]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
mm/ksm.c: constify attribute_group structures
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
f90ec390 195#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 196#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
251 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
252#else
253 return ptr;
254#endif
255}
256
257/* Returns the freelist pointer recorded at location ptr_addr. */
258static inline void *freelist_dereference(const struct kmem_cache *s,
259 void *ptr_addr)
260{
261 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
262 (unsigned long)ptr_addr);
263}
264
7656c72b
CL
265static inline void *get_freepointer(struct kmem_cache *s, void *object)
266{
2482ddec 267 return freelist_dereference(s, object + s->offset);
7656c72b
CL
268}
269
0ad9500e
ED
270static void prefetch_freepointer(const struct kmem_cache *s, void *object)
271{
2482ddec
KC
272 if (object)
273 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
274}
275
1393d9a1
CL
276static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277{
2482ddec 278 unsigned long freepointer_addr;
1393d9a1
CL
279 void *p;
280
922d566c
JK
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s, object);
283
2482ddec
KC
284 freepointer_addr = (unsigned long)object + s->offset;
285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
287}
288
7656c72b
CL
289static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290{
2482ddec
KC
291 unsigned long freeptr_addr = (unsigned long)object + s->offset;
292
ce6fa91b
AP
293#ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object == fp); /* naive detection of double free or corruption */
295#endif
296
2482ddec 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
298}
299
300/* Loop over all objects in a slab */
224a88be 301#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
304 __p += (__s)->size)
7656c72b 305
54266640 306#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
54266640 310
7656c72b
CL
311/* Determine object index from a given position */
312static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
313{
314 return (p - addr) / s->size;
315}
316
ab9a0f19
LJ
317static inline int order_objects(int order, unsigned long size, int reserved)
318{
319 return ((PAGE_SIZE << order) - reserved) / size;
320}
321
834f3d11 322static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 323 unsigned long size, int reserved)
834f3d11
CL
324{
325 struct kmem_cache_order_objects x = {
ab9a0f19 326 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
327 };
328
329 return x;
330}
331
332static inline int oo_order(struct kmem_cache_order_objects x)
333{
210b5c06 334 return x.x >> OO_SHIFT;
834f3d11
CL
335}
336
337static inline int oo_objects(struct kmem_cache_order_objects x)
338{
210b5c06 339 return x.x & OO_MASK;
834f3d11
CL
340}
341
881db7fb
CL
342/*
343 * Per slab locking using the pagelock
344 */
345static __always_inline void slab_lock(struct page *page)
346{
48c935ad 347 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
348 bit_spin_lock(PG_locked, &page->flags);
349}
350
351static __always_inline void slab_unlock(struct page *page)
352{
48c935ad 353 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
354 __bit_spin_unlock(PG_locked, &page->flags);
355}
356
a0320865
DH
357static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
358{
359 struct page tmp;
360 tmp.counters = counters_new;
361 /*
362 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
363 * as page->_refcount. If we assign to ->counters directly
364 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
365 * be careful and only assign to the fields we need.
366 */
367 page->frozen = tmp.frozen;
368 page->inuse = tmp.inuse;
369 page->objects = tmp.objects;
370}
371
1d07171c
CL
372/* Interrupts must be disabled (for the fallback code to work right) */
373static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
374 void *freelist_old, unsigned long counters_old,
375 void *freelist_new, unsigned long counters_new,
376 const char *n)
377{
378 VM_BUG_ON(!irqs_disabled());
2565409f
HC
379#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
380 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 381 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 382 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
383 freelist_old, counters_old,
384 freelist_new, counters_new))
6f6528a1 385 return true;
1d07171c
CL
386 } else
387#endif
388 {
389 slab_lock(page);
d0e0ac97
CG
390 if (page->freelist == freelist_old &&
391 page->counters == counters_old) {
1d07171c 392 page->freelist = freelist_new;
a0320865 393 set_page_slub_counters(page, counters_new);
1d07171c 394 slab_unlock(page);
6f6528a1 395 return true;
1d07171c
CL
396 }
397 slab_unlock(page);
398 }
399
400 cpu_relax();
401 stat(s, CMPXCHG_DOUBLE_FAIL);
402
403#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 404 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
405#endif
406
6f6528a1 407 return false;
1d07171c
CL
408}
409
b789ef51
CL
410static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
411 void *freelist_old, unsigned long counters_old,
412 void *freelist_new, unsigned long counters_new,
413 const char *n)
414{
2565409f
HC
415#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
416 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 417 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 418 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
419 freelist_old, counters_old,
420 freelist_new, counters_new))
6f6528a1 421 return true;
b789ef51
CL
422 } else
423#endif
424 {
1d07171c
CL
425 unsigned long flags;
426
427 local_irq_save(flags);
881db7fb 428 slab_lock(page);
d0e0ac97
CG
429 if (page->freelist == freelist_old &&
430 page->counters == counters_old) {
b789ef51 431 page->freelist = freelist_new;
a0320865 432 set_page_slub_counters(page, counters_new);
881db7fb 433 slab_unlock(page);
1d07171c 434 local_irq_restore(flags);
6f6528a1 435 return true;
b789ef51 436 }
881db7fb 437 slab_unlock(page);
1d07171c 438 local_irq_restore(flags);
b789ef51
CL
439 }
440
441 cpu_relax();
442 stat(s, CMPXCHG_DOUBLE_FAIL);
443
444#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 445 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
446#endif
447
6f6528a1 448 return false;
b789ef51
CL
449}
450
41ecc55b 451#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
452/*
453 * Determine a map of object in use on a page.
454 *
881db7fb 455 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
456 * not vanish from under us.
457 */
458static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
459{
460 void *p;
461 void *addr = page_address(page);
462
463 for (p = page->freelist; p; p = get_freepointer(s, p))
464 set_bit(slab_index(p, s, addr), map);
465}
466
d86bd1be
JK
467static inline int size_from_object(struct kmem_cache *s)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 return s->size - s->red_left_pad;
471
472 return s->size;
473}
474
475static inline void *restore_red_left(struct kmem_cache *s, void *p)
476{
477 if (s->flags & SLAB_RED_ZONE)
478 p -= s->red_left_pad;
479
480 return p;
481}
482
41ecc55b
CL
483/*
484 * Debug settings:
485 */
89d3c87e 486#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
487static int slub_debug = DEBUG_DEFAULT_FLAGS;
488#else
41ecc55b 489static int slub_debug;
f0630fff 490#endif
41ecc55b
CL
491
492static char *slub_debug_slabs;
fa5ec8a1 493static int disable_higher_order_debug;
41ecc55b 494
a79316c6
AR
495/*
496 * slub is about to manipulate internal object metadata. This memory lies
497 * outside the range of the allocated object, so accessing it would normally
498 * be reported by kasan as a bounds error. metadata_access_enable() is used
499 * to tell kasan that these accesses are OK.
500 */
501static inline void metadata_access_enable(void)
502{
503 kasan_disable_current();
504}
505
506static inline void metadata_access_disable(void)
507{
508 kasan_enable_current();
509}
510
81819f0f
CL
511/*
512 * Object debugging
513 */
d86bd1be
JK
514
515/* Verify that a pointer has an address that is valid within a slab page */
516static inline int check_valid_pointer(struct kmem_cache *s,
517 struct page *page, void *object)
518{
519 void *base;
520
521 if (!object)
522 return 1;
523
524 base = page_address(page);
525 object = restore_red_left(s, object);
526 if (object < base || object >= base + page->objects * s->size ||
527 (object - base) % s->size) {
528 return 0;
529 }
530
531 return 1;
532}
533
aa2efd5e
DT
534static void print_section(char *level, char *text, u8 *addr,
535 unsigned int length)
81819f0f 536{
a79316c6 537 metadata_access_enable();
aa2efd5e 538 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 539 length, 1);
a79316c6 540 metadata_access_disable();
81819f0f
CL
541}
542
81819f0f
CL
543static struct track *get_track(struct kmem_cache *s, void *object,
544 enum track_item alloc)
545{
546 struct track *p;
547
548 if (s->offset)
549 p = object + s->offset + sizeof(void *);
550 else
551 p = object + s->inuse;
552
553 return p + alloc;
554}
555
556static void set_track(struct kmem_cache *s, void *object,
ce71e27c 557 enum track_item alloc, unsigned long addr)
81819f0f 558{
1a00df4a 559 struct track *p = get_track(s, object, alloc);
81819f0f 560
81819f0f 561 if (addr) {
d6543e39
BG
562#ifdef CONFIG_STACKTRACE
563 struct stack_trace trace;
564 int i;
565
566 trace.nr_entries = 0;
567 trace.max_entries = TRACK_ADDRS_COUNT;
568 trace.entries = p->addrs;
569 trace.skip = 3;
a79316c6 570 metadata_access_enable();
d6543e39 571 save_stack_trace(&trace);
a79316c6 572 metadata_access_disable();
d6543e39
BG
573
574 /* See rant in lockdep.c */
575 if (trace.nr_entries != 0 &&
576 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
577 trace.nr_entries--;
578
579 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
580 p->addrs[i] = 0;
581#endif
81819f0f
CL
582 p->addr = addr;
583 p->cpu = smp_processor_id();
88e4ccf2 584 p->pid = current->pid;
81819f0f
CL
585 p->when = jiffies;
586 } else
587 memset(p, 0, sizeof(struct track));
588}
589
81819f0f
CL
590static void init_tracking(struct kmem_cache *s, void *object)
591{
24922684
CL
592 if (!(s->flags & SLAB_STORE_USER))
593 return;
594
ce71e27c
EGM
595 set_track(s, object, TRACK_FREE, 0UL);
596 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
597}
598
599static void print_track(const char *s, struct track *t)
600{
601 if (!t->addr)
602 return;
603
f9f58285
FF
604 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
605 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
606#ifdef CONFIG_STACKTRACE
607 {
608 int i;
609 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
610 if (t->addrs[i])
f9f58285 611 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
612 else
613 break;
614 }
615#endif
24922684
CL
616}
617
618static void print_tracking(struct kmem_cache *s, void *object)
619{
620 if (!(s->flags & SLAB_STORE_USER))
621 return;
622
623 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
624 print_track("Freed", get_track(s, object, TRACK_FREE));
625}
626
627static void print_page_info(struct page *page)
628{
f9f58285 629 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 630 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
631
632}
633
634static void slab_bug(struct kmem_cache *s, char *fmt, ...)
635{
ecc42fbe 636 struct va_format vaf;
24922684 637 va_list args;
24922684
CL
638
639 va_start(args, fmt);
ecc42fbe
FF
640 vaf.fmt = fmt;
641 vaf.va = &args;
f9f58285 642 pr_err("=============================================================================\n");
ecc42fbe 643 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 644 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 645
373d4d09 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 647 va_end(args);
81819f0f
CL
648}
649
24922684
CL
650static void slab_fix(struct kmem_cache *s, char *fmt, ...)
651{
ecc42fbe 652 struct va_format vaf;
24922684 653 va_list args;
24922684
CL
654
655 va_start(args, fmt);
ecc42fbe
FF
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 659 va_end(args);
24922684
CL
660}
661
662static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
663{
664 unsigned int off; /* Offset of last byte */
a973e9dd 665 u8 *addr = page_address(page);
24922684
CL
666
667 print_tracking(s, p);
668
669 print_page_info(page);
670
f9f58285
FF
671 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
672 p, p - addr, get_freepointer(s, p));
24922684 673
d86bd1be 674 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
675 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
676 s->red_left_pad);
d86bd1be 677 else if (p > addr + 16)
aa2efd5e 678 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 679
aa2efd5e
DT
680 print_section(KERN_ERR, "Object ", p,
681 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 682 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 683 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 684 s->inuse - s->object_size);
81819f0f 685
81819f0f
CL
686 if (s->offset)
687 off = s->offset + sizeof(void *);
688 else
689 off = s->inuse;
690
24922684 691 if (s->flags & SLAB_STORE_USER)
81819f0f 692 off += 2 * sizeof(struct track);
81819f0f 693
80a9201a
AP
694 off += kasan_metadata_size(s);
695
d86bd1be 696 if (off != size_from_object(s))
81819f0f 697 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
698 print_section(KERN_ERR, "Padding ", p + off,
699 size_from_object(s) - off);
24922684
CL
700
701 dump_stack();
81819f0f
CL
702}
703
75c66def 704void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
705 u8 *object, char *reason)
706{
3dc50637 707 slab_bug(s, "%s", reason);
24922684 708 print_trailer(s, page, object);
81819f0f
CL
709}
710
d0e0ac97
CG
711static void slab_err(struct kmem_cache *s, struct page *page,
712 const char *fmt, ...)
81819f0f
CL
713{
714 va_list args;
715 char buf[100];
716
24922684
CL
717 va_start(args, fmt);
718 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 719 va_end(args);
3dc50637 720 slab_bug(s, "%s", buf);
24922684 721 print_page_info(page);
81819f0f
CL
722 dump_stack();
723}
724
f7cb1933 725static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
726{
727 u8 *p = object;
728
d86bd1be
JK
729 if (s->flags & SLAB_RED_ZONE)
730 memset(p - s->red_left_pad, val, s->red_left_pad);
731
81819f0f 732 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
733 memset(p, POISON_FREE, s->object_size - 1);
734 p[s->object_size - 1] = POISON_END;
81819f0f
CL
735 }
736
737 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 738 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
739}
740
24922684
CL
741static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
742 void *from, void *to)
743{
744 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
745 memset(from, data, to - from);
746}
747
748static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
749 u8 *object, char *what,
06428780 750 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
751{
752 u8 *fault;
753 u8 *end;
754
a79316c6 755 metadata_access_enable();
79824820 756 fault = memchr_inv(start, value, bytes);
a79316c6 757 metadata_access_disable();
24922684
CL
758 if (!fault)
759 return 1;
760
761 end = start + bytes;
762 while (end > fault && end[-1] == value)
763 end--;
764
765 slab_bug(s, "%s overwritten", what);
f9f58285 766 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
767 fault, end - 1, fault[0], value);
768 print_trailer(s, page, object);
769
770 restore_bytes(s, what, value, fault, end);
771 return 0;
81819f0f
CL
772}
773
81819f0f
CL
774/*
775 * Object layout:
776 *
777 * object address
778 * Bytes of the object to be managed.
779 * If the freepointer may overlay the object then the free
780 * pointer is the first word of the object.
672bba3a 781 *
81819f0f
CL
782 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
783 * 0xa5 (POISON_END)
784 *
3b0efdfa 785 * object + s->object_size
81819f0f 786 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 787 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 788 * object_size == inuse.
672bba3a 789 *
81819f0f
CL
790 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
791 * 0xcc (RED_ACTIVE) for objects in use.
792 *
793 * object + s->inuse
672bba3a
CL
794 * Meta data starts here.
795 *
81819f0f
CL
796 * A. Free pointer (if we cannot overwrite object on free)
797 * B. Tracking data for SLAB_STORE_USER
672bba3a 798 * C. Padding to reach required alignment boundary or at mininum
6446faa2 799 * one word if debugging is on to be able to detect writes
672bba3a
CL
800 * before the word boundary.
801 *
802 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
803 *
804 * object + s->size
672bba3a 805 * Nothing is used beyond s->size.
81819f0f 806 *
3b0efdfa 807 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 808 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
809 * may be used with merged slabcaches.
810 */
811
81819f0f
CL
812static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
813{
814 unsigned long off = s->inuse; /* The end of info */
815
816 if (s->offset)
817 /* Freepointer is placed after the object. */
818 off += sizeof(void *);
819
820 if (s->flags & SLAB_STORE_USER)
821 /* We also have user information there */
822 off += 2 * sizeof(struct track);
823
80a9201a
AP
824 off += kasan_metadata_size(s);
825
d86bd1be 826 if (size_from_object(s) == off)
81819f0f
CL
827 return 1;
828
24922684 829 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 830 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
831}
832
39b26464 833/* Check the pad bytes at the end of a slab page */
81819f0f
CL
834static int slab_pad_check(struct kmem_cache *s, struct page *page)
835{
24922684
CL
836 u8 *start;
837 u8 *fault;
838 u8 *end;
839 int length;
840 int remainder;
81819f0f
CL
841
842 if (!(s->flags & SLAB_POISON))
843 return 1;
844
a973e9dd 845 start = page_address(page);
ab9a0f19 846 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
847 end = start + length;
848 remainder = length % s->size;
81819f0f
CL
849 if (!remainder)
850 return 1;
851
a79316c6 852 metadata_access_enable();
79824820 853 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 854 metadata_access_disable();
24922684
CL
855 if (!fault)
856 return 1;
857 while (end > fault && end[-1] == POISON_INUSE)
858 end--;
859
860 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 861 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 862
8a3d271d 863 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 864 return 0;
81819f0f
CL
865}
866
867static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 868 void *object, u8 val)
81819f0f
CL
869{
870 u8 *p = object;
3b0efdfa 871 u8 *endobject = object + s->object_size;
81819f0f
CL
872
873 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
874 if (!check_bytes_and_report(s, page, object, "Redzone",
875 object - s->red_left_pad, val, s->red_left_pad))
876 return 0;
877
24922684 878 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 879 endobject, val, s->inuse - s->object_size))
81819f0f 880 return 0;
81819f0f 881 } else {
3b0efdfa 882 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 883 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
884 endobject, POISON_INUSE,
885 s->inuse - s->object_size);
3adbefee 886 }
81819f0f
CL
887 }
888
889 if (s->flags & SLAB_POISON) {
f7cb1933 890 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 891 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 892 POISON_FREE, s->object_size - 1) ||
24922684 893 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 894 p + s->object_size - 1, POISON_END, 1)))
81819f0f 895 return 0;
81819f0f
CL
896 /*
897 * check_pad_bytes cleans up on its own.
898 */
899 check_pad_bytes(s, page, p);
900 }
901
f7cb1933 902 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
903 /*
904 * Object and freepointer overlap. Cannot check
905 * freepointer while object is allocated.
906 */
907 return 1;
908
909 /* Check free pointer validity */
910 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
911 object_err(s, page, p, "Freepointer corrupt");
912 /*
9f6c708e 913 * No choice but to zap it and thus lose the remainder
81819f0f 914 * of the free objects in this slab. May cause
672bba3a 915 * another error because the object count is now wrong.
81819f0f 916 */
a973e9dd 917 set_freepointer(s, p, NULL);
81819f0f
CL
918 return 0;
919 }
920 return 1;
921}
922
923static int check_slab(struct kmem_cache *s, struct page *page)
924{
39b26464
CL
925 int maxobj;
926
81819f0f
CL
927 VM_BUG_ON(!irqs_disabled());
928
929 if (!PageSlab(page)) {
24922684 930 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
931 return 0;
932 }
39b26464 933
ab9a0f19 934 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
935 if (page->objects > maxobj) {
936 slab_err(s, page, "objects %u > max %u",
f6edde9c 937 page->objects, maxobj);
39b26464
CL
938 return 0;
939 }
940 if (page->inuse > page->objects) {
24922684 941 slab_err(s, page, "inuse %u > max %u",
f6edde9c 942 page->inuse, page->objects);
81819f0f
CL
943 return 0;
944 }
945 /* Slab_pad_check fixes things up after itself */
946 slab_pad_check(s, page);
947 return 1;
948}
949
950/*
672bba3a
CL
951 * Determine if a certain object on a page is on the freelist. Must hold the
952 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
953 */
954static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
955{
956 int nr = 0;
881db7fb 957 void *fp;
81819f0f 958 void *object = NULL;
f6edde9c 959 int max_objects;
81819f0f 960
881db7fb 961 fp = page->freelist;
39b26464 962 while (fp && nr <= page->objects) {
81819f0f
CL
963 if (fp == search)
964 return 1;
965 if (!check_valid_pointer(s, page, fp)) {
966 if (object) {
967 object_err(s, page, object,
968 "Freechain corrupt");
a973e9dd 969 set_freepointer(s, object, NULL);
81819f0f 970 } else {
24922684 971 slab_err(s, page, "Freepointer corrupt");
a973e9dd 972 page->freelist = NULL;
39b26464 973 page->inuse = page->objects;
24922684 974 slab_fix(s, "Freelist cleared");
81819f0f
CL
975 return 0;
976 }
977 break;
978 }
979 object = fp;
980 fp = get_freepointer(s, object);
981 nr++;
982 }
983
ab9a0f19 984 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
985 if (max_objects > MAX_OBJS_PER_PAGE)
986 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
987
988 if (page->objects != max_objects) {
756a025f
JP
989 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
990 page->objects, max_objects);
224a88be
CL
991 page->objects = max_objects;
992 slab_fix(s, "Number of objects adjusted.");
993 }
39b26464 994 if (page->inuse != page->objects - nr) {
756a025f
JP
995 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
996 page->inuse, page->objects - nr);
39b26464 997 page->inuse = page->objects - nr;
24922684 998 slab_fix(s, "Object count adjusted.");
81819f0f
CL
999 }
1000 return search == NULL;
1001}
1002
0121c619
CL
1003static void trace(struct kmem_cache *s, struct page *page, void *object,
1004 int alloc)
3ec09742
CL
1005{
1006 if (s->flags & SLAB_TRACE) {
f9f58285 1007 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1008 s->name,
1009 alloc ? "alloc" : "free",
1010 object, page->inuse,
1011 page->freelist);
1012
1013 if (!alloc)
aa2efd5e 1014 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1015 s->object_size);
3ec09742
CL
1016
1017 dump_stack();
1018 }
1019}
1020
643b1138 1021/*
672bba3a 1022 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1023 */
5cc6eee8
CL
1024static void add_full(struct kmem_cache *s,
1025 struct kmem_cache_node *n, struct page *page)
643b1138 1026{
5cc6eee8
CL
1027 if (!(s->flags & SLAB_STORE_USER))
1028 return;
1029
255d0884 1030 lockdep_assert_held(&n->list_lock);
643b1138 1031 list_add(&page->lru, &n->full);
643b1138
CL
1032}
1033
c65c1877 1034static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1035{
643b1138
CL
1036 if (!(s->flags & SLAB_STORE_USER))
1037 return;
1038
255d0884 1039 lockdep_assert_held(&n->list_lock);
643b1138 1040 list_del(&page->lru);
643b1138
CL
1041}
1042
0f389ec6
CL
1043/* Tracking of the number of slabs for debugging purposes */
1044static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1045{
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
26c02cf0
AB
1051static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1052{
1053 return atomic_long_read(&n->nr_slabs);
1054}
1055
205ab99d 1056static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1057{
1058 struct kmem_cache_node *n = get_node(s, node);
1059
1060 /*
1061 * May be called early in order to allocate a slab for the
1062 * kmem_cache_node structure. Solve the chicken-egg
1063 * dilemma by deferring the increment of the count during
1064 * bootstrap (see early_kmem_cache_node_alloc).
1065 */
338b2642 1066 if (likely(n)) {
0f389ec6 1067 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1068 atomic_long_add(objects, &n->total_objects);
1069 }
0f389ec6 1070}
205ab99d 1071static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1072{
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 atomic_long_dec(&n->nr_slabs);
205ab99d 1076 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1077}
1078
1079/* Object debug checks for alloc/free paths */
3ec09742
CL
1080static void setup_object_debug(struct kmem_cache *s, struct page *page,
1081 void *object)
1082{
1083 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1084 return;
1085
f7cb1933 1086 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1087 init_tracking(s, object);
1088}
1089
becfda68 1090static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1091 struct page *page,
ce71e27c 1092 void *object, unsigned long addr)
81819f0f
CL
1093{
1094 if (!check_slab(s, page))
becfda68 1095 return 0;
81819f0f 1096
81819f0f
CL
1097 if (!check_valid_pointer(s, page, object)) {
1098 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1099 return 0;
81819f0f
CL
1100 }
1101
f7cb1933 1102 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1103 return 0;
1104
1105 return 1;
1106}
1107
1108static noinline int alloc_debug_processing(struct kmem_cache *s,
1109 struct page *page,
1110 void *object, unsigned long addr)
1111{
1112 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1113 if (!alloc_consistency_checks(s, page, object, addr))
1114 goto bad;
1115 }
81819f0f 1116
3ec09742
CL
1117 /* Success perform special debug activities for allocs */
1118 if (s->flags & SLAB_STORE_USER)
1119 set_track(s, object, TRACK_ALLOC, addr);
1120 trace(s, page, object, 1);
f7cb1933 1121 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1122 return 1;
3ec09742 1123
81819f0f
CL
1124bad:
1125 if (PageSlab(page)) {
1126 /*
1127 * If this is a slab page then lets do the best we can
1128 * to avoid issues in the future. Marking all objects
672bba3a 1129 * as used avoids touching the remaining objects.
81819f0f 1130 */
24922684 1131 slab_fix(s, "Marking all objects used");
39b26464 1132 page->inuse = page->objects;
a973e9dd 1133 page->freelist = NULL;
81819f0f
CL
1134 }
1135 return 0;
1136}
1137
becfda68
LA
1138static inline int free_consistency_checks(struct kmem_cache *s,
1139 struct page *page, void *object, unsigned long addr)
81819f0f 1140{
81819f0f 1141 if (!check_valid_pointer(s, page, object)) {
70d71228 1142 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1143 return 0;
81819f0f
CL
1144 }
1145
1146 if (on_freelist(s, page, object)) {
24922684 1147 object_err(s, page, object, "Object already free");
becfda68 1148 return 0;
81819f0f
CL
1149 }
1150
f7cb1933 1151 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1152 return 0;
81819f0f 1153
1b4f59e3 1154 if (unlikely(s != page->slab_cache)) {
3adbefee 1155 if (!PageSlab(page)) {
756a025f
JP
1156 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1157 object);
1b4f59e3 1158 } else if (!page->slab_cache) {
f9f58285
FF
1159 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1160 object);
70d71228 1161 dump_stack();
06428780 1162 } else
24922684
CL
1163 object_err(s, page, object,
1164 "page slab pointer corrupt.");
becfda68
LA
1165 return 0;
1166 }
1167 return 1;
1168}
1169
1170/* Supports checking bulk free of a constructed freelist */
1171static noinline int free_debug_processing(
1172 struct kmem_cache *s, struct page *page,
1173 void *head, void *tail, int bulk_cnt,
1174 unsigned long addr)
1175{
1176 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1177 void *object = head;
1178 int cnt = 0;
1179 unsigned long uninitialized_var(flags);
1180 int ret = 0;
1181
1182 spin_lock_irqsave(&n->list_lock, flags);
1183 slab_lock(page);
1184
1185 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1186 if (!check_slab(s, page))
1187 goto out;
1188 }
1189
1190next_object:
1191 cnt++;
1192
1193 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1194 if (!free_consistency_checks(s, page, object, addr))
1195 goto out;
81819f0f 1196 }
3ec09742 1197
3ec09742
CL
1198 if (s->flags & SLAB_STORE_USER)
1199 set_track(s, object, TRACK_FREE, addr);
1200 trace(s, page, object, 0);
81084651 1201 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1202 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1203
1204 /* Reached end of constructed freelist yet? */
1205 if (object != tail) {
1206 object = get_freepointer(s, object);
1207 goto next_object;
1208 }
804aa132
LA
1209 ret = 1;
1210
5c2e4bbb 1211out:
81084651
JDB
1212 if (cnt != bulk_cnt)
1213 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1214 bulk_cnt, cnt);
1215
881db7fb 1216 slab_unlock(page);
282acb43 1217 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1218 if (!ret)
1219 slab_fix(s, "Object at 0x%p not freed", object);
1220 return ret;
81819f0f
CL
1221}
1222
41ecc55b
CL
1223static int __init setup_slub_debug(char *str)
1224{
f0630fff
CL
1225 slub_debug = DEBUG_DEFAULT_FLAGS;
1226 if (*str++ != '=' || !*str)
1227 /*
1228 * No options specified. Switch on full debugging.
1229 */
1230 goto out;
1231
1232 if (*str == ',')
1233 /*
1234 * No options but restriction on slabs. This means full
1235 * debugging for slabs matching a pattern.
1236 */
1237 goto check_slabs;
1238
1239 slub_debug = 0;
1240 if (*str == '-')
1241 /*
1242 * Switch off all debugging measures.
1243 */
1244 goto out;
1245
1246 /*
1247 * Determine which debug features should be switched on
1248 */
06428780 1249 for (; *str && *str != ','; str++) {
f0630fff
CL
1250 switch (tolower(*str)) {
1251 case 'f':
becfda68 1252 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1253 break;
1254 case 'z':
1255 slub_debug |= SLAB_RED_ZONE;
1256 break;
1257 case 'p':
1258 slub_debug |= SLAB_POISON;
1259 break;
1260 case 'u':
1261 slub_debug |= SLAB_STORE_USER;
1262 break;
1263 case 't':
1264 slub_debug |= SLAB_TRACE;
1265 break;
4c13dd3b
DM
1266 case 'a':
1267 slub_debug |= SLAB_FAILSLAB;
1268 break;
08303a73
CA
1269 case 'o':
1270 /*
1271 * Avoid enabling debugging on caches if its minimum
1272 * order would increase as a result.
1273 */
1274 disable_higher_order_debug = 1;
1275 break;
f0630fff 1276 default:
f9f58285
FF
1277 pr_err("slub_debug option '%c' unknown. skipped\n",
1278 *str);
f0630fff 1279 }
41ecc55b
CL
1280 }
1281
f0630fff 1282check_slabs:
41ecc55b
CL
1283 if (*str == ',')
1284 slub_debug_slabs = str + 1;
f0630fff 1285out:
41ecc55b
CL
1286 return 1;
1287}
1288
1289__setup("slub_debug", setup_slub_debug);
1290
423c929c 1291unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1292 unsigned long flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
41ecc55b
CL
1294{
1295 /*
e153362a 1296 * Enable debugging if selected on the kernel commandline.
41ecc55b 1297 */
c6f58d9b
CL
1298 if (slub_debug && (!slub_debug_slabs || (name &&
1299 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1300 flags |= slub_debug;
ba0268a8
CL
1301
1302 return flags;
41ecc55b 1303}
b4a64718 1304#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1305static inline void setup_object_debug(struct kmem_cache *s,
1306 struct page *page, void *object) {}
41ecc55b 1307
3ec09742 1308static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1309 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1310
282acb43 1311static inline int free_debug_processing(
81084651
JDB
1312 struct kmem_cache *s, struct page *page,
1313 void *head, void *tail, int bulk_cnt,
282acb43 1314 unsigned long addr) { return 0; }
41ecc55b 1315
41ecc55b
CL
1316static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1317 { return 1; }
1318static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1319 void *object, u8 val) { return 1; }
5cc6eee8
CL
1320static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1321 struct page *page) {}
c65c1877
PZ
1322static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
423c929c 1324unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1325 unsigned long flags, const char *name,
51cc5068 1326 void (*ctor)(void *))
ba0268a8
CL
1327{
1328 return flags;
1329}
41ecc55b 1330#define slub_debug 0
0f389ec6 1331
fdaa45e9
IM
1332#define disable_higher_order_debug 0
1333
0f389ec6
CL
1334static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1335 { return 0; }
26c02cf0
AB
1336static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1337 { return 0; }
205ab99d
CL
1338static inline void inc_slabs_node(struct kmem_cache *s, int node,
1339 int objects) {}
1340static inline void dec_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
7d550c56 1342
02e72cc6
AR
1343#endif /* CONFIG_SLUB_DEBUG */
1344
1345/*
1346 * Hooks for other subsystems that check memory allocations. In a typical
1347 * production configuration these hooks all should produce no code at all.
1348 */
d56791b3
RB
1349static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1350{
1351 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1352 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1353}
1354
1355static inline void kfree_hook(const void *x)
1356{
1357 kmemleak_free(x);
0316bec2 1358 kasan_kfree_large(x);
d56791b3
RB
1359}
1360
80a9201a 1361static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1362{
80a9201a
AP
1363 void *freeptr;
1364
d56791b3 1365 kmemleak_free_recursive(x, s->flags);
7d550c56 1366
02e72cc6
AR
1367 /*
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1371 */
1372#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1373 {
1374 unsigned long flags;
1375
1376 local_irq_save(flags);
1377 kmemcheck_slab_free(s, x, s->object_size);
1378 debug_check_no_locks_freed(x, s->object_size);
1379 local_irq_restore(flags);
1380 }
1381#endif
1382 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1383 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1384
80a9201a
AP
1385 freeptr = get_freepointer(s, x);
1386 /*
1387 * kasan_slab_free() may put x into memory quarantine, delaying its
1388 * reuse. In this case the object's freelist pointer is changed.
1389 */
0316bec2 1390 kasan_slab_free(s, x);
80a9201a 1391 return freeptr;
02e72cc6 1392}
205ab99d 1393
81084651
JDB
1394static inline void slab_free_freelist_hook(struct kmem_cache *s,
1395 void *head, void *tail)
1396{
1397/*
1398 * Compiler cannot detect this function can be removed if slab_free_hook()
1399 * evaluates to nothing. Thus, catch all relevant config debug options here.
1400 */
1401#if defined(CONFIG_KMEMCHECK) || \
1402 defined(CONFIG_LOCKDEP) || \
1403 defined(CONFIG_DEBUG_KMEMLEAK) || \
1404 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1405 defined(CONFIG_KASAN)
1406
1407 void *object = head;
1408 void *tail_obj = tail ? : head;
80a9201a 1409 void *freeptr;
81084651
JDB
1410
1411 do {
80a9201a
AP
1412 freeptr = slab_free_hook(s, object);
1413 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1414#endif
1415}
1416
588f8ba9
TG
1417static void setup_object(struct kmem_cache *s, struct page *page,
1418 void *object)
1419{
1420 setup_object_debug(s, page, object);
b3cbd9bf 1421 kasan_init_slab_obj(s, object);
588f8ba9
TG
1422 if (unlikely(s->ctor)) {
1423 kasan_unpoison_object_data(s, object);
1424 s->ctor(object);
1425 kasan_poison_object_data(s, object);
1426 }
1427}
1428
81819f0f
CL
1429/*
1430 * Slab allocation and freeing
1431 */
5dfb4175
VD
1432static inline struct page *alloc_slab_page(struct kmem_cache *s,
1433 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1434{
5dfb4175 1435 struct page *page;
65c3376a
CL
1436 int order = oo_order(oo);
1437
b1eeab67
VN
1438 flags |= __GFP_NOTRACK;
1439
2154a336 1440 if (node == NUMA_NO_NODE)
5dfb4175 1441 page = alloc_pages(flags, order);
65c3376a 1442 else
96db800f 1443 page = __alloc_pages_node(node, flags, order);
5dfb4175 1444
f3ccb2c4
VD
1445 if (page && memcg_charge_slab(page, flags, order, s)) {
1446 __free_pages(page, order);
1447 page = NULL;
1448 }
5dfb4175
VD
1449
1450 return page;
65c3376a
CL
1451}
1452
210e7a43
TG
1453#ifdef CONFIG_SLAB_FREELIST_RANDOM
1454/* Pre-initialize the random sequence cache */
1455static int init_cache_random_seq(struct kmem_cache *s)
1456{
1457 int err;
1458 unsigned long i, count = oo_objects(s->oo);
1459
a810007a
SR
1460 /* Bailout if already initialised */
1461 if (s->random_seq)
1462 return 0;
1463
210e7a43
TG
1464 err = cache_random_seq_create(s, count, GFP_KERNEL);
1465 if (err) {
1466 pr_err("SLUB: Unable to initialize free list for %s\n",
1467 s->name);
1468 return err;
1469 }
1470
1471 /* Transform to an offset on the set of pages */
1472 if (s->random_seq) {
1473 for (i = 0; i < count; i++)
1474 s->random_seq[i] *= s->size;
1475 }
1476 return 0;
1477}
1478
1479/* Initialize each random sequence freelist per cache */
1480static void __init init_freelist_randomization(void)
1481{
1482 struct kmem_cache *s;
1483
1484 mutex_lock(&slab_mutex);
1485
1486 list_for_each_entry(s, &slab_caches, list)
1487 init_cache_random_seq(s);
1488
1489 mutex_unlock(&slab_mutex);
1490}
1491
1492/* Get the next entry on the pre-computed freelist randomized */
1493static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1494 unsigned long *pos, void *start,
1495 unsigned long page_limit,
1496 unsigned long freelist_count)
1497{
1498 unsigned int idx;
1499
1500 /*
1501 * If the target page allocation failed, the number of objects on the
1502 * page might be smaller than the usual size defined by the cache.
1503 */
1504 do {
1505 idx = s->random_seq[*pos];
1506 *pos += 1;
1507 if (*pos >= freelist_count)
1508 *pos = 0;
1509 } while (unlikely(idx >= page_limit));
1510
1511 return (char *)start + idx;
1512}
1513
1514/* Shuffle the single linked freelist based on a random pre-computed sequence */
1515static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516{
1517 void *start;
1518 void *cur;
1519 void *next;
1520 unsigned long idx, pos, page_limit, freelist_count;
1521
1522 if (page->objects < 2 || !s->random_seq)
1523 return false;
1524
1525 freelist_count = oo_objects(s->oo);
1526 pos = get_random_int() % freelist_count;
1527
1528 page_limit = page->objects * s->size;
1529 start = fixup_red_left(s, page_address(page));
1530
1531 /* First entry is used as the base of the freelist */
1532 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1533 freelist_count);
1534 page->freelist = cur;
1535
1536 for (idx = 1; idx < page->objects; idx++) {
1537 setup_object(s, page, cur);
1538 next = next_freelist_entry(s, page, &pos, start, page_limit,
1539 freelist_count);
1540 set_freepointer(s, cur, next);
1541 cur = next;
1542 }
1543 setup_object(s, page, cur);
1544 set_freepointer(s, cur, NULL);
1545
1546 return true;
1547}
1548#else
1549static inline int init_cache_random_seq(struct kmem_cache *s)
1550{
1551 return 0;
1552}
1553static inline void init_freelist_randomization(void) { }
1554static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1555{
1556 return false;
1557}
1558#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1559
81819f0f
CL
1560static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1561{
06428780 1562 struct page *page;
834f3d11 1563 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1564 gfp_t alloc_gfp;
588f8ba9
TG
1565 void *start, *p;
1566 int idx, order;
210e7a43 1567 bool shuffle;
81819f0f 1568
7e0528da
CL
1569 flags &= gfp_allowed_mask;
1570
d0164adc 1571 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1572 local_irq_enable();
1573
b7a49f0d 1574 flags |= s->allocflags;
e12ba74d 1575
ba52270d
PE
1576 /*
1577 * Let the initial higher-order allocation fail under memory pressure
1578 * so we fall-back to the minimum order allocation.
1579 */
1580 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1581 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1582 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1583
5dfb4175 1584 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1585 if (unlikely(!page)) {
1586 oo = s->min;
80c3a998 1587 alloc_gfp = flags;
65c3376a
CL
1588 /*
1589 * Allocation may have failed due to fragmentation.
1590 * Try a lower order alloc if possible
1591 */
5dfb4175 1592 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1593 if (unlikely(!page))
1594 goto out;
1595 stat(s, ORDER_FALLBACK);
65c3376a 1596 }
5a896d9e 1597
588f8ba9
TG
1598 if (kmemcheck_enabled &&
1599 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1600 int pages = 1 << oo_order(oo);
1601
80c3a998 1602 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1603
1604 /*
1605 * Objects from caches that have a constructor don't get
1606 * cleared when they're allocated, so we need to do it here.
1607 */
1608 if (s->ctor)
1609 kmemcheck_mark_uninitialized_pages(page, pages);
1610 else
1611 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1612 }
1613
834f3d11 1614 page->objects = oo_objects(oo);
81819f0f 1615
1f458cbf 1616 order = compound_order(page);
1b4f59e3 1617 page->slab_cache = s;
c03f94cc 1618 __SetPageSlab(page);
2f064f34 1619 if (page_is_pfmemalloc(page))
072bb0aa 1620 SetPageSlabPfmemalloc(page);
81819f0f
CL
1621
1622 start = page_address(page);
81819f0f
CL
1623
1624 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1625 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1626
0316bec2
AR
1627 kasan_poison_slab(page);
1628
210e7a43
TG
1629 shuffle = shuffle_freelist(s, page);
1630
1631 if (!shuffle) {
1632 for_each_object_idx(p, idx, s, start, page->objects) {
1633 setup_object(s, page, p);
1634 if (likely(idx < page->objects))
1635 set_freepointer(s, p, p + s->size);
1636 else
1637 set_freepointer(s, p, NULL);
1638 }
1639 page->freelist = fixup_red_left(s, start);
81819f0f 1640 }
81819f0f 1641
e6e82ea1 1642 page->inuse = page->objects;
8cb0a506 1643 page->frozen = 1;
588f8ba9 1644
81819f0f 1645out:
d0164adc 1646 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1647 local_irq_disable();
1648 if (!page)
1649 return NULL;
1650
7779f212 1651 mod_lruvec_page_state(page,
588f8ba9
TG
1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 1 << oo_order(oo));
1655
1656 inc_slabs_node(s, page_to_nid(page), page->objects);
1657
81819f0f
CL
1658 return page;
1659}
1660
588f8ba9
TG
1661static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662{
1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1665 flags &= ~GFP_SLAB_BUG_MASK;
1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1668 dump_stack();
588f8ba9
TG
1669 }
1670
1671 return allocate_slab(s,
1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673}
1674
81819f0f
CL
1675static void __free_slab(struct kmem_cache *s, struct page *page)
1676{
834f3d11
CL
1677 int order = compound_order(page);
1678 int pages = 1 << order;
81819f0f 1679
becfda68 1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1681 void *p;
1682
1683 slab_pad_check(s, page);
224a88be
CL
1684 for_each_object(p, s, page_address(page),
1685 page->objects)
f7cb1933 1686 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1687 }
1688
b1eeab67 1689 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1690
7779f212 1691 mod_lruvec_page_state(page,
81819f0f
CL
1692 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1693 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1694 -pages);
81819f0f 1695
072bb0aa 1696 __ClearPageSlabPfmemalloc(page);
49bd5221 1697 __ClearPageSlab(page);
1f458cbf 1698
22b751c3 1699 page_mapcount_reset(page);
1eb5ac64
NP
1700 if (current->reclaim_state)
1701 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1702 memcg_uncharge_slab(page, order, s);
1703 __free_pages(page, order);
81819f0f
CL
1704}
1705
da9a638c
LJ
1706#define need_reserve_slab_rcu \
1707 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1708
81819f0f
CL
1709static void rcu_free_slab(struct rcu_head *h)
1710{
1711 struct page *page;
1712
da9a638c
LJ
1713 if (need_reserve_slab_rcu)
1714 page = virt_to_head_page(h);
1715 else
1716 page = container_of((struct list_head *)h, struct page, lru);
1717
1b4f59e3 1718 __free_slab(page->slab_cache, page);
81819f0f
CL
1719}
1720
1721static void free_slab(struct kmem_cache *s, struct page *page)
1722{
5f0d5a3a 1723 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1724 struct rcu_head *head;
1725
1726 if (need_reserve_slab_rcu) {
1727 int order = compound_order(page);
1728 int offset = (PAGE_SIZE << order) - s->reserved;
1729
1730 VM_BUG_ON(s->reserved != sizeof(*head));
1731 head = page_address(page) + offset;
1732 } else {
bc4f610d 1733 head = &page->rcu_head;
da9a638c 1734 }
81819f0f
CL
1735
1736 call_rcu(head, rcu_free_slab);
1737 } else
1738 __free_slab(s, page);
1739}
1740
1741static void discard_slab(struct kmem_cache *s, struct page *page)
1742{
205ab99d 1743 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1744 free_slab(s, page);
1745}
1746
1747/*
5cc6eee8 1748 * Management of partially allocated slabs.
81819f0f 1749 */
1e4dd946
SR
1750static inline void
1751__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1752{
e95eed57 1753 n->nr_partial++;
136333d1 1754 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1755 list_add_tail(&page->lru, &n->partial);
1756 else
1757 list_add(&page->lru, &n->partial);
81819f0f
CL
1758}
1759
1e4dd946
SR
1760static inline void add_partial(struct kmem_cache_node *n,
1761 struct page *page, int tail)
62e346a8 1762{
c65c1877 1763 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1764 __add_partial(n, page, tail);
1765}
c65c1877 1766
1e4dd946
SR
1767static inline void remove_partial(struct kmem_cache_node *n,
1768 struct page *page)
1769{
1770 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1771 list_del(&page->lru);
1772 n->nr_partial--;
1e4dd946
SR
1773}
1774
81819f0f 1775/*
7ced3719
CL
1776 * Remove slab from the partial list, freeze it and
1777 * return the pointer to the freelist.
81819f0f 1778 *
497b66f2 1779 * Returns a list of objects or NULL if it fails.
81819f0f 1780 */
497b66f2 1781static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1782 struct kmem_cache_node *n, struct page *page,
633b0764 1783 int mode, int *objects)
81819f0f 1784{
2cfb7455
CL
1785 void *freelist;
1786 unsigned long counters;
1787 struct page new;
1788
c65c1877
PZ
1789 lockdep_assert_held(&n->list_lock);
1790
2cfb7455
CL
1791 /*
1792 * Zap the freelist and set the frozen bit.
1793 * The old freelist is the list of objects for the
1794 * per cpu allocation list.
1795 */
7ced3719
CL
1796 freelist = page->freelist;
1797 counters = page->counters;
1798 new.counters = counters;
633b0764 1799 *objects = new.objects - new.inuse;
23910c50 1800 if (mode) {
7ced3719 1801 new.inuse = page->objects;
23910c50
PE
1802 new.freelist = NULL;
1803 } else {
1804 new.freelist = freelist;
1805 }
2cfb7455 1806
a0132ac0 1807 VM_BUG_ON(new.frozen);
7ced3719 1808 new.frozen = 1;
2cfb7455 1809
7ced3719 1810 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1811 freelist, counters,
02d7633f 1812 new.freelist, new.counters,
7ced3719 1813 "acquire_slab"))
7ced3719 1814 return NULL;
2cfb7455
CL
1815
1816 remove_partial(n, page);
7ced3719 1817 WARN_ON(!freelist);
49e22585 1818 return freelist;
81819f0f
CL
1819}
1820
633b0764 1821static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1822static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1823
81819f0f 1824/*
672bba3a 1825 * Try to allocate a partial slab from a specific node.
81819f0f 1826 */
8ba00bb6
JK
1827static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1828 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1829{
49e22585
CL
1830 struct page *page, *page2;
1831 void *object = NULL;
633b0764
JK
1832 int available = 0;
1833 int objects;
81819f0f
CL
1834
1835 /*
1836 * Racy check. If we mistakenly see no partial slabs then we
1837 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1838 * partial slab and there is none available then get_partials()
1839 * will return NULL.
81819f0f
CL
1840 */
1841 if (!n || !n->nr_partial)
1842 return NULL;
1843
1844 spin_lock(&n->list_lock);
49e22585 1845 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1846 void *t;
49e22585 1847
8ba00bb6
JK
1848 if (!pfmemalloc_match(page, flags))
1849 continue;
1850
633b0764 1851 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1852 if (!t)
1853 break;
1854
633b0764 1855 available += objects;
12d79634 1856 if (!object) {
49e22585 1857 c->page = page;
49e22585 1858 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1859 object = t;
49e22585 1860 } else {
633b0764 1861 put_cpu_partial(s, page, 0);
8028dcea 1862 stat(s, CPU_PARTIAL_NODE);
49e22585 1863 }
345c905d 1864 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1865 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1866 break;
1867
497b66f2 1868 }
81819f0f 1869 spin_unlock(&n->list_lock);
497b66f2 1870 return object;
81819f0f
CL
1871}
1872
1873/*
672bba3a 1874 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1875 */
de3ec035 1876static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1877 struct kmem_cache_cpu *c)
81819f0f
CL
1878{
1879#ifdef CONFIG_NUMA
1880 struct zonelist *zonelist;
dd1a239f 1881 struct zoneref *z;
54a6eb5c
MG
1882 struct zone *zone;
1883 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1884 void *object;
cc9a6c87 1885 unsigned int cpuset_mems_cookie;
81819f0f
CL
1886
1887 /*
672bba3a
CL
1888 * The defrag ratio allows a configuration of the tradeoffs between
1889 * inter node defragmentation and node local allocations. A lower
1890 * defrag_ratio increases the tendency to do local allocations
1891 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1892 *
672bba3a
CL
1893 * If the defrag_ratio is set to 0 then kmalloc() always
1894 * returns node local objects. If the ratio is higher then kmalloc()
1895 * may return off node objects because partial slabs are obtained
1896 * from other nodes and filled up.
81819f0f 1897 *
43efd3ea
LP
1898 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1899 * (which makes defrag_ratio = 1000) then every (well almost)
1900 * allocation will first attempt to defrag slab caches on other nodes.
1901 * This means scanning over all nodes to look for partial slabs which
1902 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1903 * with available objects.
81819f0f 1904 */
9824601e
CL
1905 if (!s->remote_node_defrag_ratio ||
1906 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1907 return NULL;
1908
cc9a6c87 1909 do {
d26914d1 1910 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1911 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1912 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1913 struct kmem_cache_node *n;
1914
1915 n = get_node(s, zone_to_nid(zone));
1916
dee2f8aa 1917 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1918 n->nr_partial > s->min_partial) {
8ba00bb6 1919 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1920 if (object) {
1921 /*
d26914d1
MG
1922 * Don't check read_mems_allowed_retry()
1923 * here - if mems_allowed was updated in
1924 * parallel, that was a harmless race
1925 * between allocation and the cpuset
1926 * update
cc9a6c87 1927 */
cc9a6c87
MG
1928 return object;
1929 }
c0ff7453 1930 }
81819f0f 1931 }
d26914d1 1932 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1933#endif
1934 return NULL;
1935}
1936
1937/*
1938 * Get a partial page, lock it and return it.
1939 */
497b66f2 1940static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1941 struct kmem_cache_cpu *c)
81819f0f 1942{
497b66f2 1943 void *object;
a561ce00
JK
1944 int searchnode = node;
1945
1946 if (node == NUMA_NO_NODE)
1947 searchnode = numa_mem_id();
1948 else if (!node_present_pages(node))
1949 searchnode = node_to_mem_node(node);
81819f0f 1950
8ba00bb6 1951 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1952 if (object || node != NUMA_NO_NODE)
1953 return object;
81819f0f 1954
acd19fd1 1955 return get_any_partial(s, flags, c);
81819f0f
CL
1956}
1957
8a5ec0ba
CL
1958#ifdef CONFIG_PREEMPT
1959/*
1960 * Calculate the next globally unique transaction for disambiguiation
1961 * during cmpxchg. The transactions start with the cpu number and are then
1962 * incremented by CONFIG_NR_CPUS.
1963 */
1964#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1965#else
1966/*
1967 * No preemption supported therefore also no need to check for
1968 * different cpus.
1969 */
1970#define TID_STEP 1
1971#endif
1972
1973static inline unsigned long next_tid(unsigned long tid)
1974{
1975 return tid + TID_STEP;
1976}
1977
1978static inline unsigned int tid_to_cpu(unsigned long tid)
1979{
1980 return tid % TID_STEP;
1981}
1982
1983static inline unsigned long tid_to_event(unsigned long tid)
1984{
1985 return tid / TID_STEP;
1986}
1987
1988static inline unsigned int init_tid(int cpu)
1989{
1990 return cpu;
1991}
1992
1993static inline void note_cmpxchg_failure(const char *n,
1994 const struct kmem_cache *s, unsigned long tid)
1995{
1996#ifdef SLUB_DEBUG_CMPXCHG
1997 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1998
f9f58285 1999 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2000
2001#ifdef CONFIG_PREEMPT
2002 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2003 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2004 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2005 else
2006#endif
2007 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2008 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2009 tid_to_event(tid), tid_to_event(actual_tid));
2010 else
f9f58285 2011 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2012 actual_tid, tid, next_tid(tid));
2013#endif
4fdccdfb 2014 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2015}
2016
788e1aad 2017static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2018{
8a5ec0ba
CL
2019 int cpu;
2020
2021 for_each_possible_cpu(cpu)
2022 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2023}
2cfb7455 2024
81819f0f
CL
2025/*
2026 * Remove the cpu slab
2027 */
d0e0ac97 2028static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2029 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2030{
2cfb7455 2031 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2032 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2033 int lock = 0;
2034 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2035 void *nextfree;
136333d1 2036 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2037 struct page new;
2038 struct page old;
2039
2040 if (page->freelist) {
84e554e6 2041 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2042 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2043 }
2044
894b8788 2045 /*
2cfb7455
CL
2046 * Stage one: Free all available per cpu objects back
2047 * to the page freelist while it is still frozen. Leave the
2048 * last one.
2049 *
2050 * There is no need to take the list->lock because the page
2051 * is still frozen.
2052 */
2053 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2054 void *prior;
2055 unsigned long counters;
2056
2057 do {
2058 prior = page->freelist;
2059 counters = page->counters;
2060 set_freepointer(s, freelist, prior);
2061 new.counters = counters;
2062 new.inuse--;
a0132ac0 2063 VM_BUG_ON(!new.frozen);
2cfb7455 2064
1d07171c 2065 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2066 prior, counters,
2067 freelist, new.counters,
2068 "drain percpu freelist"));
2069
2070 freelist = nextfree;
2071 }
2072
894b8788 2073 /*
2cfb7455
CL
2074 * Stage two: Ensure that the page is unfrozen while the
2075 * list presence reflects the actual number of objects
2076 * during unfreeze.
2077 *
2078 * We setup the list membership and then perform a cmpxchg
2079 * with the count. If there is a mismatch then the page
2080 * is not unfrozen but the page is on the wrong list.
2081 *
2082 * Then we restart the process which may have to remove
2083 * the page from the list that we just put it on again
2084 * because the number of objects in the slab may have
2085 * changed.
894b8788 2086 */
2cfb7455 2087redo:
894b8788 2088
2cfb7455
CL
2089 old.freelist = page->freelist;
2090 old.counters = page->counters;
a0132ac0 2091 VM_BUG_ON(!old.frozen);
7c2e132c 2092
2cfb7455
CL
2093 /* Determine target state of the slab */
2094 new.counters = old.counters;
2095 if (freelist) {
2096 new.inuse--;
2097 set_freepointer(s, freelist, old.freelist);
2098 new.freelist = freelist;
2099 } else
2100 new.freelist = old.freelist;
2101
2102 new.frozen = 0;
2103
8a5b20ae 2104 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2105 m = M_FREE;
2106 else if (new.freelist) {
2107 m = M_PARTIAL;
2108 if (!lock) {
2109 lock = 1;
2110 /*
2111 * Taking the spinlock removes the possiblity
2112 * that acquire_slab() will see a slab page that
2113 * is frozen
2114 */
2115 spin_lock(&n->list_lock);
2116 }
2117 } else {
2118 m = M_FULL;
2119 if (kmem_cache_debug(s) && !lock) {
2120 lock = 1;
2121 /*
2122 * This also ensures that the scanning of full
2123 * slabs from diagnostic functions will not see
2124 * any frozen slabs.
2125 */
2126 spin_lock(&n->list_lock);
2127 }
2128 }
2129
2130 if (l != m) {
2131
2132 if (l == M_PARTIAL)
2133
2134 remove_partial(n, page);
2135
2136 else if (l == M_FULL)
894b8788 2137
c65c1877 2138 remove_full(s, n, page);
2cfb7455
CL
2139
2140 if (m == M_PARTIAL) {
2141
2142 add_partial(n, page, tail);
136333d1 2143 stat(s, tail);
2cfb7455
CL
2144
2145 } else if (m == M_FULL) {
894b8788 2146
2cfb7455
CL
2147 stat(s, DEACTIVATE_FULL);
2148 add_full(s, n, page);
2149
2150 }
2151 }
2152
2153 l = m;
1d07171c 2154 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2155 old.freelist, old.counters,
2156 new.freelist, new.counters,
2157 "unfreezing slab"))
2158 goto redo;
2159
2cfb7455
CL
2160 if (lock)
2161 spin_unlock(&n->list_lock);
2162
2163 if (m == M_FREE) {
2164 stat(s, DEACTIVATE_EMPTY);
2165 discard_slab(s, page);
2166 stat(s, FREE_SLAB);
894b8788 2167 }
d4ff6d35
WY
2168
2169 c->page = NULL;
2170 c->freelist = NULL;
81819f0f
CL
2171}
2172
d24ac77f
JK
2173/*
2174 * Unfreeze all the cpu partial slabs.
2175 *
59a09917
CL
2176 * This function must be called with interrupts disabled
2177 * for the cpu using c (or some other guarantee must be there
2178 * to guarantee no concurrent accesses).
d24ac77f 2179 */
59a09917
CL
2180static void unfreeze_partials(struct kmem_cache *s,
2181 struct kmem_cache_cpu *c)
49e22585 2182{
345c905d 2183#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2184 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2185 struct page *page, *discard_page = NULL;
49e22585
CL
2186
2187 while ((page = c->partial)) {
49e22585
CL
2188 struct page new;
2189 struct page old;
2190
2191 c->partial = page->next;
43d77867
JK
2192
2193 n2 = get_node(s, page_to_nid(page));
2194 if (n != n2) {
2195 if (n)
2196 spin_unlock(&n->list_lock);
2197
2198 n = n2;
2199 spin_lock(&n->list_lock);
2200 }
49e22585
CL
2201
2202 do {
2203
2204 old.freelist = page->freelist;
2205 old.counters = page->counters;
a0132ac0 2206 VM_BUG_ON(!old.frozen);
49e22585
CL
2207
2208 new.counters = old.counters;
2209 new.freelist = old.freelist;
2210
2211 new.frozen = 0;
2212
d24ac77f 2213 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2214 old.freelist, old.counters,
2215 new.freelist, new.counters,
2216 "unfreezing slab"));
2217
8a5b20ae 2218 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2219 page->next = discard_page;
2220 discard_page = page;
43d77867
JK
2221 } else {
2222 add_partial(n, page, DEACTIVATE_TO_TAIL);
2223 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2224 }
2225 }
2226
2227 if (n)
2228 spin_unlock(&n->list_lock);
9ada1934
SL
2229
2230 while (discard_page) {
2231 page = discard_page;
2232 discard_page = discard_page->next;
2233
2234 stat(s, DEACTIVATE_EMPTY);
2235 discard_slab(s, page);
2236 stat(s, FREE_SLAB);
2237 }
345c905d 2238#endif
49e22585
CL
2239}
2240
2241/*
2242 * Put a page that was just frozen (in __slab_free) into a partial page
2243 * slot if available. This is done without interrupts disabled and without
2244 * preemption disabled. The cmpxchg is racy and may put the partial page
2245 * onto a random cpus partial slot.
2246 *
2247 * If we did not find a slot then simply move all the partials to the
2248 * per node partial list.
2249 */
633b0764 2250static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2251{
345c905d 2252#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2253 struct page *oldpage;
2254 int pages;
2255 int pobjects;
2256
d6e0b7fa 2257 preempt_disable();
49e22585
CL
2258 do {
2259 pages = 0;
2260 pobjects = 0;
2261 oldpage = this_cpu_read(s->cpu_slab->partial);
2262
2263 if (oldpage) {
2264 pobjects = oldpage->pobjects;
2265 pages = oldpage->pages;
2266 if (drain && pobjects > s->cpu_partial) {
2267 unsigned long flags;
2268 /*
2269 * partial array is full. Move the existing
2270 * set to the per node partial list.
2271 */
2272 local_irq_save(flags);
59a09917 2273 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2274 local_irq_restore(flags);
e24fc410 2275 oldpage = NULL;
49e22585
CL
2276 pobjects = 0;
2277 pages = 0;
8028dcea 2278 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2279 }
2280 }
2281
2282 pages++;
2283 pobjects += page->objects - page->inuse;
2284
2285 page->pages = pages;
2286 page->pobjects = pobjects;
2287 page->next = oldpage;
2288
d0e0ac97
CG
2289 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2290 != oldpage);
d6e0b7fa
VD
2291 if (unlikely(!s->cpu_partial)) {
2292 unsigned long flags;
2293
2294 local_irq_save(flags);
2295 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2296 local_irq_restore(flags);
2297 }
2298 preempt_enable();
345c905d 2299#endif
49e22585
CL
2300}
2301
dfb4f096 2302static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2303{
84e554e6 2304 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2305 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2306
2307 c->tid = next_tid(c->tid);
81819f0f
CL
2308}
2309
2310/*
2311 * Flush cpu slab.
6446faa2 2312 *
81819f0f
CL
2313 * Called from IPI handler with interrupts disabled.
2314 */
0c710013 2315static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2316{
9dfc6e68 2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2318
49e22585
CL
2319 if (likely(c)) {
2320 if (c->page)
2321 flush_slab(s, c);
2322
59a09917 2323 unfreeze_partials(s, c);
49e22585 2324 }
81819f0f
CL
2325}
2326
2327static void flush_cpu_slab(void *d)
2328{
2329 struct kmem_cache *s = d;
81819f0f 2330
dfb4f096 2331 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2332}
2333
a8364d55
GBY
2334static bool has_cpu_slab(int cpu, void *info)
2335{
2336 struct kmem_cache *s = info;
2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338
a93cf07b 2339 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2340}
2341
81819f0f
CL
2342static void flush_all(struct kmem_cache *s)
2343{
a8364d55 2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2345}
2346
a96a87bf
SAS
2347/*
2348 * Use the cpu notifier to insure that the cpu slabs are flushed when
2349 * necessary.
2350 */
2351static int slub_cpu_dead(unsigned int cpu)
2352{
2353 struct kmem_cache *s;
2354 unsigned long flags;
2355
2356 mutex_lock(&slab_mutex);
2357 list_for_each_entry(s, &slab_caches, list) {
2358 local_irq_save(flags);
2359 __flush_cpu_slab(s, cpu);
2360 local_irq_restore(flags);
2361 }
2362 mutex_unlock(&slab_mutex);
2363 return 0;
2364}
2365
dfb4f096
CL
2366/*
2367 * Check if the objects in a per cpu structure fit numa
2368 * locality expectations.
2369 */
57d437d2 2370static inline int node_match(struct page *page, int node)
dfb4f096
CL
2371{
2372#ifdef CONFIG_NUMA
4d7868e6 2373 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2374 return 0;
2375#endif
2376 return 1;
2377}
2378
9a02d699 2379#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2380static int count_free(struct page *page)
2381{
2382 return page->objects - page->inuse;
2383}
2384
9a02d699
DR
2385static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2386{
2387 return atomic_long_read(&n->total_objects);
2388}
2389#endif /* CONFIG_SLUB_DEBUG */
2390
2391#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2392static unsigned long count_partial(struct kmem_cache_node *n,
2393 int (*get_count)(struct page *))
2394{
2395 unsigned long flags;
2396 unsigned long x = 0;
2397 struct page *page;
2398
2399 spin_lock_irqsave(&n->list_lock, flags);
2400 list_for_each_entry(page, &n->partial, lru)
2401 x += get_count(page);
2402 spin_unlock_irqrestore(&n->list_lock, flags);
2403 return x;
2404}
9a02d699 2405#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2406
781b2ba6
PE
2407static noinline void
2408slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2409{
9a02d699
DR
2410#ifdef CONFIG_SLUB_DEBUG
2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 DEFAULT_RATELIMIT_BURST);
781b2ba6 2413 int node;
fa45dc25 2414 struct kmem_cache_node *n;
781b2ba6 2415
9a02d699
DR
2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 return;
2418
5b3810e5
VB
2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 nid, gfpflags, &gfpflags);
f9f58285
FF
2421 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2422 s->name, s->object_size, s->size, oo_order(s->oo),
2423 oo_order(s->min));
781b2ba6 2424
3b0efdfa 2425 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2427 s->name);
fa5ec8a1 2428
fa45dc25 2429 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2430 unsigned long nr_slabs;
2431 unsigned long nr_objs;
2432 unsigned long nr_free;
2433
26c02cf0
AB
2434 nr_free = count_partial(n, count_free);
2435 nr_slabs = node_nr_slabs(n);
2436 nr_objs = node_nr_objs(n);
781b2ba6 2437
f9f58285 2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2439 node, nr_slabs, nr_objs, nr_free);
2440 }
9a02d699 2441#endif
781b2ba6
PE
2442}
2443
497b66f2
CL
2444static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 int node, struct kmem_cache_cpu **pc)
2446{
6faa6833 2447 void *freelist;
188fd063
CL
2448 struct kmem_cache_cpu *c = *pc;
2449 struct page *page;
497b66f2 2450
188fd063 2451 freelist = get_partial(s, flags, node, c);
497b66f2 2452
188fd063
CL
2453 if (freelist)
2454 return freelist;
2455
2456 page = new_slab(s, flags, node);
497b66f2 2457 if (page) {
7c8e0181 2458 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2459 if (c->page)
2460 flush_slab(s, c);
2461
2462 /*
2463 * No other reference to the page yet so we can
2464 * muck around with it freely without cmpxchg
2465 */
6faa6833 2466 freelist = page->freelist;
497b66f2
CL
2467 page->freelist = NULL;
2468
2469 stat(s, ALLOC_SLAB);
497b66f2
CL
2470 c->page = page;
2471 *pc = c;
2472 } else
6faa6833 2473 freelist = NULL;
497b66f2 2474
6faa6833 2475 return freelist;
497b66f2
CL
2476}
2477
072bb0aa
MG
2478static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2479{
2480 if (unlikely(PageSlabPfmemalloc(page)))
2481 return gfp_pfmemalloc_allowed(gfpflags);
2482
2483 return true;
2484}
2485
213eeb9f 2486/*
d0e0ac97
CG
2487 * Check the page->freelist of a page and either transfer the freelist to the
2488 * per cpu freelist or deactivate the page.
213eeb9f
CL
2489 *
2490 * The page is still frozen if the return value is not NULL.
2491 *
2492 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2493 *
2494 * This function must be called with interrupt disabled.
213eeb9f
CL
2495 */
2496static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2497{
2498 struct page new;
2499 unsigned long counters;
2500 void *freelist;
2501
2502 do {
2503 freelist = page->freelist;
2504 counters = page->counters;
6faa6833 2505
213eeb9f 2506 new.counters = counters;
a0132ac0 2507 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2508
2509 new.inuse = page->objects;
2510 new.frozen = freelist != NULL;
2511
d24ac77f 2512 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2513 freelist, counters,
2514 NULL, new.counters,
2515 "get_freelist"));
2516
2517 return freelist;
2518}
2519
81819f0f 2520/*
894b8788
CL
2521 * Slow path. The lockless freelist is empty or we need to perform
2522 * debugging duties.
2523 *
894b8788
CL
2524 * Processing is still very fast if new objects have been freed to the
2525 * regular freelist. In that case we simply take over the regular freelist
2526 * as the lockless freelist and zap the regular freelist.
81819f0f 2527 *
894b8788
CL
2528 * If that is not working then we fall back to the partial lists. We take the
2529 * first element of the freelist as the object to allocate now and move the
2530 * rest of the freelist to the lockless freelist.
81819f0f 2531 *
894b8788 2532 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2533 * we need to allocate a new slab. This is the slowest path since it involves
2534 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2535 *
2536 * Version of __slab_alloc to use when we know that interrupts are
2537 * already disabled (which is the case for bulk allocation).
81819f0f 2538 */
a380a3c7 2539static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2540 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2541{
6faa6833 2542 void *freelist;
f6e7def7 2543 struct page *page;
81819f0f 2544
f6e7def7
CL
2545 page = c->page;
2546 if (!page)
81819f0f 2547 goto new_slab;
49e22585 2548redo:
6faa6833 2549
57d437d2 2550 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2551 int searchnode = node;
2552
2553 if (node != NUMA_NO_NODE && !node_present_pages(node))
2554 searchnode = node_to_mem_node(node);
2555
2556 if (unlikely(!node_match(page, searchnode))) {
2557 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2558 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2559 goto new_slab;
2560 }
fc59c053 2561 }
6446faa2 2562
072bb0aa
MG
2563 /*
2564 * By rights, we should be searching for a slab page that was
2565 * PFMEMALLOC but right now, we are losing the pfmemalloc
2566 * information when the page leaves the per-cpu allocator
2567 */
2568 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2569 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2570 goto new_slab;
2571 }
2572
73736e03 2573 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2574 freelist = c->freelist;
2575 if (freelist)
73736e03 2576 goto load_freelist;
03e404af 2577
f6e7def7 2578 freelist = get_freelist(s, page);
6446faa2 2579
6faa6833 2580 if (!freelist) {
03e404af
CL
2581 c->page = NULL;
2582 stat(s, DEACTIVATE_BYPASS);
fc59c053 2583 goto new_slab;
03e404af 2584 }
6446faa2 2585
84e554e6 2586 stat(s, ALLOC_REFILL);
6446faa2 2587
894b8788 2588load_freelist:
507effea
CL
2589 /*
2590 * freelist is pointing to the list of objects to be used.
2591 * page is pointing to the page from which the objects are obtained.
2592 * That page must be frozen for per cpu allocations to work.
2593 */
a0132ac0 2594 VM_BUG_ON(!c->page->frozen);
6faa6833 2595 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2596 c->tid = next_tid(c->tid);
6faa6833 2597 return freelist;
81819f0f 2598
81819f0f 2599new_slab:
2cfb7455 2600
a93cf07b
WY
2601 if (slub_percpu_partial(c)) {
2602 page = c->page = slub_percpu_partial(c);
2603 slub_set_percpu_partial(c, page);
49e22585 2604 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2605 goto redo;
81819f0f
CL
2606 }
2607
188fd063 2608 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2609
f4697436 2610 if (unlikely(!freelist)) {
9a02d699 2611 slab_out_of_memory(s, gfpflags, node);
f4697436 2612 return NULL;
81819f0f 2613 }
2cfb7455 2614
f6e7def7 2615 page = c->page;
5091b74a 2616 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2617 goto load_freelist;
2cfb7455 2618
497b66f2 2619 /* Only entered in the debug case */
d0e0ac97
CG
2620 if (kmem_cache_debug(s) &&
2621 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2622 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2623
d4ff6d35 2624 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2625 return freelist;
894b8788
CL
2626}
2627
a380a3c7
CL
2628/*
2629 * Another one that disabled interrupt and compensates for possible
2630 * cpu changes by refetching the per cpu area pointer.
2631 */
2632static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2633 unsigned long addr, struct kmem_cache_cpu *c)
2634{
2635 void *p;
2636 unsigned long flags;
2637
2638 local_irq_save(flags);
2639#ifdef CONFIG_PREEMPT
2640 /*
2641 * We may have been preempted and rescheduled on a different
2642 * cpu before disabling interrupts. Need to reload cpu area
2643 * pointer.
2644 */
2645 c = this_cpu_ptr(s->cpu_slab);
2646#endif
2647
2648 p = ___slab_alloc(s, gfpflags, node, addr, c);
2649 local_irq_restore(flags);
2650 return p;
2651}
2652
894b8788
CL
2653/*
2654 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2655 * have the fastpath folded into their functions. So no function call
2656 * overhead for requests that can be satisfied on the fastpath.
2657 *
2658 * The fastpath works by first checking if the lockless freelist can be used.
2659 * If not then __slab_alloc is called for slow processing.
2660 *
2661 * Otherwise we can simply pick the next object from the lockless free list.
2662 */
2b847c3c 2663static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2664 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2665{
03ec0ed5 2666 void *object;
dfb4f096 2667 struct kmem_cache_cpu *c;
57d437d2 2668 struct page *page;
8a5ec0ba 2669 unsigned long tid;
1f84260c 2670
8135be5a
VD
2671 s = slab_pre_alloc_hook(s, gfpflags);
2672 if (!s)
773ff60e 2673 return NULL;
8a5ec0ba 2674redo:
8a5ec0ba
CL
2675 /*
2676 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2677 * enabled. We may switch back and forth between cpus while
2678 * reading from one cpu area. That does not matter as long
2679 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2680 *
9aabf810
JK
2681 * We should guarantee that tid and kmem_cache are retrieved on
2682 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2683 * to check if it is matched or not.
8a5ec0ba 2684 */
9aabf810
JK
2685 do {
2686 tid = this_cpu_read(s->cpu_slab->tid);
2687 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2688 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2689 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2690
2691 /*
2692 * Irqless object alloc/free algorithm used here depends on sequence
2693 * of fetching cpu_slab's data. tid should be fetched before anything
2694 * on c to guarantee that object and page associated with previous tid
2695 * won't be used with current tid. If we fetch tid first, object and
2696 * page could be one associated with next tid and our alloc/free
2697 * request will be failed. In this case, we will retry. So, no problem.
2698 */
2699 barrier();
8a5ec0ba 2700
8a5ec0ba
CL
2701 /*
2702 * The transaction ids are globally unique per cpu and per operation on
2703 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2704 * occurs on the right processor and that there was no operation on the
2705 * linked list in between.
2706 */
8a5ec0ba 2707
9dfc6e68 2708 object = c->freelist;
57d437d2 2709 page = c->page;
8eae1492 2710 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2711 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2712 stat(s, ALLOC_SLOWPATH);
2713 } else {
0ad9500e
ED
2714 void *next_object = get_freepointer_safe(s, object);
2715
8a5ec0ba 2716 /*
25985edc 2717 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2718 * operation and if we are on the right processor.
2719 *
d0e0ac97
CG
2720 * The cmpxchg does the following atomically (without lock
2721 * semantics!)
8a5ec0ba
CL
2722 * 1. Relocate first pointer to the current per cpu area.
2723 * 2. Verify that tid and freelist have not been changed
2724 * 3. If they were not changed replace tid and freelist
2725 *
d0e0ac97
CG
2726 * Since this is without lock semantics the protection is only
2727 * against code executing on this cpu *not* from access by
2728 * other cpus.
8a5ec0ba 2729 */
933393f5 2730 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2731 s->cpu_slab->freelist, s->cpu_slab->tid,
2732 object, tid,
0ad9500e 2733 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2734
2735 note_cmpxchg_failure("slab_alloc", s, tid);
2736 goto redo;
2737 }
0ad9500e 2738 prefetch_freepointer(s, next_object);
84e554e6 2739 stat(s, ALLOC_FASTPATH);
894b8788 2740 }
8a5ec0ba 2741
74e2134f 2742 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2743 memset(object, 0, s->object_size);
d07dbea4 2744
03ec0ed5 2745 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2746
894b8788 2747 return object;
81819f0f
CL
2748}
2749
2b847c3c
EG
2750static __always_inline void *slab_alloc(struct kmem_cache *s,
2751 gfp_t gfpflags, unsigned long addr)
2752{
2753 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2754}
2755
81819f0f
CL
2756void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2757{
2b847c3c 2758 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2759
d0e0ac97
CG
2760 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2761 s->size, gfpflags);
5b882be4
EGM
2762
2763 return ret;
81819f0f
CL
2764}
2765EXPORT_SYMBOL(kmem_cache_alloc);
2766
0f24f128 2767#ifdef CONFIG_TRACING
4a92379b
RK
2768void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2769{
2b847c3c 2770 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2771 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2772 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2773 return ret;
2774}
2775EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2776#endif
2777
81819f0f
CL
2778#ifdef CONFIG_NUMA
2779void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2780{
2b847c3c 2781 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2782
ca2b84cb 2783 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2784 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2785
2786 return ret;
81819f0f
CL
2787}
2788EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2789
0f24f128 2790#ifdef CONFIG_TRACING
4a92379b 2791void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2792 gfp_t gfpflags,
4a92379b 2793 int node, size_t size)
5b882be4 2794{
2b847c3c 2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2796
2797 trace_kmalloc_node(_RET_IP_, ret,
2798 size, s->size, gfpflags, node);
0316bec2 2799
505f5dcb 2800 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2801 return ret;
5b882be4 2802}
4a92379b 2803EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2804#endif
5d1f57e4 2805#endif
5b882be4 2806
81819f0f 2807/*
94e4d712 2808 * Slow path handling. This may still be called frequently since objects
894b8788 2809 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2810 *
894b8788
CL
2811 * So we still attempt to reduce cache line usage. Just take the slab
2812 * lock and free the item. If there is no additional partial page
2813 * handling required then we can return immediately.
81819f0f 2814 */
894b8788 2815static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2816 void *head, void *tail, int cnt,
2817 unsigned long addr)
2818
81819f0f
CL
2819{
2820 void *prior;
2cfb7455 2821 int was_frozen;
2cfb7455
CL
2822 struct page new;
2823 unsigned long counters;
2824 struct kmem_cache_node *n = NULL;
61728d1e 2825 unsigned long uninitialized_var(flags);
81819f0f 2826
8a5ec0ba 2827 stat(s, FREE_SLOWPATH);
81819f0f 2828
19c7ff9e 2829 if (kmem_cache_debug(s) &&
282acb43 2830 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2831 return;
6446faa2 2832
2cfb7455 2833 do {
837d678d
JK
2834 if (unlikely(n)) {
2835 spin_unlock_irqrestore(&n->list_lock, flags);
2836 n = NULL;
2837 }
2cfb7455
CL
2838 prior = page->freelist;
2839 counters = page->counters;
81084651 2840 set_freepointer(s, tail, prior);
2cfb7455
CL
2841 new.counters = counters;
2842 was_frozen = new.frozen;
81084651 2843 new.inuse -= cnt;
837d678d 2844 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2845
c65c1877 2846 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2847
2848 /*
d0e0ac97
CG
2849 * Slab was on no list before and will be
2850 * partially empty
2851 * We can defer the list move and instead
2852 * freeze it.
49e22585
CL
2853 */
2854 new.frozen = 1;
2855
c65c1877 2856 } else { /* Needs to be taken off a list */
49e22585 2857
b455def2 2858 n = get_node(s, page_to_nid(page));
49e22585
CL
2859 /*
2860 * Speculatively acquire the list_lock.
2861 * If the cmpxchg does not succeed then we may
2862 * drop the list_lock without any processing.
2863 *
2864 * Otherwise the list_lock will synchronize with
2865 * other processors updating the list of slabs.
2866 */
2867 spin_lock_irqsave(&n->list_lock, flags);
2868
2869 }
2cfb7455 2870 }
81819f0f 2871
2cfb7455
CL
2872 } while (!cmpxchg_double_slab(s, page,
2873 prior, counters,
81084651 2874 head, new.counters,
2cfb7455 2875 "__slab_free"));
81819f0f 2876
2cfb7455 2877 if (likely(!n)) {
49e22585
CL
2878
2879 /*
2880 * If we just froze the page then put it onto the
2881 * per cpu partial list.
2882 */
8028dcea 2883 if (new.frozen && !was_frozen) {
49e22585 2884 put_cpu_partial(s, page, 1);
8028dcea
AS
2885 stat(s, CPU_PARTIAL_FREE);
2886 }
49e22585 2887 /*
2cfb7455
CL
2888 * The list lock was not taken therefore no list
2889 * activity can be necessary.
2890 */
b455def2
L
2891 if (was_frozen)
2892 stat(s, FREE_FROZEN);
2893 return;
2894 }
81819f0f 2895
8a5b20ae 2896 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2897 goto slab_empty;
2898
81819f0f 2899 /*
837d678d
JK
2900 * Objects left in the slab. If it was not on the partial list before
2901 * then add it.
81819f0f 2902 */
345c905d
JK
2903 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2904 if (kmem_cache_debug(s))
c65c1877 2905 remove_full(s, n, page);
837d678d
JK
2906 add_partial(n, page, DEACTIVATE_TO_TAIL);
2907 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2908 }
80f08c19 2909 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2910 return;
2911
2912slab_empty:
a973e9dd 2913 if (prior) {
81819f0f 2914 /*
6fbabb20 2915 * Slab on the partial list.
81819f0f 2916 */
5cc6eee8 2917 remove_partial(n, page);
84e554e6 2918 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2919 } else {
6fbabb20 2920 /* Slab must be on the full list */
c65c1877
PZ
2921 remove_full(s, n, page);
2922 }
2cfb7455 2923
80f08c19 2924 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2925 stat(s, FREE_SLAB);
81819f0f 2926 discard_slab(s, page);
81819f0f
CL
2927}
2928
894b8788
CL
2929/*
2930 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2931 * can perform fastpath freeing without additional function calls.
2932 *
2933 * The fastpath is only possible if we are freeing to the current cpu slab
2934 * of this processor. This typically the case if we have just allocated
2935 * the item before.
2936 *
2937 * If fastpath is not possible then fall back to __slab_free where we deal
2938 * with all sorts of special processing.
81084651
JDB
2939 *
2940 * Bulk free of a freelist with several objects (all pointing to the
2941 * same page) possible by specifying head and tail ptr, plus objects
2942 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2943 */
80a9201a
AP
2944static __always_inline void do_slab_free(struct kmem_cache *s,
2945 struct page *page, void *head, void *tail,
2946 int cnt, unsigned long addr)
894b8788 2947{
81084651 2948 void *tail_obj = tail ? : head;
dfb4f096 2949 struct kmem_cache_cpu *c;
8a5ec0ba 2950 unsigned long tid;
8a5ec0ba
CL
2951redo:
2952 /*
2953 * Determine the currently cpus per cpu slab.
2954 * The cpu may change afterward. However that does not matter since
2955 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2956 * during the cmpxchg then the free will succeed.
8a5ec0ba 2957 */
9aabf810
JK
2958 do {
2959 tid = this_cpu_read(s->cpu_slab->tid);
2960 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2961 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2962 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2963
9aabf810
JK
2964 /* Same with comment on barrier() in slab_alloc_node() */
2965 barrier();
c016b0bd 2966
442b06bc 2967 if (likely(page == c->page)) {
81084651 2968 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2969
933393f5 2970 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2971 s->cpu_slab->freelist, s->cpu_slab->tid,
2972 c->freelist, tid,
81084651 2973 head, next_tid(tid)))) {
8a5ec0ba
CL
2974
2975 note_cmpxchg_failure("slab_free", s, tid);
2976 goto redo;
2977 }
84e554e6 2978 stat(s, FREE_FASTPATH);
894b8788 2979 } else
81084651 2980 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2981
894b8788
CL
2982}
2983
80a9201a
AP
2984static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2985 void *head, void *tail, int cnt,
2986 unsigned long addr)
2987{
2988 slab_free_freelist_hook(s, head, tail);
2989 /*
2990 * slab_free_freelist_hook() could have put the items into quarantine.
2991 * If so, no need to free them.
2992 */
5f0d5a3a 2993 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2994 return;
2995 do_slab_free(s, page, head, tail, cnt, addr);
2996}
2997
2998#ifdef CONFIG_KASAN
2999void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3000{
3001 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3002}
3003#endif
3004
81819f0f
CL
3005void kmem_cache_free(struct kmem_cache *s, void *x)
3006{
b9ce5ef4
GC
3007 s = cache_from_obj(s, x);
3008 if (!s)
79576102 3009 return;
81084651 3010 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3011 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3012}
3013EXPORT_SYMBOL(kmem_cache_free);
3014
d0ecd894 3015struct detached_freelist {
fbd02630 3016 struct page *page;
d0ecd894
JDB
3017 void *tail;
3018 void *freelist;
3019 int cnt;
376bf125 3020 struct kmem_cache *s;
d0ecd894 3021};
fbd02630 3022
d0ecd894
JDB
3023/*
3024 * This function progressively scans the array with free objects (with
3025 * a limited look ahead) and extract objects belonging to the same
3026 * page. It builds a detached freelist directly within the given
3027 * page/objects. This can happen without any need for
3028 * synchronization, because the objects are owned by running process.
3029 * The freelist is build up as a single linked list in the objects.
3030 * The idea is, that this detached freelist can then be bulk
3031 * transferred to the real freelist(s), but only requiring a single
3032 * synchronization primitive. Look ahead in the array is limited due
3033 * to performance reasons.
3034 */
376bf125
JDB
3035static inline
3036int build_detached_freelist(struct kmem_cache *s, size_t size,
3037 void **p, struct detached_freelist *df)
d0ecd894
JDB
3038{
3039 size_t first_skipped_index = 0;
3040 int lookahead = 3;
3041 void *object;
ca257195 3042 struct page *page;
fbd02630 3043
d0ecd894
JDB
3044 /* Always re-init detached_freelist */
3045 df->page = NULL;
fbd02630 3046
d0ecd894
JDB
3047 do {
3048 object = p[--size];
ca257195 3049 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3050 } while (!object && size);
3eed034d 3051
d0ecd894
JDB
3052 if (!object)
3053 return 0;
fbd02630 3054
ca257195
JDB
3055 page = virt_to_head_page(object);
3056 if (!s) {
3057 /* Handle kalloc'ed objects */
3058 if (unlikely(!PageSlab(page))) {
3059 BUG_ON(!PageCompound(page));
3060 kfree_hook(object);
4949148a 3061 __free_pages(page, compound_order(page));
ca257195
JDB
3062 p[size] = NULL; /* mark object processed */
3063 return size;
3064 }
3065 /* Derive kmem_cache from object */
3066 df->s = page->slab_cache;
3067 } else {
3068 df->s = cache_from_obj(s, object); /* Support for memcg */
3069 }
376bf125 3070
d0ecd894 3071 /* Start new detached freelist */
ca257195 3072 df->page = page;
376bf125 3073 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3074 df->tail = object;
3075 df->freelist = object;
3076 p[size] = NULL; /* mark object processed */
3077 df->cnt = 1;
3078
3079 while (size) {
3080 object = p[--size];
3081 if (!object)
3082 continue; /* Skip processed objects */
3083
3084 /* df->page is always set at this point */
3085 if (df->page == virt_to_head_page(object)) {
3086 /* Opportunity build freelist */
376bf125 3087 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3088 df->freelist = object;
3089 df->cnt++;
3090 p[size] = NULL; /* mark object processed */
3091
3092 continue;
fbd02630 3093 }
d0ecd894
JDB
3094
3095 /* Limit look ahead search */
3096 if (!--lookahead)
3097 break;
3098
3099 if (!first_skipped_index)
3100 first_skipped_index = size + 1;
fbd02630 3101 }
d0ecd894
JDB
3102
3103 return first_skipped_index;
3104}
3105
d0ecd894 3106/* Note that interrupts must be enabled when calling this function. */
376bf125 3107void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3108{
3109 if (WARN_ON(!size))
3110 return;
3111
3112 do {
3113 struct detached_freelist df;
3114
3115 size = build_detached_freelist(s, size, p, &df);
84582c8a 3116 if (!df.page)
d0ecd894
JDB
3117 continue;
3118
376bf125 3119 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3120 } while (likely(size));
484748f0
CL
3121}
3122EXPORT_SYMBOL(kmem_cache_free_bulk);
3123
994eb764 3124/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3125int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3126 void **p)
484748f0 3127{
994eb764
JDB
3128 struct kmem_cache_cpu *c;
3129 int i;
3130
03ec0ed5
JDB
3131 /* memcg and kmem_cache debug support */
3132 s = slab_pre_alloc_hook(s, flags);
3133 if (unlikely(!s))
3134 return false;
994eb764
JDB
3135 /*
3136 * Drain objects in the per cpu slab, while disabling local
3137 * IRQs, which protects against PREEMPT and interrupts
3138 * handlers invoking normal fastpath.
3139 */
3140 local_irq_disable();
3141 c = this_cpu_ptr(s->cpu_slab);
3142
3143 for (i = 0; i < size; i++) {
3144 void *object = c->freelist;
3145
ebe909e0 3146 if (unlikely(!object)) {
ebe909e0
JDB
3147 /*
3148 * Invoking slow path likely have side-effect
3149 * of re-populating per CPU c->freelist
3150 */
87098373 3151 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3152 _RET_IP_, c);
87098373
CL
3153 if (unlikely(!p[i]))
3154 goto error;
3155
ebe909e0
JDB
3156 c = this_cpu_ptr(s->cpu_slab);
3157 continue; /* goto for-loop */
3158 }
994eb764
JDB
3159 c->freelist = get_freepointer(s, object);
3160 p[i] = object;
3161 }
3162 c->tid = next_tid(c->tid);
3163 local_irq_enable();
3164
3165 /* Clear memory outside IRQ disabled fastpath loop */
3166 if (unlikely(flags & __GFP_ZERO)) {
3167 int j;
3168
3169 for (j = 0; j < i; j++)
3170 memset(p[j], 0, s->object_size);
3171 }
3172
03ec0ed5
JDB
3173 /* memcg and kmem_cache debug support */
3174 slab_post_alloc_hook(s, flags, size, p);
865762a8 3175 return i;
87098373 3176error:
87098373 3177 local_irq_enable();
03ec0ed5
JDB
3178 slab_post_alloc_hook(s, flags, i, p);
3179 __kmem_cache_free_bulk(s, i, p);
865762a8 3180 return 0;
484748f0
CL
3181}
3182EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3183
3184
81819f0f 3185/*
672bba3a
CL
3186 * Object placement in a slab is made very easy because we always start at
3187 * offset 0. If we tune the size of the object to the alignment then we can
3188 * get the required alignment by putting one properly sized object after
3189 * another.
81819f0f
CL
3190 *
3191 * Notice that the allocation order determines the sizes of the per cpu
3192 * caches. Each processor has always one slab available for allocations.
3193 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3194 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3195 * locking overhead.
81819f0f
CL
3196 */
3197
3198/*
3199 * Mininum / Maximum order of slab pages. This influences locking overhead
3200 * and slab fragmentation. A higher order reduces the number of partial slabs
3201 * and increases the number of allocations possible without having to
3202 * take the list_lock.
3203 */
3204static int slub_min_order;
114e9e89 3205static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3206static int slub_min_objects;
81819f0f 3207
81819f0f
CL
3208/*
3209 * Calculate the order of allocation given an slab object size.
3210 *
672bba3a
CL
3211 * The order of allocation has significant impact on performance and other
3212 * system components. Generally order 0 allocations should be preferred since
3213 * order 0 does not cause fragmentation in the page allocator. Larger objects
3214 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3215 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3216 * would be wasted.
3217 *
3218 * In order to reach satisfactory performance we must ensure that a minimum
3219 * number of objects is in one slab. Otherwise we may generate too much
3220 * activity on the partial lists which requires taking the list_lock. This is
3221 * less a concern for large slabs though which are rarely used.
81819f0f 3222 *
672bba3a
CL
3223 * slub_max_order specifies the order where we begin to stop considering the
3224 * number of objects in a slab as critical. If we reach slub_max_order then
3225 * we try to keep the page order as low as possible. So we accept more waste
3226 * of space in favor of a small page order.
81819f0f 3227 *
672bba3a
CL
3228 * Higher order allocations also allow the placement of more objects in a
3229 * slab and thereby reduce object handling overhead. If the user has
3230 * requested a higher mininum order then we start with that one instead of
3231 * the smallest order which will fit the object.
81819f0f 3232 */
5e6d444e 3233static inline int slab_order(int size, int min_objects,
ab9a0f19 3234 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3235{
3236 int order;
3237 int rem;
6300ea75 3238 int min_order = slub_min_order;
81819f0f 3239
ab9a0f19 3240 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3241 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3242
9f835703 3243 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3244 order <= max_order; order++) {
81819f0f 3245
5e6d444e 3246 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3247
ab9a0f19 3248 rem = (slab_size - reserved) % size;
81819f0f 3249
5e6d444e 3250 if (rem <= slab_size / fract_leftover)
81819f0f 3251 break;
81819f0f 3252 }
672bba3a 3253
81819f0f
CL
3254 return order;
3255}
3256
ab9a0f19 3257static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3258{
3259 int order;
3260 int min_objects;
3261 int fraction;
e8120ff1 3262 int max_objects;
5e6d444e
CL
3263
3264 /*
3265 * Attempt to find best configuration for a slab. This
3266 * works by first attempting to generate a layout with
3267 * the best configuration and backing off gradually.
3268 *
422ff4d7 3269 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3270 * we reduce the minimum objects required in a slab.
3271 */
3272 min_objects = slub_min_objects;
9b2cd506
CL
3273 if (!min_objects)
3274 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3275 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3276 min_objects = min(min_objects, max_objects);
3277
5e6d444e 3278 while (min_objects > 1) {
c124f5b5 3279 fraction = 16;
5e6d444e
CL
3280 while (fraction >= 4) {
3281 order = slab_order(size, min_objects,
ab9a0f19 3282 slub_max_order, fraction, reserved);
5e6d444e
CL
3283 if (order <= slub_max_order)
3284 return order;
3285 fraction /= 2;
3286 }
5086c389 3287 min_objects--;
5e6d444e
CL
3288 }
3289
3290 /*
3291 * We were unable to place multiple objects in a slab. Now
3292 * lets see if we can place a single object there.
3293 */
ab9a0f19 3294 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3295 if (order <= slub_max_order)
3296 return order;
3297
3298 /*
3299 * Doh this slab cannot be placed using slub_max_order.
3300 */
ab9a0f19 3301 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3302 if (order < MAX_ORDER)
5e6d444e
CL
3303 return order;
3304 return -ENOSYS;
3305}
3306
5595cffc 3307static void
4053497d 3308init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3309{
3310 n->nr_partial = 0;
81819f0f
CL
3311 spin_lock_init(&n->list_lock);
3312 INIT_LIST_HEAD(&n->partial);
8ab1372f 3313#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3314 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3315 atomic_long_set(&n->total_objects, 0);
643b1138 3316 INIT_LIST_HEAD(&n->full);
8ab1372f 3317#endif
81819f0f
CL
3318}
3319
55136592 3320static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3321{
6c182dc0 3322 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3323 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3324
8a5ec0ba 3325 /*
d4d84fef
CM
3326 * Must align to double word boundary for the double cmpxchg
3327 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3328 */
d4d84fef
CM
3329 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3330 2 * sizeof(void *));
8a5ec0ba
CL
3331
3332 if (!s->cpu_slab)
3333 return 0;
3334
3335 init_kmem_cache_cpus(s);
4c93c355 3336
8a5ec0ba 3337 return 1;
4c93c355 3338}
4c93c355 3339
51df1142
CL
3340static struct kmem_cache *kmem_cache_node;
3341
81819f0f
CL
3342/*
3343 * No kmalloc_node yet so do it by hand. We know that this is the first
3344 * slab on the node for this slabcache. There are no concurrent accesses
3345 * possible.
3346 *
721ae22a
ZYW
3347 * Note that this function only works on the kmem_cache_node
3348 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3349 * memory on a fresh node that has no slab structures yet.
81819f0f 3350 */
55136592 3351static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3352{
3353 struct page *page;
3354 struct kmem_cache_node *n;
3355
51df1142 3356 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3357
51df1142 3358 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3359
3360 BUG_ON(!page);
a2f92ee7 3361 if (page_to_nid(page) != node) {
f9f58285
FF
3362 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3363 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3364 }
3365
81819f0f
CL
3366 n = page->freelist;
3367 BUG_ON(!n);
51df1142 3368 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3369 page->inuse = 1;
8cb0a506 3370 page->frozen = 0;
51df1142 3371 kmem_cache_node->node[node] = n;
8ab1372f 3372#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3373 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3374 init_tracking(kmem_cache_node, n);
8ab1372f 3375#endif
505f5dcb
AP
3376 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3377 GFP_KERNEL);
4053497d 3378 init_kmem_cache_node(n);
51df1142 3379 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3380
67b6c900 3381 /*
1e4dd946
SR
3382 * No locks need to be taken here as it has just been
3383 * initialized and there is no concurrent access.
67b6c900 3384 */
1e4dd946 3385 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3386}
3387
3388static void free_kmem_cache_nodes(struct kmem_cache *s)
3389{
3390 int node;
fa45dc25 3391 struct kmem_cache_node *n;
81819f0f 3392
fa45dc25 3393 for_each_kmem_cache_node(s, node, n) {
81819f0f 3394 s->node[node] = NULL;
ea37df54 3395 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3396 }
3397}
3398
52b4b950
DS
3399void __kmem_cache_release(struct kmem_cache *s)
3400{
210e7a43 3401 cache_random_seq_destroy(s);
52b4b950
DS
3402 free_percpu(s->cpu_slab);
3403 free_kmem_cache_nodes(s);
3404}
3405
55136592 3406static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3407{
3408 int node;
81819f0f 3409
f64dc58c 3410 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3411 struct kmem_cache_node *n;
3412
73367bd8 3413 if (slab_state == DOWN) {
55136592 3414 early_kmem_cache_node_alloc(node);
73367bd8
AD
3415 continue;
3416 }
51df1142 3417 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3418 GFP_KERNEL, node);
81819f0f 3419
73367bd8
AD
3420 if (!n) {
3421 free_kmem_cache_nodes(s);
3422 return 0;
81819f0f 3423 }
73367bd8 3424
4053497d 3425 init_kmem_cache_node(n);
ea37df54 3426 s->node[node] = n;
81819f0f
CL
3427 }
3428 return 1;
3429}
81819f0f 3430
c0bdb232 3431static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3432{
3433 if (min < MIN_PARTIAL)
3434 min = MIN_PARTIAL;
3435 else if (min > MAX_PARTIAL)
3436 min = MAX_PARTIAL;
3437 s->min_partial = min;
3438}
3439
e6d0e1dc
WY
3440static void set_cpu_partial(struct kmem_cache *s)
3441{
3442#ifdef CONFIG_SLUB_CPU_PARTIAL
3443 /*
3444 * cpu_partial determined the maximum number of objects kept in the
3445 * per cpu partial lists of a processor.
3446 *
3447 * Per cpu partial lists mainly contain slabs that just have one
3448 * object freed. If they are used for allocation then they can be
3449 * filled up again with minimal effort. The slab will never hit the
3450 * per node partial lists and therefore no locking will be required.
3451 *
3452 * This setting also determines
3453 *
3454 * A) The number of objects from per cpu partial slabs dumped to the
3455 * per node list when we reach the limit.
3456 * B) The number of objects in cpu partial slabs to extract from the
3457 * per node list when we run out of per cpu objects. We only fetch
3458 * 50% to keep some capacity around for frees.
3459 */
3460 if (!kmem_cache_has_cpu_partial(s))
3461 s->cpu_partial = 0;
3462 else if (s->size >= PAGE_SIZE)
3463 s->cpu_partial = 2;
3464 else if (s->size >= 1024)
3465 s->cpu_partial = 6;
3466 else if (s->size >= 256)
3467 s->cpu_partial = 13;
3468 else
3469 s->cpu_partial = 30;
3470#endif
3471}
3472
81819f0f
CL
3473/*
3474 * calculate_sizes() determines the order and the distribution of data within
3475 * a slab object.
3476 */
06b285dc 3477static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3478{
3479 unsigned long flags = s->flags;
80a9201a 3480 size_t size = s->object_size;
834f3d11 3481 int order;
81819f0f 3482
d8b42bf5
CL
3483 /*
3484 * Round up object size to the next word boundary. We can only
3485 * place the free pointer at word boundaries and this determines
3486 * the possible location of the free pointer.
3487 */
3488 size = ALIGN(size, sizeof(void *));
3489
3490#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3491 /*
3492 * Determine if we can poison the object itself. If the user of
3493 * the slab may touch the object after free or before allocation
3494 * then we should never poison the object itself.
3495 */
5f0d5a3a 3496 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3497 !s->ctor)
81819f0f
CL
3498 s->flags |= __OBJECT_POISON;
3499 else
3500 s->flags &= ~__OBJECT_POISON;
3501
81819f0f
CL
3502
3503 /*
672bba3a 3504 * If we are Redzoning then check if there is some space between the
81819f0f 3505 * end of the object and the free pointer. If not then add an
672bba3a 3506 * additional word to have some bytes to store Redzone information.
81819f0f 3507 */
3b0efdfa 3508 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3509 size += sizeof(void *);
41ecc55b 3510#endif
81819f0f
CL
3511
3512 /*
672bba3a
CL
3513 * With that we have determined the number of bytes in actual use
3514 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3515 */
3516 s->inuse = size;
3517
5f0d5a3a 3518 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3519 s->ctor)) {
81819f0f
CL
3520 /*
3521 * Relocate free pointer after the object if it is not
3522 * permitted to overwrite the first word of the object on
3523 * kmem_cache_free.
3524 *
3525 * This is the case if we do RCU, have a constructor or
3526 * destructor or are poisoning the objects.
3527 */
3528 s->offset = size;
3529 size += sizeof(void *);
3530 }
3531
c12b3c62 3532#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3533 if (flags & SLAB_STORE_USER)
3534 /*
3535 * Need to store information about allocs and frees after
3536 * the object.
3537 */
3538 size += 2 * sizeof(struct track);
80a9201a 3539#endif
81819f0f 3540
80a9201a
AP
3541 kasan_cache_create(s, &size, &s->flags);
3542#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3543 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3544 /*
3545 * Add some empty padding so that we can catch
3546 * overwrites from earlier objects rather than let
3547 * tracking information or the free pointer be
0211a9c8 3548 * corrupted if a user writes before the start
81819f0f
CL
3549 * of the object.
3550 */
3551 size += sizeof(void *);
d86bd1be
JK
3552
3553 s->red_left_pad = sizeof(void *);
3554 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3555 size += s->red_left_pad;
3556 }
41ecc55b 3557#endif
672bba3a 3558
81819f0f
CL
3559 /*
3560 * SLUB stores one object immediately after another beginning from
3561 * offset 0. In order to align the objects we have to simply size
3562 * each object to conform to the alignment.
3563 */
45906855 3564 size = ALIGN(size, s->align);
81819f0f 3565 s->size = size;
06b285dc
CL
3566 if (forced_order >= 0)
3567 order = forced_order;
3568 else
ab9a0f19 3569 order = calculate_order(size, s->reserved);
81819f0f 3570
834f3d11 3571 if (order < 0)
81819f0f
CL
3572 return 0;
3573
b7a49f0d 3574 s->allocflags = 0;
834f3d11 3575 if (order)
b7a49f0d
CL
3576 s->allocflags |= __GFP_COMP;
3577
3578 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3579 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3580
3581 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3582 s->allocflags |= __GFP_RECLAIMABLE;
3583
81819f0f
CL
3584 /*
3585 * Determine the number of objects per slab
3586 */
ab9a0f19
LJ
3587 s->oo = oo_make(order, size, s->reserved);
3588 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3589 if (oo_objects(s->oo) > oo_objects(s->max))
3590 s->max = s->oo;
81819f0f 3591
834f3d11 3592 return !!oo_objects(s->oo);
81819f0f
CL
3593}
3594
8a13a4cc 3595static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3596{
8a13a4cc 3597 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3598 s->reserved = 0;
2482ddec
KC
3599#ifdef CONFIG_SLAB_FREELIST_HARDENED
3600 s->random = get_random_long();
3601#endif
81819f0f 3602
5f0d5a3a 3603 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3604 s->reserved = sizeof(struct rcu_head);
81819f0f 3605
06b285dc 3606 if (!calculate_sizes(s, -1))
81819f0f 3607 goto error;
3de47213
DR
3608 if (disable_higher_order_debug) {
3609 /*
3610 * Disable debugging flags that store metadata if the min slab
3611 * order increased.
3612 */
3b0efdfa 3613 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3614 s->flags &= ~DEBUG_METADATA_FLAGS;
3615 s->offset = 0;
3616 if (!calculate_sizes(s, -1))
3617 goto error;
3618 }
3619 }
81819f0f 3620
2565409f
HC
3621#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3622 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3623 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3624 /* Enable fast mode */
3625 s->flags |= __CMPXCHG_DOUBLE;
3626#endif
3627
3b89d7d8
DR
3628 /*
3629 * The larger the object size is, the more pages we want on the partial
3630 * list to avoid pounding the page allocator excessively.
3631 */
49e22585
CL
3632 set_min_partial(s, ilog2(s->size) / 2);
3633
e6d0e1dc 3634 set_cpu_partial(s);
49e22585 3635
81819f0f 3636#ifdef CONFIG_NUMA
e2cb96b7 3637 s->remote_node_defrag_ratio = 1000;
81819f0f 3638#endif
210e7a43
TG
3639
3640 /* Initialize the pre-computed randomized freelist if slab is up */
3641 if (slab_state >= UP) {
3642 if (init_cache_random_seq(s))
3643 goto error;
3644 }
3645
55136592 3646 if (!init_kmem_cache_nodes(s))
dfb4f096 3647 goto error;
81819f0f 3648
55136592 3649 if (alloc_kmem_cache_cpus(s))
278b1bb1 3650 return 0;
ff12059e 3651
4c93c355 3652 free_kmem_cache_nodes(s);
81819f0f
CL
3653error:
3654 if (flags & SLAB_PANIC)
756a025f
JP
3655 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3656 s->name, (unsigned long)s->size, s->size,
3657 oo_order(s->oo), s->offset, flags);
278b1bb1 3658 return -EINVAL;
81819f0f 3659}
81819f0f 3660
33b12c38
CL
3661static void list_slab_objects(struct kmem_cache *s, struct page *page,
3662 const char *text)
3663{
3664#ifdef CONFIG_SLUB_DEBUG
3665 void *addr = page_address(page);
3666 void *p;
a5dd5c11
NK
3667 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3668 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3669 if (!map)
3670 return;
945cf2b6 3671 slab_err(s, page, text, s->name);
33b12c38 3672 slab_lock(page);
33b12c38 3673
5f80b13a 3674 get_map(s, page, map);
33b12c38
CL
3675 for_each_object(p, s, addr, page->objects) {
3676
3677 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3678 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3679 print_tracking(s, p);
3680 }
3681 }
3682 slab_unlock(page);
bbd7d57b 3683 kfree(map);
33b12c38
CL
3684#endif
3685}
3686
81819f0f 3687/*
599870b1 3688 * Attempt to free all partial slabs on a node.
52b4b950
DS
3689 * This is called from __kmem_cache_shutdown(). We must take list_lock
3690 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3691 */
599870b1 3692static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3693{
60398923 3694 LIST_HEAD(discard);
81819f0f
CL
3695 struct page *page, *h;
3696
52b4b950
DS
3697 BUG_ON(irqs_disabled());
3698 spin_lock_irq(&n->list_lock);
33b12c38 3699 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3700 if (!page->inuse) {
52b4b950 3701 remove_partial(n, page);
60398923 3702 list_add(&page->lru, &discard);
33b12c38
CL
3703 } else {
3704 list_slab_objects(s, page,
52b4b950 3705 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3706 }
33b12c38 3707 }
52b4b950 3708 spin_unlock_irq(&n->list_lock);
60398923
CW
3709
3710 list_for_each_entry_safe(page, h, &discard, lru)
3711 discard_slab(s, page);
81819f0f
CL
3712}
3713
3714/*
672bba3a 3715 * Release all resources used by a slab cache.
81819f0f 3716 */
52b4b950 3717int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3718{
3719 int node;
fa45dc25 3720 struct kmem_cache_node *n;
81819f0f
CL
3721
3722 flush_all(s);
81819f0f 3723 /* Attempt to free all objects */
fa45dc25 3724 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3725 free_partial(s, n);
3726 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3727 return 1;
3728 }
bf5eb3de 3729 sysfs_slab_remove(s);
81819f0f
CL
3730 return 0;
3731}
3732
81819f0f
CL
3733/********************************************************************
3734 * Kmalloc subsystem
3735 *******************************************************************/
3736
81819f0f
CL
3737static int __init setup_slub_min_order(char *str)
3738{
06428780 3739 get_option(&str, &slub_min_order);
81819f0f
CL
3740
3741 return 1;
3742}
3743
3744__setup("slub_min_order=", setup_slub_min_order);
3745
3746static int __init setup_slub_max_order(char *str)
3747{
06428780 3748 get_option(&str, &slub_max_order);
818cf590 3749 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3750
3751 return 1;
3752}
3753
3754__setup("slub_max_order=", setup_slub_max_order);
3755
3756static int __init setup_slub_min_objects(char *str)
3757{
06428780 3758 get_option(&str, &slub_min_objects);
81819f0f
CL
3759
3760 return 1;
3761}
3762
3763__setup("slub_min_objects=", setup_slub_min_objects);
3764
81819f0f
CL
3765void *__kmalloc(size_t size, gfp_t flags)
3766{
aadb4bc4 3767 struct kmem_cache *s;
5b882be4 3768 void *ret;
81819f0f 3769
95a05b42 3770 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3771 return kmalloc_large(size, flags);
aadb4bc4 3772
2c59dd65 3773 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3774
3775 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3776 return s;
3777
2b847c3c 3778 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3779
ca2b84cb 3780 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3781
505f5dcb 3782 kasan_kmalloc(s, ret, size, flags);
0316bec2 3783
5b882be4 3784 return ret;
81819f0f
CL
3785}
3786EXPORT_SYMBOL(__kmalloc);
3787
5d1f57e4 3788#ifdef CONFIG_NUMA
f619cfe1
CL
3789static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3790{
b1eeab67 3791 struct page *page;
e4f7c0b4 3792 void *ptr = NULL;
f619cfe1 3793
52383431 3794 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3795 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3796 if (page)
e4f7c0b4
CM
3797 ptr = page_address(page);
3798
d56791b3 3799 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3800 return ptr;
f619cfe1
CL
3801}
3802
81819f0f
CL
3803void *__kmalloc_node(size_t size, gfp_t flags, int node)
3804{
aadb4bc4 3805 struct kmem_cache *s;
5b882be4 3806 void *ret;
81819f0f 3807
95a05b42 3808 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3809 ret = kmalloc_large_node(size, flags, node);
3810
ca2b84cb
EGM
3811 trace_kmalloc_node(_RET_IP_, ret,
3812 size, PAGE_SIZE << get_order(size),
3813 flags, node);
5b882be4
EGM
3814
3815 return ret;
3816 }
aadb4bc4 3817
2c59dd65 3818 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3819
3820 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3821 return s;
3822
2b847c3c 3823 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3824
ca2b84cb 3825 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3826
505f5dcb 3827 kasan_kmalloc(s, ret, size, flags);
0316bec2 3828
5b882be4 3829 return ret;
81819f0f
CL
3830}
3831EXPORT_SYMBOL(__kmalloc_node);
3832#endif
3833
ed18adc1
KC
3834#ifdef CONFIG_HARDENED_USERCOPY
3835/*
3836 * Rejects objects that are incorrectly sized.
3837 *
3838 * Returns NULL if check passes, otherwise const char * to name of cache
3839 * to indicate an error.
3840 */
3841const char *__check_heap_object(const void *ptr, unsigned long n,
3842 struct page *page)
3843{
3844 struct kmem_cache *s;
3845 unsigned long offset;
3846 size_t object_size;
3847
3848 /* Find object and usable object size. */
3849 s = page->slab_cache;
3850 object_size = slab_ksize(s);
3851
3852 /* Reject impossible pointers. */
3853 if (ptr < page_address(page))
3854 return s->name;
3855
3856 /* Find offset within object. */
3857 offset = (ptr - page_address(page)) % s->size;
3858
3859 /* Adjust for redzone and reject if within the redzone. */
3860 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3861 if (offset < s->red_left_pad)
3862 return s->name;
3863 offset -= s->red_left_pad;
3864 }
3865
3866 /* Allow address range falling entirely within object size. */
3867 if (offset <= object_size && n <= object_size - offset)
3868 return NULL;
3869
3870 return s->name;
3871}
3872#endif /* CONFIG_HARDENED_USERCOPY */
3873
0316bec2 3874static size_t __ksize(const void *object)
81819f0f 3875{
272c1d21 3876 struct page *page;
81819f0f 3877
ef8b4520 3878 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3879 return 0;
3880
294a80a8 3881 page = virt_to_head_page(object);
294a80a8 3882
76994412
PE
3883 if (unlikely(!PageSlab(page))) {
3884 WARN_ON(!PageCompound(page));
294a80a8 3885 return PAGE_SIZE << compound_order(page);
76994412 3886 }
81819f0f 3887
1b4f59e3 3888 return slab_ksize(page->slab_cache);
81819f0f 3889}
0316bec2
AR
3890
3891size_t ksize(const void *object)
3892{
3893 size_t size = __ksize(object);
3894 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3895 * so we need to unpoison this area.
3896 */
3897 kasan_unpoison_shadow(object, size);
0316bec2
AR
3898 return size;
3899}
b1aabecd 3900EXPORT_SYMBOL(ksize);
81819f0f
CL
3901
3902void kfree(const void *x)
3903{
81819f0f 3904 struct page *page;
5bb983b0 3905 void *object = (void *)x;
81819f0f 3906
2121db74
PE
3907 trace_kfree(_RET_IP_, x);
3908
2408c550 3909 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3910 return;
3911
b49af68f 3912 page = virt_to_head_page(x);
aadb4bc4 3913 if (unlikely(!PageSlab(page))) {
0937502a 3914 BUG_ON(!PageCompound(page));
d56791b3 3915 kfree_hook(x);
4949148a 3916 __free_pages(page, compound_order(page));
aadb4bc4
CL
3917 return;
3918 }
81084651 3919 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3920}
3921EXPORT_SYMBOL(kfree);
3922
832f37f5
VD
3923#define SHRINK_PROMOTE_MAX 32
3924
2086d26a 3925/*
832f37f5
VD
3926 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3927 * up most to the head of the partial lists. New allocations will then
3928 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3929 *
3930 * The slabs with the least items are placed last. This results in them
3931 * being allocated from last increasing the chance that the last objects
3932 * are freed in them.
2086d26a 3933 */
c9fc5864 3934int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3935{
3936 int node;
3937 int i;
3938 struct kmem_cache_node *n;
3939 struct page *page;
3940 struct page *t;
832f37f5
VD
3941 struct list_head discard;
3942 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3943 unsigned long flags;
ce3712d7 3944 int ret = 0;
2086d26a 3945
2086d26a 3946 flush_all(s);
fa45dc25 3947 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3948 INIT_LIST_HEAD(&discard);
3949 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3950 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3951
3952 spin_lock_irqsave(&n->list_lock, flags);
3953
3954 /*
832f37f5 3955 * Build lists of slabs to discard or promote.
2086d26a 3956 *
672bba3a
CL
3957 * Note that concurrent frees may occur while we hold the
3958 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3959 */
3960 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3961 int free = page->objects - page->inuse;
3962
3963 /* Do not reread page->inuse */
3964 barrier();
3965
3966 /* We do not keep full slabs on the list */
3967 BUG_ON(free <= 0);
3968
3969 if (free == page->objects) {
3970 list_move(&page->lru, &discard);
69cb8e6b 3971 n->nr_partial--;
832f37f5
VD
3972 } else if (free <= SHRINK_PROMOTE_MAX)
3973 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3974 }
3975
2086d26a 3976 /*
832f37f5
VD
3977 * Promote the slabs filled up most to the head of the
3978 * partial list.
2086d26a 3979 */
832f37f5
VD
3980 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3981 list_splice(promote + i, &n->partial);
2086d26a 3982
2086d26a 3983 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3984
3985 /* Release empty slabs */
832f37f5 3986 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3987 discard_slab(s, page);
ce3712d7
VD
3988
3989 if (slabs_node(s, node))
3990 ret = 1;
2086d26a
CL
3991 }
3992
ce3712d7 3993 return ret;
2086d26a 3994}
2086d26a 3995
c9fc5864 3996#ifdef CONFIG_MEMCG
01fb58bc
TH
3997static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3998{
50862ce7
TH
3999 /*
4000 * Called with all the locks held after a sched RCU grace period.
4001 * Even if @s becomes empty after shrinking, we can't know that @s
4002 * doesn't have allocations already in-flight and thus can't
4003 * destroy @s until the associated memcg is released.
4004 *
4005 * However, let's remove the sysfs files for empty caches here.
4006 * Each cache has a lot of interface files which aren't
4007 * particularly useful for empty draining caches; otherwise, we can
4008 * easily end up with millions of unnecessary sysfs files on
4009 * systems which have a lot of memory and transient cgroups.
4010 */
4011 if (!__kmem_cache_shrink(s))
4012 sysfs_slab_remove(s);
01fb58bc
TH
4013}
4014
c9fc5864
TH
4015void __kmemcg_cache_deactivate(struct kmem_cache *s)
4016{
4017 /*
4018 * Disable empty slabs caching. Used to avoid pinning offline
4019 * memory cgroups by kmem pages that can be freed.
4020 */
e6d0e1dc 4021 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4022 s->min_partial = 0;
4023
4024 /*
4025 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4026 * we have to make sure the change is visible before shrinking.
c9fc5864 4027 */
01fb58bc 4028 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4029}
4030#endif
4031
b9049e23
YG
4032static int slab_mem_going_offline_callback(void *arg)
4033{
4034 struct kmem_cache *s;
4035
18004c5d 4036 mutex_lock(&slab_mutex);
b9049e23 4037 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4038 __kmem_cache_shrink(s);
18004c5d 4039 mutex_unlock(&slab_mutex);
b9049e23
YG
4040
4041 return 0;
4042}
4043
4044static void slab_mem_offline_callback(void *arg)
4045{
4046 struct kmem_cache_node *n;
4047 struct kmem_cache *s;
4048 struct memory_notify *marg = arg;
4049 int offline_node;
4050
b9d5ab25 4051 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4052
4053 /*
4054 * If the node still has available memory. we need kmem_cache_node
4055 * for it yet.
4056 */
4057 if (offline_node < 0)
4058 return;
4059
18004c5d 4060 mutex_lock(&slab_mutex);
b9049e23
YG
4061 list_for_each_entry(s, &slab_caches, list) {
4062 n = get_node(s, offline_node);
4063 if (n) {
4064 /*
4065 * if n->nr_slabs > 0, slabs still exist on the node
4066 * that is going down. We were unable to free them,
c9404c9c 4067 * and offline_pages() function shouldn't call this
b9049e23
YG
4068 * callback. So, we must fail.
4069 */
0f389ec6 4070 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4071
4072 s->node[offline_node] = NULL;
8de66a0c 4073 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4074 }
4075 }
18004c5d 4076 mutex_unlock(&slab_mutex);
b9049e23
YG
4077}
4078
4079static int slab_mem_going_online_callback(void *arg)
4080{
4081 struct kmem_cache_node *n;
4082 struct kmem_cache *s;
4083 struct memory_notify *marg = arg;
b9d5ab25 4084 int nid = marg->status_change_nid_normal;
b9049e23
YG
4085 int ret = 0;
4086
4087 /*
4088 * If the node's memory is already available, then kmem_cache_node is
4089 * already created. Nothing to do.
4090 */
4091 if (nid < 0)
4092 return 0;
4093
4094 /*
0121c619 4095 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4096 * allocate a kmem_cache_node structure in order to bring the node
4097 * online.
4098 */
18004c5d 4099 mutex_lock(&slab_mutex);
b9049e23
YG
4100 list_for_each_entry(s, &slab_caches, list) {
4101 /*
4102 * XXX: kmem_cache_alloc_node will fallback to other nodes
4103 * since memory is not yet available from the node that
4104 * is brought up.
4105 */
8de66a0c 4106 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4107 if (!n) {
4108 ret = -ENOMEM;
4109 goto out;
4110 }
4053497d 4111 init_kmem_cache_node(n);
b9049e23
YG
4112 s->node[nid] = n;
4113 }
4114out:
18004c5d 4115 mutex_unlock(&slab_mutex);
b9049e23
YG
4116 return ret;
4117}
4118
4119static int slab_memory_callback(struct notifier_block *self,
4120 unsigned long action, void *arg)
4121{
4122 int ret = 0;
4123
4124 switch (action) {
4125 case MEM_GOING_ONLINE:
4126 ret = slab_mem_going_online_callback(arg);
4127 break;
4128 case MEM_GOING_OFFLINE:
4129 ret = slab_mem_going_offline_callback(arg);
4130 break;
4131 case MEM_OFFLINE:
4132 case MEM_CANCEL_ONLINE:
4133 slab_mem_offline_callback(arg);
4134 break;
4135 case MEM_ONLINE:
4136 case MEM_CANCEL_OFFLINE:
4137 break;
4138 }
dc19f9db
KH
4139 if (ret)
4140 ret = notifier_from_errno(ret);
4141 else
4142 ret = NOTIFY_OK;
b9049e23
YG
4143 return ret;
4144}
4145
3ac38faa
AM
4146static struct notifier_block slab_memory_callback_nb = {
4147 .notifier_call = slab_memory_callback,
4148 .priority = SLAB_CALLBACK_PRI,
4149};
b9049e23 4150
81819f0f
CL
4151/********************************************************************
4152 * Basic setup of slabs
4153 *******************************************************************/
4154
51df1142
CL
4155/*
4156 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4157 * the page allocator. Allocate them properly then fix up the pointers
4158 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4159 */
4160
dffb4d60 4161static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4162{
4163 int node;
dffb4d60 4164 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4165 struct kmem_cache_node *n;
51df1142 4166
dffb4d60 4167 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4168
7d557b3c
GC
4169 /*
4170 * This runs very early, and only the boot processor is supposed to be
4171 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4172 * IPIs around.
4173 */
4174 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4175 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4176 struct page *p;
4177
fa45dc25
CL
4178 list_for_each_entry(p, &n->partial, lru)
4179 p->slab_cache = s;
51df1142 4180
607bf324 4181#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4182 list_for_each_entry(p, &n->full, lru)
4183 p->slab_cache = s;
51df1142 4184#endif
51df1142 4185 }
f7ce3190 4186 slab_init_memcg_params(s);
dffb4d60 4187 list_add(&s->list, &slab_caches);
510ded33 4188 memcg_link_cache(s);
dffb4d60 4189 return s;
51df1142
CL
4190}
4191
81819f0f
CL
4192void __init kmem_cache_init(void)
4193{
dffb4d60
CL
4194 static __initdata struct kmem_cache boot_kmem_cache,
4195 boot_kmem_cache_node;
51df1142 4196
fc8d8620
SG
4197 if (debug_guardpage_minorder())
4198 slub_max_order = 0;
4199
dffb4d60
CL
4200 kmem_cache_node = &boot_kmem_cache_node;
4201 kmem_cache = &boot_kmem_cache;
51df1142 4202
dffb4d60
CL
4203 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4204 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4205
3ac38faa 4206 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4207
4208 /* Able to allocate the per node structures */
4209 slab_state = PARTIAL;
4210
dffb4d60
CL
4211 create_boot_cache(kmem_cache, "kmem_cache",
4212 offsetof(struct kmem_cache, node) +
4213 nr_node_ids * sizeof(struct kmem_cache_node *),
4214 SLAB_HWCACHE_ALIGN);
8a13a4cc 4215
dffb4d60 4216 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4217
51df1142
CL
4218 /*
4219 * Allocate kmem_cache_node properly from the kmem_cache slab.
4220 * kmem_cache_node is separately allocated so no need to
4221 * update any list pointers.
4222 */
dffb4d60 4223 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4224
4225 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4226 setup_kmalloc_cache_index_table();
f97d5f63 4227 create_kmalloc_caches(0);
81819f0f 4228
210e7a43
TG
4229 /* Setup random freelists for each cache */
4230 init_freelist_randomization();
4231
a96a87bf
SAS
4232 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4233 slub_cpu_dead);
81819f0f 4234
f9f58285 4235 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4236 cache_line_size(),
81819f0f
CL
4237 slub_min_order, slub_max_order, slub_min_objects,
4238 nr_cpu_ids, nr_node_ids);
4239}
4240
7e85ee0c
PE
4241void __init kmem_cache_init_late(void)
4242{
7e85ee0c
PE
4243}
4244
2633d7a0 4245struct kmem_cache *
a44cb944
VD
4246__kmem_cache_alias(const char *name, size_t size, size_t align,
4247 unsigned long flags, void (*ctor)(void *))
81819f0f 4248{
426589f5 4249 struct kmem_cache *s, *c;
81819f0f 4250
a44cb944 4251 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4252 if (s) {
4253 s->refcount++;
84d0ddd6 4254
81819f0f
CL
4255 /*
4256 * Adjust the object sizes so that we clear
4257 * the complete object on kzalloc.
4258 */
3b0efdfa 4259 s->object_size = max(s->object_size, (int)size);
81819f0f 4260 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4261
426589f5 4262 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4263 c->object_size = s->object_size;
4264 c->inuse = max_t(int, c->inuse,
4265 ALIGN(size, sizeof(void *)));
4266 }
4267
7b8f3b66 4268 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4269 s->refcount--;
cbb79694 4270 s = NULL;
7b8f3b66 4271 }
a0e1d1be 4272 }
6446faa2 4273
cbb79694
CL
4274 return s;
4275}
84c1cf62 4276
8a13a4cc 4277int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4278{
aac3a166
PE
4279 int err;
4280
4281 err = kmem_cache_open(s, flags);
4282 if (err)
4283 return err;
20cea968 4284
45530c44
CL
4285 /* Mutex is not taken during early boot */
4286 if (slab_state <= UP)
4287 return 0;
4288
107dab5c 4289 memcg_propagate_slab_attrs(s);
aac3a166 4290 err = sysfs_slab_add(s);
aac3a166 4291 if (err)
52b4b950 4292 __kmem_cache_release(s);
20cea968 4293
aac3a166 4294 return err;
81819f0f 4295}
81819f0f 4296
ce71e27c 4297void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4298{
aadb4bc4 4299 struct kmem_cache *s;
94b528d0 4300 void *ret;
aadb4bc4 4301
95a05b42 4302 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4303 return kmalloc_large(size, gfpflags);
4304
2c59dd65 4305 s = kmalloc_slab(size, gfpflags);
81819f0f 4306
2408c550 4307 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4308 return s;
81819f0f 4309
2b847c3c 4310 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4311
25985edc 4312 /* Honor the call site pointer we received. */
ca2b84cb 4313 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4314
4315 return ret;
81819f0f
CL
4316}
4317
5d1f57e4 4318#ifdef CONFIG_NUMA
81819f0f 4319void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4320 int node, unsigned long caller)
81819f0f 4321{
aadb4bc4 4322 struct kmem_cache *s;
94b528d0 4323 void *ret;
aadb4bc4 4324
95a05b42 4325 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4326 ret = kmalloc_large_node(size, gfpflags, node);
4327
4328 trace_kmalloc_node(caller, ret,
4329 size, PAGE_SIZE << get_order(size),
4330 gfpflags, node);
4331
4332 return ret;
4333 }
eada35ef 4334
2c59dd65 4335 s = kmalloc_slab(size, gfpflags);
81819f0f 4336
2408c550 4337 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4338 return s;
81819f0f 4339
2b847c3c 4340 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4341
25985edc 4342 /* Honor the call site pointer we received. */
ca2b84cb 4343 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4344
4345 return ret;
81819f0f 4346}
5d1f57e4 4347#endif
81819f0f 4348
ab4d5ed5 4349#ifdef CONFIG_SYSFS
205ab99d
CL
4350static int count_inuse(struct page *page)
4351{
4352 return page->inuse;
4353}
4354
4355static int count_total(struct page *page)
4356{
4357 return page->objects;
4358}
ab4d5ed5 4359#endif
205ab99d 4360
ab4d5ed5 4361#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4362static int validate_slab(struct kmem_cache *s, struct page *page,
4363 unsigned long *map)
53e15af0
CL
4364{
4365 void *p;
a973e9dd 4366 void *addr = page_address(page);
53e15af0
CL
4367
4368 if (!check_slab(s, page) ||
4369 !on_freelist(s, page, NULL))
4370 return 0;
4371
4372 /* Now we know that a valid freelist exists */
39b26464 4373 bitmap_zero(map, page->objects);
53e15af0 4374
5f80b13a
CL
4375 get_map(s, page, map);
4376 for_each_object(p, s, addr, page->objects) {
4377 if (test_bit(slab_index(p, s, addr), map))
4378 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4379 return 0;
53e15af0
CL
4380 }
4381
224a88be 4382 for_each_object(p, s, addr, page->objects)
7656c72b 4383 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4384 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4385 return 0;
4386 return 1;
4387}
4388
434e245d
CL
4389static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4390 unsigned long *map)
53e15af0 4391{
881db7fb
CL
4392 slab_lock(page);
4393 validate_slab(s, page, map);
4394 slab_unlock(page);
53e15af0
CL
4395}
4396
434e245d
CL
4397static int validate_slab_node(struct kmem_cache *s,
4398 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4399{
4400 unsigned long count = 0;
4401 struct page *page;
4402 unsigned long flags;
4403
4404 spin_lock_irqsave(&n->list_lock, flags);
4405
4406 list_for_each_entry(page, &n->partial, lru) {
434e245d 4407 validate_slab_slab(s, page, map);
53e15af0
CL
4408 count++;
4409 }
4410 if (count != n->nr_partial)
f9f58285
FF
4411 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4412 s->name, count, n->nr_partial);
53e15af0
CL
4413
4414 if (!(s->flags & SLAB_STORE_USER))
4415 goto out;
4416
4417 list_for_each_entry(page, &n->full, lru) {
434e245d 4418 validate_slab_slab(s, page, map);
53e15af0
CL
4419 count++;
4420 }
4421 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4422 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4423 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4424
4425out:
4426 spin_unlock_irqrestore(&n->list_lock, flags);
4427 return count;
4428}
4429
434e245d 4430static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4431{
4432 int node;
4433 unsigned long count = 0;
205ab99d 4434 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4435 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4436 struct kmem_cache_node *n;
434e245d
CL
4437
4438 if (!map)
4439 return -ENOMEM;
53e15af0
CL
4440
4441 flush_all(s);
fa45dc25 4442 for_each_kmem_cache_node(s, node, n)
434e245d 4443 count += validate_slab_node(s, n, map);
434e245d 4444 kfree(map);
53e15af0
CL
4445 return count;
4446}
88a420e4 4447/*
672bba3a 4448 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4449 * and freed.
4450 */
4451
4452struct location {
4453 unsigned long count;
ce71e27c 4454 unsigned long addr;
45edfa58
CL
4455 long long sum_time;
4456 long min_time;
4457 long max_time;
4458 long min_pid;
4459 long max_pid;
174596a0 4460 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4461 nodemask_t nodes;
88a420e4
CL
4462};
4463
4464struct loc_track {
4465 unsigned long max;
4466 unsigned long count;
4467 struct location *loc;
4468};
4469
4470static void free_loc_track(struct loc_track *t)
4471{
4472 if (t->max)
4473 free_pages((unsigned long)t->loc,
4474 get_order(sizeof(struct location) * t->max));
4475}
4476
68dff6a9 4477static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4478{
4479 struct location *l;
4480 int order;
4481
88a420e4
CL
4482 order = get_order(sizeof(struct location) * max);
4483
68dff6a9 4484 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4485 if (!l)
4486 return 0;
4487
4488 if (t->count) {
4489 memcpy(l, t->loc, sizeof(struct location) * t->count);
4490 free_loc_track(t);
4491 }
4492 t->max = max;
4493 t->loc = l;
4494 return 1;
4495}
4496
4497static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4498 const struct track *track)
88a420e4
CL
4499{
4500 long start, end, pos;
4501 struct location *l;
ce71e27c 4502 unsigned long caddr;
45edfa58 4503 unsigned long age = jiffies - track->when;
88a420e4
CL
4504
4505 start = -1;
4506 end = t->count;
4507
4508 for ( ; ; ) {
4509 pos = start + (end - start + 1) / 2;
4510
4511 /*
4512 * There is nothing at "end". If we end up there
4513 * we need to add something to before end.
4514 */
4515 if (pos == end)
4516 break;
4517
4518 caddr = t->loc[pos].addr;
45edfa58
CL
4519 if (track->addr == caddr) {
4520
4521 l = &t->loc[pos];
4522 l->count++;
4523 if (track->when) {
4524 l->sum_time += age;
4525 if (age < l->min_time)
4526 l->min_time = age;
4527 if (age > l->max_time)
4528 l->max_time = age;
4529
4530 if (track->pid < l->min_pid)
4531 l->min_pid = track->pid;
4532 if (track->pid > l->max_pid)
4533 l->max_pid = track->pid;
4534
174596a0
RR
4535 cpumask_set_cpu(track->cpu,
4536 to_cpumask(l->cpus));
45edfa58
CL
4537 }
4538 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4539 return 1;
4540 }
4541
45edfa58 4542 if (track->addr < caddr)
88a420e4
CL
4543 end = pos;
4544 else
4545 start = pos;
4546 }
4547
4548 /*
672bba3a 4549 * Not found. Insert new tracking element.
88a420e4 4550 */
68dff6a9 4551 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4552 return 0;
4553
4554 l = t->loc + pos;
4555 if (pos < t->count)
4556 memmove(l + 1, l,
4557 (t->count - pos) * sizeof(struct location));
4558 t->count++;
4559 l->count = 1;
45edfa58
CL
4560 l->addr = track->addr;
4561 l->sum_time = age;
4562 l->min_time = age;
4563 l->max_time = age;
4564 l->min_pid = track->pid;
4565 l->max_pid = track->pid;
174596a0
RR
4566 cpumask_clear(to_cpumask(l->cpus));
4567 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4568 nodes_clear(l->nodes);
4569 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4570 return 1;
4571}
4572
4573static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4574 struct page *page, enum track_item alloc,
a5dd5c11 4575 unsigned long *map)
88a420e4 4576{
a973e9dd 4577 void *addr = page_address(page);
88a420e4
CL
4578 void *p;
4579
39b26464 4580 bitmap_zero(map, page->objects);
5f80b13a 4581 get_map(s, page, map);
88a420e4 4582
224a88be 4583 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4584 if (!test_bit(slab_index(p, s, addr), map))
4585 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4586}
4587
4588static int list_locations(struct kmem_cache *s, char *buf,
4589 enum track_item alloc)
4590{
e374d483 4591 int len = 0;
88a420e4 4592 unsigned long i;
68dff6a9 4593 struct loc_track t = { 0, 0, NULL };
88a420e4 4594 int node;
bbd7d57b
ED
4595 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4596 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4597 struct kmem_cache_node *n;
88a420e4 4598
bbd7d57b
ED
4599 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4600 GFP_TEMPORARY)) {
4601 kfree(map);
68dff6a9 4602 return sprintf(buf, "Out of memory\n");
bbd7d57b 4603 }
88a420e4
CL
4604 /* Push back cpu slabs */
4605 flush_all(s);
4606
fa45dc25 4607 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4608 unsigned long flags;
4609 struct page *page;
4610
9e86943b 4611 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4612 continue;
4613
4614 spin_lock_irqsave(&n->list_lock, flags);
4615 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4616 process_slab(&t, s, page, alloc, map);
88a420e4 4617 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4618 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4619 spin_unlock_irqrestore(&n->list_lock, flags);
4620 }
4621
4622 for (i = 0; i < t.count; i++) {
45edfa58 4623 struct location *l = &t.loc[i];
88a420e4 4624
9c246247 4625 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4626 break;
e374d483 4627 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4628
4629 if (l->addr)
62c70bce 4630 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4631 else
e374d483 4632 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4633
4634 if (l->sum_time != l->min_time) {
e374d483 4635 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4636 l->min_time,
4637 (long)div_u64(l->sum_time, l->count),
4638 l->max_time);
45edfa58 4639 } else
e374d483 4640 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4641 l->min_time);
4642
4643 if (l->min_pid != l->max_pid)
e374d483 4644 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4645 l->min_pid, l->max_pid);
4646 else
e374d483 4647 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4648 l->min_pid);
4649
174596a0
RR
4650 if (num_online_cpus() > 1 &&
4651 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4652 len < PAGE_SIZE - 60)
4653 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4654 " cpus=%*pbl",
4655 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4656
62bc62a8 4657 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4658 len < PAGE_SIZE - 60)
4659 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4660 " nodes=%*pbl",
4661 nodemask_pr_args(&l->nodes));
45edfa58 4662
e374d483 4663 len += sprintf(buf + len, "\n");
88a420e4
CL
4664 }
4665
4666 free_loc_track(&t);
bbd7d57b 4667 kfree(map);
88a420e4 4668 if (!t.count)
e374d483
HH
4669 len += sprintf(buf, "No data\n");
4670 return len;
88a420e4 4671}
ab4d5ed5 4672#endif
88a420e4 4673
a5a84755 4674#ifdef SLUB_RESILIENCY_TEST
c07b8183 4675static void __init resiliency_test(void)
a5a84755
CL
4676{
4677 u8 *p;
4678
95a05b42 4679 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4680
f9f58285
FF
4681 pr_err("SLUB resiliency testing\n");
4682 pr_err("-----------------------\n");
4683 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4684
4685 p = kzalloc(16, GFP_KERNEL);
4686 p[16] = 0x12;
f9f58285
FF
4687 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4688 p + 16);
a5a84755
CL
4689
4690 validate_slab_cache(kmalloc_caches[4]);
4691
4692 /* Hmmm... The next two are dangerous */
4693 p = kzalloc(32, GFP_KERNEL);
4694 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4695 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4696 p);
4697 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4698
4699 validate_slab_cache(kmalloc_caches[5]);
4700 p = kzalloc(64, GFP_KERNEL);
4701 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4702 *p = 0x56;
f9f58285
FF
4703 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4704 p);
4705 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4706 validate_slab_cache(kmalloc_caches[6]);
4707
f9f58285 4708 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4709 p = kzalloc(128, GFP_KERNEL);
4710 kfree(p);
4711 *p = 0x78;
f9f58285 4712 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4713 validate_slab_cache(kmalloc_caches[7]);
4714
4715 p = kzalloc(256, GFP_KERNEL);
4716 kfree(p);
4717 p[50] = 0x9a;
f9f58285 4718 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4719 validate_slab_cache(kmalloc_caches[8]);
4720
4721 p = kzalloc(512, GFP_KERNEL);
4722 kfree(p);
4723 p[512] = 0xab;
f9f58285 4724 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4725 validate_slab_cache(kmalloc_caches[9]);
4726}
4727#else
4728#ifdef CONFIG_SYSFS
4729static void resiliency_test(void) {};
4730#endif
4731#endif
4732
ab4d5ed5 4733#ifdef CONFIG_SYSFS
81819f0f 4734enum slab_stat_type {
205ab99d
CL
4735 SL_ALL, /* All slabs */
4736 SL_PARTIAL, /* Only partially allocated slabs */
4737 SL_CPU, /* Only slabs used for cpu caches */
4738 SL_OBJECTS, /* Determine allocated objects not slabs */
4739 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4740};
4741
205ab99d 4742#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4743#define SO_PARTIAL (1 << SL_PARTIAL)
4744#define SO_CPU (1 << SL_CPU)
4745#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4746#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4747
1663f26d
TH
4748#ifdef CONFIG_MEMCG
4749static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4750
4751static int __init setup_slub_memcg_sysfs(char *str)
4752{
4753 int v;
4754
4755 if (get_option(&str, &v) > 0)
4756 memcg_sysfs_enabled = v;
4757
4758 return 1;
4759}
4760
4761__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4762#endif
4763
62e5c4b4
CG
4764static ssize_t show_slab_objects(struct kmem_cache *s,
4765 char *buf, unsigned long flags)
81819f0f
CL
4766{
4767 unsigned long total = 0;
81819f0f
CL
4768 int node;
4769 int x;
4770 unsigned long *nodes;
81819f0f 4771
e35e1a97 4772 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4773 if (!nodes)
4774 return -ENOMEM;
81819f0f 4775
205ab99d
CL
4776 if (flags & SO_CPU) {
4777 int cpu;
81819f0f 4778
205ab99d 4779 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4780 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4781 cpu);
ec3ab083 4782 int node;
49e22585 4783 struct page *page;
dfb4f096 4784
4db0c3c2 4785 page = READ_ONCE(c->page);
ec3ab083
CL
4786 if (!page)
4787 continue;
205ab99d 4788
ec3ab083
CL
4789 node = page_to_nid(page);
4790 if (flags & SO_TOTAL)
4791 x = page->objects;
4792 else if (flags & SO_OBJECTS)
4793 x = page->inuse;
4794 else
4795 x = 1;
49e22585 4796
ec3ab083
CL
4797 total += x;
4798 nodes[node] += x;
4799
a93cf07b 4800 page = slub_percpu_partial_read_once(c);
49e22585 4801 if (page) {
8afb1474
LZ
4802 node = page_to_nid(page);
4803 if (flags & SO_TOTAL)
4804 WARN_ON_ONCE(1);
4805 else if (flags & SO_OBJECTS)
4806 WARN_ON_ONCE(1);
4807 else
4808 x = page->pages;
bc6697d8
ED
4809 total += x;
4810 nodes[node] += x;
49e22585 4811 }
81819f0f
CL
4812 }
4813 }
4814
bfc8c901 4815 get_online_mems();
ab4d5ed5 4816#ifdef CONFIG_SLUB_DEBUG
205ab99d 4817 if (flags & SO_ALL) {
fa45dc25
CL
4818 struct kmem_cache_node *n;
4819
4820 for_each_kmem_cache_node(s, node, n) {
205ab99d 4821
d0e0ac97
CG
4822 if (flags & SO_TOTAL)
4823 x = atomic_long_read(&n->total_objects);
4824 else if (flags & SO_OBJECTS)
4825 x = atomic_long_read(&n->total_objects) -
4826 count_partial(n, count_free);
81819f0f 4827 else
205ab99d 4828 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4829 total += x;
4830 nodes[node] += x;
4831 }
4832
ab4d5ed5
CL
4833 } else
4834#endif
4835 if (flags & SO_PARTIAL) {
fa45dc25 4836 struct kmem_cache_node *n;
81819f0f 4837
fa45dc25 4838 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4839 if (flags & SO_TOTAL)
4840 x = count_partial(n, count_total);
4841 else if (flags & SO_OBJECTS)
4842 x = count_partial(n, count_inuse);
81819f0f 4843 else
205ab99d 4844 x = n->nr_partial;
81819f0f
CL
4845 total += x;
4846 nodes[node] += x;
4847 }
4848 }
81819f0f
CL
4849 x = sprintf(buf, "%lu", total);
4850#ifdef CONFIG_NUMA
fa45dc25 4851 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4852 if (nodes[node])
4853 x += sprintf(buf + x, " N%d=%lu",
4854 node, nodes[node]);
4855#endif
bfc8c901 4856 put_online_mems();
81819f0f
CL
4857 kfree(nodes);
4858 return x + sprintf(buf + x, "\n");
4859}
4860
ab4d5ed5 4861#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4862static int any_slab_objects(struct kmem_cache *s)
4863{
4864 int node;
fa45dc25 4865 struct kmem_cache_node *n;
81819f0f 4866
fa45dc25 4867 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4868 if (atomic_long_read(&n->total_objects))
81819f0f 4869 return 1;
fa45dc25 4870
81819f0f
CL
4871 return 0;
4872}
ab4d5ed5 4873#endif
81819f0f
CL
4874
4875#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4876#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4877
4878struct slab_attribute {
4879 struct attribute attr;
4880 ssize_t (*show)(struct kmem_cache *s, char *buf);
4881 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4882};
4883
4884#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4885 static struct slab_attribute _name##_attr = \
4886 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4887
4888#define SLAB_ATTR(_name) \
4889 static struct slab_attribute _name##_attr = \
ab067e99 4890 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4891
81819f0f
CL
4892static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4893{
4894 return sprintf(buf, "%d\n", s->size);
4895}
4896SLAB_ATTR_RO(slab_size);
4897
4898static ssize_t align_show(struct kmem_cache *s, char *buf)
4899{
4900 return sprintf(buf, "%d\n", s->align);
4901}
4902SLAB_ATTR_RO(align);
4903
4904static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4905{
3b0efdfa 4906 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4907}
4908SLAB_ATTR_RO(object_size);
4909
4910static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4911{
834f3d11 4912 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4913}
4914SLAB_ATTR_RO(objs_per_slab);
4915
06b285dc
CL
4916static ssize_t order_store(struct kmem_cache *s,
4917 const char *buf, size_t length)
4918{
0121c619
CL
4919 unsigned long order;
4920 int err;
4921
3dbb95f7 4922 err = kstrtoul(buf, 10, &order);
0121c619
CL
4923 if (err)
4924 return err;
06b285dc
CL
4925
4926 if (order > slub_max_order || order < slub_min_order)
4927 return -EINVAL;
4928
4929 calculate_sizes(s, order);
4930 return length;
4931}
4932
81819f0f
CL
4933static ssize_t order_show(struct kmem_cache *s, char *buf)
4934{
834f3d11 4935 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4936}
06b285dc 4937SLAB_ATTR(order);
81819f0f 4938
73d342b1
DR
4939static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4940{
4941 return sprintf(buf, "%lu\n", s->min_partial);
4942}
4943
4944static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4945 size_t length)
4946{
4947 unsigned long min;
4948 int err;
4949
3dbb95f7 4950 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4951 if (err)
4952 return err;
4953
c0bdb232 4954 set_min_partial(s, min);
73d342b1
DR
4955 return length;
4956}
4957SLAB_ATTR(min_partial);
4958
49e22585
CL
4959static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4960{
e6d0e1dc 4961 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4962}
4963
4964static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966{
4967 unsigned long objects;
4968 int err;
4969
3dbb95f7 4970 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4971 if (err)
4972 return err;
345c905d 4973 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4974 return -EINVAL;
49e22585 4975
e6d0e1dc 4976 slub_set_cpu_partial(s, objects);
49e22585
CL
4977 flush_all(s);
4978 return length;
4979}
4980SLAB_ATTR(cpu_partial);
4981
81819f0f
CL
4982static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4983{
62c70bce
JP
4984 if (!s->ctor)
4985 return 0;
4986 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4987}
4988SLAB_ATTR_RO(ctor);
4989
81819f0f
CL
4990static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4991{
4307c14f 4992 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4993}
4994SLAB_ATTR_RO(aliases);
4995
81819f0f
CL
4996static ssize_t partial_show(struct kmem_cache *s, char *buf)
4997{
d9acf4b7 4998 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4999}
5000SLAB_ATTR_RO(partial);
5001
5002static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5003{
d9acf4b7 5004 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5005}
5006SLAB_ATTR_RO(cpu_slabs);
5007
5008static ssize_t objects_show(struct kmem_cache *s, char *buf)
5009{
205ab99d 5010 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5011}
5012SLAB_ATTR_RO(objects);
5013
205ab99d
CL
5014static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5015{
5016 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5017}
5018SLAB_ATTR_RO(objects_partial);
5019
49e22585
CL
5020static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5021{
5022 int objects = 0;
5023 int pages = 0;
5024 int cpu;
5025 int len;
5026
5027 for_each_online_cpu(cpu) {
a93cf07b
WY
5028 struct page *page;
5029
5030 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5031
5032 if (page) {
5033 pages += page->pages;
5034 objects += page->pobjects;
5035 }
5036 }
5037
5038 len = sprintf(buf, "%d(%d)", objects, pages);
5039
5040#ifdef CONFIG_SMP
5041 for_each_online_cpu(cpu) {
a93cf07b
WY
5042 struct page *page;
5043
5044 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5045
5046 if (page && len < PAGE_SIZE - 20)
5047 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5048 page->pobjects, page->pages);
5049 }
5050#endif
5051 return len + sprintf(buf + len, "\n");
5052}
5053SLAB_ATTR_RO(slabs_cpu_partial);
5054
a5a84755
CL
5055static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5056{
5057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5058}
5059
5060static ssize_t reclaim_account_store(struct kmem_cache *s,
5061 const char *buf, size_t length)
5062{
5063 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5064 if (buf[0] == '1')
5065 s->flags |= SLAB_RECLAIM_ACCOUNT;
5066 return length;
5067}
5068SLAB_ATTR(reclaim_account);
5069
5070static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5071{
5072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5073}
5074SLAB_ATTR_RO(hwcache_align);
5075
5076#ifdef CONFIG_ZONE_DMA
5077static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5078{
5079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5080}
5081SLAB_ATTR_RO(cache_dma);
5082#endif
5083
5084static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5085{
5f0d5a3a 5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5087}
5088SLAB_ATTR_RO(destroy_by_rcu);
5089
ab9a0f19
LJ
5090static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5091{
5092 return sprintf(buf, "%d\n", s->reserved);
5093}
5094SLAB_ATTR_RO(reserved);
5095
ab4d5ed5 5096#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5097static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5098{
5099 return show_slab_objects(s, buf, SO_ALL);
5100}
5101SLAB_ATTR_RO(slabs);
5102
205ab99d
CL
5103static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5104{
5105 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5106}
5107SLAB_ATTR_RO(total_objects);
5108
81819f0f
CL
5109static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5110{
becfda68 5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5112}
5113
5114static ssize_t sanity_checks_store(struct kmem_cache *s,
5115 const char *buf, size_t length)
5116{
becfda68 5117 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5118 if (buf[0] == '1') {
5119 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5120 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5121 }
81819f0f
CL
5122 return length;
5123}
5124SLAB_ATTR(sanity_checks);
5125
5126static ssize_t trace_show(struct kmem_cache *s, char *buf)
5127{
5128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5129}
5130
5131static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5132 size_t length)
5133{
c9e16131
CL
5134 /*
5135 * Tracing a merged cache is going to give confusing results
5136 * as well as cause other issues like converting a mergeable
5137 * cache into an umergeable one.
5138 */
5139 if (s->refcount > 1)
5140 return -EINVAL;
5141
81819f0f 5142 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5143 if (buf[0] == '1') {
5144 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5145 s->flags |= SLAB_TRACE;
b789ef51 5146 }
81819f0f
CL
5147 return length;
5148}
5149SLAB_ATTR(trace);
5150
81819f0f
CL
5151static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5152{
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5154}
5155
5156static ssize_t red_zone_store(struct kmem_cache *s,
5157 const char *buf, size_t length)
5158{
5159 if (any_slab_objects(s))
5160 return -EBUSY;
5161
5162 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5163 if (buf[0] == '1') {
81819f0f 5164 s->flags |= SLAB_RED_ZONE;
b789ef51 5165 }
06b285dc 5166 calculate_sizes(s, -1);
81819f0f
CL
5167 return length;
5168}
5169SLAB_ATTR(red_zone);
5170
5171static ssize_t poison_show(struct kmem_cache *s, char *buf)
5172{
5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5174}
5175
5176static ssize_t poison_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178{
5179 if (any_slab_objects(s))
5180 return -EBUSY;
5181
5182 s->flags &= ~SLAB_POISON;
b789ef51 5183 if (buf[0] == '1') {
81819f0f 5184 s->flags |= SLAB_POISON;
b789ef51 5185 }
06b285dc 5186 calculate_sizes(s, -1);
81819f0f
CL
5187 return length;
5188}
5189SLAB_ATTR(poison);
5190
5191static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5192{
5193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5194}
5195
5196static ssize_t store_user_store(struct kmem_cache *s,
5197 const char *buf, size_t length)
5198{
5199 if (any_slab_objects(s))
5200 return -EBUSY;
5201
5202 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5203 if (buf[0] == '1') {
5204 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5205 s->flags |= SLAB_STORE_USER;
b789ef51 5206 }
06b285dc 5207 calculate_sizes(s, -1);
81819f0f
CL
5208 return length;
5209}
5210SLAB_ATTR(store_user);
5211
53e15af0
CL
5212static ssize_t validate_show(struct kmem_cache *s, char *buf)
5213{
5214 return 0;
5215}
5216
5217static ssize_t validate_store(struct kmem_cache *s,
5218 const char *buf, size_t length)
5219{
434e245d
CL
5220 int ret = -EINVAL;
5221
5222 if (buf[0] == '1') {
5223 ret = validate_slab_cache(s);
5224 if (ret >= 0)
5225 ret = length;
5226 }
5227 return ret;
53e15af0
CL
5228}
5229SLAB_ATTR(validate);
a5a84755
CL
5230
5231static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5232{
5233 if (!(s->flags & SLAB_STORE_USER))
5234 return -ENOSYS;
5235 return list_locations(s, buf, TRACK_ALLOC);
5236}
5237SLAB_ATTR_RO(alloc_calls);
5238
5239static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5240{
5241 if (!(s->flags & SLAB_STORE_USER))
5242 return -ENOSYS;
5243 return list_locations(s, buf, TRACK_FREE);
5244}
5245SLAB_ATTR_RO(free_calls);
5246#endif /* CONFIG_SLUB_DEBUG */
5247
5248#ifdef CONFIG_FAILSLAB
5249static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5250{
5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5252}
5253
5254static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5255 size_t length)
5256{
c9e16131
CL
5257 if (s->refcount > 1)
5258 return -EINVAL;
5259
a5a84755
CL
5260 s->flags &= ~SLAB_FAILSLAB;
5261 if (buf[0] == '1')
5262 s->flags |= SLAB_FAILSLAB;
5263 return length;
5264}
5265SLAB_ATTR(failslab);
ab4d5ed5 5266#endif
53e15af0 5267
2086d26a
CL
5268static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5269{
5270 return 0;
5271}
5272
5273static ssize_t shrink_store(struct kmem_cache *s,
5274 const char *buf, size_t length)
5275{
832f37f5
VD
5276 if (buf[0] == '1')
5277 kmem_cache_shrink(s);
5278 else
2086d26a
CL
5279 return -EINVAL;
5280 return length;
5281}
5282SLAB_ATTR(shrink);
5283
81819f0f 5284#ifdef CONFIG_NUMA
9824601e 5285static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5286{
9824601e 5287 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5288}
5289
9824601e 5290static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5291 const char *buf, size_t length)
5292{
0121c619
CL
5293 unsigned long ratio;
5294 int err;
5295
3dbb95f7 5296 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5297 if (err)
5298 return err;
5299
e2cb96b7 5300 if (ratio <= 100)
0121c619 5301 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5302
81819f0f
CL
5303 return length;
5304}
9824601e 5305SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5306#endif
5307
8ff12cfc 5308#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5309static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5310{
5311 unsigned long sum = 0;
5312 int cpu;
5313 int len;
5314 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5315
5316 if (!data)
5317 return -ENOMEM;
5318
5319 for_each_online_cpu(cpu) {
9dfc6e68 5320 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5321
5322 data[cpu] = x;
5323 sum += x;
5324 }
5325
5326 len = sprintf(buf, "%lu", sum);
5327
50ef37b9 5328#ifdef CONFIG_SMP
8ff12cfc
CL
5329 for_each_online_cpu(cpu) {
5330 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5331 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5332 }
50ef37b9 5333#endif
8ff12cfc
CL
5334 kfree(data);
5335 return len + sprintf(buf + len, "\n");
5336}
5337
78eb00cc
DR
5338static void clear_stat(struct kmem_cache *s, enum stat_item si)
5339{
5340 int cpu;
5341
5342 for_each_online_cpu(cpu)
9dfc6e68 5343 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5344}
5345
8ff12cfc
CL
5346#define STAT_ATTR(si, text) \
5347static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5348{ \
5349 return show_stat(s, buf, si); \
5350} \
78eb00cc
DR
5351static ssize_t text##_store(struct kmem_cache *s, \
5352 const char *buf, size_t length) \
5353{ \
5354 if (buf[0] != '0') \
5355 return -EINVAL; \
5356 clear_stat(s, si); \
5357 return length; \
5358} \
5359SLAB_ATTR(text); \
8ff12cfc
CL
5360
5361STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5362STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5363STAT_ATTR(FREE_FASTPATH, free_fastpath);
5364STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5365STAT_ATTR(FREE_FROZEN, free_frozen);
5366STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5367STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5368STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5369STAT_ATTR(ALLOC_SLAB, alloc_slab);
5370STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5371STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5372STAT_ATTR(FREE_SLAB, free_slab);
5373STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5374STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5375STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5376STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5377STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5378STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5379STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5380STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5381STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5382STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5383STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5384STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5385STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5386STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5387#endif
5388
06428780 5389static struct attribute *slab_attrs[] = {
81819f0f
CL
5390 &slab_size_attr.attr,
5391 &object_size_attr.attr,
5392 &objs_per_slab_attr.attr,
5393 &order_attr.attr,
73d342b1 5394 &min_partial_attr.attr,
49e22585 5395 &cpu_partial_attr.attr,
81819f0f 5396 &objects_attr.attr,
205ab99d 5397 &objects_partial_attr.attr,
81819f0f
CL
5398 &partial_attr.attr,
5399 &cpu_slabs_attr.attr,
5400 &ctor_attr.attr,
81819f0f
CL
5401 &aliases_attr.attr,
5402 &align_attr.attr,
81819f0f
CL
5403 &hwcache_align_attr.attr,
5404 &reclaim_account_attr.attr,
5405 &destroy_by_rcu_attr.attr,
a5a84755 5406 &shrink_attr.attr,
ab9a0f19 5407 &reserved_attr.attr,
49e22585 5408 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5409#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5410 &total_objects_attr.attr,
5411 &slabs_attr.attr,
5412 &sanity_checks_attr.attr,
5413 &trace_attr.attr,
81819f0f
CL
5414 &red_zone_attr.attr,
5415 &poison_attr.attr,
5416 &store_user_attr.attr,
53e15af0 5417 &validate_attr.attr,
88a420e4
CL
5418 &alloc_calls_attr.attr,
5419 &free_calls_attr.attr,
ab4d5ed5 5420#endif
81819f0f
CL
5421#ifdef CONFIG_ZONE_DMA
5422 &cache_dma_attr.attr,
5423#endif
5424#ifdef CONFIG_NUMA
9824601e 5425 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5426#endif
5427#ifdef CONFIG_SLUB_STATS
5428 &alloc_fastpath_attr.attr,
5429 &alloc_slowpath_attr.attr,
5430 &free_fastpath_attr.attr,
5431 &free_slowpath_attr.attr,
5432 &free_frozen_attr.attr,
5433 &free_add_partial_attr.attr,
5434 &free_remove_partial_attr.attr,
5435 &alloc_from_partial_attr.attr,
5436 &alloc_slab_attr.attr,
5437 &alloc_refill_attr.attr,
e36a2652 5438 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5439 &free_slab_attr.attr,
5440 &cpuslab_flush_attr.attr,
5441 &deactivate_full_attr.attr,
5442 &deactivate_empty_attr.attr,
5443 &deactivate_to_head_attr.attr,
5444 &deactivate_to_tail_attr.attr,
5445 &deactivate_remote_frees_attr.attr,
03e404af 5446 &deactivate_bypass_attr.attr,
65c3376a 5447 &order_fallback_attr.attr,
b789ef51
CL
5448 &cmpxchg_double_fail_attr.attr,
5449 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5450 &cpu_partial_alloc_attr.attr,
5451 &cpu_partial_free_attr.attr,
8028dcea
AS
5452 &cpu_partial_node_attr.attr,
5453 &cpu_partial_drain_attr.attr,
81819f0f 5454#endif
4c13dd3b
DM
5455#ifdef CONFIG_FAILSLAB
5456 &failslab_attr.attr,
5457#endif
5458
81819f0f
CL
5459 NULL
5460};
5461
5462static struct attribute_group slab_attr_group = {
5463 .attrs = slab_attrs,
5464};
5465
5466static ssize_t slab_attr_show(struct kobject *kobj,
5467 struct attribute *attr,
5468 char *buf)
5469{
5470 struct slab_attribute *attribute;
5471 struct kmem_cache *s;
5472 int err;
5473
5474 attribute = to_slab_attr(attr);
5475 s = to_slab(kobj);
5476
5477 if (!attribute->show)
5478 return -EIO;
5479
5480 err = attribute->show(s, buf);
5481
5482 return err;
5483}
5484
5485static ssize_t slab_attr_store(struct kobject *kobj,
5486 struct attribute *attr,
5487 const char *buf, size_t len)
5488{
5489 struct slab_attribute *attribute;
5490 struct kmem_cache *s;
5491 int err;
5492
5493 attribute = to_slab_attr(attr);
5494 s = to_slab(kobj);
5495
5496 if (!attribute->store)
5497 return -EIO;
5498
5499 err = attribute->store(s, buf, len);
127424c8 5500#ifdef CONFIG_MEMCG
107dab5c 5501 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5502 struct kmem_cache *c;
81819f0f 5503
107dab5c
GC
5504 mutex_lock(&slab_mutex);
5505 if (s->max_attr_size < len)
5506 s->max_attr_size = len;
5507
ebe945c2
GC
5508 /*
5509 * This is a best effort propagation, so this function's return
5510 * value will be determined by the parent cache only. This is
5511 * basically because not all attributes will have a well
5512 * defined semantics for rollbacks - most of the actions will
5513 * have permanent effects.
5514 *
5515 * Returning the error value of any of the children that fail
5516 * is not 100 % defined, in the sense that users seeing the
5517 * error code won't be able to know anything about the state of
5518 * the cache.
5519 *
5520 * Only returning the error code for the parent cache at least
5521 * has well defined semantics. The cache being written to
5522 * directly either failed or succeeded, in which case we loop
5523 * through the descendants with best-effort propagation.
5524 */
426589f5
VD
5525 for_each_memcg_cache(c, s)
5526 attribute->store(c, buf, len);
107dab5c
GC
5527 mutex_unlock(&slab_mutex);
5528 }
5529#endif
81819f0f
CL
5530 return err;
5531}
5532
107dab5c
GC
5533static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5534{
127424c8 5535#ifdef CONFIG_MEMCG
107dab5c
GC
5536 int i;
5537 char *buffer = NULL;
93030d83 5538 struct kmem_cache *root_cache;
107dab5c 5539
93030d83 5540 if (is_root_cache(s))
107dab5c
GC
5541 return;
5542
f7ce3190 5543 root_cache = s->memcg_params.root_cache;
93030d83 5544
107dab5c
GC
5545 /*
5546 * This mean this cache had no attribute written. Therefore, no point
5547 * in copying default values around
5548 */
93030d83 5549 if (!root_cache->max_attr_size)
107dab5c
GC
5550 return;
5551
5552 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5553 char mbuf[64];
5554 char *buf;
5555 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5556 ssize_t len;
107dab5c
GC
5557
5558 if (!attr || !attr->store || !attr->show)
5559 continue;
5560
5561 /*
5562 * It is really bad that we have to allocate here, so we will
5563 * do it only as a fallback. If we actually allocate, though,
5564 * we can just use the allocated buffer until the end.
5565 *
5566 * Most of the slub attributes will tend to be very small in
5567 * size, but sysfs allows buffers up to a page, so they can
5568 * theoretically happen.
5569 */
5570 if (buffer)
5571 buf = buffer;
93030d83 5572 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5573 buf = mbuf;
5574 else {
5575 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5576 if (WARN_ON(!buffer))
5577 continue;
5578 buf = buffer;
5579 }
5580
478fe303
TG
5581 len = attr->show(root_cache, buf);
5582 if (len > 0)
5583 attr->store(s, buf, len);
107dab5c
GC
5584 }
5585
5586 if (buffer)
5587 free_page((unsigned long)buffer);
5588#endif
5589}
5590
41a21285
CL
5591static void kmem_cache_release(struct kobject *k)
5592{
5593 slab_kmem_cache_release(to_slab(k));
5594}
5595
52cf25d0 5596static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5597 .show = slab_attr_show,
5598 .store = slab_attr_store,
5599};
5600
5601static struct kobj_type slab_ktype = {
5602 .sysfs_ops = &slab_sysfs_ops,
41a21285 5603 .release = kmem_cache_release,
81819f0f
CL
5604};
5605
5606static int uevent_filter(struct kset *kset, struct kobject *kobj)
5607{
5608 struct kobj_type *ktype = get_ktype(kobj);
5609
5610 if (ktype == &slab_ktype)
5611 return 1;
5612 return 0;
5613}
5614
9cd43611 5615static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5616 .filter = uevent_filter,
5617};
5618
27c3a314 5619static struct kset *slab_kset;
81819f0f 5620
9a41707b
VD
5621static inline struct kset *cache_kset(struct kmem_cache *s)
5622{
127424c8 5623#ifdef CONFIG_MEMCG
9a41707b 5624 if (!is_root_cache(s))
f7ce3190 5625 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5626#endif
5627 return slab_kset;
5628}
5629
81819f0f
CL
5630#define ID_STR_LENGTH 64
5631
5632/* Create a unique string id for a slab cache:
6446faa2
CL
5633 *
5634 * Format :[flags-]size
81819f0f
CL
5635 */
5636static char *create_unique_id(struct kmem_cache *s)
5637{
5638 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5639 char *p = name;
5640
5641 BUG_ON(!name);
5642
5643 *p++ = ':';
5644 /*
5645 * First flags affecting slabcache operations. We will only
5646 * get here for aliasable slabs so we do not need to support
5647 * too many flags. The flags here must cover all flags that
5648 * are matched during merging to guarantee that the id is
5649 * unique.
5650 */
5651 if (s->flags & SLAB_CACHE_DMA)
5652 *p++ = 'd';
5653 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5654 *p++ = 'a';
becfda68 5655 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5656 *p++ = 'F';
5a896d9e
VN
5657 if (!(s->flags & SLAB_NOTRACK))
5658 *p++ = 't';
230e9fc2
VD
5659 if (s->flags & SLAB_ACCOUNT)
5660 *p++ = 'A';
81819f0f
CL
5661 if (p != name + 1)
5662 *p++ = '-';
5663 p += sprintf(p, "%07d", s->size);
2633d7a0 5664
81819f0f
CL
5665 BUG_ON(p > name + ID_STR_LENGTH - 1);
5666 return name;
5667}
5668
3b7b3140
TH
5669static void sysfs_slab_remove_workfn(struct work_struct *work)
5670{
5671 struct kmem_cache *s =
5672 container_of(work, struct kmem_cache, kobj_remove_work);
5673
5674 if (!s->kobj.state_in_sysfs)
5675 /*
5676 * For a memcg cache, this may be called during
5677 * deactivation and again on shutdown. Remove only once.
5678 * A cache is never shut down before deactivation is
5679 * complete, so no need to worry about synchronization.
5680 */
f6ba4880 5681 goto out;
3b7b3140
TH
5682
5683#ifdef CONFIG_MEMCG
5684 kset_unregister(s->memcg_kset);
5685#endif
5686 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5687 kobject_del(&s->kobj);
f6ba4880 5688out:
3b7b3140
TH
5689 kobject_put(&s->kobj);
5690}
5691
81819f0f
CL
5692static int sysfs_slab_add(struct kmem_cache *s)
5693{
5694 int err;
5695 const char *name;
1663f26d 5696 struct kset *kset = cache_kset(s);
45530c44 5697 int unmergeable = slab_unmergeable(s);
81819f0f 5698
3b7b3140
TH
5699 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5700
1663f26d
TH
5701 if (!kset) {
5702 kobject_init(&s->kobj, &slab_ktype);
5703 return 0;
5704 }
5705
81819f0f
CL
5706 if (unmergeable) {
5707 /*
5708 * Slabcache can never be merged so we can use the name proper.
5709 * This is typically the case for debug situations. In that
5710 * case we can catch duplicate names easily.
5711 */
27c3a314 5712 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5713 name = s->name;
5714 } else {
5715 /*
5716 * Create a unique name for the slab as a target
5717 * for the symlinks.
5718 */
5719 name = create_unique_id(s);
5720 }
5721
1663f26d 5722 s->kobj.kset = kset;
26e4f205 5723 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5724 if (err)
80da026a 5725 goto out;
81819f0f
CL
5726
5727 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5728 if (err)
5729 goto out_del_kobj;
9a41707b 5730
127424c8 5731#ifdef CONFIG_MEMCG
1663f26d 5732 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5733 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5734 if (!s->memcg_kset) {
54b6a731
DJ
5735 err = -ENOMEM;
5736 goto out_del_kobj;
9a41707b
VD
5737 }
5738 }
5739#endif
5740
81819f0f
CL
5741 kobject_uevent(&s->kobj, KOBJ_ADD);
5742 if (!unmergeable) {
5743 /* Setup first alias */
5744 sysfs_slab_alias(s, s->name);
81819f0f 5745 }
54b6a731
DJ
5746out:
5747 if (!unmergeable)
5748 kfree(name);
5749 return err;
5750out_del_kobj:
5751 kobject_del(&s->kobj);
54b6a731 5752 goto out;
81819f0f
CL
5753}
5754
bf5eb3de 5755static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5756{
97d06609 5757 if (slab_state < FULL)
2bce6485
CL
5758 /*
5759 * Sysfs has not been setup yet so no need to remove the
5760 * cache from sysfs.
5761 */
5762 return;
5763
3b7b3140
TH
5764 kobject_get(&s->kobj);
5765 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5766}
5767
5768void sysfs_slab_release(struct kmem_cache *s)
5769{
5770 if (slab_state >= FULL)
5771 kobject_put(&s->kobj);
81819f0f
CL
5772}
5773
5774/*
5775 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5776 * available lest we lose that information.
81819f0f
CL
5777 */
5778struct saved_alias {
5779 struct kmem_cache *s;
5780 const char *name;
5781 struct saved_alias *next;
5782};
5783
5af328a5 5784static struct saved_alias *alias_list;
81819f0f
CL
5785
5786static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5787{
5788 struct saved_alias *al;
5789
97d06609 5790 if (slab_state == FULL) {
81819f0f
CL
5791 /*
5792 * If we have a leftover link then remove it.
5793 */
27c3a314
GKH
5794 sysfs_remove_link(&slab_kset->kobj, name);
5795 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5796 }
5797
5798 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5799 if (!al)
5800 return -ENOMEM;
5801
5802 al->s = s;
5803 al->name = name;
5804 al->next = alias_list;
5805 alias_list = al;
5806 return 0;
5807}
5808
5809static int __init slab_sysfs_init(void)
5810{
5b95a4ac 5811 struct kmem_cache *s;
81819f0f
CL
5812 int err;
5813
18004c5d 5814 mutex_lock(&slab_mutex);
2bce6485 5815
0ff21e46 5816 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5817 if (!slab_kset) {
18004c5d 5818 mutex_unlock(&slab_mutex);
f9f58285 5819 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5820 return -ENOSYS;
5821 }
5822
97d06609 5823 slab_state = FULL;
26a7bd03 5824
5b95a4ac 5825 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5826 err = sysfs_slab_add(s);
5d540fb7 5827 if (err)
f9f58285
FF
5828 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5829 s->name);
26a7bd03 5830 }
81819f0f
CL
5831
5832 while (alias_list) {
5833 struct saved_alias *al = alias_list;
5834
5835 alias_list = alias_list->next;
5836 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5837 if (err)
f9f58285
FF
5838 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5839 al->name);
81819f0f
CL
5840 kfree(al);
5841 }
5842
18004c5d 5843 mutex_unlock(&slab_mutex);
81819f0f
CL
5844 resiliency_test();
5845 return 0;
5846}
5847
5848__initcall(slab_sysfs_init);
ab4d5ed5 5849#endif /* CONFIG_SYSFS */
57ed3eda
PE
5850
5851/*
5852 * The /proc/slabinfo ABI
5853 */
158a9624 5854#ifdef CONFIG_SLABINFO
0d7561c6 5855void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5856{
57ed3eda 5857 unsigned long nr_slabs = 0;
205ab99d
CL
5858 unsigned long nr_objs = 0;
5859 unsigned long nr_free = 0;
57ed3eda 5860 int node;
fa45dc25 5861 struct kmem_cache_node *n;
57ed3eda 5862
fa45dc25 5863 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5864 nr_slabs += node_nr_slabs(n);
5865 nr_objs += node_nr_objs(n);
205ab99d 5866 nr_free += count_partial(n, count_free);
57ed3eda
PE
5867 }
5868
0d7561c6
GC
5869 sinfo->active_objs = nr_objs - nr_free;
5870 sinfo->num_objs = nr_objs;
5871 sinfo->active_slabs = nr_slabs;
5872 sinfo->num_slabs = nr_slabs;
5873 sinfo->objects_per_slab = oo_objects(s->oo);
5874 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5875}
5876
0d7561c6 5877void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5878{
7b3c3a50
AD
5879}
5880
b7454ad3
GC
5881ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5882 size_t count, loff_t *ppos)
7b3c3a50 5883{
b7454ad3 5884 return -EIO;
7b3c3a50 5885}
158a9624 5886#endif /* CONFIG_SLABINFO */