 4785 int node;
49e22585 4786 struct page *page;
dfb4f096 4787
4db0c3c2 4788 page = READ_ONCE(c->page);
ec3ab083
CL
4789 if (!page)
4790 continue;
205ab99d 4791
ec3ab083
CL
4792 node = page_to_nid(page);
4793 if (flags & SO_TOTAL)
4794 x = page->objects;
4795 else if (flags & SO_OBJECTS)
4796 x = page->inuse;
4797 else
4798 x = 1;
49e22585 4799
ec3ab083
CL
4800 total += x;
4801 nodes[node] += x;
4802
a93cf07b 4803 page = slub_percpu_partial_read_once(c);
49e22585 4804 if (page) {
8afb1474
LZ
4805 node = page_to_nid(page);
4806 if (flags & SO_TOTAL)
4807 WARN_ON_ONCE(1);
4808 else if (flags & SO_OBJECTS)
4809 WARN_ON_ONCE(1);
4810 else
4811 x = page->pages;
bc6697d8
ED
4812 total += x;
4813 nodes[node] += x;
49e22585 4814 }
81819f0f
CL
4815 }
4816 }
4817
bfc8c901 4818 get_online_mems();
ab4d5ed5 4819#ifdef CONFIG_SLUB_DEBUG
205ab99d 4820 if (flags & SO_ALL) {
fa45dc25
CL
4821 struct kmem_cache_node *n;
4822
4823 for_each_kmem_cache_node(s, node, n) {
205ab99d 4824
d0e0ac97
CG
4825 if (flags & SO_TOTAL)
4826 x = atomic_long_read(&n->total_objects);
4827 else if (flags & SO_OBJECTS)
4828 x = atomic_long_read(&n->total_objects) -
4829 count_partial(n, count_free);
81819f0f 4830 else
205ab99d 4831 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4832 total += x;
4833 nodes[node] += x;
4834 }
4835
ab4d5ed5
CL
4836 } else
4837#endif
4838 if (flags & SO_PARTIAL) {
fa45dc25 4839 struct kmem_cache_node *n;
81819f0f 4840
fa45dc25 4841 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4842 if (flags & SO_TOTAL)
4843 x = count_partial(n, count_total);
4844 else if (flags & SO_OBJECTS)
4845 x = count_partial(n, count_inuse);
81819f0f 4846 else
205ab99d 4847 x = n->nr_partial;
81819f0f
CL
4848 total += x;
4849 nodes[node] += x;
4850 }
4851 }
81819f0f
CL
4852 x = sprintf(buf, "%lu", total);
4853#ifdef CONFIG_NUMA
fa45dc25 4854 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4855 if (nodes[node])
4856 x += sprintf(buf + x, " N%d=%lu",
4857 node, nodes[node]);
4858#endif
bfc8c901 4859 put_online_mems();
81819f0f
CL
4860 kfree(nodes);
4861 return x + sprintf(buf + x, "\n");
4862}
4863
ab4d5ed5 4864#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4865static int any_slab_objects(struct kmem_cache *s)
4866{
4867 int node;
fa45dc25 4868 struct kmem_cache_node *n;
81819f0f 4869
fa45dc25 4870 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4871 if (atomic_long_read(&n->total_objects))
81819f0f 4872 return 1;
fa45dc25 4873
81819f0f
CL
4874 return 0;
4875}
ab4d5ed5 4876#endif
81819f0f
CL
4877
4878#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4879#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4880
4881struct slab_attribute {
4882 struct attribute attr;
4883 ssize_t (*show)(struct kmem_cache *s, char *buf);
4884 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4885};
4886
4887#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4888 static struct slab_attribute _name##_attr = \
4889 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4890
4891#define SLAB_ATTR(_name) \
4892 static struct slab_attribute _name##_attr = \
ab067e99 4893 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4894
81819f0f
CL
4895static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4896{
4897 return sprintf(buf, "%d\n", s->size);
4898}
4899SLAB_ATTR_RO(slab_size);
4900
4901static ssize_t align_show(struct kmem_cache *s, char *buf)
4902{
4903 return sprintf(buf, "%d\n", s->align);
4904}
4905SLAB_ATTR_RO(align);
4906
4907static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4908{
3b0efdfa 4909 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4910}
4911SLAB_ATTR_RO(object_size);
4912
4913static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4914{
834f3d11 4915 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4916}
4917SLAB_ATTR_RO(objs_per_slab);
4918
06b285dc
CL
4919static ssize_t order_store(struct kmem_cache *s,
4920 const char *buf, size_t length)
4921{
0121c619
CL
4922 unsigned long order;
4923 int err;
4924
3dbb95f7 4925 err = kstrtoul(buf, 10, &order);
0121c619
CL
4926 if (err)
4927 return err;
06b285dc
CL
4928
4929 if (order > slub_max_order || order < slub_min_order)
4930 return -EINVAL;
4931
4932 calculate_sizes(s, order);
4933 return length;
4934}
4935
81819f0f
CL
4936static ssize_t order_show(struct kmem_cache *s, char *buf)
4937{
834f3d11 4938 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4939}
06b285dc 4940SLAB_ATTR(order);
81819f0f 4941
73d342b1
DR
4942static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4943{
4944 return sprintf(buf, "%lu\n", s->min_partial);
4945}
4946
4947static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4948 size_t length)
4949{
4950 unsigned long min;
4951 int err;
4952
3dbb95f7 4953 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4954 if (err)
4955 return err;
4956
c0bdb232 4957 set_min_partial(s, min);
73d342b1
DR
4958 return length;
4959}
4960SLAB_ATTR(min_partial);
4961
49e22585
CL
4962static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4963{
e6d0e1dc 4964 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4965}
4966
4967static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4968 size_t length)
4969{
4970 unsigned long objects;
4971 int err;
4972
3dbb95f7 4973 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4974 if (err)
4975 return err;
345c905d 4976 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4977 return -EINVAL;
49e22585 4978
e6d0e1dc 4979 slub_set_cpu_partial(s, objects);
49e22585
CL
4980 flush_all(s);
4981 return length;
4982}
4983SLAB_ATTR(cpu_partial);
4984
81819f0f
CL
4985static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4986{
62c70bce
JP
4987 if (!s->ctor)
4988 return 0;
4989 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4990}
4991SLAB_ATTR_RO(ctor);
4992
81819f0f
CL
4993static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4994{
4307c14f 4995 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4996}
4997SLAB_ATTR_RO(aliases);
4998
81819f0f
CL
4999static ssize_t partial_show(struct kmem_cache *s, char *buf)
5000{
d9acf4b7 5001 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5002}
5003SLAB_ATTR_RO(partial);
5004
5005static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5006{
d9acf4b7 5007 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5008}
5009SLAB_ATTR_RO(cpu_slabs);
5010
5011static ssize_t objects_show(struct kmem_cache *s, char *buf)
5012{
205ab99d 5013 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5014}
5015SLAB_ATTR_RO(objects);
5016
205ab99d
CL
5017static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5018{
5019 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5020}
5021SLAB_ATTR_RO(objects_partial);
5022
49e22585
CL
5023static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5024{
5025 int objects = 0;
5026 int pages = 0;
5027 int cpu;
5028 int len;
5029
5030 for_each_online_cpu(cpu) {
a93cf07b
WY
5031 struct page *page;
5032
5033 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5034
5035 if (page) {
5036 pages += page->pages;
5037 objects += page->pobjects;
5038 }
5039 }
5040
5041 len = sprintf(buf, "%d(%d)", objects, pages);
5042
5043#ifdef CONFIG_SMP
5044 for_each_online_cpu(cpu) {
a93cf07b
WY
5045 struct page *page;
5046
5047 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5048
5049 if (page && len < PAGE_SIZE - 20)
5050 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5051 page->pobjects, page->pages);
5052 }
5053#endif
5054 return len + sprintf(buf + len, "\n");
5055}
5056SLAB_ATTR_RO(slabs_cpu_partial);
5057
a5a84755
CL
5058static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5059{
5060 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5061}
5062
5063static ssize_t reclaim_account_store(struct kmem_cache *s,
5064 const char *buf, size_t length)
5065{
5066 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5067 if (buf[0] == '1')
5068 s->flags |= SLAB_RECLAIM_ACCOUNT;
5069 return length;
5070}
5071SLAB_ATTR(reclaim_account);
5072
5073static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5074{
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5076}
5077SLAB_ATTR_RO(hwcache_align);
5078
5079#ifdef CONFIG_ZONE_DMA
5080static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5081{
5082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5083}
5084SLAB_ATTR_RO(cache_dma);
5085#endif
5086
5087static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5088{
5f0d5a3a 5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5090}
5091SLAB_ATTR_RO(destroy_by_rcu);
5092
ab9a0f19
LJ
5093static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5094{
5095 return sprintf(buf, "%d\n", s->reserved);
5096}
5097SLAB_ATTR_RO(reserved);
5098
ab4d5ed5 5099#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5100static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5101{
5102 return show_slab_objects(s, buf, SO_ALL);
5103}
5104SLAB_ATTR_RO(slabs);
5105
205ab99d
CL
5106static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5107{
5108 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5109}
5110SLAB_ATTR_RO(total_objects);
5111
81819f0f
CL
5112static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5113{
becfda68 5114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5115}
5116
5117static ssize_t sanity_checks_store(struct kmem_cache *s,
5118 const char *buf, size_t length)
5119{
becfda68 5120 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5121 if (buf[0] == '1') {
5122 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5123 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5124 }
81819f0f
CL
5125 return length;
5126}
5127SLAB_ATTR(sanity_checks);
5128
5129static ssize_t trace_show(struct kmem_cache *s, char *buf)
5130{
5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5132}
5133
5134static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5135 size_t length)
5136{
c9e16131
CL
5137 /*
5138 * Tracing a merged cache is going to give confusing results
5139 * as well as cause other issues like converting a mergeable
5140 * cache into an umergeable one.
5141 */
5142 if (s->refcount > 1)
5143 return -EINVAL;
5144
81819f0f 5145 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5146 if (buf[0] == '1') {
5147 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5148 s->flags |= SLAB_TRACE;
b789ef51 5149 }
81819f0f
CL
5150 return length;
5151}
5152SLAB_ATTR(trace);
5153
81819f0f
CL
5154static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5155{
5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5157}
5158
5159static ssize_t red_zone_store(struct kmem_cache *s,
5160 const char *buf, size_t length)
5161{
5162 if (any_slab_objects(s))
5163 return -EBUSY;
5164
5165 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5166 if (buf[0] == '1') {
81819f0f 5167 s->flags |= SLAB_RED_ZONE;
b789ef51 5168 }
06b285dc 5169 calculate_sizes(s, -1);
81819f0f
CL
5170 return length;
5171}
5172SLAB_ATTR(red_zone);
5173
5174static ssize_t poison_show(struct kmem_cache *s, char *buf)
5175{
5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5177}
5178
5179static ssize_t poison_store(struct kmem_cache *s,
5180 const char *buf, size_t length)
5181{
5182 if (any_slab_objects(s))
5183 return -EBUSY;
5184
5185 s->flags &= ~SLAB_POISON;
b789ef51 5186 if (buf[0] == '1') {
81819f0f 5187 s->flags |= SLAB_POISON;
b789ef51 5188 }
06b285dc 5189 calculate_sizes(s, -1);
81819f0f
CL
5190 return length;
5191}
5192SLAB_ATTR(poison);
5193
5194static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5195{
5196 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5197}
5198
5199static ssize_t store_user_store(struct kmem_cache *s,
5200 const char *buf, size_t length)
5201{
5202 if (any_slab_objects(s))
5203 return -EBUSY;
5204
5205 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5206 if (buf[0] == '1') {
5207 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5208 s->flags |= SLAB_STORE_USER;
b789ef51 5209 }
06b285dc 5210 calculate_sizes(s, -1);
81819f0f
CL
5211 return length;
5212}
5213SLAB_ATTR(store_user);
5214
53e15af0
CL
5215static ssize_t validate_show(struct kmem_cache *s, char *buf)
5216{
5217 return 0;
5218}
5219
5220static ssize_t validate_store(struct kmem_cache *s,
5221 const char *buf, size_t length)
5222{
434e245d
CL
5223 int ret = -EINVAL;
5224
5225 if (buf[0] == '1') {
5226 ret = validate_slab_cache(s);
5227 if (ret >= 0)
5228 ret = length;
5229 }
5230 return ret;
53e15af0
CL
5231}
5232SLAB_ATTR(validate);
a5a84755
CL
5233
5234static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5235{
5236 if (!(s->flags & SLAB_STORE_USER))
5237 return -ENOSYS;
5238 return list_locations(s, buf, TRACK_ALLOC);
5239}
5240SLAB_ATTR_RO(alloc_calls);
5241
5242static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5243{
5244 if (!(s->flags & SLAB_STORE_USER))
5245 return -ENOSYS;
5246 return list_locations(s, buf, TRACK_FREE);
5247}
5248SLAB_ATTR_RO(free_calls);
5249#endif /* CONFIG_SLUB_DEBUG */
5250
5251#ifdef CONFIG_FAILSLAB
5252static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5253{
5254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5255}
5256
5257static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5258 size_t length)
5259{
c9e16131
CL
5260 if (s->refcount > 1)
5261 return -EINVAL;
5262
a5a84755
CL
5263 s->flags &= ~SLAB_FAILSLAB;
5264 if (buf[0] == '1')
5265 s->flags |= SLAB_FAILSLAB;
5266 return length;
5267}
5268SLAB_ATTR(failslab);
ab4d5ed5 5269#endif
53e15af0 5270
2086d26a
CL
5271static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5272{
5273 return 0;
5274}
5275
5276static ssize_t shrink_store(struct kmem_cache *s,
5277 const char *buf, size_t length)
5278{
832f37f5
VD
5279 if (buf[0] == '1')
5280 kmem_cache_shrink(s);
5281 else
2086d26a
CL
5282 return -EINVAL;
5283 return length;
5284}
5285SLAB_ATTR(shrink);
5286
81819f0f 5287#ifdef CONFIG_NUMA
9824601e 5288static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5289{
9824601e 5290 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5291}
5292
9824601e 5293static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5294 const char *buf, size_t length)
5295{
0121c619
CL
5296 unsigned long ratio;
5297 int err;
5298
3dbb95f7 5299 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5300 if (err)
5301 return err;
5302
e2cb96b7 5303 if (ratio <= 100)
0121c619 5304 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5305
81819f0f
CL
5306 return length;
5307}
9824601e 5308SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5309#endif
5310
8ff12cfc 5311#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5312static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5313{
5314 unsigned long sum = 0;
5315 int cpu;
5316 int len;
5317 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5318
5319 if (!data)
5320 return -ENOMEM;
5321
5322 for_each_online_cpu(cpu) {
9dfc6e68 5323 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5324
5325 data[cpu] = x;
5326 sum += x;
5327 }
5328
5329 len = sprintf(buf, "%lu", sum);
5330
50ef37b9 5331#ifdef CONFIG_SMP
8ff12cfc
CL
5332 for_each_online_cpu(cpu) {
5333 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5334 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5335 }
50ef37b9 5336#endif
8ff12cfc
CL
5337 kfree(data);
5338 return len + sprintf(buf + len, "\n");
5339}
5340
78eb00cc
DR
5341static void clear_stat(struct kmem_cache *s, enum stat_item si)
5342{
5343 int cpu;
5344
5345 for_each_online_cpu(cpu)
9dfc6e68 5346 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5347}
5348
8ff12cfc
CL
5349#define STAT_ATTR(si, text) \
5350static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5351{ \
5352 return show_stat(s, buf, si); \
5353} \
78eb00cc
DR
5354static ssize_t text##_store(struct kmem_cache *s, \
5355 const char *buf, size_t length) \
5356{ \
5357 if (buf[0] != '0') \
5358 return -EINVAL; \
5359 clear_stat(s, si); \
5360 return length; \
5361} \
5362SLAB_ATTR(text); \
8ff12cfc
CL
5363
5364STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5365STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5366STAT_ATTR(FREE_FASTPATH, free_fastpath);
5367STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5368STAT_ATTR(FREE_FROZEN, free_frozen);
5369STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5370STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5371STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5372STAT_ATTR(ALLOC_SLAB, alloc_slab);
5373STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5374STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5375STAT_ATTR(FREE_SLAB, free_slab);
5376STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5377STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5378STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5379STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5380STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5381STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5382STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5383STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5384STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5385STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5386STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5387STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5388STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5389STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5390#endif
5391
06428780 5392static struct attribute *slab_attrs[] = {
81819f0f
CL
5393 &slab_size_attr.attr,
5394 &object_size_attr.attr,
5395 &objs_per_slab_attr.attr,
5396 &order_attr.attr,
73d342b1 5397 &min_partial_attr.attr,
49e22585 5398 &cpu_partial_attr.attr,
81819f0f 5399 &objects_attr.attr,
205ab99d 5400 &objects_partial_attr.attr,
81819f0f
CL
5401 &partial_attr.attr,
5402 &cpu_slabs_attr.attr,
5403 &ctor_attr.attr,
81819f0f
CL
5404 &aliases_attr.attr,
5405 &align_attr.attr,
81819f0f
CL
5406 &hwcache_align_attr.attr,
5407 &reclaim_account_attr.attr,
5408 &destroy_by_rcu_attr.attr,
a5a84755 5409 &shrink_attr.attr,
ab9a0f19 5410 &reserved_attr.attr,
49e22585 5411 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5412#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5413 &total_objects_attr.attr,
5414 &slabs_attr.attr,
5415 &sanity_checks_attr.attr,
5416 &trace_attr.attr,
81819f0f
CL
5417 &red_zone_attr.attr,
5418 &poison_attr.attr,
5419 &store_user_attr.attr,
53e15af0 5420 &validate_attr.attr,
88a420e4
CL
5421 &alloc_calls_attr.attr,
5422 &free_calls_attr.attr,
ab4d5ed5 5423#endif
81819f0f
CL
5424#ifdef CONFIG_ZONE_DMA
5425 &cache_dma_attr.attr,
5426#endif
5427#ifdef CONFIG_NUMA
9824601e 5428 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5429#endif
5430#ifdef CONFIG_SLUB_STATS
5431 &alloc_fastpath_attr.attr,
5432 &alloc_slowpath_attr.attr,
5433 &free_fastpath_attr.attr,
5434 &free_slowpath_attr.attr,
5435 &free_frozen_attr.attr,
5436 &free_add_partial_attr.attr,
5437 &free_remove_partial_attr.attr,
5438 &alloc_from_partial_attr.attr,
5439 &alloc_slab_attr.attr,
5440 &alloc_refill_attr.attr,
e36a2652 5441 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5442 &free_slab_attr.attr,
5443 &cpuslab_flush_attr.attr,
5444 &deactivate_full_attr.attr,
5445 &deactivate_empty_attr.attr,
5446 &deactivate_to_head_attr.attr,
5447 &deactivate_to_tail_attr.attr,
5448 &deactivate_remote_frees_attr.attr,
03e404af 5449 &deactivate_bypass_attr.attr,
65c3376a 5450 &order_fallback_attr.attr,
b789ef51
CL
5451 &cmpxchg_double_fail_attr.attr,
5452 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5453 &cpu_partial_alloc_attr.attr,
5454 &cpu_partial_free_attr.attr,
8028dcea
AS
5455 &cpu_partial_node_attr.attr,
5456 &cpu_partial_drain_attr.attr,
81819f0f 5457#endif
4c13dd3b
DM
5458#ifdef CONFIG_FAILSLAB
5459 &failslab_attr.attr,
5460#endif
5461
81819f0f
CL
5462 NULL
5463};
5464
1fdaaa23 5465static const struct attribute_group slab_attr_group = {
81819f0f
CL
5466 .attrs = slab_attrs,
5467};
5468
5469static ssize_t slab_attr_show(struct kobject *kobj,
5470 struct attribute *attr,
5471 char *buf)
5472{
5473 struct slab_attribute *attribute;
5474 struct kmem_cache *s;
5475 int err;
5476
5477 attribute = to_slab_attr(attr);
5478 s = to_slab(kobj);
5479
5480 if (!attribute->show)
5481 return -EIO;
5482
5483 err = attribute->show(s, buf);
5484
5485 return err;
5486}
5487
5488static ssize_t slab_attr_store(struct kobject *kobj,
5489 struct attribute *attr,
5490 const char *buf, size_t len)
5491{
5492 struct slab_attribute *attribute;
5493 struct kmem_cache *s;
5494 int err;
5495
5496 attribute = to_slab_attr(attr);
5497 s = to_slab(kobj);
5498
5499 if (!attribute->store)
5500 return -EIO;
5501
5502 err = attribute->store(s, buf, len);
127424c8 5503#ifdef CONFIG_MEMCG
107dab5c 5504 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5505 struct kmem_cache *c;
81819f0f 5506
107dab5c
GC
5507 mutex_lock(&slab_mutex);
5508 if (s->max_attr_size < len)
5509 s->max_attr_size = len;
5510
ebe945c2
GC
5511 /*
5512 * This is a best effort propagation, so this function's return
5513 * value will be determined by the parent cache only. This is
5514 * basically because not all attributes will have a well
5515 * defined semantics for rollbacks - most of the actions will
5516 * have permanent effects.
5517 *
5518 * Returning the error value of any of the children that fail
5519 * is not 100 % defined, in the sense that users seeing the
5520 * error code won't be able to know anything about the state of
5521 * the cache.
5522 *
5523 * Only returning the error code for the parent cache at least
5524 * has well defined semantics. The cache being written to
5525 * directly either failed or succeeded, in which case we loop
5526 * through the descendants with best-effort propagation.
5527 */
426589f5
VD
5528 for_each_memcg_cache(c, s)
5529 attribute->store(c, buf, len);
107dab5c
GC
5530 mutex_unlock(&slab_mutex);
5531 }
5532#endif
81819f0f
CL
5533 return err;
5534}
5535
107dab5c
GC
5536static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5537{
127424c8 5538#ifdef CONFIG_MEMCG
107dab5c
GC
5539 int i;
5540 char *buffer = NULL;
93030d83 5541 struct kmem_cache *root_cache;
107dab5c 5542
93030d83 5543 if (is_root_cache(s))
107dab5c
GC
5544 return;
5545
f7ce3190 5546 root_cache = s->memcg_params.root_cache;
93030d83 5547
107dab5c
GC
5548 /*
5549 * This mean this cache had no attribute written. Therefore, no point
5550 * in copying default values around
5551 */
93030d83 5552 if (!root_cache->max_attr_size)
107dab5c
GC
5553 return;
5554
5555 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5556 char mbuf[64];
5557 char *buf;
5558 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5559 ssize_t len;
107dab5c
GC
5560
5561 if (!attr || !attr->store || !attr->show)
5562 continue;
5563
5564 /*
5565 * It is really bad that we have to allocate here, so we will
5566 * do it only as a fallback. If we actually allocate, though,
5567 * we can just use the allocated buffer until the end.
5568 *
5569 * Most of the slub attributes will tend to be very small in
5570 * size, but sysfs allows buffers up to a page, so they can
5571 * theoretically happen.
5572 */
5573 if (buffer)
5574 buf = buffer;
93030d83 5575 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5576 buf = mbuf;
5577 else {
5578 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5579 if (WARN_ON(!buffer))
5580 continue;
5581 buf = buffer;
5582 }
5583
478fe303
TG
5584 len = attr->show(root_cache, buf);
5585 if (len > 0)
5586 attr->store(s, buf, len);
107dab5c
GC
5587 }
5588
5589 if (buffer)
5590 free_page((unsigned long)buffer);
5591#endif
5592}
5593
41a21285
CL
5594static void kmem_cache_release(struct kobject *k)
5595{
5596 slab_kmem_cache_release(to_slab(k));
5597}
5598
52cf25d0 5599static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5600 .show = slab_attr_show,
5601 .store = slab_attr_store,
5602};
5603
5604static struct kobj_type slab_ktype = {
5605 .sysfs_ops = &slab_sysfs_ops,
41a21285 5606 .release = kmem_cache_release,
81819f0f
CL
5607};
5608
5609static int uevent_filter(struct kset *kset, struct kobject *kobj)
5610{
5611 struct kobj_type *ktype = get_ktype(kobj);
5612
5613 if (ktype == &slab_ktype)
5614 return 1;
5615 return 0;
5616}
5617
9cd43611 5618static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5619 .filter = uevent_filter,
5620};
5621
27c3a314 5622static struct kset *slab_kset;
81819f0f 5623
9a41707b
VD
5624static inline struct kset *cache_kset(struct kmem_cache *s)
5625{
127424c8 5626#ifdef CONFIG_MEMCG
9a41707b 5627 if (!is_root_cache(s))
f7ce3190 5628 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5629#endif
5630 return slab_kset;
5631}
5632
81819f0f
CL
5633#define ID_STR_LENGTH 64
5634
5635/* Create a unique string id for a slab cache:
6446faa2
CL
5636 *
5637 * Format :[flags-]size
81819f0f
CL
5638 */
5639static char *create_unique_id(struct kmem_cache *s)
5640{
5641 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5642 char *p = name;
5643
5644 BUG_ON(!name);
5645
5646 *p++ = ':';
5647 /*
5648 * First flags affecting slabcache operations. We will only
5649 * get here for aliasable slabs so we do not need to support
5650 * too many flags. The flags here must cover all flags that
5651 * are matched during merging to guarantee that the id is
5652 * unique.
5653 */
5654 if (s->flags & SLAB_CACHE_DMA)
5655 *p++ = 'd';
5656 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5657 *p++ = 'a';
becfda68 5658 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5659 *p++ = 'F';
5a896d9e
VN
5660 if (!(s->flags & SLAB_NOTRACK))
5661 *p++ = 't';
230e9fc2
VD
5662 if (s->flags & SLAB_ACCOUNT)
5663 *p++ = 'A';
81819f0f
CL
5664 if (p != name + 1)
5665 *p++ = '-';
5666 p += sprintf(p, "%07d", s->size);
2633d7a0 5667
81819f0f
CL
5668 BUG_ON(p > name + ID_STR_LENGTH - 1);
5669 return name;
5670}
5671
3b7b3140
TH
5672static void sysfs_slab_remove_workfn(struct work_struct *work)
5673{
5674 struct kmem_cache *s =
5675 container_of(work, struct kmem_cache, kobj_remove_work);
5676
5677 if (!s->kobj.state_in_sysfs)
5678 /*
5679 * For a memcg cache, this may be called during
5680 * deactivation and again on shutdown. Remove only once.
5681 * A cache is never shut down before deactivation is
5682 * complete, so no need to worry about synchronization.
5683 */
f6ba4880 5684 goto out;
3b7b3140
TH
5685
5686#ifdef CONFIG_MEMCG
5687 kset_unregister(s->memcg_kset);
5688#endif
5689 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5690 kobject_del(&s->kobj);
f6ba4880 5691out:
3b7b3140
TH
5692 kobject_put(&s->kobj);
5693}
5694
81819f0f
CL
5695static int sysfs_slab_add(struct kmem_cache *s)
5696{
5697 int err;
5698 const char *name;
1663f26d 5699 struct kset *kset = cache_kset(s);
45530c44 5700 int unmergeable = slab_unmergeable(s);
81819f0f 5701
3b7b3140
TH
5702 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5703
1663f26d
TH
5704 if (!kset) {
5705 kobject_init(&s->kobj, &slab_ktype);
5706 return 0;
5707 }
5708
81819f0f
CL
5709 if (unmergeable) {
5710 /*
5711 * Slabcache can never be merged so we can use the name proper.
5712 * This is typically the case for debug situations. In that
5713 * case we can catch duplicate names easily.
5714 */
27c3a314 5715 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5716 name = s->name;
5717 } else {
5718 /*
5719 * Create a unique name for the slab as a target
5720 * for the symlinks.
5721 */
5722 name = create_unique_id(s);
5723 }
5724
1663f26d 5725 s->kobj.kset = kset;
26e4f205 5726 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5727 if (err)
80da026a 5728 goto out;
81819f0f
CL
5729
5730 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5731 if (err)
5732 goto out_del_kobj;
9a41707b 5733
127424c8 5734#ifdef CONFIG_MEMCG
1663f26d 5735 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5736 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5737 if (!s->memcg_kset) {
54b6a731
DJ
5738 err = -ENOMEM;
5739 goto out_del_kobj;
9a41707b
VD
5740 }
5741 }
5742#endif
5743
81819f0f
CL
5744 kobject_uevent(&s->kobj, KOBJ_ADD);
5745 if (!unmergeable) {
5746 /* Setup first alias */
5747 sysfs_slab_alias(s, s->name);
81819f0f 5748 }
54b6a731
DJ
5749out:
5750 if (!unmergeable)
5751 kfree(name);
5752 return err;
5753out_del_kobj:
5754 kobject_del(&s->kobj);
54b6a731 5755 goto out;
81819f0f
CL
5756}
5757
bf5eb3de 5758static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5759{
97d06609 5760 if (slab_state < FULL)
2bce6485
CL
5761 /*
5762 * Sysfs has not been setup yet so no need to remove the
5763 * cache from sysfs.
5764 */
5765 return;
5766
3b7b3140
TH
5767 kobject_get(&s->kobj);
5768 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5769}
5770
5771void sysfs_slab_release(struct kmem_cache *s)
5772{
5773 if (slab_state >= FULL)
5774 kobject_put(&s->kobj);
81819f0f
CL
5775}
5776
5777/*
5778 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5779 * available lest we lose that information.
81819f0f
CL
5780 */
5781struct saved_alias {
5782 struct kmem_cache *s;
5783 const char *name;
5784 struct saved_alias *next;
5785};
5786
5af328a5 5787static struct saved_alias *alias_list;
81819f0f
CL
5788
5789static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5790{
5791 struct saved_alias *al;
5792
97d06609 5793 if (slab_state == FULL) {
81819f0f
CL
5794 /*
5795 * If we have a leftover link then remove it.
5796 */
27c3a314
GKH
5797 sysfs_remove_link(&slab_kset->kobj, name);
5798 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5799 }
5800
5801 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5802 if (!al)
5803 return -ENOMEM;
5804
5805 al->s = s;
5806 al->name = name;
5807 al->next = alias_list;
5808 alias_list = al;
5809 return 0;
5810}
5811
5812static int __init slab_sysfs_init(void)
5813{
5b95a4ac 5814 struct kmem_cache *s;
81819f0f
CL
5815 int err;
5816
18004c5d 5817 mutex_lock(&slab_mutex);
2bce6485 5818
0ff21e46 5819 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5820 if (!slab_kset) {
18004c5d 5821 mutex_unlock(&slab_mutex);
f9f58285 5822 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5823 return -ENOSYS;
5824 }
5825
97d06609 5826 slab_state = FULL;
26a7bd03 5827
5b95a4ac 5828 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5829 err = sysfs_slab_add(s);
5d540fb7 5830 if (err)
f9f58285
FF
5831 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5832 s->name);
26a7bd03 5833 }
81819f0f
CL
5834
5835 while (alias_list) {
5836 struct saved_alias *al = alias_list;
5837
5838 alias_list = alias_list->next;
5839 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5840 if (err)
f9f58285
FF
5841 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5842 al->name);
81819f0f
CL
5843 kfree(al);
5844 }
5845
18004c5d 5846 mutex_unlock(&slab_mutex);
81819f0f
CL
5847 resiliency_test();
5848 return 0;
5849}
5850
5851__initcall(slab_sysfs_init);
ab4d5ed5 5852#endif /* CONFIG_SYSFS */
57ed3eda
PE
5853
5854/*
5855 * The /proc/slabinfo ABI
5856 */
5b365771 5857#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5858void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5859{
57ed3eda 5860 unsigned long nr_slabs = 0;
205ab99d
CL
5861 unsigned long nr_objs = 0;
5862 unsigned long nr_free = 0;
57ed3eda 5863 int node;
fa45dc25 5864 struct kmem_cache_node *n;
57ed3eda 5865
fa45dc25 5866 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5867 nr_slabs += node_nr_slabs(n);
5868 nr_objs += node_nr_objs(n);
205ab99d 5869 nr_free += count_partial(n, count_free);
57ed3eda
PE
5870 }
5871
0d7561c6
GC
5872 sinfo->active_objs = nr_objs - nr_free;
5873 sinfo->num_objs = nr_objs;
5874 sinfo->active_slabs = nr_slabs;
5875 sinfo->num_slabs = nr_slabs;
5876 sinfo->objects_per_slab = oo_objects(s->oo);
5877 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5878}
5879
0d7561c6 5880void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5881{
7b3c3a50
AD
5882}
5883
b7454ad3
GC
5884ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5885 size_t count, loff_t *ppos)
7b3c3a50 5886{
b7454ad3 5887 return -EIO;
7b3c3a50 5888}
5b365771 5889#endif /* CONFIG_SLUB_DEBUG */