]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm, slub: extend slub_debug syntax for multiple blocks
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec 294 freepointer_addr = (unsigned long)object + s->offset;
fe557319 295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
442static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443static DEFINE_SPINLOCK(object_map_lock);
444
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
90e9f6a6 451static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 452 __acquires(&object_map_lock)
5f80b13a
CL
453{
454 void *p;
455 void *addr = page_address(page);
456
90e9f6a6
YZ
457 VM_BUG_ON(!irqs_disabled());
458
459 spin_lock(&object_map_lock);
460
461 bitmap_zero(object_map, page->objects);
462
5f80b13a 463 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
464 set_bit(slab_index(p, s, addr), object_map);
465
466 return object_map;
467}
468
81aba9e0 469static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
470{
471 VM_BUG_ON(map != object_map);
472 lockdep_assert_held(&object_map_lock);
473
474 spin_unlock(&object_map_lock);
5f80b13a
CL
475}
476
870b1fbb 477static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
478{
479 if (s->flags & SLAB_RED_ZONE)
480 return s->size - s->red_left_pad;
481
482 return s->size;
483}
484
485static inline void *restore_red_left(struct kmem_cache *s, void *p)
486{
487 if (s->flags & SLAB_RED_ZONE)
488 p -= s->red_left_pad;
489
490 return p;
491}
492
41ecc55b
CL
493/*
494 * Debug settings:
495 */
89d3c87e 496#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 497static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 498#else
d50112ed 499static slab_flags_t slub_debug;
f0630fff 500#endif
41ecc55b 501
e17f1dfb 502static char *slub_debug_string;
fa5ec8a1 503static int disable_higher_order_debug;
41ecc55b 504
a79316c6
AR
505/*
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
510 */
511static inline void metadata_access_enable(void)
512{
513 kasan_disable_current();
514}
515
516static inline void metadata_access_disable(void)
517{
518 kasan_enable_current();
519}
520
81819f0f
CL
521/*
522 * Object debugging
523 */
d86bd1be
JK
524
525/* Verify that a pointer has an address that is valid within a slab page */
526static inline int check_valid_pointer(struct kmem_cache *s,
527 struct page *page, void *object)
528{
529 void *base;
530
531 if (!object)
532 return 1;
533
534 base = page_address(page);
338cfaad 535 object = kasan_reset_tag(object);
d86bd1be
JK
536 object = restore_red_left(s, object);
537 if (object < base || object >= base + page->objects * s->size ||
538 (object - base) % s->size) {
539 return 0;
540 }
541
542 return 1;
543}
544
aa2efd5e
DT
545static void print_section(char *level, char *text, u8 *addr,
546 unsigned int length)
81819f0f 547{
a79316c6 548 metadata_access_enable();
aa2efd5e 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 550 length, 1);
a79316c6 551 metadata_access_disable();
81819f0f
CL
552}
553
cbfc35a4
WL
554/*
555 * See comment in calculate_sizes().
556 */
557static inline bool freeptr_outside_object(struct kmem_cache *s)
558{
559 return s->offset >= s->inuse;
560}
561
562/*
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
565 */
566static inline unsigned int get_info_end(struct kmem_cache *s)
567{
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
570 else
571 return s->inuse;
572}
573
81819f0f
CL
574static struct track *get_track(struct kmem_cache *s, void *object,
575 enum track_item alloc)
576{
577 struct track *p;
578
cbfc35a4 579 p = object + get_info_end(s);
81819f0f
CL
580
581 return p + alloc;
582}
583
584static void set_track(struct kmem_cache *s, void *object,
ce71e27c 585 enum track_item alloc, unsigned long addr)
81819f0f 586{
1a00df4a 587 struct track *p = get_track(s, object, alloc);
81819f0f 588
81819f0f 589 if (addr) {
d6543e39 590#ifdef CONFIG_STACKTRACE
79716799 591 unsigned int nr_entries;
d6543e39 592
a79316c6 593 metadata_access_enable();
79716799 594 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 595 metadata_access_disable();
d6543e39 596
79716799
TG
597 if (nr_entries < TRACK_ADDRS_COUNT)
598 p->addrs[nr_entries] = 0;
d6543e39 599#endif
81819f0f
CL
600 p->addr = addr;
601 p->cpu = smp_processor_id();
88e4ccf2 602 p->pid = current->pid;
81819f0f 603 p->when = jiffies;
b8ca7ff7 604 } else {
81819f0f 605 memset(p, 0, sizeof(struct track));
b8ca7ff7 606 }
81819f0f
CL
607}
608
81819f0f
CL
609static void init_tracking(struct kmem_cache *s, void *object)
610{
24922684
CL
611 if (!(s->flags & SLAB_STORE_USER))
612 return;
613
ce71e27c
EGM
614 set_track(s, object, TRACK_FREE, 0UL);
615 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
616}
617
86609d33 618static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
619{
620 if (!t->addr)
621 return;
622
f9f58285 623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 624 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
625#ifdef CONFIG_STACKTRACE
626 {
627 int i;
628 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
629 if (t->addrs[i])
f9f58285 630 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
631 else
632 break;
633 }
634#endif
24922684
CL
635}
636
637static void print_tracking(struct kmem_cache *s, void *object)
638{
86609d33 639 unsigned long pr_time = jiffies;
24922684
CL
640 if (!(s->flags & SLAB_STORE_USER))
641 return;
642
86609d33
CP
643 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
644 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
645}
646
647static void print_page_info(struct page *page)
648{
f9f58285 649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 650 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
651
652}
653
654static void slab_bug(struct kmem_cache *s, char *fmt, ...)
655{
ecc42fbe 656 struct va_format vaf;
24922684 657 va_list args;
24922684
CL
658
659 va_start(args, fmt);
ecc42fbe
FF
660 vaf.fmt = fmt;
661 vaf.va = &args;
f9f58285 662 pr_err("=============================================================================\n");
ecc42fbe 663 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 664 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 665
373d4d09 666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 667 va_end(args);
81819f0f
CL
668}
669
24922684
CL
670static void slab_fix(struct kmem_cache *s, char *fmt, ...)
671{
ecc42fbe 672 struct va_format vaf;
24922684 673 va_list args;
24922684
CL
674
675 va_start(args, fmt);
ecc42fbe
FF
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 679 va_end(args);
24922684
CL
680}
681
52f23478
DZ
682static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
683 void *freelist, void *nextfree)
684{
685 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
686 !check_valid_pointer(s, page, nextfree)) {
687 object_err(s, page, freelist, "Freechain corrupt");
688 freelist = NULL;
689 slab_fix(s, "Isolate corrupted freechain");
690 return true;
691 }
692
693 return false;
694}
695
24922684 696static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
697{
698 unsigned int off; /* Offset of last byte */
a973e9dd 699 u8 *addr = page_address(page);
24922684
CL
700
701 print_tracking(s, p);
702
703 print_page_info(page);
704
f9f58285
FF
705 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
706 p, p - addr, get_freepointer(s, p));
24922684 707
d86bd1be 708 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
709 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
710 s->red_left_pad);
d86bd1be 711 else if (p > addr + 16)
aa2efd5e 712 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 713
aa2efd5e 714 print_section(KERN_ERR, "Object ", p,
1b473f29 715 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 716 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 717 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 718 s->inuse - s->object_size);
81819f0f 719
cbfc35a4 720 off = get_info_end(s);
81819f0f 721
24922684 722 if (s->flags & SLAB_STORE_USER)
81819f0f 723 off += 2 * sizeof(struct track);
81819f0f 724
80a9201a
AP
725 off += kasan_metadata_size(s);
726
d86bd1be 727 if (off != size_from_object(s))
81819f0f 728 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
729 print_section(KERN_ERR, "Padding ", p + off,
730 size_from_object(s) - off);
24922684
CL
731
732 dump_stack();
81819f0f
CL
733}
734
75c66def 735void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
736 u8 *object, char *reason)
737{
3dc50637 738 slab_bug(s, "%s", reason);
24922684 739 print_trailer(s, page, object);
81819f0f
CL
740}
741
a38965bf 742static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 743 const char *fmt, ...)
81819f0f
CL
744{
745 va_list args;
746 char buf[100];
747
24922684
CL
748 va_start(args, fmt);
749 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 750 va_end(args);
3dc50637 751 slab_bug(s, "%s", buf);
24922684 752 print_page_info(page);
81819f0f
CL
753 dump_stack();
754}
755
f7cb1933 756static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
757{
758 u8 *p = object;
759
d86bd1be
JK
760 if (s->flags & SLAB_RED_ZONE)
761 memset(p - s->red_left_pad, val, s->red_left_pad);
762
81819f0f 763 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
764 memset(p, POISON_FREE, s->object_size - 1);
765 p[s->object_size - 1] = POISON_END;
81819f0f
CL
766 }
767
768 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 769 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
770}
771
24922684
CL
772static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
773 void *from, void *to)
774{
775 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
776 memset(from, data, to - from);
777}
778
779static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
780 u8 *object, char *what,
06428780 781 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
782{
783 u8 *fault;
784 u8 *end;
e1b70dd1 785 u8 *addr = page_address(page);
24922684 786
a79316c6 787 metadata_access_enable();
79824820 788 fault = memchr_inv(start, value, bytes);
a79316c6 789 metadata_access_disable();
24922684
CL
790 if (!fault)
791 return 1;
792
793 end = start + bytes;
794 while (end > fault && end[-1] == value)
795 end--;
796
797 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
798 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
799 fault, end - 1, fault - addr,
800 fault[0], value);
24922684
CL
801 print_trailer(s, page, object);
802
803 restore_bytes(s, what, value, fault, end);
804 return 0;
81819f0f
CL
805}
806
81819f0f
CL
807/*
808 * Object layout:
809 *
810 * object address
811 * Bytes of the object to be managed.
812 * If the freepointer may overlay the object then the free
cbfc35a4 813 * pointer is at the middle of the object.
672bba3a 814 *
81819f0f
CL
815 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
816 * 0xa5 (POISON_END)
817 *
3b0efdfa 818 * object + s->object_size
81819f0f 819 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 820 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 821 * object_size == inuse.
672bba3a 822 *
81819f0f
CL
823 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
824 * 0xcc (RED_ACTIVE) for objects in use.
825 *
826 * object + s->inuse
672bba3a
CL
827 * Meta data starts here.
828 *
81819f0f
CL
829 * A. Free pointer (if we cannot overwrite object on free)
830 * B. Tracking data for SLAB_STORE_USER
672bba3a 831 * C. Padding to reach required alignment boundary or at mininum
6446faa2 832 * one word if debugging is on to be able to detect writes
672bba3a
CL
833 * before the word boundary.
834 *
835 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
836 *
837 * object + s->size
672bba3a 838 * Nothing is used beyond s->size.
81819f0f 839 *
3b0efdfa 840 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 841 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
842 * may be used with merged slabcaches.
843 */
844
81819f0f
CL
845static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
846{
cbfc35a4 847 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
848
849 if (s->flags & SLAB_STORE_USER)
850 /* We also have user information there */
851 off += 2 * sizeof(struct track);
852
80a9201a
AP
853 off += kasan_metadata_size(s);
854
d86bd1be 855 if (size_from_object(s) == off)
81819f0f
CL
856 return 1;
857
24922684 858 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 859 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
860}
861
39b26464 862/* Check the pad bytes at the end of a slab page */
81819f0f
CL
863static int slab_pad_check(struct kmem_cache *s, struct page *page)
864{
24922684
CL
865 u8 *start;
866 u8 *fault;
867 u8 *end;
5d682681 868 u8 *pad;
24922684
CL
869 int length;
870 int remainder;
81819f0f
CL
871
872 if (!(s->flags & SLAB_POISON))
873 return 1;
874
a973e9dd 875 start = page_address(page);
a50b854e 876 length = page_size(page);
39b26464
CL
877 end = start + length;
878 remainder = length % s->size;
81819f0f
CL
879 if (!remainder)
880 return 1;
881
5d682681 882 pad = end - remainder;
a79316c6 883 metadata_access_enable();
5d682681 884 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 885 metadata_access_disable();
24922684
CL
886 if (!fault)
887 return 1;
888 while (end > fault && end[-1] == POISON_INUSE)
889 end--;
890
e1b70dd1
MC
891 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
892 fault, end - 1, fault - start);
5d682681 893 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 894
5d682681 895 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 896 return 0;
81819f0f
CL
897}
898
899static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 900 void *object, u8 val)
81819f0f
CL
901{
902 u8 *p = object;
3b0efdfa 903 u8 *endobject = object + s->object_size;
81819f0f
CL
904
905 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
906 if (!check_bytes_and_report(s, page, object, "Redzone",
907 object - s->red_left_pad, val, s->red_left_pad))
908 return 0;
909
24922684 910 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 911 endobject, val, s->inuse - s->object_size))
81819f0f 912 return 0;
81819f0f 913 } else {
3b0efdfa 914 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 915 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
916 endobject, POISON_INUSE,
917 s->inuse - s->object_size);
3adbefee 918 }
81819f0f
CL
919 }
920
921 if (s->flags & SLAB_POISON) {
f7cb1933 922 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 923 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 924 POISON_FREE, s->object_size - 1) ||
24922684 925 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 926 p + s->object_size - 1, POISON_END, 1)))
81819f0f 927 return 0;
81819f0f
CL
928 /*
929 * check_pad_bytes cleans up on its own.
930 */
931 check_pad_bytes(s, page, p);
932 }
933
cbfc35a4 934 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
935 /*
936 * Object and freepointer overlap. Cannot check
937 * freepointer while object is allocated.
938 */
939 return 1;
940
941 /* Check free pointer validity */
942 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
943 object_err(s, page, p, "Freepointer corrupt");
944 /*
9f6c708e 945 * No choice but to zap it and thus lose the remainder
81819f0f 946 * of the free objects in this slab. May cause
672bba3a 947 * another error because the object count is now wrong.
81819f0f 948 */
a973e9dd 949 set_freepointer(s, p, NULL);
81819f0f
CL
950 return 0;
951 }
952 return 1;
953}
954
955static int check_slab(struct kmem_cache *s, struct page *page)
956{
39b26464
CL
957 int maxobj;
958
81819f0f
CL
959 VM_BUG_ON(!irqs_disabled());
960
961 if (!PageSlab(page)) {
24922684 962 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
963 return 0;
964 }
39b26464 965
9736d2a9 966 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
967 if (page->objects > maxobj) {
968 slab_err(s, page, "objects %u > max %u",
f6edde9c 969 page->objects, maxobj);
39b26464
CL
970 return 0;
971 }
972 if (page->inuse > page->objects) {
24922684 973 slab_err(s, page, "inuse %u > max %u",
f6edde9c 974 page->inuse, page->objects);
81819f0f
CL
975 return 0;
976 }
977 /* Slab_pad_check fixes things up after itself */
978 slab_pad_check(s, page);
979 return 1;
980}
981
982/*
672bba3a
CL
983 * Determine if a certain object on a page is on the freelist. Must hold the
984 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
985 */
986static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
987{
988 int nr = 0;
881db7fb 989 void *fp;
81819f0f 990 void *object = NULL;
f6edde9c 991 int max_objects;
81819f0f 992
881db7fb 993 fp = page->freelist;
39b26464 994 while (fp && nr <= page->objects) {
81819f0f
CL
995 if (fp == search)
996 return 1;
997 if (!check_valid_pointer(s, page, fp)) {
998 if (object) {
999 object_err(s, page, object,
1000 "Freechain corrupt");
a973e9dd 1001 set_freepointer(s, object, NULL);
81819f0f 1002 } else {
24922684 1003 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1004 page->freelist = NULL;
39b26464 1005 page->inuse = page->objects;
24922684 1006 slab_fix(s, "Freelist cleared");
81819f0f
CL
1007 return 0;
1008 }
1009 break;
1010 }
1011 object = fp;
1012 fp = get_freepointer(s, object);
1013 nr++;
1014 }
1015
9736d2a9 1016 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1017 if (max_objects > MAX_OBJS_PER_PAGE)
1018 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1019
1020 if (page->objects != max_objects) {
756a025f
JP
1021 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1022 page->objects, max_objects);
224a88be
CL
1023 page->objects = max_objects;
1024 slab_fix(s, "Number of objects adjusted.");
1025 }
39b26464 1026 if (page->inuse != page->objects - nr) {
756a025f
JP
1027 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1028 page->inuse, page->objects - nr);
39b26464 1029 page->inuse = page->objects - nr;
24922684 1030 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1031 }
1032 return search == NULL;
1033}
1034
0121c619
CL
1035static void trace(struct kmem_cache *s, struct page *page, void *object,
1036 int alloc)
3ec09742
CL
1037{
1038 if (s->flags & SLAB_TRACE) {
f9f58285 1039 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1040 s->name,
1041 alloc ? "alloc" : "free",
1042 object, page->inuse,
1043 page->freelist);
1044
1045 if (!alloc)
aa2efd5e 1046 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1047 s->object_size);
3ec09742
CL
1048
1049 dump_stack();
1050 }
1051}
1052
643b1138 1053/*
672bba3a 1054 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1055 */
5cc6eee8
CL
1056static void add_full(struct kmem_cache *s,
1057 struct kmem_cache_node *n, struct page *page)
643b1138 1058{
5cc6eee8
CL
1059 if (!(s->flags & SLAB_STORE_USER))
1060 return;
1061
255d0884 1062 lockdep_assert_held(&n->list_lock);
916ac052 1063 list_add(&page->slab_list, &n->full);
643b1138
CL
1064}
1065
c65c1877 1066static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1067{
643b1138
CL
1068 if (!(s->flags & SLAB_STORE_USER))
1069 return;
1070
255d0884 1071 lockdep_assert_held(&n->list_lock);
916ac052 1072 list_del(&page->slab_list);
643b1138
CL
1073}
1074
0f389ec6
CL
1075/* Tracking of the number of slabs for debugging purposes */
1076static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1077{
1078 struct kmem_cache_node *n = get_node(s, node);
1079
1080 return atomic_long_read(&n->nr_slabs);
1081}
1082
26c02cf0
AB
1083static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1084{
1085 return atomic_long_read(&n->nr_slabs);
1086}
1087
205ab99d 1088static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1089{
1090 struct kmem_cache_node *n = get_node(s, node);
1091
1092 /*
1093 * May be called early in order to allocate a slab for the
1094 * kmem_cache_node structure. Solve the chicken-egg
1095 * dilemma by deferring the increment of the count during
1096 * bootstrap (see early_kmem_cache_node_alloc).
1097 */
338b2642 1098 if (likely(n)) {
0f389ec6 1099 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1100 atomic_long_add(objects, &n->total_objects);
1101 }
0f389ec6 1102}
205ab99d 1103static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1104{
1105 struct kmem_cache_node *n = get_node(s, node);
1106
1107 atomic_long_dec(&n->nr_slabs);
205ab99d 1108 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1109}
1110
1111/* Object debug checks for alloc/free paths */
3ec09742
CL
1112static void setup_object_debug(struct kmem_cache *s, struct page *page,
1113 void *object)
1114{
1115 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1116 return;
1117
f7cb1933 1118 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1119 init_tracking(s, object);
1120}
1121
a50b854e
MWO
1122static
1123void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1124{
1125 if (!(s->flags & SLAB_POISON))
1126 return;
1127
1128 metadata_access_enable();
a50b854e 1129 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1130 metadata_access_disable();
1131}
1132
becfda68 1133static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1134 struct page *page, void *object)
81819f0f
CL
1135{
1136 if (!check_slab(s, page))
becfda68 1137 return 0;
81819f0f 1138
81819f0f
CL
1139 if (!check_valid_pointer(s, page, object)) {
1140 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1141 return 0;
81819f0f
CL
1142 }
1143
f7cb1933 1144 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1145 return 0;
1146
1147 return 1;
1148}
1149
1150static noinline int alloc_debug_processing(struct kmem_cache *s,
1151 struct page *page,
1152 void *object, unsigned long addr)
1153{
1154 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1155 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1156 goto bad;
1157 }
81819f0f 1158
3ec09742
CL
1159 /* Success perform special debug activities for allocs */
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_ALLOC, addr);
1162 trace(s, page, object, 1);
f7cb1933 1163 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1164 return 1;
3ec09742 1165
81819f0f
CL
1166bad:
1167 if (PageSlab(page)) {
1168 /*
1169 * If this is a slab page then lets do the best we can
1170 * to avoid issues in the future. Marking all objects
672bba3a 1171 * as used avoids touching the remaining objects.
81819f0f 1172 */
24922684 1173 slab_fix(s, "Marking all objects used");
39b26464 1174 page->inuse = page->objects;
a973e9dd 1175 page->freelist = NULL;
81819f0f
CL
1176 }
1177 return 0;
1178}
1179
becfda68
LA
1180static inline int free_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object, unsigned long addr)
81819f0f 1182{
81819f0f 1183 if (!check_valid_pointer(s, page, object)) {
70d71228 1184 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1185 return 0;
81819f0f
CL
1186 }
1187
1188 if (on_freelist(s, page, object)) {
24922684 1189 object_err(s, page, object, "Object already free");
becfda68 1190 return 0;
81819f0f
CL
1191 }
1192
f7cb1933 1193 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1194 return 0;
81819f0f 1195
1b4f59e3 1196 if (unlikely(s != page->slab_cache)) {
3adbefee 1197 if (!PageSlab(page)) {
756a025f
JP
1198 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1199 object);
1b4f59e3 1200 } else if (!page->slab_cache) {
f9f58285
FF
1201 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1202 object);
70d71228 1203 dump_stack();
06428780 1204 } else
24922684
CL
1205 object_err(s, page, object,
1206 "page slab pointer corrupt.");
becfda68
LA
1207 return 0;
1208 }
1209 return 1;
1210}
1211
1212/* Supports checking bulk free of a constructed freelist */
1213static noinline int free_debug_processing(
1214 struct kmem_cache *s, struct page *page,
1215 void *head, void *tail, int bulk_cnt,
1216 unsigned long addr)
1217{
1218 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1219 void *object = head;
1220 int cnt = 0;
3f649ab7 1221 unsigned long flags;
becfda68
LA
1222 int ret = 0;
1223
1224 spin_lock_irqsave(&n->list_lock, flags);
1225 slab_lock(page);
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!check_slab(s, page))
1229 goto out;
1230 }
1231
1232next_object:
1233 cnt++;
1234
1235 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1236 if (!free_consistency_checks(s, page, object, addr))
1237 goto out;
81819f0f 1238 }
3ec09742 1239
3ec09742
CL
1240 if (s->flags & SLAB_STORE_USER)
1241 set_track(s, object, TRACK_FREE, addr);
1242 trace(s, page, object, 0);
81084651 1243 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1244 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1245
1246 /* Reached end of constructed freelist yet? */
1247 if (object != tail) {
1248 object = get_freepointer(s, object);
1249 goto next_object;
1250 }
804aa132
LA
1251 ret = 1;
1252
5c2e4bbb 1253out:
81084651
JDB
1254 if (cnt != bulk_cnt)
1255 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1256 bulk_cnt, cnt);
1257
881db7fb 1258 slab_unlock(page);
282acb43 1259 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1260 if (!ret)
1261 slab_fix(s, "Object at 0x%p not freed", object);
1262 return ret;
81819f0f
CL
1263}
1264
e17f1dfb
VB
1265/*
1266 * Parse a block of slub_debug options. Blocks are delimited by ';'
1267 *
1268 * @str: start of block
1269 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1270 * @slabs: return start of list of slabs, or NULL when there's no list
1271 * @init: assume this is initial parsing and not per-kmem-create parsing
1272 *
1273 * returns the start of next block if there's any, or NULL
1274 */
1275static char *
1276parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1277{
e17f1dfb 1278 bool higher_order_disable = false;
f0630fff 1279
e17f1dfb
VB
1280 /* Skip any completely empty blocks */
1281 while (*str && *str == ';')
1282 str++;
1283
1284 if (*str == ',') {
f0630fff
CL
1285 /*
1286 * No options but restriction on slabs. This means full
1287 * debugging for slabs matching a pattern.
1288 */
e17f1dfb 1289 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1290 goto check_slabs;
e17f1dfb
VB
1291 }
1292 *flags = 0;
f0630fff 1293
e17f1dfb
VB
1294 /* Determine which debug features should be switched on */
1295 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1296 switch (tolower(*str)) {
e17f1dfb
VB
1297 case '-':
1298 *flags = 0;
1299 break;
f0630fff 1300 case 'f':
e17f1dfb 1301 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1302 break;
1303 case 'z':
e17f1dfb 1304 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1305 break;
1306 case 'p':
e17f1dfb 1307 *flags |= SLAB_POISON;
f0630fff
CL
1308 break;
1309 case 'u':
e17f1dfb 1310 *flags |= SLAB_STORE_USER;
f0630fff
CL
1311 break;
1312 case 't':
e17f1dfb 1313 *flags |= SLAB_TRACE;
f0630fff 1314 break;
4c13dd3b 1315 case 'a':
e17f1dfb 1316 *flags |= SLAB_FAILSLAB;
4c13dd3b 1317 break;
08303a73
CA
1318 case 'o':
1319 /*
1320 * Avoid enabling debugging on caches if its minimum
1321 * order would increase as a result.
1322 */
e17f1dfb 1323 higher_order_disable = true;
08303a73 1324 break;
f0630fff 1325 default:
e17f1dfb
VB
1326 if (init)
1327 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1328 }
41ecc55b 1329 }
f0630fff 1330check_slabs:
41ecc55b 1331 if (*str == ',')
e17f1dfb
VB
1332 *slabs = ++str;
1333 else
1334 *slabs = NULL;
1335
1336 /* Skip over the slab list */
1337 while (*str && *str != ';')
1338 str++;
1339
1340 /* Skip any completely empty blocks */
1341 while (*str && *str == ';')
1342 str++;
1343
1344 if (init && higher_order_disable)
1345 disable_higher_order_debug = 1;
1346
1347 if (*str)
1348 return str;
1349 else
1350 return NULL;
1351}
1352
1353static int __init setup_slub_debug(char *str)
1354{
1355 slab_flags_t flags;
1356 char *saved_str;
1357 char *slab_list;
1358 bool global_slub_debug_changed = false;
1359 bool slab_list_specified = false;
1360
1361 slub_debug = DEBUG_DEFAULT_FLAGS;
1362 if (*str++ != '=' || !*str)
1363 /*
1364 * No options specified. Switch on full debugging.
1365 */
1366 goto out;
1367
1368 saved_str = str;
1369 while (str) {
1370 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1371
1372 if (!slab_list) {
1373 slub_debug = flags;
1374 global_slub_debug_changed = true;
1375 } else {
1376 slab_list_specified = true;
1377 }
1378 }
1379
1380 /*
1381 * For backwards compatibility, a single list of flags with list of
1382 * slabs means debugging is only enabled for those slabs, so the global
1383 * slub_debug should be 0. We can extended that to multiple lists as
1384 * long as there is no option specifying flags without a slab list.
1385 */
1386 if (slab_list_specified) {
1387 if (!global_slub_debug_changed)
1388 slub_debug = 0;
1389 slub_debug_string = saved_str;
1390 }
f0630fff 1391out:
6471384a
AP
1392 if ((static_branch_unlikely(&init_on_alloc) ||
1393 static_branch_unlikely(&init_on_free)) &&
1394 (slub_debug & SLAB_POISON))
1395 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1396 return 1;
1397}
1398
1399__setup("slub_debug", setup_slub_debug);
1400
c5fd3ca0
AT
1401/*
1402 * kmem_cache_flags - apply debugging options to the cache
1403 * @object_size: the size of an object without meta data
1404 * @flags: flags to set
1405 * @name: name of the cache
1406 * @ctor: constructor function
1407 *
1408 * Debug option(s) are applied to @flags. In addition to the debug
1409 * option(s), if a slab name (or multiple) is specified i.e.
1410 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1411 * then only the select slabs will receive the debug option(s).
1412 */
0293d1fd 1413slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1414 slab_flags_t flags, const char *name,
51cc5068 1415 void (*ctor)(void *))
41ecc55b 1416{
c5fd3ca0
AT
1417 char *iter;
1418 size_t len;
e17f1dfb
VB
1419 char *next_block;
1420 slab_flags_t block_flags;
c5fd3ca0
AT
1421
1422 /* If slub_debug = 0, it folds into the if conditional. */
e17f1dfb 1423 if (!slub_debug_string)
c5fd3ca0
AT
1424 return flags | slub_debug;
1425
1426 len = strlen(name);
e17f1dfb
VB
1427 next_block = slub_debug_string;
1428 /* Go through all blocks of debug options, see if any matches our slab's name */
1429 while (next_block) {
1430 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1431 if (!iter)
1432 continue;
1433 /* Found a block that has a slab list, search it */
1434 while (*iter) {
1435 char *end, *glob;
1436 size_t cmplen;
1437
1438 end = strchrnul(iter, ',');
1439 if (next_block && next_block < end)
1440 end = next_block - 1;
1441
1442 glob = strnchr(iter, end - iter, '*');
1443 if (glob)
1444 cmplen = glob - iter;
1445 else
1446 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1447
e17f1dfb
VB
1448 if (!strncmp(name, iter, cmplen)) {
1449 flags |= block_flags;
1450 return flags;
1451 }
c5fd3ca0 1452
e17f1dfb
VB
1453 if (!*end || *end == ';')
1454 break;
1455 iter = end + 1;
c5fd3ca0 1456 }
c5fd3ca0 1457 }
ba0268a8 1458
e17f1dfb 1459 return slub_debug;
41ecc55b 1460}
b4a64718 1461#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1462static inline void setup_object_debug(struct kmem_cache *s,
1463 struct page *page, void *object) {}
a50b854e
MWO
1464static inline
1465void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1466
3ec09742 1467static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1468 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1469
282acb43 1470static inline int free_debug_processing(
81084651
JDB
1471 struct kmem_cache *s, struct page *page,
1472 void *head, void *tail, int bulk_cnt,
282acb43 1473 unsigned long addr) { return 0; }
41ecc55b 1474
41ecc55b
CL
1475static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1476 { return 1; }
1477static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1478 void *object, u8 val) { return 1; }
5cc6eee8
CL
1479static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1480 struct page *page) {}
c65c1877
PZ
1481static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1482 struct page *page) {}
0293d1fd 1483slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1484 slab_flags_t flags, const char *name,
51cc5068 1485 void (*ctor)(void *))
ba0268a8
CL
1486{
1487 return flags;
1488}
41ecc55b 1489#define slub_debug 0
0f389ec6 1490
fdaa45e9
IM
1491#define disable_higher_order_debug 0
1492
0f389ec6
CL
1493static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1494 { return 0; }
26c02cf0
AB
1495static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1496 { return 0; }
205ab99d
CL
1497static inline void inc_slabs_node(struct kmem_cache *s, int node,
1498 int objects) {}
1499static inline void dec_slabs_node(struct kmem_cache *s, int node,
1500 int objects) {}
7d550c56 1501
52f23478
DZ
1502static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1503 void *freelist, void *nextfree)
1504{
1505 return false;
1506}
02e72cc6
AR
1507#endif /* CONFIG_SLUB_DEBUG */
1508
1509/*
1510 * Hooks for other subsystems that check memory allocations. In a typical
1511 * production configuration these hooks all should produce no code at all.
1512 */
0116523c 1513static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1514{
53128245 1515 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1516 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1517 kmemleak_alloc(ptr, size, 1, flags);
53128245 1518 return ptr;
d56791b3
RB
1519}
1520
ee3ce779 1521static __always_inline void kfree_hook(void *x)
d56791b3
RB
1522{
1523 kmemleak_free(x);
ee3ce779 1524 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1525}
1526
c3895391 1527static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1528{
1529 kmemleak_free_recursive(x, s->flags);
7d550c56 1530
02e72cc6
AR
1531 /*
1532 * Trouble is that we may no longer disable interrupts in the fast path
1533 * So in order to make the debug calls that expect irqs to be
1534 * disabled we need to disable interrupts temporarily.
1535 */
4675ff05 1536#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1537 {
1538 unsigned long flags;
1539
1540 local_irq_save(flags);
02e72cc6
AR
1541 debug_check_no_locks_freed(x, s->object_size);
1542 local_irq_restore(flags);
1543 }
1544#endif
1545 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1546 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1547
c3895391
AK
1548 /* KASAN might put x into memory quarantine, delaying its reuse */
1549 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1550}
205ab99d 1551
c3895391
AK
1552static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1553 void **head, void **tail)
81084651 1554{
6471384a
AP
1555
1556 void *object;
1557 void *next = *head;
1558 void *old_tail = *tail ? *tail : *head;
1559 int rsize;
1560
aea4df4c
LA
1561 /* Head and tail of the reconstructed freelist */
1562 *head = NULL;
1563 *tail = NULL;
1b7e816f 1564
aea4df4c
LA
1565 do {
1566 object = next;
1567 next = get_freepointer(s, object);
1568
1569 if (slab_want_init_on_free(s)) {
6471384a
AP
1570 /*
1571 * Clear the object and the metadata, but don't touch
1572 * the redzone.
1573 */
1574 memset(object, 0, s->object_size);
1575 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1576 : 0;
1577 memset((char *)object + s->inuse, 0,
1578 s->size - s->inuse - rsize);
81084651 1579
aea4df4c 1580 }
c3895391
AK
1581 /* If object's reuse doesn't have to be delayed */
1582 if (!slab_free_hook(s, object)) {
1583 /* Move object to the new freelist */
1584 set_freepointer(s, object, *head);
1585 *head = object;
1586 if (!*tail)
1587 *tail = object;
1588 }
1589 } while (object != old_tail);
1590
1591 if (*head == *tail)
1592 *tail = NULL;
1593
1594 return *head != NULL;
81084651
JDB
1595}
1596
4d176711 1597static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1598 void *object)
1599{
1600 setup_object_debug(s, page, object);
4d176711 1601 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1602 if (unlikely(s->ctor)) {
1603 kasan_unpoison_object_data(s, object);
1604 s->ctor(object);
1605 kasan_poison_object_data(s, object);
1606 }
4d176711 1607 return object;
588f8ba9
TG
1608}
1609
81819f0f
CL
1610/*
1611 * Slab allocation and freeing
1612 */
5dfb4175
VD
1613static inline struct page *alloc_slab_page(struct kmem_cache *s,
1614 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1615{
5dfb4175 1616 struct page *page;
19af27af 1617 unsigned int order = oo_order(oo);
65c3376a 1618
2154a336 1619 if (node == NUMA_NO_NODE)
5dfb4175 1620 page = alloc_pages(flags, order);
65c3376a 1621 else
96db800f 1622 page = __alloc_pages_node(node, flags, order);
5dfb4175 1623
6cea1d56 1624 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1625 __free_pages(page, order);
1626 page = NULL;
1627 }
5dfb4175
VD
1628
1629 return page;
65c3376a
CL
1630}
1631
210e7a43
TG
1632#ifdef CONFIG_SLAB_FREELIST_RANDOM
1633/* Pre-initialize the random sequence cache */
1634static int init_cache_random_seq(struct kmem_cache *s)
1635{
19af27af 1636 unsigned int count = oo_objects(s->oo);
210e7a43 1637 int err;
210e7a43 1638
a810007a
SR
1639 /* Bailout if already initialised */
1640 if (s->random_seq)
1641 return 0;
1642
210e7a43
TG
1643 err = cache_random_seq_create(s, count, GFP_KERNEL);
1644 if (err) {
1645 pr_err("SLUB: Unable to initialize free list for %s\n",
1646 s->name);
1647 return err;
1648 }
1649
1650 /* Transform to an offset on the set of pages */
1651 if (s->random_seq) {
19af27af
AD
1652 unsigned int i;
1653
210e7a43
TG
1654 for (i = 0; i < count; i++)
1655 s->random_seq[i] *= s->size;
1656 }
1657 return 0;
1658}
1659
1660/* Initialize each random sequence freelist per cache */
1661static void __init init_freelist_randomization(void)
1662{
1663 struct kmem_cache *s;
1664
1665 mutex_lock(&slab_mutex);
1666
1667 list_for_each_entry(s, &slab_caches, list)
1668 init_cache_random_seq(s);
1669
1670 mutex_unlock(&slab_mutex);
1671}
1672
1673/* Get the next entry on the pre-computed freelist randomized */
1674static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1675 unsigned long *pos, void *start,
1676 unsigned long page_limit,
1677 unsigned long freelist_count)
1678{
1679 unsigned int idx;
1680
1681 /*
1682 * If the target page allocation failed, the number of objects on the
1683 * page might be smaller than the usual size defined by the cache.
1684 */
1685 do {
1686 idx = s->random_seq[*pos];
1687 *pos += 1;
1688 if (*pos >= freelist_count)
1689 *pos = 0;
1690 } while (unlikely(idx >= page_limit));
1691
1692 return (char *)start + idx;
1693}
1694
1695/* Shuffle the single linked freelist based on a random pre-computed sequence */
1696static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1697{
1698 void *start;
1699 void *cur;
1700 void *next;
1701 unsigned long idx, pos, page_limit, freelist_count;
1702
1703 if (page->objects < 2 || !s->random_seq)
1704 return false;
1705
1706 freelist_count = oo_objects(s->oo);
1707 pos = get_random_int() % freelist_count;
1708
1709 page_limit = page->objects * s->size;
1710 start = fixup_red_left(s, page_address(page));
1711
1712 /* First entry is used as the base of the freelist */
1713 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1714 freelist_count);
4d176711 1715 cur = setup_object(s, page, cur);
210e7a43
TG
1716 page->freelist = cur;
1717
1718 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1719 next = next_freelist_entry(s, page, &pos, start, page_limit,
1720 freelist_count);
4d176711 1721 next = setup_object(s, page, next);
210e7a43
TG
1722 set_freepointer(s, cur, next);
1723 cur = next;
1724 }
210e7a43
TG
1725 set_freepointer(s, cur, NULL);
1726
1727 return true;
1728}
1729#else
1730static inline int init_cache_random_seq(struct kmem_cache *s)
1731{
1732 return 0;
1733}
1734static inline void init_freelist_randomization(void) { }
1735static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1736{
1737 return false;
1738}
1739#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1740
81819f0f
CL
1741static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1742{
06428780 1743 struct page *page;
834f3d11 1744 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1745 gfp_t alloc_gfp;
4d176711 1746 void *start, *p, *next;
a50b854e 1747 int idx;
210e7a43 1748 bool shuffle;
81819f0f 1749
7e0528da
CL
1750 flags &= gfp_allowed_mask;
1751
d0164adc 1752 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1753 local_irq_enable();
1754
b7a49f0d 1755 flags |= s->allocflags;
e12ba74d 1756
ba52270d
PE
1757 /*
1758 * Let the initial higher-order allocation fail under memory pressure
1759 * so we fall-back to the minimum order allocation.
1760 */
1761 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1762 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1763 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1764
5dfb4175 1765 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1766 if (unlikely(!page)) {
1767 oo = s->min;
80c3a998 1768 alloc_gfp = flags;
65c3376a
CL
1769 /*
1770 * Allocation may have failed due to fragmentation.
1771 * Try a lower order alloc if possible
1772 */
5dfb4175 1773 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1774 if (unlikely(!page))
1775 goto out;
1776 stat(s, ORDER_FALLBACK);
65c3376a 1777 }
5a896d9e 1778
834f3d11 1779 page->objects = oo_objects(oo);
81819f0f 1780
1b4f59e3 1781 page->slab_cache = s;
c03f94cc 1782 __SetPageSlab(page);
2f064f34 1783 if (page_is_pfmemalloc(page))
072bb0aa 1784 SetPageSlabPfmemalloc(page);
81819f0f 1785
a7101224 1786 kasan_poison_slab(page);
81819f0f 1787
a7101224 1788 start = page_address(page);
81819f0f 1789
a50b854e 1790 setup_page_debug(s, page, start);
0316bec2 1791
210e7a43
TG
1792 shuffle = shuffle_freelist(s, page);
1793
1794 if (!shuffle) {
4d176711
AK
1795 start = fixup_red_left(s, start);
1796 start = setup_object(s, page, start);
1797 page->freelist = start;
18e50661
AK
1798 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1799 next = p + s->size;
1800 next = setup_object(s, page, next);
1801 set_freepointer(s, p, next);
1802 p = next;
1803 }
1804 set_freepointer(s, p, NULL);
81819f0f 1805 }
81819f0f 1806
e6e82ea1 1807 page->inuse = page->objects;
8cb0a506 1808 page->frozen = 1;
588f8ba9 1809
81819f0f 1810out:
d0164adc 1811 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1812 local_irq_disable();
1813 if (!page)
1814 return NULL;
1815
588f8ba9
TG
1816 inc_slabs_node(s, page_to_nid(page), page->objects);
1817
81819f0f
CL
1818 return page;
1819}
1820
588f8ba9
TG
1821static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1822{
44405099
LL
1823 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1824 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1825
1826 return allocate_slab(s,
1827 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1828}
1829
81819f0f
CL
1830static void __free_slab(struct kmem_cache *s, struct page *page)
1831{
834f3d11
CL
1832 int order = compound_order(page);
1833 int pages = 1 << order;
81819f0f 1834
becfda68 1835 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1836 void *p;
1837
1838 slab_pad_check(s, page);
224a88be
CL
1839 for_each_object(p, s, page_address(page),
1840 page->objects)
f7cb1933 1841 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1842 }
1843
072bb0aa 1844 __ClearPageSlabPfmemalloc(page);
49bd5221 1845 __ClearPageSlab(page);
1f458cbf 1846
d4fc5069 1847 page->mapping = NULL;
1eb5ac64
NP
1848 if (current->reclaim_state)
1849 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1850 uncharge_slab_page(page, order, s);
27ee57c9 1851 __free_pages(page, order);
81819f0f
CL
1852}
1853
1854static void rcu_free_slab(struct rcu_head *h)
1855{
bf68c214 1856 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1857
1b4f59e3 1858 __free_slab(page->slab_cache, page);
81819f0f
CL
1859}
1860
1861static void free_slab(struct kmem_cache *s, struct page *page)
1862{
5f0d5a3a 1863 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1864 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1865 } else
1866 __free_slab(s, page);
1867}
1868
1869static void discard_slab(struct kmem_cache *s, struct page *page)
1870{
205ab99d 1871 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1872 free_slab(s, page);
1873}
1874
1875/*
5cc6eee8 1876 * Management of partially allocated slabs.
81819f0f 1877 */
1e4dd946
SR
1878static inline void
1879__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1880{
e95eed57 1881 n->nr_partial++;
136333d1 1882 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1883 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1884 else
916ac052 1885 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1886}
1887
1e4dd946
SR
1888static inline void add_partial(struct kmem_cache_node *n,
1889 struct page *page, int tail)
62e346a8 1890{
c65c1877 1891 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1892 __add_partial(n, page, tail);
1893}
c65c1877 1894
1e4dd946
SR
1895static inline void remove_partial(struct kmem_cache_node *n,
1896 struct page *page)
1897{
1898 lockdep_assert_held(&n->list_lock);
916ac052 1899 list_del(&page->slab_list);
52b4b950 1900 n->nr_partial--;
1e4dd946
SR
1901}
1902
81819f0f 1903/*
7ced3719
CL
1904 * Remove slab from the partial list, freeze it and
1905 * return the pointer to the freelist.
81819f0f 1906 *
497b66f2 1907 * Returns a list of objects or NULL if it fails.
81819f0f 1908 */
497b66f2 1909static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1910 struct kmem_cache_node *n, struct page *page,
633b0764 1911 int mode, int *objects)
81819f0f 1912{
2cfb7455
CL
1913 void *freelist;
1914 unsigned long counters;
1915 struct page new;
1916
c65c1877
PZ
1917 lockdep_assert_held(&n->list_lock);
1918
2cfb7455
CL
1919 /*
1920 * Zap the freelist and set the frozen bit.
1921 * The old freelist is the list of objects for the
1922 * per cpu allocation list.
1923 */
7ced3719
CL
1924 freelist = page->freelist;
1925 counters = page->counters;
1926 new.counters = counters;
633b0764 1927 *objects = new.objects - new.inuse;
23910c50 1928 if (mode) {
7ced3719 1929 new.inuse = page->objects;
23910c50
PE
1930 new.freelist = NULL;
1931 } else {
1932 new.freelist = freelist;
1933 }
2cfb7455 1934
a0132ac0 1935 VM_BUG_ON(new.frozen);
7ced3719 1936 new.frozen = 1;
2cfb7455 1937
7ced3719 1938 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1939 freelist, counters,
02d7633f 1940 new.freelist, new.counters,
7ced3719 1941 "acquire_slab"))
7ced3719 1942 return NULL;
2cfb7455
CL
1943
1944 remove_partial(n, page);
7ced3719 1945 WARN_ON(!freelist);
49e22585 1946 return freelist;
81819f0f
CL
1947}
1948
633b0764 1949static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1950static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1951
81819f0f 1952/*
672bba3a 1953 * Try to allocate a partial slab from a specific node.
81819f0f 1954 */
8ba00bb6
JK
1955static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1956 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1957{
49e22585
CL
1958 struct page *page, *page2;
1959 void *object = NULL;
e5d9998f 1960 unsigned int available = 0;
633b0764 1961 int objects;
81819f0f
CL
1962
1963 /*
1964 * Racy check. If we mistakenly see no partial slabs then we
1965 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1966 * partial slab and there is none available then get_partials()
1967 * will return NULL.
81819f0f
CL
1968 */
1969 if (!n || !n->nr_partial)
1970 return NULL;
1971
1972 spin_lock(&n->list_lock);
916ac052 1973 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1974 void *t;
49e22585 1975
8ba00bb6
JK
1976 if (!pfmemalloc_match(page, flags))
1977 continue;
1978
633b0764 1979 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1980 if (!t)
1981 break;
1982
633b0764 1983 available += objects;
12d79634 1984 if (!object) {
49e22585 1985 c->page = page;
49e22585 1986 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1987 object = t;
49e22585 1988 } else {
633b0764 1989 put_cpu_partial(s, page, 0);
8028dcea 1990 stat(s, CPU_PARTIAL_NODE);
49e22585 1991 }
345c905d 1992 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1993 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1994 break;
1995
497b66f2 1996 }
81819f0f 1997 spin_unlock(&n->list_lock);
497b66f2 1998 return object;
81819f0f
CL
1999}
2000
2001/*
672bba3a 2002 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2003 */
de3ec035 2004static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2005 struct kmem_cache_cpu *c)
81819f0f
CL
2006{
2007#ifdef CONFIG_NUMA
2008 struct zonelist *zonelist;
dd1a239f 2009 struct zoneref *z;
54a6eb5c 2010 struct zone *zone;
97a225e6 2011 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2012 void *object;
cc9a6c87 2013 unsigned int cpuset_mems_cookie;
81819f0f
CL
2014
2015 /*
672bba3a
CL
2016 * The defrag ratio allows a configuration of the tradeoffs between
2017 * inter node defragmentation and node local allocations. A lower
2018 * defrag_ratio increases the tendency to do local allocations
2019 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2020 *
672bba3a
CL
2021 * If the defrag_ratio is set to 0 then kmalloc() always
2022 * returns node local objects. If the ratio is higher then kmalloc()
2023 * may return off node objects because partial slabs are obtained
2024 * from other nodes and filled up.
81819f0f 2025 *
43efd3ea
LP
2026 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2027 * (which makes defrag_ratio = 1000) then every (well almost)
2028 * allocation will first attempt to defrag slab caches on other nodes.
2029 * This means scanning over all nodes to look for partial slabs which
2030 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2031 * with available objects.
81819f0f 2032 */
9824601e
CL
2033 if (!s->remote_node_defrag_ratio ||
2034 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2035 return NULL;
2036
cc9a6c87 2037 do {
d26914d1 2038 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2039 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2040 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2041 struct kmem_cache_node *n;
2042
2043 n = get_node(s, zone_to_nid(zone));
2044
dee2f8aa 2045 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2046 n->nr_partial > s->min_partial) {
8ba00bb6 2047 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2048 if (object) {
2049 /*
d26914d1
MG
2050 * Don't check read_mems_allowed_retry()
2051 * here - if mems_allowed was updated in
2052 * parallel, that was a harmless race
2053 * between allocation and the cpuset
2054 * update
cc9a6c87 2055 */
cc9a6c87
MG
2056 return object;
2057 }
c0ff7453 2058 }
81819f0f 2059 }
d26914d1 2060 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2061#endif /* CONFIG_NUMA */
81819f0f
CL
2062 return NULL;
2063}
2064
2065/*
2066 * Get a partial page, lock it and return it.
2067 */
497b66f2 2068static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2069 struct kmem_cache_cpu *c)
81819f0f 2070{
497b66f2 2071 void *object;
a561ce00
JK
2072 int searchnode = node;
2073
2074 if (node == NUMA_NO_NODE)
2075 searchnode = numa_mem_id();
81819f0f 2076
8ba00bb6 2077 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2078 if (object || node != NUMA_NO_NODE)
2079 return object;
81819f0f 2080
acd19fd1 2081 return get_any_partial(s, flags, c);
81819f0f
CL
2082}
2083
923717cb 2084#ifdef CONFIG_PREEMPTION
8a5ec0ba 2085/*
0d645ed1 2086 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2087 * during cmpxchg. The transactions start with the cpu number and are then
2088 * incremented by CONFIG_NR_CPUS.
2089 */
2090#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2091#else
2092/*
2093 * No preemption supported therefore also no need to check for
2094 * different cpus.
2095 */
2096#define TID_STEP 1
2097#endif
2098
2099static inline unsigned long next_tid(unsigned long tid)
2100{
2101 return tid + TID_STEP;
2102}
2103
9d5f0be0 2104#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2105static inline unsigned int tid_to_cpu(unsigned long tid)
2106{
2107 return tid % TID_STEP;
2108}
2109
2110static inline unsigned long tid_to_event(unsigned long tid)
2111{
2112 return tid / TID_STEP;
2113}
9d5f0be0 2114#endif
8a5ec0ba
CL
2115
2116static inline unsigned int init_tid(int cpu)
2117{
2118 return cpu;
2119}
2120
2121static inline void note_cmpxchg_failure(const char *n,
2122 const struct kmem_cache *s, unsigned long tid)
2123{
2124#ifdef SLUB_DEBUG_CMPXCHG
2125 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2126
f9f58285 2127 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2128
923717cb 2129#ifdef CONFIG_PREEMPTION
8a5ec0ba 2130 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2131 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2132 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2133 else
2134#endif
2135 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2136 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2137 tid_to_event(tid), tid_to_event(actual_tid));
2138 else
f9f58285 2139 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2140 actual_tid, tid, next_tid(tid));
2141#endif
4fdccdfb 2142 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2143}
2144
788e1aad 2145static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2146{
8a5ec0ba
CL
2147 int cpu;
2148
2149 for_each_possible_cpu(cpu)
2150 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2151}
2cfb7455 2152
81819f0f
CL
2153/*
2154 * Remove the cpu slab
2155 */
d0e0ac97 2156static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2157 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2158{
2cfb7455 2159 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2160 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2161 int lock = 0;
2162 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2163 void *nextfree;
136333d1 2164 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2165 struct page new;
2166 struct page old;
2167
2168 if (page->freelist) {
84e554e6 2169 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2170 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2171 }
2172
894b8788 2173 /*
2cfb7455
CL
2174 * Stage one: Free all available per cpu objects back
2175 * to the page freelist while it is still frozen. Leave the
2176 * last one.
2177 *
2178 * There is no need to take the list->lock because the page
2179 * is still frozen.
2180 */
2181 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2182 void *prior;
2183 unsigned long counters;
2184
52f23478
DZ
2185 /*
2186 * If 'nextfree' is invalid, it is possible that the object at
2187 * 'freelist' is already corrupted. So isolate all objects
2188 * starting at 'freelist'.
2189 */
2190 if (freelist_corrupted(s, page, freelist, nextfree))
2191 break;
2192
2cfb7455
CL
2193 do {
2194 prior = page->freelist;
2195 counters = page->counters;
2196 set_freepointer(s, freelist, prior);
2197 new.counters = counters;
2198 new.inuse--;
a0132ac0 2199 VM_BUG_ON(!new.frozen);
2cfb7455 2200
1d07171c 2201 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2202 prior, counters,
2203 freelist, new.counters,
2204 "drain percpu freelist"));
2205
2206 freelist = nextfree;
2207 }
2208
894b8788 2209 /*
2cfb7455
CL
2210 * Stage two: Ensure that the page is unfrozen while the
2211 * list presence reflects the actual number of objects
2212 * during unfreeze.
2213 *
2214 * We setup the list membership and then perform a cmpxchg
2215 * with the count. If there is a mismatch then the page
2216 * is not unfrozen but the page is on the wrong list.
2217 *
2218 * Then we restart the process which may have to remove
2219 * the page from the list that we just put it on again
2220 * because the number of objects in the slab may have
2221 * changed.
894b8788 2222 */
2cfb7455 2223redo:
894b8788 2224
2cfb7455
CL
2225 old.freelist = page->freelist;
2226 old.counters = page->counters;
a0132ac0 2227 VM_BUG_ON(!old.frozen);
7c2e132c 2228
2cfb7455
CL
2229 /* Determine target state of the slab */
2230 new.counters = old.counters;
2231 if (freelist) {
2232 new.inuse--;
2233 set_freepointer(s, freelist, old.freelist);
2234 new.freelist = freelist;
2235 } else
2236 new.freelist = old.freelist;
2237
2238 new.frozen = 0;
2239
8a5b20ae 2240 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2241 m = M_FREE;
2242 else if (new.freelist) {
2243 m = M_PARTIAL;
2244 if (!lock) {
2245 lock = 1;
2246 /*
8bb4e7a2 2247 * Taking the spinlock removes the possibility
2cfb7455
CL
2248 * that acquire_slab() will see a slab page that
2249 * is frozen
2250 */
2251 spin_lock(&n->list_lock);
2252 }
2253 } else {
2254 m = M_FULL;
2255 if (kmem_cache_debug(s) && !lock) {
2256 lock = 1;
2257 /*
2258 * This also ensures that the scanning of full
2259 * slabs from diagnostic functions will not see
2260 * any frozen slabs.
2261 */
2262 spin_lock(&n->list_lock);
2263 }
2264 }
2265
2266 if (l != m) {
2cfb7455 2267 if (l == M_PARTIAL)
2cfb7455 2268 remove_partial(n, page);
2cfb7455 2269 else if (l == M_FULL)
c65c1877 2270 remove_full(s, n, page);
2cfb7455 2271
88349a28 2272 if (m == M_PARTIAL)
2cfb7455 2273 add_partial(n, page, tail);
88349a28 2274 else if (m == M_FULL)
2cfb7455 2275 add_full(s, n, page);
2cfb7455
CL
2276 }
2277
2278 l = m;
1d07171c 2279 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2280 old.freelist, old.counters,
2281 new.freelist, new.counters,
2282 "unfreezing slab"))
2283 goto redo;
2284
2cfb7455
CL
2285 if (lock)
2286 spin_unlock(&n->list_lock);
2287
88349a28
WY
2288 if (m == M_PARTIAL)
2289 stat(s, tail);
2290 else if (m == M_FULL)
2291 stat(s, DEACTIVATE_FULL);
2292 else if (m == M_FREE) {
2cfb7455
CL
2293 stat(s, DEACTIVATE_EMPTY);
2294 discard_slab(s, page);
2295 stat(s, FREE_SLAB);
894b8788 2296 }
d4ff6d35
WY
2297
2298 c->page = NULL;
2299 c->freelist = NULL;
81819f0f
CL
2300}
2301
d24ac77f
JK
2302/*
2303 * Unfreeze all the cpu partial slabs.
2304 *
59a09917
CL
2305 * This function must be called with interrupts disabled
2306 * for the cpu using c (or some other guarantee must be there
2307 * to guarantee no concurrent accesses).
d24ac77f 2308 */
59a09917
CL
2309static void unfreeze_partials(struct kmem_cache *s,
2310 struct kmem_cache_cpu *c)
49e22585 2311{
345c905d 2312#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2313 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2314 struct page *page, *discard_page = NULL;
49e22585 2315
4c7ba22e 2316 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2317 struct page new;
2318 struct page old;
2319
4c7ba22e 2320 slub_set_percpu_partial(c, page);
43d77867
JK
2321
2322 n2 = get_node(s, page_to_nid(page));
2323 if (n != n2) {
2324 if (n)
2325 spin_unlock(&n->list_lock);
2326
2327 n = n2;
2328 spin_lock(&n->list_lock);
2329 }
49e22585
CL
2330
2331 do {
2332
2333 old.freelist = page->freelist;
2334 old.counters = page->counters;
a0132ac0 2335 VM_BUG_ON(!old.frozen);
49e22585
CL
2336
2337 new.counters = old.counters;
2338 new.freelist = old.freelist;
2339
2340 new.frozen = 0;
2341
d24ac77f 2342 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2343 old.freelist, old.counters,
2344 new.freelist, new.counters,
2345 "unfreezing slab"));
2346
8a5b20ae 2347 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2348 page->next = discard_page;
2349 discard_page = page;
43d77867
JK
2350 } else {
2351 add_partial(n, page, DEACTIVATE_TO_TAIL);
2352 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2353 }
2354 }
2355
2356 if (n)
2357 spin_unlock(&n->list_lock);
9ada1934
SL
2358
2359 while (discard_page) {
2360 page = discard_page;
2361 discard_page = discard_page->next;
2362
2363 stat(s, DEACTIVATE_EMPTY);
2364 discard_slab(s, page);
2365 stat(s, FREE_SLAB);
2366 }
6dfd1b65 2367#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2368}
2369
2370/*
9234bae9
WY
2371 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2372 * partial page slot if available.
49e22585
CL
2373 *
2374 * If we did not find a slot then simply move all the partials to the
2375 * per node partial list.
2376 */
633b0764 2377static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2378{
345c905d 2379#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2380 struct page *oldpage;
2381 int pages;
2382 int pobjects;
2383
d6e0b7fa 2384 preempt_disable();
49e22585
CL
2385 do {
2386 pages = 0;
2387 pobjects = 0;
2388 oldpage = this_cpu_read(s->cpu_slab->partial);
2389
2390 if (oldpage) {
2391 pobjects = oldpage->pobjects;
2392 pages = oldpage->pages;
bbd4e305 2393 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2394 unsigned long flags;
2395 /*
2396 * partial array is full. Move the existing
2397 * set to the per node partial list.
2398 */
2399 local_irq_save(flags);
59a09917 2400 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2401 local_irq_restore(flags);
e24fc410 2402 oldpage = NULL;
49e22585
CL
2403 pobjects = 0;
2404 pages = 0;
8028dcea 2405 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2406 }
2407 }
2408
2409 pages++;
2410 pobjects += page->objects - page->inuse;
2411
2412 page->pages = pages;
2413 page->pobjects = pobjects;
2414 page->next = oldpage;
2415
d0e0ac97
CG
2416 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2417 != oldpage);
bbd4e305 2418 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2419 unsigned long flags;
2420
2421 local_irq_save(flags);
2422 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2423 local_irq_restore(flags);
2424 }
2425 preempt_enable();
6dfd1b65 2426#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2427}
2428
dfb4f096 2429static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2430{
84e554e6 2431 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2432 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2433
2434 c->tid = next_tid(c->tid);
81819f0f
CL
2435}
2436
2437/*
2438 * Flush cpu slab.
6446faa2 2439 *
81819f0f
CL
2440 * Called from IPI handler with interrupts disabled.
2441 */
0c710013 2442static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2443{
9dfc6e68 2444 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2445
1265ef2d
WY
2446 if (c->page)
2447 flush_slab(s, c);
49e22585 2448
1265ef2d 2449 unfreeze_partials(s, c);
81819f0f
CL
2450}
2451
2452static void flush_cpu_slab(void *d)
2453{
2454 struct kmem_cache *s = d;
81819f0f 2455
dfb4f096 2456 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2457}
2458
a8364d55
GBY
2459static bool has_cpu_slab(int cpu, void *info)
2460{
2461 struct kmem_cache *s = info;
2462 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2463
a93cf07b 2464 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2465}
2466
81819f0f
CL
2467static void flush_all(struct kmem_cache *s)
2468{
cb923159 2469 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2470}
2471
a96a87bf
SAS
2472/*
2473 * Use the cpu notifier to insure that the cpu slabs are flushed when
2474 * necessary.
2475 */
2476static int slub_cpu_dead(unsigned int cpu)
2477{
2478 struct kmem_cache *s;
2479 unsigned long flags;
2480
2481 mutex_lock(&slab_mutex);
2482 list_for_each_entry(s, &slab_caches, list) {
2483 local_irq_save(flags);
2484 __flush_cpu_slab(s, cpu);
2485 local_irq_restore(flags);
2486 }
2487 mutex_unlock(&slab_mutex);
2488 return 0;
2489}
2490
dfb4f096
CL
2491/*
2492 * Check if the objects in a per cpu structure fit numa
2493 * locality expectations.
2494 */
57d437d2 2495static inline int node_match(struct page *page, int node)
dfb4f096
CL
2496{
2497#ifdef CONFIG_NUMA
6159d0f5 2498 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2499 return 0;
2500#endif
2501 return 1;
2502}
2503
9a02d699 2504#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2505static int count_free(struct page *page)
2506{
2507 return page->objects - page->inuse;
2508}
2509
9a02d699
DR
2510static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2511{
2512 return atomic_long_read(&n->total_objects);
2513}
2514#endif /* CONFIG_SLUB_DEBUG */
2515
2516#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2517static unsigned long count_partial(struct kmem_cache_node *n,
2518 int (*get_count)(struct page *))
2519{
2520 unsigned long flags;
2521 unsigned long x = 0;
2522 struct page *page;
2523
2524 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2525 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2526 x += get_count(page);
2527 spin_unlock_irqrestore(&n->list_lock, flags);
2528 return x;
2529}
9a02d699 2530#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2531
781b2ba6
PE
2532static noinline void
2533slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2534{
9a02d699
DR
2535#ifdef CONFIG_SLUB_DEBUG
2536 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2537 DEFAULT_RATELIMIT_BURST);
781b2ba6 2538 int node;
fa45dc25 2539 struct kmem_cache_node *n;
781b2ba6 2540
9a02d699
DR
2541 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2542 return;
2543
5b3810e5
VB
2544 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2545 nid, gfpflags, &gfpflags);
19af27af 2546 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2547 s->name, s->object_size, s->size, oo_order(s->oo),
2548 oo_order(s->min));
781b2ba6 2549
3b0efdfa 2550 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2551 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2552 s->name);
fa5ec8a1 2553
fa45dc25 2554 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2555 unsigned long nr_slabs;
2556 unsigned long nr_objs;
2557 unsigned long nr_free;
2558
26c02cf0
AB
2559 nr_free = count_partial(n, count_free);
2560 nr_slabs = node_nr_slabs(n);
2561 nr_objs = node_nr_objs(n);
781b2ba6 2562
f9f58285 2563 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2564 node, nr_slabs, nr_objs, nr_free);
2565 }
9a02d699 2566#endif
781b2ba6
PE
2567}
2568
497b66f2
CL
2569static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2570 int node, struct kmem_cache_cpu **pc)
2571{
6faa6833 2572 void *freelist;
188fd063
CL
2573 struct kmem_cache_cpu *c = *pc;
2574 struct page *page;
497b66f2 2575
128227e7
MW
2576 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2577
188fd063 2578 freelist = get_partial(s, flags, node, c);
497b66f2 2579
188fd063
CL
2580 if (freelist)
2581 return freelist;
2582
2583 page = new_slab(s, flags, node);
497b66f2 2584 if (page) {
7c8e0181 2585 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2586 if (c->page)
2587 flush_slab(s, c);
2588
2589 /*
2590 * No other reference to the page yet so we can
2591 * muck around with it freely without cmpxchg
2592 */
6faa6833 2593 freelist = page->freelist;
497b66f2
CL
2594 page->freelist = NULL;
2595
2596 stat(s, ALLOC_SLAB);
497b66f2
CL
2597 c->page = page;
2598 *pc = c;
edde82b6 2599 }
497b66f2 2600
6faa6833 2601 return freelist;
497b66f2
CL
2602}
2603
072bb0aa
MG
2604static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2605{
2606 if (unlikely(PageSlabPfmemalloc(page)))
2607 return gfp_pfmemalloc_allowed(gfpflags);
2608
2609 return true;
2610}
2611
213eeb9f 2612/*
d0e0ac97
CG
2613 * Check the page->freelist of a page and either transfer the freelist to the
2614 * per cpu freelist or deactivate the page.
213eeb9f
CL
2615 *
2616 * The page is still frozen if the return value is not NULL.
2617 *
2618 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2619 *
2620 * This function must be called with interrupt disabled.
213eeb9f
CL
2621 */
2622static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2623{
2624 struct page new;
2625 unsigned long counters;
2626 void *freelist;
2627
2628 do {
2629 freelist = page->freelist;
2630 counters = page->counters;
6faa6833 2631
213eeb9f 2632 new.counters = counters;
a0132ac0 2633 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2634
2635 new.inuse = page->objects;
2636 new.frozen = freelist != NULL;
2637
d24ac77f 2638 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2639 freelist, counters,
2640 NULL, new.counters,
2641 "get_freelist"));
2642
2643 return freelist;
2644}
2645
81819f0f 2646/*
894b8788
CL
2647 * Slow path. The lockless freelist is empty or we need to perform
2648 * debugging duties.
2649 *
894b8788
CL
2650 * Processing is still very fast if new objects have been freed to the
2651 * regular freelist. In that case we simply take over the regular freelist
2652 * as the lockless freelist and zap the regular freelist.
81819f0f 2653 *
894b8788
CL
2654 * If that is not working then we fall back to the partial lists. We take the
2655 * first element of the freelist as the object to allocate now and move the
2656 * rest of the freelist to the lockless freelist.
81819f0f 2657 *
894b8788 2658 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2659 * we need to allocate a new slab. This is the slowest path since it involves
2660 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2661 *
2662 * Version of __slab_alloc to use when we know that interrupts are
2663 * already disabled (which is the case for bulk allocation).
81819f0f 2664 */
a380a3c7 2665static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2666 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2667{
6faa6833 2668 void *freelist;
f6e7def7 2669 struct page *page;
81819f0f 2670
f6e7def7 2671 page = c->page;
0715e6c5
VB
2672 if (!page) {
2673 /*
2674 * if the node is not online or has no normal memory, just
2675 * ignore the node constraint
2676 */
2677 if (unlikely(node != NUMA_NO_NODE &&
2678 !node_state(node, N_NORMAL_MEMORY)))
2679 node = NUMA_NO_NODE;
81819f0f 2680 goto new_slab;
0715e6c5 2681 }
49e22585 2682redo:
6faa6833 2683
57d437d2 2684 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2685 /*
2686 * same as above but node_match() being false already
2687 * implies node != NUMA_NO_NODE
2688 */
2689 if (!node_state(node, N_NORMAL_MEMORY)) {
2690 node = NUMA_NO_NODE;
2691 goto redo;
2692 } else {
a561ce00 2693 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2694 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2695 goto new_slab;
2696 }
fc59c053 2697 }
6446faa2 2698
072bb0aa
MG
2699 /*
2700 * By rights, we should be searching for a slab page that was
2701 * PFMEMALLOC but right now, we are losing the pfmemalloc
2702 * information when the page leaves the per-cpu allocator
2703 */
2704 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2705 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2706 goto new_slab;
2707 }
2708
73736e03 2709 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2710 freelist = c->freelist;
2711 if (freelist)
73736e03 2712 goto load_freelist;
03e404af 2713
f6e7def7 2714 freelist = get_freelist(s, page);
6446faa2 2715
6faa6833 2716 if (!freelist) {
03e404af
CL
2717 c->page = NULL;
2718 stat(s, DEACTIVATE_BYPASS);
fc59c053 2719 goto new_slab;
03e404af 2720 }
6446faa2 2721
84e554e6 2722 stat(s, ALLOC_REFILL);
6446faa2 2723
894b8788 2724load_freelist:
507effea
CL
2725 /*
2726 * freelist is pointing to the list of objects to be used.
2727 * page is pointing to the page from which the objects are obtained.
2728 * That page must be frozen for per cpu allocations to work.
2729 */
a0132ac0 2730 VM_BUG_ON(!c->page->frozen);
6faa6833 2731 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2732 c->tid = next_tid(c->tid);
6faa6833 2733 return freelist;
81819f0f 2734
81819f0f 2735new_slab:
2cfb7455 2736
a93cf07b
WY
2737 if (slub_percpu_partial(c)) {
2738 page = c->page = slub_percpu_partial(c);
2739 slub_set_percpu_partial(c, page);
49e22585 2740 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2741 goto redo;
81819f0f
CL
2742 }
2743
188fd063 2744 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2745
f4697436 2746 if (unlikely(!freelist)) {
9a02d699 2747 slab_out_of_memory(s, gfpflags, node);
f4697436 2748 return NULL;
81819f0f 2749 }
2cfb7455 2750
f6e7def7 2751 page = c->page;
5091b74a 2752 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2753 goto load_freelist;
2cfb7455 2754
497b66f2 2755 /* Only entered in the debug case */
d0e0ac97
CG
2756 if (kmem_cache_debug(s) &&
2757 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2758 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2759
d4ff6d35 2760 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2761 return freelist;
894b8788
CL
2762}
2763
a380a3c7
CL
2764/*
2765 * Another one that disabled interrupt and compensates for possible
2766 * cpu changes by refetching the per cpu area pointer.
2767 */
2768static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2769 unsigned long addr, struct kmem_cache_cpu *c)
2770{
2771 void *p;
2772 unsigned long flags;
2773
2774 local_irq_save(flags);
923717cb 2775#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2776 /*
2777 * We may have been preempted and rescheduled on a different
2778 * cpu before disabling interrupts. Need to reload cpu area
2779 * pointer.
2780 */
2781 c = this_cpu_ptr(s->cpu_slab);
2782#endif
2783
2784 p = ___slab_alloc(s, gfpflags, node, addr, c);
2785 local_irq_restore(flags);
2786 return p;
2787}
2788
0f181f9f
AP
2789/*
2790 * If the object has been wiped upon free, make sure it's fully initialized by
2791 * zeroing out freelist pointer.
2792 */
2793static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2794 void *obj)
2795{
2796 if (unlikely(slab_want_init_on_free(s)) && obj)
2797 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2798}
2799
894b8788
CL
2800/*
2801 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2802 * have the fastpath folded into their functions. So no function call
2803 * overhead for requests that can be satisfied on the fastpath.
2804 *
2805 * The fastpath works by first checking if the lockless freelist can be used.
2806 * If not then __slab_alloc is called for slow processing.
2807 *
2808 * Otherwise we can simply pick the next object from the lockless free list.
2809 */
2b847c3c 2810static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2811 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2812{
03ec0ed5 2813 void *object;
dfb4f096 2814 struct kmem_cache_cpu *c;
57d437d2 2815 struct page *page;
8a5ec0ba 2816 unsigned long tid;
1f84260c 2817
8135be5a
VD
2818 s = slab_pre_alloc_hook(s, gfpflags);
2819 if (!s)
773ff60e 2820 return NULL;
8a5ec0ba 2821redo:
8a5ec0ba
CL
2822 /*
2823 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2824 * enabled. We may switch back and forth between cpus while
2825 * reading from one cpu area. That does not matter as long
2826 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2827 *
9aabf810 2828 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2829 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2830 * to check if it is matched or not.
8a5ec0ba 2831 */
9aabf810
JK
2832 do {
2833 tid = this_cpu_read(s->cpu_slab->tid);
2834 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2835 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2836 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2837
2838 /*
2839 * Irqless object alloc/free algorithm used here depends on sequence
2840 * of fetching cpu_slab's data. tid should be fetched before anything
2841 * on c to guarantee that object and page associated with previous tid
2842 * won't be used with current tid. If we fetch tid first, object and
2843 * page could be one associated with next tid and our alloc/free
2844 * request will be failed. In this case, we will retry. So, no problem.
2845 */
2846 barrier();
8a5ec0ba 2847
8a5ec0ba
CL
2848 /*
2849 * The transaction ids are globally unique per cpu and per operation on
2850 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2851 * occurs on the right processor and that there was no operation on the
2852 * linked list in between.
2853 */
8a5ec0ba 2854
9dfc6e68 2855 object = c->freelist;
57d437d2 2856 page = c->page;
8eae1492 2857 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2858 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2859 stat(s, ALLOC_SLOWPATH);
2860 } else {
0ad9500e
ED
2861 void *next_object = get_freepointer_safe(s, object);
2862
8a5ec0ba 2863 /*
25985edc 2864 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2865 * operation and if we are on the right processor.
2866 *
d0e0ac97
CG
2867 * The cmpxchg does the following atomically (without lock
2868 * semantics!)
8a5ec0ba
CL
2869 * 1. Relocate first pointer to the current per cpu area.
2870 * 2. Verify that tid and freelist have not been changed
2871 * 3. If they were not changed replace tid and freelist
2872 *
d0e0ac97
CG
2873 * Since this is without lock semantics the protection is only
2874 * against code executing on this cpu *not* from access by
2875 * other cpus.
8a5ec0ba 2876 */
933393f5 2877 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2878 s->cpu_slab->freelist, s->cpu_slab->tid,
2879 object, tid,
0ad9500e 2880 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2881
2882 note_cmpxchg_failure("slab_alloc", s, tid);
2883 goto redo;
2884 }
0ad9500e 2885 prefetch_freepointer(s, next_object);
84e554e6 2886 stat(s, ALLOC_FASTPATH);
894b8788 2887 }
0f181f9f
AP
2888
2889 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2890
6471384a 2891 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2892 memset(object, 0, s->object_size);
d07dbea4 2893
03ec0ed5 2894 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2895
894b8788 2896 return object;
81819f0f
CL
2897}
2898
2b847c3c
EG
2899static __always_inline void *slab_alloc(struct kmem_cache *s,
2900 gfp_t gfpflags, unsigned long addr)
2901{
2902 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2903}
2904
81819f0f
CL
2905void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2906{
2b847c3c 2907 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2908
d0e0ac97
CG
2909 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2910 s->size, gfpflags);
5b882be4
EGM
2911
2912 return ret;
81819f0f
CL
2913}
2914EXPORT_SYMBOL(kmem_cache_alloc);
2915
0f24f128 2916#ifdef CONFIG_TRACING
4a92379b
RK
2917void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2918{
2b847c3c 2919 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2920 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2921 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2922 return ret;
2923}
2924EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2925#endif
2926
81819f0f
CL
2927#ifdef CONFIG_NUMA
2928void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2929{
2b847c3c 2930 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2931
ca2b84cb 2932 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2933 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2934
2935 return ret;
81819f0f
CL
2936}
2937EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2938
0f24f128 2939#ifdef CONFIG_TRACING
4a92379b 2940void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2941 gfp_t gfpflags,
4a92379b 2942 int node, size_t size)
5b882be4 2943{
2b847c3c 2944 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2945
2946 trace_kmalloc_node(_RET_IP_, ret,
2947 size, s->size, gfpflags, node);
0316bec2 2948
0116523c 2949 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2950 return ret;
5b882be4 2951}
4a92379b 2952EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2953#endif
6dfd1b65 2954#endif /* CONFIG_NUMA */
5b882be4 2955
81819f0f 2956/*
94e4d712 2957 * Slow path handling. This may still be called frequently since objects
894b8788 2958 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2959 *
894b8788
CL
2960 * So we still attempt to reduce cache line usage. Just take the slab
2961 * lock and free the item. If there is no additional partial page
2962 * handling required then we can return immediately.
81819f0f 2963 */
894b8788 2964static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2965 void *head, void *tail, int cnt,
2966 unsigned long addr)
2967
81819f0f
CL
2968{
2969 void *prior;
2cfb7455 2970 int was_frozen;
2cfb7455
CL
2971 struct page new;
2972 unsigned long counters;
2973 struct kmem_cache_node *n = NULL;
3f649ab7 2974 unsigned long flags;
81819f0f 2975
8a5ec0ba 2976 stat(s, FREE_SLOWPATH);
81819f0f 2977
19c7ff9e 2978 if (kmem_cache_debug(s) &&
282acb43 2979 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2980 return;
6446faa2 2981
2cfb7455 2982 do {
837d678d
JK
2983 if (unlikely(n)) {
2984 spin_unlock_irqrestore(&n->list_lock, flags);
2985 n = NULL;
2986 }
2cfb7455
CL
2987 prior = page->freelist;
2988 counters = page->counters;
81084651 2989 set_freepointer(s, tail, prior);
2cfb7455
CL
2990 new.counters = counters;
2991 was_frozen = new.frozen;
81084651 2992 new.inuse -= cnt;
837d678d 2993 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2994
c65c1877 2995 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2996
2997 /*
d0e0ac97
CG
2998 * Slab was on no list before and will be
2999 * partially empty
3000 * We can defer the list move and instead
3001 * freeze it.
49e22585
CL
3002 */
3003 new.frozen = 1;
3004
c65c1877 3005 } else { /* Needs to be taken off a list */
49e22585 3006
b455def2 3007 n = get_node(s, page_to_nid(page));
49e22585
CL
3008 /*
3009 * Speculatively acquire the list_lock.
3010 * If the cmpxchg does not succeed then we may
3011 * drop the list_lock without any processing.
3012 *
3013 * Otherwise the list_lock will synchronize with
3014 * other processors updating the list of slabs.
3015 */
3016 spin_lock_irqsave(&n->list_lock, flags);
3017
3018 }
2cfb7455 3019 }
81819f0f 3020
2cfb7455
CL
3021 } while (!cmpxchg_double_slab(s, page,
3022 prior, counters,
81084651 3023 head, new.counters,
2cfb7455 3024 "__slab_free"));
81819f0f 3025
2cfb7455 3026 if (likely(!n)) {
49e22585
CL
3027
3028 /*
3029 * If we just froze the page then put it onto the
3030 * per cpu partial list.
3031 */
8028dcea 3032 if (new.frozen && !was_frozen) {
49e22585 3033 put_cpu_partial(s, page, 1);
8028dcea
AS
3034 stat(s, CPU_PARTIAL_FREE);
3035 }
49e22585 3036 /*
2cfb7455
CL
3037 * The list lock was not taken therefore no list
3038 * activity can be necessary.
3039 */
b455def2
L
3040 if (was_frozen)
3041 stat(s, FREE_FROZEN);
3042 return;
3043 }
81819f0f 3044
8a5b20ae 3045 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3046 goto slab_empty;
3047
81819f0f 3048 /*
837d678d
JK
3049 * Objects left in the slab. If it was not on the partial list before
3050 * then add it.
81819f0f 3051 */
345c905d 3052 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3053 remove_full(s, n, page);
837d678d
JK
3054 add_partial(n, page, DEACTIVATE_TO_TAIL);
3055 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3056 }
80f08c19 3057 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3058 return;
3059
3060slab_empty:
a973e9dd 3061 if (prior) {
81819f0f 3062 /*
6fbabb20 3063 * Slab on the partial list.
81819f0f 3064 */
5cc6eee8 3065 remove_partial(n, page);
84e554e6 3066 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3067 } else {
6fbabb20 3068 /* Slab must be on the full list */
c65c1877
PZ
3069 remove_full(s, n, page);
3070 }
2cfb7455 3071
80f08c19 3072 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3073 stat(s, FREE_SLAB);
81819f0f 3074 discard_slab(s, page);
81819f0f
CL
3075}
3076
894b8788
CL
3077/*
3078 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3079 * can perform fastpath freeing without additional function calls.
3080 *
3081 * The fastpath is only possible if we are freeing to the current cpu slab
3082 * of this processor. This typically the case if we have just allocated
3083 * the item before.
3084 *
3085 * If fastpath is not possible then fall back to __slab_free where we deal
3086 * with all sorts of special processing.
81084651
JDB
3087 *
3088 * Bulk free of a freelist with several objects (all pointing to the
3089 * same page) possible by specifying head and tail ptr, plus objects
3090 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3091 */
80a9201a
AP
3092static __always_inline void do_slab_free(struct kmem_cache *s,
3093 struct page *page, void *head, void *tail,
3094 int cnt, unsigned long addr)
894b8788 3095{
81084651 3096 void *tail_obj = tail ? : head;
dfb4f096 3097 struct kmem_cache_cpu *c;
8a5ec0ba 3098 unsigned long tid;
8a5ec0ba
CL
3099redo:
3100 /*
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3104 * during the cmpxchg then the free will succeed.
8a5ec0ba 3105 */
9aabf810
JK
3106 do {
3107 tid = this_cpu_read(s->cpu_slab->tid);
3108 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3109 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3110 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3111
9aabf810
JK
3112 /* Same with comment on barrier() in slab_alloc_node() */
3113 barrier();
c016b0bd 3114
442b06bc 3115 if (likely(page == c->page)) {
5076190d
LT
3116 void **freelist = READ_ONCE(c->freelist);
3117
3118 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3119
933393f5 3120 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3121 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3122 freelist, tid,
81084651 3123 head, next_tid(tid)))) {
8a5ec0ba
CL
3124
3125 note_cmpxchg_failure("slab_free", s, tid);
3126 goto redo;
3127 }
84e554e6 3128 stat(s, FREE_FASTPATH);
894b8788 3129 } else
81084651 3130 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3131
894b8788
CL
3132}
3133
80a9201a
AP
3134static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 void *head, void *tail, int cnt,
3136 unsigned long addr)
3137{
80a9201a 3138 /*
c3895391
AK
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
80a9201a 3141 */
c3895391
AK
3142 if (slab_free_freelist_hook(s, &head, &tail))
3143 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3144}
3145
2bd926b4 3146#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3147void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148{
3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150}
3151#endif
3152
81819f0f
CL
3153void kmem_cache_free(struct kmem_cache *s, void *x)
3154{
b9ce5ef4
GC
3155 s = cache_from_obj(s, x);
3156 if (!s)
79576102 3157 return;
81084651 3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3159 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3160}
3161EXPORT_SYMBOL(kmem_cache_free);
3162
d0ecd894 3163struct detached_freelist {
fbd02630 3164 struct page *page;
d0ecd894
JDB
3165 void *tail;
3166 void *freelist;
3167 int cnt;
376bf125 3168 struct kmem_cache *s;
d0ecd894 3169};
fbd02630 3170
d0ecd894
JDB
3171/*
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3182 */
376bf125
JDB
3183static inline
3184int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 void **p, struct detached_freelist *df)
d0ecd894
JDB
3186{
3187 size_t first_skipped_index = 0;
3188 int lookahead = 3;
3189 void *object;
ca257195 3190 struct page *page;
fbd02630 3191
d0ecd894
JDB
3192 /* Always re-init detached_freelist */
3193 df->page = NULL;
fbd02630 3194
d0ecd894
JDB
3195 do {
3196 object = p[--size];
ca257195 3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3198 } while (!object && size);
3eed034d 3199
d0ecd894
JDB
3200 if (!object)
3201 return 0;
fbd02630 3202
ca257195
JDB
3203 page = virt_to_head_page(object);
3204 if (!s) {
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page))) {
3207 BUG_ON(!PageCompound(page));
3208 kfree_hook(object);
4949148a 3209 __free_pages(page, compound_order(page));
ca257195
JDB
3210 p[size] = NULL; /* mark object processed */
3211 return size;
3212 }
3213 /* Derive kmem_cache from object */
3214 df->s = page->slab_cache;
3215 } else {
3216 df->s = cache_from_obj(s, object); /* Support for memcg */
3217 }
376bf125 3218
d0ecd894 3219 /* Start new detached freelist */
ca257195 3220 df->page = page;
376bf125 3221 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3222 df->tail = object;
3223 df->freelist = object;
3224 p[size] = NULL; /* mark object processed */
3225 df->cnt = 1;
3226
3227 while (size) {
3228 object = p[--size];
3229 if (!object)
3230 continue; /* Skip processed objects */
3231
3232 /* df->page is always set at this point */
3233 if (df->page == virt_to_head_page(object)) {
3234 /* Opportunity build freelist */
376bf125 3235 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3236 df->freelist = object;
3237 df->cnt++;
3238 p[size] = NULL; /* mark object processed */
3239
3240 continue;
fbd02630 3241 }
d0ecd894
JDB
3242
3243 /* Limit look ahead search */
3244 if (!--lookahead)
3245 break;
3246
3247 if (!first_skipped_index)
3248 first_skipped_index = size + 1;
fbd02630 3249 }
d0ecd894
JDB
3250
3251 return first_skipped_index;
3252}
3253
d0ecd894 3254/* Note that interrupts must be enabled when calling this function. */
376bf125 3255void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3256{
3257 if (WARN_ON(!size))
3258 return;
3259
3260 do {
3261 struct detached_freelist df;
3262
3263 size = build_detached_freelist(s, size, p, &df);
84582c8a 3264 if (!df.page)
d0ecd894
JDB
3265 continue;
3266
376bf125 3267 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3268 } while (likely(size));
484748f0
CL
3269}
3270EXPORT_SYMBOL(kmem_cache_free_bulk);
3271
994eb764 3272/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3273int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3274 void **p)
484748f0 3275{
994eb764
JDB
3276 struct kmem_cache_cpu *c;
3277 int i;
3278
03ec0ed5
JDB
3279 /* memcg and kmem_cache debug support */
3280 s = slab_pre_alloc_hook(s, flags);
3281 if (unlikely(!s))
3282 return false;
994eb764
JDB
3283 /*
3284 * Drain objects in the per cpu slab, while disabling local
3285 * IRQs, which protects against PREEMPT and interrupts
3286 * handlers invoking normal fastpath.
3287 */
3288 local_irq_disable();
3289 c = this_cpu_ptr(s->cpu_slab);
3290
3291 for (i = 0; i < size; i++) {
3292 void *object = c->freelist;
3293
ebe909e0 3294 if (unlikely(!object)) {
fd4d9c7d
JH
3295 /*
3296 * We may have removed an object from c->freelist using
3297 * the fastpath in the previous iteration; in that case,
3298 * c->tid has not been bumped yet.
3299 * Since ___slab_alloc() may reenable interrupts while
3300 * allocating memory, we should bump c->tid now.
3301 */
3302 c->tid = next_tid(c->tid);
3303
ebe909e0
JDB
3304 /*
3305 * Invoking slow path likely have side-effect
3306 * of re-populating per CPU c->freelist
3307 */
87098373 3308 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3309 _RET_IP_, c);
87098373
CL
3310 if (unlikely(!p[i]))
3311 goto error;
3312
ebe909e0 3313 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3314 maybe_wipe_obj_freeptr(s, p[i]);
3315
ebe909e0
JDB
3316 continue; /* goto for-loop */
3317 }
994eb764
JDB
3318 c->freelist = get_freepointer(s, object);
3319 p[i] = object;
0f181f9f 3320 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3321 }
3322 c->tid = next_tid(c->tid);
3323 local_irq_enable();
3324
3325 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3326 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3327 int j;
3328
3329 for (j = 0; j < i; j++)
3330 memset(p[j], 0, s->object_size);
3331 }
3332
03ec0ed5
JDB
3333 /* memcg and kmem_cache debug support */
3334 slab_post_alloc_hook(s, flags, size, p);
865762a8 3335 return i;
87098373 3336error:
87098373 3337 local_irq_enable();
03ec0ed5
JDB
3338 slab_post_alloc_hook(s, flags, i, p);
3339 __kmem_cache_free_bulk(s, i, p);
865762a8 3340 return 0;
484748f0
CL
3341}
3342EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3343
3344
81819f0f 3345/*
672bba3a
CL
3346 * Object placement in a slab is made very easy because we always start at
3347 * offset 0. If we tune the size of the object to the alignment then we can
3348 * get the required alignment by putting one properly sized object after
3349 * another.
81819f0f
CL
3350 *
3351 * Notice that the allocation order determines the sizes of the per cpu
3352 * caches. Each processor has always one slab available for allocations.
3353 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3354 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3355 * locking overhead.
81819f0f
CL
3356 */
3357
3358/*
3359 * Mininum / Maximum order of slab pages. This influences locking overhead
3360 * and slab fragmentation. A higher order reduces the number of partial slabs
3361 * and increases the number of allocations possible without having to
3362 * take the list_lock.
3363 */
19af27af
AD
3364static unsigned int slub_min_order;
3365static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3366static unsigned int slub_min_objects;
81819f0f 3367
81819f0f
CL
3368/*
3369 * Calculate the order of allocation given an slab object size.
3370 *
672bba3a
CL
3371 * The order of allocation has significant impact on performance and other
3372 * system components. Generally order 0 allocations should be preferred since
3373 * order 0 does not cause fragmentation in the page allocator. Larger objects
3374 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3375 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3376 * would be wasted.
3377 *
3378 * In order to reach satisfactory performance we must ensure that a minimum
3379 * number of objects is in one slab. Otherwise we may generate too much
3380 * activity on the partial lists which requires taking the list_lock. This is
3381 * less a concern for large slabs though which are rarely used.
81819f0f 3382 *
672bba3a
CL
3383 * slub_max_order specifies the order where we begin to stop considering the
3384 * number of objects in a slab as critical. If we reach slub_max_order then
3385 * we try to keep the page order as low as possible. So we accept more waste
3386 * of space in favor of a small page order.
81819f0f 3387 *
672bba3a
CL
3388 * Higher order allocations also allow the placement of more objects in a
3389 * slab and thereby reduce object handling overhead. If the user has
3390 * requested a higher mininum order then we start with that one instead of
3391 * the smallest order which will fit the object.
81819f0f 3392 */
19af27af
AD
3393static inline unsigned int slab_order(unsigned int size,
3394 unsigned int min_objects, unsigned int max_order,
9736d2a9 3395 unsigned int fract_leftover)
81819f0f 3396{
19af27af
AD
3397 unsigned int min_order = slub_min_order;
3398 unsigned int order;
81819f0f 3399
9736d2a9 3400 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3401 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3402
9736d2a9 3403 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3404 order <= max_order; order++) {
81819f0f 3405
19af27af
AD
3406 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3407 unsigned int rem;
81819f0f 3408
9736d2a9 3409 rem = slab_size % size;
81819f0f 3410
5e6d444e 3411 if (rem <= slab_size / fract_leftover)
81819f0f 3412 break;
81819f0f 3413 }
672bba3a 3414
81819f0f
CL
3415 return order;
3416}
3417
9736d2a9 3418static inline int calculate_order(unsigned int size)
5e6d444e 3419{
19af27af
AD
3420 unsigned int order;
3421 unsigned int min_objects;
3422 unsigned int max_objects;
5e6d444e
CL
3423
3424 /*
3425 * Attempt to find best configuration for a slab. This
3426 * works by first attempting to generate a layout with
3427 * the best configuration and backing off gradually.
3428 *
422ff4d7 3429 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3430 * we reduce the minimum objects required in a slab.
3431 */
3432 min_objects = slub_min_objects;
9b2cd506
CL
3433 if (!min_objects)
3434 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3435 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3436 min_objects = min(min_objects, max_objects);
3437
5e6d444e 3438 while (min_objects > 1) {
19af27af
AD
3439 unsigned int fraction;
3440
c124f5b5 3441 fraction = 16;
5e6d444e
CL
3442 while (fraction >= 4) {
3443 order = slab_order(size, min_objects,
9736d2a9 3444 slub_max_order, fraction);
5e6d444e
CL
3445 if (order <= slub_max_order)
3446 return order;
3447 fraction /= 2;
3448 }
5086c389 3449 min_objects--;
5e6d444e
CL
3450 }
3451
3452 /*
3453 * We were unable to place multiple objects in a slab. Now
3454 * lets see if we can place a single object there.
3455 */
9736d2a9 3456 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3457 if (order <= slub_max_order)
3458 return order;
3459
3460 /*
3461 * Doh this slab cannot be placed using slub_max_order.
3462 */
9736d2a9 3463 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3464 if (order < MAX_ORDER)
5e6d444e
CL
3465 return order;
3466 return -ENOSYS;
3467}
3468
5595cffc 3469static void
4053497d 3470init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3471{
3472 n->nr_partial = 0;
81819f0f
CL
3473 spin_lock_init(&n->list_lock);
3474 INIT_LIST_HEAD(&n->partial);
8ab1372f 3475#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3476 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3477 atomic_long_set(&n->total_objects, 0);
643b1138 3478 INIT_LIST_HEAD(&n->full);
8ab1372f 3479#endif
81819f0f
CL
3480}
3481
55136592 3482static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3483{
6c182dc0 3484 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3485 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3486
8a5ec0ba 3487 /*
d4d84fef
CM
3488 * Must align to double word boundary for the double cmpxchg
3489 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3490 */
d4d84fef
CM
3491 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3492 2 * sizeof(void *));
8a5ec0ba
CL
3493
3494 if (!s->cpu_slab)
3495 return 0;
3496
3497 init_kmem_cache_cpus(s);
4c93c355 3498
8a5ec0ba 3499 return 1;
4c93c355 3500}
4c93c355 3501
51df1142
CL
3502static struct kmem_cache *kmem_cache_node;
3503
81819f0f
CL
3504/*
3505 * No kmalloc_node yet so do it by hand. We know that this is the first
3506 * slab on the node for this slabcache. There are no concurrent accesses
3507 * possible.
3508 *
721ae22a
ZYW
3509 * Note that this function only works on the kmem_cache_node
3510 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3511 * memory on a fresh node that has no slab structures yet.
81819f0f 3512 */
55136592 3513static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3514{
3515 struct page *page;
3516 struct kmem_cache_node *n;
3517
51df1142 3518 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3519
51df1142 3520 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3521
3522 BUG_ON(!page);
a2f92ee7 3523 if (page_to_nid(page) != node) {
f9f58285
FF
3524 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3525 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3526 }
3527
81819f0f
CL
3528 n = page->freelist;
3529 BUG_ON(!n);
8ab1372f 3530#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3531 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3532 init_tracking(kmem_cache_node, n);
8ab1372f 3533#endif
12b22386 3534 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3535 GFP_KERNEL);
12b22386
AK
3536 page->freelist = get_freepointer(kmem_cache_node, n);
3537 page->inuse = 1;
3538 page->frozen = 0;
3539 kmem_cache_node->node[node] = n;
4053497d 3540 init_kmem_cache_node(n);
51df1142 3541 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3542
67b6c900 3543 /*
1e4dd946
SR
3544 * No locks need to be taken here as it has just been
3545 * initialized and there is no concurrent access.
67b6c900 3546 */
1e4dd946 3547 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3548}
3549
3550static void free_kmem_cache_nodes(struct kmem_cache *s)
3551{
3552 int node;
fa45dc25 3553 struct kmem_cache_node *n;
81819f0f 3554
fa45dc25 3555 for_each_kmem_cache_node(s, node, n) {
81819f0f 3556 s->node[node] = NULL;
ea37df54 3557 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3558 }
3559}
3560
52b4b950
DS
3561void __kmem_cache_release(struct kmem_cache *s)
3562{
210e7a43 3563 cache_random_seq_destroy(s);
52b4b950
DS
3564 free_percpu(s->cpu_slab);
3565 free_kmem_cache_nodes(s);
3566}
3567
55136592 3568static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3569{
3570 int node;
81819f0f 3571
f64dc58c 3572 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3573 struct kmem_cache_node *n;
3574
73367bd8 3575 if (slab_state == DOWN) {
55136592 3576 early_kmem_cache_node_alloc(node);
73367bd8
AD
3577 continue;
3578 }
51df1142 3579 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3580 GFP_KERNEL, node);
81819f0f 3581
73367bd8
AD
3582 if (!n) {
3583 free_kmem_cache_nodes(s);
3584 return 0;
81819f0f 3585 }
73367bd8 3586
4053497d 3587 init_kmem_cache_node(n);
ea37df54 3588 s->node[node] = n;
81819f0f
CL
3589 }
3590 return 1;
3591}
81819f0f 3592
c0bdb232 3593static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3594{
3595 if (min < MIN_PARTIAL)
3596 min = MIN_PARTIAL;
3597 else if (min > MAX_PARTIAL)
3598 min = MAX_PARTIAL;
3599 s->min_partial = min;
3600}
3601
e6d0e1dc
WY
3602static void set_cpu_partial(struct kmem_cache *s)
3603{
3604#ifdef CONFIG_SLUB_CPU_PARTIAL
3605 /*
3606 * cpu_partial determined the maximum number of objects kept in the
3607 * per cpu partial lists of a processor.
3608 *
3609 * Per cpu partial lists mainly contain slabs that just have one
3610 * object freed. If they are used for allocation then they can be
3611 * filled up again with minimal effort. The slab will never hit the
3612 * per node partial lists and therefore no locking will be required.
3613 *
3614 * This setting also determines
3615 *
3616 * A) The number of objects from per cpu partial slabs dumped to the
3617 * per node list when we reach the limit.
3618 * B) The number of objects in cpu partial slabs to extract from the
3619 * per node list when we run out of per cpu objects. We only fetch
3620 * 50% to keep some capacity around for frees.
3621 */
3622 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3623 slub_set_cpu_partial(s, 0);
e6d0e1dc 3624 else if (s->size >= PAGE_SIZE)
bbd4e305 3625 slub_set_cpu_partial(s, 2);
e6d0e1dc 3626 else if (s->size >= 1024)
bbd4e305 3627 slub_set_cpu_partial(s, 6);
e6d0e1dc 3628 else if (s->size >= 256)
bbd4e305 3629 slub_set_cpu_partial(s, 13);
e6d0e1dc 3630 else
bbd4e305 3631 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3632#endif
3633}
3634
81819f0f
CL
3635/*
3636 * calculate_sizes() determines the order and the distribution of data within
3637 * a slab object.
3638 */
06b285dc 3639static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3640{
d50112ed 3641 slab_flags_t flags = s->flags;
be4a7988 3642 unsigned int size = s->object_size;
89b83f28 3643 unsigned int freepointer_area;
19af27af 3644 unsigned int order;
81819f0f 3645
d8b42bf5
CL
3646 /*
3647 * Round up object size to the next word boundary. We can only
3648 * place the free pointer at word boundaries and this determines
3649 * the possible location of the free pointer.
3650 */
3651 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3652 /*
3653 * This is the area of the object where a freepointer can be
3654 * safely written. If redzoning adds more to the inuse size, we
3655 * can't use that portion for writing the freepointer, so
3656 * s->offset must be limited within this for the general case.
3657 */
3658 freepointer_area = size;
d8b42bf5
CL
3659
3660#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3661 /*
3662 * Determine if we can poison the object itself. If the user of
3663 * the slab may touch the object after free or before allocation
3664 * then we should never poison the object itself.
3665 */
5f0d5a3a 3666 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3667 !s->ctor)
81819f0f
CL
3668 s->flags |= __OBJECT_POISON;
3669 else
3670 s->flags &= ~__OBJECT_POISON;
3671
81819f0f
CL
3672
3673 /*
672bba3a 3674 * If we are Redzoning then check if there is some space between the
81819f0f 3675 * end of the object and the free pointer. If not then add an
672bba3a 3676 * additional word to have some bytes to store Redzone information.
81819f0f 3677 */
3b0efdfa 3678 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3679 size += sizeof(void *);
41ecc55b 3680#endif
81819f0f
CL
3681
3682 /*
672bba3a
CL
3683 * With that we have determined the number of bytes in actual use
3684 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3685 */
3686 s->inuse = size;
3687
5f0d5a3a 3688 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3689 s->ctor)) {
81819f0f
CL
3690 /*
3691 * Relocate free pointer after the object if it is not
3692 * permitted to overwrite the first word of the object on
3693 * kmem_cache_free.
3694 *
3695 * This is the case if we do RCU, have a constructor or
3696 * destructor or are poisoning the objects.
cbfc35a4
WL
3697 *
3698 * The assumption that s->offset >= s->inuse means free
3699 * pointer is outside of the object is used in the
3700 * freeptr_outside_object() function. If that is no
3701 * longer true, the function needs to be modified.
81819f0f
CL
3702 */
3703 s->offset = size;
3704 size += sizeof(void *);
89b83f28 3705 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3706 /*
3707 * Store freelist pointer near middle of object to keep
3708 * it away from the edges of the object to avoid small
3709 * sized over/underflows from neighboring allocations.
3710 */
89b83f28 3711 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3712 }
3713
c12b3c62 3714#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3715 if (flags & SLAB_STORE_USER)
3716 /*
3717 * Need to store information about allocs and frees after
3718 * the object.
3719 */
3720 size += 2 * sizeof(struct track);
80a9201a 3721#endif
81819f0f 3722
80a9201a
AP
3723 kasan_cache_create(s, &size, &s->flags);
3724#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3725 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3726 /*
3727 * Add some empty padding so that we can catch
3728 * overwrites from earlier objects rather than let
3729 * tracking information or the free pointer be
0211a9c8 3730 * corrupted if a user writes before the start
81819f0f
CL
3731 * of the object.
3732 */
3733 size += sizeof(void *);
d86bd1be
JK
3734
3735 s->red_left_pad = sizeof(void *);
3736 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3737 size += s->red_left_pad;
3738 }
41ecc55b 3739#endif
672bba3a 3740
81819f0f
CL
3741 /*
3742 * SLUB stores one object immediately after another beginning from
3743 * offset 0. In order to align the objects we have to simply size
3744 * each object to conform to the alignment.
3745 */
45906855 3746 size = ALIGN(size, s->align);
81819f0f 3747 s->size = size;
06b285dc
CL
3748 if (forced_order >= 0)
3749 order = forced_order;
3750 else
9736d2a9 3751 order = calculate_order(size);
81819f0f 3752
19af27af 3753 if ((int)order < 0)
81819f0f
CL
3754 return 0;
3755
b7a49f0d 3756 s->allocflags = 0;
834f3d11 3757 if (order)
b7a49f0d
CL
3758 s->allocflags |= __GFP_COMP;
3759
3760 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3761 s->allocflags |= GFP_DMA;
b7a49f0d 3762
6d6ea1e9
NB
3763 if (s->flags & SLAB_CACHE_DMA32)
3764 s->allocflags |= GFP_DMA32;
3765
b7a49f0d
CL
3766 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3767 s->allocflags |= __GFP_RECLAIMABLE;
3768
81819f0f
CL
3769 /*
3770 * Determine the number of objects per slab
3771 */
9736d2a9
MW
3772 s->oo = oo_make(order, size);
3773 s->min = oo_make(get_order(size), size);
205ab99d
CL
3774 if (oo_objects(s->oo) > oo_objects(s->max))
3775 s->max = s->oo;
81819f0f 3776
834f3d11 3777 return !!oo_objects(s->oo);
81819f0f
CL
3778}
3779
d50112ed 3780static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3781{
8a13a4cc 3782 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3783#ifdef CONFIG_SLAB_FREELIST_HARDENED
3784 s->random = get_random_long();
3785#endif
81819f0f 3786
06b285dc 3787 if (!calculate_sizes(s, -1))
81819f0f 3788 goto error;
3de47213
DR
3789 if (disable_higher_order_debug) {
3790 /*
3791 * Disable debugging flags that store metadata if the min slab
3792 * order increased.
3793 */
3b0efdfa 3794 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3795 s->flags &= ~DEBUG_METADATA_FLAGS;
3796 s->offset = 0;
3797 if (!calculate_sizes(s, -1))
3798 goto error;
3799 }
3800 }
81819f0f 3801
2565409f
HC
3802#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3803 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3804 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3805 /* Enable fast mode */
3806 s->flags |= __CMPXCHG_DOUBLE;
3807#endif
3808
3b89d7d8
DR
3809 /*
3810 * The larger the object size is, the more pages we want on the partial
3811 * list to avoid pounding the page allocator excessively.
3812 */
49e22585
CL
3813 set_min_partial(s, ilog2(s->size) / 2);
3814
e6d0e1dc 3815 set_cpu_partial(s);
49e22585 3816
81819f0f 3817#ifdef CONFIG_NUMA
e2cb96b7 3818 s->remote_node_defrag_ratio = 1000;
81819f0f 3819#endif
210e7a43
TG
3820
3821 /* Initialize the pre-computed randomized freelist if slab is up */
3822 if (slab_state >= UP) {
3823 if (init_cache_random_seq(s))
3824 goto error;
3825 }
3826
55136592 3827 if (!init_kmem_cache_nodes(s))
dfb4f096 3828 goto error;
81819f0f 3829
55136592 3830 if (alloc_kmem_cache_cpus(s))
278b1bb1 3831 return 0;
ff12059e 3832
4c93c355 3833 free_kmem_cache_nodes(s);
81819f0f 3834error:
278b1bb1 3835 return -EINVAL;
81819f0f 3836}
81819f0f 3837
33b12c38 3838static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3839 const char *text)
33b12c38
CL
3840{
3841#ifdef CONFIG_SLUB_DEBUG
3842 void *addr = page_address(page);
55860d96 3843 unsigned long *map;
33b12c38 3844 void *p;
aa456c7a 3845
945cf2b6 3846 slab_err(s, page, text, s->name);
33b12c38 3847 slab_lock(page);
33b12c38 3848
90e9f6a6 3849 map = get_map(s, page);
33b12c38
CL
3850 for_each_object(p, s, addr, page->objects) {
3851
3852 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3853 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3854 print_tracking(s, p);
3855 }
3856 }
55860d96 3857 put_map(map);
33b12c38
CL
3858 slab_unlock(page);
3859#endif
3860}
3861
81819f0f 3862/*
599870b1 3863 * Attempt to free all partial slabs on a node.
52b4b950
DS
3864 * This is called from __kmem_cache_shutdown(). We must take list_lock
3865 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3866 */
599870b1 3867static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3868{
60398923 3869 LIST_HEAD(discard);
81819f0f
CL
3870 struct page *page, *h;
3871
52b4b950
DS
3872 BUG_ON(irqs_disabled());
3873 spin_lock_irq(&n->list_lock);
916ac052 3874 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3875 if (!page->inuse) {
52b4b950 3876 remove_partial(n, page);
916ac052 3877 list_add(&page->slab_list, &discard);
33b12c38
CL
3878 } else {
3879 list_slab_objects(s, page,
55860d96 3880 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3881 }
33b12c38 3882 }
52b4b950 3883 spin_unlock_irq(&n->list_lock);
60398923 3884
916ac052 3885 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3886 discard_slab(s, page);
81819f0f
CL
3887}
3888
f9e13c0a
SB
3889bool __kmem_cache_empty(struct kmem_cache *s)
3890{
3891 int node;
3892 struct kmem_cache_node *n;
3893
3894 for_each_kmem_cache_node(s, node, n)
3895 if (n->nr_partial || slabs_node(s, node))
3896 return false;
3897 return true;
3898}
3899
81819f0f 3900/*
672bba3a 3901 * Release all resources used by a slab cache.
81819f0f 3902 */
52b4b950 3903int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3904{
3905 int node;
fa45dc25 3906 struct kmem_cache_node *n;
81819f0f
CL
3907
3908 flush_all(s);
81819f0f 3909 /* Attempt to free all objects */
fa45dc25 3910 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3911 free_partial(s, n);
3912 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3913 return 1;
3914 }
bf5eb3de 3915 sysfs_slab_remove(s);
81819f0f
CL
3916 return 0;
3917}
3918
81819f0f
CL
3919/********************************************************************
3920 * Kmalloc subsystem
3921 *******************************************************************/
3922
81819f0f
CL
3923static int __init setup_slub_min_order(char *str)
3924{
19af27af 3925 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3926
3927 return 1;
3928}
3929
3930__setup("slub_min_order=", setup_slub_min_order);
3931
3932static int __init setup_slub_max_order(char *str)
3933{
19af27af
AD
3934 get_option(&str, (int *)&slub_max_order);
3935 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3936
3937 return 1;
3938}
3939
3940__setup("slub_max_order=", setup_slub_max_order);
3941
3942static int __init setup_slub_min_objects(char *str)
3943{
19af27af 3944 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3945
3946 return 1;
3947}
3948
3949__setup("slub_min_objects=", setup_slub_min_objects);
3950
81819f0f
CL
3951void *__kmalloc(size_t size, gfp_t flags)
3952{
aadb4bc4 3953 struct kmem_cache *s;
5b882be4 3954 void *ret;
81819f0f 3955
95a05b42 3956 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3957 return kmalloc_large(size, flags);
aadb4bc4 3958
2c59dd65 3959 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3960
3961 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3962 return s;
3963
2b847c3c 3964 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3965
ca2b84cb 3966 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3967
0116523c 3968 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3969
5b882be4 3970 return ret;
81819f0f
CL
3971}
3972EXPORT_SYMBOL(__kmalloc);
3973
5d1f57e4 3974#ifdef CONFIG_NUMA
f619cfe1
CL
3975static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3976{
b1eeab67 3977 struct page *page;
e4f7c0b4 3978 void *ptr = NULL;
6a486c0a 3979 unsigned int order = get_order(size);
f619cfe1 3980
75f296d9 3981 flags |= __GFP_COMP;
6a486c0a
VB
3982 page = alloc_pages_node(node, flags, order);
3983 if (page) {
e4f7c0b4 3984 ptr = page_address(page);
6a486c0a
VB
3985 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3986 1 << order);
3987 }
e4f7c0b4 3988
0116523c 3989 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3990}
3991
81819f0f
CL
3992void *__kmalloc_node(size_t size, gfp_t flags, int node)
3993{
aadb4bc4 3994 struct kmem_cache *s;
5b882be4 3995 void *ret;
81819f0f 3996
95a05b42 3997 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3998 ret = kmalloc_large_node(size, flags, node);
3999
ca2b84cb
EGM
4000 trace_kmalloc_node(_RET_IP_, ret,
4001 size, PAGE_SIZE << get_order(size),
4002 flags, node);
5b882be4
EGM
4003
4004 return ret;
4005 }
aadb4bc4 4006
2c59dd65 4007 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4008
4009 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4010 return s;
4011
2b847c3c 4012 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4013
ca2b84cb 4014 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4015
0116523c 4016 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4017
5b882be4 4018 return ret;
81819f0f
CL
4019}
4020EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4021#endif /* CONFIG_NUMA */
81819f0f 4022
ed18adc1
KC
4023#ifdef CONFIG_HARDENED_USERCOPY
4024/*
afcc90f8
KC
4025 * Rejects incorrectly sized objects and objects that are to be copied
4026 * to/from userspace but do not fall entirely within the containing slab
4027 * cache's usercopy region.
ed18adc1
KC
4028 *
4029 * Returns NULL if check passes, otherwise const char * to name of cache
4030 * to indicate an error.
4031 */
f4e6e289
KC
4032void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4033 bool to_user)
ed18adc1
KC
4034{
4035 struct kmem_cache *s;
44065b2e 4036 unsigned int offset;
ed18adc1
KC
4037 size_t object_size;
4038
96fedce2
AK
4039 ptr = kasan_reset_tag(ptr);
4040
ed18adc1
KC
4041 /* Find object and usable object size. */
4042 s = page->slab_cache;
ed18adc1
KC
4043
4044 /* Reject impossible pointers. */
4045 if (ptr < page_address(page))
f4e6e289
KC
4046 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4047 to_user, 0, n);
ed18adc1
KC
4048
4049 /* Find offset within object. */
4050 offset = (ptr - page_address(page)) % s->size;
4051
4052 /* Adjust for redzone and reject if within the redzone. */
4053 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
4054 if (offset < s->red_left_pad)
f4e6e289
KC
4055 usercopy_abort("SLUB object in left red zone",
4056 s->name, to_user, offset, n);
ed18adc1
KC
4057 offset -= s->red_left_pad;
4058 }
4059
afcc90f8
KC
4060 /* Allow address range falling entirely within usercopy region. */
4061 if (offset >= s->useroffset &&
4062 offset - s->useroffset <= s->usersize &&
4063 n <= s->useroffset - offset + s->usersize)
f4e6e289 4064 return;
ed18adc1 4065
afcc90f8
KC
4066 /*
4067 * If the copy is still within the allocated object, produce
4068 * a warning instead of rejecting the copy. This is intended
4069 * to be a temporary method to find any missing usercopy
4070 * whitelists.
4071 */
4072 object_size = slab_ksize(s);
2d891fbc
KC
4073 if (usercopy_fallback &&
4074 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4075 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4076 return;
4077 }
ed18adc1 4078
f4e6e289 4079 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4080}
4081#endif /* CONFIG_HARDENED_USERCOPY */
4082
10d1f8cb 4083size_t __ksize(const void *object)
81819f0f 4084{
272c1d21 4085 struct page *page;
81819f0f 4086
ef8b4520 4087 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4088 return 0;
4089
294a80a8 4090 page = virt_to_head_page(object);
294a80a8 4091
76994412
PE
4092 if (unlikely(!PageSlab(page))) {
4093 WARN_ON(!PageCompound(page));
a50b854e 4094 return page_size(page);
76994412 4095 }
81819f0f 4096
1b4f59e3 4097 return slab_ksize(page->slab_cache);
81819f0f 4098}
10d1f8cb 4099EXPORT_SYMBOL(__ksize);
81819f0f
CL
4100
4101void kfree(const void *x)
4102{
81819f0f 4103 struct page *page;
5bb983b0 4104 void *object = (void *)x;
81819f0f 4105
2121db74
PE
4106 trace_kfree(_RET_IP_, x);
4107
2408c550 4108 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4109 return;
4110
b49af68f 4111 page = virt_to_head_page(x);
aadb4bc4 4112 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4113 unsigned int order = compound_order(page);
4114
0937502a 4115 BUG_ON(!PageCompound(page));
47adccce 4116 kfree_hook(object);
6a486c0a
VB
4117 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4118 -(1 << order));
4119 __free_pages(page, order);
aadb4bc4
CL
4120 return;
4121 }
81084651 4122 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4123}
4124EXPORT_SYMBOL(kfree);
4125
832f37f5
VD
4126#define SHRINK_PROMOTE_MAX 32
4127
2086d26a 4128/*
832f37f5
VD
4129 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4130 * up most to the head of the partial lists. New allocations will then
4131 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4132 *
4133 * The slabs with the least items are placed last. This results in them
4134 * being allocated from last increasing the chance that the last objects
4135 * are freed in them.
2086d26a 4136 */
c9fc5864 4137int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4138{
4139 int node;
4140 int i;
4141 struct kmem_cache_node *n;
4142 struct page *page;
4143 struct page *t;
832f37f5
VD
4144 struct list_head discard;
4145 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4146 unsigned long flags;
ce3712d7 4147 int ret = 0;
2086d26a 4148
2086d26a 4149 flush_all(s);
fa45dc25 4150 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4151 INIT_LIST_HEAD(&discard);
4152 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4153 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4154
4155 spin_lock_irqsave(&n->list_lock, flags);
4156
4157 /*
832f37f5 4158 * Build lists of slabs to discard or promote.
2086d26a 4159 *
672bba3a
CL
4160 * Note that concurrent frees may occur while we hold the
4161 * list_lock. page->inuse here is the upper limit.
2086d26a 4162 */
916ac052 4163 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4164 int free = page->objects - page->inuse;
4165
4166 /* Do not reread page->inuse */
4167 barrier();
4168
4169 /* We do not keep full slabs on the list */
4170 BUG_ON(free <= 0);
4171
4172 if (free == page->objects) {
916ac052 4173 list_move(&page->slab_list, &discard);
69cb8e6b 4174 n->nr_partial--;
832f37f5 4175 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4176 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4177 }
4178
2086d26a 4179 /*
832f37f5
VD
4180 * Promote the slabs filled up most to the head of the
4181 * partial list.
2086d26a 4182 */
832f37f5
VD
4183 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4184 list_splice(promote + i, &n->partial);
2086d26a 4185
2086d26a 4186 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4187
4188 /* Release empty slabs */
916ac052 4189 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4190 discard_slab(s, page);
ce3712d7
VD
4191
4192 if (slabs_node(s, node))
4193 ret = 1;
2086d26a
CL
4194 }
4195
ce3712d7 4196 return ret;
2086d26a 4197}
2086d26a 4198
c9fc5864 4199#ifdef CONFIG_MEMCG
43486694 4200void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4201{
50862ce7
TH
4202 /*
4203 * Called with all the locks held after a sched RCU grace period.
4204 * Even if @s becomes empty after shrinking, we can't know that @s
4205 * doesn't have allocations already in-flight and thus can't
4206 * destroy @s until the associated memcg is released.
4207 *
4208 * However, let's remove the sysfs files for empty caches here.
4209 * Each cache has a lot of interface files which aren't
4210 * particularly useful for empty draining caches; otherwise, we can
4211 * easily end up with millions of unnecessary sysfs files on
4212 * systems which have a lot of memory and transient cgroups.
4213 */
4214 if (!__kmem_cache_shrink(s))
4215 sysfs_slab_remove(s);
01fb58bc
TH
4216}
4217
c9fc5864
TH
4218void __kmemcg_cache_deactivate(struct kmem_cache *s)
4219{
4220 /*
4221 * Disable empty slabs caching. Used to avoid pinning offline
4222 * memory cgroups by kmem pages that can be freed.
4223 */
e6d0e1dc 4224 slub_set_cpu_partial(s, 0);
c9fc5864 4225 s->min_partial = 0;
c9fc5864 4226}
6dfd1b65 4227#endif /* CONFIG_MEMCG */
c9fc5864 4228
b9049e23
YG
4229static int slab_mem_going_offline_callback(void *arg)
4230{
4231 struct kmem_cache *s;
4232
18004c5d 4233 mutex_lock(&slab_mutex);
b9049e23 4234 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4235 __kmem_cache_shrink(s);
18004c5d 4236 mutex_unlock(&slab_mutex);
b9049e23
YG
4237
4238 return 0;
4239}
4240
4241static void slab_mem_offline_callback(void *arg)
4242{
4243 struct kmem_cache_node *n;
4244 struct kmem_cache *s;
4245 struct memory_notify *marg = arg;
4246 int offline_node;
4247
b9d5ab25 4248 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4249
4250 /*
4251 * If the node still has available memory. we need kmem_cache_node
4252 * for it yet.
4253 */
4254 if (offline_node < 0)
4255 return;
4256
18004c5d 4257 mutex_lock(&slab_mutex);
b9049e23
YG
4258 list_for_each_entry(s, &slab_caches, list) {
4259 n = get_node(s, offline_node);
4260 if (n) {
4261 /*
4262 * if n->nr_slabs > 0, slabs still exist on the node
4263 * that is going down. We were unable to free them,
c9404c9c 4264 * and offline_pages() function shouldn't call this
b9049e23
YG
4265 * callback. So, we must fail.
4266 */
0f389ec6 4267 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4268
4269 s->node[offline_node] = NULL;
8de66a0c 4270 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4271 }
4272 }
18004c5d 4273 mutex_unlock(&slab_mutex);
b9049e23
YG
4274}
4275
4276static int slab_mem_going_online_callback(void *arg)
4277{
4278 struct kmem_cache_node *n;
4279 struct kmem_cache *s;
4280 struct memory_notify *marg = arg;
b9d5ab25 4281 int nid = marg->status_change_nid_normal;
b9049e23
YG
4282 int ret = 0;
4283
4284 /*
4285 * If the node's memory is already available, then kmem_cache_node is
4286 * already created. Nothing to do.
4287 */
4288 if (nid < 0)
4289 return 0;
4290
4291 /*
0121c619 4292 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4293 * allocate a kmem_cache_node structure in order to bring the node
4294 * online.
4295 */
18004c5d 4296 mutex_lock(&slab_mutex);
b9049e23
YG
4297 list_for_each_entry(s, &slab_caches, list) {
4298 /*
4299 * XXX: kmem_cache_alloc_node will fallback to other nodes
4300 * since memory is not yet available from the node that
4301 * is brought up.
4302 */
8de66a0c 4303 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4304 if (!n) {
4305 ret = -ENOMEM;
4306 goto out;
4307 }
4053497d 4308 init_kmem_cache_node(n);
b9049e23
YG
4309 s->node[nid] = n;
4310 }
4311out:
18004c5d 4312 mutex_unlock(&slab_mutex);
b9049e23
YG
4313 return ret;
4314}
4315
4316static int slab_memory_callback(struct notifier_block *self,
4317 unsigned long action, void *arg)
4318{
4319 int ret = 0;
4320
4321 switch (action) {
4322 case MEM_GOING_ONLINE:
4323 ret = slab_mem_going_online_callback(arg);
4324 break;
4325 case MEM_GOING_OFFLINE:
4326 ret = slab_mem_going_offline_callback(arg);
4327 break;
4328 case MEM_OFFLINE:
4329 case MEM_CANCEL_ONLINE:
4330 slab_mem_offline_callback(arg);
4331 break;
4332 case MEM_ONLINE:
4333 case MEM_CANCEL_OFFLINE:
4334 break;
4335 }
dc19f9db
KH
4336 if (ret)
4337 ret = notifier_from_errno(ret);
4338 else
4339 ret = NOTIFY_OK;
b9049e23
YG
4340 return ret;
4341}
4342
3ac38faa
AM
4343static struct notifier_block slab_memory_callback_nb = {
4344 .notifier_call = slab_memory_callback,
4345 .priority = SLAB_CALLBACK_PRI,
4346};
b9049e23 4347
81819f0f
CL
4348/********************************************************************
4349 * Basic setup of slabs
4350 *******************************************************************/
4351
51df1142
CL
4352/*
4353 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4354 * the page allocator. Allocate them properly then fix up the pointers
4355 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4356 */
4357
dffb4d60 4358static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4359{
4360 int node;
dffb4d60 4361 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4362 struct kmem_cache_node *n;
51df1142 4363
dffb4d60 4364 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4365
7d557b3c
GC
4366 /*
4367 * This runs very early, and only the boot processor is supposed to be
4368 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4369 * IPIs around.
4370 */
4371 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4372 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4373 struct page *p;
4374
916ac052 4375 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4376 p->slab_cache = s;
51df1142 4377
607bf324 4378#ifdef CONFIG_SLUB_DEBUG
916ac052 4379 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4380 p->slab_cache = s;
51df1142 4381#endif
51df1142 4382 }
f7ce3190 4383 slab_init_memcg_params(s);
dffb4d60 4384 list_add(&s->list, &slab_caches);
c03914b7 4385 memcg_link_cache(s, NULL);
dffb4d60 4386 return s;
51df1142
CL
4387}
4388
81819f0f
CL
4389void __init kmem_cache_init(void)
4390{
dffb4d60
CL
4391 static __initdata struct kmem_cache boot_kmem_cache,
4392 boot_kmem_cache_node;
51df1142 4393
fc8d8620
SG
4394 if (debug_guardpage_minorder())
4395 slub_max_order = 0;
4396
dffb4d60
CL
4397 kmem_cache_node = &boot_kmem_cache_node;
4398 kmem_cache = &boot_kmem_cache;
51df1142 4399
dffb4d60 4400 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4401 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4402
3ac38faa 4403 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4404
4405 /* Able to allocate the per node structures */
4406 slab_state = PARTIAL;
4407
dffb4d60
CL
4408 create_boot_cache(kmem_cache, "kmem_cache",
4409 offsetof(struct kmem_cache, node) +
4410 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4411 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4412
dffb4d60 4413 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4414 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4415
4416 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4417 setup_kmalloc_cache_index_table();
f97d5f63 4418 create_kmalloc_caches(0);
81819f0f 4419
210e7a43
TG
4420 /* Setup random freelists for each cache */
4421 init_freelist_randomization();
4422
a96a87bf
SAS
4423 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4424 slub_cpu_dead);
81819f0f 4425
b9726c26 4426 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4427 cache_line_size(),
81819f0f
CL
4428 slub_min_order, slub_max_order, slub_min_objects,
4429 nr_cpu_ids, nr_node_ids);
4430}
4431
7e85ee0c
PE
4432void __init kmem_cache_init_late(void)
4433{
7e85ee0c
PE
4434}
4435
2633d7a0 4436struct kmem_cache *
f4957d5b 4437__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4438 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4439{
426589f5 4440 struct kmem_cache *s, *c;
81819f0f 4441
a44cb944 4442 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4443 if (s) {
4444 s->refcount++;
84d0ddd6 4445
81819f0f
CL
4446 /*
4447 * Adjust the object sizes so that we clear
4448 * the complete object on kzalloc.
4449 */
1b473f29 4450 s->object_size = max(s->object_size, size);
52ee6d74 4451 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4452
426589f5 4453 for_each_memcg_cache(c, s) {
84d0ddd6 4454 c->object_size = s->object_size;
52ee6d74 4455 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4456 }
4457
7b8f3b66 4458 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4459 s->refcount--;
cbb79694 4460 s = NULL;
7b8f3b66 4461 }
a0e1d1be 4462 }
6446faa2 4463
cbb79694
CL
4464 return s;
4465}
84c1cf62 4466
d50112ed 4467int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4468{
aac3a166
PE
4469 int err;
4470
4471 err = kmem_cache_open(s, flags);
4472 if (err)
4473 return err;
20cea968 4474
45530c44
CL
4475 /* Mutex is not taken during early boot */
4476 if (slab_state <= UP)
4477 return 0;
4478
107dab5c 4479 memcg_propagate_slab_attrs(s);
aac3a166 4480 err = sysfs_slab_add(s);
aac3a166 4481 if (err)
52b4b950 4482 __kmem_cache_release(s);
20cea968 4483
aac3a166 4484 return err;
81819f0f 4485}
81819f0f 4486
ce71e27c 4487void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4488{
aadb4bc4 4489 struct kmem_cache *s;
94b528d0 4490 void *ret;
aadb4bc4 4491
95a05b42 4492 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4493 return kmalloc_large(size, gfpflags);
4494
2c59dd65 4495 s = kmalloc_slab(size, gfpflags);
81819f0f 4496
2408c550 4497 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4498 return s;
81819f0f 4499
2b847c3c 4500 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4501
25985edc 4502 /* Honor the call site pointer we received. */
ca2b84cb 4503 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4504
4505 return ret;
81819f0f 4506}
fd7cb575 4507EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4508
5d1f57e4 4509#ifdef CONFIG_NUMA
81819f0f 4510void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4511 int node, unsigned long caller)
81819f0f 4512{
aadb4bc4 4513 struct kmem_cache *s;
94b528d0 4514 void *ret;
aadb4bc4 4515
95a05b42 4516 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4517 ret = kmalloc_large_node(size, gfpflags, node);
4518
4519 trace_kmalloc_node(caller, ret,
4520 size, PAGE_SIZE << get_order(size),
4521 gfpflags, node);
4522
4523 return ret;
4524 }
eada35ef 4525
2c59dd65 4526 s = kmalloc_slab(size, gfpflags);
81819f0f 4527
2408c550 4528 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4529 return s;
81819f0f 4530
2b847c3c 4531 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4532
25985edc 4533 /* Honor the call site pointer we received. */
ca2b84cb 4534 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4535
4536 return ret;
81819f0f 4537}
fd7cb575 4538EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4539#endif
81819f0f 4540
ab4d5ed5 4541#ifdef CONFIG_SYSFS
205ab99d
CL
4542static int count_inuse(struct page *page)
4543{
4544 return page->inuse;
4545}
4546
4547static int count_total(struct page *page)
4548{
4549 return page->objects;
4550}
ab4d5ed5 4551#endif
205ab99d 4552
ab4d5ed5 4553#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4554static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4555{
4556 void *p;
a973e9dd 4557 void *addr = page_address(page);
90e9f6a6
YZ
4558 unsigned long *map;
4559
4560 slab_lock(page);
53e15af0 4561
dd98afd4 4562 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4563 goto unlock;
53e15af0
CL
4564
4565 /* Now we know that a valid freelist exists */
90e9f6a6 4566 map = get_map(s, page);
5f80b13a 4567 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4568 u8 val = test_bit(slab_index(p, s, addr), map) ?
4569 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4570
dd98afd4
YZ
4571 if (!check_object(s, page, p, val))
4572 break;
4573 }
90e9f6a6
YZ
4574 put_map(map);
4575unlock:
881db7fb 4576 slab_unlock(page);
53e15af0
CL
4577}
4578
434e245d 4579static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4580 struct kmem_cache_node *n)
53e15af0
CL
4581{
4582 unsigned long count = 0;
4583 struct page *page;
4584 unsigned long flags;
4585
4586 spin_lock_irqsave(&n->list_lock, flags);
4587
916ac052 4588 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4589 validate_slab(s, page);
53e15af0
CL
4590 count++;
4591 }
4592 if (count != n->nr_partial)
f9f58285
FF
4593 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4594 s->name, count, n->nr_partial);
53e15af0
CL
4595
4596 if (!(s->flags & SLAB_STORE_USER))
4597 goto out;
4598
916ac052 4599 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4600 validate_slab(s, page);
53e15af0
CL
4601 count++;
4602 }
4603 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4604 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4605 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4606
4607out:
4608 spin_unlock_irqrestore(&n->list_lock, flags);
4609 return count;
4610}
4611
434e245d 4612static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4613{
4614 int node;
4615 unsigned long count = 0;
fa45dc25 4616 struct kmem_cache_node *n;
53e15af0
CL
4617
4618 flush_all(s);
fa45dc25 4619 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4620 count += validate_slab_node(s, n);
4621
53e15af0
CL
4622 return count;
4623}
88a420e4 4624/*
672bba3a 4625 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4626 * and freed.
4627 */
4628
4629struct location {
4630 unsigned long count;
ce71e27c 4631 unsigned long addr;
45edfa58
CL
4632 long long sum_time;
4633 long min_time;
4634 long max_time;
4635 long min_pid;
4636 long max_pid;
174596a0 4637 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4638 nodemask_t nodes;
88a420e4
CL
4639};
4640
4641struct loc_track {
4642 unsigned long max;
4643 unsigned long count;
4644 struct location *loc;
4645};
4646
4647static void free_loc_track(struct loc_track *t)
4648{
4649 if (t->max)
4650 free_pages((unsigned long)t->loc,
4651 get_order(sizeof(struct location) * t->max));
4652}
4653
68dff6a9 4654static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4655{
4656 struct location *l;
4657 int order;
4658
88a420e4
CL
4659 order = get_order(sizeof(struct location) * max);
4660
68dff6a9 4661 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4662 if (!l)
4663 return 0;
4664
4665 if (t->count) {
4666 memcpy(l, t->loc, sizeof(struct location) * t->count);
4667 free_loc_track(t);
4668 }
4669 t->max = max;
4670 t->loc = l;
4671 return 1;
4672}
4673
4674static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4675 const struct track *track)
88a420e4
CL
4676{
4677 long start, end, pos;
4678 struct location *l;
ce71e27c 4679 unsigned long caddr;
45edfa58 4680 unsigned long age = jiffies - track->when;
88a420e4
CL
4681
4682 start = -1;
4683 end = t->count;
4684
4685 for ( ; ; ) {
4686 pos = start + (end - start + 1) / 2;
4687
4688 /*
4689 * There is nothing at "end". If we end up there
4690 * we need to add something to before end.
4691 */
4692 if (pos == end)
4693 break;
4694
4695 caddr = t->loc[pos].addr;
45edfa58
CL
4696 if (track->addr == caddr) {
4697
4698 l = &t->loc[pos];
4699 l->count++;
4700 if (track->when) {
4701 l->sum_time += age;
4702 if (age < l->min_time)
4703 l->min_time = age;
4704 if (age > l->max_time)
4705 l->max_time = age;
4706
4707 if (track->pid < l->min_pid)
4708 l->min_pid = track->pid;
4709 if (track->pid > l->max_pid)
4710 l->max_pid = track->pid;
4711
174596a0
RR
4712 cpumask_set_cpu(track->cpu,
4713 to_cpumask(l->cpus));
45edfa58
CL
4714 }
4715 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4716 return 1;
4717 }
4718
45edfa58 4719 if (track->addr < caddr)
88a420e4
CL
4720 end = pos;
4721 else
4722 start = pos;
4723 }
4724
4725 /*
672bba3a 4726 * Not found. Insert new tracking element.
88a420e4 4727 */
68dff6a9 4728 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4729 return 0;
4730
4731 l = t->loc + pos;
4732 if (pos < t->count)
4733 memmove(l + 1, l,
4734 (t->count - pos) * sizeof(struct location));
4735 t->count++;
4736 l->count = 1;
45edfa58
CL
4737 l->addr = track->addr;
4738 l->sum_time = age;
4739 l->min_time = age;
4740 l->max_time = age;
4741 l->min_pid = track->pid;
4742 l->max_pid = track->pid;
174596a0
RR
4743 cpumask_clear(to_cpumask(l->cpus));
4744 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4745 nodes_clear(l->nodes);
4746 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4747 return 1;
4748}
4749
4750static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4751 struct page *page, enum track_item alloc)
88a420e4 4752{
a973e9dd 4753 void *addr = page_address(page);
88a420e4 4754 void *p;
90e9f6a6 4755 unsigned long *map;
88a420e4 4756
90e9f6a6 4757 map = get_map(s, page);
224a88be 4758 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4759 if (!test_bit(slab_index(p, s, addr), map))
4760 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4761 put_map(map);
88a420e4
CL
4762}
4763
4764static int list_locations(struct kmem_cache *s, char *buf,
4765 enum track_item alloc)
4766{
e374d483 4767 int len = 0;
88a420e4 4768 unsigned long i;
68dff6a9 4769 struct loc_track t = { 0, 0, NULL };
88a420e4 4770 int node;
fa45dc25 4771 struct kmem_cache_node *n;
88a420e4 4772
90e9f6a6
YZ
4773 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4774 GFP_KERNEL)) {
68dff6a9 4775 return sprintf(buf, "Out of memory\n");
bbd7d57b 4776 }
88a420e4
CL
4777 /* Push back cpu slabs */
4778 flush_all(s);
4779
fa45dc25 4780 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4781 unsigned long flags;
4782 struct page *page;
4783
9e86943b 4784 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4785 continue;
4786
4787 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4788 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4789 process_slab(&t, s, page, alloc);
916ac052 4790 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4791 process_slab(&t, s, page, alloc);
88a420e4
CL
4792 spin_unlock_irqrestore(&n->list_lock, flags);
4793 }
4794
4795 for (i = 0; i < t.count; i++) {
45edfa58 4796 struct location *l = &t.loc[i];
88a420e4 4797
9c246247 4798 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4799 break;
e374d483 4800 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4801
4802 if (l->addr)
62c70bce 4803 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4804 else
e374d483 4805 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4806
4807 if (l->sum_time != l->min_time) {
e374d483 4808 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4809 l->min_time,
4810 (long)div_u64(l->sum_time, l->count),
4811 l->max_time);
45edfa58 4812 } else
e374d483 4813 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4814 l->min_time);
4815
4816 if (l->min_pid != l->max_pid)
e374d483 4817 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4818 l->min_pid, l->max_pid);
4819 else
e374d483 4820 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4821 l->min_pid);
4822
174596a0
RR
4823 if (num_online_cpus() > 1 &&
4824 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4825 len < PAGE_SIZE - 60)
4826 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4827 " cpus=%*pbl",
4828 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4829
62bc62a8 4830 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4831 len < PAGE_SIZE - 60)
4832 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4833 " nodes=%*pbl",
4834 nodemask_pr_args(&l->nodes));
45edfa58 4835
e374d483 4836 len += sprintf(buf + len, "\n");
88a420e4
CL
4837 }
4838
4839 free_loc_track(&t);
4840 if (!t.count)
e374d483
HH
4841 len += sprintf(buf, "No data\n");
4842 return len;
88a420e4 4843}
6dfd1b65 4844#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4845
a5a84755 4846#ifdef SLUB_RESILIENCY_TEST
c07b8183 4847static void __init resiliency_test(void)
a5a84755
CL
4848{
4849 u8 *p;
cc252eae 4850 int type = KMALLOC_NORMAL;
a5a84755 4851
95a05b42 4852 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4853
f9f58285
FF
4854 pr_err("SLUB resiliency testing\n");
4855 pr_err("-----------------------\n");
4856 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4857
4858 p = kzalloc(16, GFP_KERNEL);
4859 p[16] = 0x12;
f9f58285
FF
4860 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4861 p + 16);
a5a84755 4862
cc252eae 4863 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4864
4865 /* Hmmm... The next two are dangerous */
4866 p = kzalloc(32, GFP_KERNEL);
4867 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4868 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4869 p);
4870 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4871
cc252eae 4872 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4873 p = kzalloc(64, GFP_KERNEL);
4874 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4875 *p = 0x56;
f9f58285
FF
4876 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4877 p);
4878 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4879 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4880
f9f58285 4881 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4882 p = kzalloc(128, GFP_KERNEL);
4883 kfree(p);
4884 *p = 0x78;
f9f58285 4885 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4886 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4887
4888 p = kzalloc(256, GFP_KERNEL);
4889 kfree(p);
4890 p[50] = 0x9a;
f9f58285 4891 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4892 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4893
4894 p = kzalloc(512, GFP_KERNEL);
4895 kfree(p);
4896 p[512] = 0xab;
f9f58285 4897 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4898 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4899}
4900#else
4901#ifdef CONFIG_SYSFS
4902static void resiliency_test(void) {};
4903#endif
6dfd1b65 4904#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4905
ab4d5ed5 4906#ifdef CONFIG_SYSFS
81819f0f 4907enum slab_stat_type {
205ab99d
CL
4908 SL_ALL, /* All slabs */
4909 SL_PARTIAL, /* Only partially allocated slabs */
4910 SL_CPU, /* Only slabs used for cpu caches */
4911 SL_OBJECTS, /* Determine allocated objects not slabs */
4912 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4913};
4914
205ab99d 4915#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4916#define SO_PARTIAL (1 << SL_PARTIAL)
4917#define SO_CPU (1 << SL_CPU)
4918#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4919#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4920
1663f26d
TH
4921#ifdef CONFIG_MEMCG
4922static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4923
4924static int __init setup_slub_memcg_sysfs(char *str)
4925{
4926 int v;
4927
4928 if (get_option(&str, &v) > 0)
4929 memcg_sysfs_enabled = v;
4930
4931 return 1;
4932}
4933
4934__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4935#endif
4936
62e5c4b4
CG
4937static ssize_t show_slab_objects(struct kmem_cache *s,
4938 char *buf, unsigned long flags)
81819f0f
CL
4939{
4940 unsigned long total = 0;
81819f0f
CL
4941 int node;
4942 int x;
4943 unsigned long *nodes;
81819f0f 4944
6396bb22 4945 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4946 if (!nodes)
4947 return -ENOMEM;
81819f0f 4948
205ab99d
CL
4949 if (flags & SO_CPU) {
4950 int cpu;
81819f0f 4951
205ab99d 4952 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4953 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4954 cpu);
ec3ab083 4955 int node;
49e22585 4956 struct page *page;
dfb4f096 4957
4db0c3c2 4958 page = READ_ONCE(c->page);
ec3ab083
CL
4959 if (!page)
4960 continue;
205ab99d 4961
ec3ab083
CL
4962 node = page_to_nid(page);
4963 if (flags & SO_TOTAL)
4964 x = page->objects;
4965 else if (flags & SO_OBJECTS)
4966 x = page->inuse;
4967 else
4968 x = 1;
49e22585 4969
ec3ab083
CL
4970 total += x;
4971 nodes[node] += x;
4972
a93cf07b 4973 page = slub_percpu_partial_read_once(c);
49e22585 4974 if (page) {
8afb1474
LZ
4975 node = page_to_nid(page);
4976 if (flags & SO_TOTAL)
4977 WARN_ON_ONCE(1);
4978 else if (flags & SO_OBJECTS)
4979 WARN_ON_ONCE(1);
4980 else
4981 x = page->pages;
bc6697d8
ED
4982 total += x;
4983 nodes[node] += x;
49e22585 4984 }
81819f0f
CL
4985 }
4986 }
4987
e4f8e513
QC
4988 /*
4989 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4990 * already held which will conflict with an existing lock order:
4991 *
4992 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4993 *
4994 * We don't really need mem_hotplug_lock (to hold off
4995 * slab_mem_going_offline_callback) here because slab's memory hot
4996 * unplug code doesn't destroy the kmem_cache->node[] data.
4997 */
4998
ab4d5ed5 4999#ifdef CONFIG_SLUB_DEBUG
205ab99d 5000 if (flags & SO_ALL) {
fa45dc25
CL
5001 struct kmem_cache_node *n;
5002
5003 for_each_kmem_cache_node(s, node, n) {
205ab99d 5004
d0e0ac97
CG
5005 if (flags & SO_TOTAL)
5006 x = atomic_long_read(&n->total_objects);
5007 else if (flags & SO_OBJECTS)
5008 x = atomic_long_read(&n->total_objects) -
5009 count_partial(n, count_free);
81819f0f 5010 else
205ab99d 5011 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5012 total += x;
5013 nodes[node] += x;
5014 }
5015
ab4d5ed5
CL
5016 } else
5017#endif
5018 if (flags & SO_PARTIAL) {
fa45dc25 5019 struct kmem_cache_node *n;
81819f0f 5020
fa45dc25 5021 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5022 if (flags & SO_TOTAL)
5023 x = count_partial(n, count_total);
5024 else if (flags & SO_OBJECTS)
5025 x = count_partial(n, count_inuse);
81819f0f 5026 else
205ab99d 5027 x = n->nr_partial;
81819f0f
CL
5028 total += x;
5029 nodes[node] += x;
5030 }
5031 }
81819f0f
CL
5032 x = sprintf(buf, "%lu", total);
5033#ifdef CONFIG_NUMA
fa45dc25 5034 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
5035 if (nodes[node])
5036 x += sprintf(buf + x, " N%d=%lu",
5037 node, nodes[node]);
5038#endif
5039 kfree(nodes);
5040 return x + sprintf(buf + x, "\n");
5041}
5042
ab4d5ed5 5043#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
5044static int any_slab_objects(struct kmem_cache *s)
5045{
5046 int node;
fa45dc25 5047 struct kmem_cache_node *n;
81819f0f 5048
fa45dc25 5049 for_each_kmem_cache_node(s, node, n)
4ea33e2d 5050 if (atomic_long_read(&n->total_objects))
81819f0f 5051 return 1;
fa45dc25 5052
81819f0f
CL
5053 return 0;
5054}
ab4d5ed5 5055#endif
81819f0f
CL
5056
5057#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5058#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5059
5060struct slab_attribute {
5061 struct attribute attr;
5062 ssize_t (*show)(struct kmem_cache *s, char *buf);
5063 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5064};
5065
5066#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5067 static struct slab_attribute _name##_attr = \
5068 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5069
5070#define SLAB_ATTR(_name) \
5071 static struct slab_attribute _name##_attr = \
ab067e99 5072 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5073
81819f0f
CL
5074static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5075{
44065b2e 5076 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5077}
5078SLAB_ATTR_RO(slab_size);
5079
5080static ssize_t align_show(struct kmem_cache *s, char *buf)
5081{
3a3791ec 5082 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5083}
5084SLAB_ATTR_RO(align);
5085
5086static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5087{
1b473f29 5088 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5089}
5090SLAB_ATTR_RO(object_size);
5091
5092static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5093{
19af27af 5094 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5095}
5096SLAB_ATTR_RO(objs_per_slab);
5097
06b285dc
CL
5098static ssize_t order_store(struct kmem_cache *s,
5099 const char *buf, size_t length)
5100{
19af27af 5101 unsigned int order;
0121c619
CL
5102 int err;
5103
19af27af 5104 err = kstrtouint(buf, 10, &order);
0121c619
CL
5105 if (err)
5106 return err;
06b285dc
CL
5107
5108 if (order > slub_max_order || order < slub_min_order)
5109 return -EINVAL;
5110
5111 calculate_sizes(s, order);
5112 return length;
5113}
5114
81819f0f
CL
5115static ssize_t order_show(struct kmem_cache *s, char *buf)
5116{
19af27af 5117 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5118}
06b285dc 5119SLAB_ATTR(order);
81819f0f 5120
73d342b1
DR
5121static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5122{
5123 return sprintf(buf, "%lu\n", s->min_partial);
5124}
5125
5126static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5127 size_t length)
5128{
5129 unsigned long min;
5130 int err;
5131
3dbb95f7 5132 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5133 if (err)
5134 return err;
5135
c0bdb232 5136 set_min_partial(s, min);
73d342b1
DR
5137 return length;
5138}
5139SLAB_ATTR(min_partial);
5140
49e22585
CL
5141static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5142{
e6d0e1dc 5143 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5144}
5145
5146static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5147 size_t length)
5148{
e5d9998f 5149 unsigned int objects;
49e22585
CL
5150 int err;
5151
e5d9998f 5152 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5153 if (err)
5154 return err;
345c905d 5155 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5156 return -EINVAL;
49e22585 5157
e6d0e1dc 5158 slub_set_cpu_partial(s, objects);
49e22585
CL
5159 flush_all(s);
5160 return length;
5161}
5162SLAB_ATTR(cpu_partial);
5163
81819f0f
CL
5164static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5165{
62c70bce
JP
5166 if (!s->ctor)
5167 return 0;
5168 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5169}
5170SLAB_ATTR_RO(ctor);
5171
81819f0f
CL
5172static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5173{
4307c14f 5174 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5175}
5176SLAB_ATTR_RO(aliases);
5177
81819f0f
CL
5178static ssize_t partial_show(struct kmem_cache *s, char *buf)
5179{
d9acf4b7 5180 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5181}
5182SLAB_ATTR_RO(partial);
5183
5184static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5185{
d9acf4b7 5186 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5187}
5188SLAB_ATTR_RO(cpu_slabs);
5189
5190static ssize_t objects_show(struct kmem_cache *s, char *buf)
5191{
205ab99d 5192 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5193}
5194SLAB_ATTR_RO(objects);
5195
205ab99d
CL
5196static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5197{
5198 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5199}
5200SLAB_ATTR_RO(objects_partial);
5201
49e22585
CL
5202static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5203{
5204 int objects = 0;
5205 int pages = 0;
5206 int cpu;
5207 int len;
5208
5209 for_each_online_cpu(cpu) {
a93cf07b
WY
5210 struct page *page;
5211
5212 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5213
5214 if (page) {
5215 pages += page->pages;
5216 objects += page->pobjects;
5217 }
5218 }
5219
5220 len = sprintf(buf, "%d(%d)", objects, pages);
5221
5222#ifdef CONFIG_SMP
5223 for_each_online_cpu(cpu) {
a93cf07b
WY
5224 struct page *page;
5225
5226 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5227
5228 if (page && len < PAGE_SIZE - 20)
5229 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5230 page->pobjects, page->pages);
5231 }
5232#endif
5233 return len + sprintf(buf + len, "\n");
5234}
5235SLAB_ATTR_RO(slabs_cpu_partial);
5236
a5a84755
CL
5237static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5238{
5239 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5240}
5241
5242static ssize_t reclaim_account_store(struct kmem_cache *s,
5243 const char *buf, size_t length)
5244{
5245 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5246 if (buf[0] == '1')
5247 s->flags |= SLAB_RECLAIM_ACCOUNT;
5248 return length;
5249}
5250SLAB_ATTR(reclaim_account);
5251
5252static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5253{
5254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5255}
5256SLAB_ATTR_RO(hwcache_align);
5257
5258#ifdef CONFIG_ZONE_DMA
5259static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5260{
5261 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5262}
5263SLAB_ATTR_RO(cache_dma);
5264#endif
5265
8eb8284b
DW
5266static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5267{
7bbdb81e 5268 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5269}
5270SLAB_ATTR_RO(usersize);
5271
a5a84755
CL
5272static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5273{
5f0d5a3a 5274 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5275}
5276SLAB_ATTR_RO(destroy_by_rcu);
5277
ab4d5ed5 5278#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5279static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5280{
5281 return show_slab_objects(s, buf, SO_ALL);
5282}
5283SLAB_ATTR_RO(slabs);
5284
205ab99d
CL
5285static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5286{
5287 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5288}
5289SLAB_ATTR_RO(total_objects);
5290
81819f0f
CL
5291static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5292{
becfda68 5293 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5294}
5295
5296static ssize_t sanity_checks_store(struct kmem_cache *s,
5297 const char *buf, size_t length)
5298{
becfda68 5299 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5300 if (buf[0] == '1') {
5301 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5302 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5303 }
81819f0f
CL
5304 return length;
5305}
5306SLAB_ATTR(sanity_checks);
5307
5308static ssize_t trace_show(struct kmem_cache *s, char *buf)
5309{
5310 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5311}
5312
5313static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5314 size_t length)
5315{
c9e16131
CL
5316 /*
5317 * Tracing a merged cache is going to give confusing results
5318 * as well as cause other issues like converting a mergeable
5319 * cache into an umergeable one.
5320 */
5321 if (s->refcount > 1)
5322 return -EINVAL;
5323
81819f0f 5324 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5325 if (buf[0] == '1') {
5326 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5327 s->flags |= SLAB_TRACE;
b789ef51 5328 }
81819f0f
CL
5329 return length;
5330}
5331SLAB_ATTR(trace);
5332
81819f0f
CL
5333static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5334{
5335 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5336}
5337
5338static ssize_t red_zone_store(struct kmem_cache *s,
5339 const char *buf, size_t length)
5340{
5341 if (any_slab_objects(s))
5342 return -EBUSY;
5343
5344 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5345 if (buf[0] == '1') {
81819f0f 5346 s->flags |= SLAB_RED_ZONE;
b789ef51 5347 }
06b285dc 5348 calculate_sizes(s, -1);
81819f0f
CL
5349 return length;
5350}
5351SLAB_ATTR(red_zone);
5352
5353static ssize_t poison_show(struct kmem_cache *s, char *buf)
5354{
5355 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5356}
5357
5358static ssize_t poison_store(struct kmem_cache *s,
5359 const char *buf, size_t length)
5360{
5361 if (any_slab_objects(s))
5362 return -EBUSY;
5363
5364 s->flags &= ~SLAB_POISON;
b789ef51 5365 if (buf[0] == '1') {
81819f0f 5366 s->flags |= SLAB_POISON;
b789ef51 5367 }
06b285dc 5368 calculate_sizes(s, -1);
81819f0f
CL
5369 return length;
5370}
5371SLAB_ATTR(poison);
5372
5373static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5374{
5375 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5376}
5377
5378static ssize_t store_user_store(struct kmem_cache *s,
5379 const char *buf, size_t length)
5380{
5381 if (any_slab_objects(s))
5382 return -EBUSY;
5383
5384 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5385 if (buf[0] == '1') {
5386 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5387 s->flags |= SLAB_STORE_USER;
b789ef51 5388 }
06b285dc 5389 calculate_sizes(s, -1);
81819f0f
CL
5390 return length;
5391}
5392SLAB_ATTR(store_user);
5393
53e15af0
CL
5394static ssize_t validate_show(struct kmem_cache *s, char *buf)
5395{
5396 return 0;
5397}
5398
5399static ssize_t validate_store(struct kmem_cache *s,
5400 const char *buf, size_t length)
5401{
434e245d
CL
5402 int ret = -EINVAL;
5403
5404 if (buf[0] == '1') {
5405 ret = validate_slab_cache(s);
5406 if (ret >= 0)
5407 ret = length;
5408 }
5409 return ret;
53e15af0
CL
5410}
5411SLAB_ATTR(validate);
a5a84755
CL
5412
5413static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5414{
5415 if (!(s->flags & SLAB_STORE_USER))
5416 return -ENOSYS;
5417 return list_locations(s, buf, TRACK_ALLOC);
5418}
5419SLAB_ATTR_RO(alloc_calls);
5420
5421static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5422{
5423 if (!(s->flags & SLAB_STORE_USER))
5424 return -ENOSYS;
5425 return list_locations(s, buf, TRACK_FREE);
5426}
5427SLAB_ATTR_RO(free_calls);
5428#endif /* CONFIG_SLUB_DEBUG */
5429
5430#ifdef CONFIG_FAILSLAB
5431static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5432{
5433 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5434}
5435
5436static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5437 size_t length)
5438{
c9e16131
CL
5439 if (s->refcount > 1)
5440 return -EINVAL;
5441
a5a84755
CL
5442 s->flags &= ~SLAB_FAILSLAB;
5443 if (buf[0] == '1')
5444 s->flags |= SLAB_FAILSLAB;
5445 return length;
5446}
5447SLAB_ATTR(failslab);
ab4d5ed5 5448#endif
53e15af0 5449
2086d26a
CL
5450static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5451{
5452 return 0;
5453}
5454
5455static ssize_t shrink_store(struct kmem_cache *s,
5456 const char *buf, size_t length)
5457{
832f37f5 5458 if (buf[0] == '1')
04f768a3 5459 kmem_cache_shrink_all(s);
832f37f5 5460 else
2086d26a
CL
5461 return -EINVAL;
5462 return length;
5463}
5464SLAB_ATTR(shrink);
5465
81819f0f 5466#ifdef CONFIG_NUMA
9824601e 5467static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5468{
eb7235eb 5469 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5470}
5471
9824601e 5472static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5473 const char *buf, size_t length)
5474{
eb7235eb 5475 unsigned int ratio;
0121c619
CL
5476 int err;
5477
eb7235eb 5478 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5479 if (err)
5480 return err;
eb7235eb
AD
5481 if (ratio > 100)
5482 return -ERANGE;
0121c619 5483
eb7235eb 5484 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5485
81819f0f
CL
5486 return length;
5487}
9824601e 5488SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5489#endif
5490
8ff12cfc 5491#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5492static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5493{
5494 unsigned long sum = 0;
5495 int cpu;
5496 int len;
6da2ec56 5497 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5498
5499 if (!data)
5500 return -ENOMEM;
5501
5502 for_each_online_cpu(cpu) {
9dfc6e68 5503 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5504
5505 data[cpu] = x;
5506 sum += x;
5507 }
5508
5509 len = sprintf(buf, "%lu", sum);
5510
50ef37b9 5511#ifdef CONFIG_SMP
8ff12cfc
CL
5512 for_each_online_cpu(cpu) {
5513 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5514 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5515 }
50ef37b9 5516#endif
8ff12cfc
CL
5517 kfree(data);
5518 return len + sprintf(buf + len, "\n");
5519}
5520
78eb00cc
DR
5521static void clear_stat(struct kmem_cache *s, enum stat_item si)
5522{
5523 int cpu;
5524
5525 for_each_online_cpu(cpu)
9dfc6e68 5526 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5527}
5528
8ff12cfc
CL
5529#define STAT_ATTR(si, text) \
5530static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5531{ \
5532 return show_stat(s, buf, si); \
5533} \
78eb00cc
DR
5534static ssize_t text##_store(struct kmem_cache *s, \
5535 const char *buf, size_t length) \
5536{ \
5537 if (buf[0] != '0') \
5538 return -EINVAL; \
5539 clear_stat(s, si); \
5540 return length; \
5541} \
5542SLAB_ATTR(text); \
8ff12cfc
CL
5543
5544STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5545STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5546STAT_ATTR(FREE_FASTPATH, free_fastpath);
5547STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5548STAT_ATTR(FREE_FROZEN, free_frozen);
5549STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5550STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5551STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5552STAT_ATTR(ALLOC_SLAB, alloc_slab);
5553STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5554STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5555STAT_ATTR(FREE_SLAB, free_slab);
5556STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5557STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5558STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5559STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5560STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5561STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5562STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5563STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5564STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5565STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5566STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5567STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5568STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5569STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5570#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5571
06428780 5572static struct attribute *slab_attrs[] = {
81819f0f
CL
5573 &slab_size_attr.attr,
5574 &object_size_attr.attr,
5575 &objs_per_slab_attr.attr,
5576 &order_attr.attr,
73d342b1 5577 &min_partial_attr.attr,
49e22585 5578 &cpu_partial_attr.attr,
81819f0f 5579 &objects_attr.attr,
205ab99d 5580 &objects_partial_attr.attr,
81819f0f
CL
5581 &partial_attr.attr,
5582 &cpu_slabs_attr.attr,
5583 &ctor_attr.attr,
81819f0f
CL
5584 &aliases_attr.attr,
5585 &align_attr.attr,
81819f0f
CL
5586 &hwcache_align_attr.attr,
5587 &reclaim_account_attr.attr,
5588 &destroy_by_rcu_attr.attr,
a5a84755 5589 &shrink_attr.attr,
49e22585 5590 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5591#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5592 &total_objects_attr.attr,
5593 &slabs_attr.attr,
5594 &sanity_checks_attr.attr,
5595 &trace_attr.attr,
81819f0f
CL
5596 &red_zone_attr.attr,
5597 &poison_attr.attr,
5598 &store_user_attr.attr,
53e15af0 5599 &validate_attr.attr,
88a420e4
CL
5600 &alloc_calls_attr.attr,
5601 &free_calls_attr.attr,
ab4d5ed5 5602#endif
81819f0f
CL
5603#ifdef CONFIG_ZONE_DMA
5604 &cache_dma_attr.attr,
5605#endif
5606#ifdef CONFIG_NUMA
9824601e 5607 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5608#endif
5609#ifdef CONFIG_SLUB_STATS
5610 &alloc_fastpath_attr.attr,
5611 &alloc_slowpath_attr.attr,
5612 &free_fastpath_attr.attr,
5613 &free_slowpath_attr.attr,
5614 &free_frozen_attr.attr,
5615 &free_add_partial_attr.attr,
5616 &free_remove_partial_attr.attr,
5617 &alloc_from_partial_attr.attr,
5618 &alloc_slab_attr.attr,
5619 &alloc_refill_attr.attr,
e36a2652 5620 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5621 &free_slab_attr.attr,
5622 &cpuslab_flush_attr.attr,
5623 &deactivate_full_attr.attr,
5624 &deactivate_empty_attr.attr,
5625 &deactivate_to_head_attr.attr,
5626 &deactivate_to_tail_attr.attr,
5627 &deactivate_remote_frees_attr.attr,
03e404af 5628 &deactivate_bypass_attr.attr,
65c3376a 5629 &order_fallback_attr.attr,
b789ef51
CL
5630 &cmpxchg_double_fail_attr.attr,
5631 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5632 &cpu_partial_alloc_attr.attr,
5633 &cpu_partial_free_attr.attr,
8028dcea
AS
5634 &cpu_partial_node_attr.attr,
5635 &cpu_partial_drain_attr.attr,
81819f0f 5636#endif
4c13dd3b
DM
5637#ifdef CONFIG_FAILSLAB
5638 &failslab_attr.attr,
5639#endif
8eb8284b 5640 &usersize_attr.attr,
4c13dd3b 5641
81819f0f
CL
5642 NULL
5643};
5644
1fdaaa23 5645static const struct attribute_group slab_attr_group = {
81819f0f
CL
5646 .attrs = slab_attrs,
5647};
5648
5649static ssize_t slab_attr_show(struct kobject *kobj,
5650 struct attribute *attr,
5651 char *buf)
5652{
5653 struct slab_attribute *attribute;
5654 struct kmem_cache *s;
5655 int err;
5656
5657 attribute = to_slab_attr(attr);
5658 s = to_slab(kobj);
5659
5660 if (!attribute->show)
5661 return -EIO;
5662
5663 err = attribute->show(s, buf);
5664
5665 return err;
5666}
5667
5668static ssize_t slab_attr_store(struct kobject *kobj,
5669 struct attribute *attr,
5670 const char *buf, size_t len)
5671{
5672 struct slab_attribute *attribute;
5673 struct kmem_cache *s;
5674 int err;
5675
5676 attribute = to_slab_attr(attr);
5677 s = to_slab(kobj);
5678
5679 if (!attribute->store)
5680 return -EIO;
5681
5682 err = attribute->store(s, buf, len);
127424c8 5683#ifdef CONFIG_MEMCG
107dab5c 5684 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5685 struct kmem_cache *c;
81819f0f 5686
107dab5c
GC
5687 mutex_lock(&slab_mutex);
5688 if (s->max_attr_size < len)
5689 s->max_attr_size = len;
5690
ebe945c2
GC
5691 /*
5692 * This is a best effort propagation, so this function's return
5693 * value will be determined by the parent cache only. This is
5694 * basically because not all attributes will have a well
5695 * defined semantics for rollbacks - most of the actions will
5696 * have permanent effects.
5697 *
5698 * Returning the error value of any of the children that fail
5699 * is not 100 % defined, in the sense that users seeing the
5700 * error code won't be able to know anything about the state of
5701 * the cache.
5702 *
5703 * Only returning the error code for the parent cache at least
5704 * has well defined semantics. The cache being written to
5705 * directly either failed or succeeded, in which case we loop
5706 * through the descendants with best-effort propagation.
5707 */
426589f5
VD
5708 for_each_memcg_cache(c, s)
5709 attribute->store(c, buf, len);
107dab5c
GC
5710 mutex_unlock(&slab_mutex);
5711 }
5712#endif
81819f0f
CL
5713 return err;
5714}
5715
107dab5c
GC
5716static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5717{
127424c8 5718#ifdef CONFIG_MEMCG
107dab5c
GC
5719 int i;
5720 char *buffer = NULL;
93030d83 5721 struct kmem_cache *root_cache;
107dab5c 5722
93030d83 5723 if (is_root_cache(s))
107dab5c
GC
5724 return;
5725
f7ce3190 5726 root_cache = s->memcg_params.root_cache;
93030d83 5727
107dab5c
GC
5728 /*
5729 * This mean this cache had no attribute written. Therefore, no point
5730 * in copying default values around
5731 */
93030d83 5732 if (!root_cache->max_attr_size)
107dab5c
GC
5733 return;
5734
5735 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5736 char mbuf[64];
5737 char *buf;
5738 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5739 ssize_t len;
107dab5c
GC
5740
5741 if (!attr || !attr->store || !attr->show)
5742 continue;
5743
5744 /*
5745 * It is really bad that we have to allocate here, so we will
5746 * do it only as a fallback. If we actually allocate, though,
5747 * we can just use the allocated buffer until the end.
5748 *
5749 * Most of the slub attributes will tend to be very small in
5750 * size, but sysfs allows buffers up to a page, so they can
5751 * theoretically happen.
5752 */
5753 if (buffer)
5754 buf = buffer;
a68ee057
QC
5755 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5756 !IS_ENABLED(CONFIG_SLUB_STATS))
107dab5c
GC
5757 buf = mbuf;
5758 else {
5759 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5760 if (WARN_ON(!buffer))
5761 continue;
5762 buf = buffer;
5763 }
5764
478fe303
TG
5765 len = attr->show(root_cache, buf);
5766 if (len > 0)
5767 attr->store(s, buf, len);
107dab5c
GC
5768 }
5769
5770 if (buffer)
5771 free_page((unsigned long)buffer);
6dfd1b65 5772#endif /* CONFIG_MEMCG */
107dab5c
GC
5773}
5774
41a21285
CL
5775static void kmem_cache_release(struct kobject *k)
5776{
5777 slab_kmem_cache_release(to_slab(k));
5778}
5779
52cf25d0 5780static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5781 .show = slab_attr_show,
5782 .store = slab_attr_store,
5783};
5784
5785static struct kobj_type slab_ktype = {
5786 .sysfs_ops = &slab_sysfs_ops,
41a21285 5787 .release = kmem_cache_release,
81819f0f
CL
5788};
5789
27c3a314 5790static struct kset *slab_kset;
81819f0f 5791
9a41707b
VD
5792static inline struct kset *cache_kset(struct kmem_cache *s)
5793{
127424c8 5794#ifdef CONFIG_MEMCG
9a41707b 5795 if (!is_root_cache(s))
f7ce3190 5796 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5797#endif
5798 return slab_kset;
5799}
5800
81819f0f
CL
5801#define ID_STR_LENGTH 64
5802
5803/* Create a unique string id for a slab cache:
6446faa2
CL
5804 *
5805 * Format :[flags-]size
81819f0f
CL
5806 */
5807static char *create_unique_id(struct kmem_cache *s)
5808{
5809 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5810 char *p = name;
5811
5812 BUG_ON(!name);
5813
5814 *p++ = ':';
5815 /*
5816 * First flags affecting slabcache operations. We will only
5817 * get here for aliasable slabs so we do not need to support
5818 * too many flags. The flags here must cover all flags that
5819 * are matched during merging to guarantee that the id is
5820 * unique.
5821 */
5822 if (s->flags & SLAB_CACHE_DMA)
5823 *p++ = 'd';
6d6ea1e9
NB
5824 if (s->flags & SLAB_CACHE_DMA32)
5825 *p++ = 'D';
81819f0f
CL
5826 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5827 *p++ = 'a';
becfda68 5828 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5829 *p++ = 'F';
230e9fc2
VD
5830 if (s->flags & SLAB_ACCOUNT)
5831 *p++ = 'A';
81819f0f
CL
5832 if (p != name + 1)
5833 *p++ = '-';
44065b2e 5834 p += sprintf(p, "%07u", s->size);
2633d7a0 5835
81819f0f
CL
5836 BUG_ON(p > name + ID_STR_LENGTH - 1);
5837 return name;
5838}
5839
3b7b3140
TH
5840static void sysfs_slab_remove_workfn(struct work_struct *work)
5841{
5842 struct kmem_cache *s =
5843 container_of(work, struct kmem_cache, kobj_remove_work);
5844
5845 if (!s->kobj.state_in_sysfs)
5846 /*
5847 * For a memcg cache, this may be called during
5848 * deactivation and again on shutdown. Remove only once.
5849 * A cache is never shut down before deactivation is
5850 * complete, so no need to worry about synchronization.
5851 */
f6ba4880 5852 goto out;
3b7b3140
TH
5853
5854#ifdef CONFIG_MEMCG
5855 kset_unregister(s->memcg_kset);
5856#endif
f6ba4880 5857out:
3b7b3140
TH
5858 kobject_put(&s->kobj);
5859}
5860
81819f0f
CL
5861static int sysfs_slab_add(struct kmem_cache *s)
5862{
5863 int err;
5864 const char *name;
1663f26d 5865 struct kset *kset = cache_kset(s);
45530c44 5866 int unmergeable = slab_unmergeable(s);
81819f0f 5867
3b7b3140
TH
5868 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5869
1663f26d
TH
5870 if (!kset) {
5871 kobject_init(&s->kobj, &slab_ktype);
5872 return 0;
5873 }
5874
11066386
MC
5875 if (!unmergeable && disable_higher_order_debug &&
5876 (slub_debug & DEBUG_METADATA_FLAGS))
5877 unmergeable = 1;
5878
81819f0f
CL
5879 if (unmergeable) {
5880 /*
5881 * Slabcache can never be merged so we can use the name proper.
5882 * This is typically the case for debug situations. In that
5883 * case we can catch duplicate names easily.
5884 */
27c3a314 5885 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5886 name = s->name;
5887 } else {
5888 /*
5889 * Create a unique name for the slab as a target
5890 * for the symlinks.
5891 */
5892 name = create_unique_id(s);
5893 }
5894
1663f26d 5895 s->kobj.kset = kset;
26e4f205 5896 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5897 if (err) {
5898 kobject_put(&s->kobj);
80da026a 5899 goto out;
dde3c6b7 5900 }
81819f0f
CL
5901
5902 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5903 if (err)
5904 goto out_del_kobj;
9a41707b 5905
127424c8 5906#ifdef CONFIG_MEMCG
1663f26d 5907 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5908 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5909 if (!s->memcg_kset) {
54b6a731
DJ
5910 err = -ENOMEM;
5911 goto out_del_kobj;
9a41707b
VD
5912 }
5913 }
5914#endif
5915
81819f0f
CL
5916 if (!unmergeable) {
5917 /* Setup first alias */
5918 sysfs_slab_alias(s, s->name);
81819f0f 5919 }
54b6a731
DJ
5920out:
5921 if (!unmergeable)
5922 kfree(name);
5923 return err;
5924out_del_kobj:
5925 kobject_del(&s->kobj);
54b6a731 5926 goto out;
81819f0f
CL
5927}
5928
bf5eb3de 5929static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5930{
97d06609 5931 if (slab_state < FULL)
2bce6485
CL
5932 /*
5933 * Sysfs has not been setup yet so no need to remove the
5934 * cache from sysfs.
5935 */
5936 return;
5937
3b7b3140
TH
5938 kobject_get(&s->kobj);
5939 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5940}
5941
d50d82fa
MP
5942void sysfs_slab_unlink(struct kmem_cache *s)
5943{
5944 if (slab_state >= FULL)
5945 kobject_del(&s->kobj);
5946}
5947
bf5eb3de
TH
5948void sysfs_slab_release(struct kmem_cache *s)
5949{
5950 if (slab_state >= FULL)
5951 kobject_put(&s->kobj);
81819f0f
CL
5952}
5953
5954/*
5955 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5956 * available lest we lose that information.
81819f0f
CL
5957 */
5958struct saved_alias {
5959 struct kmem_cache *s;
5960 const char *name;
5961 struct saved_alias *next;
5962};
5963
5af328a5 5964static struct saved_alias *alias_list;
81819f0f
CL
5965
5966static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5967{
5968 struct saved_alias *al;
5969
97d06609 5970 if (slab_state == FULL) {
81819f0f
CL
5971 /*
5972 * If we have a leftover link then remove it.
5973 */
27c3a314
GKH
5974 sysfs_remove_link(&slab_kset->kobj, name);
5975 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5976 }
5977
5978 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5979 if (!al)
5980 return -ENOMEM;
5981
5982 al->s = s;
5983 al->name = name;
5984 al->next = alias_list;
5985 alias_list = al;
5986 return 0;
5987}
5988
5989static int __init slab_sysfs_init(void)
5990{
5b95a4ac 5991 struct kmem_cache *s;
81819f0f
CL
5992 int err;
5993
18004c5d 5994 mutex_lock(&slab_mutex);
2bce6485 5995
d7660ce5 5996 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5997 if (!slab_kset) {
18004c5d 5998 mutex_unlock(&slab_mutex);
f9f58285 5999 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
6000 return -ENOSYS;
6001 }
6002
97d06609 6003 slab_state = FULL;
26a7bd03 6004
5b95a4ac 6005 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6006 err = sysfs_slab_add(s);
5d540fb7 6007 if (err)
f9f58285
FF
6008 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6009 s->name);
26a7bd03 6010 }
81819f0f
CL
6011
6012 while (alias_list) {
6013 struct saved_alias *al = alias_list;
6014
6015 alias_list = alias_list->next;
6016 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6017 if (err)
f9f58285
FF
6018 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6019 al->name);
81819f0f
CL
6020 kfree(al);
6021 }
6022
18004c5d 6023 mutex_unlock(&slab_mutex);
81819f0f
CL
6024 resiliency_test();
6025 return 0;
6026}
6027
6028__initcall(slab_sysfs_init);
ab4d5ed5 6029#endif /* CONFIG_SYSFS */
57ed3eda
PE
6030
6031/*
6032 * The /proc/slabinfo ABI
6033 */
5b365771 6034#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6035void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6036{
57ed3eda 6037 unsigned long nr_slabs = 0;
205ab99d
CL
6038 unsigned long nr_objs = 0;
6039 unsigned long nr_free = 0;
57ed3eda 6040 int node;
fa45dc25 6041 struct kmem_cache_node *n;
57ed3eda 6042
fa45dc25 6043 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6044 nr_slabs += node_nr_slabs(n);
6045 nr_objs += node_nr_objs(n);
205ab99d 6046 nr_free += count_partial(n, count_free);
57ed3eda
PE
6047 }
6048
0d7561c6
GC
6049 sinfo->active_objs = nr_objs - nr_free;
6050 sinfo->num_objs = nr_objs;
6051 sinfo->active_slabs = nr_slabs;
6052 sinfo->num_slabs = nr_slabs;
6053 sinfo->objects_per_slab = oo_objects(s->oo);
6054 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6055}
6056
0d7561c6 6057void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6058{
7b3c3a50
AD
6059}
6060
b7454ad3
GC
6061ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6062 size_t count, loff_t *ppos)
7b3c3a50 6063{
b7454ad3 6064 return -EIO;
7b3c3a50 6065}
5b365771 6066#endif /* CONFIG_SLUB_DEBUG */