]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
slab/mempolicy: always use local policy from interrupt context
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
4de900b4 32#include <linux/prefetch.h>
81819f0f 33
4a92379b
RK
34#include <trace/events/kmem.h>
35
81819f0f
CL
36/*
37 * Lock order:
881db7fb
CL
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 41 *
881db7fb
CL
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
81819f0f
CL
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
51df1142 187 PARTIAL, /* Kmem_cache_node works */
672bba3a 188 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
5af328a5 194static LIST_HEAD(slab_caches);
81819f0f 195
02cbc874
CL
196/*
197 * Tracking user of a slab.
198 */
d6543e39 199#define TRACK_ADDRS_COUNT 16
02cbc874 200struct track {
ce71e27c 201 unsigned long addr; /* Called from address */
d6543e39
BG
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
02cbc874
CL
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
ab4d5ed5 212#ifdef CONFIG_SYSFS
81819f0f
CL
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 216
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
151c602f
CL
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
84c1cf62 223 kfree(s->name);
151c602f
CL
224 kfree(s);
225}
8ff12cfc 226
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
84e554e6 232 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
233#endif
234}
235
81819f0f
CL
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
81819f0f 247 return s->node[node];
81819f0f
CL
248}
249
6446faa2 250/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
a973e9dd 256 if (!object)
02cbc874
CL
257 return 1;
258
a973e9dd 259 base = page_address(page);
39b26464 260 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
224a88be
CL
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
298 __p += (__s)->size)
299
7656c72b
CL
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
d71f606f
MK
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 314 return s->object_size;
d71f606f
MK
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
ab9a0f19
LJ
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
834f3d11 335static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 336 unsigned long size, int reserved)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
ab9a0f19 339 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
b789ef51
CL
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 return 1;
430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
f0630fff
CL
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
81819f0f
CL
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
ffc79d28
SAS
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
81819f0f
CL
480}
481
81819f0f
CL
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
ce71e27c 496 enum track_item alloc, unsigned long addr)
81819f0f 497{
1a00df4a 498 struct track *p = get_track(s, object, alloc);
81819f0f 499
81819f0f 500 if (addr) {
d6543e39
BG
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
81819f0f
CL
519 p->addr = addr;
520 p->cpu = smp_processor_id();
88e4ccf2 521 p->pid = current->pid;
81819f0f
CL
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
81819f0f
CL
527static void init_tracking(struct kmem_cache *s, void *object)
528{
24922684
CL
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
ce71e27c
EGM
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
7daf705f 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
24922684
CL
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
39b26464
CL
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
265d47e7 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
81819f0f
CL
584}
585
24922684
CL
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
3b0efdfa 612 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
615 print_section("Redzone ", p + s->object_size,
616 s->inuse - s->object_size);
81819f0f 617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
24922684 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 799 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 800 }
81819f0f
CL
801 }
802
803 if (s->flags & SLAB_POISON) {
f7cb1933 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 805 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 806 POISON_FREE, s->object_size - 1) ||
24922684 807 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 808 p + s->object_size - 1, POISON_END, 1)))
81819f0f 809 return 0;
81819f0f
CL
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
f7cb1933 816 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
9f6c708e 827 * No choice but to zap it and thus lose the remainder
81819f0f 828 * of the free objects in this slab. May cause
672bba3a 829 * another error because the object count is now wrong.
81819f0f 830 */
a973e9dd 831 set_freepointer(s, p, NULL);
81819f0f
CL
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
39b26464
CL
839 int maxobj;
840
81819f0f
CL
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
24922684 844 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
845 return 0;
846 }
39b26464 847
ab9a0f19 848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
24922684 855 slab_err(s, page, "inuse %u > max %u",
39b26464 856 s->name, page->inuse, page->objects);
81819f0f
CL
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
672bba3a
CL
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
881db7fb 871 void *fp;
81819f0f 872 void *object = NULL;
224a88be 873 unsigned long max_objects;
81819f0f 874
881db7fb 875 fp = page->freelist;
39b26464 876 while (fp && nr <= page->objects) {
81819f0f
CL
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
a973e9dd 883 set_freepointer(s, object, NULL);
81819f0f
CL
884 break;
885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
3b0efdfa 929 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
930
931 dump_stack();
932 }
933}
934
c016b0bd
CL
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
c1d50836 941 flags &= gfp_allowed_mask;
c016b0bd
CL
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
3b0efdfa 945 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
c1d50836 950 flags &= gfp_allowed_mask;
b3d41885 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 952 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
c016b0bd 958
d3f661d6
CL
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
3b0efdfa
CL
969 kmemcheck_slab_free(s, x, s->object_size);
970 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
971 local_irq_restore(flags);
972 }
973#endif
f9b615de 974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 975 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
976}
977
643b1138 978/*
672bba3a 979 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
980 *
981 * list_lock must be held.
643b1138 982 */
5cc6eee8
CL
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
643b1138 985{
5cc6eee8
CL
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
643b1138 989 list_add(&page->lru, &n->full);
643b1138
CL
990}
991
5cc6eee8
CL
992/*
993 * list_lock must be held.
994 */
643b1138
CL
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
643b1138
CL
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
643b1138 1000 list_del(&page->lru);
643b1138
CL
1001}
1002
0f389ec6
CL
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
26c02cf0
AB
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
205ab99d 1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
7340cc84 1026 if (n) {
0f389ec6 1027 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1028 atomic_long_add(objects, &n->total_objects);
1029 }
0f389ec6 1030}
205ab99d 1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
205ab99d 1036 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1037}
1038
1039/* Object debug checks for alloc/free paths */
3ec09742
CL
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
f7cb1933 1046 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1047 init_tracking(s, object);
1048}
1049
1537066c 1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1051 void *object, unsigned long addr)
81819f0f
CL
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
81819f0f
CL
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1058 goto bad;
81819f0f
CL
1059 }
1060
f7cb1933 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1062 goto bad;
81819f0f 1063
3ec09742
CL
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
f7cb1933 1068 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1069 return 1;
3ec09742 1070
81819f0f
CL
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
672bba3a 1076 * as used avoids touching the remaining objects.
81819f0f 1077 */
24922684 1078 slab_fix(s, "Marking all objects used");
39b26464 1079 page->inuse = page->objects;
a973e9dd 1080 page->freelist = NULL;
81819f0f
CL
1081 }
1082 return 0;
1083}
1084
1537066c
CL
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
81819f0f 1087{
5c2e4bbb
CL
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
881db7fb
CL
1092 slab_lock(page);
1093
81819f0f
CL
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
70d71228 1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
24922684 1103 object_err(s, page, object, "Object already free");
81819f0f
CL
1104 goto fail;
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1108 goto out;
81819f0f
CL
1109
1110 if (unlikely(s != page->slab)) {
3adbefee 1111 if (!PageSlab(page)) {
70d71228
CL
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
3adbefee 1114 } else if (!page->slab) {
81819f0f 1115 printk(KERN_ERR
70d71228 1116 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1117 object);
70d71228 1118 dump_stack();
06428780 1119 } else
24922684
CL
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
81819f0f
CL
1122 goto fail;
1123 }
3ec09742 1124
3ec09742
CL
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
f7cb1933 1128 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1129 rc = 1;
1130out:
881db7fb 1131 slab_unlock(page);
5c2e4bbb
CL
1132 local_irq_restore(flags);
1133 return rc;
3ec09742 1134
81819f0f 1135fail:
24922684 1136 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1137 goto out;
81819f0f
CL
1138}
1139
41ecc55b
CL
1140static int __init setup_slub_debug(char *str)
1141{
f0630fff
CL
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
fa5ec8a1
DR
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
f0630fff
CL
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
06428780 1175 for (; *str && *str != ','; str++) {
f0630fff
CL
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
4c13dd3b
DM
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
f0630fff
CL
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
06428780 1197 "unknown. skipped\n", *str);
f0630fff 1198 }
41ecc55b
CL
1199 }
1200
f0630fff 1201check_slabs:
41ecc55b
CL
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
f0630fff 1204out:
41ecc55b
CL
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
3b0efdfa 1210static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1211 unsigned long flags, const char *name,
51cc5068 1212 void (*ctor)(void *))
41ecc55b
CL
1213{
1214 /*
e153362a 1215 * Enable debugging if selected on the kernel commandline.
41ecc55b 1216 */
e153362a 1217 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
ba0268a8
CL
1220
1221 return flags;
41ecc55b
CL
1222}
1223#else
3ec09742
CL
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
41ecc55b 1226
3ec09742 1227static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1228 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1229
3ec09742 1230static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1231 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1232
41ecc55b
CL
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1236 void *object, u8 val) { return 1; }
5cc6eee8
CL
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
2cfb7455 1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1240static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1241 unsigned long flags, const char *name,
51cc5068 1242 void (*ctor)(void *))
ba0268a8
CL
1243{
1244 return flags;
1245}
41ecc55b 1246#define slub_debug 0
0f389ec6 1247
fdaa45e9
IM
1248#define disable_higher_order_debug 0
1249
0f389ec6
CL
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
26c02cf0
AB
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
205ab99d
CL
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
7d550c56
CL
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
ab4d5ed5 1267#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1268
81819f0f
CL
1269/*
1270 * Slab allocation and freeing
1271 */
65c3376a
CL
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
b1eeab67
VN
1277 flags |= __GFP_NOTRACK;
1278
2154a336 1279 if (node == NUMA_NO_NODE)
65c3376a
CL
1280 return alloc_pages(flags, order);
1281 else
6b65aaf3 1282 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1283}
1284
81819f0f
CL
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
06428780 1287 struct page *page;
834f3d11 1288 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1289 gfp_t alloc_gfp;
81819f0f 1290
7e0528da
CL
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
b7a49f0d 1296 flags |= s->allocflags;
e12ba74d 1297
ba52270d
PE
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
81819f0f 1312
7e0528da
CL
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
65c3376a 1315 }
5a896d9e 1316
7e0528da
CL
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
5a896d9e 1323 if (kmemcheck_enabled
5086c389 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1337 }
1338
834f3d11 1339 page->objects = oo_objects(oo);
81819f0f
CL
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1343 1 << oo_order(oo));
81819f0f
CL
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
3ec09742 1351 setup_object_debug(s, page, object);
4f104934 1352 if (unlikely(s->ctor))
51cc5068 1353 s->ctor(object);
81819f0f
CL
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
81819f0f 1359 void *start;
81819f0f
CL
1360 void *last;
1361 void *p;
1362
6cb06229 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1364
6cb06229
CL
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1367 if (!page)
1368 goto out;
1369
205ab99d 1370 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1371 page->slab = s;
c03f94cc 1372 __SetPageSlab(page);
81819f0f
CL
1373
1374 start = page_address(page);
81819f0f
CL
1375
1376 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1378
1379 last = start;
224a88be 1380 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
a973e9dd 1386 set_freepointer(s, last, NULL);
81819f0f
CL
1387
1388 page->freelist = start;
e6e82ea1 1389 page->inuse = page->objects;
8cb0a506 1390 page->frozen = 1;
81819f0f 1391out:
81819f0f
CL
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
834f3d11
CL
1397 int order = compound_order(page);
1398 int pages = 1 << order;
81819f0f 1399
af537b0a 1400 if (kmem_cache_debug(s)) {
81819f0f
CL
1401 void *p;
1402
1403 slab_pad_check(s, page);
224a88be
CL
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
f7cb1933 1406 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1407 }
1408
b1eeab67 1409 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1410
81819f0f
CL
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1414 -pages);
81819f0f 1415
49bd5221
CL
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1eb5ac64
NP
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1420 __free_pages(page, order);
81819f0f
CL
1421}
1422
da9a638c
LJ
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
81819f0f
CL
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
da9a638c
LJ
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
81819f0f
CL
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
81819f0f
CL
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
205ab99d 1463 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1464 free_slab(s, page);
1465}
1466
1467/*
5cc6eee8
CL
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
81819f0f 1471 */
5cc6eee8 1472static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1473 struct page *page, int tail)
81819f0f 1474{
e95eed57 1475 n->nr_partial++;
136333d1 1476 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
81819f0f
CL
1480}
1481
5cc6eee8
CL
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
81819f0f 1492/*
7ced3719
CL
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
81819f0f 1495 *
497b66f2
CL
1496 * Returns a list of objects or NULL if it fails.
1497 *
7ced3719 1498 * Must hold list_lock since we modify the partial list.
81819f0f 1499 */
497b66f2 1500static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1501 struct kmem_cache_node *n, struct page *page,
49e22585 1502 int mode)
81819f0f 1503{
2cfb7455
CL
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
2cfb7455
CL
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
7ced3719
CL
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
23910c50 1516 if (mode) {
7ced3719 1517 new.inuse = page->objects;
23910c50
PE
1518 new.freelist = NULL;
1519 } else {
1520 new.freelist = freelist;
1521 }
2cfb7455 1522
7ced3719
CL
1523 VM_BUG_ON(new.frozen);
1524 new.frozen = 1;
2cfb7455 1525
7ced3719 1526 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1527 freelist, counters,
02d7633f 1528 new.freelist, new.counters,
7ced3719 1529 "acquire_slab"))
7ced3719 1530 return NULL;
2cfb7455
CL
1531
1532 remove_partial(n, page);
7ced3719 1533 WARN_ON(!freelist);
49e22585 1534 return freelist;
81819f0f
CL
1535}
1536
49e22585
CL
1537static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1538
81819f0f 1539/*
672bba3a 1540 * Try to allocate a partial slab from a specific node.
81819f0f 1541 */
497b66f2 1542static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1543 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1544{
49e22585
CL
1545 struct page *page, *page2;
1546 void *object = NULL;
81819f0f
CL
1547
1548 /*
1549 * Racy check. If we mistakenly see no partial slabs then we
1550 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1551 * partial slab and there is none available then get_partials()
1552 * will return NULL.
81819f0f
CL
1553 */
1554 if (!n || !n->nr_partial)
1555 return NULL;
1556
1557 spin_lock(&n->list_lock);
49e22585 1558 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1559 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1560 int available;
1561
1562 if (!t)
1563 break;
1564
12d79634 1565 if (!object) {
49e22585 1566 c->page = page;
49e22585 1567 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1568 object = t;
1569 available = page->objects - page->inuse;
1570 } else {
49e22585 1571 available = put_cpu_partial(s, page, 0);
8028dcea 1572 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1573 }
1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1575 break;
1576
497b66f2 1577 }
81819f0f 1578 spin_unlock(&n->list_lock);
497b66f2 1579 return object;
81819f0f
CL
1580}
1581
1582/*
672bba3a 1583 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1584 */
de3ec035 1585static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1586 struct kmem_cache_cpu *c)
81819f0f
CL
1587{
1588#ifdef CONFIG_NUMA
1589 struct zonelist *zonelist;
dd1a239f 1590 struct zoneref *z;
54a6eb5c
MG
1591 struct zone *zone;
1592 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1593 void *object;
cc9a6c87 1594 unsigned int cpuset_mems_cookie;
81819f0f
CL
1595
1596 /*
672bba3a
CL
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1601 *
672bba3a
CL
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
81819f0f 1606 *
6446faa2 1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
81819f0f 1613 */
9824601e
CL
1614 if (!s->remote_node_defrag_ratio ||
1615 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1616 return NULL;
1617
cc9a6c87
MG
1618 do {
1619 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1620 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622 struct kmem_cache_node *n;
1623
1624 n = get_node(s, zone_to_nid(zone));
1625
1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627 n->nr_partial > s->min_partial) {
1628 object = get_partial_node(s, n, c);
1629 if (object) {
1630 /*
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1637 */
1638 put_mems_allowed(cpuset_mems_cookie);
1639 return object;
1640 }
c0ff7453 1641 }
81819f0f 1642 }
cc9a6c87 1643 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1644#endif
1645 return NULL;
1646}
1647
1648/*
1649 * Get a partial page, lock it and return it.
1650 */
497b66f2 1651static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1652 struct kmem_cache_cpu *c)
81819f0f 1653{
497b66f2 1654 void *object;
2154a336 1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1656
497b66f2
CL
1657 object = get_partial_node(s, get_node(s, searchnode), c);
1658 if (object || node != NUMA_NO_NODE)
1659 return object;
81819f0f 1660
acd19fd1 1661 return get_any_partial(s, flags, c);
81819f0f
CL
1662}
1663
8a5ec0ba
CL
1664#ifdef CONFIG_PREEMPT
1665/*
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1669 */
1670#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1671#else
1672/*
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1675 */
1676#define TID_STEP 1
1677#endif
1678
1679static inline unsigned long next_tid(unsigned long tid)
1680{
1681 return tid + TID_STEP;
1682}
1683
1684static inline unsigned int tid_to_cpu(unsigned long tid)
1685{
1686 return tid % TID_STEP;
1687}
1688
1689static inline unsigned long tid_to_event(unsigned long tid)
1690{
1691 return tid / TID_STEP;
1692}
1693
1694static inline unsigned int init_tid(int cpu)
1695{
1696 return cpu;
1697}
1698
1699static inline void note_cmpxchg_failure(const char *n,
1700 const struct kmem_cache *s, unsigned long tid)
1701{
1702#ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1704
1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1706
1707#ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711 else
1712#endif
1713 if (tid_to_event(tid) != tid_to_event(actual_tid))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid), tid_to_event(actual_tid));
1716 else
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid, tid, next_tid(tid));
1719#endif
4fdccdfb 1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1721}
1722
8a5ec0ba
CL
1723void init_kmem_cache_cpus(struct kmem_cache *s)
1724{
8a5ec0ba
CL
1725 int cpu;
1726
1727 for_each_possible_cpu(cpu)
1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1729}
2cfb7455 1730
81819f0f
CL
1731/*
1732 * Remove the cpu slab
1733 */
c17dda40 1734static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1735{
2cfb7455 1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1737 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1738 int lock = 0;
1739 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1740 void *nextfree;
136333d1 1741 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1742 struct page new;
1743 struct page old;
1744
1745 if (page->freelist) {
84e554e6 1746 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1747 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1748 }
1749
894b8788 1750 /*
2cfb7455
CL
1751 * Stage one: Free all available per cpu objects back
1752 * to the page freelist while it is still frozen. Leave the
1753 * last one.
1754 *
1755 * There is no need to take the list->lock because the page
1756 * is still frozen.
1757 */
1758 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1759 void *prior;
1760 unsigned long counters;
1761
1762 do {
1763 prior = page->freelist;
1764 counters = page->counters;
1765 set_freepointer(s, freelist, prior);
1766 new.counters = counters;
1767 new.inuse--;
1768 VM_BUG_ON(!new.frozen);
1769
1d07171c 1770 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1771 prior, counters,
1772 freelist, new.counters,
1773 "drain percpu freelist"));
1774
1775 freelist = nextfree;
1776 }
1777
894b8788 1778 /*
2cfb7455
CL
1779 * Stage two: Ensure that the page is unfrozen while the
1780 * list presence reflects the actual number of objects
1781 * during unfreeze.
1782 *
1783 * We setup the list membership and then perform a cmpxchg
1784 * with the count. If there is a mismatch then the page
1785 * is not unfrozen but the page is on the wrong list.
1786 *
1787 * Then we restart the process which may have to remove
1788 * the page from the list that we just put it on again
1789 * because the number of objects in the slab may have
1790 * changed.
894b8788 1791 */
2cfb7455 1792redo:
894b8788 1793
2cfb7455
CL
1794 old.freelist = page->freelist;
1795 old.counters = page->counters;
1796 VM_BUG_ON(!old.frozen);
7c2e132c 1797
2cfb7455
CL
1798 /* Determine target state of the slab */
1799 new.counters = old.counters;
1800 if (freelist) {
1801 new.inuse--;
1802 set_freepointer(s, freelist, old.freelist);
1803 new.freelist = freelist;
1804 } else
1805 new.freelist = old.freelist;
1806
1807 new.frozen = 0;
1808
81107188 1809 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1810 m = M_FREE;
1811 else if (new.freelist) {
1812 m = M_PARTIAL;
1813 if (!lock) {
1814 lock = 1;
1815 /*
1816 * Taking the spinlock removes the possiblity
1817 * that acquire_slab() will see a slab page that
1818 * is frozen
1819 */
1820 spin_lock(&n->list_lock);
1821 }
1822 } else {
1823 m = M_FULL;
1824 if (kmem_cache_debug(s) && !lock) {
1825 lock = 1;
1826 /*
1827 * This also ensures that the scanning of full
1828 * slabs from diagnostic functions will not see
1829 * any frozen slabs.
1830 */
1831 spin_lock(&n->list_lock);
1832 }
1833 }
1834
1835 if (l != m) {
1836
1837 if (l == M_PARTIAL)
1838
1839 remove_partial(n, page);
1840
1841 else if (l == M_FULL)
894b8788 1842
2cfb7455
CL
1843 remove_full(s, page);
1844
1845 if (m == M_PARTIAL) {
1846
1847 add_partial(n, page, tail);
136333d1 1848 stat(s, tail);
2cfb7455
CL
1849
1850 } else if (m == M_FULL) {
894b8788 1851
2cfb7455
CL
1852 stat(s, DEACTIVATE_FULL);
1853 add_full(s, n, page);
1854
1855 }
1856 }
1857
1858 l = m;
1d07171c 1859 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1860 old.freelist, old.counters,
1861 new.freelist, new.counters,
1862 "unfreezing slab"))
1863 goto redo;
1864
2cfb7455
CL
1865 if (lock)
1866 spin_unlock(&n->list_lock);
1867
1868 if (m == M_FREE) {
1869 stat(s, DEACTIVATE_EMPTY);
1870 discard_slab(s, page);
1871 stat(s, FREE_SLAB);
894b8788 1872 }
81819f0f
CL
1873}
1874
49e22585
CL
1875/* Unfreeze all the cpu partial slabs */
1876static void unfreeze_partials(struct kmem_cache *s)
1877{
1878 struct kmem_cache_node *n = NULL;
1879 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1880 struct page *page, *discard_page = NULL;
49e22585
CL
1881
1882 while ((page = c->partial)) {
1883 enum slab_modes { M_PARTIAL, M_FREE };
1884 enum slab_modes l, m;
1885 struct page new;
1886 struct page old;
1887
1888 c->partial = page->next;
1889 l = M_FREE;
1890
1891 do {
1892
1893 old.freelist = page->freelist;
1894 old.counters = page->counters;
1895 VM_BUG_ON(!old.frozen);
1896
1897 new.counters = old.counters;
1898 new.freelist = old.freelist;
1899
1900 new.frozen = 0;
1901
dcc3be6a 1902 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1903 m = M_FREE;
1904 else {
1905 struct kmem_cache_node *n2 = get_node(s,
1906 page_to_nid(page));
1907
1908 m = M_PARTIAL;
1909 if (n != n2) {
1910 if (n)
1911 spin_unlock(&n->list_lock);
1912
1913 n = n2;
1914 spin_lock(&n->list_lock);
1915 }
1916 }
1917
1918 if (l != m) {
4c493a5a 1919 if (l == M_PARTIAL) {
49e22585 1920 remove_partial(n, page);
4c493a5a
SL
1921 stat(s, FREE_REMOVE_PARTIAL);
1922 } else {
f64ae042
SL
1923 add_partial(n, page,
1924 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1925 stat(s, FREE_ADD_PARTIAL);
1926 }
49e22585
CL
1927
1928 l = m;
1929 }
1930
1931 } while (!cmpxchg_double_slab(s, page,
1932 old.freelist, old.counters,
1933 new.freelist, new.counters,
1934 "unfreezing slab"));
1935
1936 if (m == M_FREE) {
9ada1934
SL
1937 page->next = discard_page;
1938 discard_page = page;
49e22585
CL
1939 }
1940 }
1941
1942 if (n)
1943 spin_unlock(&n->list_lock);
9ada1934
SL
1944
1945 while (discard_page) {
1946 page = discard_page;
1947 discard_page = discard_page->next;
1948
1949 stat(s, DEACTIVATE_EMPTY);
1950 discard_slab(s, page);
1951 stat(s, FREE_SLAB);
1952 }
49e22585
CL
1953}
1954
1955/*
1956 * Put a page that was just frozen (in __slab_free) into a partial page
1957 * slot if available. This is done without interrupts disabled and without
1958 * preemption disabled. The cmpxchg is racy and may put the partial page
1959 * onto a random cpus partial slot.
1960 *
1961 * If we did not find a slot then simply move all the partials to the
1962 * per node partial list.
1963 */
1964int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1965{
1966 struct page *oldpage;
1967 int pages;
1968 int pobjects;
1969
1970 do {
1971 pages = 0;
1972 pobjects = 0;
1973 oldpage = this_cpu_read(s->cpu_slab->partial);
1974
1975 if (oldpage) {
1976 pobjects = oldpage->pobjects;
1977 pages = oldpage->pages;
1978 if (drain && pobjects > s->cpu_partial) {
1979 unsigned long flags;
1980 /*
1981 * partial array is full. Move the existing
1982 * set to the per node partial list.
1983 */
1984 local_irq_save(flags);
1985 unfreeze_partials(s);
1986 local_irq_restore(flags);
1987 pobjects = 0;
1988 pages = 0;
8028dcea 1989 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1990 }
1991 }
1992
1993 pages++;
1994 pobjects += page->objects - page->inuse;
1995
1996 page->pages = pages;
1997 page->pobjects = pobjects;
1998 page->next = oldpage;
1999
933393f5 2000 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
2001 return pobjects;
2002}
2003
dfb4f096 2004static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2005{
84e554e6 2006 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2007 deactivate_slab(s, c->page, c->freelist);
2008
2009 c->tid = next_tid(c->tid);
2010 c->page = NULL;
2011 c->freelist = NULL;
81819f0f
CL
2012}
2013
2014/*
2015 * Flush cpu slab.
6446faa2 2016 *
81819f0f
CL
2017 * Called from IPI handler with interrupts disabled.
2018 */
0c710013 2019static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2020{
9dfc6e68 2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2022
49e22585
CL
2023 if (likely(c)) {
2024 if (c->page)
2025 flush_slab(s, c);
2026
2027 unfreeze_partials(s);
2028 }
81819f0f
CL
2029}
2030
2031static void flush_cpu_slab(void *d)
2032{
2033 struct kmem_cache *s = d;
81819f0f 2034
dfb4f096 2035 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2036}
2037
a8364d55
GBY
2038static bool has_cpu_slab(int cpu, void *info)
2039{
2040 struct kmem_cache *s = info;
2041 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2042
02e1a9cd 2043 return c->page || c->partial;
a8364d55
GBY
2044}
2045
81819f0f
CL
2046static void flush_all(struct kmem_cache *s)
2047{
a8364d55 2048 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2049}
2050
dfb4f096
CL
2051/*
2052 * Check if the objects in a per cpu structure fit numa
2053 * locality expectations.
2054 */
57d437d2 2055static inline int node_match(struct page *page, int node)
dfb4f096
CL
2056{
2057#ifdef CONFIG_NUMA
57d437d2 2058 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2059 return 0;
2060#endif
2061 return 1;
2062}
2063
781b2ba6
PE
2064static int count_free(struct page *page)
2065{
2066 return page->objects - page->inuse;
2067}
2068
2069static unsigned long count_partial(struct kmem_cache_node *n,
2070 int (*get_count)(struct page *))
2071{
2072 unsigned long flags;
2073 unsigned long x = 0;
2074 struct page *page;
2075
2076 spin_lock_irqsave(&n->list_lock, flags);
2077 list_for_each_entry(page, &n->partial, lru)
2078 x += get_count(page);
2079 spin_unlock_irqrestore(&n->list_lock, flags);
2080 return x;
2081}
2082
26c02cf0
AB
2083static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2084{
2085#ifdef CONFIG_SLUB_DEBUG
2086 return atomic_long_read(&n->total_objects);
2087#else
2088 return 0;
2089#endif
2090}
2091
781b2ba6
PE
2092static noinline void
2093slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2094{
2095 int node;
2096
2097 printk(KERN_WARNING
2098 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2099 nid, gfpflags);
2100 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2101 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2102 s->size, oo_order(s->oo), oo_order(s->min));
2103
3b0efdfa 2104 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2105 printk(KERN_WARNING " %s debugging increased min order, use "
2106 "slub_debug=O to disable.\n", s->name);
2107
781b2ba6
PE
2108 for_each_online_node(node) {
2109 struct kmem_cache_node *n = get_node(s, node);
2110 unsigned long nr_slabs;
2111 unsigned long nr_objs;
2112 unsigned long nr_free;
2113
2114 if (!n)
2115 continue;
2116
26c02cf0
AB
2117 nr_free = count_partial(n, count_free);
2118 nr_slabs = node_nr_slabs(n);
2119 nr_objs = node_nr_objs(n);
781b2ba6
PE
2120
2121 printk(KERN_WARNING
2122 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2123 node, nr_slabs, nr_objs, nr_free);
2124 }
2125}
2126
497b66f2
CL
2127static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2128 int node, struct kmem_cache_cpu **pc)
2129{
6faa6833 2130 void *freelist;
188fd063
CL
2131 struct kmem_cache_cpu *c = *pc;
2132 struct page *page;
497b66f2 2133
188fd063 2134 freelist = get_partial(s, flags, node, c);
497b66f2 2135
188fd063
CL
2136 if (freelist)
2137 return freelist;
2138
2139 page = new_slab(s, flags, node);
497b66f2
CL
2140 if (page) {
2141 c = __this_cpu_ptr(s->cpu_slab);
2142 if (c->page)
2143 flush_slab(s, c);
2144
2145 /*
2146 * No other reference to the page yet so we can
2147 * muck around with it freely without cmpxchg
2148 */
6faa6833 2149 freelist = page->freelist;
497b66f2
CL
2150 page->freelist = NULL;
2151
2152 stat(s, ALLOC_SLAB);
497b66f2
CL
2153 c->page = page;
2154 *pc = c;
2155 } else
6faa6833 2156 freelist = NULL;
497b66f2 2157
6faa6833 2158 return freelist;
497b66f2
CL
2159}
2160
213eeb9f
CL
2161/*
2162 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2163 * or deactivate the page.
2164 *
2165 * The page is still frozen if the return value is not NULL.
2166 *
2167 * If this function returns NULL then the page has been unfrozen.
2168 */
2169static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2170{
2171 struct page new;
2172 unsigned long counters;
2173 void *freelist;
2174
2175 do {
2176 freelist = page->freelist;
2177 counters = page->counters;
6faa6833 2178
213eeb9f
CL
2179 new.counters = counters;
2180 VM_BUG_ON(!new.frozen);
2181
2182 new.inuse = page->objects;
2183 new.frozen = freelist != NULL;
2184
2185 } while (!cmpxchg_double_slab(s, page,
2186 freelist, counters,
2187 NULL, new.counters,
2188 "get_freelist"));
2189
2190 return freelist;
2191}
2192
81819f0f 2193/*
894b8788
CL
2194 * Slow path. The lockless freelist is empty or we need to perform
2195 * debugging duties.
2196 *
894b8788
CL
2197 * Processing is still very fast if new objects have been freed to the
2198 * regular freelist. In that case we simply take over the regular freelist
2199 * as the lockless freelist and zap the regular freelist.
81819f0f 2200 *
894b8788
CL
2201 * If that is not working then we fall back to the partial lists. We take the
2202 * first element of the freelist as the object to allocate now and move the
2203 * rest of the freelist to the lockless freelist.
81819f0f 2204 *
894b8788 2205 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2206 * we need to allocate a new slab. This is the slowest path since it involves
2207 * a call to the page allocator and the setup of a new slab.
81819f0f 2208 */
ce71e27c
EGM
2209static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2210 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2211{
6faa6833 2212 void *freelist;
f6e7def7 2213 struct page *page;
8a5ec0ba
CL
2214 unsigned long flags;
2215
2216 local_irq_save(flags);
2217#ifdef CONFIG_PREEMPT
2218 /*
2219 * We may have been preempted and rescheduled on a different
2220 * cpu before disabling interrupts. Need to reload cpu area
2221 * pointer.
2222 */
2223 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2224#endif
81819f0f 2225
f6e7def7
CL
2226 page = c->page;
2227 if (!page)
81819f0f 2228 goto new_slab;
49e22585 2229redo:
6faa6833 2230
57d437d2 2231 if (unlikely(!node_match(page, node))) {
e36a2652 2232 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2233 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2234 c->page = NULL;
2235 c->freelist = NULL;
fc59c053
CL
2236 goto new_slab;
2237 }
6446faa2 2238
73736e03 2239 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2240 freelist = c->freelist;
2241 if (freelist)
73736e03 2242 goto load_freelist;
03e404af 2243
2cfb7455 2244 stat(s, ALLOC_SLOWPATH);
03e404af 2245
f6e7def7 2246 freelist = get_freelist(s, page);
6446faa2 2247
6faa6833 2248 if (!freelist) {
03e404af
CL
2249 c->page = NULL;
2250 stat(s, DEACTIVATE_BYPASS);
fc59c053 2251 goto new_slab;
03e404af 2252 }
6446faa2 2253
84e554e6 2254 stat(s, ALLOC_REFILL);
6446faa2 2255
894b8788 2256load_freelist:
507effea
CL
2257 /*
2258 * freelist is pointing to the list of objects to be used.
2259 * page is pointing to the page from which the objects are obtained.
2260 * That page must be frozen for per cpu allocations to work.
2261 */
2262 VM_BUG_ON(!c->page->frozen);
6faa6833 2263 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2264 c->tid = next_tid(c->tid);
2265 local_irq_restore(flags);
6faa6833 2266 return freelist;
81819f0f 2267
81819f0f 2268new_slab:
2cfb7455 2269
49e22585 2270 if (c->partial) {
f6e7def7
CL
2271 page = c->page = c->partial;
2272 c->partial = page->next;
49e22585
CL
2273 stat(s, CPU_PARTIAL_ALLOC);
2274 c->freelist = NULL;
2275 goto redo;
81819f0f
CL
2276 }
2277
188fd063 2278 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2279
f4697436
CL
2280 if (unlikely(!freelist)) {
2281 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2282 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2283
f4697436
CL
2284 local_irq_restore(flags);
2285 return NULL;
81819f0f 2286 }
2cfb7455 2287
f6e7def7 2288 page = c->page;
497b66f2 2289 if (likely(!kmem_cache_debug(s)))
4b6f0750 2290 goto load_freelist;
2cfb7455 2291
497b66f2 2292 /* Only entered in the debug case */
f6e7def7 2293 if (!alloc_debug_processing(s, page, freelist, addr))
497b66f2 2294 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2295
f6e7def7 2296 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2297 c->page = NULL;
2298 c->freelist = NULL;
a71ae47a 2299 local_irq_restore(flags);
6faa6833 2300 return freelist;
894b8788
CL
2301}
2302
2303/*
2304 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2305 * have the fastpath folded into their functions. So no function call
2306 * overhead for requests that can be satisfied on the fastpath.
2307 *
2308 * The fastpath works by first checking if the lockless freelist can be used.
2309 * If not then __slab_alloc is called for slow processing.
2310 *
2311 * Otherwise we can simply pick the next object from the lockless free list.
2312 */
06428780 2313static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2314 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2315{
894b8788 2316 void **object;
dfb4f096 2317 struct kmem_cache_cpu *c;
57d437d2 2318 struct page *page;
8a5ec0ba 2319 unsigned long tid;
1f84260c 2320
c016b0bd 2321 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2322 return NULL;
1f84260c 2323
8a5ec0ba 2324redo:
8a5ec0ba
CL
2325
2326 /*
2327 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2328 * enabled. We may switch back and forth between cpus while
2329 * reading from one cpu area. That does not matter as long
2330 * as we end up on the original cpu again when doing the cmpxchg.
2331 */
9dfc6e68 2332 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2333
8a5ec0ba
CL
2334 /*
2335 * The transaction ids are globally unique per cpu and per operation on
2336 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2337 * occurs on the right processor and that there was no operation on the
2338 * linked list in between.
2339 */
2340 tid = c->tid;
2341 barrier();
8a5ec0ba 2342
9dfc6e68 2343 object = c->freelist;
57d437d2
CL
2344 page = c->page;
2345 if (unlikely(!object || !node_match(page, node)))
894b8788 2346
dfb4f096 2347 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2348
2349 else {
0ad9500e
ED
2350 void *next_object = get_freepointer_safe(s, object);
2351
8a5ec0ba 2352 /*
25985edc 2353 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2354 * operation and if we are on the right processor.
2355 *
2356 * The cmpxchg does the following atomically (without lock semantics!)
2357 * 1. Relocate first pointer to the current per cpu area.
2358 * 2. Verify that tid and freelist have not been changed
2359 * 3. If they were not changed replace tid and freelist
2360 *
2361 * Since this is without lock semantics the protection is only against
2362 * code executing on this cpu *not* from access by other cpus.
2363 */
933393f5 2364 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2365 s->cpu_slab->freelist, s->cpu_slab->tid,
2366 object, tid,
0ad9500e 2367 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2368
2369 note_cmpxchg_failure("slab_alloc", s, tid);
2370 goto redo;
2371 }
0ad9500e 2372 prefetch_freepointer(s, next_object);
84e554e6 2373 stat(s, ALLOC_FASTPATH);
894b8788 2374 }
8a5ec0ba 2375
74e2134f 2376 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2377 memset(object, 0, s->object_size);
d07dbea4 2378
c016b0bd 2379 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2380
894b8788 2381 return object;
81819f0f
CL
2382}
2383
2384void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2385{
2154a336 2386 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2387
3b0efdfa 2388 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2389
2390 return ret;
81819f0f
CL
2391}
2392EXPORT_SYMBOL(kmem_cache_alloc);
2393
0f24f128 2394#ifdef CONFIG_TRACING
4a92379b
RK
2395void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2396{
2397 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2398 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2399 return ret;
2400}
2401EXPORT_SYMBOL(kmem_cache_alloc_trace);
2402
2403void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2404{
4a92379b
RK
2405 void *ret = kmalloc_order(size, flags, order);
2406 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2407 return ret;
5b882be4 2408}
4a92379b 2409EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2410#endif
2411
81819f0f
CL
2412#ifdef CONFIG_NUMA
2413void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2414{
5b882be4
EGM
2415 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2416
ca2b84cb 2417 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2418 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2419
2420 return ret;
81819f0f
CL
2421}
2422EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2423
0f24f128 2424#ifdef CONFIG_TRACING
4a92379b 2425void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2426 gfp_t gfpflags,
4a92379b 2427 int node, size_t size)
5b882be4 2428{
4a92379b
RK
2429 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2430
2431 trace_kmalloc_node(_RET_IP_, ret,
2432 size, s->size, gfpflags, node);
2433 return ret;
5b882be4 2434}
4a92379b 2435EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2436#endif
5d1f57e4 2437#endif
5b882be4 2438
81819f0f 2439/*
894b8788
CL
2440 * Slow patch handling. This may still be called frequently since objects
2441 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2442 *
894b8788
CL
2443 * So we still attempt to reduce cache line usage. Just take the slab
2444 * lock and free the item. If there is no additional partial page
2445 * handling required then we can return immediately.
81819f0f 2446 */
894b8788 2447static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2448 void *x, unsigned long addr)
81819f0f
CL
2449{
2450 void *prior;
2451 void **object = (void *)x;
2cfb7455
CL
2452 int was_frozen;
2453 int inuse;
2454 struct page new;
2455 unsigned long counters;
2456 struct kmem_cache_node *n = NULL;
61728d1e 2457 unsigned long uninitialized_var(flags);
81819f0f 2458
8a5ec0ba 2459 stat(s, FREE_SLOWPATH);
81819f0f 2460
8dc16c6c 2461 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2462 return;
6446faa2 2463
2cfb7455
CL
2464 do {
2465 prior = page->freelist;
2466 counters = page->counters;
2467 set_freepointer(s, object, prior);
2468 new.counters = counters;
2469 was_frozen = new.frozen;
2470 new.inuse--;
2471 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2472
2473 if (!kmem_cache_debug(s) && !prior)
2474
2475 /*
2476 * Slab was on no list before and will be partially empty
2477 * We can defer the list move and instead freeze it.
2478 */
2479 new.frozen = 1;
2480
2481 else { /* Needs to be taken off a list */
2482
2483 n = get_node(s, page_to_nid(page));
2484 /*
2485 * Speculatively acquire the list_lock.
2486 * If the cmpxchg does not succeed then we may
2487 * drop the list_lock without any processing.
2488 *
2489 * Otherwise the list_lock will synchronize with
2490 * other processors updating the list of slabs.
2491 */
2492 spin_lock_irqsave(&n->list_lock, flags);
2493
2494 }
2cfb7455
CL
2495 }
2496 inuse = new.inuse;
81819f0f 2497
2cfb7455
CL
2498 } while (!cmpxchg_double_slab(s, page,
2499 prior, counters,
2500 object, new.counters,
2501 "__slab_free"));
81819f0f 2502
2cfb7455 2503 if (likely(!n)) {
49e22585
CL
2504
2505 /*
2506 * If we just froze the page then put it onto the
2507 * per cpu partial list.
2508 */
8028dcea 2509 if (new.frozen && !was_frozen) {
49e22585 2510 put_cpu_partial(s, page, 1);
8028dcea
AS
2511 stat(s, CPU_PARTIAL_FREE);
2512 }
49e22585 2513 /*
2cfb7455
CL
2514 * The list lock was not taken therefore no list
2515 * activity can be necessary.
2516 */
2517 if (was_frozen)
2518 stat(s, FREE_FROZEN);
80f08c19 2519 return;
2cfb7455 2520 }
81819f0f
CL
2521
2522 /*
2cfb7455
CL
2523 * was_frozen may have been set after we acquired the list_lock in
2524 * an earlier loop. So we need to check it here again.
81819f0f 2525 */
2cfb7455
CL
2526 if (was_frozen)
2527 stat(s, FREE_FROZEN);
2528 else {
2529 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2530 goto slab_empty;
81819f0f 2531
2cfb7455
CL
2532 /*
2533 * Objects left in the slab. If it was not on the partial list before
2534 * then add it.
2535 */
2536 if (unlikely(!prior)) {
2537 remove_full(s, page);
136333d1 2538 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2539 stat(s, FREE_ADD_PARTIAL);
2540 }
8ff12cfc 2541 }
80f08c19 2542 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2543 return;
2544
2545slab_empty:
a973e9dd 2546 if (prior) {
81819f0f 2547 /*
6fbabb20 2548 * Slab on the partial list.
81819f0f 2549 */
5cc6eee8 2550 remove_partial(n, page);
84e554e6 2551 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2552 } else
2553 /* Slab must be on the full list */
2554 remove_full(s, page);
2cfb7455 2555
80f08c19 2556 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2557 stat(s, FREE_SLAB);
81819f0f 2558 discard_slab(s, page);
81819f0f
CL
2559}
2560
894b8788
CL
2561/*
2562 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2563 * can perform fastpath freeing without additional function calls.
2564 *
2565 * The fastpath is only possible if we are freeing to the current cpu slab
2566 * of this processor. This typically the case if we have just allocated
2567 * the item before.
2568 *
2569 * If fastpath is not possible then fall back to __slab_free where we deal
2570 * with all sorts of special processing.
2571 */
06428780 2572static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2573 struct page *page, void *x, unsigned long addr)
894b8788
CL
2574{
2575 void **object = (void *)x;
dfb4f096 2576 struct kmem_cache_cpu *c;
8a5ec0ba 2577 unsigned long tid;
1f84260c 2578
c016b0bd
CL
2579 slab_free_hook(s, x);
2580
8a5ec0ba
CL
2581redo:
2582 /*
2583 * Determine the currently cpus per cpu slab.
2584 * The cpu may change afterward. However that does not matter since
2585 * data is retrieved via this pointer. If we are on the same cpu
2586 * during the cmpxchg then the free will succedd.
2587 */
9dfc6e68 2588 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2589
8a5ec0ba
CL
2590 tid = c->tid;
2591 barrier();
c016b0bd 2592
442b06bc 2593 if (likely(page == c->page)) {
ff12059e 2594 set_freepointer(s, object, c->freelist);
8a5ec0ba 2595
933393f5 2596 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2597 s->cpu_slab->freelist, s->cpu_slab->tid,
2598 c->freelist, tid,
2599 object, next_tid(tid)))) {
2600
2601 note_cmpxchg_failure("slab_free", s, tid);
2602 goto redo;
2603 }
84e554e6 2604 stat(s, FREE_FASTPATH);
894b8788 2605 } else
ff12059e 2606 __slab_free(s, page, x, addr);
894b8788 2607
894b8788
CL
2608}
2609
81819f0f
CL
2610void kmem_cache_free(struct kmem_cache *s, void *x)
2611{
77c5e2d0 2612 struct page *page;
81819f0f 2613
b49af68f 2614 page = virt_to_head_page(x);
81819f0f 2615
ce71e27c 2616 slab_free(s, page, x, _RET_IP_);
5b882be4 2617
ca2b84cb 2618 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2619}
2620EXPORT_SYMBOL(kmem_cache_free);
2621
81819f0f 2622/*
672bba3a
CL
2623 * Object placement in a slab is made very easy because we always start at
2624 * offset 0. If we tune the size of the object to the alignment then we can
2625 * get the required alignment by putting one properly sized object after
2626 * another.
81819f0f
CL
2627 *
2628 * Notice that the allocation order determines the sizes of the per cpu
2629 * caches. Each processor has always one slab available for allocations.
2630 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2631 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2632 * locking overhead.
81819f0f
CL
2633 */
2634
2635/*
2636 * Mininum / Maximum order of slab pages. This influences locking overhead
2637 * and slab fragmentation. A higher order reduces the number of partial slabs
2638 * and increases the number of allocations possible without having to
2639 * take the list_lock.
2640 */
2641static int slub_min_order;
114e9e89 2642static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2643static int slub_min_objects;
81819f0f
CL
2644
2645/*
2646 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2647 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2648 */
2649static int slub_nomerge;
2650
81819f0f
CL
2651/*
2652 * Calculate the order of allocation given an slab object size.
2653 *
672bba3a
CL
2654 * The order of allocation has significant impact on performance and other
2655 * system components. Generally order 0 allocations should be preferred since
2656 * order 0 does not cause fragmentation in the page allocator. Larger objects
2657 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2658 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2659 * would be wasted.
2660 *
2661 * In order to reach satisfactory performance we must ensure that a minimum
2662 * number of objects is in one slab. Otherwise we may generate too much
2663 * activity on the partial lists which requires taking the list_lock. This is
2664 * less a concern for large slabs though which are rarely used.
81819f0f 2665 *
672bba3a
CL
2666 * slub_max_order specifies the order where we begin to stop considering the
2667 * number of objects in a slab as critical. If we reach slub_max_order then
2668 * we try to keep the page order as low as possible. So we accept more waste
2669 * of space in favor of a small page order.
81819f0f 2670 *
672bba3a
CL
2671 * Higher order allocations also allow the placement of more objects in a
2672 * slab and thereby reduce object handling overhead. If the user has
2673 * requested a higher mininum order then we start with that one instead of
2674 * the smallest order which will fit the object.
81819f0f 2675 */
5e6d444e 2676static inline int slab_order(int size, int min_objects,
ab9a0f19 2677 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2678{
2679 int order;
2680 int rem;
6300ea75 2681 int min_order = slub_min_order;
81819f0f 2682
ab9a0f19 2683 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2684 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2685
6300ea75 2686 for (order = max(min_order,
5e6d444e
CL
2687 fls(min_objects * size - 1) - PAGE_SHIFT);
2688 order <= max_order; order++) {
81819f0f 2689
5e6d444e 2690 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2691
ab9a0f19 2692 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2693 continue;
2694
ab9a0f19 2695 rem = (slab_size - reserved) % size;
81819f0f 2696
5e6d444e 2697 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2698 break;
2699
2700 }
672bba3a 2701
81819f0f
CL
2702 return order;
2703}
2704
ab9a0f19 2705static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2706{
2707 int order;
2708 int min_objects;
2709 int fraction;
e8120ff1 2710 int max_objects;
5e6d444e
CL
2711
2712 /*
2713 * Attempt to find best configuration for a slab. This
2714 * works by first attempting to generate a layout with
2715 * the best configuration and backing off gradually.
2716 *
2717 * First we reduce the acceptable waste in a slab. Then
2718 * we reduce the minimum objects required in a slab.
2719 */
2720 min_objects = slub_min_objects;
9b2cd506
CL
2721 if (!min_objects)
2722 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2723 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2724 min_objects = min(min_objects, max_objects);
2725
5e6d444e 2726 while (min_objects > 1) {
c124f5b5 2727 fraction = 16;
5e6d444e
CL
2728 while (fraction >= 4) {
2729 order = slab_order(size, min_objects,
ab9a0f19 2730 slub_max_order, fraction, reserved);
5e6d444e
CL
2731 if (order <= slub_max_order)
2732 return order;
2733 fraction /= 2;
2734 }
5086c389 2735 min_objects--;
5e6d444e
CL
2736 }
2737
2738 /*
2739 * We were unable to place multiple objects in a slab. Now
2740 * lets see if we can place a single object there.
2741 */
ab9a0f19 2742 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2743 if (order <= slub_max_order)
2744 return order;
2745
2746 /*
2747 * Doh this slab cannot be placed using slub_max_order.
2748 */
ab9a0f19 2749 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2750 if (order < MAX_ORDER)
5e6d444e
CL
2751 return order;
2752 return -ENOSYS;
2753}
2754
81819f0f 2755/*
672bba3a 2756 * Figure out what the alignment of the objects will be.
81819f0f
CL
2757 */
2758static unsigned long calculate_alignment(unsigned long flags,
2759 unsigned long align, unsigned long size)
2760{
2761 /*
6446faa2
CL
2762 * If the user wants hardware cache aligned objects then follow that
2763 * suggestion if the object is sufficiently large.
81819f0f 2764 *
6446faa2
CL
2765 * The hardware cache alignment cannot override the specified
2766 * alignment though. If that is greater then use it.
81819f0f 2767 */
b6210386
NP
2768 if (flags & SLAB_HWCACHE_ALIGN) {
2769 unsigned long ralign = cache_line_size();
2770 while (size <= ralign / 2)
2771 ralign /= 2;
2772 align = max(align, ralign);
2773 }
81819f0f
CL
2774
2775 if (align < ARCH_SLAB_MINALIGN)
b6210386 2776 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2777
2778 return ALIGN(align, sizeof(void *));
2779}
2780
5595cffc 2781static void
4053497d 2782init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2783{
2784 n->nr_partial = 0;
81819f0f
CL
2785 spin_lock_init(&n->list_lock);
2786 INIT_LIST_HEAD(&n->partial);
8ab1372f 2787#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2788 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2789 atomic_long_set(&n->total_objects, 0);
643b1138 2790 INIT_LIST_HEAD(&n->full);
8ab1372f 2791#endif
81819f0f
CL
2792}
2793
55136592 2794static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2795{
6c182dc0
CL
2796 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2797 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2798
8a5ec0ba 2799 /*
d4d84fef
CM
2800 * Must align to double word boundary for the double cmpxchg
2801 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2802 */
d4d84fef
CM
2803 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2804 2 * sizeof(void *));
8a5ec0ba
CL
2805
2806 if (!s->cpu_slab)
2807 return 0;
2808
2809 init_kmem_cache_cpus(s);
4c93c355 2810
8a5ec0ba 2811 return 1;
4c93c355 2812}
4c93c355 2813
51df1142
CL
2814static struct kmem_cache *kmem_cache_node;
2815
81819f0f
CL
2816/*
2817 * No kmalloc_node yet so do it by hand. We know that this is the first
2818 * slab on the node for this slabcache. There are no concurrent accesses
2819 * possible.
2820 *
2821 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2822 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2823 * memory on a fresh node that has no slab structures yet.
81819f0f 2824 */
55136592 2825static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2826{
2827 struct page *page;
2828 struct kmem_cache_node *n;
2829
51df1142 2830 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2831
51df1142 2832 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2833
2834 BUG_ON(!page);
a2f92ee7
CL
2835 if (page_to_nid(page) != node) {
2836 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2837 "node %d\n", node);
2838 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2839 "in order to be able to continue\n");
2840 }
2841
81819f0f
CL
2842 n = page->freelist;
2843 BUG_ON(!n);
51df1142 2844 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2845 page->inuse = 1;
8cb0a506 2846 page->frozen = 0;
51df1142 2847 kmem_cache_node->node[node] = n;
8ab1372f 2848#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2849 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2850 init_tracking(kmem_cache_node, n);
8ab1372f 2851#endif
4053497d 2852 init_kmem_cache_node(n);
51df1142 2853 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2854
136333d1 2855 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2856}
2857
2858static void free_kmem_cache_nodes(struct kmem_cache *s)
2859{
2860 int node;
2861
f64dc58c 2862 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2863 struct kmem_cache_node *n = s->node[node];
51df1142 2864
73367bd8 2865 if (n)
51df1142
CL
2866 kmem_cache_free(kmem_cache_node, n);
2867
81819f0f
CL
2868 s->node[node] = NULL;
2869 }
2870}
2871
55136592 2872static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2873{
2874 int node;
81819f0f 2875
f64dc58c 2876 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2877 struct kmem_cache_node *n;
2878
73367bd8 2879 if (slab_state == DOWN) {
55136592 2880 early_kmem_cache_node_alloc(node);
73367bd8
AD
2881 continue;
2882 }
51df1142 2883 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2884 GFP_KERNEL, node);
81819f0f 2885
73367bd8
AD
2886 if (!n) {
2887 free_kmem_cache_nodes(s);
2888 return 0;
81819f0f 2889 }
73367bd8 2890
81819f0f 2891 s->node[node] = n;
4053497d 2892 init_kmem_cache_node(n);
81819f0f
CL
2893 }
2894 return 1;
2895}
81819f0f 2896
c0bdb232 2897static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2898{
2899 if (min < MIN_PARTIAL)
2900 min = MIN_PARTIAL;
2901 else if (min > MAX_PARTIAL)
2902 min = MAX_PARTIAL;
2903 s->min_partial = min;
2904}
2905
81819f0f
CL
2906/*
2907 * calculate_sizes() determines the order and the distribution of data within
2908 * a slab object.
2909 */
06b285dc 2910static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2911{
2912 unsigned long flags = s->flags;
3b0efdfa 2913 unsigned long size = s->object_size;
81819f0f 2914 unsigned long align = s->align;
834f3d11 2915 int order;
81819f0f 2916
d8b42bf5
CL
2917 /*
2918 * Round up object size to the next word boundary. We can only
2919 * place the free pointer at word boundaries and this determines
2920 * the possible location of the free pointer.
2921 */
2922 size = ALIGN(size, sizeof(void *));
2923
2924#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2925 /*
2926 * Determine if we can poison the object itself. If the user of
2927 * the slab may touch the object after free or before allocation
2928 * then we should never poison the object itself.
2929 */
2930 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2931 !s->ctor)
81819f0f
CL
2932 s->flags |= __OBJECT_POISON;
2933 else
2934 s->flags &= ~__OBJECT_POISON;
2935
81819f0f
CL
2936
2937 /*
672bba3a 2938 * If we are Redzoning then check if there is some space between the
81819f0f 2939 * end of the object and the free pointer. If not then add an
672bba3a 2940 * additional word to have some bytes to store Redzone information.
81819f0f 2941 */
3b0efdfa 2942 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2943 size += sizeof(void *);
41ecc55b 2944#endif
81819f0f
CL
2945
2946 /*
672bba3a
CL
2947 * With that we have determined the number of bytes in actual use
2948 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2949 */
2950 s->inuse = size;
2951
2952 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2953 s->ctor)) {
81819f0f
CL
2954 /*
2955 * Relocate free pointer after the object if it is not
2956 * permitted to overwrite the first word of the object on
2957 * kmem_cache_free.
2958 *
2959 * This is the case if we do RCU, have a constructor or
2960 * destructor or are poisoning the objects.
2961 */
2962 s->offset = size;
2963 size += sizeof(void *);
2964 }
2965
c12b3c62 2966#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2967 if (flags & SLAB_STORE_USER)
2968 /*
2969 * Need to store information about allocs and frees after
2970 * the object.
2971 */
2972 size += 2 * sizeof(struct track);
2973
be7b3fbc 2974 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2975 /*
2976 * Add some empty padding so that we can catch
2977 * overwrites from earlier objects rather than let
2978 * tracking information or the free pointer be
0211a9c8 2979 * corrupted if a user writes before the start
81819f0f
CL
2980 * of the object.
2981 */
2982 size += sizeof(void *);
41ecc55b 2983#endif
672bba3a 2984
81819f0f
CL
2985 /*
2986 * Determine the alignment based on various parameters that the
65c02d4c
CL
2987 * user specified and the dynamic determination of cache line size
2988 * on bootup.
81819f0f 2989 */
3b0efdfa 2990 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2991 s->align = align;
81819f0f
CL
2992
2993 /*
2994 * SLUB stores one object immediately after another beginning from
2995 * offset 0. In order to align the objects we have to simply size
2996 * each object to conform to the alignment.
2997 */
2998 size = ALIGN(size, align);
2999 s->size = size;
06b285dc
CL
3000 if (forced_order >= 0)
3001 order = forced_order;
3002 else
ab9a0f19 3003 order = calculate_order(size, s->reserved);
81819f0f 3004
834f3d11 3005 if (order < 0)
81819f0f
CL
3006 return 0;
3007
b7a49f0d 3008 s->allocflags = 0;
834f3d11 3009 if (order)
b7a49f0d
CL
3010 s->allocflags |= __GFP_COMP;
3011
3012 if (s->flags & SLAB_CACHE_DMA)
3013 s->allocflags |= SLUB_DMA;
3014
3015 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3016 s->allocflags |= __GFP_RECLAIMABLE;
3017
81819f0f
CL
3018 /*
3019 * Determine the number of objects per slab
3020 */
ab9a0f19
LJ
3021 s->oo = oo_make(order, size, s->reserved);
3022 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3023 if (oo_objects(s->oo) > oo_objects(s->max))
3024 s->max = s->oo;
81819f0f 3025
834f3d11 3026 return !!oo_objects(s->oo);
81819f0f
CL
3027
3028}
3029
55136592 3030static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3031 const char *name, size_t size,
3032 size_t align, unsigned long flags,
51cc5068 3033 void (*ctor)(void *))
81819f0f
CL
3034{
3035 memset(s, 0, kmem_size);
3036 s->name = name;
3037 s->ctor = ctor;
3b0efdfa 3038 s->object_size = size;
81819f0f 3039 s->align = align;
ba0268a8 3040 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3041 s->reserved = 0;
81819f0f 3042
da9a638c
LJ
3043 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3044 s->reserved = sizeof(struct rcu_head);
81819f0f 3045
06b285dc 3046 if (!calculate_sizes(s, -1))
81819f0f 3047 goto error;
3de47213
DR
3048 if (disable_higher_order_debug) {
3049 /*
3050 * Disable debugging flags that store metadata if the min slab
3051 * order increased.
3052 */
3b0efdfa 3053 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3054 s->flags &= ~DEBUG_METADATA_FLAGS;
3055 s->offset = 0;
3056 if (!calculate_sizes(s, -1))
3057 goto error;
3058 }
3059 }
81819f0f 3060
2565409f
HC
3061#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3062 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3063 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3064 /* Enable fast mode */
3065 s->flags |= __CMPXCHG_DOUBLE;
3066#endif
3067
3b89d7d8
DR
3068 /*
3069 * The larger the object size is, the more pages we want on the partial
3070 * list to avoid pounding the page allocator excessively.
3071 */
49e22585
CL
3072 set_min_partial(s, ilog2(s->size) / 2);
3073
3074 /*
3075 * cpu_partial determined the maximum number of objects kept in the
3076 * per cpu partial lists of a processor.
3077 *
3078 * Per cpu partial lists mainly contain slabs that just have one
3079 * object freed. If they are used for allocation then they can be
3080 * filled up again with minimal effort. The slab will never hit the
3081 * per node partial lists and therefore no locking will be required.
3082 *
3083 * This setting also determines
3084 *
3085 * A) The number of objects from per cpu partial slabs dumped to the
3086 * per node list when we reach the limit.
9f264904 3087 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3088 * per node list when we run out of per cpu objects. We only fetch 50%
3089 * to keep some capacity around for frees.
3090 */
8f1e33da
CL
3091 if (kmem_cache_debug(s))
3092 s->cpu_partial = 0;
3093 else if (s->size >= PAGE_SIZE)
49e22585
CL
3094 s->cpu_partial = 2;
3095 else if (s->size >= 1024)
3096 s->cpu_partial = 6;
3097 else if (s->size >= 256)
3098 s->cpu_partial = 13;
3099 else
3100 s->cpu_partial = 30;
3101
81819f0f
CL
3102 s->refcount = 1;
3103#ifdef CONFIG_NUMA
e2cb96b7 3104 s->remote_node_defrag_ratio = 1000;
81819f0f 3105#endif
55136592 3106 if (!init_kmem_cache_nodes(s))
dfb4f096 3107 goto error;
81819f0f 3108
55136592 3109 if (alloc_kmem_cache_cpus(s))
81819f0f 3110 return 1;
ff12059e 3111
4c93c355 3112 free_kmem_cache_nodes(s);
81819f0f
CL
3113error:
3114 if (flags & SLAB_PANIC)
3115 panic("Cannot create slab %s size=%lu realsize=%u "
3116 "order=%u offset=%u flags=%lx\n",
834f3d11 3117 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3118 s->offset, flags);
3119 return 0;
3120}
81819f0f 3121
81819f0f
CL
3122/*
3123 * Determine the size of a slab object
3124 */
3125unsigned int kmem_cache_size(struct kmem_cache *s)
3126{
3b0efdfa 3127 return s->object_size;
81819f0f
CL
3128}
3129EXPORT_SYMBOL(kmem_cache_size);
3130
33b12c38
CL
3131static void list_slab_objects(struct kmem_cache *s, struct page *page,
3132 const char *text)
3133{
3134#ifdef CONFIG_SLUB_DEBUG
3135 void *addr = page_address(page);
3136 void *p;
a5dd5c11
NK
3137 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3138 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3139 if (!map)
3140 return;
33b12c38
CL
3141 slab_err(s, page, "%s", text);
3142 slab_lock(page);
33b12c38 3143
5f80b13a 3144 get_map(s, page, map);
33b12c38
CL
3145 for_each_object(p, s, addr, page->objects) {
3146
3147 if (!test_bit(slab_index(p, s, addr), map)) {
3148 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3149 p, p - addr);
3150 print_tracking(s, p);
3151 }
3152 }
3153 slab_unlock(page);
bbd7d57b 3154 kfree(map);
33b12c38
CL
3155#endif
3156}
3157
81819f0f 3158/*
599870b1 3159 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3160 * This is called from kmem_cache_close(). We must be the last thread
3161 * using the cache and therefore we do not need to lock anymore.
81819f0f 3162 */
599870b1 3163static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3164{
81819f0f
CL
3165 struct page *page, *h;
3166
33b12c38 3167 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3168 if (!page->inuse) {
5cc6eee8 3169 remove_partial(n, page);
81819f0f 3170 discard_slab(s, page);
33b12c38
CL
3171 } else {
3172 list_slab_objects(s, page,
3173 "Objects remaining on kmem_cache_close()");
599870b1 3174 }
33b12c38 3175 }
81819f0f
CL
3176}
3177
3178/*
672bba3a 3179 * Release all resources used by a slab cache.
81819f0f 3180 */
0c710013 3181static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3182{
3183 int node;
3184
3185 flush_all(s);
9dfc6e68 3186 free_percpu(s->cpu_slab);
81819f0f 3187 /* Attempt to free all objects */
f64dc58c 3188 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3189 struct kmem_cache_node *n = get_node(s, node);
3190
599870b1
CL
3191 free_partial(s, n);
3192 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3193 return 1;
3194 }
3195 free_kmem_cache_nodes(s);
3196 return 0;
3197}
3198
3199/*
3200 * Close a cache and release the kmem_cache structure
3201 * (must be used for caches created using kmem_cache_create)
3202 */
3203void kmem_cache_destroy(struct kmem_cache *s)
3204{
3205 down_write(&slub_lock);
3206 s->refcount--;
3207 if (!s->refcount) {
3208 list_del(&s->list);
69cb8e6b 3209 up_write(&slub_lock);
d629d819
PE
3210 if (kmem_cache_close(s)) {
3211 printk(KERN_ERR "SLUB %s: %s called for cache that "
3212 "still has objects.\n", s->name, __func__);
3213 dump_stack();
3214 }
d76b1590
ED
3215 if (s->flags & SLAB_DESTROY_BY_RCU)
3216 rcu_barrier();
81819f0f 3217 sysfs_slab_remove(s);
69cb8e6b
CL
3218 } else
3219 up_write(&slub_lock);
81819f0f
CL
3220}
3221EXPORT_SYMBOL(kmem_cache_destroy);
3222
3223/********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3226
51df1142 3227struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3228EXPORT_SYMBOL(kmalloc_caches);
3229
51df1142
CL
3230static struct kmem_cache *kmem_cache;
3231
55136592 3232#ifdef CONFIG_ZONE_DMA
51df1142 3233static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3234#endif
3235
81819f0f
CL
3236static int __init setup_slub_min_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_min_order);
81819f0f
CL
3239
3240 return 1;
3241}
3242
3243__setup("slub_min_order=", setup_slub_min_order);
3244
3245static int __init setup_slub_max_order(char *str)
3246{
06428780 3247 get_option(&str, &slub_max_order);
818cf590 3248 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_max_order=", setup_slub_max_order);
3254
3255static int __init setup_slub_min_objects(char *str)
3256{
06428780 3257 get_option(&str, &slub_min_objects);
81819f0f
CL
3258
3259 return 1;
3260}
3261
3262__setup("slub_min_objects=", setup_slub_min_objects);
3263
3264static int __init setup_slub_nomerge(char *str)
3265{
3266 slub_nomerge = 1;
3267 return 1;
3268}
3269
3270__setup("slub_nomerge", setup_slub_nomerge);
3271
51df1142
CL
3272static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3273 int size, unsigned int flags)
81819f0f 3274{
51df1142
CL
3275 struct kmem_cache *s;
3276
3277 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3278
83b519e8
PE
3279 /*
3280 * This function is called with IRQs disabled during early-boot on
3281 * single CPU so there's no need to take slub_lock here.
3282 */
55136592 3283 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3284 flags, NULL))
81819f0f
CL
3285 goto panic;
3286
3287 list_add(&s->list, &slab_caches);
51df1142 3288 return s;
81819f0f
CL
3289
3290panic:
3291 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3292 return NULL;
81819f0f
CL
3293}
3294
f1b26339
CL
3295/*
3296 * Conversion table for small slabs sizes / 8 to the index in the
3297 * kmalloc array. This is necessary for slabs < 192 since we have non power
3298 * of two cache sizes there. The size of larger slabs can be determined using
3299 * fls.
3300 */
3301static s8 size_index[24] = {
3302 3, /* 8 */
3303 4, /* 16 */
3304 5, /* 24 */
3305 5, /* 32 */
3306 6, /* 40 */
3307 6, /* 48 */
3308 6, /* 56 */
3309 6, /* 64 */
3310 1, /* 72 */
3311 1, /* 80 */
3312 1, /* 88 */
3313 1, /* 96 */
3314 7, /* 104 */
3315 7, /* 112 */
3316 7, /* 120 */
3317 7, /* 128 */
3318 2, /* 136 */
3319 2, /* 144 */
3320 2, /* 152 */
3321 2, /* 160 */
3322 2, /* 168 */
3323 2, /* 176 */
3324 2, /* 184 */
3325 2 /* 192 */
3326};
3327
acdfcd04
AK
3328static inline int size_index_elem(size_t bytes)
3329{
3330 return (bytes - 1) / 8;
3331}
3332
81819f0f
CL
3333static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3334{
f1b26339 3335 int index;
81819f0f 3336
f1b26339
CL
3337 if (size <= 192) {
3338 if (!size)
3339 return ZERO_SIZE_PTR;
81819f0f 3340
acdfcd04 3341 index = size_index[size_index_elem(size)];
aadb4bc4 3342 } else
f1b26339 3343 index = fls(size - 1);
81819f0f
CL
3344
3345#ifdef CONFIG_ZONE_DMA
f1b26339 3346 if (unlikely((flags & SLUB_DMA)))
51df1142 3347 return kmalloc_dma_caches[index];
f1b26339 3348
81819f0f 3349#endif
51df1142 3350 return kmalloc_caches[index];
81819f0f
CL
3351}
3352
3353void *__kmalloc(size_t size, gfp_t flags)
3354{
aadb4bc4 3355 struct kmem_cache *s;
5b882be4 3356 void *ret;
81819f0f 3357
ffadd4d0 3358 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3359 return kmalloc_large(size, flags);
aadb4bc4
CL
3360
3361 s = get_slab(size, flags);
3362
3363 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3364 return s;
3365
2154a336 3366 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3367
ca2b84cb 3368 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3369
3370 return ret;
81819f0f
CL
3371}
3372EXPORT_SYMBOL(__kmalloc);
3373
5d1f57e4 3374#ifdef CONFIG_NUMA
f619cfe1
CL
3375static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3376{
b1eeab67 3377 struct page *page;
e4f7c0b4 3378 void *ptr = NULL;
f619cfe1 3379
b1eeab67
VN
3380 flags |= __GFP_COMP | __GFP_NOTRACK;
3381 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3382 if (page)
e4f7c0b4
CM
3383 ptr = page_address(page);
3384
3385 kmemleak_alloc(ptr, size, 1, flags);
3386 return ptr;
f619cfe1
CL
3387}
3388
81819f0f
CL
3389void *__kmalloc_node(size_t size, gfp_t flags, int node)
3390{
aadb4bc4 3391 struct kmem_cache *s;
5b882be4 3392 void *ret;
81819f0f 3393
057685cf 3394 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3395 ret = kmalloc_large_node(size, flags, node);
3396
ca2b84cb
EGM
3397 trace_kmalloc_node(_RET_IP_, ret,
3398 size, PAGE_SIZE << get_order(size),
3399 flags, node);
5b882be4
EGM
3400
3401 return ret;
3402 }
aadb4bc4
CL
3403
3404 s = get_slab(size, flags);
3405
3406 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3407 return s;
3408
5b882be4
EGM
3409 ret = slab_alloc(s, flags, node, _RET_IP_);
3410
ca2b84cb 3411 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3412
3413 return ret;
81819f0f
CL
3414}
3415EXPORT_SYMBOL(__kmalloc_node);
3416#endif
3417
3418size_t ksize(const void *object)
3419{
272c1d21 3420 struct page *page;
81819f0f 3421
ef8b4520 3422 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3423 return 0;
3424
294a80a8 3425 page = virt_to_head_page(object);
294a80a8 3426
76994412
PE
3427 if (unlikely(!PageSlab(page))) {
3428 WARN_ON(!PageCompound(page));
294a80a8 3429 return PAGE_SIZE << compound_order(page);
76994412 3430 }
81819f0f 3431
b3d41885 3432 return slab_ksize(page->slab);
81819f0f 3433}
b1aabecd 3434EXPORT_SYMBOL(ksize);
81819f0f 3435
d18a90dd
BG
3436#ifdef CONFIG_SLUB_DEBUG
3437bool verify_mem_not_deleted(const void *x)
3438{
3439 struct page *page;
3440 void *object = (void *)x;
3441 unsigned long flags;
3442 bool rv;
3443
3444 if (unlikely(ZERO_OR_NULL_PTR(x)))
3445 return false;
3446
3447 local_irq_save(flags);
3448
3449 page = virt_to_head_page(x);
3450 if (unlikely(!PageSlab(page))) {
3451 /* maybe it was from stack? */
3452 rv = true;
3453 goto out_unlock;
3454 }
3455
3456 slab_lock(page);
3457 if (on_freelist(page->slab, page, object)) {
3458 object_err(page->slab, page, object, "Object is on free-list");
3459 rv = false;
3460 } else {
3461 rv = true;
3462 }
3463 slab_unlock(page);
3464
3465out_unlock:
3466 local_irq_restore(flags);
3467 return rv;
3468}
3469EXPORT_SYMBOL(verify_mem_not_deleted);
3470#endif
3471
81819f0f
CL
3472void kfree(const void *x)
3473{
81819f0f 3474 struct page *page;
5bb983b0 3475 void *object = (void *)x;
81819f0f 3476
2121db74
PE
3477 trace_kfree(_RET_IP_, x);
3478
2408c550 3479 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3480 return;
3481
b49af68f 3482 page = virt_to_head_page(x);
aadb4bc4 3483 if (unlikely(!PageSlab(page))) {
0937502a 3484 BUG_ON(!PageCompound(page));
e4f7c0b4 3485 kmemleak_free(x);
aadb4bc4
CL
3486 put_page(page);
3487 return;
3488 }
ce71e27c 3489 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3490}
3491EXPORT_SYMBOL(kfree);
3492
2086d26a 3493/*
672bba3a
CL
3494 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3495 * the remaining slabs by the number of items in use. The slabs with the
3496 * most items in use come first. New allocations will then fill those up
3497 * and thus they can be removed from the partial lists.
3498 *
3499 * The slabs with the least items are placed last. This results in them
3500 * being allocated from last increasing the chance that the last objects
3501 * are freed in them.
2086d26a
CL
3502 */
3503int kmem_cache_shrink(struct kmem_cache *s)
3504{
3505 int node;
3506 int i;
3507 struct kmem_cache_node *n;
3508 struct page *page;
3509 struct page *t;
205ab99d 3510 int objects = oo_objects(s->max);
2086d26a 3511 struct list_head *slabs_by_inuse =
834f3d11 3512 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3513 unsigned long flags;
3514
3515 if (!slabs_by_inuse)
3516 return -ENOMEM;
3517
3518 flush_all(s);
f64dc58c 3519 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3520 n = get_node(s, node);
3521
3522 if (!n->nr_partial)
3523 continue;
3524
834f3d11 3525 for (i = 0; i < objects; i++)
2086d26a
CL
3526 INIT_LIST_HEAD(slabs_by_inuse + i);
3527
3528 spin_lock_irqsave(&n->list_lock, flags);
3529
3530 /*
672bba3a 3531 * Build lists indexed by the items in use in each slab.
2086d26a 3532 *
672bba3a
CL
3533 * Note that concurrent frees may occur while we hold the
3534 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3535 */
3536 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3537 list_move(&page->lru, slabs_by_inuse + page->inuse);
3538 if (!page->inuse)
3539 n->nr_partial--;
2086d26a
CL
3540 }
3541
2086d26a 3542 /*
672bba3a
CL
3543 * Rebuild the partial list with the slabs filled up most
3544 * first and the least used slabs at the end.
2086d26a 3545 */
69cb8e6b 3546 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3547 list_splice(slabs_by_inuse + i, n->partial.prev);
3548
2086d26a 3549 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3550
3551 /* Release empty slabs */
3552 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3553 discard_slab(s, page);
2086d26a
CL
3554 }
3555
3556 kfree(slabs_by_inuse);
3557 return 0;
3558}
3559EXPORT_SYMBOL(kmem_cache_shrink);
3560
92a5bbc1 3561#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3562static int slab_mem_going_offline_callback(void *arg)
3563{
3564 struct kmem_cache *s;
3565
3566 down_read(&slub_lock);
3567 list_for_each_entry(s, &slab_caches, list)
3568 kmem_cache_shrink(s);
3569 up_read(&slub_lock);
3570
3571 return 0;
3572}
3573
3574static void slab_mem_offline_callback(void *arg)
3575{
3576 struct kmem_cache_node *n;
3577 struct kmem_cache *s;
3578 struct memory_notify *marg = arg;
3579 int offline_node;
3580
3581 offline_node = marg->status_change_nid;
3582
3583 /*
3584 * If the node still has available memory. we need kmem_cache_node
3585 * for it yet.
3586 */
3587 if (offline_node < 0)
3588 return;
3589
3590 down_read(&slub_lock);
3591 list_for_each_entry(s, &slab_caches, list) {
3592 n = get_node(s, offline_node);
3593 if (n) {
3594 /*
3595 * if n->nr_slabs > 0, slabs still exist on the node
3596 * that is going down. We were unable to free them,
c9404c9c 3597 * and offline_pages() function shouldn't call this
b9049e23
YG
3598 * callback. So, we must fail.
3599 */
0f389ec6 3600 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3601
3602 s->node[offline_node] = NULL;
8de66a0c 3603 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3604 }
3605 }
3606 up_read(&slub_lock);
3607}
3608
3609static int slab_mem_going_online_callback(void *arg)
3610{
3611 struct kmem_cache_node *n;
3612 struct kmem_cache *s;
3613 struct memory_notify *marg = arg;
3614 int nid = marg->status_change_nid;
3615 int ret = 0;
3616
3617 /*
3618 * If the node's memory is already available, then kmem_cache_node is
3619 * already created. Nothing to do.
3620 */
3621 if (nid < 0)
3622 return 0;
3623
3624 /*
0121c619 3625 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3626 * allocate a kmem_cache_node structure in order to bring the node
3627 * online.
3628 */
3629 down_read(&slub_lock);
3630 list_for_each_entry(s, &slab_caches, list) {
3631 /*
3632 * XXX: kmem_cache_alloc_node will fallback to other nodes
3633 * since memory is not yet available from the node that
3634 * is brought up.
3635 */
8de66a0c 3636 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3637 if (!n) {
3638 ret = -ENOMEM;
3639 goto out;
3640 }
4053497d 3641 init_kmem_cache_node(n);
b9049e23
YG
3642 s->node[nid] = n;
3643 }
3644out:
3645 up_read(&slub_lock);
3646 return ret;
3647}
3648
3649static int slab_memory_callback(struct notifier_block *self,
3650 unsigned long action, void *arg)
3651{
3652 int ret = 0;
3653
3654 switch (action) {
3655 case MEM_GOING_ONLINE:
3656 ret = slab_mem_going_online_callback(arg);
3657 break;
3658 case MEM_GOING_OFFLINE:
3659 ret = slab_mem_going_offline_callback(arg);
3660 break;
3661 case MEM_OFFLINE:
3662 case MEM_CANCEL_ONLINE:
3663 slab_mem_offline_callback(arg);
3664 break;
3665 case MEM_ONLINE:
3666 case MEM_CANCEL_OFFLINE:
3667 break;
3668 }
dc19f9db
KH
3669 if (ret)
3670 ret = notifier_from_errno(ret);
3671 else
3672 ret = NOTIFY_OK;
b9049e23
YG
3673 return ret;
3674}
3675
3676#endif /* CONFIG_MEMORY_HOTPLUG */
3677
81819f0f
CL
3678/********************************************************************
3679 * Basic setup of slabs
3680 *******************************************************************/
3681
51df1142
CL
3682/*
3683 * Used for early kmem_cache structures that were allocated using
3684 * the page allocator
3685 */
3686
3687static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3688{
3689 int node;
3690
3691 list_add(&s->list, &slab_caches);
3692 s->refcount = -1;
3693
3694 for_each_node_state(node, N_NORMAL_MEMORY) {
3695 struct kmem_cache_node *n = get_node(s, node);
3696 struct page *p;
3697
3698 if (n) {
3699 list_for_each_entry(p, &n->partial, lru)
3700 p->slab = s;
3701
607bf324 3702#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3703 list_for_each_entry(p, &n->full, lru)
3704 p->slab = s;
3705#endif
3706 }
3707 }
3708}
3709
81819f0f
CL
3710void __init kmem_cache_init(void)
3711{
3712 int i;
4b356be0 3713 int caches = 0;
51df1142
CL
3714 struct kmem_cache *temp_kmem_cache;
3715 int order;
51df1142
CL
3716 struct kmem_cache *temp_kmem_cache_node;
3717 unsigned long kmalloc_size;
3718
fc8d8620
SG
3719 if (debug_guardpage_minorder())
3720 slub_max_order = 0;
3721
51df1142
CL
3722 kmem_size = offsetof(struct kmem_cache, node) +
3723 nr_node_ids * sizeof(struct kmem_cache_node *);
3724
3725 /* Allocate two kmem_caches from the page allocator */
3726 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3727 order = get_order(2 * kmalloc_size);
3728 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3729
81819f0f
CL
3730 /*
3731 * Must first have the slab cache available for the allocations of the
672bba3a 3732 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3733 * kmem_cache_open for slab_state == DOWN.
3734 */
51df1142
CL
3735 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3736
3737 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3738 sizeof(struct kmem_cache_node),
3739 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3740
0c40ba4f 3741 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3742
3743 /* Able to allocate the per node structures */
3744 slab_state = PARTIAL;
3745
51df1142
CL
3746 temp_kmem_cache = kmem_cache;
3747 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3748 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3749 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3750 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3751
51df1142
CL
3752 /*
3753 * Allocate kmem_cache_node properly from the kmem_cache slab.
3754 * kmem_cache_node is separately allocated so no need to
3755 * update any list pointers.
3756 */
3757 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3758
51df1142
CL
3759 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3760 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3761
3762 kmem_cache_bootstrap_fixup(kmem_cache_node);
3763
3764 caches++;
51df1142
CL
3765 kmem_cache_bootstrap_fixup(kmem_cache);
3766 caches++;
3767 /* Free temporary boot structure */
3768 free_pages((unsigned long)temp_kmem_cache, order);
3769
3770 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3771
3772 /*
3773 * Patch up the size_index table if we have strange large alignment
3774 * requirements for the kmalloc array. This is only the case for
6446faa2 3775 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3776 *
3777 * Largest permitted alignment is 256 bytes due to the way we
3778 * handle the index determination for the smaller caches.
3779 *
3780 * Make sure that nothing crazy happens if someone starts tinkering
3781 * around with ARCH_KMALLOC_MINALIGN
3782 */
3783 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3784 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3785
acdfcd04
AK
3786 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3787 int elem = size_index_elem(i);
3788 if (elem >= ARRAY_SIZE(size_index))
3789 break;
3790 size_index[elem] = KMALLOC_SHIFT_LOW;
3791 }
f1b26339 3792
acdfcd04
AK
3793 if (KMALLOC_MIN_SIZE == 64) {
3794 /*
3795 * The 96 byte size cache is not used if the alignment
3796 * is 64 byte.
3797 */
3798 for (i = 64 + 8; i <= 96; i += 8)
3799 size_index[size_index_elem(i)] = 7;
3800 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3801 /*
3802 * The 192 byte sized cache is not used if the alignment
3803 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3804 * instead.
3805 */
3806 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3807 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3808 }
3809
51df1142
CL
3810 /* Caches that are not of the two-to-the-power-of size */
3811 if (KMALLOC_MIN_SIZE <= 32) {
3812 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3813 caches++;
3814 }
3815
3816 if (KMALLOC_MIN_SIZE <= 64) {
3817 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3818 caches++;
3819 }
3820
3821 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3822 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3823 caches++;
3824 }
3825
81819f0f
CL
3826 slab_state = UP;
3827
3828 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3829 if (KMALLOC_MIN_SIZE <= 32) {
3830 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3831 BUG_ON(!kmalloc_caches[1]->name);
3832 }
3833
3834 if (KMALLOC_MIN_SIZE <= 64) {
3835 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3836 BUG_ON(!kmalloc_caches[2]->name);
3837 }
3838
d7278bd7
CL
3839 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3840 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3841
3842 BUG_ON(!s);
51df1142 3843 kmalloc_caches[i]->name = s;
d7278bd7 3844 }
81819f0f
CL
3845
3846#ifdef CONFIG_SMP
3847 register_cpu_notifier(&slab_notifier);
9dfc6e68 3848#endif
81819f0f 3849
55136592 3850#ifdef CONFIG_ZONE_DMA
51df1142
CL
3851 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3852 struct kmem_cache *s = kmalloc_caches[i];
55136592 3853
51df1142 3854 if (s && s->size) {
55136592 3855 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3856 "dma-kmalloc-%d", s->object_size);
55136592
CL
3857
3858 BUG_ON(!name);
51df1142 3859 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3860 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3861 }
3862 }
3863#endif
3adbefee
IM
3864 printk(KERN_INFO
3865 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3866 " CPUs=%d, Nodes=%d\n",
3867 caches, cache_line_size(),
81819f0f
CL
3868 slub_min_order, slub_max_order, slub_min_objects,
3869 nr_cpu_ids, nr_node_ids);
3870}
3871
7e85ee0c
PE
3872void __init kmem_cache_init_late(void)
3873{
7e85ee0c
PE
3874}
3875
81819f0f
CL
3876/*
3877 * Find a mergeable slab cache
3878 */
3879static int slab_unmergeable(struct kmem_cache *s)
3880{
3881 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3882 return 1;
3883
c59def9f 3884 if (s->ctor)
81819f0f
CL
3885 return 1;
3886
8ffa6875
CL
3887 /*
3888 * We may have set a slab to be unmergeable during bootstrap.
3889 */
3890 if (s->refcount < 0)
3891 return 1;
3892
81819f0f
CL
3893 return 0;
3894}
3895
3896static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3897 size_t align, unsigned long flags, const char *name,
51cc5068 3898 void (*ctor)(void *))
81819f0f 3899{
5b95a4ac 3900 struct kmem_cache *s;
81819f0f
CL
3901
3902 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3903 return NULL;
3904
c59def9f 3905 if (ctor)
81819f0f
CL
3906 return NULL;
3907
3908 size = ALIGN(size, sizeof(void *));
3909 align = calculate_alignment(flags, align, size);
3910 size = ALIGN(size, align);
ba0268a8 3911 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3912
5b95a4ac 3913 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3914 if (slab_unmergeable(s))
3915 continue;
3916
3917 if (size > s->size)
3918 continue;
3919
ba0268a8 3920 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3921 continue;
3922 /*
3923 * Check if alignment is compatible.
3924 * Courtesy of Adrian Drzewiecki
3925 */
06428780 3926 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3927 continue;
3928
3929 if (s->size - size >= sizeof(void *))
3930 continue;
3931
3932 return s;
3933 }
3934 return NULL;
3935}
3936
3937struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3938 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3939{
3940 struct kmem_cache *s;
84c1cf62 3941 char *n;
81819f0f 3942
fe1ff49d
BH
3943 if (WARN_ON(!name))
3944 return NULL;
3945
81819f0f 3946 down_write(&slub_lock);
ba0268a8 3947 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3948 if (s) {
3949 s->refcount++;
3950 /*
3951 * Adjust the object sizes so that we clear
3952 * the complete object on kzalloc.
3953 */
3b0efdfa 3954 s->object_size = max(s->object_size, (int)size);
81819f0f 3955 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3956
7b8f3b66 3957 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3958 s->refcount--;
81819f0f 3959 goto err;
7b8f3b66 3960 }
2bce6485 3961 up_write(&slub_lock);
a0e1d1be
CL
3962 return s;
3963 }
6446faa2 3964
84c1cf62
PE
3965 n = kstrdup(name, GFP_KERNEL);
3966 if (!n)
3967 goto err;
3968
a0e1d1be
CL
3969 s = kmalloc(kmem_size, GFP_KERNEL);
3970 if (s) {
84c1cf62 3971 if (kmem_cache_open(s, n,
c59def9f 3972 size, align, flags, ctor)) {
81819f0f 3973 list_add(&s->list, &slab_caches);
66c4c35c 3974 up_write(&slub_lock);
7b8f3b66 3975 if (sysfs_slab_add(s)) {
66c4c35c 3976 down_write(&slub_lock);
7b8f3b66 3977 list_del(&s->list);
84c1cf62 3978 kfree(n);
7b8f3b66 3979 kfree(s);
a0e1d1be 3980 goto err;
7b8f3b66 3981 }
a0e1d1be
CL
3982 return s;
3983 }
3984 kfree(s);
81819f0f 3985 }
601d39d0 3986 kfree(n);
68cee4f1 3987err:
81819f0f 3988 up_write(&slub_lock);
81819f0f 3989
81819f0f
CL
3990 if (flags & SLAB_PANIC)
3991 panic("Cannot create slabcache %s\n", name);
3992 else
3993 s = NULL;
3994 return s;
3995}
3996EXPORT_SYMBOL(kmem_cache_create);
3997
81819f0f 3998#ifdef CONFIG_SMP
81819f0f 3999/*
672bba3a
CL
4000 * Use the cpu notifier to insure that the cpu slabs are flushed when
4001 * necessary.
81819f0f
CL
4002 */
4003static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
4004 unsigned long action, void *hcpu)
4005{
4006 long cpu = (long)hcpu;
5b95a4ac
CL
4007 struct kmem_cache *s;
4008 unsigned long flags;
81819f0f
CL
4009
4010 switch (action) {
4011 case CPU_UP_CANCELED:
8bb78442 4012 case CPU_UP_CANCELED_FROZEN:
81819f0f 4013 case CPU_DEAD:
8bb78442 4014 case CPU_DEAD_FROZEN:
5b95a4ac
CL
4015 down_read(&slub_lock);
4016 list_for_each_entry(s, &slab_caches, list) {
4017 local_irq_save(flags);
4018 __flush_cpu_slab(s, cpu);
4019 local_irq_restore(flags);
4020 }
4021 up_read(&slub_lock);
81819f0f
CL
4022 break;
4023 default:
4024 break;
4025 }
4026 return NOTIFY_OK;
4027}
4028
06428780 4029static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4030 .notifier_call = slab_cpuup_callback
06428780 4031};
81819f0f
CL
4032
4033#endif
4034
ce71e27c 4035void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4036{
aadb4bc4 4037 struct kmem_cache *s;
94b528d0 4038 void *ret;
aadb4bc4 4039
ffadd4d0 4040 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4041 return kmalloc_large(size, gfpflags);
4042
aadb4bc4 4043 s = get_slab(size, gfpflags);
81819f0f 4044
2408c550 4045 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4046 return s;
81819f0f 4047
2154a336 4048 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4049
25985edc 4050 /* Honor the call site pointer we received. */
ca2b84cb 4051 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4052
4053 return ret;
81819f0f
CL
4054}
4055
5d1f57e4 4056#ifdef CONFIG_NUMA
81819f0f 4057void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4058 int node, unsigned long caller)
81819f0f 4059{
aadb4bc4 4060 struct kmem_cache *s;
94b528d0 4061 void *ret;
aadb4bc4 4062
d3e14aa3
XF
4063 if (unlikely(size > SLUB_MAX_SIZE)) {
4064 ret = kmalloc_large_node(size, gfpflags, node);
4065
4066 trace_kmalloc_node(caller, ret,
4067 size, PAGE_SIZE << get_order(size),
4068 gfpflags, node);
4069
4070 return ret;
4071 }
eada35ef 4072
aadb4bc4 4073 s = get_slab(size, gfpflags);
81819f0f 4074
2408c550 4075 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4076 return s;
81819f0f 4077
94b528d0
EGM
4078 ret = slab_alloc(s, gfpflags, node, caller);
4079
25985edc 4080 /* Honor the call site pointer we received. */
ca2b84cb 4081 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4082
4083 return ret;
81819f0f 4084}
5d1f57e4 4085#endif
81819f0f 4086
ab4d5ed5 4087#ifdef CONFIG_SYSFS
205ab99d
CL
4088static int count_inuse(struct page *page)
4089{
4090 return page->inuse;
4091}
4092
4093static int count_total(struct page *page)
4094{
4095 return page->objects;
4096}
ab4d5ed5 4097#endif
205ab99d 4098
ab4d5ed5 4099#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4100static int validate_slab(struct kmem_cache *s, struct page *page,
4101 unsigned long *map)
53e15af0
CL
4102{
4103 void *p;
a973e9dd 4104 void *addr = page_address(page);
53e15af0
CL
4105
4106 if (!check_slab(s, page) ||
4107 !on_freelist(s, page, NULL))
4108 return 0;
4109
4110 /* Now we know that a valid freelist exists */
39b26464 4111 bitmap_zero(map, page->objects);
53e15af0 4112
5f80b13a
CL
4113 get_map(s, page, map);
4114 for_each_object(p, s, addr, page->objects) {
4115 if (test_bit(slab_index(p, s, addr), map))
4116 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4117 return 0;
53e15af0
CL
4118 }
4119
224a88be 4120 for_each_object(p, s, addr, page->objects)
7656c72b 4121 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4122 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4123 return 0;
4124 return 1;
4125}
4126
434e245d
CL
4127static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4128 unsigned long *map)
53e15af0 4129{
881db7fb
CL
4130 slab_lock(page);
4131 validate_slab(s, page, map);
4132 slab_unlock(page);
53e15af0
CL
4133}
4134
434e245d
CL
4135static int validate_slab_node(struct kmem_cache *s,
4136 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4137{
4138 unsigned long count = 0;
4139 struct page *page;
4140 unsigned long flags;
4141
4142 spin_lock_irqsave(&n->list_lock, flags);
4143
4144 list_for_each_entry(page, &n->partial, lru) {
434e245d 4145 validate_slab_slab(s, page, map);
53e15af0
CL
4146 count++;
4147 }
4148 if (count != n->nr_partial)
4149 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4150 "counter=%ld\n", s->name, count, n->nr_partial);
4151
4152 if (!(s->flags & SLAB_STORE_USER))
4153 goto out;
4154
4155 list_for_each_entry(page, &n->full, lru) {
434e245d 4156 validate_slab_slab(s, page, map);
53e15af0
CL
4157 count++;
4158 }
4159 if (count != atomic_long_read(&n->nr_slabs))
4160 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4161 "counter=%ld\n", s->name, count,
4162 atomic_long_read(&n->nr_slabs));
4163
4164out:
4165 spin_unlock_irqrestore(&n->list_lock, flags);
4166 return count;
4167}
4168
434e245d 4169static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4170{
4171 int node;
4172 unsigned long count = 0;
205ab99d 4173 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4174 sizeof(unsigned long), GFP_KERNEL);
4175
4176 if (!map)
4177 return -ENOMEM;
53e15af0
CL
4178
4179 flush_all(s);
f64dc58c 4180 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4181 struct kmem_cache_node *n = get_node(s, node);
4182
434e245d 4183 count += validate_slab_node(s, n, map);
53e15af0 4184 }
434e245d 4185 kfree(map);
53e15af0
CL
4186 return count;
4187}
88a420e4 4188/*
672bba3a 4189 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4190 * and freed.
4191 */
4192
4193struct location {
4194 unsigned long count;
ce71e27c 4195 unsigned long addr;
45edfa58
CL
4196 long long sum_time;
4197 long min_time;
4198 long max_time;
4199 long min_pid;
4200 long max_pid;
174596a0 4201 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4202 nodemask_t nodes;
88a420e4
CL
4203};
4204
4205struct loc_track {
4206 unsigned long max;
4207 unsigned long count;
4208 struct location *loc;
4209};
4210
4211static void free_loc_track(struct loc_track *t)
4212{
4213 if (t->max)
4214 free_pages((unsigned long)t->loc,
4215 get_order(sizeof(struct location) * t->max));
4216}
4217
68dff6a9 4218static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4219{
4220 struct location *l;
4221 int order;
4222
88a420e4
CL
4223 order = get_order(sizeof(struct location) * max);
4224
68dff6a9 4225 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4226 if (!l)
4227 return 0;
4228
4229 if (t->count) {
4230 memcpy(l, t->loc, sizeof(struct location) * t->count);
4231 free_loc_track(t);
4232 }
4233 t->max = max;
4234 t->loc = l;
4235 return 1;
4236}
4237
4238static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4239 const struct track *track)
88a420e4
CL
4240{
4241 long start, end, pos;
4242 struct location *l;
ce71e27c 4243 unsigned long caddr;
45edfa58 4244 unsigned long age = jiffies - track->when;
88a420e4
CL
4245
4246 start = -1;
4247 end = t->count;
4248
4249 for ( ; ; ) {
4250 pos = start + (end - start + 1) / 2;
4251
4252 /*
4253 * There is nothing at "end". If we end up there
4254 * we need to add something to before end.
4255 */
4256 if (pos == end)
4257 break;
4258
4259 caddr = t->loc[pos].addr;
45edfa58
CL
4260 if (track->addr == caddr) {
4261
4262 l = &t->loc[pos];
4263 l->count++;
4264 if (track->when) {
4265 l->sum_time += age;
4266 if (age < l->min_time)
4267 l->min_time = age;
4268 if (age > l->max_time)
4269 l->max_time = age;
4270
4271 if (track->pid < l->min_pid)
4272 l->min_pid = track->pid;
4273 if (track->pid > l->max_pid)
4274 l->max_pid = track->pid;
4275
174596a0
RR
4276 cpumask_set_cpu(track->cpu,
4277 to_cpumask(l->cpus));
45edfa58
CL
4278 }
4279 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4280 return 1;
4281 }
4282
45edfa58 4283 if (track->addr < caddr)
88a420e4
CL
4284 end = pos;
4285 else
4286 start = pos;
4287 }
4288
4289 /*
672bba3a 4290 * Not found. Insert new tracking element.
88a420e4 4291 */
68dff6a9 4292 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4293 return 0;
4294
4295 l = t->loc + pos;
4296 if (pos < t->count)
4297 memmove(l + 1, l,
4298 (t->count - pos) * sizeof(struct location));
4299 t->count++;
4300 l->count = 1;
45edfa58
CL
4301 l->addr = track->addr;
4302 l->sum_time = age;
4303 l->min_time = age;
4304 l->max_time = age;
4305 l->min_pid = track->pid;
4306 l->max_pid = track->pid;
174596a0
RR
4307 cpumask_clear(to_cpumask(l->cpus));
4308 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4309 nodes_clear(l->nodes);
4310 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4311 return 1;
4312}
4313
4314static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4315 struct page *page, enum track_item alloc,
a5dd5c11 4316 unsigned long *map)
88a420e4 4317{
a973e9dd 4318 void *addr = page_address(page);
88a420e4
CL
4319 void *p;
4320
39b26464 4321 bitmap_zero(map, page->objects);
5f80b13a 4322 get_map(s, page, map);
88a420e4 4323
224a88be 4324 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4325 if (!test_bit(slab_index(p, s, addr), map))
4326 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4327}
4328
4329static int list_locations(struct kmem_cache *s, char *buf,
4330 enum track_item alloc)
4331{
e374d483 4332 int len = 0;
88a420e4 4333 unsigned long i;
68dff6a9 4334 struct loc_track t = { 0, 0, NULL };
88a420e4 4335 int node;
bbd7d57b
ED
4336 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4337 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4338
bbd7d57b
ED
4339 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4340 GFP_TEMPORARY)) {
4341 kfree(map);
68dff6a9 4342 return sprintf(buf, "Out of memory\n");
bbd7d57b 4343 }
88a420e4
CL
4344 /* Push back cpu slabs */
4345 flush_all(s);
4346
f64dc58c 4347 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4348 struct kmem_cache_node *n = get_node(s, node);
4349 unsigned long flags;
4350 struct page *page;
4351
9e86943b 4352 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4353 continue;
4354
4355 spin_lock_irqsave(&n->list_lock, flags);
4356 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4357 process_slab(&t, s, page, alloc, map);
88a420e4 4358 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4359 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4360 spin_unlock_irqrestore(&n->list_lock, flags);
4361 }
4362
4363 for (i = 0; i < t.count; i++) {
45edfa58 4364 struct location *l = &t.loc[i];
88a420e4 4365
9c246247 4366 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4367 break;
e374d483 4368 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4369
4370 if (l->addr)
62c70bce 4371 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4372 else
e374d483 4373 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4374
4375 if (l->sum_time != l->min_time) {
e374d483 4376 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4377 l->min_time,
4378 (long)div_u64(l->sum_time, l->count),
4379 l->max_time);
45edfa58 4380 } else
e374d483 4381 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4382 l->min_time);
4383
4384 if (l->min_pid != l->max_pid)
e374d483 4385 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4386 l->min_pid, l->max_pid);
4387 else
e374d483 4388 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4389 l->min_pid);
4390
174596a0
RR
4391 if (num_online_cpus() > 1 &&
4392 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4393 len < PAGE_SIZE - 60) {
4394 len += sprintf(buf + len, " cpus=");
4395 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4396 to_cpumask(l->cpus));
45edfa58
CL
4397 }
4398
62bc62a8 4399 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4400 len < PAGE_SIZE - 60) {
4401 len += sprintf(buf + len, " nodes=");
4402 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4403 l->nodes);
4404 }
4405
e374d483 4406 len += sprintf(buf + len, "\n");
88a420e4
CL
4407 }
4408
4409 free_loc_track(&t);
bbd7d57b 4410 kfree(map);
88a420e4 4411 if (!t.count)
e374d483
HH
4412 len += sprintf(buf, "No data\n");
4413 return len;
88a420e4 4414}
ab4d5ed5 4415#endif
88a420e4 4416
a5a84755
CL
4417#ifdef SLUB_RESILIENCY_TEST
4418static void resiliency_test(void)
4419{
4420 u8 *p;
4421
4422 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4423
4424 printk(KERN_ERR "SLUB resiliency testing\n");
4425 printk(KERN_ERR "-----------------------\n");
4426 printk(KERN_ERR "A. Corruption after allocation\n");
4427
4428 p = kzalloc(16, GFP_KERNEL);
4429 p[16] = 0x12;
4430 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4431 " 0x12->0x%p\n\n", p + 16);
4432
4433 validate_slab_cache(kmalloc_caches[4]);
4434
4435 /* Hmmm... The next two are dangerous */
4436 p = kzalloc(32, GFP_KERNEL);
4437 p[32 + sizeof(void *)] = 0x34;
4438 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4439 " 0x34 -> -0x%p\n", p);
4440 printk(KERN_ERR
4441 "If allocated object is overwritten then not detectable\n\n");
4442
4443 validate_slab_cache(kmalloc_caches[5]);
4444 p = kzalloc(64, GFP_KERNEL);
4445 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4446 *p = 0x56;
4447 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4448 p);
4449 printk(KERN_ERR
4450 "If allocated object is overwritten then not detectable\n\n");
4451 validate_slab_cache(kmalloc_caches[6]);
4452
4453 printk(KERN_ERR "\nB. Corruption after free\n");
4454 p = kzalloc(128, GFP_KERNEL);
4455 kfree(p);
4456 *p = 0x78;
4457 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4458 validate_slab_cache(kmalloc_caches[7]);
4459
4460 p = kzalloc(256, GFP_KERNEL);
4461 kfree(p);
4462 p[50] = 0x9a;
4463 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4464 p);
4465 validate_slab_cache(kmalloc_caches[8]);
4466
4467 p = kzalloc(512, GFP_KERNEL);
4468 kfree(p);
4469 p[512] = 0xab;
4470 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4471 validate_slab_cache(kmalloc_caches[9]);
4472}
4473#else
4474#ifdef CONFIG_SYSFS
4475static void resiliency_test(void) {};
4476#endif
4477#endif
4478
ab4d5ed5 4479#ifdef CONFIG_SYSFS
81819f0f 4480enum slab_stat_type {
205ab99d
CL
4481 SL_ALL, /* All slabs */
4482 SL_PARTIAL, /* Only partially allocated slabs */
4483 SL_CPU, /* Only slabs used for cpu caches */
4484 SL_OBJECTS, /* Determine allocated objects not slabs */
4485 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4486};
4487
205ab99d 4488#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4489#define SO_PARTIAL (1 << SL_PARTIAL)
4490#define SO_CPU (1 << SL_CPU)
4491#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4492#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4493
62e5c4b4
CG
4494static ssize_t show_slab_objects(struct kmem_cache *s,
4495 char *buf, unsigned long flags)
81819f0f
CL
4496{
4497 unsigned long total = 0;
81819f0f
CL
4498 int node;
4499 int x;
4500 unsigned long *nodes;
4501 unsigned long *per_cpu;
4502
4503 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4504 if (!nodes)
4505 return -ENOMEM;
81819f0f
CL
4506 per_cpu = nodes + nr_node_ids;
4507
205ab99d
CL
4508 if (flags & SO_CPU) {
4509 int cpu;
81819f0f 4510
205ab99d 4511 for_each_possible_cpu(cpu) {
9dfc6e68 4512 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4513 int node;
49e22585 4514 struct page *page;
dfb4f096 4515
bc6697d8 4516 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4517 if (!page)
4518 continue;
205ab99d 4519
ec3ab083
CL
4520 node = page_to_nid(page);
4521 if (flags & SO_TOTAL)
4522 x = page->objects;
4523 else if (flags & SO_OBJECTS)
4524 x = page->inuse;
4525 else
4526 x = 1;
49e22585 4527
ec3ab083
CL
4528 total += x;
4529 nodes[node] += x;
4530
4531 page = ACCESS_ONCE(c->partial);
49e22585
CL
4532 if (page) {
4533 x = page->pobjects;
bc6697d8
ED
4534 total += x;
4535 nodes[node] += x;
49e22585 4536 }
ec3ab083 4537
bc6697d8 4538 per_cpu[node]++;
81819f0f
CL
4539 }
4540 }
4541
04d94879 4542 lock_memory_hotplug();
ab4d5ed5 4543#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4544 if (flags & SO_ALL) {
4545 for_each_node_state(node, N_NORMAL_MEMORY) {
4546 struct kmem_cache_node *n = get_node(s, node);
4547
4548 if (flags & SO_TOTAL)
4549 x = atomic_long_read(&n->total_objects);
4550 else if (flags & SO_OBJECTS)
4551 x = atomic_long_read(&n->total_objects) -
4552 count_partial(n, count_free);
81819f0f 4553
81819f0f 4554 else
205ab99d 4555 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4556 total += x;
4557 nodes[node] += x;
4558 }
4559
ab4d5ed5
CL
4560 } else
4561#endif
4562 if (flags & SO_PARTIAL) {
205ab99d
CL
4563 for_each_node_state(node, N_NORMAL_MEMORY) {
4564 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4565
205ab99d
CL
4566 if (flags & SO_TOTAL)
4567 x = count_partial(n, count_total);
4568 else if (flags & SO_OBJECTS)
4569 x = count_partial(n, count_inuse);
81819f0f 4570 else
205ab99d 4571 x = n->nr_partial;
81819f0f
CL
4572 total += x;
4573 nodes[node] += x;
4574 }
4575 }
81819f0f
CL
4576 x = sprintf(buf, "%lu", total);
4577#ifdef CONFIG_NUMA
f64dc58c 4578 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4579 if (nodes[node])
4580 x += sprintf(buf + x, " N%d=%lu",
4581 node, nodes[node]);
4582#endif
04d94879 4583 unlock_memory_hotplug();
81819f0f
CL
4584 kfree(nodes);
4585 return x + sprintf(buf + x, "\n");
4586}
4587
ab4d5ed5 4588#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4589static int any_slab_objects(struct kmem_cache *s)
4590{
4591 int node;
81819f0f 4592
dfb4f096 4593 for_each_online_node(node) {
81819f0f
CL
4594 struct kmem_cache_node *n = get_node(s, node);
4595
dfb4f096
CL
4596 if (!n)
4597 continue;
4598
4ea33e2d 4599 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4600 return 1;
4601 }
4602 return 0;
4603}
ab4d5ed5 4604#endif
81819f0f
CL
4605
4606#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4607#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4608
4609struct slab_attribute {
4610 struct attribute attr;
4611 ssize_t (*show)(struct kmem_cache *s, char *buf);
4612 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4613};
4614
4615#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4616 static struct slab_attribute _name##_attr = \
4617 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4618
4619#define SLAB_ATTR(_name) \
4620 static struct slab_attribute _name##_attr = \
ab067e99 4621 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4622
81819f0f
CL
4623static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4624{
4625 return sprintf(buf, "%d\n", s->size);
4626}
4627SLAB_ATTR_RO(slab_size);
4628
4629static ssize_t align_show(struct kmem_cache *s, char *buf)
4630{
4631 return sprintf(buf, "%d\n", s->align);
4632}
4633SLAB_ATTR_RO(align);
4634
4635static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4636{
3b0efdfa 4637 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4638}
4639SLAB_ATTR_RO(object_size);
4640
4641static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4642{
834f3d11 4643 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4644}
4645SLAB_ATTR_RO(objs_per_slab);
4646
06b285dc
CL
4647static ssize_t order_store(struct kmem_cache *s,
4648 const char *buf, size_t length)
4649{
0121c619
CL
4650 unsigned long order;
4651 int err;
4652
4653 err = strict_strtoul(buf, 10, &order);
4654 if (err)
4655 return err;
06b285dc
CL
4656
4657 if (order > slub_max_order || order < slub_min_order)
4658 return -EINVAL;
4659
4660 calculate_sizes(s, order);
4661 return length;
4662}
4663
81819f0f
CL
4664static ssize_t order_show(struct kmem_cache *s, char *buf)
4665{
834f3d11 4666 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4667}
06b285dc 4668SLAB_ATTR(order);
81819f0f 4669
73d342b1
DR
4670static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4671{
4672 return sprintf(buf, "%lu\n", s->min_partial);
4673}
4674
4675static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4676 size_t length)
4677{
4678 unsigned long min;
4679 int err;
4680
4681 err = strict_strtoul(buf, 10, &min);
4682 if (err)
4683 return err;
4684
c0bdb232 4685 set_min_partial(s, min);
73d342b1
DR
4686 return length;
4687}
4688SLAB_ATTR(min_partial);
4689
49e22585
CL
4690static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4691{
4692 return sprintf(buf, "%u\n", s->cpu_partial);
4693}
4694
4695static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4696 size_t length)
4697{
4698 unsigned long objects;
4699 int err;
4700
4701 err = strict_strtoul(buf, 10, &objects);
4702 if (err)
4703 return err;
74ee4ef1
DR
4704 if (objects && kmem_cache_debug(s))
4705 return -EINVAL;
49e22585
CL
4706
4707 s->cpu_partial = objects;
4708 flush_all(s);
4709 return length;
4710}
4711SLAB_ATTR(cpu_partial);
4712
81819f0f
CL
4713static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4714{
62c70bce
JP
4715 if (!s->ctor)
4716 return 0;
4717 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4718}
4719SLAB_ATTR_RO(ctor);
4720
81819f0f
CL
4721static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4722{
4723 return sprintf(buf, "%d\n", s->refcount - 1);
4724}
4725SLAB_ATTR_RO(aliases);
4726
81819f0f
CL
4727static ssize_t partial_show(struct kmem_cache *s, char *buf)
4728{
d9acf4b7 4729 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4730}
4731SLAB_ATTR_RO(partial);
4732
4733static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4734{
d9acf4b7 4735 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4736}
4737SLAB_ATTR_RO(cpu_slabs);
4738
4739static ssize_t objects_show(struct kmem_cache *s, char *buf)
4740{
205ab99d 4741 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4742}
4743SLAB_ATTR_RO(objects);
4744
205ab99d
CL
4745static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4746{
4747 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4748}
4749SLAB_ATTR_RO(objects_partial);
4750
49e22585
CL
4751static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4752{
4753 int objects = 0;
4754 int pages = 0;
4755 int cpu;
4756 int len;
4757
4758 for_each_online_cpu(cpu) {
4759 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4760
4761 if (page) {
4762 pages += page->pages;
4763 objects += page->pobjects;
4764 }
4765 }
4766
4767 len = sprintf(buf, "%d(%d)", objects, pages);
4768
4769#ifdef CONFIG_SMP
4770 for_each_online_cpu(cpu) {
4771 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4772
4773 if (page && len < PAGE_SIZE - 20)
4774 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4775 page->pobjects, page->pages);
4776 }
4777#endif
4778 return len + sprintf(buf + len, "\n");
4779}
4780SLAB_ATTR_RO(slabs_cpu_partial);
4781
a5a84755
CL
4782static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4783{
4784 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4785}
4786
4787static ssize_t reclaim_account_store(struct kmem_cache *s,
4788 const char *buf, size_t length)
4789{
4790 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4791 if (buf[0] == '1')
4792 s->flags |= SLAB_RECLAIM_ACCOUNT;
4793 return length;
4794}
4795SLAB_ATTR(reclaim_account);
4796
4797static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4798{
4799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4800}
4801SLAB_ATTR_RO(hwcache_align);
4802
4803#ifdef CONFIG_ZONE_DMA
4804static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4805{
4806 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4807}
4808SLAB_ATTR_RO(cache_dma);
4809#endif
4810
4811static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4812{
4813 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4814}
4815SLAB_ATTR_RO(destroy_by_rcu);
4816
ab9a0f19
LJ
4817static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4818{
4819 return sprintf(buf, "%d\n", s->reserved);
4820}
4821SLAB_ATTR_RO(reserved);
4822
ab4d5ed5 4823#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4824static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4825{
4826 return show_slab_objects(s, buf, SO_ALL);
4827}
4828SLAB_ATTR_RO(slabs);
4829
205ab99d
CL
4830static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4831{
4832 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4833}
4834SLAB_ATTR_RO(total_objects);
4835
81819f0f
CL
4836static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4837{
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4839}
4840
4841static ssize_t sanity_checks_store(struct kmem_cache *s,
4842 const char *buf, size_t length)
4843{
4844 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4845 if (buf[0] == '1') {
4846 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4847 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4848 }
81819f0f
CL
4849 return length;
4850}
4851SLAB_ATTR(sanity_checks);
4852
4853static ssize_t trace_show(struct kmem_cache *s, char *buf)
4854{
4855 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4856}
4857
4858static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4859 size_t length)
4860{
4861 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4862 if (buf[0] == '1') {
4863 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4864 s->flags |= SLAB_TRACE;
b789ef51 4865 }
81819f0f
CL
4866 return length;
4867}
4868SLAB_ATTR(trace);
4869
81819f0f
CL
4870static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4871{
4872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4873}
4874
4875static ssize_t red_zone_store(struct kmem_cache *s,
4876 const char *buf, size_t length)
4877{
4878 if (any_slab_objects(s))
4879 return -EBUSY;
4880
4881 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4882 if (buf[0] == '1') {
4883 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4884 s->flags |= SLAB_RED_ZONE;
b789ef51 4885 }
06b285dc 4886 calculate_sizes(s, -1);
81819f0f
CL
4887 return length;
4888}
4889SLAB_ATTR(red_zone);
4890
4891static ssize_t poison_show(struct kmem_cache *s, char *buf)
4892{
4893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4894}
4895
4896static ssize_t poison_store(struct kmem_cache *s,
4897 const char *buf, size_t length)
4898{
4899 if (any_slab_objects(s))
4900 return -EBUSY;
4901
4902 s->flags &= ~SLAB_POISON;
b789ef51
CL
4903 if (buf[0] == '1') {
4904 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4905 s->flags |= SLAB_POISON;
b789ef51 4906 }
06b285dc 4907 calculate_sizes(s, -1);
81819f0f
CL
4908 return length;
4909}
4910SLAB_ATTR(poison);
4911
4912static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4913{
4914 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4915}
4916
4917static ssize_t store_user_store(struct kmem_cache *s,
4918 const char *buf, size_t length)
4919{
4920 if (any_slab_objects(s))
4921 return -EBUSY;
4922
4923 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4924 if (buf[0] == '1') {
4925 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4926 s->flags |= SLAB_STORE_USER;
b789ef51 4927 }
06b285dc 4928 calculate_sizes(s, -1);
81819f0f
CL
4929 return length;
4930}
4931SLAB_ATTR(store_user);
4932
53e15af0
CL
4933static ssize_t validate_show(struct kmem_cache *s, char *buf)
4934{
4935 return 0;
4936}
4937
4938static ssize_t validate_store(struct kmem_cache *s,
4939 const char *buf, size_t length)
4940{
434e245d
CL
4941 int ret = -EINVAL;
4942
4943 if (buf[0] == '1') {
4944 ret = validate_slab_cache(s);
4945 if (ret >= 0)
4946 ret = length;
4947 }
4948 return ret;
53e15af0
CL
4949}
4950SLAB_ATTR(validate);
a5a84755
CL
4951
4952static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4953{
4954 if (!(s->flags & SLAB_STORE_USER))
4955 return -ENOSYS;
4956 return list_locations(s, buf, TRACK_ALLOC);
4957}
4958SLAB_ATTR_RO(alloc_calls);
4959
4960static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4961{
4962 if (!(s->flags & SLAB_STORE_USER))
4963 return -ENOSYS;
4964 return list_locations(s, buf, TRACK_FREE);
4965}
4966SLAB_ATTR_RO(free_calls);
4967#endif /* CONFIG_SLUB_DEBUG */
4968
4969#ifdef CONFIG_FAILSLAB
4970static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4971{
4972 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4973}
4974
4975static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4976 size_t length)
4977{
4978 s->flags &= ~SLAB_FAILSLAB;
4979 if (buf[0] == '1')
4980 s->flags |= SLAB_FAILSLAB;
4981 return length;
4982}
4983SLAB_ATTR(failslab);
ab4d5ed5 4984#endif
53e15af0 4985
2086d26a
CL
4986static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4987{
4988 return 0;
4989}
4990
4991static ssize_t shrink_store(struct kmem_cache *s,
4992 const char *buf, size_t length)
4993{
4994 if (buf[0] == '1') {
4995 int rc = kmem_cache_shrink(s);
4996
4997 if (rc)
4998 return rc;
4999 } else
5000 return -EINVAL;
5001 return length;
5002}
5003SLAB_ATTR(shrink);
5004
81819f0f 5005#ifdef CONFIG_NUMA
9824601e 5006static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5007{
9824601e 5008 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5009}
5010
9824601e 5011static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5012 const char *buf, size_t length)
5013{
0121c619
CL
5014 unsigned long ratio;
5015 int err;
5016
5017 err = strict_strtoul(buf, 10, &ratio);
5018 if (err)
5019 return err;
5020
e2cb96b7 5021 if (ratio <= 100)
0121c619 5022 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5023
81819f0f
CL
5024 return length;
5025}
9824601e 5026SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5027#endif
5028
8ff12cfc 5029#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5030static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5031{
5032 unsigned long sum = 0;
5033 int cpu;
5034 int len;
5035 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5036
5037 if (!data)
5038 return -ENOMEM;
5039
5040 for_each_online_cpu(cpu) {
9dfc6e68 5041 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5042
5043 data[cpu] = x;
5044 sum += x;
5045 }
5046
5047 len = sprintf(buf, "%lu", sum);
5048
50ef37b9 5049#ifdef CONFIG_SMP
8ff12cfc
CL
5050 for_each_online_cpu(cpu) {
5051 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5052 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5053 }
50ef37b9 5054#endif
8ff12cfc
CL
5055 kfree(data);
5056 return len + sprintf(buf + len, "\n");
5057}
5058
78eb00cc
DR
5059static void clear_stat(struct kmem_cache *s, enum stat_item si)
5060{
5061 int cpu;
5062
5063 for_each_online_cpu(cpu)
9dfc6e68 5064 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5065}
5066
8ff12cfc
CL
5067#define STAT_ATTR(si, text) \
5068static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5069{ \
5070 return show_stat(s, buf, si); \
5071} \
78eb00cc
DR
5072static ssize_t text##_store(struct kmem_cache *s, \
5073 const char *buf, size_t length) \
5074{ \
5075 if (buf[0] != '0') \
5076 return -EINVAL; \
5077 clear_stat(s, si); \
5078 return length; \
5079} \
5080SLAB_ATTR(text); \
8ff12cfc
CL
5081
5082STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5083STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5084STAT_ATTR(FREE_FASTPATH, free_fastpath);
5085STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5086STAT_ATTR(FREE_FROZEN, free_frozen);
5087STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5088STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5089STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5090STAT_ATTR(ALLOC_SLAB, alloc_slab);
5091STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5092STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5093STAT_ATTR(FREE_SLAB, free_slab);
5094STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5095STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5096STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5097STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5098STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5099STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5100STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5101STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5102STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5103STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5104STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5105STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5106STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5107STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5108#endif
5109
06428780 5110static struct attribute *slab_attrs[] = {
81819f0f
CL
5111 &slab_size_attr.attr,
5112 &object_size_attr.attr,
5113 &objs_per_slab_attr.attr,
5114 &order_attr.attr,
73d342b1 5115 &min_partial_attr.attr,
49e22585 5116 &cpu_partial_attr.attr,
81819f0f 5117 &objects_attr.attr,
205ab99d 5118 &objects_partial_attr.attr,
81819f0f
CL
5119 &partial_attr.attr,
5120 &cpu_slabs_attr.attr,
5121 &ctor_attr.attr,
81819f0f
CL
5122 &aliases_attr.attr,
5123 &align_attr.attr,
81819f0f
CL
5124 &hwcache_align_attr.attr,
5125 &reclaim_account_attr.attr,
5126 &destroy_by_rcu_attr.attr,
a5a84755 5127 &shrink_attr.attr,
ab9a0f19 5128 &reserved_attr.attr,
49e22585 5129 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5130#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5131 &total_objects_attr.attr,
5132 &slabs_attr.attr,
5133 &sanity_checks_attr.attr,
5134 &trace_attr.attr,
81819f0f
CL
5135 &red_zone_attr.attr,
5136 &poison_attr.attr,
5137 &store_user_attr.attr,
53e15af0 5138 &validate_attr.attr,
88a420e4
CL
5139 &alloc_calls_attr.attr,
5140 &free_calls_attr.attr,
ab4d5ed5 5141#endif
81819f0f
CL
5142#ifdef CONFIG_ZONE_DMA
5143 &cache_dma_attr.attr,
5144#endif
5145#ifdef CONFIG_NUMA
9824601e 5146 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5147#endif
5148#ifdef CONFIG_SLUB_STATS
5149 &alloc_fastpath_attr.attr,
5150 &alloc_slowpath_attr.attr,
5151 &free_fastpath_attr.attr,
5152 &free_slowpath_attr.attr,
5153 &free_frozen_attr.attr,
5154 &free_add_partial_attr.attr,
5155 &free_remove_partial_attr.attr,
5156 &alloc_from_partial_attr.attr,
5157 &alloc_slab_attr.attr,
5158 &alloc_refill_attr.attr,
e36a2652 5159 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5160 &free_slab_attr.attr,
5161 &cpuslab_flush_attr.attr,
5162 &deactivate_full_attr.attr,
5163 &deactivate_empty_attr.attr,
5164 &deactivate_to_head_attr.attr,
5165 &deactivate_to_tail_attr.attr,
5166 &deactivate_remote_frees_attr.attr,
03e404af 5167 &deactivate_bypass_attr.attr,
65c3376a 5168 &order_fallback_attr.attr,
b789ef51
CL
5169 &cmpxchg_double_fail_attr.attr,
5170 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5171 &cpu_partial_alloc_attr.attr,
5172 &cpu_partial_free_attr.attr,
8028dcea
AS
5173 &cpu_partial_node_attr.attr,
5174 &cpu_partial_drain_attr.attr,
81819f0f 5175#endif
4c13dd3b
DM
5176#ifdef CONFIG_FAILSLAB
5177 &failslab_attr.attr,
5178#endif
5179
81819f0f
CL
5180 NULL
5181};
5182
5183static struct attribute_group slab_attr_group = {
5184 .attrs = slab_attrs,
5185};
5186
5187static ssize_t slab_attr_show(struct kobject *kobj,
5188 struct attribute *attr,
5189 char *buf)
5190{
5191 struct slab_attribute *attribute;
5192 struct kmem_cache *s;
5193 int err;
5194
5195 attribute = to_slab_attr(attr);
5196 s = to_slab(kobj);
5197
5198 if (!attribute->show)
5199 return -EIO;
5200
5201 err = attribute->show(s, buf);
5202
5203 return err;
5204}
5205
5206static ssize_t slab_attr_store(struct kobject *kobj,
5207 struct attribute *attr,
5208 const char *buf, size_t len)
5209{
5210 struct slab_attribute *attribute;
5211 struct kmem_cache *s;
5212 int err;
5213
5214 attribute = to_slab_attr(attr);
5215 s = to_slab(kobj);
5216
5217 if (!attribute->store)
5218 return -EIO;
5219
5220 err = attribute->store(s, buf, len);
5221
5222 return err;
5223}
5224
151c602f
CL
5225static void kmem_cache_release(struct kobject *kobj)
5226{
5227 struct kmem_cache *s = to_slab(kobj);
5228
84c1cf62 5229 kfree(s->name);
151c602f
CL
5230 kfree(s);
5231}
5232
52cf25d0 5233static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5234 .show = slab_attr_show,
5235 .store = slab_attr_store,
5236};
5237
5238static struct kobj_type slab_ktype = {
5239 .sysfs_ops = &slab_sysfs_ops,
151c602f 5240 .release = kmem_cache_release
81819f0f
CL
5241};
5242
5243static int uevent_filter(struct kset *kset, struct kobject *kobj)
5244{
5245 struct kobj_type *ktype = get_ktype(kobj);
5246
5247 if (ktype == &slab_ktype)
5248 return 1;
5249 return 0;
5250}
5251
9cd43611 5252static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5253 .filter = uevent_filter,
5254};
5255
27c3a314 5256static struct kset *slab_kset;
81819f0f
CL
5257
5258#define ID_STR_LENGTH 64
5259
5260/* Create a unique string id for a slab cache:
6446faa2
CL
5261 *
5262 * Format :[flags-]size
81819f0f
CL
5263 */
5264static char *create_unique_id(struct kmem_cache *s)
5265{
5266 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5267 char *p = name;
5268
5269 BUG_ON(!name);
5270
5271 *p++ = ':';
5272 /*
5273 * First flags affecting slabcache operations. We will only
5274 * get here for aliasable slabs so we do not need to support
5275 * too many flags. The flags here must cover all flags that
5276 * are matched during merging to guarantee that the id is
5277 * unique.
5278 */
5279 if (s->flags & SLAB_CACHE_DMA)
5280 *p++ = 'd';
5281 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5282 *p++ = 'a';
5283 if (s->flags & SLAB_DEBUG_FREE)
5284 *p++ = 'F';
5a896d9e
VN
5285 if (!(s->flags & SLAB_NOTRACK))
5286 *p++ = 't';
81819f0f
CL
5287 if (p != name + 1)
5288 *p++ = '-';
5289 p += sprintf(p, "%07d", s->size);
5290 BUG_ON(p > name + ID_STR_LENGTH - 1);
5291 return name;
5292}
5293
5294static int sysfs_slab_add(struct kmem_cache *s)
5295{
5296 int err;
5297 const char *name;
5298 int unmergeable;
5299
5300 if (slab_state < SYSFS)
5301 /* Defer until later */
5302 return 0;
5303
5304 unmergeable = slab_unmergeable(s);
5305 if (unmergeable) {
5306 /*
5307 * Slabcache can never be merged so we can use the name proper.
5308 * This is typically the case for debug situations. In that
5309 * case we can catch duplicate names easily.
5310 */
27c3a314 5311 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5312 name = s->name;
5313 } else {
5314 /*
5315 * Create a unique name for the slab as a target
5316 * for the symlinks.
5317 */
5318 name = create_unique_id(s);
5319 }
5320
27c3a314 5321 s->kobj.kset = slab_kset;
1eada11c
GKH
5322 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5323 if (err) {
5324 kobject_put(&s->kobj);
81819f0f 5325 return err;
1eada11c 5326 }
81819f0f
CL
5327
5328 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5329 if (err) {
5330 kobject_del(&s->kobj);
5331 kobject_put(&s->kobj);
81819f0f 5332 return err;
5788d8ad 5333 }
81819f0f
CL
5334 kobject_uevent(&s->kobj, KOBJ_ADD);
5335 if (!unmergeable) {
5336 /* Setup first alias */
5337 sysfs_slab_alias(s, s->name);
5338 kfree(name);
5339 }
5340 return 0;
5341}
5342
5343static void sysfs_slab_remove(struct kmem_cache *s)
5344{
2bce6485
CL
5345 if (slab_state < SYSFS)
5346 /*
5347 * Sysfs has not been setup yet so no need to remove the
5348 * cache from sysfs.
5349 */
5350 return;
5351
81819f0f
CL
5352 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5353 kobject_del(&s->kobj);
151c602f 5354 kobject_put(&s->kobj);
81819f0f
CL
5355}
5356
5357/*
5358 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5359 * available lest we lose that information.
81819f0f
CL
5360 */
5361struct saved_alias {
5362 struct kmem_cache *s;
5363 const char *name;
5364 struct saved_alias *next;
5365};
5366
5af328a5 5367static struct saved_alias *alias_list;
81819f0f
CL
5368
5369static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5370{
5371 struct saved_alias *al;
5372
5373 if (slab_state == SYSFS) {
5374 /*
5375 * If we have a leftover link then remove it.
5376 */
27c3a314
GKH
5377 sysfs_remove_link(&slab_kset->kobj, name);
5378 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5379 }
5380
5381 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5382 if (!al)
5383 return -ENOMEM;
5384
5385 al->s = s;
5386 al->name = name;
5387 al->next = alias_list;
5388 alias_list = al;
5389 return 0;
5390}
5391
5392static int __init slab_sysfs_init(void)
5393{
5b95a4ac 5394 struct kmem_cache *s;
81819f0f
CL
5395 int err;
5396
2bce6485
CL
5397 down_write(&slub_lock);
5398
0ff21e46 5399 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5400 if (!slab_kset) {
2bce6485 5401 up_write(&slub_lock);
81819f0f
CL
5402 printk(KERN_ERR "Cannot register slab subsystem.\n");
5403 return -ENOSYS;
5404 }
5405
26a7bd03
CL
5406 slab_state = SYSFS;
5407
5b95a4ac 5408 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5409 err = sysfs_slab_add(s);
5d540fb7
CL
5410 if (err)
5411 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5412 " to sysfs\n", s->name);
26a7bd03 5413 }
81819f0f
CL
5414
5415 while (alias_list) {
5416 struct saved_alias *al = alias_list;
5417
5418 alias_list = alias_list->next;
5419 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5420 if (err)
5421 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5422 " %s to sysfs\n", s->name);
81819f0f
CL
5423 kfree(al);
5424 }
5425
2bce6485 5426 up_write(&slub_lock);
81819f0f
CL
5427 resiliency_test();
5428 return 0;
5429}
5430
5431__initcall(slab_sysfs_init);
ab4d5ed5 5432#endif /* CONFIG_SYSFS */
57ed3eda
PE
5433
5434/*
5435 * The /proc/slabinfo ABI
5436 */
158a9624 5437#ifdef CONFIG_SLABINFO
57ed3eda
PE
5438static void print_slabinfo_header(struct seq_file *m)
5439{
5440 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5441 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5442 "<objperslab> <pagesperslab>");
5443 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5444 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5445 seq_putc(m, '\n');
5446}
5447
5448static void *s_start(struct seq_file *m, loff_t *pos)
5449{
5450 loff_t n = *pos;
5451
5452 down_read(&slub_lock);
5453 if (!n)
5454 print_slabinfo_header(m);
5455
5456 return seq_list_start(&slab_caches, *pos);
5457}
5458
5459static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5460{
5461 return seq_list_next(p, &slab_caches, pos);
5462}
5463
5464static void s_stop(struct seq_file *m, void *p)
5465{
5466 up_read(&slub_lock);
5467}
5468
5469static int s_show(struct seq_file *m, void *p)
5470{
5471 unsigned long nr_partials = 0;
5472 unsigned long nr_slabs = 0;
5473 unsigned long nr_inuse = 0;
205ab99d
CL
5474 unsigned long nr_objs = 0;
5475 unsigned long nr_free = 0;
57ed3eda
PE
5476 struct kmem_cache *s;
5477 int node;
5478
5479 s = list_entry(p, struct kmem_cache, list);
5480
5481 for_each_online_node(node) {
5482 struct kmem_cache_node *n = get_node(s, node);
5483
5484 if (!n)
5485 continue;
5486
5487 nr_partials += n->nr_partial;
5488 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5489 nr_objs += atomic_long_read(&n->total_objects);
5490 nr_free += count_partial(n, count_free);
57ed3eda
PE
5491 }
5492
205ab99d 5493 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5494
5495 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5496 nr_objs, s->size, oo_objects(s->oo),
5497 (1 << oo_order(s->oo)));
57ed3eda
PE
5498 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5499 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5500 0UL);
5501 seq_putc(m, '\n');
5502 return 0;
5503}
5504
7b3c3a50 5505static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5506 .start = s_start,
5507 .next = s_next,
5508 .stop = s_stop,
5509 .show = s_show,
5510};
5511
7b3c3a50
AD
5512static int slabinfo_open(struct inode *inode, struct file *file)
5513{
5514 return seq_open(file, &slabinfo_op);
5515}
5516
5517static const struct file_operations proc_slabinfo_operations = {
5518 .open = slabinfo_open,
5519 .read = seq_read,
5520 .llseek = seq_lseek,
5521 .release = seq_release,
5522};
5523
5524static int __init slab_proc_init(void)
5525{
ab067e99 5526 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5527 return 0;
5528}
5529module_init(slab_proc_init);
158a9624 5530#endif /* CONFIG_SLABINFO */