]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
slub: Rearrange #ifdef CONFIG_SLUB_DEBUG in calculate_sizes()
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
71c7a06f
CL
207#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
81819f0f 209
65c02d4c
CL
210/* Not all arches define cache_line_size */
211#ifndef cache_line_size
212#define cache_line_size() L1_CACHE_BYTES
213#endif
214
81819f0f
CL
215static int kmem_size = sizeof(struct kmem_cache);
216
217#ifdef CONFIG_SMP
218static struct notifier_block slab_notifier;
219#endif
220
221static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 224 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
225 SYSFS /* Sysfs up */
226} slab_state = DOWN;
227
228/* A list of all slab caches on the system */
229static DECLARE_RWSEM(slub_lock);
5af328a5 230static LIST_HEAD(slab_caches);
81819f0f 231
02cbc874
CL
232/*
233 * Tracking user of a slab.
234 */
235struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240};
241
242enum track_item { TRACK_ALLOC, TRACK_FREE };
243
41ecc55b 244#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
245static int sysfs_slab_add(struct kmem_cache *);
246static int sysfs_slab_alias(struct kmem_cache *, const char *);
247static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 248
81819f0f 249#else
0c710013
CL
250static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
151c602f
CL
253static inline void sysfs_slab_remove(struct kmem_cache *s)
254{
255 kfree(s);
256}
8ff12cfc 257
81819f0f
CL
258#endif
259
8ff12cfc
CL
260static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261{
262#ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264#endif
265}
266
81819f0f
CL
267/********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271int slab_is_available(void)
272{
273 return slab_state >= UP;
274}
275
276static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277{
278#ifdef CONFIG_NUMA
279 return s->node[node];
280#else
281 return &s->local_node;
282#endif
283}
284
dfb4f096
CL
285static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286{
4c93c355
CL
287#ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289#else
290 return &s->cpu_slab;
291#endif
dfb4f096
CL
292}
293
02cbc874
CL
294static inline int check_valid_pointer(struct kmem_cache *s,
295 struct page *page, const void *object)
296{
297 void *base;
298
a973e9dd 299 if (!object)
02cbc874
CL
300 return 1;
301
a973e9dd 302 base = page_address(page);
02cbc874
CL
303 if (object < base || object >= base + s->objects * s->size ||
304 (object - base) % s->size) {
305 return 0;
306 }
307
308 return 1;
309}
310
7656c72b
CL
311/*
312 * Slow version of get and set free pointer.
313 *
314 * This version requires touching the cache lines of kmem_cache which
315 * we avoid to do in the fast alloc free paths. There we obtain the offset
316 * from the page struct.
317 */
318static inline void *get_freepointer(struct kmem_cache *s, void *object)
319{
320 return *(void **)(object + s->offset);
321}
322
323static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
324{
325 *(void **)(object + s->offset) = fp;
326}
327
328/* Loop over all objects in a slab */
329#define for_each_object(__p, __s, __addr) \
330 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
331 __p += (__s)->size)
332
333/* Scan freelist */
334#define for_each_free_object(__p, __s, __free) \
a973e9dd 335 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
336
337/* Determine object index from a given position */
338static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
339{
340 return (p - addr) / s->size;
341}
342
41ecc55b
CL
343#ifdef CONFIG_SLUB_DEBUG
344/*
345 * Debug settings:
346 */
f0630fff
CL
347#ifdef CONFIG_SLUB_DEBUG_ON
348static int slub_debug = DEBUG_DEFAULT_FLAGS;
349#else
41ecc55b 350static int slub_debug;
f0630fff 351#endif
41ecc55b
CL
352
353static char *slub_debug_slabs;
354
81819f0f
CL
355/*
356 * Object debugging
357 */
358static void print_section(char *text, u8 *addr, unsigned int length)
359{
360 int i, offset;
361 int newline = 1;
362 char ascii[17];
363
364 ascii[16] = 0;
365
366 for (i = 0; i < length; i++) {
367 if (newline) {
24922684 368 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
369 newline = 0;
370 }
06428780 371 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
372 offset = i % 16;
373 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
374 if (offset == 15) {
06428780 375 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
376 newline = 1;
377 }
378 }
379 if (!newline) {
380 i %= 16;
381 while (i < 16) {
06428780 382 printk(KERN_CONT " ");
81819f0f
CL
383 ascii[i] = ' ';
384 i++;
385 }
06428780 386 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
387 }
388}
389
81819f0f
CL
390static struct track *get_track(struct kmem_cache *s, void *object,
391 enum track_item alloc)
392{
393 struct track *p;
394
395 if (s->offset)
396 p = object + s->offset + sizeof(void *);
397 else
398 p = object + s->inuse;
399
400 return p + alloc;
401}
402
403static void set_track(struct kmem_cache *s, void *object,
404 enum track_item alloc, void *addr)
405{
406 struct track *p;
407
408 if (s->offset)
409 p = object + s->offset + sizeof(void *);
410 else
411 p = object + s->inuse;
412
413 p += alloc;
414 if (addr) {
415 p->addr = addr;
416 p->cpu = smp_processor_id();
417 p->pid = current ? current->pid : -1;
418 p->when = jiffies;
419 } else
420 memset(p, 0, sizeof(struct track));
421}
422
81819f0f
CL
423static void init_tracking(struct kmem_cache *s, void *object)
424{
24922684
CL
425 if (!(s->flags & SLAB_STORE_USER))
426 return;
427
428 set_track(s, object, TRACK_FREE, NULL);
429 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
430}
431
432static void print_track(const char *s, struct track *t)
433{
434 if (!t->addr)
435 return;
436
24922684 437 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 438 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
439 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
440}
441
442static void print_tracking(struct kmem_cache *s, void *object)
443{
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
448 print_track("Freed", get_track(s, object, TRACK_FREE));
449}
450
451static void print_page_info(struct page *page)
452{
453 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
454 page, page->inuse, page->freelist, page->flags);
455
456}
457
458static void slab_bug(struct kmem_cache *s, char *fmt, ...)
459{
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "========================================"
467 "=====================================\n");
468 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
469 printk(KERN_ERR "----------------------------------------"
470 "-------------------------------------\n\n");
81819f0f
CL
471}
472
24922684
CL
473static void slab_fix(struct kmem_cache *s, char *fmt, ...)
474{
475 va_list args;
476 char buf[100];
477
478 va_start(args, fmt);
479 vsnprintf(buf, sizeof(buf), fmt, args);
480 va_end(args);
481 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
482}
483
484static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
485{
486 unsigned int off; /* Offset of last byte */
a973e9dd 487 u8 *addr = page_address(page);
24922684
CL
488
489 print_tracking(s, p);
490
491 print_page_info(page);
492
493 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
494 p, p - addr, get_freepointer(s, p));
495
496 if (p > addr + 16)
497 print_section("Bytes b4", p - 16, 16);
498
499 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
500
501 if (s->flags & SLAB_RED_ZONE)
502 print_section("Redzone", p + s->objsize,
503 s->inuse - s->objsize);
504
81819f0f
CL
505 if (s->offset)
506 off = s->offset + sizeof(void *);
507 else
508 off = s->inuse;
509
24922684 510 if (s->flags & SLAB_STORE_USER)
81819f0f 511 off += 2 * sizeof(struct track);
81819f0f
CL
512
513 if (off != s->size)
514 /* Beginning of the filler is the free pointer */
24922684
CL
515 print_section("Padding", p + off, s->size - off);
516
517 dump_stack();
81819f0f
CL
518}
519
520static void object_err(struct kmem_cache *s, struct page *page,
521 u8 *object, char *reason)
522{
24922684
CL
523 slab_bug(s, reason);
524 print_trailer(s, page, object);
81819f0f
CL
525}
526
24922684 527static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
528{
529 va_list args;
530 char buf[100];
531
24922684
CL
532 va_start(args, fmt);
533 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 534 va_end(args);
24922684
CL
535 slab_bug(s, fmt);
536 print_page_info(page);
81819f0f
CL
537 dump_stack();
538}
539
540static void init_object(struct kmem_cache *s, void *object, int active)
541{
542 u8 *p = object;
543
544 if (s->flags & __OBJECT_POISON) {
545 memset(p, POISON_FREE, s->objsize - 1);
06428780 546 p[s->objsize - 1] = POISON_END;
81819f0f
CL
547 }
548
549 if (s->flags & SLAB_RED_ZONE)
550 memset(p + s->objsize,
551 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
552 s->inuse - s->objsize);
553}
554
24922684 555static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
556{
557 while (bytes) {
558 if (*start != (u8)value)
24922684 559 return start;
81819f0f
CL
560 start++;
561 bytes--;
562 }
24922684
CL
563 return NULL;
564}
565
566static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
567 void *from, void *to)
568{
569 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
570 memset(from, data, to - from);
571}
572
573static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
574 u8 *object, char *what,
06428780 575 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
576{
577 u8 *fault;
578 u8 *end;
579
580 fault = check_bytes(start, value, bytes);
581 if (!fault)
582 return 1;
583
584 end = start + bytes;
585 while (end > fault && end[-1] == value)
586 end--;
587
588 slab_bug(s, "%s overwritten", what);
589 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
590 fault, end - 1, fault[0], value);
591 print_trailer(s, page, object);
592
593 restore_bytes(s, what, value, fault, end);
594 return 0;
81819f0f
CL
595}
596
81819f0f
CL
597/*
598 * Object layout:
599 *
600 * object address
601 * Bytes of the object to be managed.
602 * If the freepointer may overlay the object then the free
603 * pointer is the first word of the object.
672bba3a 604 *
81819f0f
CL
605 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
606 * 0xa5 (POISON_END)
607 *
608 * object + s->objsize
609 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
610 * Padding is extended by another word if Redzoning is enabled and
611 * objsize == inuse.
612 *
81819f0f
CL
613 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
614 * 0xcc (RED_ACTIVE) for objects in use.
615 *
616 * object + s->inuse
672bba3a
CL
617 * Meta data starts here.
618 *
81819f0f
CL
619 * A. Free pointer (if we cannot overwrite object on free)
620 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
621 * C. Padding to reach required alignment boundary or at mininum
622 * one word if debuggin is on to be able to detect writes
623 * before the word boundary.
624 *
625 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
626 *
627 * object + s->size
672bba3a 628 * Nothing is used beyond s->size.
81819f0f 629 *
672bba3a
CL
630 * If slabcaches are merged then the objsize and inuse boundaries are mostly
631 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
632 * may be used with merged slabcaches.
633 */
634
81819f0f
CL
635static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
636{
637 unsigned long off = s->inuse; /* The end of info */
638
639 if (s->offset)
640 /* Freepointer is placed after the object. */
641 off += sizeof(void *);
642
643 if (s->flags & SLAB_STORE_USER)
644 /* We also have user information there */
645 off += 2 * sizeof(struct track);
646
647 if (s->size == off)
648 return 1;
649
24922684
CL
650 return check_bytes_and_report(s, page, p, "Object padding",
651 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
652}
653
654static int slab_pad_check(struct kmem_cache *s, struct page *page)
655{
24922684
CL
656 u8 *start;
657 u8 *fault;
658 u8 *end;
659 int length;
660 int remainder;
81819f0f
CL
661
662 if (!(s->flags & SLAB_POISON))
663 return 1;
664
a973e9dd 665 start = page_address(page);
24922684 666 end = start + (PAGE_SIZE << s->order);
81819f0f 667 length = s->objects * s->size;
24922684 668 remainder = end - (start + length);
81819f0f
CL
669 if (!remainder)
670 return 1;
671
24922684
CL
672 fault = check_bytes(start + length, POISON_INUSE, remainder);
673 if (!fault)
674 return 1;
675 while (end > fault && end[-1] == POISON_INUSE)
676 end--;
677
678 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
679 print_section("Padding", start, length);
680
681 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
682 return 0;
81819f0f
CL
683}
684
685static int check_object(struct kmem_cache *s, struct page *page,
686 void *object, int active)
687{
688 u8 *p = object;
689 u8 *endobject = object + s->objsize;
690
691 if (s->flags & SLAB_RED_ZONE) {
692 unsigned int red =
693 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
694
24922684
CL
695 if (!check_bytes_and_report(s, page, object, "Redzone",
696 endobject, red, s->inuse - s->objsize))
81819f0f 697 return 0;
81819f0f 698 } else {
3adbefee
IM
699 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
700 check_bytes_and_report(s, page, p, "Alignment padding",
701 endobject, POISON_INUSE, s->inuse - s->objsize);
702 }
81819f0f
CL
703 }
704
705 if (s->flags & SLAB_POISON) {
706 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
707 (!check_bytes_and_report(s, page, p, "Poison", p,
708 POISON_FREE, s->objsize - 1) ||
709 !check_bytes_and_report(s, page, p, "Poison",
06428780 710 p + s->objsize - 1, POISON_END, 1)))
81819f0f 711 return 0;
81819f0f
CL
712 /*
713 * check_pad_bytes cleans up on its own.
714 */
715 check_pad_bytes(s, page, p);
716 }
717
718 if (!s->offset && active)
719 /*
720 * Object and freepointer overlap. Cannot check
721 * freepointer while object is allocated.
722 */
723 return 1;
724
725 /* Check free pointer validity */
726 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
727 object_err(s, page, p, "Freepointer corrupt");
728 /*
729 * No choice but to zap it and thus loose the remainder
730 * of the free objects in this slab. May cause
672bba3a 731 * another error because the object count is now wrong.
81819f0f 732 */
a973e9dd 733 set_freepointer(s, p, NULL);
81819f0f
CL
734 return 0;
735 }
736 return 1;
737}
738
739static int check_slab(struct kmem_cache *s, struct page *page)
740{
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
24922684 744 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
745 return 0;
746 }
81819f0f 747 if (page->inuse > s->objects) {
24922684
CL
748 slab_err(s, page, "inuse %u > max %u",
749 s->name, page->inuse, s->objects);
81819f0f
CL
750 return 0;
751 }
752 /* Slab_pad_check fixes things up after itself */
753 slab_pad_check(s, page);
754 return 1;
755}
756
757/*
672bba3a
CL
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
760 */
761static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762{
763 int nr = 0;
764 void *fp = page->freelist;
765 void *object = NULL;
766
a973e9dd 767 while (fp && nr <= s->objects) {
81819f0f
CL
768 if (fp == search)
769 return 1;
770 if (!check_valid_pointer(s, page, fp)) {
771 if (object) {
772 object_err(s, page, object,
773 "Freechain corrupt");
a973e9dd 774 set_freepointer(s, object, NULL);
81819f0f
CL
775 break;
776 } else {
24922684 777 slab_err(s, page, "Freepointer corrupt");
a973e9dd 778 page->freelist = NULL;
81819f0f 779 page->inuse = s->objects;
24922684 780 slab_fix(s, "Freelist cleared");
81819f0f
CL
781 return 0;
782 }
783 break;
784 }
785 object = fp;
786 fp = get_freepointer(s, object);
787 nr++;
788 }
789
790 if (page->inuse != s->objects - nr) {
70d71228 791 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 792 "counted were %d", page->inuse, s->objects - nr);
81819f0f 793 page->inuse = s->objects - nr;
24922684 794 slab_fix(s, "Object count adjusted.");
81819f0f
CL
795 }
796 return search == NULL;
797}
798
3ec09742
CL
799static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
800{
801 if (s->flags & SLAB_TRACE) {
802 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
803 s->name,
804 alloc ? "alloc" : "free",
805 object, page->inuse,
806 page->freelist);
807
808 if (!alloc)
809 print_section("Object", (void *)object, s->objsize);
810
811 dump_stack();
812 }
813}
814
643b1138 815/*
672bba3a 816 * Tracking of fully allocated slabs for debugging purposes.
643b1138 817 */
e95eed57 818static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 819{
643b1138
CL
820 spin_lock(&n->list_lock);
821 list_add(&page->lru, &n->full);
822 spin_unlock(&n->list_lock);
823}
824
825static void remove_full(struct kmem_cache *s, struct page *page)
826{
827 struct kmem_cache_node *n;
828
829 if (!(s->flags & SLAB_STORE_USER))
830 return;
831
832 n = get_node(s, page_to_nid(page));
833
834 spin_lock(&n->list_lock);
835 list_del(&page->lru);
836 spin_unlock(&n->list_lock);
837}
838
3ec09742
CL
839static void setup_object_debug(struct kmem_cache *s, struct page *page,
840 void *object)
841{
842 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
843 return;
844
845 init_object(s, object, 0);
846 init_tracking(s, object);
847}
848
849static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
850 void *object, void *addr)
81819f0f
CL
851{
852 if (!check_slab(s, page))
853 goto bad;
854
d692ef6d 855 if (!on_freelist(s, page, object)) {
24922684 856 object_err(s, page, object, "Object already allocated");
70d71228 857 goto bad;
81819f0f
CL
858 }
859
860 if (!check_valid_pointer(s, page, object)) {
861 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 862 goto bad;
81819f0f
CL
863 }
864
d692ef6d 865 if (!check_object(s, page, object, 0))
81819f0f 866 goto bad;
81819f0f 867
3ec09742
CL
868 /* Success perform special debug activities for allocs */
869 if (s->flags & SLAB_STORE_USER)
870 set_track(s, object, TRACK_ALLOC, addr);
871 trace(s, page, object, 1);
872 init_object(s, object, 1);
81819f0f 873 return 1;
3ec09742 874
81819f0f
CL
875bad:
876 if (PageSlab(page)) {
877 /*
878 * If this is a slab page then lets do the best we can
879 * to avoid issues in the future. Marking all objects
672bba3a 880 * as used avoids touching the remaining objects.
81819f0f 881 */
24922684 882 slab_fix(s, "Marking all objects used");
81819f0f 883 page->inuse = s->objects;
a973e9dd 884 page->freelist = NULL;
81819f0f
CL
885 }
886 return 0;
887}
888
3ec09742
CL
889static int free_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, void *addr)
81819f0f
CL
891{
892 if (!check_slab(s, page))
893 goto fail;
894
895 if (!check_valid_pointer(s, page, object)) {
70d71228 896 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
897 goto fail;
898 }
899
900 if (on_freelist(s, page, object)) {
24922684 901 object_err(s, page, object, "Object already free");
81819f0f
CL
902 goto fail;
903 }
904
905 if (!check_object(s, page, object, 1))
906 return 0;
907
908 if (unlikely(s != page->slab)) {
3adbefee 909 if (!PageSlab(page)) {
70d71228
CL
910 slab_err(s, page, "Attempt to free object(0x%p) "
911 "outside of slab", object);
3adbefee 912 } else if (!page->slab) {
81819f0f 913 printk(KERN_ERR
70d71228 914 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 915 object);
70d71228 916 dump_stack();
06428780 917 } else
24922684
CL
918 object_err(s, page, object,
919 "page slab pointer corrupt.");
81819f0f
CL
920 goto fail;
921 }
3ec09742
CL
922
923 /* Special debug activities for freeing objects */
a973e9dd 924 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
925 remove_full(s, page);
926 if (s->flags & SLAB_STORE_USER)
927 set_track(s, object, TRACK_FREE, addr);
928 trace(s, page, object, 0);
929 init_object(s, object, 0);
81819f0f 930 return 1;
3ec09742 931
81819f0f 932fail:
24922684 933 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
934 return 0;
935}
936
41ecc55b
CL
937static int __init setup_slub_debug(char *str)
938{
f0630fff
CL
939 slub_debug = DEBUG_DEFAULT_FLAGS;
940 if (*str++ != '=' || !*str)
941 /*
942 * No options specified. Switch on full debugging.
943 */
944 goto out;
945
946 if (*str == ',')
947 /*
948 * No options but restriction on slabs. This means full
949 * debugging for slabs matching a pattern.
950 */
951 goto check_slabs;
952
953 slub_debug = 0;
954 if (*str == '-')
955 /*
956 * Switch off all debugging measures.
957 */
958 goto out;
959
960 /*
961 * Determine which debug features should be switched on
962 */
06428780 963 for (; *str && *str != ','; str++) {
f0630fff
CL
964 switch (tolower(*str)) {
965 case 'f':
966 slub_debug |= SLAB_DEBUG_FREE;
967 break;
968 case 'z':
969 slub_debug |= SLAB_RED_ZONE;
970 break;
971 case 'p':
972 slub_debug |= SLAB_POISON;
973 break;
974 case 'u':
975 slub_debug |= SLAB_STORE_USER;
976 break;
977 case 't':
978 slub_debug |= SLAB_TRACE;
979 break;
980 default:
981 printk(KERN_ERR "slub_debug option '%c' "
06428780 982 "unknown. skipped\n", *str);
f0630fff 983 }
41ecc55b
CL
984 }
985
f0630fff 986check_slabs:
41ecc55b
CL
987 if (*str == ',')
988 slub_debug_slabs = str + 1;
f0630fff 989out:
41ecc55b
CL
990 return 1;
991}
992
993__setup("slub_debug", setup_slub_debug);
994
ba0268a8
CL
995static unsigned long kmem_cache_flags(unsigned long objsize,
996 unsigned long flags, const char *name,
4ba9b9d0 997 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
998{
999 /*
e153362a 1000 * Enable debugging if selected on the kernel commandline.
41ecc55b 1001 */
e153362a
CL
1002 if (slub_debug && (!slub_debug_slabs ||
1003 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1004 flags |= slub_debug;
ba0268a8
CL
1005
1006 return flags;
41ecc55b
CL
1007}
1008#else
3ec09742
CL
1009static inline void setup_object_debug(struct kmem_cache *s,
1010 struct page *page, void *object) {}
41ecc55b 1011
3ec09742
CL
1012static inline int alloc_debug_processing(struct kmem_cache *s,
1013 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1014
3ec09742
CL
1015static inline int free_debug_processing(struct kmem_cache *s,
1016 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1017
41ecc55b
CL
1018static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1019 { return 1; }
1020static inline int check_object(struct kmem_cache *s, struct page *page,
1021 void *object, int active) { return 1; }
3ec09742 1022static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1023static inline unsigned long kmem_cache_flags(unsigned long objsize,
1024 unsigned long flags, const char *name,
4ba9b9d0 1025 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1026{
1027 return flags;
1028}
41ecc55b
CL
1029#define slub_debug 0
1030#endif
81819f0f
CL
1031/*
1032 * Slab allocation and freeing
1033 */
1034static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1035{
06428780 1036 struct page *page;
81819f0f
CL
1037 int pages = 1 << s->order;
1038
b7a49f0d 1039 flags |= s->allocflags;
e12ba74d 1040
81819f0f
CL
1041 if (node == -1)
1042 page = alloc_pages(flags, s->order);
1043 else
1044 page = alloc_pages_node(node, flags, s->order);
1045
1046 if (!page)
1047 return NULL;
1048
1049 mod_zone_page_state(page_zone(page),
1050 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1051 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1052 pages);
1053
1054 return page;
1055}
1056
1057static void setup_object(struct kmem_cache *s, struct page *page,
1058 void *object)
1059{
3ec09742 1060 setup_object_debug(s, page, object);
4f104934 1061 if (unlikely(s->ctor))
4ba9b9d0 1062 s->ctor(s, object);
81819f0f
CL
1063}
1064
1065static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1066{
1067 struct page *page;
1068 struct kmem_cache_node *n;
1069 void *start;
81819f0f
CL
1070 void *last;
1071 void *p;
1072
6cb06229 1073 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1074
6cb06229
CL
1075 page = allocate_slab(s,
1076 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1077 if (!page)
1078 goto out;
1079
1080 n = get_node(s, page_to_nid(page));
1081 if (n)
1082 atomic_long_inc(&n->nr_slabs);
81819f0f
CL
1083 page->slab = s;
1084 page->flags |= 1 << PG_slab;
1085 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1086 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1087 SetSlabDebug(page);
81819f0f
CL
1088
1089 start = page_address(page);
81819f0f
CL
1090
1091 if (unlikely(s->flags & SLAB_POISON))
1092 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1093
1094 last = start;
7656c72b 1095 for_each_object(p, s, start) {
81819f0f
CL
1096 setup_object(s, page, last);
1097 set_freepointer(s, last, p);
1098 last = p;
1099 }
1100 setup_object(s, page, last);
a973e9dd 1101 set_freepointer(s, last, NULL);
81819f0f
CL
1102
1103 page->freelist = start;
1104 page->inuse = 0;
1105out:
81819f0f
CL
1106 return page;
1107}
1108
1109static void __free_slab(struct kmem_cache *s, struct page *page)
1110{
1111 int pages = 1 << s->order;
1112
c59def9f 1113 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1114 void *p;
1115
1116 slab_pad_check(s, page);
a973e9dd 1117 for_each_object(p, s, page_address(page))
81819f0f 1118 check_object(s, page, p, 0);
2208b764 1119 ClearSlabDebug(page);
81819f0f
CL
1120 }
1121
1122 mod_zone_page_state(page_zone(page),
1123 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1124 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1125 -pages);
81819f0f 1126
81819f0f
CL
1127 __free_pages(page, s->order);
1128}
1129
1130static void rcu_free_slab(struct rcu_head *h)
1131{
1132 struct page *page;
1133
1134 page = container_of((struct list_head *)h, struct page, lru);
1135 __free_slab(page->slab, page);
1136}
1137
1138static void free_slab(struct kmem_cache *s, struct page *page)
1139{
1140 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1141 /*
1142 * RCU free overloads the RCU head over the LRU
1143 */
1144 struct rcu_head *head = (void *)&page->lru;
1145
1146 call_rcu(head, rcu_free_slab);
1147 } else
1148 __free_slab(s, page);
1149}
1150
1151static void discard_slab(struct kmem_cache *s, struct page *page)
1152{
1153 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1154
1155 atomic_long_dec(&n->nr_slabs);
1156 reset_page_mapcount(page);
35e5d7ee 1157 __ClearPageSlab(page);
81819f0f
CL
1158 free_slab(s, page);
1159}
1160
1161/*
1162 * Per slab locking using the pagelock
1163 */
1164static __always_inline void slab_lock(struct page *page)
1165{
1166 bit_spin_lock(PG_locked, &page->flags);
1167}
1168
1169static __always_inline void slab_unlock(struct page *page)
1170{
a76d3546 1171 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1172}
1173
1174static __always_inline int slab_trylock(struct page *page)
1175{
1176 int rc = 1;
1177
1178 rc = bit_spin_trylock(PG_locked, &page->flags);
1179 return rc;
1180}
1181
1182/*
1183 * Management of partially allocated slabs
1184 */
7c2e132c
CL
1185static void add_partial(struct kmem_cache_node *n,
1186 struct page *page, int tail)
81819f0f 1187{
e95eed57
CL
1188 spin_lock(&n->list_lock);
1189 n->nr_partial++;
7c2e132c
CL
1190 if (tail)
1191 list_add_tail(&page->lru, &n->partial);
1192 else
1193 list_add(&page->lru, &n->partial);
81819f0f
CL
1194 spin_unlock(&n->list_lock);
1195}
1196
1197static void remove_partial(struct kmem_cache *s,
1198 struct page *page)
1199{
1200 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1201
1202 spin_lock(&n->list_lock);
1203 list_del(&page->lru);
1204 n->nr_partial--;
1205 spin_unlock(&n->list_lock);
1206}
1207
1208/*
672bba3a 1209 * Lock slab and remove from the partial list.
81819f0f 1210 *
672bba3a 1211 * Must hold list_lock.
81819f0f 1212 */
4b6f0750 1213static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1214{
1215 if (slab_trylock(page)) {
1216 list_del(&page->lru);
1217 n->nr_partial--;
4b6f0750 1218 SetSlabFrozen(page);
81819f0f
CL
1219 return 1;
1220 }
1221 return 0;
1222}
1223
1224/*
672bba3a 1225 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1226 */
1227static struct page *get_partial_node(struct kmem_cache_node *n)
1228{
1229 struct page *page;
1230
1231 /*
1232 * Racy check. If we mistakenly see no partial slabs then we
1233 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1234 * partial slab and there is none available then get_partials()
1235 * will return NULL.
81819f0f
CL
1236 */
1237 if (!n || !n->nr_partial)
1238 return NULL;
1239
1240 spin_lock(&n->list_lock);
1241 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1242 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1243 goto out;
1244 page = NULL;
1245out:
1246 spin_unlock(&n->list_lock);
1247 return page;
1248}
1249
1250/*
672bba3a 1251 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1252 */
1253static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1254{
1255#ifdef CONFIG_NUMA
1256 struct zonelist *zonelist;
1257 struct zone **z;
1258 struct page *page;
1259
1260 /*
672bba3a
CL
1261 * The defrag ratio allows a configuration of the tradeoffs between
1262 * inter node defragmentation and node local allocations. A lower
1263 * defrag_ratio increases the tendency to do local allocations
1264 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1265 *
672bba3a
CL
1266 * If the defrag_ratio is set to 0 then kmalloc() always
1267 * returns node local objects. If the ratio is higher then kmalloc()
1268 * may return off node objects because partial slabs are obtained
1269 * from other nodes and filled up.
81819f0f
CL
1270 *
1271 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1272 * defrag_ratio = 1000) then every (well almost) allocation will
1273 * first attempt to defrag slab caches on other nodes. This means
1274 * scanning over all nodes to look for partial slabs which may be
1275 * expensive if we do it every time we are trying to find a slab
1276 * with available objects.
81819f0f 1277 */
9824601e
CL
1278 if (!s->remote_node_defrag_ratio ||
1279 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1280 return NULL;
1281
3adbefee
IM
1282 zonelist = &NODE_DATA(
1283 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1284 for (z = zonelist->zones; *z; z++) {
1285 struct kmem_cache_node *n;
1286
1287 n = get_node(s, zone_to_nid(*z));
1288
1289 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1290 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1291 page = get_partial_node(n);
1292 if (page)
1293 return page;
1294 }
1295 }
1296#endif
1297 return NULL;
1298}
1299
1300/*
1301 * Get a partial page, lock it and return it.
1302 */
1303static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1304{
1305 struct page *page;
1306 int searchnode = (node == -1) ? numa_node_id() : node;
1307
1308 page = get_partial_node(get_node(s, searchnode));
1309 if (page || (flags & __GFP_THISNODE))
1310 return page;
1311
1312 return get_any_partial(s, flags);
1313}
1314
1315/*
1316 * Move a page back to the lists.
1317 *
1318 * Must be called with the slab lock held.
1319 *
1320 * On exit the slab lock will have been dropped.
1321 */
7c2e132c 1322static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1323{
e95eed57 1324 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1325 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1326
4b6f0750 1327 ClearSlabFrozen(page);
81819f0f 1328 if (page->inuse) {
e95eed57 1329
a973e9dd 1330 if (page->freelist) {
7c2e132c 1331 add_partial(n, page, tail);
8ff12cfc
CL
1332 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1333 } else {
1334 stat(c, DEACTIVATE_FULL);
1335 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1336 add_full(n, page);
1337 }
81819f0f
CL
1338 slab_unlock(page);
1339 } else {
8ff12cfc 1340 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1341 if (n->nr_partial < MIN_PARTIAL) {
1342 /*
672bba3a
CL
1343 * Adding an empty slab to the partial slabs in order
1344 * to avoid page allocator overhead. This slab needs
1345 * to come after the other slabs with objects in
1346 * order to fill them up. That way the size of the
1347 * partial list stays small. kmem_cache_shrink can
1348 * reclaim empty slabs from the partial list.
e95eed57 1349 */
7c2e132c 1350 add_partial(n, page, 1);
e95eed57
CL
1351 slab_unlock(page);
1352 } else {
1353 slab_unlock(page);
8ff12cfc 1354 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1355 discard_slab(s, page);
1356 }
81819f0f
CL
1357 }
1358}
1359
1360/*
1361 * Remove the cpu slab
1362 */
dfb4f096 1363static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1364{
dfb4f096 1365 struct page *page = c->page;
7c2e132c 1366 int tail = 1;
8ff12cfc
CL
1367
1368 if (c->freelist)
1369 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788
CL
1370 /*
1371 * Merge cpu freelist into freelist. Typically we get here
1372 * because both freelists are empty. So this is unlikely
1373 * to occur.
1374 */
a973e9dd 1375 while (unlikely(c->freelist)) {
894b8788
CL
1376 void **object;
1377
7c2e132c
CL
1378 tail = 0; /* Hot objects. Put the slab first */
1379
894b8788 1380 /* Retrieve object from cpu_freelist */
dfb4f096 1381 object = c->freelist;
b3fba8da 1382 c->freelist = c->freelist[c->offset];
894b8788
CL
1383
1384 /* And put onto the regular freelist */
b3fba8da 1385 object[c->offset] = page->freelist;
894b8788
CL
1386 page->freelist = object;
1387 page->inuse--;
1388 }
dfb4f096 1389 c->page = NULL;
7c2e132c 1390 unfreeze_slab(s, page, tail);
81819f0f
CL
1391}
1392
dfb4f096 1393static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1394{
8ff12cfc 1395 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1396 slab_lock(c->page);
1397 deactivate_slab(s, c);
81819f0f
CL
1398}
1399
1400/*
1401 * Flush cpu slab.
1402 * Called from IPI handler with interrupts disabled.
1403 */
0c710013 1404static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1405{
dfb4f096 1406 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1407
dfb4f096
CL
1408 if (likely(c && c->page))
1409 flush_slab(s, c);
81819f0f
CL
1410}
1411
1412static void flush_cpu_slab(void *d)
1413{
1414 struct kmem_cache *s = d;
81819f0f 1415
dfb4f096 1416 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1417}
1418
1419static void flush_all(struct kmem_cache *s)
1420{
1421#ifdef CONFIG_SMP
1422 on_each_cpu(flush_cpu_slab, s, 1, 1);
1423#else
1424 unsigned long flags;
1425
1426 local_irq_save(flags);
1427 flush_cpu_slab(s);
1428 local_irq_restore(flags);
1429#endif
1430}
1431
dfb4f096
CL
1432/*
1433 * Check if the objects in a per cpu structure fit numa
1434 * locality expectations.
1435 */
1436static inline int node_match(struct kmem_cache_cpu *c, int node)
1437{
1438#ifdef CONFIG_NUMA
1439 if (node != -1 && c->node != node)
1440 return 0;
1441#endif
1442 return 1;
1443}
1444
81819f0f 1445/*
894b8788
CL
1446 * Slow path. The lockless freelist is empty or we need to perform
1447 * debugging duties.
1448 *
1449 * Interrupts are disabled.
81819f0f 1450 *
894b8788
CL
1451 * Processing is still very fast if new objects have been freed to the
1452 * regular freelist. In that case we simply take over the regular freelist
1453 * as the lockless freelist and zap the regular freelist.
81819f0f 1454 *
894b8788
CL
1455 * If that is not working then we fall back to the partial lists. We take the
1456 * first element of the freelist as the object to allocate now and move the
1457 * rest of the freelist to the lockless freelist.
81819f0f 1458 *
894b8788
CL
1459 * And if we were unable to get a new slab from the partial slab lists then
1460 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1461 */
894b8788 1462static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1463 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1464{
81819f0f 1465 void **object;
dfb4f096 1466 struct page *new;
81819f0f 1467
dfb4f096 1468 if (!c->page)
81819f0f
CL
1469 goto new_slab;
1470
dfb4f096
CL
1471 slab_lock(c->page);
1472 if (unlikely(!node_match(c, node)))
81819f0f 1473 goto another_slab;
8ff12cfc 1474 stat(c, ALLOC_REFILL);
894b8788 1475load_freelist:
dfb4f096 1476 object = c->page->freelist;
a973e9dd 1477 if (unlikely(!object))
81819f0f 1478 goto another_slab;
dfb4f096 1479 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1480 goto debug;
1481
dfb4f096 1482 object = c->page->freelist;
b3fba8da 1483 c->freelist = object[c->offset];
dfb4f096 1484 c->page->inuse = s->objects;
a973e9dd 1485 c->page->freelist = NULL;
dfb4f096 1486 c->node = page_to_nid(c->page);
1f84260c 1487unlock_out:
dfb4f096 1488 slab_unlock(c->page);
8ff12cfc 1489 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1490 return object;
1491
1492another_slab:
dfb4f096 1493 deactivate_slab(s, c);
81819f0f
CL
1494
1495new_slab:
dfb4f096
CL
1496 new = get_partial(s, gfpflags, node);
1497 if (new) {
1498 c->page = new;
8ff12cfc 1499 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1500 goto load_freelist;
81819f0f
CL
1501 }
1502
b811c202
CL
1503 if (gfpflags & __GFP_WAIT)
1504 local_irq_enable();
1505
dfb4f096 1506 new = new_slab(s, gfpflags, node);
b811c202
CL
1507
1508 if (gfpflags & __GFP_WAIT)
1509 local_irq_disable();
1510
dfb4f096
CL
1511 if (new) {
1512 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1513 stat(c, ALLOC_SLAB);
05aa3450 1514 if (c->page)
dfb4f096 1515 flush_slab(s, c);
dfb4f096
CL
1516 slab_lock(new);
1517 SetSlabFrozen(new);
1518 c->page = new;
4b6f0750 1519 goto load_freelist;
81819f0f 1520 }
00e962c5 1521
71c7a06f
CL
1522 /*
1523 * No memory available.
1524 *
1525 * If the slab uses higher order allocs but the object is
1526 * smaller than a page size then we can fallback in emergencies
1527 * to the page allocator via kmalloc_large. The page allocator may
1528 * have failed to obtain a higher order page and we can try to
1529 * allocate a single page if the object fits into a single page.
1530 * That is only possible if certain conditions are met that are being
1531 * checked when a slab is created.
1532 */
1533 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1534 return kmalloc_large(s->objsize, gfpflags);
1535
1536 return NULL;
81819f0f 1537debug:
dfb4f096
CL
1538 object = c->page->freelist;
1539 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1540 goto another_slab;
894b8788 1541
dfb4f096 1542 c->page->inuse++;
b3fba8da 1543 c->page->freelist = object[c->offset];
ee3c72a1 1544 c->node = -1;
1f84260c 1545 goto unlock_out;
894b8788
CL
1546}
1547
1548/*
1549 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1550 * have the fastpath folded into their functions. So no function call
1551 * overhead for requests that can be satisfied on the fastpath.
1552 *
1553 * The fastpath works by first checking if the lockless freelist can be used.
1554 * If not then __slab_alloc is called for slow processing.
1555 *
1556 * Otherwise we can simply pick the next object from the lockless free list.
1557 */
06428780 1558static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1559 gfp_t gfpflags, int node, void *addr)
894b8788 1560{
894b8788 1561 void **object;
dfb4f096 1562 struct kmem_cache_cpu *c;
1f84260c
CL
1563 unsigned long flags;
1564
894b8788 1565 local_irq_save(flags);
dfb4f096 1566 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1567 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1568
dfb4f096 1569 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1570
1571 else {
dfb4f096 1572 object = c->freelist;
b3fba8da 1573 c->freelist = object[c->offset];
8ff12cfc 1574 stat(c, ALLOC_FASTPATH);
894b8788
CL
1575 }
1576 local_irq_restore(flags);
d07dbea4
CL
1577
1578 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1579 memset(object, 0, c->objsize);
d07dbea4 1580
894b8788 1581 return object;
81819f0f
CL
1582}
1583
1584void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1585{
ce15fea8 1586 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1587}
1588EXPORT_SYMBOL(kmem_cache_alloc);
1589
1590#ifdef CONFIG_NUMA
1591void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1592{
ce15fea8 1593 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1594}
1595EXPORT_SYMBOL(kmem_cache_alloc_node);
1596#endif
1597
1598/*
894b8788
CL
1599 * Slow patch handling. This may still be called frequently since objects
1600 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1601 *
894b8788
CL
1602 * So we still attempt to reduce cache line usage. Just take the slab
1603 * lock and free the item. If there is no additional partial page
1604 * handling required then we can return immediately.
81819f0f 1605 */
894b8788 1606static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1607 void *x, void *addr, unsigned int offset)
81819f0f
CL
1608{
1609 void *prior;
1610 void **object = (void *)x;
8ff12cfc 1611 struct kmem_cache_cpu *c;
81819f0f 1612
8ff12cfc
CL
1613 c = get_cpu_slab(s, raw_smp_processor_id());
1614 stat(c, FREE_SLOWPATH);
81819f0f
CL
1615 slab_lock(page);
1616
35e5d7ee 1617 if (unlikely(SlabDebug(page)))
81819f0f
CL
1618 goto debug;
1619checks_ok:
b3fba8da 1620 prior = object[offset] = page->freelist;
81819f0f
CL
1621 page->freelist = object;
1622 page->inuse--;
1623
8ff12cfc
CL
1624 if (unlikely(SlabFrozen(page))) {
1625 stat(c, FREE_FROZEN);
81819f0f 1626 goto out_unlock;
8ff12cfc 1627 }
81819f0f
CL
1628
1629 if (unlikely(!page->inuse))
1630 goto slab_empty;
1631
1632 /*
1633 * Objects left in the slab. If it
1634 * was not on the partial list before
1635 * then add it.
1636 */
a973e9dd 1637 if (unlikely(!prior)) {
7c2e132c 1638 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1639 stat(c, FREE_ADD_PARTIAL);
1640 }
81819f0f
CL
1641
1642out_unlock:
1643 slab_unlock(page);
81819f0f
CL
1644 return;
1645
1646slab_empty:
a973e9dd 1647 if (prior) {
81819f0f 1648 /*
672bba3a 1649 * Slab still on the partial list.
81819f0f
CL
1650 */
1651 remove_partial(s, page);
8ff12cfc
CL
1652 stat(c, FREE_REMOVE_PARTIAL);
1653 }
81819f0f 1654 slab_unlock(page);
8ff12cfc 1655 stat(c, FREE_SLAB);
81819f0f 1656 discard_slab(s, page);
81819f0f
CL
1657 return;
1658
1659debug:
3ec09742 1660 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1661 goto out_unlock;
77c5e2d0 1662 goto checks_ok;
81819f0f
CL
1663}
1664
894b8788
CL
1665/*
1666 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1667 * can perform fastpath freeing without additional function calls.
1668 *
1669 * The fastpath is only possible if we are freeing to the current cpu slab
1670 * of this processor. This typically the case if we have just allocated
1671 * the item before.
1672 *
1673 * If fastpath is not possible then fall back to __slab_free where we deal
1674 * with all sorts of special processing.
1675 */
06428780 1676static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1677 struct page *page, void *x, void *addr)
1678{
1679 void **object = (void *)x;
dfb4f096 1680 struct kmem_cache_cpu *c;
1f84260c
CL
1681 unsigned long flags;
1682
894b8788 1683 local_irq_save(flags);
dfb4f096 1684 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1685 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1686 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1687 object[c->offset] = c->freelist;
dfb4f096 1688 c->freelist = object;
8ff12cfc 1689 stat(c, FREE_FASTPATH);
894b8788 1690 } else
b3fba8da 1691 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1692
1693 local_irq_restore(flags);
1694}
1695
81819f0f
CL
1696void kmem_cache_free(struct kmem_cache *s, void *x)
1697{
77c5e2d0 1698 struct page *page;
81819f0f 1699
b49af68f 1700 page = virt_to_head_page(x);
81819f0f 1701
77c5e2d0 1702 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1703}
1704EXPORT_SYMBOL(kmem_cache_free);
1705
1706/* Figure out on which slab object the object resides */
1707static struct page *get_object_page(const void *x)
1708{
b49af68f 1709 struct page *page = virt_to_head_page(x);
81819f0f
CL
1710
1711 if (!PageSlab(page))
1712 return NULL;
1713
1714 return page;
1715}
1716
1717/*
672bba3a
CL
1718 * Object placement in a slab is made very easy because we always start at
1719 * offset 0. If we tune the size of the object to the alignment then we can
1720 * get the required alignment by putting one properly sized object after
1721 * another.
81819f0f
CL
1722 *
1723 * Notice that the allocation order determines the sizes of the per cpu
1724 * caches. Each processor has always one slab available for allocations.
1725 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1726 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1727 * locking overhead.
81819f0f
CL
1728 */
1729
1730/*
1731 * Mininum / Maximum order of slab pages. This influences locking overhead
1732 * and slab fragmentation. A higher order reduces the number of partial slabs
1733 * and increases the number of allocations possible without having to
1734 * take the list_lock.
1735 */
1736static int slub_min_order;
1737static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1738static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1739
1740/*
1741 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1742 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1743 */
1744static int slub_nomerge;
1745
81819f0f
CL
1746/*
1747 * Calculate the order of allocation given an slab object size.
1748 *
672bba3a
CL
1749 * The order of allocation has significant impact on performance and other
1750 * system components. Generally order 0 allocations should be preferred since
1751 * order 0 does not cause fragmentation in the page allocator. Larger objects
1752 * be problematic to put into order 0 slabs because there may be too much
1753 * unused space left. We go to a higher order if more than 1/8th of the slab
1754 * would be wasted.
1755 *
1756 * In order to reach satisfactory performance we must ensure that a minimum
1757 * number of objects is in one slab. Otherwise we may generate too much
1758 * activity on the partial lists which requires taking the list_lock. This is
1759 * less a concern for large slabs though which are rarely used.
81819f0f 1760 *
672bba3a
CL
1761 * slub_max_order specifies the order where we begin to stop considering the
1762 * number of objects in a slab as critical. If we reach slub_max_order then
1763 * we try to keep the page order as low as possible. So we accept more waste
1764 * of space in favor of a small page order.
81819f0f 1765 *
672bba3a
CL
1766 * Higher order allocations also allow the placement of more objects in a
1767 * slab and thereby reduce object handling overhead. If the user has
1768 * requested a higher mininum order then we start with that one instead of
1769 * the smallest order which will fit the object.
81819f0f 1770 */
5e6d444e
CL
1771static inline int slab_order(int size, int min_objects,
1772 int max_order, int fract_leftover)
81819f0f
CL
1773{
1774 int order;
1775 int rem;
6300ea75 1776 int min_order = slub_min_order;
81819f0f 1777
6300ea75 1778 for (order = max(min_order,
5e6d444e
CL
1779 fls(min_objects * size - 1) - PAGE_SHIFT);
1780 order <= max_order; order++) {
81819f0f 1781
5e6d444e 1782 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1783
5e6d444e 1784 if (slab_size < min_objects * size)
81819f0f
CL
1785 continue;
1786
1787 rem = slab_size % size;
1788
5e6d444e 1789 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1790 break;
1791
1792 }
672bba3a 1793
81819f0f
CL
1794 return order;
1795}
1796
5e6d444e
CL
1797static inline int calculate_order(int size)
1798{
1799 int order;
1800 int min_objects;
1801 int fraction;
1802
1803 /*
1804 * Attempt to find best configuration for a slab. This
1805 * works by first attempting to generate a layout with
1806 * the best configuration and backing off gradually.
1807 *
1808 * First we reduce the acceptable waste in a slab. Then
1809 * we reduce the minimum objects required in a slab.
1810 */
1811 min_objects = slub_min_objects;
1812 while (min_objects > 1) {
1813 fraction = 8;
1814 while (fraction >= 4) {
1815 order = slab_order(size, min_objects,
1816 slub_max_order, fraction);
1817 if (order <= slub_max_order)
1818 return order;
1819 fraction /= 2;
1820 }
1821 min_objects /= 2;
1822 }
1823
1824 /*
1825 * We were unable to place multiple objects in a slab. Now
1826 * lets see if we can place a single object there.
1827 */
1828 order = slab_order(size, 1, slub_max_order, 1);
1829 if (order <= slub_max_order)
1830 return order;
1831
1832 /*
1833 * Doh this slab cannot be placed using slub_max_order.
1834 */
1835 order = slab_order(size, 1, MAX_ORDER, 1);
1836 if (order <= MAX_ORDER)
1837 return order;
1838 return -ENOSYS;
1839}
1840
81819f0f 1841/*
672bba3a 1842 * Figure out what the alignment of the objects will be.
81819f0f
CL
1843 */
1844static unsigned long calculate_alignment(unsigned long flags,
1845 unsigned long align, unsigned long size)
1846{
1847 /*
1848 * If the user wants hardware cache aligned objects then
1849 * follow that suggestion if the object is sufficiently
1850 * large.
1851 *
1852 * The hardware cache alignment cannot override the
1853 * specified alignment though. If that is greater
1854 * then use it.
1855 */
5af60839 1856 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1857 size > cache_line_size() / 2)
1858 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1859
1860 if (align < ARCH_SLAB_MINALIGN)
1861 return ARCH_SLAB_MINALIGN;
1862
1863 return ALIGN(align, sizeof(void *));
1864}
1865
dfb4f096
CL
1866static void init_kmem_cache_cpu(struct kmem_cache *s,
1867 struct kmem_cache_cpu *c)
1868{
1869 c->page = NULL;
a973e9dd 1870 c->freelist = NULL;
dfb4f096 1871 c->node = 0;
42a9fdbb
CL
1872 c->offset = s->offset / sizeof(void *);
1873 c->objsize = s->objsize;
dfb4f096
CL
1874}
1875
81819f0f
CL
1876static void init_kmem_cache_node(struct kmem_cache_node *n)
1877{
1878 n->nr_partial = 0;
1879 atomic_long_set(&n->nr_slabs, 0);
1880 spin_lock_init(&n->list_lock);
1881 INIT_LIST_HEAD(&n->partial);
8ab1372f 1882#ifdef CONFIG_SLUB_DEBUG
643b1138 1883 INIT_LIST_HEAD(&n->full);
8ab1372f 1884#endif
81819f0f
CL
1885}
1886
4c93c355
CL
1887#ifdef CONFIG_SMP
1888/*
1889 * Per cpu array for per cpu structures.
1890 *
1891 * The per cpu array places all kmem_cache_cpu structures from one processor
1892 * close together meaning that it becomes possible that multiple per cpu
1893 * structures are contained in one cacheline. This may be particularly
1894 * beneficial for the kmalloc caches.
1895 *
1896 * A desktop system typically has around 60-80 slabs. With 100 here we are
1897 * likely able to get per cpu structures for all caches from the array defined
1898 * here. We must be able to cover all kmalloc caches during bootstrap.
1899 *
1900 * If the per cpu array is exhausted then fall back to kmalloc
1901 * of individual cachelines. No sharing is possible then.
1902 */
1903#define NR_KMEM_CACHE_CPU 100
1904
1905static DEFINE_PER_CPU(struct kmem_cache_cpu,
1906 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1907
1908static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1909static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1910
1911static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1912 int cpu, gfp_t flags)
1913{
1914 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1915
1916 if (c)
1917 per_cpu(kmem_cache_cpu_free, cpu) =
1918 (void *)c->freelist;
1919 else {
1920 /* Table overflow: So allocate ourselves */
1921 c = kmalloc_node(
1922 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1923 flags, cpu_to_node(cpu));
1924 if (!c)
1925 return NULL;
1926 }
1927
1928 init_kmem_cache_cpu(s, c);
1929 return c;
1930}
1931
1932static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1933{
1934 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1935 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1936 kfree(c);
1937 return;
1938 }
1939 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1940 per_cpu(kmem_cache_cpu_free, cpu) = c;
1941}
1942
1943static void free_kmem_cache_cpus(struct kmem_cache *s)
1944{
1945 int cpu;
1946
1947 for_each_online_cpu(cpu) {
1948 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1949
1950 if (c) {
1951 s->cpu_slab[cpu] = NULL;
1952 free_kmem_cache_cpu(c, cpu);
1953 }
1954 }
1955}
1956
1957static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1958{
1959 int cpu;
1960
1961 for_each_online_cpu(cpu) {
1962 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1963
1964 if (c)
1965 continue;
1966
1967 c = alloc_kmem_cache_cpu(s, cpu, flags);
1968 if (!c) {
1969 free_kmem_cache_cpus(s);
1970 return 0;
1971 }
1972 s->cpu_slab[cpu] = c;
1973 }
1974 return 1;
1975}
1976
1977/*
1978 * Initialize the per cpu array.
1979 */
1980static void init_alloc_cpu_cpu(int cpu)
1981{
1982 int i;
1983
1984 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1985 return;
1986
1987 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1988 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1989
1990 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1991}
1992
1993static void __init init_alloc_cpu(void)
1994{
1995 int cpu;
1996
1997 for_each_online_cpu(cpu)
1998 init_alloc_cpu_cpu(cpu);
1999 }
2000
2001#else
2002static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2003static inline void init_alloc_cpu(void) {}
2004
2005static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2006{
2007 init_kmem_cache_cpu(s, &s->cpu_slab);
2008 return 1;
2009}
2010#endif
2011
81819f0f
CL
2012#ifdef CONFIG_NUMA
2013/*
2014 * No kmalloc_node yet so do it by hand. We know that this is the first
2015 * slab on the node for this slabcache. There are no concurrent accesses
2016 * possible.
2017 *
2018 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2019 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2020 * memory on a fresh node that has no slab structures yet.
81819f0f 2021 */
1cd7daa5
AB
2022static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2023 int node)
81819f0f
CL
2024{
2025 struct page *page;
2026 struct kmem_cache_node *n;
ba84c73c 2027 unsigned long flags;
81819f0f
CL
2028
2029 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2030
a2f92ee7 2031 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2032
2033 BUG_ON(!page);
a2f92ee7
CL
2034 if (page_to_nid(page) != node) {
2035 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2036 "node %d\n", node);
2037 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2038 "in order to be able to continue\n");
2039 }
2040
81819f0f
CL
2041 n = page->freelist;
2042 BUG_ON(!n);
2043 page->freelist = get_freepointer(kmalloc_caches, n);
2044 page->inuse++;
2045 kmalloc_caches->node[node] = n;
8ab1372f 2046#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2047 init_object(kmalloc_caches, n, 1);
2048 init_tracking(kmalloc_caches, n);
8ab1372f 2049#endif
81819f0f
CL
2050 init_kmem_cache_node(n);
2051 atomic_long_inc(&n->nr_slabs);
ba84c73c 2052 /*
2053 * lockdep requires consistent irq usage for each lock
2054 * so even though there cannot be a race this early in
2055 * the boot sequence, we still disable irqs.
2056 */
2057 local_irq_save(flags);
7c2e132c 2058 add_partial(n, page, 0);
ba84c73c 2059 local_irq_restore(flags);
81819f0f
CL
2060 return n;
2061}
2062
2063static void free_kmem_cache_nodes(struct kmem_cache *s)
2064{
2065 int node;
2066
f64dc58c 2067 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2068 struct kmem_cache_node *n = s->node[node];
2069 if (n && n != &s->local_node)
2070 kmem_cache_free(kmalloc_caches, n);
2071 s->node[node] = NULL;
2072 }
2073}
2074
2075static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2076{
2077 int node;
2078 int local_node;
2079
2080 if (slab_state >= UP)
2081 local_node = page_to_nid(virt_to_page(s));
2082 else
2083 local_node = 0;
2084
f64dc58c 2085 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2086 struct kmem_cache_node *n;
2087
2088 if (local_node == node)
2089 n = &s->local_node;
2090 else {
2091 if (slab_state == DOWN) {
2092 n = early_kmem_cache_node_alloc(gfpflags,
2093 node);
2094 continue;
2095 }
2096 n = kmem_cache_alloc_node(kmalloc_caches,
2097 gfpflags, node);
2098
2099 if (!n) {
2100 free_kmem_cache_nodes(s);
2101 return 0;
2102 }
2103
2104 }
2105 s->node[node] = n;
2106 init_kmem_cache_node(n);
2107 }
2108 return 1;
2109}
2110#else
2111static void free_kmem_cache_nodes(struct kmem_cache *s)
2112{
2113}
2114
2115static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2116{
2117 init_kmem_cache_node(&s->local_node);
2118 return 1;
2119}
2120#endif
2121
2122/*
2123 * calculate_sizes() determines the order and the distribution of data within
2124 * a slab object.
2125 */
2126static int calculate_sizes(struct kmem_cache *s)
2127{
2128 unsigned long flags = s->flags;
2129 unsigned long size = s->objsize;
2130 unsigned long align = s->align;
2131
d8b42bf5
CL
2132 /*
2133 * Round up object size to the next word boundary. We can only
2134 * place the free pointer at word boundaries and this determines
2135 * the possible location of the free pointer.
2136 */
2137 size = ALIGN(size, sizeof(void *));
2138
2139#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2140 /*
2141 * Determine if we can poison the object itself. If the user of
2142 * the slab may touch the object after free or before allocation
2143 * then we should never poison the object itself.
2144 */
2145 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2146 !s->ctor)
81819f0f
CL
2147 s->flags |= __OBJECT_POISON;
2148 else
2149 s->flags &= ~__OBJECT_POISON;
2150
81819f0f
CL
2151
2152 /*
672bba3a 2153 * If we are Redzoning then check if there is some space between the
81819f0f 2154 * end of the object and the free pointer. If not then add an
672bba3a 2155 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2156 */
2157 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2158 size += sizeof(void *);
41ecc55b 2159#endif
81819f0f
CL
2160
2161 /*
672bba3a
CL
2162 * With that we have determined the number of bytes in actual use
2163 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2164 */
2165 s->inuse = size;
2166
2167 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2168 s->ctor)) {
81819f0f
CL
2169 /*
2170 * Relocate free pointer after the object if it is not
2171 * permitted to overwrite the first word of the object on
2172 * kmem_cache_free.
2173 *
2174 * This is the case if we do RCU, have a constructor or
2175 * destructor or are poisoning the objects.
2176 */
2177 s->offset = size;
2178 size += sizeof(void *);
2179 }
2180
c12b3c62 2181#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2182 if (flags & SLAB_STORE_USER)
2183 /*
2184 * Need to store information about allocs and frees after
2185 * the object.
2186 */
2187 size += 2 * sizeof(struct track);
2188
be7b3fbc 2189 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2190 /*
2191 * Add some empty padding so that we can catch
2192 * overwrites from earlier objects rather than let
2193 * tracking information or the free pointer be
2194 * corrupted if an user writes before the start
2195 * of the object.
2196 */
2197 size += sizeof(void *);
41ecc55b 2198#endif
672bba3a 2199
81819f0f
CL
2200 /*
2201 * Determine the alignment based on various parameters that the
65c02d4c
CL
2202 * user specified and the dynamic determination of cache line size
2203 * on bootup.
81819f0f
CL
2204 */
2205 align = calculate_alignment(flags, align, s->objsize);
2206
2207 /*
2208 * SLUB stores one object immediately after another beginning from
2209 * offset 0. In order to align the objects we have to simply size
2210 * each object to conform to the alignment.
2211 */
2212 size = ALIGN(size, align);
2213 s->size = size;
2214
71c7a06f
CL
2215 if ((flags & __KMALLOC_CACHE) &&
2216 PAGE_SIZE / size < slub_min_objects) {
2217 /*
2218 * Kmalloc cache that would not have enough objects in
2219 * an order 0 page. Kmalloc slabs can fallback to
2220 * page allocator order 0 allocs so take a reasonably large
2221 * order that will allows us a good number of objects.
2222 */
2223 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2224 s->flags |= __PAGE_ALLOC_FALLBACK;
2225 s->allocflags |= __GFP_NOWARN;
2226 } else
2227 s->order = calculate_order(size);
2228
81819f0f
CL
2229 if (s->order < 0)
2230 return 0;
2231
b7a49f0d
CL
2232 s->allocflags = 0;
2233 if (s->order)
2234 s->allocflags |= __GFP_COMP;
2235
2236 if (s->flags & SLAB_CACHE_DMA)
2237 s->allocflags |= SLUB_DMA;
2238
2239 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2240 s->allocflags |= __GFP_RECLAIMABLE;
2241
81819f0f
CL
2242 /*
2243 * Determine the number of objects per slab
2244 */
2245 s->objects = (PAGE_SIZE << s->order) / size;
2246
b3fba8da 2247 return !!s->objects;
81819f0f
CL
2248
2249}
2250
81819f0f
CL
2251static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2252 const char *name, size_t size,
2253 size_t align, unsigned long flags,
4ba9b9d0 2254 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2255{
2256 memset(s, 0, kmem_size);
2257 s->name = name;
2258 s->ctor = ctor;
81819f0f 2259 s->objsize = size;
81819f0f 2260 s->align = align;
ba0268a8 2261 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2262
2263 if (!calculate_sizes(s))
2264 goto error;
2265
2266 s->refcount = 1;
2267#ifdef CONFIG_NUMA
9824601e 2268 s->remote_node_defrag_ratio = 100;
81819f0f 2269#endif
dfb4f096
CL
2270 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2271 goto error;
81819f0f 2272
dfb4f096 2273 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2274 return 1;
4c93c355 2275 free_kmem_cache_nodes(s);
81819f0f
CL
2276error:
2277 if (flags & SLAB_PANIC)
2278 panic("Cannot create slab %s size=%lu realsize=%u "
2279 "order=%u offset=%u flags=%lx\n",
2280 s->name, (unsigned long)size, s->size, s->order,
2281 s->offset, flags);
2282 return 0;
2283}
81819f0f
CL
2284
2285/*
2286 * Check if a given pointer is valid
2287 */
2288int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2289{
06428780 2290 struct page *page;
81819f0f
CL
2291
2292 page = get_object_page(object);
2293
2294 if (!page || s != page->slab)
2295 /* No slab or wrong slab */
2296 return 0;
2297
abcd08a6 2298 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2299 return 0;
2300
2301 /*
2302 * We could also check if the object is on the slabs freelist.
2303 * But this would be too expensive and it seems that the main
2304 * purpose of kmem_ptr_valid is to check if the object belongs
2305 * to a certain slab.
2306 */
2307 return 1;
2308}
2309EXPORT_SYMBOL(kmem_ptr_validate);
2310
2311/*
2312 * Determine the size of a slab object
2313 */
2314unsigned int kmem_cache_size(struct kmem_cache *s)
2315{
2316 return s->objsize;
2317}
2318EXPORT_SYMBOL(kmem_cache_size);
2319
2320const char *kmem_cache_name(struct kmem_cache *s)
2321{
2322 return s->name;
2323}
2324EXPORT_SYMBOL(kmem_cache_name);
2325
2326/*
672bba3a
CL
2327 * Attempt to free all slabs on a node. Return the number of slabs we
2328 * were unable to free.
81819f0f
CL
2329 */
2330static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2331 struct list_head *list)
2332{
2333 int slabs_inuse = 0;
2334 unsigned long flags;
2335 struct page *page, *h;
2336
2337 spin_lock_irqsave(&n->list_lock, flags);
2338 list_for_each_entry_safe(page, h, list, lru)
2339 if (!page->inuse) {
2340 list_del(&page->lru);
2341 discard_slab(s, page);
2342 } else
2343 slabs_inuse++;
2344 spin_unlock_irqrestore(&n->list_lock, flags);
2345 return slabs_inuse;
2346}
2347
2348/*
672bba3a 2349 * Release all resources used by a slab cache.
81819f0f 2350 */
0c710013 2351static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2352{
2353 int node;
2354
2355 flush_all(s);
2356
2357 /* Attempt to free all objects */
4c93c355 2358 free_kmem_cache_cpus(s);
f64dc58c 2359 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2360 struct kmem_cache_node *n = get_node(s, node);
2361
2086d26a 2362 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2363 if (atomic_long_read(&n->nr_slabs))
2364 return 1;
2365 }
2366 free_kmem_cache_nodes(s);
2367 return 0;
2368}
2369
2370/*
2371 * Close a cache and release the kmem_cache structure
2372 * (must be used for caches created using kmem_cache_create)
2373 */
2374void kmem_cache_destroy(struct kmem_cache *s)
2375{
2376 down_write(&slub_lock);
2377 s->refcount--;
2378 if (!s->refcount) {
2379 list_del(&s->list);
a0e1d1be 2380 up_write(&slub_lock);
81819f0f
CL
2381 if (kmem_cache_close(s))
2382 WARN_ON(1);
2383 sysfs_slab_remove(s);
a0e1d1be
CL
2384 } else
2385 up_write(&slub_lock);
81819f0f
CL
2386}
2387EXPORT_SYMBOL(kmem_cache_destroy);
2388
2389/********************************************************************
2390 * Kmalloc subsystem
2391 *******************************************************************/
2392
331dc558 2393struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2394EXPORT_SYMBOL(kmalloc_caches);
2395
2396#ifdef CONFIG_ZONE_DMA
331dc558 2397static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
81819f0f
CL
2398#endif
2399
2400static int __init setup_slub_min_order(char *str)
2401{
06428780 2402 get_option(&str, &slub_min_order);
81819f0f
CL
2403
2404 return 1;
2405}
2406
2407__setup("slub_min_order=", setup_slub_min_order);
2408
2409static int __init setup_slub_max_order(char *str)
2410{
06428780 2411 get_option(&str, &slub_max_order);
81819f0f
CL
2412
2413 return 1;
2414}
2415
2416__setup("slub_max_order=", setup_slub_max_order);
2417
2418static int __init setup_slub_min_objects(char *str)
2419{
06428780 2420 get_option(&str, &slub_min_objects);
81819f0f
CL
2421
2422 return 1;
2423}
2424
2425__setup("slub_min_objects=", setup_slub_min_objects);
2426
2427static int __init setup_slub_nomerge(char *str)
2428{
2429 slub_nomerge = 1;
2430 return 1;
2431}
2432
2433__setup("slub_nomerge", setup_slub_nomerge);
2434
81819f0f
CL
2435static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2436 const char *name, int size, gfp_t gfp_flags)
2437{
2438 unsigned int flags = 0;
2439
2440 if (gfp_flags & SLUB_DMA)
2441 flags = SLAB_CACHE_DMA;
2442
2443 down_write(&slub_lock);
2444 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
71c7a06f 2445 flags | __KMALLOC_CACHE, NULL))
81819f0f
CL
2446 goto panic;
2447
2448 list_add(&s->list, &slab_caches);
2449 up_write(&slub_lock);
2450 if (sysfs_slab_add(s))
2451 goto panic;
2452 return s;
2453
2454panic:
2455 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2456}
2457
2e443fd0 2458#ifdef CONFIG_ZONE_DMA
1ceef402
CL
2459
2460static void sysfs_add_func(struct work_struct *w)
2461{
2462 struct kmem_cache *s;
2463
2464 down_write(&slub_lock);
2465 list_for_each_entry(s, &slab_caches, list) {
2466 if (s->flags & __SYSFS_ADD_DEFERRED) {
2467 s->flags &= ~__SYSFS_ADD_DEFERRED;
2468 sysfs_slab_add(s);
2469 }
2470 }
2471 up_write(&slub_lock);
2472}
2473
2474static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2475
2e443fd0
CL
2476static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2477{
2478 struct kmem_cache *s;
2e443fd0
CL
2479 char *text;
2480 size_t realsize;
2481
2482 s = kmalloc_caches_dma[index];
2483 if (s)
2484 return s;
2485
2486 /* Dynamically create dma cache */
1ceef402
CL
2487 if (flags & __GFP_WAIT)
2488 down_write(&slub_lock);
2489 else {
2490 if (!down_write_trylock(&slub_lock))
2491 goto out;
2492 }
2493
2494 if (kmalloc_caches_dma[index])
2495 goto unlock_out;
2e443fd0 2496
7b55f620 2497 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2498 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2499 (unsigned int)realsize);
1ceef402
CL
2500 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2501
2502 if (!s || !text || !kmem_cache_open(s, flags, text,
2503 realsize, ARCH_KMALLOC_MINALIGN,
2504 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2505 kfree(s);
2506 kfree(text);
2507 goto unlock_out;
dfce8648 2508 }
1ceef402
CL
2509
2510 list_add(&s->list, &slab_caches);
2511 kmalloc_caches_dma[index] = s;
2512
2513 schedule_work(&sysfs_add_work);
2514
2515unlock_out:
dfce8648 2516 up_write(&slub_lock);
1ceef402 2517out:
dfce8648 2518 return kmalloc_caches_dma[index];
2e443fd0
CL
2519}
2520#endif
2521
f1b26339
CL
2522/*
2523 * Conversion table for small slabs sizes / 8 to the index in the
2524 * kmalloc array. This is necessary for slabs < 192 since we have non power
2525 * of two cache sizes there. The size of larger slabs can be determined using
2526 * fls.
2527 */
2528static s8 size_index[24] = {
2529 3, /* 8 */
2530 4, /* 16 */
2531 5, /* 24 */
2532 5, /* 32 */
2533 6, /* 40 */
2534 6, /* 48 */
2535 6, /* 56 */
2536 6, /* 64 */
2537 1, /* 72 */
2538 1, /* 80 */
2539 1, /* 88 */
2540 1, /* 96 */
2541 7, /* 104 */
2542 7, /* 112 */
2543 7, /* 120 */
2544 7, /* 128 */
2545 2, /* 136 */
2546 2, /* 144 */
2547 2, /* 152 */
2548 2, /* 160 */
2549 2, /* 168 */
2550 2, /* 176 */
2551 2, /* 184 */
2552 2 /* 192 */
2553};
2554
81819f0f
CL
2555static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2556{
f1b26339 2557 int index;
81819f0f 2558
f1b26339
CL
2559 if (size <= 192) {
2560 if (!size)
2561 return ZERO_SIZE_PTR;
81819f0f 2562
f1b26339 2563 index = size_index[(size - 1) / 8];
aadb4bc4 2564 } else
f1b26339 2565 index = fls(size - 1);
81819f0f
CL
2566
2567#ifdef CONFIG_ZONE_DMA
f1b26339 2568 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2569 return dma_kmalloc_cache(index, flags);
f1b26339 2570
81819f0f
CL
2571#endif
2572 return &kmalloc_caches[index];
2573}
2574
2575void *__kmalloc(size_t size, gfp_t flags)
2576{
aadb4bc4 2577 struct kmem_cache *s;
81819f0f 2578
331dc558 2579 if (unlikely(size > PAGE_SIZE))
eada35ef 2580 return kmalloc_large(size, flags);
aadb4bc4
CL
2581
2582 s = get_slab(size, flags);
2583
2584 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2585 return s;
2586
ce15fea8 2587 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2588}
2589EXPORT_SYMBOL(__kmalloc);
2590
2591#ifdef CONFIG_NUMA
2592void *__kmalloc_node(size_t size, gfp_t flags, int node)
2593{
aadb4bc4 2594 struct kmem_cache *s;
81819f0f 2595
331dc558 2596 if (unlikely(size > PAGE_SIZE))
eada35ef 2597 return kmalloc_large(size, flags);
aadb4bc4
CL
2598
2599 s = get_slab(size, flags);
2600
2601 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2602 return s;
2603
ce15fea8 2604 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2605}
2606EXPORT_SYMBOL(__kmalloc_node);
2607#endif
2608
2609size_t ksize(const void *object)
2610{
272c1d21 2611 struct page *page;
81819f0f
CL
2612 struct kmem_cache *s;
2613
ef8b4520 2614 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2615 return 0;
2616
294a80a8 2617 page = virt_to_head_page(object);
294a80a8
VN
2618
2619 if (unlikely(!PageSlab(page)))
2620 return PAGE_SIZE << compound_order(page);
2621
81819f0f 2622 s = page->slab;
81819f0f 2623
ae20bfda 2624#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2625 /*
2626 * Debugging requires use of the padding between object
2627 * and whatever may come after it.
2628 */
2629 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2630 return s->objsize;
2631
ae20bfda 2632#endif
81819f0f
CL
2633 /*
2634 * If we have the need to store the freelist pointer
2635 * back there or track user information then we can
2636 * only use the space before that information.
2637 */
2638 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2639 return s->inuse;
81819f0f
CL
2640 /*
2641 * Else we can use all the padding etc for the allocation
2642 */
2643 return s->size;
2644}
2645EXPORT_SYMBOL(ksize);
2646
2647void kfree(const void *x)
2648{
81819f0f 2649 struct page *page;
5bb983b0 2650 void *object = (void *)x;
81819f0f 2651
2408c550 2652 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2653 return;
2654
b49af68f 2655 page = virt_to_head_page(x);
aadb4bc4
CL
2656 if (unlikely(!PageSlab(page))) {
2657 put_page(page);
2658 return;
2659 }
5bb983b0 2660 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2661}
2662EXPORT_SYMBOL(kfree);
2663
f61396ae
CL
2664static unsigned long count_partial(struct kmem_cache_node *n)
2665{
2666 unsigned long flags;
2667 unsigned long x = 0;
2668 struct page *page;
2669
2670 spin_lock_irqsave(&n->list_lock, flags);
2671 list_for_each_entry(page, &n->partial, lru)
2672 x += page->inuse;
2673 spin_unlock_irqrestore(&n->list_lock, flags);
2674 return x;
2675}
2676
2086d26a 2677/*
672bba3a
CL
2678 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2679 * the remaining slabs by the number of items in use. The slabs with the
2680 * most items in use come first. New allocations will then fill those up
2681 * and thus they can be removed from the partial lists.
2682 *
2683 * The slabs with the least items are placed last. This results in them
2684 * being allocated from last increasing the chance that the last objects
2685 * are freed in them.
2086d26a
CL
2686 */
2687int kmem_cache_shrink(struct kmem_cache *s)
2688{
2689 int node;
2690 int i;
2691 struct kmem_cache_node *n;
2692 struct page *page;
2693 struct page *t;
2694 struct list_head *slabs_by_inuse =
2695 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2696 unsigned long flags;
2697
2698 if (!slabs_by_inuse)
2699 return -ENOMEM;
2700
2701 flush_all(s);
f64dc58c 2702 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2703 n = get_node(s, node);
2704
2705 if (!n->nr_partial)
2706 continue;
2707
2708 for (i = 0; i < s->objects; i++)
2709 INIT_LIST_HEAD(slabs_by_inuse + i);
2710
2711 spin_lock_irqsave(&n->list_lock, flags);
2712
2713 /*
672bba3a 2714 * Build lists indexed by the items in use in each slab.
2086d26a 2715 *
672bba3a
CL
2716 * Note that concurrent frees may occur while we hold the
2717 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2718 */
2719 list_for_each_entry_safe(page, t, &n->partial, lru) {
2720 if (!page->inuse && slab_trylock(page)) {
2721 /*
2722 * Must hold slab lock here because slab_free
2723 * may have freed the last object and be
2724 * waiting to release the slab.
2725 */
2726 list_del(&page->lru);
2727 n->nr_partial--;
2728 slab_unlock(page);
2729 discard_slab(s, page);
2730 } else {
fcda3d89
CL
2731 list_move(&page->lru,
2732 slabs_by_inuse + page->inuse);
2086d26a
CL
2733 }
2734 }
2735
2086d26a 2736 /*
672bba3a
CL
2737 * Rebuild the partial list with the slabs filled up most
2738 * first and the least used slabs at the end.
2086d26a
CL
2739 */
2740 for (i = s->objects - 1; i >= 0; i--)
2741 list_splice(slabs_by_inuse + i, n->partial.prev);
2742
2086d26a
CL
2743 spin_unlock_irqrestore(&n->list_lock, flags);
2744 }
2745
2746 kfree(slabs_by_inuse);
2747 return 0;
2748}
2749EXPORT_SYMBOL(kmem_cache_shrink);
2750
b9049e23
YG
2751#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2752static int slab_mem_going_offline_callback(void *arg)
2753{
2754 struct kmem_cache *s;
2755
2756 down_read(&slub_lock);
2757 list_for_each_entry(s, &slab_caches, list)
2758 kmem_cache_shrink(s);
2759 up_read(&slub_lock);
2760
2761 return 0;
2762}
2763
2764static void slab_mem_offline_callback(void *arg)
2765{
2766 struct kmem_cache_node *n;
2767 struct kmem_cache *s;
2768 struct memory_notify *marg = arg;
2769 int offline_node;
2770
2771 offline_node = marg->status_change_nid;
2772
2773 /*
2774 * If the node still has available memory. we need kmem_cache_node
2775 * for it yet.
2776 */
2777 if (offline_node < 0)
2778 return;
2779
2780 down_read(&slub_lock);
2781 list_for_each_entry(s, &slab_caches, list) {
2782 n = get_node(s, offline_node);
2783 if (n) {
2784 /*
2785 * if n->nr_slabs > 0, slabs still exist on the node
2786 * that is going down. We were unable to free them,
2787 * and offline_pages() function shoudn't call this
2788 * callback. So, we must fail.
2789 */
27bb628a 2790 BUG_ON(atomic_long_read(&n->nr_slabs));
b9049e23
YG
2791
2792 s->node[offline_node] = NULL;
2793 kmem_cache_free(kmalloc_caches, n);
2794 }
2795 }
2796 up_read(&slub_lock);
2797}
2798
2799static int slab_mem_going_online_callback(void *arg)
2800{
2801 struct kmem_cache_node *n;
2802 struct kmem_cache *s;
2803 struct memory_notify *marg = arg;
2804 int nid = marg->status_change_nid;
2805 int ret = 0;
2806
2807 /*
2808 * If the node's memory is already available, then kmem_cache_node is
2809 * already created. Nothing to do.
2810 */
2811 if (nid < 0)
2812 return 0;
2813
2814 /*
2815 * We are bringing a node online. No memory is availabe yet. We must
2816 * allocate a kmem_cache_node structure in order to bring the node
2817 * online.
2818 */
2819 down_read(&slub_lock);
2820 list_for_each_entry(s, &slab_caches, list) {
2821 /*
2822 * XXX: kmem_cache_alloc_node will fallback to other nodes
2823 * since memory is not yet available from the node that
2824 * is brought up.
2825 */
2826 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2827 if (!n) {
2828 ret = -ENOMEM;
2829 goto out;
2830 }
2831 init_kmem_cache_node(n);
2832 s->node[nid] = n;
2833 }
2834out:
2835 up_read(&slub_lock);
2836 return ret;
2837}
2838
2839static int slab_memory_callback(struct notifier_block *self,
2840 unsigned long action, void *arg)
2841{
2842 int ret = 0;
2843
2844 switch (action) {
2845 case MEM_GOING_ONLINE:
2846 ret = slab_mem_going_online_callback(arg);
2847 break;
2848 case MEM_GOING_OFFLINE:
2849 ret = slab_mem_going_offline_callback(arg);
2850 break;
2851 case MEM_OFFLINE:
2852 case MEM_CANCEL_ONLINE:
2853 slab_mem_offline_callback(arg);
2854 break;
2855 case MEM_ONLINE:
2856 case MEM_CANCEL_OFFLINE:
2857 break;
2858 }
2859
2860 ret = notifier_from_errno(ret);
2861 return ret;
2862}
2863
2864#endif /* CONFIG_MEMORY_HOTPLUG */
2865
81819f0f
CL
2866/********************************************************************
2867 * Basic setup of slabs
2868 *******************************************************************/
2869
2870void __init kmem_cache_init(void)
2871{
2872 int i;
4b356be0 2873 int caches = 0;
81819f0f 2874
4c93c355
CL
2875 init_alloc_cpu();
2876
81819f0f
CL
2877#ifdef CONFIG_NUMA
2878 /*
2879 * Must first have the slab cache available for the allocations of the
672bba3a 2880 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2881 * kmem_cache_open for slab_state == DOWN.
2882 */
2883 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2884 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2885 kmalloc_caches[0].refcount = -1;
4b356be0 2886 caches++;
b9049e23
YG
2887
2888 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2889#endif
2890
2891 /* Able to allocate the per node structures */
2892 slab_state = PARTIAL;
2893
2894 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2895 if (KMALLOC_MIN_SIZE <= 64) {
2896 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2897 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2898 caches++;
2899 }
2900 if (KMALLOC_MIN_SIZE <= 128) {
2901 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2902 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2903 caches++;
2904 }
81819f0f 2905
331dc558 2906 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2907 create_kmalloc_cache(&kmalloc_caches[i],
2908 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2909 caches++;
2910 }
81819f0f 2911
f1b26339
CL
2912
2913 /*
2914 * Patch up the size_index table if we have strange large alignment
2915 * requirements for the kmalloc array. This is only the case for
2916 * mips it seems. The standard arches will not generate any code here.
2917 *
2918 * Largest permitted alignment is 256 bytes due to the way we
2919 * handle the index determination for the smaller caches.
2920 *
2921 * Make sure that nothing crazy happens if someone starts tinkering
2922 * around with ARCH_KMALLOC_MINALIGN
2923 */
2924 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2925 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2926
12ad6843 2927 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
2928 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2929
81819f0f
CL
2930 slab_state = UP;
2931
2932 /* Provide the correct kmalloc names now that the caches are up */
331dc558 2933 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
2934 kmalloc_caches[i]. name =
2935 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2936
2937#ifdef CONFIG_SMP
2938 register_cpu_notifier(&slab_notifier);
4c93c355
CL
2939 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2940 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2941#else
2942 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
2943#endif
2944
81819f0f 2945
3adbefee
IM
2946 printk(KERN_INFO
2947 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2948 " CPUs=%d, Nodes=%d\n",
2949 caches, cache_line_size(),
81819f0f
CL
2950 slub_min_order, slub_max_order, slub_min_objects,
2951 nr_cpu_ids, nr_node_ids);
2952}
2953
2954/*
2955 * Find a mergeable slab cache
2956 */
2957static int slab_unmergeable(struct kmem_cache *s)
2958{
2959 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2960 return 1;
2961
331dc558 2962 if ((s->flags & __PAGE_ALLOC_FALLBACK))
71c7a06f
CL
2963 return 1;
2964
c59def9f 2965 if (s->ctor)
81819f0f
CL
2966 return 1;
2967
8ffa6875
CL
2968 /*
2969 * We may have set a slab to be unmergeable during bootstrap.
2970 */
2971 if (s->refcount < 0)
2972 return 1;
2973
81819f0f
CL
2974 return 0;
2975}
2976
2977static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 2978 size_t align, unsigned long flags, const char *name,
4ba9b9d0 2979 void (*ctor)(struct kmem_cache *, void *))
81819f0f 2980{
5b95a4ac 2981 struct kmem_cache *s;
81819f0f
CL
2982
2983 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2984 return NULL;
2985
c59def9f 2986 if (ctor)
81819f0f
CL
2987 return NULL;
2988
2989 size = ALIGN(size, sizeof(void *));
2990 align = calculate_alignment(flags, align, size);
2991 size = ALIGN(size, align);
ba0268a8 2992 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 2993
5b95a4ac 2994 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
2995 if (slab_unmergeable(s))
2996 continue;
2997
2998 if (size > s->size)
2999 continue;
3000
ba0268a8 3001 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3002 continue;
3003 /*
3004 * Check if alignment is compatible.
3005 * Courtesy of Adrian Drzewiecki
3006 */
06428780 3007 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3008 continue;
3009
3010 if (s->size - size >= sizeof(void *))
3011 continue;
3012
3013 return s;
3014 }
3015 return NULL;
3016}
3017
3018struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3019 size_t align, unsigned long flags,
4ba9b9d0 3020 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3021{
3022 struct kmem_cache *s;
3023
3024 down_write(&slub_lock);
ba0268a8 3025 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3026 if (s) {
42a9fdbb
CL
3027 int cpu;
3028
81819f0f
CL
3029 s->refcount++;
3030 /*
3031 * Adjust the object sizes so that we clear
3032 * the complete object on kzalloc.
3033 */
3034 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3035
3036 /*
3037 * And then we need to update the object size in the
3038 * per cpu structures
3039 */
3040 for_each_online_cpu(cpu)
3041 get_cpu_slab(s, cpu)->objsize = s->objsize;
81819f0f 3042 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3043 up_write(&slub_lock);
81819f0f
CL
3044 if (sysfs_slab_alias(s, name))
3045 goto err;
a0e1d1be
CL
3046 return s;
3047 }
3048 s = kmalloc(kmem_size, GFP_KERNEL);
3049 if (s) {
3050 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3051 size, align, flags, ctor)) {
81819f0f 3052 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3053 up_write(&slub_lock);
3054 if (sysfs_slab_add(s))
3055 goto err;
3056 return s;
3057 }
3058 kfree(s);
81819f0f
CL
3059 }
3060 up_write(&slub_lock);
81819f0f
CL
3061
3062err:
81819f0f
CL
3063 if (flags & SLAB_PANIC)
3064 panic("Cannot create slabcache %s\n", name);
3065 else
3066 s = NULL;
3067 return s;
3068}
3069EXPORT_SYMBOL(kmem_cache_create);
3070
81819f0f 3071#ifdef CONFIG_SMP
81819f0f 3072/*
672bba3a
CL
3073 * Use the cpu notifier to insure that the cpu slabs are flushed when
3074 * necessary.
81819f0f
CL
3075 */
3076static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3077 unsigned long action, void *hcpu)
3078{
3079 long cpu = (long)hcpu;
5b95a4ac
CL
3080 struct kmem_cache *s;
3081 unsigned long flags;
81819f0f
CL
3082
3083 switch (action) {
4c93c355
CL
3084 case CPU_UP_PREPARE:
3085 case CPU_UP_PREPARE_FROZEN:
3086 init_alloc_cpu_cpu(cpu);
3087 down_read(&slub_lock);
3088 list_for_each_entry(s, &slab_caches, list)
3089 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3090 GFP_KERNEL);
3091 up_read(&slub_lock);
3092 break;
3093
81819f0f 3094 case CPU_UP_CANCELED:
8bb78442 3095 case CPU_UP_CANCELED_FROZEN:
81819f0f 3096 case CPU_DEAD:
8bb78442 3097 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3098 down_read(&slub_lock);
3099 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3100 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3101
5b95a4ac
CL
3102 local_irq_save(flags);
3103 __flush_cpu_slab(s, cpu);
3104 local_irq_restore(flags);
4c93c355
CL
3105 free_kmem_cache_cpu(c, cpu);
3106 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3107 }
3108 up_read(&slub_lock);
81819f0f
CL
3109 break;
3110 default:
3111 break;
3112 }
3113 return NOTIFY_OK;
3114}
3115
06428780 3116static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3117 .notifier_call = slab_cpuup_callback
06428780 3118};
81819f0f
CL
3119
3120#endif
3121
81819f0f
CL
3122void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3123{
aadb4bc4
CL
3124 struct kmem_cache *s;
3125
331dc558 3126 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3127 return kmalloc_large(size, gfpflags);
3128
aadb4bc4 3129 s = get_slab(size, gfpflags);
81819f0f 3130
2408c550 3131 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3132 return s;
81819f0f 3133
ce15fea8 3134 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3135}
3136
3137void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3138 int node, void *caller)
3139{
aadb4bc4
CL
3140 struct kmem_cache *s;
3141
331dc558 3142 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3143 return kmalloc_large(size, gfpflags);
3144
aadb4bc4 3145 s = get_slab(size, gfpflags);
81819f0f 3146
2408c550 3147 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3148 return s;
81819f0f 3149
ce15fea8 3150 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3151}
3152
41ecc55b 3153#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3154static int validate_slab(struct kmem_cache *s, struct page *page,
3155 unsigned long *map)
53e15af0
CL
3156{
3157 void *p;
a973e9dd 3158 void *addr = page_address(page);
53e15af0
CL
3159
3160 if (!check_slab(s, page) ||
3161 !on_freelist(s, page, NULL))
3162 return 0;
3163
3164 /* Now we know that a valid freelist exists */
3165 bitmap_zero(map, s->objects);
3166
7656c72b
CL
3167 for_each_free_object(p, s, page->freelist) {
3168 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3169 if (!check_object(s, page, p, 0))
3170 return 0;
3171 }
3172
7656c72b
CL
3173 for_each_object(p, s, addr)
3174 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3175 if (!check_object(s, page, p, 1))
3176 return 0;
3177 return 1;
3178}
3179
434e245d
CL
3180static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3181 unsigned long *map)
53e15af0
CL
3182{
3183 if (slab_trylock(page)) {
434e245d 3184 validate_slab(s, page, map);
53e15af0
CL
3185 slab_unlock(page);
3186 } else
3187 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3188 s->name, page);
3189
3190 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3191 if (!SlabDebug(page))
3192 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3193 "on slab 0x%p\n", s->name, page);
3194 } else {
35e5d7ee
CL
3195 if (SlabDebug(page))
3196 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3197 "slab 0x%p\n", s->name, page);
3198 }
3199}
3200
434e245d
CL
3201static int validate_slab_node(struct kmem_cache *s,
3202 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3203{
3204 unsigned long count = 0;
3205 struct page *page;
3206 unsigned long flags;
3207
3208 spin_lock_irqsave(&n->list_lock, flags);
3209
3210 list_for_each_entry(page, &n->partial, lru) {
434e245d 3211 validate_slab_slab(s, page, map);
53e15af0
CL
3212 count++;
3213 }
3214 if (count != n->nr_partial)
3215 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3216 "counter=%ld\n", s->name, count, n->nr_partial);
3217
3218 if (!(s->flags & SLAB_STORE_USER))
3219 goto out;
3220
3221 list_for_each_entry(page, &n->full, lru) {
434e245d 3222 validate_slab_slab(s, page, map);
53e15af0
CL
3223 count++;
3224 }
3225 if (count != atomic_long_read(&n->nr_slabs))
3226 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3227 "counter=%ld\n", s->name, count,
3228 atomic_long_read(&n->nr_slabs));
3229
3230out:
3231 spin_unlock_irqrestore(&n->list_lock, flags);
3232 return count;
3233}
3234
434e245d 3235static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3236{
3237 int node;
3238 unsigned long count = 0;
434e245d
CL
3239 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3240 sizeof(unsigned long), GFP_KERNEL);
3241
3242 if (!map)
3243 return -ENOMEM;
53e15af0
CL
3244
3245 flush_all(s);
f64dc58c 3246 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3247 struct kmem_cache_node *n = get_node(s, node);
3248
434e245d 3249 count += validate_slab_node(s, n, map);
53e15af0 3250 }
434e245d 3251 kfree(map);
53e15af0
CL
3252 return count;
3253}
3254
b3459709
CL
3255#ifdef SLUB_RESILIENCY_TEST
3256static void resiliency_test(void)
3257{
3258 u8 *p;
3259
3260 printk(KERN_ERR "SLUB resiliency testing\n");
3261 printk(KERN_ERR "-----------------------\n");
3262 printk(KERN_ERR "A. Corruption after allocation\n");
3263
3264 p = kzalloc(16, GFP_KERNEL);
3265 p[16] = 0x12;
3266 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3267 " 0x12->0x%p\n\n", p + 16);
3268
3269 validate_slab_cache(kmalloc_caches + 4);
3270
3271 /* Hmmm... The next two are dangerous */
3272 p = kzalloc(32, GFP_KERNEL);
3273 p[32 + sizeof(void *)] = 0x34;
3274 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3275 " 0x34 -> -0x%p\n", p);
3276 printk(KERN_ERR
3277 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3278
3279 validate_slab_cache(kmalloc_caches + 5);
3280 p = kzalloc(64, GFP_KERNEL);
3281 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3282 *p = 0x56;
3283 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3284 p);
3adbefee
IM
3285 printk(KERN_ERR
3286 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3287 validate_slab_cache(kmalloc_caches + 6);
3288
3289 printk(KERN_ERR "\nB. Corruption after free\n");
3290 p = kzalloc(128, GFP_KERNEL);
3291 kfree(p);
3292 *p = 0x78;
3293 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3294 validate_slab_cache(kmalloc_caches + 7);
3295
3296 p = kzalloc(256, GFP_KERNEL);
3297 kfree(p);
3298 p[50] = 0x9a;
3adbefee
IM
3299 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3300 p);
b3459709
CL
3301 validate_slab_cache(kmalloc_caches + 8);
3302
3303 p = kzalloc(512, GFP_KERNEL);
3304 kfree(p);
3305 p[512] = 0xab;
3306 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3307 validate_slab_cache(kmalloc_caches + 9);
3308}
3309#else
3310static void resiliency_test(void) {};
3311#endif
3312
88a420e4 3313/*
672bba3a 3314 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3315 * and freed.
3316 */
3317
3318struct location {
3319 unsigned long count;
3320 void *addr;
45edfa58
CL
3321 long long sum_time;
3322 long min_time;
3323 long max_time;
3324 long min_pid;
3325 long max_pid;
3326 cpumask_t cpus;
3327 nodemask_t nodes;
88a420e4
CL
3328};
3329
3330struct loc_track {
3331 unsigned long max;
3332 unsigned long count;
3333 struct location *loc;
3334};
3335
3336static void free_loc_track(struct loc_track *t)
3337{
3338 if (t->max)
3339 free_pages((unsigned long)t->loc,
3340 get_order(sizeof(struct location) * t->max));
3341}
3342
68dff6a9 3343static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3344{
3345 struct location *l;
3346 int order;
3347
88a420e4
CL
3348 order = get_order(sizeof(struct location) * max);
3349
68dff6a9 3350 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3351 if (!l)
3352 return 0;
3353
3354 if (t->count) {
3355 memcpy(l, t->loc, sizeof(struct location) * t->count);
3356 free_loc_track(t);
3357 }
3358 t->max = max;
3359 t->loc = l;
3360 return 1;
3361}
3362
3363static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3364 const struct track *track)
88a420e4
CL
3365{
3366 long start, end, pos;
3367 struct location *l;
3368 void *caddr;
45edfa58 3369 unsigned long age = jiffies - track->when;
88a420e4
CL
3370
3371 start = -1;
3372 end = t->count;
3373
3374 for ( ; ; ) {
3375 pos = start + (end - start + 1) / 2;
3376
3377 /*
3378 * There is nothing at "end". If we end up there
3379 * we need to add something to before end.
3380 */
3381 if (pos == end)
3382 break;
3383
3384 caddr = t->loc[pos].addr;
45edfa58
CL
3385 if (track->addr == caddr) {
3386
3387 l = &t->loc[pos];
3388 l->count++;
3389 if (track->when) {
3390 l->sum_time += age;
3391 if (age < l->min_time)
3392 l->min_time = age;
3393 if (age > l->max_time)
3394 l->max_time = age;
3395
3396 if (track->pid < l->min_pid)
3397 l->min_pid = track->pid;
3398 if (track->pid > l->max_pid)
3399 l->max_pid = track->pid;
3400
3401 cpu_set(track->cpu, l->cpus);
3402 }
3403 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3404 return 1;
3405 }
3406
45edfa58 3407 if (track->addr < caddr)
88a420e4
CL
3408 end = pos;
3409 else
3410 start = pos;
3411 }
3412
3413 /*
672bba3a 3414 * Not found. Insert new tracking element.
88a420e4 3415 */
68dff6a9 3416 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3417 return 0;
3418
3419 l = t->loc + pos;
3420 if (pos < t->count)
3421 memmove(l + 1, l,
3422 (t->count - pos) * sizeof(struct location));
3423 t->count++;
3424 l->count = 1;
45edfa58
CL
3425 l->addr = track->addr;
3426 l->sum_time = age;
3427 l->min_time = age;
3428 l->max_time = age;
3429 l->min_pid = track->pid;
3430 l->max_pid = track->pid;
3431 cpus_clear(l->cpus);
3432 cpu_set(track->cpu, l->cpus);
3433 nodes_clear(l->nodes);
3434 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3435 return 1;
3436}
3437
3438static void process_slab(struct loc_track *t, struct kmem_cache *s,
3439 struct page *page, enum track_item alloc)
3440{
a973e9dd 3441 void *addr = page_address(page);
7656c72b 3442 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3443 void *p;
3444
3445 bitmap_zero(map, s->objects);
7656c72b
CL
3446 for_each_free_object(p, s, page->freelist)
3447 set_bit(slab_index(p, s, addr), map);
88a420e4 3448
7656c72b 3449 for_each_object(p, s, addr)
45edfa58
CL
3450 if (!test_bit(slab_index(p, s, addr), map))
3451 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3452}
3453
3454static int list_locations(struct kmem_cache *s, char *buf,
3455 enum track_item alloc)
3456{
e374d483 3457 int len = 0;
88a420e4 3458 unsigned long i;
68dff6a9 3459 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3460 int node;
3461
68dff6a9 3462 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3463 GFP_TEMPORARY))
68dff6a9 3464 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3465
3466 /* Push back cpu slabs */
3467 flush_all(s);
3468
f64dc58c 3469 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3470 struct kmem_cache_node *n = get_node(s, node);
3471 unsigned long flags;
3472 struct page *page;
3473
9e86943b 3474 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3475 continue;
3476
3477 spin_lock_irqsave(&n->list_lock, flags);
3478 list_for_each_entry(page, &n->partial, lru)
3479 process_slab(&t, s, page, alloc);
3480 list_for_each_entry(page, &n->full, lru)
3481 process_slab(&t, s, page, alloc);
3482 spin_unlock_irqrestore(&n->list_lock, flags);
3483 }
3484
3485 for (i = 0; i < t.count; i++) {
45edfa58 3486 struct location *l = &t.loc[i];
88a420e4 3487
e374d483 3488 if (len > PAGE_SIZE - 100)
88a420e4 3489 break;
e374d483 3490 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3491
3492 if (l->addr)
e374d483 3493 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3494 else
e374d483 3495 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3496
3497 if (l->sum_time != l->min_time) {
3498 unsigned long remainder;
3499
e374d483 3500 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3501 l->min_time,
3502 div_long_long_rem(l->sum_time, l->count, &remainder),
3503 l->max_time);
3504 } else
e374d483 3505 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3506 l->min_time);
3507
3508 if (l->min_pid != l->max_pid)
e374d483 3509 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3510 l->min_pid, l->max_pid);
3511 else
e374d483 3512 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3513 l->min_pid);
3514
84966343 3515 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3516 len < PAGE_SIZE - 60) {
3517 len += sprintf(buf + len, " cpus=");
3518 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3519 l->cpus);
3520 }
3521
84966343 3522 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3523 len < PAGE_SIZE - 60) {
3524 len += sprintf(buf + len, " nodes=");
3525 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3526 l->nodes);
3527 }
3528
e374d483 3529 len += sprintf(buf + len, "\n");
88a420e4
CL
3530 }
3531
3532 free_loc_track(&t);
3533 if (!t.count)
e374d483
HH
3534 len += sprintf(buf, "No data\n");
3535 return len;
88a420e4
CL
3536}
3537
81819f0f
CL
3538enum slab_stat_type {
3539 SL_FULL,
3540 SL_PARTIAL,
3541 SL_CPU,
3542 SL_OBJECTS
3543};
3544
3545#define SO_FULL (1 << SL_FULL)
3546#define SO_PARTIAL (1 << SL_PARTIAL)
3547#define SO_CPU (1 << SL_CPU)
3548#define SO_OBJECTS (1 << SL_OBJECTS)
3549
d9acf4b7 3550static unsigned long show_slab_objects(struct kmem_cache *s,
81819f0f
CL
3551 char *buf, unsigned long flags)
3552{
3553 unsigned long total = 0;
3554 int cpu;
3555 int node;
3556 int x;
3557 unsigned long *nodes;
3558 unsigned long *per_cpu;
3559
3560 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3561 per_cpu = nodes + nr_node_ids;
3562
3563 for_each_possible_cpu(cpu) {
dfb4f096
CL
3564 struct page *page;
3565 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 3566
dfb4f096
CL
3567 if (!c)
3568 continue;
3569
3570 page = c->page;
ee3c72a1
CL
3571 node = c->node;
3572 if (node < 0)
3573 continue;
81819f0f 3574 if (page) {
81819f0f 3575 if (flags & SO_CPU) {
81819f0f
CL
3576 if (flags & SO_OBJECTS)
3577 x = page->inuse;
3578 else
3579 x = 1;
3580 total += x;
ee3c72a1 3581 nodes[node] += x;
81819f0f 3582 }
ee3c72a1 3583 per_cpu[node]++;
81819f0f
CL
3584 }
3585 }
3586
f64dc58c 3587 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3588 struct kmem_cache_node *n = get_node(s, node);
3589
3590 if (flags & SO_PARTIAL) {
3591 if (flags & SO_OBJECTS)
3592 x = count_partial(n);
3593 else
3594 x = n->nr_partial;
3595 total += x;
3596 nodes[node] += x;
3597 }
3598
3599 if (flags & SO_FULL) {
9e86943b 3600 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3601 - per_cpu[node]
3602 - n->nr_partial;
3603
3604 if (flags & SO_OBJECTS)
3605 x = full_slabs * s->objects;
3606 else
3607 x = full_slabs;
3608 total += x;
3609 nodes[node] += x;
3610 }
3611 }
3612
3613 x = sprintf(buf, "%lu", total);
3614#ifdef CONFIG_NUMA
f64dc58c 3615 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3616 if (nodes[node])
3617 x += sprintf(buf + x, " N%d=%lu",
3618 node, nodes[node]);
3619#endif
3620 kfree(nodes);
3621 return x + sprintf(buf + x, "\n");
3622}
3623
3624static int any_slab_objects(struct kmem_cache *s)
3625{
3626 int node;
3627 int cpu;
3628
dfb4f096
CL
3629 for_each_possible_cpu(cpu) {
3630 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3631
3632 if (c && c->page)
81819f0f 3633 return 1;
dfb4f096 3634 }
81819f0f 3635
dfb4f096 3636 for_each_online_node(node) {
81819f0f
CL
3637 struct kmem_cache_node *n = get_node(s, node);
3638
dfb4f096
CL
3639 if (!n)
3640 continue;
3641
9e86943b 3642 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3643 return 1;
3644 }
3645 return 0;
3646}
3647
3648#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3649#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3650
3651struct slab_attribute {
3652 struct attribute attr;
3653 ssize_t (*show)(struct kmem_cache *s, char *buf);
3654 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3655};
3656
3657#define SLAB_ATTR_RO(_name) \
3658 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3659
3660#define SLAB_ATTR(_name) \
3661 static struct slab_attribute _name##_attr = \
3662 __ATTR(_name, 0644, _name##_show, _name##_store)
3663
81819f0f
CL
3664static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3665{
3666 return sprintf(buf, "%d\n", s->size);
3667}
3668SLAB_ATTR_RO(slab_size);
3669
3670static ssize_t align_show(struct kmem_cache *s, char *buf)
3671{
3672 return sprintf(buf, "%d\n", s->align);
3673}
3674SLAB_ATTR_RO(align);
3675
3676static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3677{
3678 return sprintf(buf, "%d\n", s->objsize);
3679}
3680SLAB_ATTR_RO(object_size);
3681
3682static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3683{
3684 return sprintf(buf, "%d\n", s->objects);
3685}
3686SLAB_ATTR_RO(objs_per_slab);
3687
3688static ssize_t order_show(struct kmem_cache *s, char *buf)
3689{
3690 return sprintf(buf, "%d\n", s->order);
3691}
3692SLAB_ATTR_RO(order);
3693
3694static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3695{
3696 if (s->ctor) {
3697 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3698
3699 return n + sprintf(buf + n, "\n");
3700 }
3701 return 0;
3702}
3703SLAB_ATTR_RO(ctor);
3704
81819f0f
CL
3705static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3706{
3707 return sprintf(buf, "%d\n", s->refcount - 1);
3708}
3709SLAB_ATTR_RO(aliases);
3710
3711static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3712{
d9acf4b7 3713 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
81819f0f
CL
3714}
3715SLAB_ATTR_RO(slabs);
3716
3717static ssize_t partial_show(struct kmem_cache *s, char *buf)
3718{
d9acf4b7 3719 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3720}
3721SLAB_ATTR_RO(partial);
3722
3723static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3724{
d9acf4b7 3725 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3726}
3727SLAB_ATTR_RO(cpu_slabs);
3728
3729static ssize_t objects_show(struct kmem_cache *s, char *buf)
3730{
d9acf4b7 3731 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
81819f0f
CL
3732}
3733SLAB_ATTR_RO(objects);
3734
3735static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3736{
3737 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3738}
3739
3740static ssize_t sanity_checks_store(struct kmem_cache *s,
3741 const char *buf, size_t length)
3742{
3743 s->flags &= ~SLAB_DEBUG_FREE;
3744 if (buf[0] == '1')
3745 s->flags |= SLAB_DEBUG_FREE;
3746 return length;
3747}
3748SLAB_ATTR(sanity_checks);
3749
3750static ssize_t trace_show(struct kmem_cache *s, char *buf)
3751{
3752 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3753}
3754
3755static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3756 size_t length)
3757{
3758 s->flags &= ~SLAB_TRACE;
3759 if (buf[0] == '1')
3760 s->flags |= SLAB_TRACE;
3761 return length;
3762}
3763SLAB_ATTR(trace);
3764
3765static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3766{
3767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3768}
3769
3770static ssize_t reclaim_account_store(struct kmem_cache *s,
3771 const char *buf, size_t length)
3772{
3773 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3774 if (buf[0] == '1')
3775 s->flags |= SLAB_RECLAIM_ACCOUNT;
3776 return length;
3777}
3778SLAB_ATTR(reclaim_account);
3779
3780static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3781{
5af60839 3782 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3783}
3784SLAB_ATTR_RO(hwcache_align);
3785
3786#ifdef CONFIG_ZONE_DMA
3787static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3788{
3789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3790}
3791SLAB_ATTR_RO(cache_dma);
3792#endif
3793
3794static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3795{
3796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3797}
3798SLAB_ATTR_RO(destroy_by_rcu);
3799
3800static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3801{
3802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3803}
3804
3805static ssize_t red_zone_store(struct kmem_cache *s,
3806 const char *buf, size_t length)
3807{
3808 if (any_slab_objects(s))
3809 return -EBUSY;
3810
3811 s->flags &= ~SLAB_RED_ZONE;
3812 if (buf[0] == '1')
3813 s->flags |= SLAB_RED_ZONE;
3814 calculate_sizes(s);
3815 return length;
3816}
3817SLAB_ATTR(red_zone);
3818
3819static ssize_t poison_show(struct kmem_cache *s, char *buf)
3820{
3821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3822}
3823
3824static ssize_t poison_store(struct kmem_cache *s,
3825 const char *buf, size_t length)
3826{
3827 if (any_slab_objects(s))
3828 return -EBUSY;
3829
3830 s->flags &= ~SLAB_POISON;
3831 if (buf[0] == '1')
3832 s->flags |= SLAB_POISON;
3833 calculate_sizes(s);
3834 return length;
3835}
3836SLAB_ATTR(poison);
3837
3838static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3839{
3840 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3841}
3842
3843static ssize_t store_user_store(struct kmem_cache *s,
3844 const char *buf, size_t length)
3845{
3846 if (any_slab_objects(s))
3847 return -EBUSY;
3848
3849 s->flags &= ~SLAB_STORE_USER;
3850 if (buf[0] == '1')
3851 s->flags |= SLAB_STORE_USER;
3852 calculate_sizes(s);
3853 return length;
3854}
3855SLAB_ATTR(store_user);
3856
53e15af0
CL
3857static ssize_t validate_show(struct kmem_cache *s, char *buf)
3858{
3859 return 0;
3860}
3861
3862static ssize_t validate_store(struct kmem_cache *s,
3863 const char *buf, size_t length)
3864{
434e245d
CL
3865 int ret = -EINVAL;
3866
3867 if (buf[0] == '1') {
3868 ret = validate_slab_cache(s);
3869 if (ret >= 0)
3870 ret = length;
3871 }
3872 return ret;
53e15af0
CL
3873}
3874SLAB_ATTR(validate);
3875
2086d26a
CL
3876static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3877{
3878 return 0;
3879}
3880
3881static ssize_t shrink_store(struct kmem_cache *s,
3882 const char *buf, size_t length)
3883{
3884 if (buf[0] == '1') {
3885 int rc = kmem_cache_shrink(s);
3886
3887 if (rc)
3888 return rc;
3889 } else
3890 return -EINVAL;
3891 return length;
3892}
3893SLAB_ATTR(shrink);
3894
88a420e4
CL
3895static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3896{
3897 if (!(s->flags & SLAB_STORE_USER))
3898 return -ENOSYS;
3899 return list_locations(s, buf, TRACK_ALLOC);
3900}
3901SLAB_ATTR_RO(alloc_calls);
3902
3903static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3904{
3905 if (!(s->flags & SLAB_STORE_USER))
3906 return -ENOSYS;
3907 return list_locations(s, buf, TRACK_FREE);
3908}
3909SLAB_ATTR_RO(free_calls);
3910
81819f0f 3911#ifdef CONFIG_NUMA
9824601e 3912static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 3913{
9824601e 3914 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
3915}
3916
9824601e 3917static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
3918 const char *buf, size_t length)
3919{
3920 int n = simple_strtoul(buf, NULL, 10);
3921
3922 if (n < 100)
9824601e 3923 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
3924 return length;
3925}
9824601e 3926SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
3927#endif
3928
8ff12cfc
CL
3929#ifdef CONFIG_SLUB_STATS
3930
3931static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3932{
3933 unsigned long sum = 0;
3934 int cpu;
3935 int len;
3936 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3937
3938 if (!data)
3939 return -ENOMEM;
3940
3941 for_each_online_cpu(cpu) {
3942 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3943
3944 data[cpu] = x;
3945 sum += x;
3946 }
3947
3948 len = sprintf(buf, "%lu", sum);
3949
3950 for_each_online_cpu(cpu) {
3951 if (data[cpu] && len < PAGE_SIZE - 20)
3952 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3953 }
3954 kfree(data);
3955 return len + sprintf(buf + len, "\n");
3956}
3957
3958#define STAT_ATTR(si, text) \
3959static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3960{ \
3961 return show_stat(s, buf, si); \
3962} \
3963SLAB_ATTR_RO(text); \
3964
3965STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3966STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3967STAT_ATTR(FREE_FASTPATH, free_fastpath);
3968STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3969STAT_ATTR(FREE_FROZEN, free_frozen);
3970STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
3971STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
3972STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
3973STAT_ATTR(ALLOC_SLAB, alloc_slab);
3974STAT_ATTR(ALLOC_REFILL, alloc_refill);
3975STAT_ATTR(FREE_SLAB, free_slab);
3976STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
3977STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
3978STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
3979STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
3980STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
3981STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
3982
3983#endif
3984
06428780 3985static struct attribute *slab_attrs[] = {
81819f0f
CL
3986 &slab_size_attr.attr,
3987 &object_size_attr.attr,
3988 &objs_per_slab_attr.attr,
3989 &order_attr.attr,
3990 &objects_attr.attr,
3991 &slabs_attr.attr,
3992 &partial_attr.attr,
3993 &cpu_slabs_attr.attr,
3994 &ctor_attr.attr,
81819f0f
CL
3995 &aliases_attr.attr,
3996 &align_attr.attr,
3997 &sanity_checks_attr.attr,
3998 &trace_attr.attr,
3999 &hwcache_align_attr.attr,
4000 &reclaim_account_attr.attr,
4001 &destroy_by_rcu_attr.attr,
4002 &red_zone_attr.attr,
4003 &poison_attr.attr,
4004 &store_user_attr.attr,
53e15af0 4005 &validate_attr.attr,
2086d26a 4006 &shrink_attr.attr,
88a420e4
CL
4007 &alloc_calls_attr.attr,
4008 &free_calls_attr.attr,
81819f0f
CL
4009#ifdef CONFIG_ZONE_DMA
4010 &cache_dma_attr.attr,
4011#endif
4012#ifdef CONFIG_NUMA
9824601e 4013 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4014#endif
4015#ifdef CONFIG_SLUB_STATS
4016 &alloc_fastpath_attr.attr,
4017 &alloc_slowpath_attr.attr,
4018 &free_fastpath_attr.attr,
4019 &free_slowpath_attr.attr,
4020 &free_frozen_attr.attr,
4021 &free_add_partial_attr.attr,
4022 &free_remove_partial_attr.attr,
4023 &alloc_from_partial_attr.attr,
4024 &alloc_slab_attr.attr,
4025 &alloc_refill_attr.attr,
4026 &free_slab_attr.attr,
4027 &cpuslab_flush_attr.attr,
4028 &deactivate_full_attr.attr,
4029 &deactivate_empty_attr.attr,
4030 &deactivate_to_head_attr.attr,
4031 &deactivate_to_tail_attr.attr,
4032 &deactivate_remote_frees_attr.attr,
81819f0f
CL
4033#endif
4034 NULL
4035};
4036
4037static struct attribute_group slab_attr_group = {
4038 .attrs = slab_attrs,
4039};
4040
4041static ssize_t slab_attr_show(struct kobject *kobj,
4042 struct attribute *attr,
4043 char *buf)
4044{
4045 struct slab_attribute *attribute;
4046 struct kmem_cache *s;
4047 int err;
4048
4049 attribute = to_slab_attr(attr);
4050 s = to_slab(kobj);
4051
4052 if (!attribute->show)
4053 return -EIO;
4054
4055 err = attribute->show(s, buf);
4056
4057 return err;
4058}
4059
4060static ssize_t slab_attr_store(struct kobject *kobj,
4061 struct attribute *attr,
4062 const char *buf, size_t len)
4063{
4064 struct slab_attribute *attribute;
4065 struct kmem_cache *s;
4066 int err;
4067
4068 attribute = to_slab_attr(attr);
4069 s = to_slab(kobj);
4070
4071 if (!attribute->store)
4072 return -EIO;
4073
4074 err = attribute->store(s, buf, len);
4075
4076 return err;
4077}
4078
151c602f
CL
4079static void kmem_cache_release(struct kobject *kobj)
4080{
4081 struct kmem_cache *s = to_slab(kobj);
4082
4083 kfree(s);
4084}
4085
81819f0f
CL
4086static struct sysfs_ops slab_sysfs_ops = {
4087 .show = slab_attr_show,
4088 .store = slab_attr_store,
4089};
4090
4091static struct kobj_type slab_ktype = {
4092 .sysfs_ops = &slab_sysfs_ops,
151c602f 4093 .release = kmem_cache_release
81819f0f
CL
4094};
4095
4096static int uevent_filter(struct kset *kset, struct kobject *kobj)
4097{
4098 struct kobj_type *ktype = get_ktype(kobj);
4099
4100 if (ktype == &slab_ktype)
4101 return 1;
4102 return 0;
4103}
4104
4105static struct kset_uevent_ops slab_uevent_ops = {
4106 .filter = uevent_filter,
4107};
4108
27c3a314 4109static struct kset *slab_kset;
81819f0f
CL
4110
4111#define ID_STR_LENGTH 64
4112
4113/* Create a unique string id for a slab cache:
4114 * format
4115 * :[flags-]size:[memory address of kmemcache]
4116 */
4117static char *create_unique_id(struct kmem_cache *s)
4118{
4119 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4120 char *p = name;
4121
4122 BUG_ON(!name);
4123
4124 *p++ = ':';
4125 /*
4126 * First flags affecting slabcache operations. We will only
4127 * get here for aliasable slabs so we do not need to support
4128 * too many flags. The flags here must cover all flags that
4129 * are matched during merging to guarantee that the id is
4130 * unique.
4131 */
4132 if (s->flags & SLAB_CACHE_DMA)
4133 *p++ = 'd';
4134 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4135 *p++ = 'a';
4136 if (s->flags & SLAB_DEBUG_FREE)
4137 *p++ = 'F';
4138 if (p != name + 1)
4139 *p++ = '-';
4140 p += sprintf(p, "%07d", s->size);
4141 BUG_ON(p > name + ID_STR_LENGTH - 1);
4142 return name;
4143}
4144
4145static int sysfs_slab_add(struct kmem_cache *s)
4146{
4147 int err;
4148 const char *name;
4149 int unmergeable;
4150
4151 if (slab_state < SYSFS)
4152 /* Defer until later */
4153 return 0;
4154
4155 unmergeable = slab_unmergeable(s);
4156 if (unmergeable) {
4157 /*
4158 * Slabcache can never be merged so we can use the name proper.
4159 * This is typically the case for debug situations. In that
4160 * case we can catch duplicate names easily.
4161 */
27c3a314 4162 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4163 name = s->name;
4164 } else {
4165 /*
4166 * Create a unique name for the slab as a target
4167 * for the symlinks.
4168 */
4169 name = create_unique_id(s);
4170 }
4171
27c3a314 4172 s->kobj.kset = slab_kset;
1eada11c
GKH
4173 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4174 if (err) {
4175 kobject_put(&s->kobj);
81819f0f 4176 return err;
1eada11c 4177 }
81819f0f
CL
4178
4179 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4180 if (err)
4181 return err;
4182 kobject_uevent(&s->kobj, KOBJ_ADD);
4183 if (!unmergeable) {
4184 /* Setup first alias */
4185 sysfs_slab_alias(s, s->name);
4186 kfree(name);
4187 }
4188 return 0;
4189}
4190
4191static void sysfs_slab_remove(struct kmem_cache *s)
4192{
4193 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4194 kobject_del(&s->kobj);
151c602f 4195 kobject_put(&s->kobj);
81819f0f
CL
4196}
4197
4198/*
4199 * Need to buffer aliases during bootup until sysfs becomes
4200 * available lest we loose that information.
4201 */
4202struct saved_alias {
4203 struct kmem_cache *s;
4204 const char *name;
4205 struct saved_alias *next;
4206};
4207
5af328a5 4208static struct saved_alias *alias_list;
81819f0f
CL
4209
4210static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4211{
4212 struct saved_alias *al;
4213
4214 if (slab_state == SYSFS) {
4215 /*
4216 * If we have a leftover link then remove it.
4217 */
27c3a314
GKH
4218 sysfs_remove_link(&slab_kset->kobj, name);
4219 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4220 }
4221
4222 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4223 if (!al)
4224 return -ENOMEM;
4225
4226 al->s = s;
4227 al->name = name;
4228 al->next = alias_list;
4229 alias_list = al;
4230 return 0;
4231}
4232
4233static int __init slab_sysfs_init(void)
4234{
5b95a4ac 4235 struct kmem_cache *s;
81819f0f
CL
4236 int err;
4237
0ff21e46 4238 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4239 if (!slab_kset) {
81819f0f
CL
4240 printk(KERN_ERR "Cannot register slab subsystem.\n");
4241 return -ENOSYS;
4242 }
4243
26a7bd03
CL
4244 slab_state = SYSFS;
4245
5b95a4ac 4246 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4247 err = sysfs_slab_add(s);
5d540fb7
CL
4248 if (err)
4249 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4250 " to sysfs\n", s->name);
26a7bd03 4251 }
81819f0f
CL
4252
4253 while (alias_list) {
4254 struct saved_alias *al = alias_list;
4255
4256 alias_list = alias_list->next;
4257 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4258 if (err)
4259 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4260 " %s to sysfs\n", s->name);
81819f0f
CL
4261 kfree(al);
4262 }
4263
4264 resiliency_test();
4265 return 0;
4266}
4267
4268__initcall(slab_sysfs_init);
81819f0f 4269#endif
57ed3eda
PE
4270
4271/*
4272 * The /proc/slabinfo ABI
4273 */
158a9624
LT
4274#ifdef CONFIG_SLABINFO
4275
4276ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4277 size_t count, loff_t *ppos)
4278{
4279 return -EINVAL;
4280}
4281
57ed3eda
PE
4282
4283static void print_slabinfo_header(struct seq_file *m)
4284{
4285 seq_puts(m, "slabinfo - version: 2.1\n");
4286 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4287 "<objperslab> <pagesperslab>");
4288 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4289 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4290 seq_putc(m, '\n');
4291}
4292
4293static void *s_start(struct seq_file *m, loff_t *pos)
4294{
4295 loff_t n = *pos;
4296
4297 down_read(&slub_lock);
4298 if (!n)
4299 print_slabinfo_header(m);
4300
4301 return seq_list_start(&slab_caches, *pos);
4302}
4303
4304static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4305{
4306 return seq_list_next(p, &slab_caches, pos);
4307}
4308
4309static void s_stop(struct seq_file *m, void *p)
4310{
4311 up_read(&slub_lock);
4312}
4313
4314static int s_show(struct seq_file *m, void *p)
4315{
4316 unsigned long nr_partials = 0;
4317 unsigned long nr_slabs = 0;
4318 unsigned long nr_inuse = 0;
4319 unsigned long nr_objs;
4320 struct kmem_cache *s;
4321 int node;
4322
4323 s = list_entry(p, struct kmem_cache, list);
4324
4325 for_each_online_node(node) {
4326 struct kmem_cache_node *n = get_node(s, node);
4327
4328 if (!n)
4329 continue;
4330
4331 nr_partials += n->nr_partial;
4332 nr_slabs += atomic_long_read(&n->nr_slabs);
4333 nr_inuse += count_partial(n);
4334 }
4335
4336 nr_objs = nr_slabs * s->objects;
4337 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4338
4339 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4340 nr_objs, s->size, s->objects, (1 << s->order));
4341 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4342 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4343 0UL);
4344 seq_putc(m, '\n');
4345 return 0;
4346}
4347
4348const struct seq_operations slabinfo_op = {
4349 .start = s_start,
4350 .next = s_next,
4351 .stop = s_stop,
4352 .show = s_show,
4353};
4354
158a9624 4355#endif /* CONFIG_SLABINFO */