]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
sl[au]b: allocate objects from memcg cache
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
2633d7a0 34#include <linux/memcontrol.h>
81819f0f 35
4a92379b
RK
36#include <trace/events/kmem.h>
37
072bb0aa
MG
38#include "internal.h"
39
81819f0f
CL
40/*
41 * Lock order:
18004c5d 42 * 1. slab_mutex (Global Mutex)
881db7fb
CL
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 45 *
18004c5d 46 * slab_mutex
881db7fb 47 *
18004c5d 48 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
81819f0f
CL
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
672bba3a
CL
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 85 * freed then the slab will show up again on the partial lists.
672bba3a
CL
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
81819f0f
CL
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
4b6f0750
CL
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
dfb4f096 107 * freelist that allows lockless access to
894b8788
CL
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
81819f0f
CL
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
894b8788 113 * the fast path and disables lockless freelists.
81819f0f
CL
114 */
115
af537b0a
CL
116static inline int kmem_cache_debug(struct kmem_cache *s)
117{
5577bd8a 118#ifdef CONFIG_SLUB_DEBUG
af537b0a 119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 120#else
af537b0a 121 return 0;
5577bd8a 122#endif
af537b0a 123}
5577bd8a 124
81819f0f
CL
125/*
126 * Issues still to be resolved:
127 *
81819f0f
CL
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
81819f0f
CL
130 * - Variable sizing of the per node arrays
131 */
132
133/* Enable to test recovery from slab corruption on boot */
134#undef SLUB_RESILIENCY_TEST
135
b789ef51
CL
136/* Enable to log cmpxchg failures */
137#undef SLUB_DEBUG_CMPXCHG
138
2086d26a
CL
139/*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
76be8950 143#define MIN_PARTIAL 5
e95eed57 144
2086d26a
CL
145/*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150#define MAX_PARTIAL 10
151
81819f0f
CL
152#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
672bba3a 154
fa5ec8a1 155/*
3de47213
DR
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
fa5ec8a1 159 */
3de47213 160#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 161
81819f0f
CL
162/*
163 * Set of flags that will prevent slab merging
164 */
165#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
81819f0f
CL
168
169#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 170 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
203static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 204
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
db265eca 209static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 210
81819f0f
CL
211#endif
212
4fdccdfb 213static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
214{
215#ifdef CONFIG_SLUB_STATS
84e554e6 216 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
217#endif
218}
219
81819f0f
CL
220/********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
81819f0f
CL
224static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
225{
81819f0f 226 return s->node[node];
81819f0f
CL
227}
228
6446faa2 229/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
230static inline int check_valid_pointer(struct kmem_cache *s,
231 struct page *page, const void *object)
232{
233 void *base;
234
a973e9dd 235 if (!object)
02cbc874
CL
236 return 1;
237
a973e9dd 238 base = page_address(page);
39b26464 239 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
240 (object - base) % s->size) {
241 return 0;
242 }
243
244 return 1;
245}
246
7656c72b
CL
247static inline void *get_freepointer(struct kmem_cache *s, void *object)
248{
249 return *(void **)(object + s->offset);
250}
251
0ad9500e
ED
252static void prefetch_freepointer(const struct kmem_cache *s, void *object)
253{
254 prefetch(object + s->offset);
255}
256
1393d9a1
CL
257static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
258{
259 void *p;
260
261#ifdef CONFIG_DEBUG_PAGEALLOC
262 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
263#else
264 p = get_freepointer(s, object);
265#endif
266 return p;
267}
268
7656c72b
CL
269static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270{
271 *(void **)(object + s->offset) = fp;
272}
273
274/* Loop over all objects in a slab */
224a88be
CL
275#define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
277 __p += (__s)->size)
278
7656c72b
CL
279/* Determine object index from a given position */
280static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281{
282 return (p - addr) / s->size;
283}
284
d71f606f
MK
285static inline size_t slab_ksize(const struct kmem_cache *s)
286{
287#ifdef CONFIG_SLUB_DEBUG
288 /*
289 * Debugging requires use of the padding between object
290 * and whatever may come after it.
291 */
292 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 293 return s->object_size;
d71f606f
MK
294
295#endif
296 /*
297 * If we have the need to store the freelist pointer
298 * back there or track user information then we can
299 * only use the space before that information.
300 */
301 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
302 return s->inuse;
303 /*
304 * Else we can use all the padding etc for the allocation
305 */
306 return s->size;
307}
308
ab9a0f19
LJ
309static inline int order_objects(int order, unsigned long size, int reserved)
310{
311 return ((PAGE_SIZE << order) - reserved) / size;
312}
313
834f3d11 314static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 315 unsigned long size, int reserved)
834f3d11
CL
316{
317 struct kmem_cache_order_objects x = {
ab9a0f19 318 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
319 };
320
321 return x;
322}
323
324static inline int oo_order(struct kmem_cache_order_objects x)
325{
210b5c06 326 return x.x >> OO_SHIFT;
834f3d11
CL
327}
328
329static inline int oo_objects(struct kmem_cache_order_objects x)
330{
210b5c06 331 return x.x & OO_MASK;
834f3d11
CL
332}
333
881db7fb
CL
334/*
335 * Per slab locking using the pagelock
336 */
337static __always_inline void slab_lock(struct page *page)
338{
339 bit_spin_lock(PG_locked, &page->flags);
340}
341
342static __always_inline void slab_unlock(struct page *page)
343{
344 __bit_spin_unlock(PG_locked, &page->flags);
345}
346
1d07171c
CL
347/* Interrupts must be disabled (for the fallback code to work right) */
348static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
349 void *freelist_old, unsigned long counters_old,
350 void *freelist_new, unsigned long counters_new,
351 const char *n)
352{
353 VM_BUG_ON(!irqs_disabled());
2565409f
HC
354#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
355 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 356 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 357 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
358 freelist_old, counters_old,
359 freelist_new, counters_new))
360 return 1;
361 } else
362#endif
363 {
364 slab_lock(page);
365 if (page->freelist == freelist_old && page->counters == counters_old) {
366 page->freelist = freelist_new;
367 page->counters = counters_new;
368 slab_unlock(page);
369 return 1;
370 }
371 slab_unlock(page);
372 }
373
374 cpu_relax();
375 stat(s, CMPXCHG_DOUBLE_FAIL);
376
377#ifdef SLUB_DEBUG_CMPXCHG
378 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
379#endif
380
381 return 0;
382}
383
b789ef51
CL
384static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
385 void *freelist_old, unsigned long counters_old,
386 void *freelist_new, unsigned long counters_new,
387 const char *n)
388{
2565409f
HC
389#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
390 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 391 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 392 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
393 freelist_old, counters_old,
394 freelist_new, counters_new))
395 return 1;
396 } else
397#endif
398 {
1d07171c
CL
399 unsigned long flags;
400
401 local_irq_save(flags);
881db7fb 402 slab_lock(page);
b789ef51
CL
403 if (page->freelist == freelist_old && page->counters == counters_old) {
404 page->freelist = freelist_new;
405 page->counters = counters_new;
881db7fb 406 slab_unlock(page);
1d07171c 407 local_irq_restore(flags);
b789ef51
CL
408 return 1;
409 }
881db7fb 410 slab_unlock(page);
1d07171c 411 local_irq_restore(flags);
b789ef51
CL
412 }
413
414 cpu_relax();
415 stat(s, CMPXCHG_DOUBLE_FAIL);
416
417#ifdef SLUB_DEBUG_CMPXCHG
418 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
419#endif
420
421 return 0;
422}
423
41ecc55b 424#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
425/*
426 * Determine a map of object in use on a page.
427 *
881db7fb 428 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
429 * not vanish from under us.
430 */
431static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
432{
433 void *p;
434 void *addr = page_address(page);
435
436 for (p = page->freelist; p; p = get_freepointer(s, p))
437 set_bit(slab_index(p, s, addr), map);
438}
439
41ecc55b
CL
440/*
441 * Debug settings:
442 */
f0630fff
CL
443#ifdef CONFIG_SLUB_DEBUG_ON
444static int slub_debug = DEBUG_DEFAULT_FLAGS;
445#else
41ecc55b 446static int slub_debug;
f0630fff 447#endif
41ecc55b
CL
448
449static char *slub_debug_slabs;
fa5ec8a1 450static int disable_higher_order_debug;
41ecc55b 451
81819f0f
CL
452/*
453 * Object debugging
454 */
455static void print_section(char *text, u8 *addr, unsigned int length)
456{
ffc79d28
SAS
457 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
458 length, 1);
81819f0f
CL
459}
460
81819f0f
CL
461static struct track *get_track(struct kmem_cache *s, void *object,
462 enum track_item alloc)
463{
464 struct track *p;
465
466 if (s->offset)
467 p = object + s->offset + sizeof(void *);
468 else
469 p = object + s->inuse;
470
471 return p + alloc;
472}
473
474static void set_track(struct kmem_cache *s, void *object,
ce71e27c 475 enum track_item alloc, unsigned long addr)
81819f0f 476{
1a00df4a 477 struct track *p = get_track(s, object, alloc);
81819f0f 478
81819f0f 479 if (addr) {
d6543e39
BG
480#ifdef CONFIG_STACKTRACE
481 struct stack_trace trace;
482 int i;
483
484 trace.nr_entries = 0;
485 trace.max_entries = TRACK_ADDRS_COUNT;
486 trace.entries = p->addrs;
487 trace.skip = 3;
488 save_stack_trace(&trace);
489
490 /* See rant in lockdep.c */
491 if (trace.nr_entries != 0 &&
492 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
493 trace.nr_entries--;
494
495 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
496 p->addrs[i] = 0;
497#endif
81819f0f
CL
498 p->addr = addr;
499 p->cpu = smp_processor_id();
88e4ccf2 500 p->pid = current->pid;
81819f0f
CL
501 p->when = jiffies;
502 } else
503 memset(p, 0, sizeof(struct track));
504}
505
81819f0f
CL
506static void init_tracking(struct kmem_cache *s, void *object)
507{
24922684
CL
508 if (!(s->flags & SLAB_STORE_USER))
509 return;
510
ce71e27c
EGM
511 set_track(s, object, TRACK_FREE, 0UL);
512 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
513}
514
515static void print_track(const char *s, struct track *t)
516{
517 if (!t->addr)
518 return;
519
7daf705f 520 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 521 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
522#ifdef CONFIG_STACKTRACE
523 {
524 int i;
525 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
526 if (t->addrs[i])
527 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
528 else
529 break;
530 }
531#endif
24922684
CL
532}
533
534static void print_tracking(struct kmem_cache *s, void *object)
535{
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
540 print_track("Freed", get_track(s, object, TRACK_FREE));
541}
542
543static void print_page_info(struct page *page)
544{
39b26464
CL
545 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
546 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
547
548}
549
550static void slab_bug(struct kmem_cache *s, char *fmt, ...)
551{
552 va_list args;
553 char buf[100];
554
555 va_start(args, fmt);
556 vsnprintf(buf, sizeof(buf), fmt, args);
557 va_end(args);
558 printk(KERN_ERR "========================================"
559 "=====================================\n");
265d47e7 560 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
561 printk(KERN_ERR "----------------------------------------"
562 "-------------------------------------\n\n");
645df230
DJ
563
564 add_taint(TAINT_BAD_PAGE);
81819f0f
CL
565}
566
24922684
CL
567static void slab_fix(struct kmem_cache *s, char *fmt, ...)
568{
569 va_list args;
570 char buf[100];
571
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
574 va_end(args);
575 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
576}
577
578static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
579{
580 unsigned int off; /* Offset of last byte */
a973e9dd 581 u8 *addr = page_address(page);
24922684
CL
582
583 print_tracking(s, p);
584
585 print_page_info(page);
586
587 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
588 p, p - addr, get_freepointer(s, p));
589
590 if (p > addr + 16)
ffc79d28 591 print_section("Bytes b4 ", p - 16, 16);
81819f0f 592
3b0efdfa 593 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 594 PAGE_SIZE));
81819f0f 595 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
596 print_section("Redzone ", p + s->object_size,
597 s->inuse - s->object_size);
81819f0f 598
81819f0f
CL
599 if (s->offset)
600 off = s->offset + sizeof(void *);
601 else
602 off = s->inuse;
603
24922684 604 if (s->flags & SLAB_STORE_USER)
81819f0f 605 off += 2 * sizeof(struct track);
81819f0f
CL
606
607 if (off != s->size)
608 /* Beginning of the filler is the free pointer */
ffc79d28 609 print_section("Padding ", p + off, s->size - off);
24922684
CL
610
611 dump_stack();
81819f0f
CL
612}
613
614static void object_err(struct kmem_cache *s, struct page *page,
615 u8 *object, char *reason)
616{
3dc50637 617 slab_bug(s, "%s", reason);
24922684 618 print_trailer(s, page, object);
81819f0f
CL
619}
620
945cf2b6 621static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
622{
623 va_list args;
624 char buf[100];
625
24922684
CL
626 va_start(args, fmt);
627 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 628 va_end(args);
3dc50637 629 slab_bug(s, "%s", buf);
24922684 630 print_page_info(page);
81819f0f
CL
631 dump_stack();
632}
633
f7cb1933 634static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
635{
636 u8 *p = object;
637
638 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
639 memset(p, POISON_FREE, s->object_size - 1);
640 p[s->object_size - 1] = POISON_END;
81819f0f
CL
641 }
642
643 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 644 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
645}
646
24922684
CL
647static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
648 void *from, void *to)
649{
650 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
651 memset(from, data, to - from);
652}
653
654static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
655 u8 *object, char *what,
06428780 656 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
657{
658 u8 *fault;
659 u8 *end;
660
79824820 661 fault = memchr_inv(start, value, bytes);
24922684
CL
662 if (!fault)
663 return 1;
664
665 end = start + bytes;
666 while (end > fault && end[-1] == value)
667 end--;
668
669 slab_bug(s, "%s overwritten", what);
670 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
671 fault, end - 1, fault[0], value);
672 print_trailer(s, page, object);
673
674 restore_bytes(s, what, value, fault, end);
675 return 0;
81819f0f
CL
676}
677
81819f0f
CL
678/*
679 * Object layout:
680 *
681 * object address
682 * Bytes of the object to be managed.
683 * If the freepointer may overlay the object then the free
684 * pointer is the first word of the object.
672bba3a 685 *
81819f0f
CL
686 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
687 * 0xa5 (POISON_END)
688 *
3b0efdfa 689 * object + s->object_size
81819f0f 690 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 691 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 692 * object_size == inuse.
672bba3a 693 *
81819f0f
CL
694 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
695 * 0xcc (RED_ACTIVE) for objects in use.
696 *
697 * object + s->inuse
672bba3a
CL
698 * Meta data starts here.
699 *
81819f0f
CL
700 * A. Free pointer (if we cannot overwrite object on free)
701 * B. Tracking data for SLAB_STORE_USER
672bba3a 702 * C. Padding to reach required alignment boundary or at mininum
6446faa2 703 * one word if debugging is on to be able to detect writes
672bba3a
CL
704 * before the word boundary.
705 *
706 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
707 *
708 * object + s->size
672bba3a 709 * Nothing is used beyond s->size.
81819f0f 710 *
3b0efdfa 711 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 712 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
713 * may be used with merged slabcaches.
714 */
715
81819f0f
CL
716static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
717{
718 unsigned long off = s->inuse; /* The end of info */
719
720 if (s->offset)
721 /* Freepointer is placed after the object. */
722 off += sizeof(void *);
723
724 if (s->flags & SLAB_STORE_USER)
725 /* We also have user information there */
726 off += 2 * sizeof(struct track);
727
728 if (s->size == off)
729 return 1;
730
24922684
CL
731 return check_bytes_and_report(s, page, p, "Object padding",
732 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
733}
734
39b26464 735/* Check the pad bytes at the end of a slab page */
81819f0f
CL
736static int slab_pad_check(struct kmem_cache *s, struct page *page)
737{
24922684
CL
738 u8 *start;
739 u8 *fault;
740 u8 *end;
741 int length;
742 int remainder;
81819f0f
CL
743
744 if (!(s->flags & SLAB_POISON))
745 return 1;
746
a973e9dd 747 start = page_address(page);
ab9a0f19 748 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
749 end = start + length;
750 remainder = length % s->size;
81819f0f
CL
751 if (!remainder)
752 return 1;
753
79824820 754 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
755 if (!fault)
756 return 1;
757 while (end > fault && end[-1] == POISON_INUSE)
758 end--;
759
760 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 761 print_section("Padding ", end - remainder, remainder);
24922684 762
8a3d271d 763 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 764 return 0;
81819f0f
CL
765}
766
767static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 768 void *object, u8 val)
81819f0f
CL
769{
770 u8 *p = object;
3b0efdfa 771 u8 *endobject = object + s->object_size;
81819f0f
CL
772
773 if (s->flags & SLAB_RED_ZONE) {
24922684 774 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 775 endobject, val, s->inuse - s->object_size))
81819f0f 776 return 0;
81819f0f 777 } else {
3b0efdfa 778 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 779 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 780 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 781 }
81819f0f
CL
782 }
783
784 if (s->flags & SLAB_POISON) {
f7cb1933 785 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 786 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 787 POISON_FREE, s->object_size - 1) ||
24922684 788 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 789 p + s->object_size - 1, POISON_END, 1)))
81819f0f 790 return 0;
81819f0f
CL
791 /*
792 * check_pad_bytes cleans up on its own.
793 */
794 check_pad_bytes(s, page, p);
795 }
796
f7cb1933 797 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
798 /*
799 * Object and freepointer overlap. Cannot check
800 * freepointer while object is allocated.
801 */
802 return 1;
803
804 /* Check free pointer validity */
805 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
806 object_err(s, page, p, "Freepointer corrupt");
807 /*
9f6c708e 808 * No choice but to zap it and thus lose the remainder
81819f0f 809 * of the free objects in this slab. May cause
672bba3a 810 * another error because the object count is now wrong.
81819f0f 811 */
a973e9dd 812 set_freepointer(s, p, NULL);
81819f0f
CL
813 return 0;
814 }
815 return 1;
816}
817
818static int check_slab(struct kmem_cache *s, struct page *page)
819{
39b26464
CL
820 int maxobj;
821
81819f0f
CL
822 VM_BUG_ON(!irqs_disabled());
823
824 if (!PageSlab(page)) {
24922684 825 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
826 return 0;
827 }
39b26464 828
ab9a0f19 829 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
830 if (page->objects > maxobj) {
831 slab_err(s, page, "objects %u > max %u",
832 s->name, page->objects, maxobj);
833 return 0;
834 }
835 if (page->inuse > page->objects) {
24922684 836 slab_err(s, page, "inuse %u > max %u",
39b26464 837 s->name, page->inuse, page->objects);
81819f0f
CL
838 return 0;
839 }
840 /* Slab_pad_check fixes things up after itself */
841 slab_pad_check(s, page);
842 return 1;
843}
844
845/*
672bba3a
CL
846 * Determine if a certain object on a page is on the freelist. Must hold the
847 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
848 */
849static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
850{
851 int nr = 0;
881db7fb 852 void *fp;
81819f0f 853 void *object = NULL;
224a88be 854 unsigned long max_objects;
81819f0f 855
881db7fb 856 fp = page->freelist;
39b26464 857 while (fp && nr <= page->objects) {
81819f0f
CL
858 if (fp == search)
859 return 1;
860 if (!check_valid_pointer(s, page, fp)) {
861 if (object) {
862 object_err(s, page, object,
863 "Freechain corrupt");
a973e9dd 864 set_freepointer(s, object, NULL);
81819f0f
CL
865 break;
866 } else {
24922684 867 slab_err(s, page, "Freepointer corrupt");
a973e9dd 868 page->freelist = NULL;
39b26464 869 page->inuse = page->objects;
24922684 870 slab_fix(s, "Freelist cleared");
81819f0f
CL
871 return 0;
872 }
873 break;
874 }
875 object = fp;
876 fp = get_freepointer(s, object);
877 nr++;
878 }
879
ab9a0f19 880 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
881 if (max_objects > MAX_OBJS_PER_PAGE)
882 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
883
884 if (page->objects != max_objects) {
885 slab_err(s, page, "Wrong number of objects. Found %d but "
886 "should be %d", page->objects, max_objects);
887 page->objects = max_objects;
888 slab_fix(s, "Number of objects adjusted.");
889 }
39b26464 890 if (page->inuse != page->objects - nr) {
70d71228 891 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
892 "counted were %d", page->inuse, page->objects - nr);
893 page->inuse = page->objects - nr;
24922684 894 slab_fix(s, "Object count adjusted.");
81819f0f
CL
895 }
896 return search == NULL;
897}
898
0121c619
CL
899static void trace(struct kmem_cache *s, struct page *page, void *object,
900 int alloc)
3ec09742
CL
901{
902 if (s->flags & SLAB_TRACE) {
903 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
904 s->name,
905 alloc ? "alloc" : "free",
906 object, page->inuse,
907 page->freelist);
908
909 if (!alloc)
3b0efdfa 910 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
911
912 dump_stack();
913 }
914}
915
c016b0bd
CL
916/*
917 * Hooks for other subsystems that check memory allocations. In a typical
918 * production configuration these hooks all should produce no code at all.
919 */
920static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
921{
c1d50836 922 flags &= gfp_allowed_mask;
c016b0bd
CL
923 lockdep_trace_alloc(flags);
924 might_sleep_if(flags & __GFP_WAIT);
925
3b0efdfa 926 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
927}
928
929static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
930{
c1d50836 931 flags &= gfp_allowed_mask;
b3d41885 932 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 933 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
934}
935
936static inline void slab_free_hook(struct kmem_cache *s, void *x)
937{
938 kmemleak_free_recursive(x, s->flags);
c016b0bd 939
d3f661d6
CL
940 /*
941 * Trouble is that we may no longer disable interupts in the fast path
942 * So in order to make the debug calls that expect irqs to be
943 * disabled we need to disable interrupts temporarily.
944 */
945#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
3b0efdfa
CL
950 kmemcheck_slab_free(s, x, s->object_size);
951 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
952 local_irq_restore(flags);
953 }
954#endif
f9b615de 955 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 956 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
957}
958
643b1138 959/*
672bba3a 960 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
961 *
962 * list_lock must be held.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
643b1138 970 list_add(&page->lru, &n->full);
643b1138
CL
971}
972
5cc6eee8
CL
973/*
974 * list_lock must be held.
975 */
643b1138
CL
976static void remove_full(struct kmem_cache *s, struct page *page)
977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
643b1138 981 list_del(&page->lru);
643b1138
CL
982}
983
0f389ec6
CL
984/* Tracking of the number of slabs for debugging purposes */
985static inline unsigned long slabs_node(struct kmem_cache *s, int node)
986{
987 struct kmem_cache_node *n = get_node(s, node);
988
989 return atomic_long_read(&n->nr_slabs);
990}
991
26c02cf0
AB
992static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
993{
994 return atomic_long_read(&n->nr_slabs);
995}
996
205ab99d 997static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
998{
999 struct kmem_cache_node *n = get_node(s, node);
1000
1001 /*
1002 * May be called early in order to allocate a slab for the
1003 * kmem_cache_node structure. Solve the chicken-egg
1004 * dilemma by deferring the increment of the count during
1005 * bootstrap (see early_kmem_cache_node_alloc).
1006 */
7340cc84 1007 if (n) {
0f389ec6 1008 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1009 atomic_long_add(objects, &n->total_objects);
1010 }
0f389ec6 1011}
205ab99d 1012static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1013{
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 atomic_long_dec(&n->nr_slabs);
205ab99d 1017 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1018}
1019
1020/* Object debug checks for alloc/free paths */
3ec09742
CL
1021static void setup_object_debug(struct kmem_cache *s, struct page *page,
1022 void *object)
1023{
1024 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1025 return;
1026
f7cb1933 1027 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1028 init_tracking(s, object);
1029}
1030
1537066c 1031static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f 1090
1b4f59e3 1091 if (unlikely(s != page->slab_cache)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1b4f59e3 1095 } else if (!page->slab_cache) {
81819f0f 1096 printk(KERN_ERR
70d71228 1097 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1098 object);
70d71228 1099 dump_stack();
06428780 1100 } else
24922684
CL
1101 object_err(s, page, object,
1102 "page slab pointer corrupt.");
81819f0f
CL
1103 goto fail;
1104 }
3ec09742 1105
3ec09742
CL
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_FREE, addr);
1108 trace(s, page, object, 0);
f7cb1933 1109 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1110out:
881db7fb 1111 slab_unlock(page);
19c7ff9e
CL
1112 /*
1113 * Keep node_lock to preserve integrity
1114 * until the object is actually freed
1115 */
1116 return n;
3ec09742 1117
81819f0f 1118fail:
19c7ff9e
CL
1119 slab_unlock(page);
1120 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1121 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1122 return NULL;
81819f0f
CL
1123}
1124
41ecc55b
CL
1125static int __init setup_slub_debug(char *str)
1126{
f0630fff
CL
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
fa5ec8a1
DR
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
f0630fff
CL
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
06428780 1160 for (; *str && *str != ','; str++) {
f0630fff
CL
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
4c13dd3b
DM
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
f0630fff
CL
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
06428780 1182 "unknown. skipped\n", *str);
f0630fff 1183 }
41ecc55b
CL
1184 }
1185
f0630fff 1186check_slabs:
41ecc55b
CL
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
f0630fff 1189out:
41ecc55b
CL
1190 return 1;
1191}
1192
1193__setup("slub_debug", setup_slub_debug);
1194
3b0efdfa 1195static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1196 unsigned long flags, const char *name,
51cc5068 1197 void (*ctor)(void *))
41ecc55b
CL
1198{
1199 /*
e153362a 1200 * Enable debugging if selected on the kernel commandline.
41ecc55b 1201 */
e153362a 1202 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
ba0268a8
CL
1205
1206 return flags;
41ecc55b
CL
1207}
1208#else
3ec09742
CL
1209static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
41ecc55b 1211
3ec09742 1212static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1213 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1214
19c7ff9e
CL
1215static inline struct kmem_cache_node *free_debug_processing(
1216 struct kmem_cache *s, struct page *page, void *object,
1217 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1218
41ecc55b
CL
1219static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1220 { return 1; }
1221static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1222 void *object, u8 val) { return 1; }
5cc6eee8
CL
1223static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1224 struct page *page) {}
2cfb7455 1225static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1226static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56
CL
1244
1245static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1246 { return 0; }
1247
1248static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1249 void *object) {}
1250
1251static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1252
ab4d5ed5 1253#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1254
81819f0f
CL
1255/*
1256 * Slab allocation and freeing
1257 */
65c3376a
CL
1258static inline struct page *alloc_slab_page(gfp_t flags, int node,
1259 struct kmem_cache_order_objects oo)
1260{
1261 int order = oo_order(oo);
1262
b1eeab67
VN
1263 flags |= __GFP_NOTRACK;
1264
2154a336 1265 if (node == NUMA_NO_NODE)
65c3376a
CL
1266 return alloc_pages(flags, order);
1267 else
6b65aaf3 1268 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1269}
1270
81819f0f
CL
1271static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1272{
06428780 1273 struct page *page;
834f3d11 1274 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1275 gfp_t alloc_gfp;
81819f0f 1276
7e0528da
CL
1277 flags &= gfp_allowed_mask;
1278
1279 if (flags & __GFP_WAIT)
1280 local_irq_enable();
1281
b7a49f0d 1282 flags |= s->allocflags;
e12ba74d 1283
ba52270d
PE
1284 /*
1285 * Let the initial higher-order allocation fail under memory pressure
1286 * so we fall-back to the minimum order allocation.
1287 */
1288 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1289
1290 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1291 if (unlikely(!page)) {
1292 oo = s->min;
1293 /*
1294 * Allocation may have failed due to fragmentation.
1295 * Try a lower order alloc if possible
1296 */
1297 page = alloc_slab_page(flags, node, oo);
81819f0f 1298
7e0528da
CL
1299 if (page)
1300 stat(s, ORDER_FALLBACK);
65c3376a 1301 }
5a896d9e 1302
737b719e 1303 if (kmemcheck_enabled && page
5086c389 1304 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1305 int pages = 1 << oo_order(oo);
1306
1307 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1308
1309 /*
1310 * Objects from caches that have a constructor don't get
1311 * cleared when they're allocated, so we need to do it here.
1312 */
1313 if (s->ctor)
1314 kmemcheck_mark_uninitialized_pages(page, pages);
1315 else
1316 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1317 }
1318
737b719e
DR
1319 if (flags & __GFP_WAIT)
1320 local_irq_disable();
1321 if (!page)
1322 return NULL;
1323
834f3d11 1324 page->objects = oo_objects(oo);
81819f0f
CL
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1328 1 << oo_order(oo));
81819f0f
CL
1329
1330 return page;
1331}
1332
1333static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335{
3ec09742 1336 setup_object_debug(s, page, object);
4f104934 1337 if (unlikely(s->ctor))
51cc5068 1338 s->ctor(object);
81819f0f
CL
1339}
1340
1341static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342{
1343 struct page *page;
81819f0f 1344 void *start;
81819f0f
CL
1345 void *last;
1346 void *p;
1347
6cb06229 1348 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1349
6cb06229
CL
1350 page = allocate_slab(s,
1351 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1352 if (!page)
1353 goto out;
1354
205ab99d 1355 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1356 page->slab_cache = s;
c03f94cc 1357 __SetPageSlab(page);
072bb0aa
MG
1358 if (page->pfmemalloc)
1359 SetPageSlabPfmemalloc(page);
81819f0f
CL
1360
1361 start = page_address(page);
81819f0f
CL
1362
1363 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1364 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1365
1366 last = start;
224a88be 1367 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1368 setup_object(s, page, last);
1369 set_freepointer(s, last, p);
1370 last = p;
1371 }
1372 setup_object(s, page, last);
a973e9dd 1373 set_freepointer(s, last, NULL);
81819f0f
CL
1374
1375 page->freelist = start;
e6e82ea1 1376 page->inuse = page->objects;
8cb0a506 1377 page->frozen = 1;
81819f0f 1378out:
81819f0f
CL
1379 return page;
1380}
1381
1382static void __free_slab(struct kmem_cache *s, struct page *page)
1383{
834f3d11
CL
1384 int order = compound_order(page);
1385 int pages = 1 << order;
81819f0f 1386
af537b0a 1387 if (kmem_cache_debug(s)) {
81819f0f
CL
1388 void *p;
1389
1390 slab_pad_check(s, page);
224a88be
CL
1391 for_each_object(p, s, page_address(page),
1392 page->objects)
f7cb1933 1393 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1394 }
1395
b1eeab67 1396 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1397
81819f0f
CL
1398 mod_zone_page_state(page_zone(page),
1399 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1400 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1401 -pages);
81819f0f 1402
072bb0aa 1403 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1404 __ClearPageSlab(page);
1405 reset_page_mapcount(page);
1eb5ac64
NP
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1408 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1409}
1410
da9a638c
LJ
1411#define need_reserve_slab_rcu \
1412 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1413
81819f0f
CL
1414static void rcu_free_slab(struct rcu_head *h)
1415{
1416 struct page *page;
1417
da9a638c
LJ
1418 if (need_reserve_slab_rcu)
1419 page = virt_to_head_page(h);
1420 else
1421 page = container_of((struct list_head *)h, struct page, lru);
1422
1b4f59e3 1423 __free_slab(page->slab_cache, page);
81819f0f
CL
1424}
1425
1426static void free_slab(struct kmem_cache *s, struct page *page)
1427{
1428 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1429 struct rcu_head *head;
1430
1431 if (need_reserve_slab_rcu) {
1432 int order = compound_order(page);
1433 int offset = (PAGE_SIZE << order) - s->reserved;
1434
1435 VM_BUG_ON(s->reserved != sizeof(*head));
1436 head = page_address(page) + offset;
1437 } else {
1438 /*
1439 * RCU free overloads the RCU head over the LRU
1440 */
1441 head = (void *)&page->lru;
1442 }
81819f0f
CL
1443
1444 call_rcu(head, rcu_free_slab);
1445 } else
1446 __free_slab(s, page);
1447}
1448
1449static void discard_slab(struct kmem_cache *s, struct page *page)
1450{
205ab99d 1451 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1452 free_slab(s, page);
1453}
1454
1455/*
5cc6eee8
CL
1456 * Management of partially allocated slabs.
1457 *
1458 * list_lock must be held.
81819f0f 1459 */
5cc6eee8 1460static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1461 struct page *page, int tail)
81819f0f 1462{
e95eed57 1463 n->nr_partial++;
136333d1 1464 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1465 list_add_tail(&page->lru, &n->partial);
1466 else
1467 list_add(&page->lru, &n->partial);
81819f0f
CL
1468}
1469
5cc6eee8
CL
1470/*
1471 * list_lock must be held.
1472 */
1473static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1474 struct page *page)
1475{
1476 list_del(&page->lru);
1477 n->nr_partial--;
1478}
1479
81819f0f 1480/*
7ced3719
CL
1481 * Remove slab from the partial list, freeze it and
1482 * return the pointer to the freelist.
81819f0f 1483 *
497b66f2
CL
1484 * Returns a list of objects or NULL if it fails.
1485 *
7ced3719 1486 * Must hold list_lock since we modify the partial list.
81819f0f 1487 */
497b66f2 1488static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1489 struct kmem_cache_node *n, struct page *page,
49e22585 1490 int mode)
81819f0f 1491{
2cfb7455
CL
1492 void *freelist;
1493 unsigned long counters;
1494 struct page new;
1495
2cfb7455
CL
1496 /*
1497 * Zap the freelist and set the frozen bit.
1498 * The old freelist is the list of objects for the
1499 * per cpu allocation list.
1500 */
7ced3719
CL
1501 freelist = page->freelist;
1502 counters = page->counters;
1503 new.counters = counters;
23910c50 1504 if (mode) {
7ced3719 1505 new.inuse = page->objects;
23910c50
PE
1506 new.freelist = NULL;
1507 } else {
1508 new.freelist = freelist;
1509 }
2cfb7455 1510
7ced3719
CL
1511 VM_BUG_ON(new.frozen);
1512 new.frozen = 1;
2cfb7455 1513
7ced3719 1514 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1515 freelist, counters,
02d7633f 1516 new.freelist, new.counters,
7ced3719 1517 "acquire_slab"))
7ced3719 1518 return NULL;
2cfb7455
CL
1519
1520 remove_partial(n, page);
7ced3719 1521 WARN_ON(!freelist);
49e22585 1522 return freelist;
81819f0f
CL
1523}
1524
49e22585 1525static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1526static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1527
81819f0f 1528/*
672bba3a 1529 * Try to allocate a partial slab from a specific node.
81819f0f 1530 */
8ba00bb6
JK
1531static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1532 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1533{
49e22585
CL
1534 struct page *page, *page2;
1535 void *object = NULL;
81819f0f
CL
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
81819f0f
CL
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
49e22585 1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1548 void *t;
49e22585
CL
1549 int available;
1550
8ba00bb6
JK
1551 if (!pfmemalloc_match(page, flags))
1552 continue;
1553
1554 t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1555 if (!t)
1556 break;
1557
12d79634 1558 if (!object) {
49e22585 1559 c->page = page;
49e22585 1560 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1561 object = t;
1562 available = page->objects - page->inuse;
1563 } else {
49e22585 1564 available = put_cpu_partial(s, page, 0);
8028dcea 1565 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1566 }
1567 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1568 break;
1569
497b66f2 1570 }
81819f0f 1571 spin_unlock(&n->list_lock);
497b66f2 1572 return object;
81819f0f
CL
1573}
1574
1575/*
672bba3a 1576 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1577 */
de3ec035 1578static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1579 struct kmem_cache_cpu *c)
81819f0f
CL
1580{
1581#ifdef CONFIG_NUMA
1582 struct zonelist *zonelist;
dd1a239f 1583 struct zoneref *z;
54a6eb5c
MG
1584 struct zone *zone;
1585 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1586 void *object;
cc9a6c87 1587 unsigned int cpuset_mems_cookie;
81819f0f
CL
1588
1589 /*
672bba3a
CL
1590 * The defrag ratio allows a configuration of the tradeoffs between
1591 * inter node defragmentation and node local allocations. A lower
1592 * defrag_ratio increases the tendency to do local allocations
1593 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1594 *
672bba3a
CL
1595 * If the defrag_ratio is set to 0 then kmalloc() always
1596 * returns node local objects. If the ratio is higher then kmalloc()
1597 * may return off node objects because partial slabs are obtained
1598 * from other nodes and filled up.
81819f0f 1599 *
6446faa2 1600 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1601 * defrag_ratio = 1000) then every (well almost) allocation will
1602 * first attempt to defrag slab caches on other nodes. This means
1603 * scanning over all nodes to look for partial slabs which may be
1604 * expensive if we do it every time we are trying to find a slab
1605 * with available objects.
81819f0f 1606 */
9824601e
CL
1607 if (!s->remote_node_defrag_ratio ||
1608 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1609 return NULL;
1610
cc9a6c87
MG
1611 do {
1612 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1613 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1615 struct kmem_cache_node *n;
1616
1617 n = get_node(s, zone_to_nid(zone));
1618
1619 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1620 n->nr_partial > s->min_partial) {
8ba00bb6 1621 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1622 if (object) {
1623 /*
1624 * Return the object even if
1625 * put_mems_allowed indicated that
1626 * the cpuset mems_allowed was
1627 * updated in parallel. It's a
1628 * harmless race between the alloc
1629 * and the cpuset update.
1630 */
1631 put_mems_allowed(cpuset_mems_cookie);
1632 return object;
1633 }
c0ff7453 1634 }
81819f0f 1635 }
cc9a6c87 1636 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1637#endif
1638 return NULL;
1639}
1640
1641/*
1642 * Get a partial page, lock it and return it.
1643 */
497b66f2 1644static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1645 struct kmem_cache_cpu *c)
81819f0f 1646{
497b66f2 1647 void *object;
2154a336 1648 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1649
8ba00bb6 1650 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1651 if (object || node != NUMA_NO_NODE)
1652 return object;
81819f0f 1653
acd19fd1 1654 return get_any_partial(s, flags, c);
81819f0f
CL
1655}
1656
8a5ec0ba
CL
1657#ifdef CONFIG_PREEMPT
1658/*
1659 * Calculate the next globally unique transaction for disambiguiation
1660 * during cmpxchg. The transactions start with the cpu number and are then
1661 * incremented by CONFIG_NR_CPUS.
1662 */
1663#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1664#else
1665/*
1666 * No preemption supported therefore also no need to check for
1667 * different cpus.
1668 */
1669#define TID_STEP 1
1670#endif
1671
1672static inline unsigned long next_tid(unsigned long tid)
1673{
1674 return tid + TID_STEP;
1675}
1676
1677static inline unsigned int tid_to_cpu(unsigned long tid)
1678{
1679 return tid % TID_STEP;
1680}
1681
1682static inline unsigned long tid_to_event(unsigned long tid)
1683{
1684 return tid / TID_STEP;
1685}
1686
1687static inline unsigned int init_tid(int cpu)
1688{
1689 return cpu;
1690}
1691
1692static inline void note_cmpxchg_failure(const char *n,
1693 const struct kmem_cache *s, unsigned long tid)
1694{
1695#ifdef SLUB_DEBUG_CMPXCHG
1696 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1697
1698 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1699
1700#ifdef CONFIG_PREEMPT
1701 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1702 printk("due to cpu change %d -> %d\n",
1703 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1704 else
1705#endif
1706 if (tid_to_event(tid) != tid_to_event(actual_tid))
1707 printk("due to cpu running other code. Event %ld->%ld\n",
1708 tid_to_event(tid), tid_to_event(actual_tid));
1709 else
1710 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1711 actual_tid, tid, next_tid(tid));
1712#endif
4fdccdfb 1713 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1714}
1715
788e1aad 1716static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1717{
8a5ec0ba
CL
1718 int cpu;
1719
1720 for_each_possible_cpu(cpu)
1721 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1722}
2cfb7455 1723
81819f0f
CL
1724/*
1725 * Remove the cpu slab
1726 */
c17dda40 1727static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1728{
2cfb7455 1729 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1730 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1731 int lock = 0;
1732 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1733 void *nextfree;
136333d1 1734 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1735 struct page new;
1736 struct page old;
1737
1738 if (page->freelist) {
84e554e6 1739 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1740 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1741 }
1742
894b8788 1743 /*
2cfb7455
CL
1744 * Stage one: Free all available per cpu objects back
1745 * to the page freelist while it is still frozen. Leave the
1746 * last one.
1747 *
1748 * There is no need to take the list->lock because the page
1749 * is still frozen.
1750 */
1751 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1752 void *prior;
1753 unsigned long counters;
1754
1755 do {
1756 prior = page->freelist;
1757 counters = page->counters;
1758 set_freepointer(s, freelist, prior);
1759 new.counters = counters;
1760 new.inuse--;
1761 VM_BUG_ON(!new.frozen);
1762
1d07171c 1763 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1764 prior, counters,
1765 freelist, new.counters,
1766 "drain percpu freelist"));
1767
1768 freelist = nextfree;
1769 }
1770
894b8788 1771 /*
2cfb7455
CL
1772 * Stage two: Ensure that the page is unfrozen while the
1773 * list presence reflects the actual number of objects
1774 * during unfreeze.
1775 *
1776 * We setup the list membership and then perform a cmpxchg
1777 * with the count. If there is a mismatch then the page
1778 * is not unfrozen but the page is on the wrong list.
1779 *
1780 * Then we restart the process which may have to remove
1781 * the page from the list that we just put it on again
1782 * because the number of objects in the slab may have
1783 * changed.
894b8788 1784 */
2cfb7455 1785redo:
894b8788 1786
2cfb7455
CL
1787 old.freelist = page->freelist;
1788 old.counters = page->counters;
1789 VM_BUG_ON(!old.frozen);
7c2e132c 1790
2cfb7455
CL
1791 /* Determine target state of the slab */
1792 new.counters = old.counters;
1793 if (freelist) {
1794 new.inuse--;
1795 set_freepointer(s, freelist, old.freelist);
1796 new.freelist = freelist;
1797 } else
1798 new.freelist = old.freelist;
1799
1800 new.frozen = 0;
1801
81107188 1802 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1803 m = M_FREE;
1804 else if (new.freelist) {
1805 m = M_PARTIAL;
1806 if (!lock) {
1807 lock = 1;
1808 /*
1809 * Taking the spinlock removes the possiblity
1810 * that acquire_slab() will see a slab page that
1811 * is frozen
1812 */
1813 spin_lock(&n->list_lock);
1814 }
1815 } else {
1816 m = M_FULL;
1817 if (kmem_cache_debug(s) && !lock) {
1818 lock = 1;
1819 /*
1820 * This also ensures that the scanning of full
1821 * slabs from diagnostic functions will not see
1822 * any frozen slabs.
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 }
1827
1828 if (l != m) {
1829
1830 if (l == M_PARTIAL)
1831
1832 remove_partial(n, page);
1833
1834 else if (l == M_FULL)
894b8788 1835
2cfb7455
CL
1836 remove_full(s, page);
1837
1838 if (m == M_PARTIAL) {
1839
1840 add_partial(n, page, tail);
136333d1 1841 stat(s, tail);
2cfb7455
CL
1842
1843 } else if (m == M_FULL) {
894b8788 1844
2cfb7455
CL
1845 stat(s, DEACTIVATE_FULL);
1846 add_full(s, n, page);
1847
1848 }
1849 }
1850
1851 l = m;
1d07171c 1852 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1853 old.freelist, old.counters,
1854 new.freelist, new.counters,
1855 "unfreezing slab"))
1856 goto redo;
1857
2cfb7455
CL
1858 if (lock)
1859 spin_unlock(&n->list_lock);
1860
1861 if (m == M_FREE) {
1862 stat(s, DEACTIVATE_EMPTY);
1863 discard_slab(s, page);
1864 stat(s, FREE_SLAB);
894b8788 1865 }
81819f0f
CL
1866}
1867
d24ac77f
JK
1868/*
1869 * Unfreeze all the cpu partial slabs.
1870 *
59a09917
CL
1871 * This function must be called with interrupts disabled
1872 * for the cpu using c (or some other guarantee must be there
1873 * to guarantee no concurrent accesses).
d24ac77f 1874 */
59a09917
CL
1875static void unfreeze_partials(struct kmem_cache *s,
1876 struct kmem_cache_cpu *c)
49e22585 1877{
43d77867 1878 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1879 struct page *page, *discard_page = NULL;
49e22585
CL
1880
1881 while ((page = c->partial)) {
49e22585
CL
1882 struct page new;
1883 struct page old;
1884
1885 c->partial = page->next;
43d77867
JK
1886
1887 n2 = get_node(s, page_to_nid(page));
1888 if (n != n2) {
1889 if (n)
1890 spin_unlock(&n->list_lock);
1891
1892 n = n2;
1893 spin_lock(&n->list_lock);
1894 }
49e22585
CL
1895
1896 do {
1897
1898 old.freelist = page->freelist;
1899 old.counters = page->counters;
1900 VM_BUG_ON(!old.frozen);
1901
1902 new.counters = old.counters;
1903 new.freelist = old.freelist;
1904
1905 new.frozen = 0;
1906
d24ac77f 1907 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1908 old.freelist, old.counters,
1909 new.freelist, new.counters,
1910 "unfreezing slab"));
1911
43d77867 1912 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1913 page->next = discard_page;
1914 discard_page = page;
43d77867
JK
1915 } else {
1916 add_partial(n, page, DEACTIVATE_TO_TAIL);
1917 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1918 }
1919 }
1920
1921 if (n)
1922 spin_unlock(&n->list_lock);
9ada1934
SL
1923
1924 while (discard_page) {
1925 page = discard_page;
1926 discard_page = discard_page->next;
1927
1928 stat(s, DEACTIVATE_EMPTY);
1929 discard_slab(s, page);
1930 stat(s, FREE_SLAB);
1931 }
49e22585
CL
1932}
1933
1934/*
1935 * Put a page that was just frozen (in __slab_free) into a partial page
1936 * slot if available. This is done without interrupts disabled and without
1937 * preemption disabled. The cmpxchg is racy and may put the partial page
1938 * onto a random cpus partial slot.
1939 *
1940 * If we did not find a slot then simply move all the partials to the
1941 * per node partial list.
1942 */
788e1aad 1943static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
1944{
1945 struct page *oldpage;
1946 int pages;
1947 int pobjects;
1948
1949 do {
1950 pages = 0;
1951 pobjects = 0;
1952 oldpage = this_cpu_read(s->cpu_slab->partial);
1953
1954 if (oldpage) {
1955 pobjects = oldpage->pobjects;
1956 pages = oldpage->pages;
1957 if (drain && pobjects > s->cpu_partial) {
1958 unsigned long flags;
1959 /*
1960 * partial array is full. Move the existing
1961 * set to the per node partial list.
1962 */
1963 local_irq_save(flags);
59a09917 1964 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 1965 local_irq_restore(flags);
e24fc410 1966 oldpage = NULL;
49e22585
CL
1967 pobjects = 0;
1968 pages = 0;
8028dcea 1969 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1970 }
1971 }
1972
1973 pages++;
1974 pobjects += page->objects - page->inuse;
1975
1976 page->pages = pages;
1977 page->pobjects = pobjects;
1978 page->next = oldpage;
1979
933393f5 1980 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1981 return pobjects;
1982}
1983
dfb4f096 1984static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1985{
84e554e6 1986 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1987 deactivate_slab(s, c->page, c->freelist);
1988
1989 c->tid = next_tid(c->tid);
1990 c->page = NULL;
1991 c->freelist = NULL;
81819f0f
CL
1992}
1993
1994/*
1995 * Flush cpu slab.
6446faa2 1996 *
81819f0f
CL
1997 * Called from IPI handler with interrupts disabled.
1998 */
0c710013 1999static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2000{
9dfc6e68 2001 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2002
49e22585
CL
2003 if (likely(c)) {
2004 if (c->page)
2005 flush_slab(s, c);
2006
59a09917 2007 unfreeze_partials(s, c);
49e22585 2008 }
81819f0f
CL
2009}
2010
2011static void flush_cpu_slab(void *d)
2012{
2013 struct kmem_cache *s = d;
81819f0f 2014
dfb4f096 2015 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2016}
2017
a8364d55
GBY
2018static bool has_cpu_slab(int cpu, void *info)
2019{
2020 struct kmem_cache *s = info;
2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2022
02e1a9cd 2023 return c->page || c->partial;
a8364d55
GBY
2024}
2025
81819f0f
CL
2026static void flush_all(struct kmem_cache *s)
2027{
a8364d55 2028 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2029}
2030
dfb4f096
CL
2031/*
2032 * Check if the objects in a per cpu structure fit numa
2033 * locality expectations.
2034 */
57d437d2 2035static inline int node_match(struct page *page, int node)
dfb4f096
CL
2036{
2037#ifdef CONFIG_NUMA
57d437d2 2038 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2039 return 0;
2040#endif
2041 return 1;
2042}
2043
781b2ba6
PE
2044static int count_free(struct page *page)
2045{
2046 return page->objects - page->inuse;
2047}
2048
2049static unsigned long count_partial(struct kmem_cache_node *n,
2050 int (*get_count)(struct page *))
2051{
2052 unsigned long flags;
2053 unsigned long x = 0;
2054 struct page *page;
2055
2056 spin_lock_irqsave(&n->list_lock, flags);
2057 list_for_each_entry(page, &n->partial, lru)
2058 x += get_count(page);
2059 spin_unlock_irqrestore(&n->list_lock, flags);
2060 return x;
2061}
2062
26c02cf0
AB
2063static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2064{
2065#ifdef CONFIG_SLUB_DEBUG
2066 return atomic_long_read(&n->total_objects);
2067#else
2068 return 0;
2069#endif
2070}
2071
781b2ba6
PE
2072static noinline void
2073slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2074{
2075 int node;
2076
2077 printk(KERN_WARNING
2078 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2079 nid, gfpflags);
2080 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2081 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2082 s->size, oo_order(s->oo), oo_order(s->min));
2083
3b0efdfa 2084 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2085 printk(KERN_WARNING " %s debugging increased min order, use "
2086 "slub_debug=O to disable.\n", s->name);
2087
781b2ba6
PE
2088 for_each_online_node(node) {
2089 struct kmem_cache_node *n = get_node(s, node);
2090 unsigned long nr_slabs;
2091 unsigned long nr_objs;
2092 unsigned long nr_free;
2093
2094 if (!n)
2095 continue;
2096
26c02cf0
AB
2097 nr_free = count_partial(n, count_free);
2098 nr_slabs = node_nr_slabs(n);
2099 nr_objs = node_nr_objs(n);
781b2ba6
PE
2100
2101 printk(KERN_WARNING
2102 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2103 node, nr_slabs, nr_objs, nr_free);
2104 }
2105}
2106
497b66f2
CL
2107static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2108 int node, struct kmem_cache_cpu **pc)
2109{
6faa6833 2110 void *freelist;
188fd063
CL
2111 struct kmem_cache_cpu *c = *pc;
2112 struct page *page;
497b66f2 2113
188fd063 2114 freelist = get_partial(s, flags, node, c);
497b66f2 2115
188fd063
CL
2116 if (freelist)
2117 return freelist;
2118
2119 page = new_slab(s, flags, node);
497b66f2
CL
2120 if (page) {
2121 c = __this_cpu_ptr(s->cpu_slab);
2122 if (c->page)
2123 flush_slab(s, c);
2124
2125 /*
2126 * No other reference to the page yet so we can
2127 * muck around with it freely without cmpxchg
2128 */
6faa6833 2129 freelist = page->freelist;
497b66f2
CL
2130 page->freelist = NULL;
2131
2132 stat(s, ALLOC_SLAB);
497b66f2
CL
2133 c->page = page;
2134 *pc = c;
2135 } else
6faa6833 2136 freelist = NULL;
497b66f2 2137
6faa6833 2138 return freelist;
497b66f2
CL
2139}
2140
072bb0aa
MG
2141static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2142{
2143 if (unlikely(PageSlabPfmemalloc(page)))
2144 return gfp_pfmemalloc_allowed(gfpflags);
2145
2146 return true;
2147}
2148
213eeb9f
CL
2149/*
2150 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2151 * or deactivate the page.
2152 *
2153 * The page is still frozen if the return value is not NULL.
2154 *
2155 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2156 *
2157 * This function must be called with interrupt disabled.
213eeb9f
CL
2158 */
2159static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2160{
2161 struct page new;
2162 unsigned long counters;
2163 void *freelist;
2164
2165 do {
2166 freelist = page->freelist;
2167 counters = page->counters;
6faa6833 2168
213eeb9f
CL
2169 new.counters = counters;
2170 VM_BUG_ON(!new.frozen);
2171
2172 new.inuse = page->objects;
2173 new.frozen = freelist != NULL;
2174
d24ac77f 2175 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2176 freelist, counters,
2177 NULL, new.counters,
2178 "get_freelist"));
2179
2180 return freelist;
2181}
2182
81819f0f 2183/*
894b8788
CL
2184 * Slow path. The lockless freelist is empty or we need to perform
2185 * debugging duties.
2186 *
894b8788
CL
2187 * Processing is still very fast if new objects have been freed to the
2188 * regular freelist. In that case we simply take over the regular freelist
2189 * as the lockless freelist and zap the regular freelist.
81819f0f 2190 *
894b8788
CL
2191 * If that is not working then we fall back to the partial lists. We take the
2192 * first element of the freelist as the object to allocate now and move the
2193 * rest of the freelist to the lockless freelist.
81819f0f 2194 *
894b8788 2195 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2196 * we need to allocate a new slab. This is the slowest path since it involves
2197 * a call to the page allocator and the setup of a new slab.
81819f0f 2198 */
ce71e27c
EGM
2199static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2200 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2201{
6faa6833 2202 void *freelist;
f6e7def7 2203 struct page *page;
8a5ec0ba
CL
2204 unsigned long flags;
2205
2206 local_irq_save(flags);
2207#ifdef CONFIG_PREEMPT
2208 /*
2209 * We may have been preempted and rescheduled on a different
2210 * cpu before disabling interrupts. Need to reload cpu area
2211 * pointer.
2212 */
2213 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2214#endif
81819f0f 2215
f6e7def7
CL
2216 page = c->page;
2217 if (!page)
81819f0f 2218 goto new_slab;
49e22585 2219redo:
6faa6833 2220
57d437d2 2221 if (unlikely(!node_match(page, node))) {
e36a2652 2222 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2223 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2224 c->page = NULL;
2225 c->freelist = NULL;
fc59c053
CL
2226 goto new_slab;
2227 }
6446faa2 2228
072bb0aa
MG
2229 /*
2230 * By rights, we should be searching for a slab page that was
2231 * PFMEMALLOC but right now, we are losing the pfmemalloc
2232 * information when the page leaves the per-cpu allocator
2233 */
2234 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2235 deactivate_slab(s, page, c->freelist);
2236 c->page = NULL;
2237 c->freelist = NULL;
2238 goto new_slab;
2239 }
2240
73736e03 2241 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2242 freelist = c->freelist;
2243 if (freelist)
73736e03 2244 goto load_freelist;
03e404af 2245
2cfb7455 2246 stat(s, ALLOC_SLOWPATH);
03e404af 2247
f6e7def7 2248 freelist = get_freelist(s, page);
6446faa2 2249
6faa6833 2250 if (!freelist) {
03e404af
CL
2251 c->page = NULL;
2252 stat(s, DEACTIVATE_BYPASS);
fc59c053 2253 goto new_slab;
03e404af 2254 }
6446faa2 2255
84e554e6 2256 stat(s, ALLOC_REFILL);
6446faa2 2257
894b8788 2258load_freelist:
507effea
CL
2259 /*
2260 * freelist is pointing to the list of objects to be used.
2261 * page is pointing to the page from which the objects are obtained.
2262 * That page must be frozen for per cpu allocations to work.
2263 */
2264 VM_BUG_ON(!c->page->frozen);
6faa6833 2265 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2266 c->tid = next_tid(c->tid);
2267 local_irq_restore(flags);
6faa6833 2268 return freelist;
81819f0f 2269
81819f0f 2270new_slab:
2cfb7455 2271
49e22585 2272 if (c->partial) {
f6e7def7
CL
2273 page = c->page = c->partial;
2274 c->partial = page->next;
49e22585
CL
2275 stat(s, CPU_PARTIAL_ALLOC);
2276 c->freelist = NULL;
2277 goto redo;
81819f0f
CL
2278 }
2279
188fd063 2280 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2281
f4697436
CL
2282 if (unlikely(!freelist)) {
2283 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2284 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2285
f4697436
CL
2286 local_irq_restore(flags);
2287 return NULL;
81819f0f 2288 }
2cfb7455 2289
f6e7def7 2290 page = c->page;
5091b74a 2291 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2292 goto load_freelist;
2cfb7455 2293
497b66f2 2294 /* Only entered in the debug case */
5091b74a 2295 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2296 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2297
f6e7def7 2298 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2299 c->page = NULL;
2300 c->freelist = NULL;
a71ae47a 2301 local_irq_restore(flags);
6faa6833 2302 return freelist;
894b8788
CL
2303}
2304
2305/*
2306 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2307 * have the fastpath folded into their functions. So no function call
2308 * overhead for requests that can be satisfied on the fastpath.
2309 *
2310 * The fastpath works by first checking if the lockless freelist can be used.
2311 * If not then __slab_alloc is called for slow processing.
2312 *
2313 * Otherwise we can simply pick the next object from the lockless free list.
2314 */
2b847c3c 2315static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2316 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2317{
894b8788 2318 void **object;
dfb4f096 2319 struct kmem_cache_cpu *c;
57d437d2 2320 struct page *page;
8a5ec0ba 2321 unsigned long tid;
1f84260c 2322
c016b0bd 2323 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2324 return NULL;
1f84260c 2325
d79923fa 2326 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2327redo:
8a5ec0ba
CL
2328
2329 /*
2330 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2331 * enabled. We may switch back and forth between cpus while
2332 * reading from one cpu area. That does not matter as long
2333 * as we end up on the original cpu again when doing the cmpxchg.
2334 */
9dfc6e68 2335 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2336
8a5ec0ba
CL
2337 /*
2338 * The transaction ids are globally unique per cpu and per operation on
2339 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2340 * occurs on the right processor and that there was no operation on the
2341 * linked list in between.
2342 */
2343 tid = c->tid;
2344 barrier();
8a5ec0ba 2345
9dfc6e68 2346 object = c->freelist;
57d437d2 2347 page = c->page;
5091b74a 2348 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2349 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2350
2351 else {
0ad9500e
ED
2352 void *next_object = get_freepointer_safe(s, object);
2353
8a5ec0ba 2354 /*
25985edc 2355 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2356 * operation and if we are on the right processor.
2357 *
2358 * The cmpxchg does the following atomically (without lock semantics!)
2359 * 1. Relocate first pointer to the current per cpu area.
2360 * 2. Verify that tid and freelist have not been changed
2361 * 3. If they were not changed replace tid and freelist
2362 *
2363 * Since this is without lock semantics the protection is only against
2364 * code executing on this cpu *not* from access by other cpus.
2365 */
933393f5 2366 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2367 s->cpu_slab->freelist, s->cpu_slab->tid,
2368 object, tid,
0ad9500e 2369 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2370
2371 note_cmpxchg_failure("slab_alloc", s, tid);
2372 goto redo;
2373 }
0ad9500e 2374 prefetch_freepointer(s, next_object);
84e554e6 2375 stat(s, ALLOC_FASTPATH);
894b8788 2376 }
8a5ec0ba 2377
74e2134f 2378 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2379 memset(object, 0, s->object_size);
d07dbea4 2380
c016b0bd 2381 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2382
894b8788 2383 return object;
81819f0f
CL
2384}
2385
2b847c3c
EG
2386static __always_inline void *slab_alloc(struct kmem_cache *s,
2387 gfp_t gfpflags, unsigned long addr)
2388{
2389 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2390}
2391
81819f0f
CL
2392void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2393{
2b847c3c 2394 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2395
3b0efdfa 2396 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2397
2398 return ret;
81819f0f
CL
2399}
2400EXPORT_SYMBOL(kmem_cache_alloc);
2401
0f24f128 2402#ifdef CONFIG_TRACING
4a92379b
RK
2403void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2404{
2b847c3c 2405 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2406 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2407 return ret;
2408}
2409EXPORT_SYMBOL(kmem_cache_alloc_trace);
2410
2411void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2412{
4a92379b
RK
2413 void *ret = kmalloc_order(size, flags, order);
2414 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2415 return ret;
5b882be4 2416}
4a92379b 2417EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2418#endif
2419
81819f0f
CL
2420#ifdef CONFIG_NUMA
2421void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2422{
2b847c3c 2423 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2424
ca2b84cb 2425 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2426 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2427
2428 return ret;
81819f0f
CL
2429}
2430EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2431
0f24f128 2432#ifdef CONFIG_TRACING
4a92379b 2433void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2434 gfp_t gfpflags,
4a92379b 2435 int node, size_t size)
5b882be4 2436{
2b847c3c 2437 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2438
2439 trace_kmalloc_node(_RET_IP_, ret,
2440 size, s->size, gfpflags, node);
2441 return ret;
5b882be4 2442}
4a92379b 2443EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2444#endif
5d1f57e4 2445#endif
5b882be4 2446
81819f0f 2447/*
894b8788
CL
2448 * Slow patch handling. This may still be called frequently since objects
2449 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2450 *
894b8788
CL
2451 * So we still attempt to reduce cache line usage. Just take the slab
2452 * lock and free the item. If there is no additional partial page
2453 * handling required then we can return immediately.
81819f0f 2454 */
894b8788 2455static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2456 void *x, unsigned long addr)
81819f0f
CL
2457{
2458 void *prior;
2459 void **object = (void *)x;
2cfb7455 2460 int was_frozen;
2cfb7455
CL
2461 struct page new;
2462 unsigned long counters;
2463 struct kmem_cache_node *n = NULL;
61728d1e 2464 unsigned long uninitialized_var(flags);
81819f0f 2465
8a5ec0ba 2466 stat(s, FREE_SLOWPATH);
81819f0f 2467
19c7ff9e
CL
2468 if (kmem_cache_debug(s) &&
2469 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2470 return;
6446faa2 2471
2cfb7455 2472 do {
837d678d
JK
2473 if (unlikely(n)) {
2474 spin_unlock_irqrestore(&n->list_lock, flags);
2475 n = NULL;
2476 }
2cfb7455
CL
2477 prior = page->freelist;
2478 counters = page->counters;
2479 set_freepointer(s, object, prior);
2480 new.counters = counters;
2481 was_frozen = new.frozen;
2482 new.inuse--;
837d678d 2483 if ((!new.inuse || !prior) && !was_frozen) {
49e22585
CL
2484
2485 if (!kmem_cache_debug(s) && !prior)
2486
2487 /*
2488 * Slab was on no list before and will be partially empty
2489 * We can defer the list move and instead freeze it.
2490 */
2491 new.frozen = 1;
2492
2493 else { /* Needs to be taken off a list */
2494
2495 n = get_node(s, page_to_nid(page));
2496 /*
2497 * Speculatively acquire the list_lock.
2498 * If the cmpxchg does not succeed then we may
2499 * drop the list_lock without any processing.
2500 *
2501 * Otherwise the list_lock will synchronize with
2502 * other processors updating the list of slabs.
2503 */
2504 spin_lock_irqsave(&n->list_lock, flags);
2505
2506 }
2cfb7455 2507 }
81819f0f 2508
2cfb7455
CL
2509 } while (!cmpxchg_double_slab(s, page,
2510 prior, counters,
2511 object, new.counters,
2512 "__slab_free"));
81819f0f 2513
2cfb7455 2514 if (likely(!n)) {
49e22585
CL
2515
2516 /*
2517 * If we just froze the page then put it onto the
2518 * per cpu partial list.
2519 */
8028dcea 2520 if (new.frozen && !was_frozen) {
49e22585 2521 put_cpu_partial(s, page, 1);
8028dcea
AS
2522 stat(s, CPU_PARTIAL_FREE);
2523 }
49e22585 2524 /*
2cfb7455
CL
2525 * The list lock was not taken therefore no list
2526 * activity can be necessary.
2527 */
2528 if (was_frozen)
2529 stat(s, FREE_FROZEN);
80f08c19 2530 return;
2cfb7455 2531 }
81819f0f 2532
837d678d
JK
2533 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2534 goto slab_empty;
2535
81819f0f 2536 /*
837d678d
JK
2537 * Objects left in the slab. If it was not on the partial list before
2538 * then add it.
81819f0f 2539 */
837d678d
JK
2540 if (kmem_cache_debug(s) && unlikely(!prior)) {
2541 remove_full(s, page);
2542 add_partial(n, page, DEACTIVATE_TO_TAIL);
2543 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2544 }
80f08c19 2545 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2546 return;
2547
2548slab_empty:
a973e9dd 2549 if (prior) {
81819f0f 2550 /*
6fbabb20 2551 * Slab on the partial list.
81819f0f 2552 */
5cc6eee8 2553 remove_partial(n, page);
84e554e6 2554 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2555 } else
2556 /* Slab must be on the full list */
2557 remove_full(s, page);
2cfb7455 2558
80f08c19 2559 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2560 stat(s, FREE_SLAB);
81819f0f 2561 discard_slab(s, page);
81819f0f
CL
2562}
2563
894b8788
CL
2564/*
2565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2566 * can perform fastpath freeing without additional function calls.
2567 *
2568 * The fastpath is only possible if we are freeing to the current cpu slab
2569 * of this processor. This typically the case if we have just allocated
2570 * the item before.
2571 *
2572 * If fastpath is not possible then fall back to __slab_free where we deal
2573 * with all sorts of special processing.
2574 */
06428780 2575static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2576 struct page *page, void *x, unsigned long addr)
894b8788
CL
2577{
2578 void **object = (void *)x;
dfb4f096 2579 struct kmem_cache_cpu *c;
8a5ec0ba 2580 unsigned long tid;
1f84260c 2581
c016b0bd
CL
2582 slab_free_hook(s, x);
2583
8a5ec0ba
CL
2584redo:
2585 /*
2586 * Determine the currently cpus per cpu slab.
2587 * The cpu may change afterward. However that does not matter since
2588 * data is retrieved via this pointer. If we are on the same cpu
2589 * during the cmpxchg then the free will succedd.
2590 */
9dfc6e68 2591 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2592
8a5ec0ba
CL
2593 tid = c->tid;
2594 barrier();
c016b0bd 2595
442b06bc 2596 if (likely(page == c->page)) {
ff12059e 2597 set_freepointer(s, object, c->freelist);
8a5ec0ba 2598
933393f5 2599 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2600 s->cpu_slab->freelist, s->cpu_slab->tid,
2601 c->freelist, tid,
2602 object, next_tid(tid)))) {
2603
2604 note_cmpxchg_failure("slab_free", s, tid);
2605 goto redo;
2606 }
84e554e6 2607 stat(s, FREE_FASTPATH);
894b8788 2608 } else
ff12059e 2609 __slab_free(s, page, x, addr);
894b8788 2610
894b8788
CL
2611}
2612
81819f0f
CL
2613void kmem_cache_free(struct kmem_cache *s, void *x)
2614{
b9ce5ef4
GC
2615 s = cache_from_obj(s, x);
2616 if (!s)
79576102 2617 return;
b9ce5ef4 2618 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2619 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2620}
2621EXPORT_SYMBOL(kmem_cache_free);
2622
81819f0f 2623/*
672bba3a
CL
2624 * Object placement in a slab is made very easy because we always start at
2625 * offset 0. If we tune the size of the object to the alignment then we can
2626 * get the required alignment by putting one properly sized object after
2627 * another.
81819f0f
CL
2628 *
2629 * Notice that the allocation order determines the sizes of the per cpu
2630 * caches. Each processor has always one slab available for allocations.
2631 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2632 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2633 * locking overhead.
81819f0f
CL
2634 */
2635
2636/*
2637 * Mininum / Maximum order of slab pages. This influences locking overhead
2638 * and slab fragmentation. A higher order reduces the number of partial slabs
2639 * and increases the number of allocations possible without having to
2640 * take the list_lock.
2641 */
2642static int slub_min_order;
114e9e89 2643static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2644static int slub_min_objects;
81819f0f
CL
2645
2646/*
2647 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2648 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2649 */
2650static int slub_nomerge;
2651
81819f0f
CL
2652/*
2653 * Calculate the order of allocation given an slab object size.
2654 *
672bba3a
CL
2655 * The order of allocation has significant impact on performance and other
2656 * system components. Generally order 0 allocations should be preferred since
2657 * order 0 does not cause fragmentation in the page allocator. Larger objects
2658 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2659 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2660 * would be wasted.
2661 *
2662 * In order to reach satisfactory performance we must ensure that a minimum
2663 * number of objects is in one slab. Otherwise we may generate too much
2664 * activity on the partial lists which requires taking the list_lock. This is
2665 * less a concern for large slabs though which are rarely used.
81819f0f 2666 *
672bba3a
CL
2667 * slub_max_order specifies the order where we begin to stop considering the
2668 * number of objects in a slab as critical. If we reach slub_max_order then
2669 * we try to keep the page order as low as possible. So we accept more waste
2670 * of space in favor of a small page order.
81819f0f 2671 *
672bba3a
CL
2672 * Higher order allocations also allow the placement of more objects in a
2673 * slab and thereby reduce object handling overhead. If the user has
2674 * requested a higher mininum order then we start with that one instead of
2675 * the smallest order which will fit the object.
81819f0f 2676 */
5e6d444e 2677static inline int slab_order(int size, int min_objects,
ab9a0f19 2678 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2679{
2680 int order;
2681 int rem;
6300ea75 2682 int min_order = slub_min_order;
81819f0f 2683
ab9a0f19 2684 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2685 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2686
6300ea75 2687 for (order = max(min_order,
5e6d444e
CL
2688 fls(min_objects * size - 1) - PAGE_SHIFT);
2689 order <= max_order; order++) {
81819f0f 2690
5e6d444e 2691 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2692
ab9a0f19 2693 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2694 continue;
2695
ab9a0f19 2696 rem = (slab_size - reserved) % size;
81819f0f 2697
5e6d444e 2698 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2699 break;
2700
2701 }
672bba3a 2702
81819f0f
CL
2703 return order;
2704}
2705
ab9a0f19 2706static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2707{
2708 int order;
2709 int min_objects;
2710 int fraction;
e8120ff1 2711 int max_objects;
5e6d444e
CL
2712
2713 /*
2714 * Attempt to find best configuration for a slab. This
2715 * works by first attempting to generate a layout with
2716 * the best configuration and backing off gradually.
2717 *
2718 * First we reduce the acceptable waste in a slab. Then
2719 * we reduce the minimum objects required in a slab.
2720 */
2721 min_objects = slub_min_objects;
9b2cd506
CL
2722 if (!min_objects)
2723 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2724 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2725 min_objects = min(min_objects, max_objects);
2726
5e6d444e 2727 while (min_objects > 1) {
c124f5b5 2728 fraction = 16;
5e6d444e
CL
2729 while (fraction >= 4) {
2730 order = slab_order(size, min_objects,
ab9a0f19 2731 slub_max_order, fraction, reserved);
5e6d444e
CL
2732 if (order <= slub_max_order)
2733 return order;
2734 fraction /= 2;
2735 }
5086c389 2736 min_objects--;
5e6d444e
CL
2737 }
2738
2739 /*
2740 * We were unable to place multiple objects in a slab. Now
2741 * lets see if we can place a single object there.
2742 */
ab9a0f19 2743 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2744 if (order <= slub_max_order)
2745 return order;
2746
2747 /*
2748 * Doh this slab cannot be placed using slub_max_order.
2749 */
ab9a0f19 2750 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2751 if (order < MAX_ORDER)
5e6d444e
CL
2752 return order;
2753 return -ENOSYS;
2754}
2755
5595cffc 2756static void
4053497d 2757init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2758{
2759 n->nr_partial = 0;
81819f0f
CL
2760 spin_lock_init(&n->list_lock);
2761 INIT_LIST_HEAD(&n->partial);
8ab1372f 2762#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2763 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2764 atomic_long_set(&n->total_objects, 0);
643b1138 2765 INIT_LIST_HEAD(&n->full);
8ab1372f 2766#endif
81819f0f
CL
2767}
2768
55136592 2769static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2770{
6c182dc0
CL
2771 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2772 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2773
8a5ec0ba 2774 /*
d4d84fef
CM
2775 * Must align to double word boundary for the double cmpxchg
2776 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2777 */
d4d84fef
CM
2778 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2779 2 * sizeof(void *));
8a5ec0ba
CL
2780
2781 if (!s->cpu_slab)
2782 return 0;
2783
2784 init_kmem_cache_cpus(s);
4c93c355 2785
8a5ec0ba 2786 return 1;
4c93c355 2787}
4c93c355 2788
51df1142
CL
2789static struct kmem_cache *kmem_cache_node;
2790
81819f0f
CL
2791/*
2792 * No kmalloc_node yet so do it by hand. We know that this is the first
2793 * slab on the node for this slabcache. There are no concurrent accesses
2794 * possible.
2795 *
2796 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2797 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2798 * memory on a fresh node that has no slab structures yet.
81819f0f 2799 */
55136592 2800static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2801{
2802 struct page *page;
2803 struct kmem_cache_node *n;
2804
51df1142 2805 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2806
51df1142 2807 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2808
2809 BUG_ON(!page);
a2f92ee7
CL
2810 if (page_to_nid(page) != node) {
2811 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2812 "node %d\n", node);
2813 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2814 "in order to be able to continue\n");
2815 }
2816
81819f0f
CL
2817 n = page->freelist;
2818 BUG_ON(!n);
51df1142 2819 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2820 page->inuse = 1;
8cb0a506 2821 page->frozen = 0;
51df1142 2822 kmem_cache_node->node[node] = n;
8ab1372f 2823#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2824 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2825 init_tracking(kmem_cache_node, n);
8ab1372f 2826#endif
4053497d 2827 init_kmem_cache_node(n);
51df1142 2828 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2829
136333d1 2830 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2831}
2832
2833static void free_kmem_cache_nodes(struct kmem_cache *s)
2834{
2835 int node;
2836
f64dc58c 2837 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2838 struct kmem_cache_node *n = s->node[node];
51df1142 2839
73367bd8 2840 if (n)
51df1142
CL
2841 kmem_cache_free(kmem_cache_node, n);
2842
81819f0f
CL
2843 s->node[node] = NULL;
2844 }
2845}
2846
55136592 2847static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2848{
2849 int node;
81819f0f 2850
f64dc58c 2851 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2852 struct kmem_cache_node *n;
2853
73367bd8 2854 if (slab_state == DOWN) {
55136592 2855 early_kmem_cache_node_alloc(node);
73367bd8
AD
2856 continue;
2857 }
51df1142 2858 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2859 GFP_KERNEL, node);
81819f0f 2860
73367bd8
AD
2861 if (!n) {
2862 free_kmem_cache_nodes(s);
2863 return 0;
81819f0f 2864 }
73367bd8 2865
81819f0f 2866 s->node[node] = n;
4053497d 2867 init_kmem_cache_node(n);
81819f0f
CL
2868 }
2869 return 1;
2870}
81819f0f 2871
c0bdb232 2872static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2873{
2874 if (min < MIN_PARTIAL)
2875 min = MIN_PARTIAL;
2876 else if (min > MAX_PARTIAL)
2877 min = MAX_PARTIAL;
2878 s->min_partial = min;
2879}
2880
81819f0f
CL
2881/*
2882 * calculate_sizes() determines the order and the distribution of data within
2883 * a slab object.
2884 */
06b285dc 2885static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2886{
2887 unsigned long flags = s->flags;
3b0efdfa 2888 unsigned long size = s->object_size;
834f3d11 2889 int order;
81819f0f 2890
d8b42bf5
CL
2891 /*
2892 * Round up object size to the next word boundary. We can only
2893 * place the free pointer at word boundaries and this determines
2894 * the possible location of the free pointer.
2895 */
2896 size = ALIGN(size, sizeof(void *));
2897
2898#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2899 /*
2900 * Determine if we can poison the object itself. If the user of
2901 * the slab may touch the object after free or before allocation
2902 * then we should never poison the object itself.
2903 */
2904 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2905 !s->ctor)
81819f0f
CL
2906 s->flags |= __OBJECT_POISON;
2907 else
2908 s->flags &= ~__OBJECT_POISON;
2909
81819f0f
CL
2910
2911 /*
672bba3a 2912 * If we are Redzoning then check if there is some space between the
81819f0f 2913 * end of the object and the free pointer. If not then add an
672bba3a 2914 * additional word to have some bytes to store Redzone information.
81819f0f 2915 */
3b0efdfa 2916 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2917 size += sizeof(void *);
41ecc55b 2918#endif
81819f0f
CL
2919
2920 /*
672bba3a
CL
2921 * With that we have determined the number of bytes in actual use
2922 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2923 */
2924 s->inuse = size;
2925
2926 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2927 s->ctor)) {
81819f0f
CL
2928 /*
2929 * Relocate free pointer after the object if it is not
2930 * permitted to overwrite the first word of the object on
2931 * kmem_cache_free.
2932 *
2933 * This is the case if we do RCU, have a constructor or
2934 * destructor or are poisoning the objects.
2935 */
2936 s->offset = size;
2937 size += sizeof(void *);
2938 }
2939
c12b3c62 2940#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2941 if (flags & SLAB_STORE_USER)
2942 /*
2943 * Need to store information about allocs and frees after
2944 * the object.
2945 */
2946 size += 2 * sizeof(struct track);
2947
be7b3fbc 2948 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2949 /*
2950 * Add some empty padding so that we can catch
2951 * overwrites from earlier objects rather than let
2952 * tracking information or the free pointer be
0211a9c8 2953 * corrupted if a user writes before the start
81819f0f
CL
2954 * of the object.
2955 */
2956 size += sizeof(void *);
41ecc55b 2957#endif
672bba3a 2958
81819f0f
CL
2959 /*
2960 * SLUB stores one object immediately after another beginning from
2961 * offset 0. In order to align the objects we have to simply size
2962 * each object to conform to the alignment.
2963 */
45906855 2964 size = ALIGN(size, s->align);
81819f0f 2965 s->size = size;
06b285dc
CL
2966 if (forced_order >= 0)
2967 order = forced_order;
2968 else
ab9a0f19 2969 order = calculate_order(size, s->reserved);
81819f0f 2970
834f3d11 2971 if (order < 0)
81819f0f
CL
2972 return 0;
2973
b7a49f0d 2974 s->allocflags = 0;
834f3d11 2975 if (order)
b7a49f0d
CL
2976 s->allocflags |= __GFP_COMP;
2977
2978 if (s->flags & SLAB_CACHE_DMA)
2979 s->allocflags |= SLUB_DMA;
2980
2981 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2982 s->allocflags |= __GFP_RECLAIMABLE;
2983
81819f0f
CL
2984 /*
2985 * Determine the number of objects per slab
2986 */
ab9a0f19
LJ
2987 s->oo = oo_make(order, size, s->reserved);
2988 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2989 if (oo_objects(s->oo) > oo_objects(s->max))
2990 s->max = s->oo;
81819f0f 2991
834f3d11 2992 return !!oo_objects(s->oo);
81819f0f
CL
2993}
2994
8a13a4cc 2995static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 2996{
8a13a4cc 2997 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 2998 s->reserved = 0;
81819f0f 2999
da9a638c
LJ
3000 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3001 s->reserved = sizeof(struct rcu_head);
81819f0f 3002
06b285dc 3003 if (!calculate_sizes(s, -1))
81819f0f 3004 goto error;
3de47213
DR
3005 if (disable_higher_order_debug) {
3006 /*
3007 * Disable debugging flags that store metadata if the min slab
3008 * order increased.
3009 */
3b0efdfa 3010 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3011 s->flags &= ~DEBUG_METADATA_FLAGS;
3012 s->offset = 0;
3013 if (!calculate_sizes(s, -1))
3014 goto error;
3015 }
3016 }
81819f0f 3017
2565409f
HC
3018#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3019 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3020 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3021 /* Enable fast mode */
3022 s->flags |= __CMPXCHG_DOUBLE;
3023#endif
3024
3b89d7d8
DR
3025 /*
3026 * The larger the object size is, the more pages we want on the partial
3027 * list to avoid pounding the page allocator excessively.
3028 */
49e22585
CL
3029 set_min_partial(s, ilog2(s->size) / 2);
3030
3031 /*
3032 * cpu_partial determined the maximum number of objects kept in the
3033 * per cpu partial lists of a processor.
3034 *
3035 * Per cpu partial lists mainly contain slabs that just have one
3036 * object freed. If they are used for allocation then they can be
3037 * filled up again with minimal effort. The slab will never hit the
3038 * per node partial lists and therefore no locking will be required.
3039 *
3040 * This setting also determines
3041 *
3042 * A) The number of objects from per cpu partial slabs dumped to the
3043 * per node list when we reach the limit.
9f264904 3044 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3045 * per node list when we run out of per cpu objects. We only fetch 50%
3046 * to keep some capacity around for frees.
3047 */
8f1e33da
CL
3048 if (kmem_cache_debug(s))
3049 s->cpu_partial = 0;
3050 else if (s->size >= PAGE_SIZE)
49e22585
CL
3051 s->cpu_partial = 2;
3052 else if (s->size >= 1024)
3053 s->cpu_partial = 6;
3054 else if (s->size >= 256)
3055 s->cpu_partial = 13;
3056 else
3057 s->cpu_partial = 30;
3058
81819f0f 3059#ifdef CONFIG_NUMA
e2cb96b7 3060 s->remote_node_defrag_ratio = 1000;
81819f0f 3061#endif
55136592 3062 if (!init_kmem_cache_nodes(s))
dfb4f096 3063 goto error;
81819f0f 3064
55136592 3065 if (alloc_kmem_cache_cpus(s))
278b1bb1 3066 return 0;
ff12059e 3067
4c93c355 3068 free_kmem_cache_nodes(s);
81819f0f
CL
3069error:
3070 if (flags & SLAB_PANIC)
3071 panic("Cannot create slab %s size=%lu realsize=%u "
3072 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3073 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3074 s->offset, flags);
278b1bb1 3075 return -EINVAL;
81819f0f 3076}
81819f0f 3077
33b12c38
CL
3078static void list_slab_objects(struct kmem_cache *s, struct page *page,
3079 const char *text)
3080{
3081#ifdef CONFIG_SLUB_DEBUG
3082 void *addr = page_address(page);
3083 void *p;
a5dd5c11
NK
3084 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3085 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3086 if (!map)
3087 return;
945cf2b6 3088 slab_err(s, page, text, s->name);
33b12c38 3089 slab_lock(page);
33b12c38 3090
5f80b13a 3091 get_map(s, page, map);
33b12c38
CL
3092 for_each_object(p, s, addr, page->objects) {
3093
3094 if (!test_bit(slab_index(p, s, addr), map)) {
3095 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3096 p, p - addr);
3097 print_tracking(s, p);
3098 }
3099 }
3100 slab_unlock(page);
bbd7d57b 3101 kfree(map);
33b12c38
CL
3102#endif
3103}
3104
81819f0f 3105/*
599870b1 3106 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3107 * This is called from kmem_cache_close(). We must be the last thread
3108 * using the cache and therefore we do not need to lock anymore.
81819f0f 3109 */
599870b1 3110static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3111{
81819f0f
CL
3112 struct page *page, *h;
3113
33b12c38 3114 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3115 if (!page->inuse) {
5cc6eee8 3116 remove_partial(n, page);
81819f0f 3117 discard_slab(s, page);
33b12c38
CL
3118 } else {
3119 list_slab_objects(s, page,
945cf2b6 3120 "Objects remaining in %s on kmem_cache_close()");
599870b1 3121 }
33b12c38 3122 }
81819f0f
CL
3123}
3124
3125/*
672bba3a 3126 * Release all resources used by a slab cache.
81819f0f 3127 */
0c710013 3128static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3129{
3130 int node;
3131
3132 flush_all(s);
81819f0f 3133 /* Attempt to free all objects */
f64dc58c 3134 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3135 struct kmem_cache_node *n = get_node(s, node);
3136
599870b1
CL
3137 free_partial(s, n);
3138 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3139 return 1;
3140 }
945cf2b6 3141 free_percpu(s->cpu_slab);
81819f0f
CL
3142 free_kmem_cache_nodes(s);
3143 return 0;
3144}
3145
945cf2b6 3146int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3147{
12c3667f 3148 int rc = kmem_cache_close(s);
945cf2b6 3149
12c3667f 3150 if (!rc)
81819f0f 3151 sysfs_slab_remove(s);
12c3667f
CL
3152
3153 return rc;
81819f0f 3154}
81819f0f
CL
3155
3156/********************************************************************
3157 * Kmalloc subsystem
3158 *******************************************************************/
3159
51df1142 3160struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3161EXPORT_SYMBOL(kmalloc_caches);
3162
55136592 3163#ifdef CONFIG_ZONE_DMA
51df1142 3164static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3165#endif
3166
81819f0f
CL
3167static int __init setup_slub_min_order(char *str)
3168{
06428780 3169 get_option(&str, &slub_min_order);
81819f0f
CL
3170
3171 return 1;
3172}
3173
3174__setup("slub_min_order=", setup_slub_min_order);
3175
3176static int __init setup_slub_max_order(char *str)
3177{
06428780 3178 get_option(&str, &slub_max_order);
818cf590 3179 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3180
3181 return 1;
3182}
3183
3184__setup("slub_max_order=", setup_slub_max_order);
3185
3186static int __init setup_slub_min_objects(char *str)
3187{
06428780 3188 get_option(&str, &slub_min_objects);
81819f0f
CL
3189
3190 return 1;
3191}
3192
3193__setup("slub_min_objects=", setup_slub_min_objects);
3194
3195static int __init setup_slub_nomerge(char *str)
3196{
3197 slub_nomerge = 1;
3198 return 1;
3199}
3200
3201__setup("slub_nomerge", setup_slub_nomerge);
3202
f1b26339
CL
3203/*
3204 * Conversion table for small slabs sizes / 8 to the index in the
3205 * kmalloc array. This is necessary for slabs < 192 since we have non power
3206 * of two cache sizes there. The size of larger slabs can be determined using
3207 * fls.
3208 */
3209static s8 size_index[24] = {
3210 3, /* 8 */
3211 4, /* 16 */
3212 5, /* 24 */
3213 5, /* 32 */
3214 6, /* 40 */
3215 6, /* 48 */
3216 6, /* 56 */
3217 6, /* 64 */
3218 1, /* 72 */
3219 1, /* 80 */
3220 1, /* 88 */
3221 1, /* 96 */
3222 7, /* 104 */
3223 7, /* 112 */
3224 7, /* 120 */
3225 7, /* 128 */
3226 2, /* 136 */
3227 2, /* 144 */
3228 2, /* 152 */
3229 2, /* 160 */
3230 2, /* 168 */
3231 2, /* 176 */
3232 2, /* 184 */
3233 2 /* 192 */
3234};
3235
acdfcd04
AK
3236static inline int size_index_elem(size_t bytes)
3237{
3238 return (bytes - 1) / 8;
3239}
3240
81819f0f
CL
3241static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3242{
f1b26339 3243 int index;
81819f0f 3244
f1b26339
CL
3245 if (size <= 192) {
3246 if (!size)
3247 return ZERO_SIZE_PTR;
81819f0f 3248
acdfcd04 3249 index = size_index[size_index_elem(size)];
aadb4bc4 3250 } else
f1b26339 3251 index = fls(size - 1);
81819f0f
CL
3252
3253#ifdef CONFIG_ZONE_DMA
f1b26339 3254 if (unlikely((flags & SLUB_DMA)))
51df1142 3255 return kmalloc_dma_caches[index];
f1b26339 3256
81819f0f 3257#endif
51df1142 3258 return kmalloc_caches[index];
81819f0f
CL
3259}
3260
3261void *__kmalloc(size_t size, gfp_t flags)
3262{
aadb4bc4 3263 struct kmem_cache *s;
5b882be4 3264 void *ret;
81819f0f 3265
ffadd4d0 3266 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3267 return kmalloc_large(size, flags);
aadb4bc4
CL
3268
3269 s = get_slab(size, flags);
3270
3271 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3272 return s;
3273
2b847c3c 3274 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3275
ca2b84cb 3276 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3277
3278 return ret;
81819f0f
CL
3279}
3280EXPORT_SYMBOL(__kmalloc);
3281
5d1f57e4 3282#ifdef CONFIG_NUMA
f619cfe1
CL
3283static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3284{
b1eeab67 3285 struct page *page;
e4f7c0b4 3286 void *ptr = NULL;
f619cfe1 3287
d79923fa 3288 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3289 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3290 if (page)
e4f7c0b4
CM
3291 ptr = page_address(page);
3292
3293 kmemleak_alloc(ptr, size, 1, flags);
3294 return ptr;
f619cfe1
CL
3295}
3296
81819f0f
CL
3297void *__kmalloc_node(size_t size, gfp_t flags, int node)
3298{
aadb4bc4 3299 struct kmem_cache *s;
5b882be4 3300 void *ret;
81819f0f 3301
057685cf 3302 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3303 ret = kmalloc_large_node(size, flags, node);
3304
ca2b84cb
EGM
3305 trace_kmalloc_node(_RET_IP_, ret,
3306 size, PAGE_SIZE << get_order(size),
3307 flags, node);
5b882be4
EGM
3308
3309 return ret;
3310 }
aadb4bc4
CL
3311
3312 s = get_slab(size, flags);
3313
3314 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3315 return s;
3316
2b847c3c 3317 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3318
ca2b84cb 3319 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3320
3321 return ret;
81819f0f
CL
3322}
3323EXPORT_SYMBOL(__kmalloc_node);
3324#endif
3325
3326size_t ksize(const void *object)
3327{
272c1d21 3328 struct page *page;
81819f0f 3329
ef8b4520 3330 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3331 return 0;
3332
294a80a8 3333 page = virt_to_head_page(object);
294a80a8 3334
76994412
PE
3335 if (unlikely(!PageSlab(page))) {
3336 WARN_ON(!PageCompound(page));
294a80a8 3337 return PAGE_SIZE << compound_order(page);
76994412 3338 }
81819f0f 3339
1b4f59e3 3340 return slab_ksize(page->slab_cache);
81819f0f 3341}
b1aabecd 3342EXPORT_SYMBOL(ksize);
81819f0f 3343
d18a90dd
BG
3344#ifdef CONFIG_SLUB_DEBUG
3345bool verify_mem_not_deleted(const void *x)
3346{
3347 struct page *page;
3348 void *object = (void *)x;
3349 unsigned long flags;
3350 bool rv;
3351
3352 if (unlikely(ZERO_OR_NULL_PTR(x)))
3353 return false;
3354
3355 local_irq_save(flags);
3356
3357 page = virt_to_head_page(x);
3358 if (unlikely(!PageSlab(page))) {
3359 /* maybe it was from stack? */
3360 rv = true;
3361 goto out_unlock;
3362 }
3363
3364 slab_lock(page);
1b4f59e3
GC
3365 if (on_freelist(page->slab_cache, page, object)) {
3366 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3367 rv = false;
3368 } else {
3369 rv = true;
3370 }
3371 slab_unlock(page);
3372
3373out_unlock:
3374 local_irq_restore(flags);
3375 return rv;
3376}
3377EXPORT_SYMBOL(verify_mem_not_deleted);
3378#endif
3379
81819f0f
CL
3380void kfree(const void *x)
3381{
81819f0f 3382 struct page *page;
5bb983b0 3383 void *object = (void *)x;
81819f0f 3384
2121db74
PE
3385 trace_kfree(_RET_IP_, x);
3386
2408c550 3387 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3388 return;
3389
b49af68f 3390 page = virt_to_head_page(x);
aadb4bc4 3391 if (unlikely(!PageSlab(page))) {
0937502a 3392 BUG_ON(!PageCompound(page));
e4f7c0b4 3393 kmemleak_free(x);
d79923fa 3394 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3395 return;
3396 }
1b4f59e3 3397 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3398}
3399EXPORT_SYMBOL(kfree);
3400
2086d26a 3401/*
672bba3a
CL
3402 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3403 * the remaining slabs by the number of items in use. The slabs with the
3404 * most items in use come first. New allocations will then fill those up
3405 * and thus they can be removed from the partial lists.
3406 *
3407 * The slabs with the least items are placed last. This results in them
3408 * being allocated from last increasing the chance that the last objects
3409 * are freed in them.
2086d26a
CL
3410 */
3411int kmem_cache_shrink(struct kmem_cache *s)
3412{
3413 int node;
3414 int i;
3415 struct kmem_cache_node *n;
3416 struct page *page;
3417 struct page *t;
205ab99d 3418 int objects = oo_objects(s->max);
2086d26a 3419 struct list_head *slabs_by_inuse =
834f3d11 3420 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3421 unsigned long flags;
3422
3423 if (!slabs_by_inuse)
3424 return -ENOMEM;
3425
3426 flush_all(s);
f64dc58c 3427 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3428 n = get_node(s, node);
3429
3430 if (!n->nr_partial)
3431 continue;
3432
834f3d11 3433 for (i = 0; i < objects; i++)
2086d26a
CL
3434 INIT_LIST_HEAD(slabs_by_inuse + i);
3435
3436 spin_lock_irqsave(&n->list_lock, flags);
3437
3438 /*
672bba3a 3439 * Build lists indexed by the items in use in each slab.
2086d26a 3440 *
672bba3a
CL
3441 * Note that concurrent frees may occur while we hold the
3442 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3443 */
3444 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3445 list_move(&page->lru, slabs_by_inuse + page->inuse);
3446 if (!page->inuse)
3447 n->nr_partial--;
2086d26a
CL
3448 }
3449
2086d26a 3450 /*
672bba3a
CL
3451 * Rebuild the partial list with the slabs filled up most
3452 * first and the least used slabs at the end.
2086d26a 3453 */
69cb8e6b 3454 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3455 list_splice(slabs_by_inuse + i, n->partial.prev);
3456
2086d26a 3457 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3458
3459 /* Release empty slabs */
3460 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3461 discard_slab(s, page);
2086d26a
CL
3462 }
3463
3464 kfree(slabs_by_inuse);
3465 return 0;
3466}
3467EXPORT_SYMBOL(kmem_cache_shrink);
3468
92a5bbc1 3469#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3470static int slab_mem_going_offline_callback(void *arg)
3471{
3472 struct kmem_cache *s;
3473
18004c5d 3474 mutex_lock(&slab_mutex);
b9049e23
YG
3475 list_for_each_entry(s, &slab_caches, list)
3476 kmem_cache_shrink(s);
18004c5d 3477 mutex_unlock(&slab_mutex);
b9049e23
YG
3478
3479 return 0;
3480}
3481
3482static void slab_mem_offline_callback(void *arg)
3483{
3484 struct kmem_cache_node *n;
3485 struct kmem_cache *s;
3486 struct memory_notify *marg = arg;
3487 int offline_node;
3488
b9d5ab25 3489 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3490
3491 /*
3492 * If the node still has available memory. we need kmem_cache_node
3493 * for it yet.
3494 */
3495 if (offline_node < 0)
3496 return;
3497
18004c5d 3498 mutex_lock(&slab_mutex);
b9049e23
YG
3499 list_for_each_entry(s, &slab_caches, list) {
3500 n = get_node(s, offline_node);
3501 if (n) {
3502 /*
3503 * if n->nr_slabs > 0, slabs still exist on the node
3504 * that is going down. We were unable to free them,
c9404c9c 3505 * and offline_pages() function shouldn't call this
b9049e23
YG
3506 * callback. So, we must fail.
3507 */
0f389ec6 3508 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3509
3510 s->node[offline_node] = NULL;
8de66a0c 3511 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3512 }
3513 }
18004c5d 3514 mutex_unlock(&slab_mutex);
b9049e23
YG
3515}
3516
3517static int slab_mem_going_online_callback(void *arg)
3518{
3519 struct kmem_cache_node *n;
3520 struct kmem_cache *s;
3521 struct memory_notify *marg = arg;
b9d5ab25 3522 int nid = marg->status_change_nid_normal;
b9049e23
YG
3523 int ret = 0;
3524
3525 /*
3526 * If the node's memory is already available, then kmem_cache_node is
3527 * already created. Nothing to do.
3528 */
3529 if (nid < 0)
3530 return 0;
3531
3532 /*
0121c619 3533 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3534 * allocate a kmem_cache_node structure in order to bring the node
3535 * online.
3536 */
18004c5d 3537 mutex_lock(&slab_mutex);
b9049e23
YG
3538 list_for_each_entry(s, &slab_caches, list) {
3539 /*
3540 * XXX: kmem_cache_alloc_node will fallback to other nodes
3541 * since memory is not yet available from the node that
3542 * is brought up.
3543 */
8de66a0c 3544 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3545 if (!n) {
3546 ret = -ENOMEM;
3547 goto out;
3548 }
4053497d 3549 init_kmem_cache_node(n);
b9049e23
YG
3550 s->node[nid] = n;
3551 }
3552out:
18004c5d 3553 mutex_unlock(&slab_mutex);
b9049e23
YG
3554 return ret;
3555}
3556
3557static int slab_memory_callback(struct notifier_block *self,
3558 unsigned long action, void *arg)
3559{
3560 int ret = 0;
3561
3562 switch (action) {
3563 case MEM_GOING_ONLINE:
3564 ret = slab_mem_going_online_callback(arg);
3565 break;
3566 case MEM_GOING_OFFLINE:
3567 ret = slab_mem_going_offline_callback(arg);
3568 break;
3569 case MEM_OFFLINE:
3570 case MEM_CANCEL_ONLINE:
3571 slab_mem_offline_callback(arg);
3572 break;
3573 case MEM_ONLINE:
3574 case MEM_CANCEL_OFFLINE:
3575 break;
3576 }
dc19f9db
KH
3577 if (ret)
3578 ret = notifier_from_errno(ret);
3579 else
3580 ret = NOTIFY_OK;
b9049e23
YG
3581 return ret;
3582}
3583
3584#endif /* CONFIG_MEMORY_HOTPLUG */
3585
81819f0f
CL
3586/********************************************************************
3587 * Basic setup of slabs
3588 *******************************************************************/
3589
51df1142
CL
3590/*
3591 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3592 * the page allocator. Allocate them properly then fix up the pointers
3593 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3594 */
3595
dffb4d60 3596static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3597{
3598 int node;
dffb4d60 3599 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3600
dffb4d60 3601 memcpy(s, static_cache, kmem_cache->object_size);
51df1142
CL
3602
3603 for_each_node_state(node, N_NORMAL_MEMORY) {
3604 struct kmem_cache_node *n = get_node(s, node);
3605 struct page *p;
3606
3607 if (n) {
3608 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3609 p->slab_cache = s;
51df1142 3610
607bf324 3611#ifdef CONFIG_SLUB_DEBUG
51df1142 3612 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3613 p->slab_cache = s;
51df1142
CL
3614#endif
3615 }
3616 }
dffb4d60
CL
3617 list_add(&s->list, &slab_caches);
3618 return s;
51df1142
CL
3619}
3620
81819f0f
CL
3621void __init kmem_cache_init(void)
3622{
dffb4d60
CL
3623 static __initdata struct kmem_cache boot_kmem_cache,
3624 boot_kmem_cache_node;
81819f0f 3625 int i;
dffb4d60 3626 int caches = 2;
51df1142 3627
fc8d8620
SG
3628 if (debug_guardpage_minorder())
3629 slub_max_order = 0;
3630
dffb4d60
CL
3631 kmem_cache_node = &boot_kmem_cache_node;
3632 kmem_cache = &boot_kmem_cache;
51df1142 3633
dffb4d60
CL
3634 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3635 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3636
0c40ba4f 3637 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3638
3639 /* Able to allocate the per node structures */
3640 slab_state = PARTIAL;
3641
dffb4d60
CL
3642 create_boot_cache(kmem_cache, "kmem_cache",
3643 offsetof(struct kmem_cache, node) +
3644 nr_node_ids * sizeof(struct kmem_cache_node *),
3645 SLAB_HWCACHE_ALIGN);
8a13a4cc 3646
dffb4d60 3647 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3648
51df1142
CL
3649 /*
3650 * Allocate kmem_cache_node properly from the kmem_cache slab.
3651 * kmem_cache_node is separately allocated so no need to
3652 * update any list pointers.
3653 */
dffb4d60 3654 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3655
3656 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3657
3658 /*
3659 * Patch up the size_index table if we have strange large alignment
3660 * requirements for the kmalloc array. This is only the case for
6446faa2 3661 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3662 *
3663 * Largest permitted alignment is 256 bytes due to the way we
3664 * handle the index determination for the smaller caches.
3665 *
3666 * Make sure that nothing crazy happens if someone starts tinkering
3667 * around with ARCH_KMALLOC_MINALIGN
3668 */
3669 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3670 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3671
acdfcd04
AK
3672 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3673 int elem = size_index_elem(i);
3674 if (elem >= ARRAY_SIZE(size_index))
3675 break;
3676 size_index[elem] = KMALLOC_SHIFT_LOW;
3677 }
f1b26339 3678
acdfcd04
AK
3679 if (KMALLOC_MIN_SIZE == 64) {
3680 /*
3681 * The 96 byte size cache is not used if the alignment
3682 * is 64 byte.
3683 */
3684 for (i = 64 + 8; i <= 96; i += 8)
3685 size_index[size_index_elem(i)] = 7;
3686 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3687 /*
3688 * The 192 byte sized cache is not used if the alignment
3689 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3690 * instead.
3691 */
3692 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3693 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3694 }
3695
51df1142
CL
3696 /* Caches that are not of the two-to-the-power-of size */
3697 if (KMALLOC_MIN_SIZE <= 32) {
3698 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3699 caches++;
3700 }
3701
3702 if (KMALLOC_MIN_SIZE <= 64) {
3703 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3704 caches++;
3705 }
3706
3707 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3708 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3709 caches++;
3710 }
3711
81819f0f
CL
3712 slab_state = UP;
3713
3714 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3715 if (KMALLOC_MIN_SIZE <= 32) {
3716 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3717 BUG_ON(!kmalloc_caches[1]->name);
3718 }
3719
3720 if (KMALLOC_MIN_SIZE <= 64) {
3721 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3722 BUG_ON(!kmalloc_caches[2]->name);
3723 }
3724
d7278bd7
CL
3725 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3726 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3727
3728 BUG_ON(!s);
51df1142 3729 kmalloc_caches[i]->name = s;
d7278bd7 3730 }
81819f0f
CL
3731
3732#ifdef CONFIG_SMP
3733 register_cpu_notifier(&slab_notifier);
9dfc6e68 3734#endif
81819f0f 3735
55136592 3736#ifdef CONFIG_ZONE_DMA
51df1142
CL
3737 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3738 struct kmem_cache *s = kmalloc_caches[i];
55136592 3739
51df1142 3740 if (s && s->size) {
55136592 3741 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3742 "dma-kmalloc-%d", s->object_size);
55136592
CL
3743
3744 BUG_ON(!name);
51df1142 3745 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3746 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3747 }
3748 }
3749#endif
3adbefee
IM
3750 printk(KERN_INFO
3751 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3752 " CPUs=%d, Nodes=%d\n",
3753 caches, cache_line_size(),
81819f0f
CL
3754 slub_min_order, slub_max_order, slub_min_objects,
3755 nr_cpu_ids, nr_node_ids);
3756}
3757
7e85ee0c
PE
3758void __init kmem_cache_init_late(void)
3759{
7e85ee0c
PE
3760}
3761
81819f0f
CL
3762/*
3763 * Find a mergeable slab cache
3764 */
3765static int slab_unmergeable(struct kmem_cache *s)
3766{
3767 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3768 return 1;
3769
c59def9f 3770 if (s->ctor)
81819f0f
CL
3771 return 1;
3772
8ffa6875
CL
3773 /*
3774 * We may have set a slab to be unmergeable during bootstrap.
3775 */
3776 if (s->refcount < 0)
3777 return 1;
3778
81819f0f
CL
3779 return 0;
3780}
3781
2633d7a0 3782static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3783 size_t align, unsigned long flags, const char *name,
51cc5068 3784 void (*ctor)(void *))
81819f0f 3785{
5b95a4ac 3786 struct kmem_cache *s;
81819f0f
CL
3787
3788 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3789 return NULL;
3790
c59def9f 3791 if (ctor)
81819f0f
CL
3792 return NULL;
3793
3794 size = ALIGN(size, sizeof(void *));
3795 align = calculate_alignment(flags, align, size);
3796 size = ALIGN(size, align);
ba0268a8 3797 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3798
5b95a4ac 3799 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3800 if (slab_unmergeable(s))
3801 continue;
3802
3803 if (size > s->size)
3804 continue;
3805
ba0268a8 3806 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3807 continue;
3808 /*
3809 * Check if alignment is compatible.
3810 * Courtesy of Adrian Drzewiecki
3811 */
06428780 3812 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3813 continue;
3814
3815 if (s->size - size >= sizeof(void *))
3816 continue;
3817
2633d7a0
GC
3818 if (!cache_match_memcg(s, memcg))
3819 continue;
3820
81819f0f
CL
3821 return s;
3822 }
3823 return NULL;
3824}
3825
2633d7a0
GC
3826struct kmem_cache *
3827__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3828 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3829{
3830 struct kmem_cache *s;
3831
2633d7a0 3832 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3833 if (s) {
3834 s->refcount++;
3835 /*
3836 * Adjust the object sizes so that we clear
3837 * the complete object on kzalloc.
3838 */
3b0efdfa 3839 s->object_size = max(s->object_size, (int)size);
81819f0f 3840 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3841
7b8f3b66 3842 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3843 s->refcount--;
cbb79694 3844 s = NULL;
7b8f3b66 3845 }
a0e1d1be 3846 }
6446faa2 3847
cbb79694
CL
3848 return s;
3849}
84c1cf62 3850
8a13a4cc 3851int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3852{
aac3a166
PE
3853 int err;
3854
3855 err = kmem_cache_open(s, flags);
3856 if (err)
3857 return err;
20cea968 3858
45530c44
CL
3859 /* Mutex is not taken during early boot */
3860 if (slab_state <= UP)
3861 return 0;
3862
aac3a166
PE
3863 mutex_unlock(&slab_mutex);
3864 err = sysfs_slab_add(s);
3865 mutex_lock(&slab_mutex);
20cea968 3866
aac3a166
PE
3867 if (err)
3868 kmem_cache_close(s);
20cea968 3869
aac3a166 3870 return err;
81819f0f 3871}
81819f0f 3872
81819f0f 3873#ifdef CONFIG_SMP
81819f0f 3874/*
672bba3a
CL
3875 * Use the cpu notifier to insure that the cpu slabs are flushed when
3876 * necessary.
81819f0f
CL
3877 */
3878static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3879 unsigned long action, void *hcpu)
3880{
3881 long cpu = (long)hcpu;
5b95a4ac
CL
3882 struct kmem_cache *s;
3883 unsigned long flags;
81819f0f
CL
3884
3885 switch (action) {
3886 case CPU_UP_CANCELED:
8bb78442 3887 case CPU_UP_CANCELED_FROZEN:
81819f0f 3888 case CPU_DEAD:
8bb78442 3889 case CPU_DEAD_FROZEN:
18004c5d 3890 mutex_lock(&slab_mutex);
5b95a4ac
CL
3891 list_for_each_entry(s, &slab_caches, list) {
3892 local_irq_save(flags);
3893 __flush_cpu_slab(s, cpu);
3894 local_irq_restore(flags);
3895 }
18004c5d 3896 mutex_unlock(&slab_mutex);
81819f0f
CL
3897 break;
3898 default:
3899 break;
3900 }
3901 return NOTIFY_OK;
3902}
3903
06428780 3904static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3905 .notifier_call = slab_cpuup_callback
06428780 3906};
81819f0f
CL
3907
3908#endif
3909
ce71e27c 3910void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3911{
aadb4bc4 3912 struct kmem_cache *s;
94b528d0 3913 void *ret;
aadb4bc4 3914
ffadd4d0 3915 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3916 return kmalloc_large(size, gfpflags);
3917
aadb4bc4 3918 s = get_slab(size, gfpflags);
81819f0f 3919
2408c550 3920 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3921 return s;
81819f0f 3922
2b847c3c 3923 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3924
25985edc 3925 /* Honor the call site pointer we received. */
ca2b84cb 3926 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3927
3928 return ret;
81819f0f
CL
3929}
3930
5d1f57e4 3931#ifdef CONFIG_NUMA
81819f0f 3932void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3933 int node, unsigned long caller)
81819f0f 3934{
aadb4bc4 3935 struct kmem_cache *s;
94b528d0 3936 void *ret;
aadb4bc4 3937
d3e14aa3
XF
3938 if (unlikely(size > SLUB_MAX_SIZE)) {
3939 ret = kmalloc_large_node(size, gfpflags, node);
3940
3941 trace_kmalloc_node(caller, ret,
3942 size, PAGE_SIZE << get_order(size),
3943 gfpflags, node);
3944
3945 return ret;
3946 }
eada35ef 3947
aadb4bc4 3948 s = get_slab(size, gfpflags);
81819f0f 3949
2408c550 3950 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3951 return s;
81819f0f 3952
2b847c3c 3953 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3954
25985edc 3955 /* Honor the call site pointer we received. */
ca2b84cb 3956 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3957
3958 return ret;
81819f0f 3959}
5d1f57e4 3960#endif
81819f0f 3961
ab4d5ed5 3962#ifdef CONFIG_SYSFS
205ab99d
CL
3963static int count_inuse(struct page *page)
3964{
3965 return page->inuse;
3966}
3967
3968static int count_total(struct page *page)
3969{
3970 return page->objects;
3971}
ab4d5ed5 3972#endif
205ab99d 3973
ab4d5ed5 3974#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3975static int validate_slab(struct kmem_cache *s, struct page *page,
3976 unsigned long *map)
53e15af0
CL
3977{
3978 void *p;
a973e9dd 3979 void *addr = page_address(page);
53e15af0
CL
3980
3981 if (!check_slab(s, page) ||
3982 !on_freelist(s, page, NULL))
3983 return 0;
3984
3985 /* Now we know that a valid freelist exists */
39b26464 3986 bitmap_zero(map, page->objects);
53e15af0 3987
5f80b13a
CL
3988 get_map(s, page, map);
3989 for_each_object(p, s, addr, page->objects) {
3990 if (test_bit(slab_index(p, s, addr), map))
3991 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3992 return 0;
53e15af0
CL
3993 }
3994
224a88be 3995 for_each_object(p, s, addr, page->objects)
7656c72b 3996 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3997 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3998 return 0;
3999 return 1;
4000}
4001
434e245d
CL
4002static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4003 unsigned long *map)
53e15af0 4004{
881db7fb
CL
4005 slab_lock(page);
4006 validate_slab(s, page, map);
4007 slab_unlock(page);
53e15af0
CL
4008}
4009
434e245d
CL
4010static int validate_slab_node(struct kmem_cache *s,
4011 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4012{
4013 unsigned long count = 0;
4014 struct page *page;
4015 unsigned long flags;
4016
4017 spin_lock_irqsave(&n->list_lock, flags);
4018
4019 list_for_each_entry(page, &n->partial, lru) {
434e245d 4020 validate_slab_slab(s, page, map);
53e15af0
CL
4021 count++;
4022 }
4023 if (count != n->nr_partial)
4024 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4025 "counter=%ld\n", s->name, count, n->nr_partial);
4026
4027 if (!(s->flags & SLAB_STORE_USER))
4028 goto out;
4029
4030 list_for_each_entry(page, &n->full, lru) {
434e245d 4031 validate_slab_slab(s, page, map);
53e15af0
CL
4032 count++;
4033 }
4034 if (count != atomic_long_read(&n->nr_slabs))
4035 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4036 "counter=%ld\n", s->name, count,
4037 atomic_long_read(&n->nr_slabs));
4038
4039out:
4040 spin_unlock_irqrestore(&n->list_lock, flags);
4041 return count;
4042}
4043
434e245d 4044static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4045{
4046 int node;
4047 unsigned long count = 0;
205ab99d 4048 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4049 sizeof(unsigned long), GFP_KERNEL);
4050
4051 if (!map)
4052 return -ENOMEM;
53e15af0
CL
4053
4054 flush_all(s);
f64dc58c 4055 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4056 struct kmem_cache_node *n = get_node(s, node);
4057
434e245d 4058 count += validate_slab_node(s, n, map);
53e15af0 4059 }
434e245d 4060 kfree(map);
53e15af0
CL
4061 return count;
4062}
88a420e4 4063/*
672bba3a 4064 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4065 * and freed.
4066 */
4067
4068struct location {
4069 unsigned long count;
ce71e27c 4070 unsigned long addr;
45edfa58
CL
4071 long long sum_time;
4072 long min_time;
4073 long max_time;
4074 long min_pid;
4075 long max_pid;
174596a0 4076 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4077 nodemask_t nodes;
88a420e4
CL
4078};
4079
4080struct loc_track {
4081 unsigned long max;
4082 unsigned long count;
4083 struct location *loc;
4084};
4085
4086static void free_loc_track(struct loc_track *t)
4087{
4088 if (t->max)
4089 free_pages((unsigned long)t->loc,
4090 get_order(sizeof(struct location) * t->max));
4091}
4092
68dff6a9 4093static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4094{
4095 struct location *l;
4096 int order;
4097
88a420e4
CL
4098 order = get_order(sizeof(struct location) * max);
4099
68dff6a9 4100 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4101 if (!l)
4102 return 0;
4103
4104 if (t->count) {
4105 memcpy(l, t->loc, sizeof(struct location) * t->count);
4106 free_loc_track(t);
4107 }
4108 t->max = max;
4109 t->loc = l;
4110 return 1;
4111}
4112
4113static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4114 const struct track *track)
88a420e4
CL
4115{
4116 long start, end, pos;
4117 struct location *l;
ce71e27c 4118 unsigned long caddr;
45edfa58 4119 unsigned long age = jiffies - track->when;
88a420e4
CL
4120
4121 start = -1;
4122 end = t->count;
4123
4124 for ( ; ; ) {
4125 pos = start + (end - start + 1) / 2;
4126
4127 /*
4128 * There is nothing at "end". If we end up there
4129 * we need to add something to before end.
4130 */
4131 if (pos == end)
4132 break;
4133
4134 caddr = t->loc[pos].addr;
45edfa58
CL
4135 if (track->addr == caddr) {
4136
4137 l = &t->loc[pos];
4138 l->count++;
4139 if (track->when) {
4140 l->sum_time += age;
4141 if (age < l->min_time)
4142 l->min_time = age;
4143 if (age > l->max_time)
4144 l->max_time = age;
4145
4146 if (track->pid < l->min_pid)
4147 l->min_pid = track->pid;
4148 if (track->pid > l->max_pid)
4149 l->max_pid = track->pid;
4150
174596a0
RR
4151 cpumask_set_cpu(track->cpu,
4152 to_cpumask(l->cpus));
45edfa58
CL
4153 }
4154 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4155 return 1;
4156 }
4157
45edfa58 4158 if (track->addr < caddr)
88a420e4
CL
4159 end = pos;
4160 else
4161 start = pos;
4162 }
4163
4164 /*
672bba3a 4165 * Not found. Insert new tracking element.
88a420e4 4166 */
68dff6a9 4167 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4168 return 0;
4169
4170 l = t->loc + pos;
4171 if (pos < t->count)
4172 memmove(l + 1, l,
4173 (t->count - pos) * sizeof(struct location));
4174 t->count++;
4175 l->count = 1;
45edfa58
CL
4176 l->addr = track->addr;
4177 l->sum_time = age;
4178 l->min_time = age;
4179 l->max_time = age;
4180 l->min_pid = track->pid;
4181 l->max_pid = track->pid;
174596a0
RR
4182 cpumask_clear(to_cpumask(l->cpus));
4183 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4184 nodes_clear(l->nodes);
4185 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4186 return 1;
4187}
4188
4189static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4190 struct page *page, enum track_item alloc,
a5dd5c11 4191 unsigned long *map)
88a420e4 4192{
a973e9dd 4193 void *addr = page_address(page);
88a420e4
CL
4194 void *p;
4195
39b26464 4196 bitmap_zero(map, page->objects);
5f80b13a 4197 get_map(s, page, map);
88a420e4 4198
224a88be 4199 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4200 if (!test_bit(slab_index(p, s, addr), map))
4201 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4202}
4203
4204static int list_locations(struct kmem_cache *s, char *buf,
4205 enum track_item alloc)
4206{
e374d483 4207 int len = 0;
88a420e4 4208 unsigned long i;
68dff6a9 4209 struct loc_track t = { 0, 0, NULL };
88a420e4 4210 int node;
bbd7d57b
ED
4211 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4212 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4213
bbd7d57b
ED
4214 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4215 GFP_TEMPORARY)) {
4216 kfree(map);
68dff6a9 4217 return sprintf(buf, "Out of memory\n");
bbd7d57b 4218 }
88a420e4
CL
4219 /* Push back cpu slabs */
4220 flush_all(s);
4221
f64dc58c 4222 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4223 struct kmem_cache_node *n = get_node(s, node);
4224 unsigned long flags;
4225 struct page *page;
4226
9e86943b 4227 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4228 continue;
4229
4230 spin_lock_irqsave(&n->list_lock, flags);
4231 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4232 process_slab(&t, s, page, alloc, map);
88a420e4 4233 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4234 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4235 spin_unlock_irqrestore(&n->list_lock, flags);
4236 }
4237
4238 for (i = 0; i < t.count; i++) {
45edfa58 4239 struct location *l = &t.loc[i];
88a420e4 4240
9c246247 4241 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4242 break;
e374d483 4243 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4244
4245 if (l->addr)
62c70bce 4246 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4247 else
e374d483 4248 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4249
4250 if (l->sum_time != l->min_time) {
e374d483 4251 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4252 l->min_time,
4253 (long)div_u64(l->sum_time, l->count),
4254 l->max_time);
45edfa58 4255 } else
e374d483 4256 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4257 l->min_time);
4258
4259 if (l->min_pid != l->max_pid)
e374d483 4260 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4261 l->min_pid, l->max_pid);
4262 else
e374d483 4263 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4264 l->min_pid);
4265
174596a0
RR
4266 if (num_online_cpus() > 1 &&
4267 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4268 len < PAGE_SIZE - 60) {
4269 len += sprintf(buf + len, " cpus=");
4270 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4271 to_cpumask(l->cpus));
45edfa58
CL
4272 }
4273
62bc62a8 4274 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4275 len < PAGE_SIZE - 60) {
4276 len += sprintf(buf + len, " nodes=");
4277 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4278 l->nodes);
4279 }
4280
e374d483 4281 len += sprintf(buf + len, "\n");
88a420e4
CL
4282 }
4283
4284 free_loc_track(&t);
bbd7d57b 4285 kfree(map);
88a420e4 4286 if (!t.count)
e374d483
HH
4287 len += sprintf(buf, "No data\n");
4288 return len;
88a420e4 4289}
ab4d5ed5 4290#endif
88a420e4 4291
a5a84755
CL
4292#ifdef SLUB_RESILIENCY_TEST
4293static void resiliency_test(void)
4294{
4295 u8 *p;
4296
4297 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4298
4299 printk(KERN_ERR "SLUB resiliency testing\n");
4300 printk(KERN_ERR "-----------------------\n");
4301 printk(KERN_ERR "A. Corruption after allocation\n");
4302
4303 p = kzalloc(16, GFP_KERNEL);
4304 p[16] = 0x12;
4305 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4306 " 0x12->0x%p\n\n", p + 16);
4307
4308 validate_slab_cache(kmalloc_caches[4]);
4309
4310 /* Hmmm... The next two are dangerous */
4311 p = kzalloc(32, GFP_KERNEL);
4312 p[32 + sizeof(void *)] = 0x34;
4313 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4314 " 0x34 -> -0x%p\n", p);
4315 printk(KERN_ERR
4316 "If allocated object is overwritten then not detectable\n\n");
4317
4318 validate_slab_cache(kmalloc_caches[5]);
4319 p = kzalloc(64, GFP_KERNEL);
4320 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4321 *p = 0x56;
4322 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4323 p);
4324 printk(KERN_ERR
4325 "If allocated object is overwritten then not detectable\n\n");
4326 validate_slab_cache(kmalloc_caches[6]);
4327
4328 printk(KERN_ERR "\nB. Corruption after free\n");
4329 p = kzalloc(128, GFP_KERNEL);
4330 kfree(p);
4331 *p = 0x78;
4332 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4333 validate_slab_cache(kmalloc_caches[7]);
4334
4335 p = kzalloc(256, GFP_KERNEL);
4336 kfree(p);
4337 p[50] = 0x9a;
4338 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4339 p);
4340 validate_slab_cache(kmalloc_caches[8]);
4341
4342 p = kzalloc(512, GFP_KERNEL);
4343 kfree(p);
4344 p[512] = 0xab;
4345 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4346 validate_slab_cache(kmalloc_caches[9]);
4347}
4348#else
4349#ifdef CONFIG_SYSFS
4350static void resiliency_test(void) {};
4351#endif
4352#endif
4353
ab4d5ed5 4354#ifdef CONFIG_SYSFS
81819f0f 4355enum slab_stat_type {
205ab99d
CL
4356 SL_ALL, /* All slabs */
4357 SL_PARTIAL, /* Only partially allocated slabs */
4358 SL_CPU, /* Only slabs used for cpu caches */
4359 SL_OBJECTS, /* Determine allocated objects not slabs */
4360 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4361};
4362
205ab99d 4363#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4364#define SO_PARTIAL (1 << SL_PARTIAL)
4365#define SO_CPU (1 << SL_CPU)
4366#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4367#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4368
62e5c4b4
CG
4369static ssize_t show_slab_objects(struct kmem_cache *s,
4370 char *buf, unsigned long flags)
81819f0f
CL
4371{
4372 unsigned long total = 0;
81819f0f
CL
4373 int node;
4374 int x;
4375 unsigned long *nodes;
4376 unsigned long *per_cpu;
4377
4378 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4379 if (!nodes)
4380 return -ENOMEM;
81819f0f
CL
4381 per_cpu = nodes + nr_node_ids;
4382
205ab99d
CL
4383 if (flags & SO_CPU) {
4384 int cpu;
81819f0f 4385
205ab99d 4386 for_each_possible_cpu(cpu) {
9dfc6e68 4387 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4388 int node;
49e22585 4389 struct page *page;
dfb4f096 4390
bc6697d8 4391 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4392 if (!page)
4393 continue;
205ab99d 4394
ec3ab083
CL
4395 node = page_to_nid(page);
4396 if (flags & SO_TOTAL)
4397 x = page->objects;
4398 else if (flags & SO_OBJECTS)
4399 x = page->inuse;
4400 else
4401 x = 1;
49e22585 4402
ec3ab083
CL
4403 total += x;
4404 nodes[node] += x;
4405
4406 page = ACCESS_ONCE(c->partial);
49e22585
CL
4407 if (page) {
4408 x = page->pobjects;
bc6697d8
ED
4409 total += x;
4410 nodes[node] += x;
49e22585 4411 }
ec3ab083 4412
bc6697d8 4413 per_cpu[node]++;
81819f0f
CL
4414 }
4415 }
4416
04d94879 4417 lock_memory_hotplug();
ab4d5ed5 4418#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4419 if (flags & SO_ALL) {
4420 for_each_node_state(node, N_NORMAL_MEMORY) {
4421 struct kmem_cache_node *n = get_node(s, node);
4422
4423 if (flags & SO_TOTAL)
4424 x = atomic_long_read(&n->total_objects);
4425 else if (flags & SO_OBJECTS)
4426 x = atomic_long_read(&n->total_objects) -
4427 count_partial(n, count_free);
81819f0f 4428
81819f0f 4429 else
205ab99d 4430 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4431 total += x;
4432 nodes[node] += x;
4433 }
4434
ab4d5ed5
CL
4435 } else
4436#endif
4437 if (flags & SO_PARTIAL) {
205ab99d
CL
4438 for_each_node_state(node, N_NORMAL_MEMORY) {
4439 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4440
205ab99d
CL
4441 if (flags & SO_TOTAL)
4442 x = count_partial(n, count_total);
4443 else if (flags & SO_OBJECTS)
4444 x = count_partial(n, count_inuse);
81819f0f 4445 else
205ab99d 4446 x = n->nr_partial;
81819f0f
CL
4447 total += x;
4448 nodes[node] += x;
4449 }
4450 }
81819f0f
CL
4451 x = sprintf(buf, "%lu", total);
4452#ifdef CONFIG_NUMA
f64dc58c 4453 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4454 if (nodes[node])
4455 x += sprintf(buf + x, " N%d=%lu",
4456 node, nodes[node]);
4457#endif
04d94879 4458 unlock_memory_hotplug();
81819f0f
CL
4459 kfree(nodes);
4460 return x + sprintf(buf + x, "\n");
4461}
4462
ab4d5ed5 4463#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4464static int any_slab_objects(struct kmem_cache *s)
4465{
4466 int node;
81819f0f 4467
dfb4f096 4468 for_each_online_node(node) {
81819f0f
CL
4469 struct kmem_cache_node *n = get_node(s, node);
4470
dfb4f096
CL
4471 if (!n)
4472 continue;
4473
4ea33e2d 4474 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4475 return 1;
4476 }
4477 return 0;
4478}
ab4d5ed5 4479#endif
81819f0f
CL
4480
4481#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4482#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4483
4484struct slab_attribute {
4485 struct attribute attr;
4486 ssize_t (*show)(struct kmem_cache *s, char *buf);
4487 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4488};
4489
4490#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4491 static struct slab_attribute _name##_attr = \
4492 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4493
4494#define SLAB_ATTR(_name) \
4495 static struct slab_attribute _name##_attr = \
ab067e99 4496 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4497
81819f0f
CL
4498static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4499{
4500 return sprintf(buf, "%d\n", s->size);
4501}
4502SLAB_ATTR_RO(slab_size);
4503
4504static ssize_t align_show(struct kmem_cache *s, char *buf)
4505{
4506 return sprintf(buf, "%d\n", s->align);
4507}
4508SLAB_ATTR_RO(align);
4509
4510static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4511{
3b0efdfa 4512 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4513}
4514SLAB_ATTR_RO(object_size);
4515
4516static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4517{
834f3d11 4518 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4519}
4520SLAB_ATTR_RO(objs_per_slab);
4521
06b285dc
CL
4522static ssize_t order_store(struct kmem_cache *s,
4523 const char *buf, size_t length)
4524{
0121c619
CL
4525 unsigned long order;
4526 int err;
4527
4528 err = strict_strtoul(buf, 10, &order);
4529 if (err)
4530 return err;
06b285dc
CL
4531
4532 if (order > slub_max_order || order < slub_min_order)
4533 return -EINVAL;
4534
4535 calculate_sizes(s, order);
4536 return length;
4537}
4538
81819f0f
CL
4539static ssize_t order_show(struct kmem_cache *s, char *buf)
4540{
834f3d11 4541 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4542}
06b285dc 4543SLAB_ATTR(order);
81819f0f 4544
73d342b1
DR
4545static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4546{
4547 return sprintf(buf, "%lu\n", s->min_partial);
4548}
4549
4550static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4551 size_t length)
4552{
4553 unsigned long min;
4554 int err;
4555
4556 err = strict_strtoul(buf, 10, &min);
4557 if (err)
4558 return err;
4559
c0bdb232 4560 set_min_partial(s, min);
73d342b1
DR
4561 return length;
4562}
4563SLAB_ATTR(min_partial);
4564
49e22585
CL
4565static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4566{
4567 return sprintf(buf, "%u\n", s->cpu_partial);
4568}
4569
4570static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4571 size_t length)
4572{
4573 unsigned long objects;
4574 int err;
4575
4576 err = strict_strtoul(buf, 10, &objects);
4577 if (err)
4578 return err;
74ee4ef1
DR
4579 if (objects && kmem_cache_debug(s))
4580 return -EINVAL;
49e22585
CL
4581
4582 s->cpu_partial = objects;
4583 flush_all(s);
4584 return length;
4585}
4586SLAB_ATTR(cpu_partial);
4587
81819f0f
CL
4588static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4589{
62c70bce
JP
4590 if (!s->ctor)
4591 return 0;
4592 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4593}
4594SLAB_ATTR_RO(ctor);
4595
81819f0f
CL
4596static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4597{
4598 return sprintf(buf, "%d\n", s->refcount - 1);
4599}
4600SLAB_ATTR_RO(aliases);
4601
81819f0f
CL
4602static ssize_t partial_show(struct kmem_cache *s, char *buf)
4603{
d9acf4b7 4604 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4605}
4606SLAB_ATTR_RO(partial);
4607
4608static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4609{
d9acf4b7 4610 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4611}
4612SLAB_ATTR_RO(cpu_slabs);
4613
4614static ssize_t objects_show(struct kmem_cache *s, char *buf)
4615{
205ab99d 4616 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4617}
4618SLAB_ATTR_RO(objects);
4619
205ab99d
CL
4620static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4621{
4622 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4623}
4624SLAB_ATTR_RO(objects_partial);
4625
49e22585
CL
4626static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4627{
4628 int objects = 0;
4629 int pages = 0;
4630 int cpu;
4631 int len;
4632
4633 for_each_online_cpu(cpu) {
4634 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4635
4636 if (page) {
4637 pages += page->pages;
4638 objects += page->pobjects;
4639 }
4640 }
4641
4642 len = sprintf(buf, "%d(%d)", objects, pages);
4643
4644#ifdef CONFIG_SMP
4645 for_each_online_cpu(cpu) {
4646 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4647
4648 if (page && len < PAGE_SIZE - 20)
4649 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4650 page->pobjects, page->pages);
4651 }
4652#endif
4653 return len + sprintf(buf + len, "\n");
4654}
4655SLAB_ATTR_RO(slabs_cpu_partial);
4656
a5a84755
CL
4657static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4658{
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4660}
4661
4662static ssize_t reclaim_account_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664{
4665 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4666 if (buf[0] == '1')
4667 s->flags |= SLAB_RECLAIM_ACCOUNT;
4668 return length;
4669}
4670SLAB_ATTR(reclaim_account);
4671
4672static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4673{
4674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4675}
4676SLAB_ATTR_RO(hwcache_align);
4677
4678#ifdef CONFIG_ZONE_DMA
4679static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4680{
4681 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4682}
4683SLAB_ATTR_RO(cache_dma);
4684#endif
4685
4686static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4687{
4688 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4689}
4690SLAB_ATTR_RO(destroy_by_rcu);
4691
ab9a0f19
LJ
4692static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4693{
4694 return sprintf(buf, "%d\n", s->reserved);
4695}
4696SLAB_ATTR_RO(reserved);
4697
ab4d5ed5 4698#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4699static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4700{
4701 return show_slab_objects(s, buf, SO_ALL);
4702}
4703SLAB_ATTR_RO(slabs);
4704
205ab99d
CL
4705static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4706{
4707 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4708}
4709SLAB_ATTR_RO(total_objects);
4710
81819f0f
CL
4711static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4712{
4713 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4714}
4715
4716static ssize_t sanity_checks_store(struct kmem_cache *s,
4717 const char *buf, size_t length)
4718{
4719 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4720 if (buf[0] == '1') {
4721 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4722 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4723 }
81819f0f
CL
4724 return length;
4725}
4726SLAB_ATTR(sanity_checks);
4727
4728static ssize_t trace_show(struct kmem_cache *s, char *buf)
4729{
4730 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4731}
4732
4733static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4734 size_t length)
4735{
4736 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4737 if (buf[0] == '1') {
4738 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4739 s->flags |= SLAB_TRACE;
b789ef51 4740 }
81819f0f
CL
4741 return length;
4742}
4743SLAB_ATTR(trace);
4744
81819f0f
CL
4745static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4746{
4747 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4748}
4749
4750static ssize_t red_zone_store(struct kmem_cache *s,
4751 const char *buf, size_t length)
4752{
4753 if (any_slab_objects(s))
4754 return -EBUSY;
4755
4756 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4757 if (buf[0] == '1') {
4758 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4759 s->flags |= SLAB_RED_ZONE;
b789ef51 4760 }
06b285dc 4761 calculate_sizes(s, -1);
81819f0f
CL
4762 return length;
4763}
4764SLAB_ATTR(red_zone);
4765
4766static ssize_t poison_show(struct kmem_cache *s, char *buf)
4767{
4768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4769}
4770
4771static ssize_t poison_store(struct kmem_cache *s,
4772 const char *buf, size_t length)
4773{
4774 if (any_slab_objects(s))
4775 return -EBUSY;
4776
4777 s->flags &= ~SLAB_POISON;
b789ef51
CL
4778 if (buf[0] == '1') {
4779 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4780 s->flags |= SLAB_POISON;
b789ef51 4781 }
06b285dc 4782 calculate_sizes(s, -1);
81819f0f
CL
4783 return length;
4784}
4785SLAB_ATTR(poison);
4786
4787static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4788{
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4790}
4791
4792static ssize_t store_user_store(struct kmem_cache *s,
4793 const char *buf, size_t length)
4794{
4795 if (any_slab_objects(s))
4796 return -EBUSY;
4797
4798 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4799 if (buf[0] == '1') {
4800 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4801 s->flags |= SLAB_STORE_USER;
b789ef51 4802 }
06b285dc 4803 calculate_sizes(s, -1);
81819f0f
CL
4804 return length;
4805}
4806SLAB_ATTR(store_user);
4807
53e15af0
CL
4808static ssize_t validate_show(struct kmem_cache *s, char *buf)
4809{
4810 return 0;
4811}
4812
4813static ssize_t validate_store(struct kmem_cache *s,
4814 const char *buf, size_t length)
4815{
434e245d
CL
4816 int ret = -EINVAL;
4817
4818 if (buf[0] == '1') {
4819 ret = validate_slab_cache(s);
4820 if (ret >= 0)
4821 ret = length;
4822 }
4823 return ret;
53e15af0
CL
4824}
4825SLAB_ATTR(validate);
a5a84755
CL
4826
4827static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4828{
4829 if (!(s->flags & SLAB_STORE_USER))
4830 return -ENOSYS;
4831 return list_locations(s, buf, TRACK_ALLOC);
4832}
4833SLAB_ATTR_RO(alloc_calls);
4834
4835static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4836{
4837 if (!(s->flags & SLAB_STORE_USER))
4838 return -ENOSYS;
4839 return list_locations(s, buf, TRACK_FREE);
4840}
4841SLAB_ATTR_RO(free_calls);
4842#endif /* CONFIG_SLUB_DEBUG */
4843
4844#ifdef CONFIG_FAILSLAB
4845static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4846{
4847 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4848}
4849
4850static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4851 size_t length)
4852{
4853 s->flags &= ~SLAB_FAILSLAB;
4854 if (buf[0] == '1')
4855 s->flags |= SLAB_FAILSLAB;
4856 return length;
4857}
4858SLAB_ATTR(failslab);
ab4d5ed5 4859#endif
53e15af0 4860
2086d26a
CL
4861static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4862{
4863 return 0;
4864}
4865
4866static ssize_t shrink_store(struct kmem_cache *s,
4867 const char *buf, size_t length)
4868{
4869 if (buf[0] == '1') {
4870 int rc = kmem_cache_shrink(s);
4871
4872 if (rc)
4873 return rc;
4874 } else
4875 return -EINVAL;
4876 return length;
4877}
4878SLAB_ATTR(shrink);
4879
81819f0f 4880#ifdef CONFIG_NUMA
9824601e 4881static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4882{
9824601e 4883 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4884}
4885
9824601e 4886static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4887 const char *buf, size_t length)
4888{
0121c619
CL
4889 unsigned long ratio;
4890 int err;
4891
4892 err = strict_strtoul(buf, 10, &ratio);
4893 if (err)
4894 return err;
4895
e2cb96b7 4896 if (ratio <= 100)
0121c619 4897 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4898
81819f0f
CL
4899 return length;
4900}
9824601e 4901SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4902#endif
4903
8ff12cfc 4904#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4905static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4906{
4907 unsigned long sum = 0;
4908 int cpu;
4909 int len;
4910 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4911
4912 if (!data)
4913 return -ENOMEM;
4914
4915 for_each_online_cpu(cpu) {
9dfc6e68 4916 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4917
4918 data[cpu] = x;
4919 sum += x;
4920 }
4921
4922 len = sprintf(buf, "%lu", sum);
4923
50ef37b9 4924#ifdef CONFIG_SMP
8ff12cfc
CL
4925 for_each_online_cpu(cpu) {
4926 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4927 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4928 }
50ef37b9 4929#endif
8ff12cfc
CL
4930 kfree(data);
4931 return len + sprintf(buf + len, "\n");
4932}
4933
78eb00cc
DR
4934static void clear_stat(struct kmem_cache *s, enum stat_item si)
4935{
4936 int cpu;
4937
4938 for_each_online_cpu(cpu)
9dfc6e68 4939 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4940}
4941
8ff12cfc
CL
4942#define STAT_ATTR(si, text) \
4943static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4944{ \
4945 return show_stat(s, buf, si); \
4946} \
78eb00cc
DR
4947static ssize_t text##_store(struct kmem_cache *s, \
4948 const char *buf, size_t length) \
4949{ \
4950 if (buf[0] != '0') \
4951 return -EINVAL; \
4952 clear_stat(s, si); \
4953 return length; \
4954} \
4955SLAB_ATTR(text); \
8ff12cfc
CL
4956
4957STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4958STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4959STAT_ATTR(FREE_FASTPATH, free_fastpath);
4960STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4961STAT_ATTR(FREE_FROZEN, free_frozen);
4962STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4963STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4964STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4965STAT_ATTR(ALLOC_SLAB, alloc_slab);
4966STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4967STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4968STAT_ATTR(FREE_SLAB, free_slab);
4969STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4970STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4971STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4972STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4973STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4974STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4975STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4976STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4977STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4978STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4979STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4980STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4981STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4982STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4983#endif
4984
06428780 4985static struct attribute *slab_attrs[] = {
81819f0f
CL
4986 &slab_size_attr.attr,
4987 &object_size_attr.attr,
4988 &objs_per_slab_attr.attr,
4989 &order_attr.attr,
73d342b1 4990 &min_partial_attr.attr,
49e22585 4991 &cpu_partial_attr.attr,
81819f0f 4992 &objects_attr.attr,
205ab99d 4993 &objects_partial_attr.attr,
81819f0f
CL
4994 &partial_attr.attr,
4995 &cpu_slabs_attr.attr,
4996 &ctor_attr.attr,
81819f0f
CL
4997 &aliases_attr.attr,
4998 &align_attr.attr,
81819f0f
CL
4999 &hwcache_align_attr.attr,
5000 &reclaim_account_attr.attr,
5001 &destroy_by_rcu_attr.attr,
a5a84755 5002 &shrink_attr.attr,
ab9a0f19 5003 &reserved_attr.attr,
49e22585 5004 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5005#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5006 &total_objects_attr.attr,
5007 &slabs_attr.attr,
5008 &sanity_checks_attr.attr,
5009 &trace_attr.attr,
81819f0f
CL
5010 &red_zone_attr.attr,
5011 &poison_attr.attr,
5012 &store_user_attr.attr,
53e15af0 5013 &validate_attr.attr,
88a420e4
CL
5014 &alloc_calls_attr.attr,
5015 &free_calls_attr.attr,
ab4d5ed5 5016#endif
81819f0f
CL
5017#ifdef CONFIG_ZONE_DMA
5018 &cache_dma_attr.attr,
5019#endif
5020#ifdef CONFIG_NUMA
9824601e 5021 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5022#endif
5023#ifdef CONFIG_SLUB_STATS
5024 &alloc_fastpath_attr.attr,
5025 &alloc_slowpath_attr.attr,
5026 &free_fastpath_attr.attr,
5027 &free_slowpath_attr.attr,
5028 &free_frozen_attr.attr,
5029 &free_add_partial_attr.attr,
5030 &free_remove_partial_attr.attr,
5031 &alloc_from_partial_attr.attr,
5032 &alloc_slab_attr.attr,
5033 &alloc_refill_attr.attr,
e36a2652 5034 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5035 &free_slab_attr.attr,
5036 &cpuslab_flush_attr.attr,
5037 &deactivate_full_attr.attr,
5038 &deactivate_empty_attr.attr,
5039 &deactivate_to_head_attr.attr,
5040 &deactivate_to_tail_attr.attr,
5041 &deactivate_remote_frees_attr.attr,
03e404af 5042 &deactivate_bypass_attr.attr,
65c3376a 5043 &order_fallback_attr.attr,
b789ef51
CL
5044 &cmpxchg_double_fail_attr.attr,
5045 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5046 &cpu_partial_alloc_attr.attr,
5047 &cpu_partial_free_attr.attr,
8028dcea
AS
5048 &cpu_partial_node_attr.attr,
5049 &cpu_partial_drain_attr.attr,
81819f0f 5050#endif
4c13dd3b
DM
5051#ifdef CONFIG_FAILSLAB
5052 &failslab_attr.attr,
5053#endif
5054
81819f0f
CL
5055 NULL
5056};
5057
5058static struct attribute_group slab_attr_group = {
5059 .attrs = slab_attrs,
5060};
5061
5062static ssize_t slab_attr_show(struct kobject *kobj,
5063 struct attribute *attr,
5064 char *buf)
5065{
5066 struct slab_attribute *attribute;
5067 struct kmem_cache *s;
5068 int err;
5069
5070 attribute = to_slab_attr(attr);
5071 s = to_slab(kobj);
5072
5073 if (!attribute->show)
5074 return -EIO;
5075
5076 err = attribute->show(s, buf);
5077
5078 return err;
5079}
5080
5081static ssize_t slab_attr_store(struct kobject *kobj,
5082 struct attribute *attr,
5083 const char *buf, size_t len)
5084{
5085 struct slab_attribute *attribute;
5086 struct kmem_cache *s;
5087 int err;
5088
5089 attribute = to_slab_attr(attr);
5090 s = to_slab(kobj);
5091
5092 if (!attribute->store)
5093 return -EIO;
5094
5095 err = attribute->store(s, buf, len);
5096
5097 return err;
5098}
5099
52cf25d0 5100static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5101 .show = slab_attr_show,
5102 .store = slab_attr_store,
5103};
5104
5105static struct kobj_type slab_ktype = {
5106 .sysfs_ops = &slab_sysfs_ops,
5107};
5108
5109static int uevent_filter(struct kset *kset, struct kobject *kobj)
5110{
5111 struct kobj_type *ktype = get_ktype(kobj);
5112
5113 if (ktype == &slab_ktype)
5114 return 1;
5115 return 0;
5116}
5117
9cd43611 5118static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5119 .filter = uevent_filter,
5120};
5121
27c3a314 5122static struct kset *slab_kset;
81819f0f
CL
5123
5124#define ID_STR_LENGTH 64
5125
5126/* Create a unique string id for a slab cache:
6446faa2
CL
5127 *
5128 * Format :[flags-]size
81819f0f
CL
5129 */
5130static char *create_unique_id(struct kmem_cache *s)
5131{
5132 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5133 char *p = name;
5134
5135 BUG_ON(!name);
5136
5137 *p++ = ':';
5138 /*
5139 * First flags affecting slabcache operations. We will only
5140 * get here for aliasable slabs so we do not need to support
5141 * too many flags. The flags here must cover all flags that
5142 * are matched during merging to guarantee that the id is
5143 * unique.
5144 */
5145 if (s->flags & SLAB_CACHE_DMA)
5146 *p++ = 'd';
5147 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5148 *p++ = 'a';
5149 if (s->flags & SLAB_DEBUG_FREE)
5150 *p++ = 'F';
5a896d9e
VN
5151 if (!(s->flags & SLAB_NOTRACK))
5152 *p++ = 't';
81819f0f
CL
5153 if (p != name + 1)
5154 *p++ = '-';
5155 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5156
5157#ifdef CONFIG_MEMCG_KMEM
5158 if (!is_root_cache(s))
5159 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5160#endif
5161
81819f0f
CL
5162 BUG_ON(p > name + ID_STR_LENGTH - 1);
5163 return name;
5164}
5165
5166static int sysfs_slab_add(struct kmem_cache *s)
5167{
5168 int err;
5169 const char *name;
45530c44 5170 int unmergeable = slab_unmergeable(s);
81819f0f 5171
81819f0f
CL
5172 if (unmergeable) {
5173 /*
5174 * Slabcache can never be merged so we can use the name proper.
5175 * This is typically the case for debug situations. In that
5176 * case we can catch duplicate names easily.
5177 */
27c3a314 5178 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5179 name = s->name;
5180 } else {
5181 /*
5182 * Create a unique name for the slab as a target
5183 * for the symlinks.
5184 */
5185 name = create_unique_id(s);
5186 }
5187
27c3a314 5188 s->kobj.kset = slab_kset;
1eada11c
GKH
5189 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5190 if (err) {
5191 kobject_put(&s->kobj);
81819f0f 5192 return err;
1eada11c 5193 }
81819f0f
CL
5194
5195 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5196 if (err) {
5197 kobject_del(&s->kobj);
5198 kobject_put(&s->kobj);
81819f0f 5199 return err;
5788d8ad 5200 }
81819f0f
CL
5201 kobject_uevent(&s->kobj, KOBJ_ADD);
5202 if (!unmergeable) {
5203 /* Setup first alias */
5204 sysfs_slab_alias(s, s->name);
5205 kfree(name);
5206 }
5207 return 0;
5208}
5209
5210static void sysfs_slab_remove(struct kmem_cache *s)
5211{
97d06609 5212 if (slab_state < FULL)
2bce6485
CL
5213 /*
5214 * Sysfs has not been setup yet so no need to remove the
5215 * cache from sysfs.
5216 */
5217 return;
5218
81819f0f
CL
5219 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5220 kobject_del(&s->kobj);
151c602f 5221 kobject_put(&s->kobj);
81819f0f
CL
5222}
5223
5224/*
5225 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5226 * available lest we lose that information.
81819f0f
CL
5227 */
5228struct saved_alias {
5229 struct kmem_cache *s;
5230 const char *name;
5231 struct saved_alias *next;
5232};
5233
5af328a5 5234static struct saved_alias *alias_list;
81819f0f
CL
5235
5236static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5237{
5238 struct saved_alias *al;
5239
97d06609 5240 if (slab_state == FULL) {
81819f0f
CL
5241 /*
5242 * If we have a leftover link then remove it.
5243 */
27c3a314
GKH
5244 sysfs_remove_link(&slab_kset->kobj, name);
5245 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5246 }
5247
5248 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5249 if (!al)
5250 return -ENOMEM;
5251
5252 al->s = s;
5253 al->name = name;
5254 al->next = alias_list;
5255 alias_list = al;
5256 return 0;
5257}
5258
5259static int __init slab_sysfs_init(void)
5260{
5b95a4ac 5261 struct kmem_cache *s;
81819f0f
CL
5262 int err;
5263
18004c5d 5264 mutex_lock(&slab_mutex);
2bce6485 5265
0ff21e46 5266 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5267 if (!slab_kset) {
18004c5d 5268 mutex_unlock(&slab_mutex);
81819f0f
CL
5269 printk(KERN_ERR "Cannot register slab subsystem.\n");
5270 return -ENOSYS;
5271 }
5272
97d06609 5273 slab_state = FULL;
26a7bd03 5274
5b95a4ac 5275 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5276 err = sysfs_slab_add(s);
5d540fb7
CL
5277 if (err)
5278 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5279 " to sysfs\n", s->name);
26a7bd03 5280 }
81819f0f
CL
5281
5282 while (alias_list) {
5283 struct saved_alias *al = alias_list;
5284
5285 alias_list = alias_list->next;
5286 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5287 if (err)
5288 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5289 " %s to sysfs\n", al->name);
81819f0f
CL
5290 kfree(al);
5291 }
5292
18004c5d 5293 mutex_unlock(&slab_mutex);
81819f0f
CL
5294 resiliency_test();
5295 return 0;
5296}
5297
5298__initcall(slab_sysfs_init);
ab4d5ed5 5299#endif /* CONFIG_SYSFS */
57ed3eda
PE
5300
5301/*
5302 * The /proc/slabinfo ABI
5303 */
158a9624 5304#ifdef CONFIG_SLABINFO
0d7561c6 5305void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda
PE
5306{
5307 unsigned long nr_partials = 0;
5308 unsigned long nr_slabs = 0;
205ab99d
CL
5309 unsigned long nr_objs = 0;
5310 unsigned long nr_free = 0;
57ed3eda
PE
5311 int node;
5312
57ed3eda
PE
5313 for_each_online_node(node) {
5314 struct kmem_cache_node *n = get_node(s, node);
5315
5316 if (!n)
5317 continue;
5318
5319 nr_partials += n->nr_partial;
5320 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5321 nr_objs += atomic_long_read(&n->total_objects);
5322 nr_free += count_partial(n, count_free);
57ed3eda
PE
5323 }
5324
0d7561c6
GC
5325 sinfo->active_objs = nr_objs - nr_free;
5326 sinfo->num_objs = nr_objs;
5327 sinfo->active_slabs = nr_slabs;
5328 sinfo->num_slabs = nr_slabs;
5329 sinfo->objects_per_slab = oo_objects(s->oo);
5330 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5331}
5332
0d7561c6 5333void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5334{
7b3c3a50
AD
5335}
5336
b7454ad3
GC
5337ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5338 size_t count, loff_t *ppos)
7b3c3a50 5339{
b7454ad3 5340 return -EIO;
7b3c3a50 5341}
158a9624 5342#endif /* CONFIG_SLABINFO */