]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
Merge branches 'topic/fixes', 'topic/cleanups' and 'topic/documentation' into for...
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
7b3c3a50 17#include <linux/proc_fs.h>
81819f0f
CL
18#include <linux/seq_file.h>
19#include <linux/cpu.h>
20#include <linux/cpuset.h>
21#include <linux/mempolicy.h>
22#include <linux/ctype.h>
3ac7fe5a 23#include <linux/debugobjects.h>
81819f0f 24#include <linux/kallsyms.h>
b9049e23 25#include <linux/memory.h>
f8bd2258 26#include <linux/math64.h>
81819f0f
CL
27
28/*
29 * Lock order:
30 * 1. slab_lock(page)
31 * 2. slab->list_lock
32 *
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
39 *
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
45 *
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
50 * the list lock.
51 *
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
64 *
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
69 *
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
72 *
672bba3a
CL
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 75 * freed then the slab will show up again on the partial lists.
672bba3a
CL
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
81819f0f
CL
78 *
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
82 *
83 * Overloading of page flags that are otherwise used for LRU management.
84 *
4b6f0750
CL
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
93 *
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
dfb4f096 97 * freelist that allows lockless access to
894b8788
CL
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
81819f0f
CL
100 *
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
894b8788 103 * the fast path and disables lockless freelists.
81819f0f
CL
104 */
105
5577bd8a 106#ifdef CONFIG_SLUB_DEBUG
8a38082d 107#define SLABDEBUG 1
5577bd8a
CL
108#else
109#define SLABDEBUG 0
110#endif
111
81819f0f
CL
112/*
113 * Issues still to be resolved:
114 *
81819f0f
CL
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116 *
81819f0f
CL
117 * - Variable sizing of the per node arrays
118 */
119
120/* Enable to test recovery from slab corruption on boot */
121#undef SLUB_RESILIENCY_TEST
122
2086d26a
CL
123/*
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
126 */
76be8950 127#define MIN_PARTIAL 5
e95eed57 128
2086d26a
CL
129/*
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
133 */
134#define MAX_PARTIAL 10
135
81819f0f
CL
136#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
672bba3a 138
81819f0f
CL
139/*
140 * Set of flags that will prevent slab merging
141 */
142#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144
145#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_CACHE_DMA)
147
148#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 149#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
150#endif
151
152#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 153#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
154#endif
155
210b5c06
CG
156#define OO_SHIFT 16
157#define OO_MASK ((1 << OO_SHIFT) - 1)
158#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
159
81819f0f 160/* Internal SLUB flags */
1ceef402
CL
161#define __OBJECT_POISON 0x80000000 /* Poison object */
162#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
163
164static int kmem_size = sizeof(struct kmem_cache);
165
166#ifdef CONFIG_SMP
167static struct notifier_block slab_notifier;
168#endif
169
170static enum {
171 DOWN, /* No slab functionality available */
172 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 173 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
174 SYSFS /* Sysfs up */
175} slab_state = DOWN;
176
177/* A list of all slab caches on the system */
178static DECLARE_RWSEM(slub_lock);
5af328a5 179static LIST_HEAD(slab_caches);
81819f0f 180
02cbc874
CL
181/*
182 * Tracking user of a slab.
183 */
184struct track {
ce71e27c 185 unsigned long addr; /* Called from address */
02cbc874
CL
186 int cpu; /* Was running on cpu */
187 int pid; /* Pid context */
188 unsigned long when; /* When did the operation occur */
189};
190
191enum track_item { TRACK_ALLOC, TRACK_FREE };
192
f6acb635 193#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
194static int sysfs_slab_add(struct kmem_cache *);
195static int sysfs_slab_alias(struct kmem_cache *, const char *);
196static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 197
81819f0f 198#else
0c710013
CL
199static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
200static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
201 { return 0; }
151c602f
CL
202static inline void sysfs_slab_remove(struct kmem_cache *s)
203{
204 kfree(s);
205}
8ff12cfc 206
81819f0f
CL
207#endif
208
8ff12cfc
CL
209static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
210{
211#ifdef CONFIG_SLUB_STATS
212 c->stat[si]++;
213#endif
214}
215
81819f0f
CL
216/********************************************************************
217 * Core slab cache functions
218 *******************************************************************/
219
220int slab_is_available(void)
221{
222 return slab_state >= UP;
223}
224
225static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226{
227#ifdef CONFIG_NUMA
228 return s->node[node];
229#else
230 return &s->local_node;
231#endif
232}
233
dfb4f096
CL
234static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
235{
4c93c355
CL
236#ifdef CONFIG_SMP
237 return s->cpu_slab[cpu];
238#else
239 return &s->cpu_slab;
240#endif
dfb4f096
CL
241}
242
6446faa2 243/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
244static inline int check_valid_pointer(struct kmem_cache *s,
245 struct page *page, const void *object)
246{
247 void *base;
248
a973e9dd 249 if (!object)
02cbc874
CL
250 return 1;
251
a973e9dd 252 base = page_address(page);
39b26464 253 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
254 (object - base) % s->size) {
255 return 0;
256 }
257
258 return 1;
259}
260
7656c72b
CL
261/*
262 * Slow version of get and set free pointer.
263 *
264 * This version requires touching the cache lines of kmem_cache which
265 * we avoid to do in the fast alloc free paths. There we obtain the offset
266 * from the page struct.
267 */
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
273static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
274{
275 *(void **)(object + s->offset) = fp;
276}
277
278/* Loop over all objects in a slab */
224a88be
CL
279#define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
281 __p += (__s)->size)
282
283/* Scan freelist */
284#define for_each_free_object(__p, __s, __free) \
a973e9dd 285 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
286
287/* Determine object index from a given position */
288static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289{
290 return (p - addr) / s->size;
291}
292
834f3d11
CL
293static inline struct kmem_cache_order_objects oo_make(int order,
294 unsigned long size)
295{
296 struct kmem_cache_order_objects x = {
210b5c06 297 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
298 };
299
300 return x;
301}
302
303static inline int oo_order(struct kmem_cache_order_objects x)
304{
210b5c06 305 return x.x >> OO_SHIFT;
834f3d11
CL
306}
307
308static inline int oo_objects(struct kmem_cache_order_objects x)
309{
210b5c06 310 return x.x & OO_MASK;
834f3d11
CL
311}
312
41ecc55b
CL
313#ifdef CONFIG_SLUB_DEBUG
314/*
315 * Debug settings:
316 */
f0630fff
CL
317#ifdef CONFIG_SLUB_DEBUG_ON
318static int slub_debug = DEBUG_DEFAULT_FLAGS;
319#else
41ecc55b 320static int slub_debug;
f0630fff 321#endif
41ecc55b
CL
322
323static char *slub_debug_slabs;
324
81819f0f
CL
325/*
326 * Object debugging
327 */
328static void print_section(char *text, u8 *addr, unsigned int length)
329{
330 int i, offset;
331 int newline = 1;
332 char ascii[17];
333
334 ascii[16] = 0;
335
336 for (i = 0; i < length; i++) {
337 if (newline) {
24922684 338 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
339 newline = 0;
340 }
06428780 341 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
342 offset = i % 16;
343 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
344 if (offset == 15) {
06428780 345 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
346 newline = 1;
347 }
348 }
349 if (!newline) {
350 i %= 16;
351 while (i < 16) {
06428780 352 printk(KERN_CONT " ");
81819f0f
CL
353 ascii[i] = ' ';
354 i++;
355 }
06428780 356 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
357 }
358}
359
81819f0f
CL
360static struct track *get_track(struct kmem_cache *s, void *object,
361 enum track_item alloc)
362{
363 struct track *p;
364
365 if (s->offset)
366 p = object + s->offset + sizeof(void *);
367 else
368 p = object + s->inuse;
369
370 return p + alloc;
371}
372
373static void set_track(struct kmem_cache *s, void *object,
ce71e27c 374 enum track_item alloc, unsigned long addr)
81819f0f
CL
375{
376 struct track *p;
377
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
382
383 p += alloc;
384 if (addr) {
385 p->addr = addr;
386 p->cpu = smp_processor_id();
88e4ccf2 387 p->pid = current->pid;
81819f0f
CL
388 p->when = jiffies;
389 } else
390 memset(p, 0, sizeof(struct track));
391}
392
81819f0f
CL
393static void init_tracking(struct kmem_cache *s, void *object)
394{
24922684
CL
395 if (!(s->flags & SLAB_STORE_USER))
396 return;
397
ce71e27c
EGM
398 set_track(s, object, TRACK_FREE, 0UL);
399 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
400}
401
402static void print_track(const char *s, struct track *t)
403{
404 if (!t->addr)
405 return;
406
7daf705f 407 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 408 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
409}
410
411static void print_tracking(struct kmem_cache *s, void *object)
412{
413 if (!(s->flags & SLAB_STORE_USER))
414 return;
415
416 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
417 print_track("Freed", get_track(s, object, TRACK_FREE));
418}
419
420static void print_page_info(struct page *page)
421{
39b26464
CL
422 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
423 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
424
425}
426
427static void slab_bug(struct kmem_cache *s, char *fmt, ...)
428{
429 va_list args;
430 char buf[100];
431
432 va_start(args, fmt);
433 vsnprintf(buf, sizeof(buf), fmt, args);
434 va_end(args);
435 printk(KERN_ERR "========================================"
436 "=====================================\n");
437 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
438 printk(KERN_ERR "----------------------------------------"
439 "-------------------------------------\n\n");
81819f0f
CL
440}
441
24922684
CL
442static void slab_fix(struct kmem_cache *s, char *fmt, ...)
443{
444 va_list args;
445 char buf[100];
446
447 va_start(args, fmt);
448 vsnprintf(buf, sizeof(buf), fmt, args);
449 va_end(args);
450 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
451}
452
453static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
454{
455 unsigned int off; /* Offset of last byte */
a973e9dd 456 u8 *addr = page_address(page);
24922684
CL
457
458 print_tracking(s, p);
459
460 print_page_info(page);
461
462 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
463 p, p - addr, get_freepointer(s, p));
464
465 if (p > addr + 16)
466 print_section("Bytes b4", p - 16, 16);
467
0ebd652b 468 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
469
470 if (s->flags & SLAB_RED_ZONE)
471 print_section("Redzone", p + s->objsize,
472 s->inuse - s->objsize);
473
81819f0f
CL
474 if (s->offset)
475 off = s->offset + sizeof(void *);
476 else
477 off = s->inuse;
478
24922684 479 if (s->flags & SLAB_STORE_USER)
81819f0f 480 off += 2 * sizeof(struct track);
81819f0f
CL
481
482 if (off != s->size)
483 /* Beginning of the filler is the free pointer */
24922684
CL
484 print_section("Padding", p + off, s->size - off);
485
486 dump_stack();
81819f0f
CL
487}
488
489static void object_err(struct kmem_cache *s, struct page *page,
490 u8 *object, char *reason)
491{
3dc50637 492 slab_bug(s, "%s", reason);
24922684 493 print_trailer(s, page, object);
81819f0f
CL
494}
495
24922684 496static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
497{
498 va_list args;
499 char buf[100];
500
24922684
CL
501 va_start(args, fmt);
502 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 503 va_end(args);
3dc50637 504 slab_bug(s, "%s", buf);
24922684 505 print_page_info(page);
81819f0f
CL
506 dump_stack();
507}
508
509static void init_object(struct kmem_cache *s, void *object, int active)
510{
511 u8 *p = object;
512
513 if (s->flags & __OBJECT_POISON) {
514 memset(p, POISON_FREE, s->objsize - 1);
06428780 515 p[s->objsize - 1] = POISON_END;
81819f0f
CL
516 }
517
518 if (s->flags & SLAB_RED_ZONE)
519 memset(p + s->objsize,
520 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
521 s->inuse - s->objsize);
522}
523
24922684 524static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
525{
526 while (bytes) {
527 if (*start != (u8)value)
24922684 528 return start;
81819f0f
CL
529 start++;
530 bytes--;
531 }
24922684
CL
532 return NULL;
533}
534
535static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
536 void *from, void *to)
537{
538 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
539 memset(from, data, to - from);
540}
541
542static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
543 u8 *object, char *what,
06428780 544 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
545{
546 u8 *fault;
547 u8 *end;
548
549 fault = check_bytes(start, value, bytes);
550 if (!fault)
551 return 1;
552
553 end = start + bytes;
554 while (end > fault && end[-1] == value)
555 end--;
556
557 slab_bug(s, "%s overwritten", what);
558 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
559 fault, end - 1, fault[0], value);
560 print_trailer(s, page, object);
561
562 restore_bytes(s, what, value, fault, end);
563 return 0;
81819f0f
CL
564}
565
81819f0f
CL
566/*
567 * Object layout:
568 *
569 * object address
570 * Bytes of the object to be managed.
571 * If the freepointer may overlay the object then the free
572 * pointer is the first word of the object.
672bba3a 573 *
81819f0f
CL
574 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
575 * 0xa5 (POISON_END)
576 *
577 * object + s->objsize
578 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
579 * Padding is extended by another word if Redzoning is enabled and
580 * objsize == inuse.
581 *
81819f0f
CL
582 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
583 * 0xcc (RED_ACTIVE) for objects in use.
584 *
585 * object + s->inuse
672bba3a
CL
586 * Meta data starts here.
587 *
81819f0f
CL
588 * A. Free pointer (if we cannot overwrite object on free)
589 * B. Tracking data for SLAB_STORE_USER
672bba3a 590 * C. Padding to reach required alignment boundary or at mininum
6446faa2 591 * one word if debugging is on to be able to detect writes
672bba3a
CL
592 * before the word boundary.
593 *
594 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
595 *
596 * object + s->size
672bba3a 597 * Nothing is used beyond s->size.
81819f0f 598 *
672bba3a
CL
599 * If slabcaches are merged then the objsize and inuse boundaries are mostly
600 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
601 * may be used with merged slabcaches.
602 */
603
81819f0f
CL
604static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
605{
606 unsigned long off = s->inuse; /* The end of info */
607
608 if (s->offset)
609 /* Freepointer is placed after the object. */
610 off += sizeof(void *);
611
612 if (s->flags & SLAB_STORE_USER)
613 /* We also have user information there */
614 off += 2 * sizeof(struct track);
615
616 if (s->size == off)
617 return 1;
618
24922684
CL
619 return check_bytes_and_report(s, page, p, "Object padding",
620 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
621}
622
39b26464 623/* Check the pad bytes at the end of a slab page */
81819f0f
CL
624static int slab_pad_check(struct kmem_cache *s, struct page *page)
625{
24922684
CL
626 u8 *start;
627 u8 *fault;
628 u8 *end;
629 int length;
630 int remainder;
81819f0f
CL
631
632 if (!(s->flags & SLAB_POISON))
633 return 1;
634
a973e9dd 635 start = page_address(page);
834f3d11 636 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
637 end = start + length;
638 remainder = length % s->size;
81819f0f
CL
639 if (!remainder)
640 return 1;
641
39b26464 642 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
643 if (!fault)
644 return 1;
645 while (end > fault && end[-1] == POISON_INUSE)
646 end--;
647
648 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 649 print_section("Padding", end - remainder, remainder);
24922684
CL
650
651 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
652 return 0;
81819f0f
CL
653}
654
655static int check_object(struct kmem_cache *s, struct page *page,
656 void *object, int active)
657{
658 u8 *p = object;
659 u8 *endobject = object + s->objsize;
660
661 if (s->flags & SLAB_RED_ZONE) {
662 unsigned int red =
663 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
664
24922684
CL
665 if (!check_bytes_and_report(s, page, object, "Redzone",
666 endobject, red, s->inuse - s->objsize))
81819f0f 667 return 0;
81819f0f 668 } else {
3adbefee
IM
669 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
670 check_bytes_and_report(s, page, p, "Alignment padding",
671 endobject, POISON_INUSE, s->inuse - s->objsize);
672 }
81819f0f
CL
673 }
674
675 if (s->flags & SLAB_POISON) {
676 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
677 (!check_bytes_and_report(s, page, p, "Poison", p,
678 POISON_FREE, s->objsize - 1) ||
679 !check_bytes_and_report(s, page, p, "Poison",
06428780 680 p + s->objsize - 1, POISON_END, 1)))
81819f0f 681 return 0;
81819f0f
CL
682 /*
683 * check_pad_bytes cleans up on its own.
684 */
685 check_pad_bytes(s, page, p);
686 }
687
688 if (!s->offset && active)
689 /*
690 * Object and freepointer overlap. Cannot check
691 * freepointer while object is allocated.
692 */
693 return 1;
694
695 /* Check free pointer validity */
696 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
697 object_err(s, page, p, "Freepointer corrupt");
698 /*
9f6c708e 699 * No choice but to zap it and thus lose the remainder
81819f0f 700 * of the free objects in this slab. May cause
672bba3a 701 * another error because the object count is now wrong.
81819f0f 702 */
a973e9dd 703 set_freepointer(s, p, NULL);
81819f0f
CL
704 return 0;
705 }
706 return 1;
707}
708
709static int check_slab(struct kmem_cache *s, struct page *page)
710{
39b26464
CL
711 int maxobj;
712
81819f0f
CL
713 VM_BUG_ON(!irqs_disabled());
714
715 if (!PageSlab(page)) {
24922684 716 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
717 return 0;
718 }
39b26464
CL
719
720 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
721 if (page->objects > maxobj) {
722 slab_err(s, page, "objects %u > max %u",
723 s->name, page->objects, maxobj);
724 return 0;
725 }
726 if (page->inuse > page->objects) {
24922684 727 slab_err(s, page, "inuse %u > max %u",
39b26464 728 s->name, page->inuse, page->objects);
81819f0f
CL
729 return 0;
730 }
731 /* Slab_pad_check fixes things up after itself */
732 slab_pad_check(s, page);
733 return 1;
734}
735
736/*
672bba3a
CL
737 * Determine if a certain object on a page is on the freelist. Must hold the
738 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
739 */
740static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
741{
742 int nr = 0;
743 void *fp = page->freelist;
744 void *object = NULL;
224a88be 745 unsigned long max_objects;
81819f0f 746
39b26464 747 while (fp && nr <= page->objects) {
81819f0f
CL
748 if (fp == search)
749 return 1;
750 if (!check_valid_pointer(s, page, fp)) {
751 if (object) {
752 object_err(s, page, object,
753 "Freechain corrupt");
a973e9dd 754 set_freepointer(s, object, NULL);
81819f0f
CL
755 break;
756 } else {
24922684 757 slab_err(s, page, "Freepointer corrupt");
a973e9dd 758 page->freelist = NULL;
39b26464 759 page->inuse = page->objects;
24922684 760 slab_fix(s, "Freelist cleared");
81819f0f
CL
761 return 0;
762 }
763 break;
764 }
765 object = fp;
766 fp = get_freepointer(s, object);
767 nr++;
768 }
769
224a88be 770 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
771 if (max_objects > MAX_OBJS_PER_PAGE)
772 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
773
774 if (page->objects != max_objects) {
775 slab_err(s, page, "Wrong number of objects. Found %d but "
776 "should be %d", page->objects, max_objects);
777 page->objects = max_objects;
778 slab_fix(s, "Number of objects adjusted.");
779 }
39b26464 780 if (page->inuse != page->objects - nr) {
70d71228 781 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
782 "counted were %d", page->inuse, page->objects - nr);
783 page->inuse = page->objects - nr;
24922684 784 slab_fix(s, "Object count adjusted.");
81819f0f
CL
785 }
786 return search == NULL;
787}
788
0121c619
CL
789static void trace(struct kmem_cache *s, struct page *page, void *object,
790 int alloc)
3ec09742
CL
791{
792 if (s->flags & SLAB_TRACE) {
793 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
794 s->name,
795 alloc ? "alloc" : "free",
796 object, page->inuse,
797 page->freelist);
798
799 if (!alloc)
800 print_section("Object", (void *)object, s->objsize);
801
802 dump_stack();
803 }
804}
805
643b1138 806/*
672bba3a 807 * Tracking of fully allocated slabs for debugging purposes.
643b1138 808 */
e95eed57 809static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 810{
643b1138
CL
811 spin_lock(&n->list_lock);
812 list_add(&page->lru, &n->full);
813 spin_unlock(&n->list_lock);
814}
815
816static void remove_full(struct kmem_cache *s, struct page *page)
817{
818 struct kmem_cache_node *n;
819
820 if (!(s->flags & SLAB_STORE_USER))
821 return;
822
823 n = get_node(s, page_to_nid(page));
824
825 spin_lock(&n->list_lock);
826 list_del(&page->lru);
827 spin_unlock(&n->list_lock);
828}
829
0f389ec6
CL
830/* Tracking of the number of slabs for debugging purposes */
831static inline unsigned long slabs_node(struct kmem_cache *s, int node)
832{
833 struct kmem_cache_node *n = get_node(s, node);
834
835 return atomic_long_read(&n->nr_slabs);
836}
837
205ab99d 838static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
839{
840 struct kmem_cache_node *n = get_node(s, node);
841
842 /*
843 * May be called early in order to allocate a slab for the
844 * kmem_cache_node structure. Solve the chicken-egg
845 * dilemma by deferring the increment of the count during
846 * bootstrap (see early_kmem_cache_node_alloc).
847 */
205ab99d 848 if (!NUMA_BUILD || n) {
0f389ec6 849 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
850 atomic_long_add(objects, &n->total_objects);
851 }
0f389ec6 852}
205ab99d 853static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
854{
855 struct kmem_cache_node *n = get_node(s, node);
856
857 atomic_long_dec(&n->nr_slabs);
205ab99d 858 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
859}
860
861/* Object debug checks for alloc/free paths */
3ec09742
CL
862static void setup_object_debug(struct kmem_cache *s, struct page *page,
863 void *object)
864{
865 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
866 return;
867
868 init_object(s, object, 0);
869 init_tracking(s, object);
870}
871
872static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 873 void *object, unsigned long addr)
81819f0f
CL
874{
875 if (!check_slab(s, page))
876 goto bad;
877
d692ef6d 878 if (!on_freelist(s, page, object)) {
24922684 879 object_err(s, page, object, "Object already allocated");
70d71228 880 goto bad;
81819f0f
CL
881 }
882
883 if (!check_valid_pointer(s, page, object)) {
884 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 885 goto bad;
81819f0f
CL
886 }
887
d692ef6d 888 if (!check_object(s, page, object, 0))
81819f0f 889 goto bad;
81819f0f 890
3ec09742
CL
891 /* Success perform special debug activities for allocs */
892 if (s->flags & SLAB_STORE_USER)
893 set_track(s, object, TRACK_ALLOC, addr);
894 trace(s, page, object, 1);
895 init_object(s, object, 1);
81819f0f 896 return 1;
3ec09742 897
81819f0f
CL
898bad:
899 if (PageSlab(page)) {
900 /*
901 * If this is a slab page then lets do the best we can
902 * to avoid issues in the future. Marking all objects
672bba3a 903 * as used avoids touching the remaining objects.
81819f0f 904 */
24922684 905 slab_fix(s, "Marking all objects used");
39b26464 906 page->inuse = page->objects;
a973e9dd 907 page->freelist = NULL;
81819f0f
CL
908 }
909 return 0;
910}
911
3ec09742 912static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 913 void *object, unsigned long addr)
81819f0f
CL
914{
915 if (!check_slab(s, page))
916 goto fail;
917
918 if (!check_valid_pointer(s, page, object)) {
70d71228 919 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
920 goto fail;
921 }
922
923 if (on_freelist(s, page, object)) {
24922684 924 object_err(s, page, object, "Object already free");
81819f0f
CL
925 goto fail;
926 }
927
928 if (!check_object(s, page, object, 1))
929 return 0;
930
931 if (unlikely(s != page->slab)) {
3adbefee 932 if (!PageSlab(page)) {
70d71228
CL
933 slab_err(s, page, "Attempt to free object(0x%p) "
934 "outside of slab", object);
3adbefee 935 } else if (!page->slab) {
81819f0f 936 printk(KERN_ERR
70d71228 937 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 938 object);
70d71228 939 dump_stack();
06428780 940 } else
24922684
CL
941 object_err(s, page, object,
942 "page slab pointer corrupt.");
81819f0f
CL
943 goto fail;
944 }
3ec09742
CL
945
946 /* Special debug activities for freeing objects */
8a38082d 947 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
948 remove_full(s, page);
949 if (s->flags & SLAB_STORE_USER)
950 set_track(s, object, TRACK_FREE, addr);
951 trace(s, page, object, 0);
952 init_object(s, object, 0);
81819f0f 953 return 1;
3ec09742 954
81819f0f 955fail:
24922684 956 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
957 return 0;
958}
959
41ecc55b
CL
960static int __init setup_slub_debug(char *str)
961{
f0630fff
CL
962 slub_debug = DEBUG_DEFAULT_FLAGS;
963 if (*str++ != '=' || !*str)
964 /*
965 * No options specified. Switch on full debugging.
966 */
967 goto out;
968
969 if (*str == ',')
970 /*
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
973 */
974 goto check_slabs;
975
976 slub_debug = 0;
977 if (*str == '-')
978 /*
979 * Switch off all debugging measures.
980 */
981 goto out;
982
983 /*
984 * Determine which debug features should be switched on
985 */
06428780 986 for (; *str && *str != ','; str++) {
f0630fff
CL
987 switch (tolower(*str)) {
988 case 'f':
989 slub_debug |= SLAB_DEBUG_FREE;
990 break;
991 case 'z':
992 slub_debug |= SLAB_RED_ZONE;
993 break;
994 case 'p':
995 slub_debug |= SLAB_POISON;
996 break;
997 case 'u':
998 slub_debug |= SLAB_STORE_USER;
999 break;
1000 case 't':
1001 slub_debug |= SLAB_TRACE;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
06428780 1005 "unknown. skipped\n", *str);
f0630fff 1006 }
41ecc55b
CL
1007 }
1008
f0630fff 1009check_slabs:
41ecc55b
CL
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
f0630fff 1012out:
41ecc55b
CL
1013 return 1;
1014}
1015
1016__setup("slub_debug", setup_slub_debug);
1017
ba0268a8
CL
1018static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
51cc5068 1020 void (*ctor)(void *))
41ecc55b
CL
1021{
1022 /*
e153362a 1023 * Enable debugging if selected on the kernel commandline.
41ecc55b 1024 */
e153362a
CL
1025 if (slub_debug && (!slub_debug_slabs ||
1026 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1027 flags |= slub_debug;
ba0268a8
CL
1028
1029 return flags;
41ecc55b
CL
1030}
1031#else
3ec09742
CL
1032static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
41ecc55b 1034
3ec09742 1035static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1036 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1037
3ec09742 1038static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1039 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1040
41ecc55b
CL
1041static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1042 { return 1; }
1043static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
3ec09742 1045static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1046static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
51cc5068 1048 void (*ctor)(void *))
ba0268a8
CL
1049{
1050 return flags;
1051}
41ecc55b 1052#define slub_debug 0
0f389ec6
CL
1053
1054static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1055 { return 0; }
205ab99d
CL
1056static inline void inc_slabs_node(struct kmem_cache *s, int node,
1057 int objects) {}
1058static inline void dec_slabs_node(struct kmem_cache *s, int node,
1059 int objects) {}
41ecc55b 1060#endif
205ab99d 1061
81819f0f
CL
1062/*
1063 * Slab allocation and freeing
1064 */
65c3376a
CL
1065static inline struct page *alloc_slab_page(gfp_t flags, int node,
1066 struct kmem_cache_order_objects oo)
1067{
1068 int order = oo_order(oo);
1069
1070 if (node == -1)
1071 return alloc_pages(flags, order);
1072 else
1073 return alloc_pages_node(node, flags, order);
1074}
1075
81819f0f
CL
1076static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1077{
06428780 1078 struct page *page;
834f3d11 1079 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1080
b7a49f0d 1081 flags |= s->allocflags;
e12ba74d 1082
65c3376a
CL
1083 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1084 oo);
1085 if (unlikely(!page)) {
1086 oo = s->min;
1087 /*
1088 * Allocation may have failed due to fragmentation.
1089 * Try a lower order alloc if possible
1090 */
1091 page = alloc_slab_page(flags, node, oo);
1092 if (!page)
1093 return NULL;
81819f0f 1094
65c3376a
CL
1095 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1096 }
834f3d11 1097 page->objects = oo_objects(oo);
81819f0f
CL
1098 mod_zone_page_state(page_zone(page),
1099 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1101 1 << oo_order(oo));
81819f0f
CL
1102
1103 return page;
1104}
1105
1106static void setup_object(struct kmem_cache *s, struct page *page,
1107 void *object)
1108{
3ec09742 1109 setup_object_debug(s, page, object);
4f104934 1110 if (unlikely(s->ctor))
51cc5068 1111 s->ctor(object);
81819f0f
CL
1112}
1113
1114static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1115{
1116 struct page *page;
81819f0f 1117 void *start;
81819f0f
CL
1118 void *last;
1119 void *p;
1120
6cb06229 1121 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1122
6cb06229
CL
1123 page = allocate_slab(s,
1124 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1125 if (!page)
1126 goto out;
1127
205ab99d 1128 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1129 page->slab = s;
1130 page->flags |= 1 << PG_slab;
1131 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1132 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1133 __SetPageSlubDebug(page);
81819f0f
CL
1134
1135 start = page_address(page);
81819f0f
CL
1136
1137 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1138 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1139
1140 last = start;
224a88be 1141 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1142 setup_object(s, page, last);
1143 set_freepointer(s, last, p);
1144 last = p;
1145 }
1146 setup_object(s, page, last);
a973e9dd 1147 set_freepointer(s, last, NULL);
81819f0f
CL
1148
1149 page->freelist = start;
1150 page->inuse = 0;
1151out:
81819f0f
CL
1152 return page;
1153}
1154
1155static void __free_slab(struct kmem_cache *s, struct page *page)
1156{
834f3d11
CL
1157 int order = compound_order(page);
1158 int pages = 1 << order;
81819f0f 1159
8a38082d 1160 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1161 void *p;
1162
1163 slab_pad_check(s, page);
224a88be
CL
1164 for_each_object(p, s, page_address(page),
1165 page->objects)
81819f0f 1166 check_object(s, page, p, 0);
8a38082d 1167 __ClearPageSlubDebug(page);
81819f0f
CL
1168 }
1169
1170 mod_zone_page_state(page_zone(page),
1171 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1172 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1173 -pages);
81819f0f 1174
49bd5221
CL
1175 __ClearPageSlab(page);
1176 reset_page_mapcount(page);
834f3d11 1177 __free_pages(page, order);
81819f0f
CL
1178}
1179
1180static void rcu_free_slab(struct rcu_head *h)
1181{
1182 struct page *page;
1183
1184 page = container_of((struct list_head *)h, struct page, lru);
1185 __free_slab(page->slab, page);
1186}
1187
1188static void free_slab(struct kmem_cache *s, struct page *page)
1189{
1190 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1191 /*
1192 * RCU free overloads the RCU head over the LRU
1193 */
1194 struct rcu_head *head = (void *)&page->lru;
1195
1196 call_rcu(head, rcu_free_slab);
1197 } else
1198 __free_slab(s, page);
1199}
1200
1201static void discard_slab(struct kmem_cache *s, struct page *page)
1202{
205ab99d 1203 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1204 free_slab(s, page);
1205}
1206
1207/*
1208 * Per slab locking using the pagelock
1209 */
1210static __always_inline void slab_lock(struct page *page)
1211{
1212 bit_spin_lock(PG_locked, &page->flags);
1213}
1214
1215static __always_inline void slab_unlock(struct page *page)
1216{
a76d3546 1217 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1218}
1219
1220static __always_inline int slab_trylock(struct page *page)
1221{
1222 int rc = 1;
1223
1224 rc = bit_spin_trylock(PG_locked, &page->flags);
1225 return rc;
1226}
1227
1228/*
1229 * Management of partially allocated slabs
1230 */
7c2e132c
CL
1231static void add_partial(struct kmem_cache_node *n,
1232 struct page *page, int tail)
81819f0f 1233{
e95eed57
CL
1234 spin_lock(&n->list_lock);
1235 n->nr_partial++;
7c2e132c
CL
1236 if (tail)
1237 list_add_tail(&page->lru, &n->partial);
1238 else
1239 list_add(&page->lru, &n->partial);
81819f0f
CL
1240 spin_unlock(&n->list_lock);
1241}
1242
0121c619 1243static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1244{
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1246
1247 spin_lock(&n->list_lock);
1248 list_del(&page->lru);
1249 n->nr_partial--;
1250 spin_unlock(&n->list_lock);
1251}
1252
1253/*
672bba3a 1254 * Lock slab and remove from the partial list.
81819f0f 1255 *
672bba3a 1256 * Must hold list_lock.
81819f0f 1257 */
0121c619
CL
1258static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1259 struct page *page)
81819f0f
CL
1260{
1261 if (slab_trylock(page)) {
1262 list_del(&page->lru);
1263 n->nr_partial--;
8a38082d 1264 __SetPageSlubFrozen(page);
81819f0f
CL
1265 return 1;
1266 }
1267 return 0;
1268}
1269
1270/*
672bba3a 1271 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1272 */
1273static struct page *get_partial_node(struct kmem_cache_node *n)
1274{
1275 struct page *page;
1276
1277 /*
1278 * Racy check. If we mistakenly see no partial slabs then we
1279 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1280 * partial slab and there is none available then get_partials()
1281 * will return NULL.
81819f0f
CL
1282 */
1283 if (!n || !n->nr_partial)
1284 return NULL;
1285
1286 spin_lock(&n->list_lock);
1287 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1288 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1289 goto out;
1290 page = NULL;
1291out:
1292 spin_unlock(&n->list_lock);
1293 return page;
1294}
1295
1296/*
672bba3a 1297 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1298 */
1299static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1300{
1301#ifdef CONFIG_NUMA
1302 struct zonelist *zonelist;
dd1a239f 1303 struct zoneref *z;
54a6eb5c
MG
1304 struct zone *zone;
1305 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1306 struct page *page;
1307
1308 /*
672bba3a
CL
1309 * The defrag ratio allows a configuration of the tradeoffs between
1310 * inter node defragmentation and node local allocations. A lower
1311 * defrag_ratio increases the tendency to do local allocations
1312 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1313 *
672bba3a
CL
1314 * If the defrag_ratio is set to 0 then kmalloc() always
1315 * returns node local objects. If the ratio is higher then kmalloc()
1316 * may return off node objects because partial slabs are obtained
1317 * from other nodes and filled up.
81819f0f 1318 *
6446faa2 1319 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1320 * defrag_ratio = 1000) then every (well almost) allocation will
1321 * first attempt to defrag slab caches on other nodes. This means
1322 * scanning over all nodes to look for partial slabs which may be
1323 * expensive if we do it every time we are trying to find a slab
1324 * with available objects.
81819f0f 1325 */
9824601e
CL
1326 if (!s->remote_node_defrag_ratio ||
1327 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1328 return NULL;
1329
0e88460d 1330 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1332 struct kmem_cache_node *n;
1333
54a6eb5c 1334 n = get_node(s, zone_to_nid(zone));
81819f0f 1335
54a6eb5c 1336 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
5595cffc 1337 n->nr_partial > n->min_partial) {
81819f0f
CL
1338 page = get_partial_node(n);
1339 if (page)
1340 return page;
1341 }
1342 }
1343#endif
1344 return NULL;
1345}
1346
1347/*
1348 * Get a partial page, lock it and return it.
1349 */
1350static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1351{
1352 struct page *page;
1353 int searchnode = (node == -1) ? numa_node_id() : node;
1354
1355 page = get_partial_node(get_node(s, searchnode));
1356 if (page || (flags & __GFP_THISNODE))
1357 return page;
1358
1359 return get_any_partial(s, flags);
1360}
1361
1362/*
1363 * Move a page back to the lists.
1364 *
1365 * Must be called with the slab lock held.
1366 *
1367 * On exit the slab lock will have been dropped.
1368 */
7c2e132c 1369static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1370{
e95eed57 1371 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1372 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1373
8a38082d 1374 __ClearPageSlubFrozen(page);
81819f0f 1375 if (page->inuse) {
e95eed57 1376
a973e9dd 1377 if (page->freelist) {
7c2e132c 1378 add_partial(n, page, tail);
8ff12cfc
CL
1379 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1380 } else {
1381 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1382 if (SLABDEBUG && PageSlubDebug(page) &&
1383 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1384 add_full(n, page);
1385 }
81819f0f
CL
1386 slab_unlock(page);
1387 } else {
8ff12cfc 1388 stat(c, DEACTIVATE_EMPTY);
5595cffc 1389 if (n->nr_partial < n->min_partial) {
e95eed57 1390 /*
672bba3a
CL
1391 * Adding an empty slab to the partial slabs in order
1392 * to avoid page allocator overhead. This slab needs
1393 * to come after the other slabs with objects in
6446faa2
CL
1394 * so that the others get filled first. That way the
1395 * size of the partial list stays small.
1396 *
0121c619
CL
1397 * kmem_cache_shrink can reclaim any empty slabs from
1398 * the partial list.
e95eed57 1399 */
7c2e132c 1400 add_partial(n, page, 1);
e95eed57
CL
1401 slab_unlock(page);
1402 } else {
1403 slab_unlock(page);
8ff12cfc 1404 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1405 discard_slab(s, page);
1406 }
81819f0f
CL
1407 }
1408}
1409
1410/*
1411 * Remove the cpu slab
1412 */
dfb4f096 1413static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1414{
dfb4f096 1415 struct page *page = c->page;
7c2e132c 1416 int tail = 1;
8ff12cfc 1417
b773ad73 1418 if (page->freelist)
8ff12cfc 1419 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1420 /*
6446faa2 1421 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1422 * because both freelists are empty. So this is unlikely
1423 * to occur.
1424 */
a973e9dd 1425 while (unlikely(c->freelist)) {
894b8788
CL
1426 void **object;
1427
7c2e132c
CL
1428 tail = 0; /* Hot objects. Put the slab first */
1429
894b8788 1430 /* Retrieve object from cpu_freelist */
dfb4f096 1431 object = c->freelist;
b3fba8da 1432 c->freelist = c->freelist[c->offset];
894b8788
CL
1433
1434 /* And put onto the regular freelist */
b3fba8da 1435 object[c->offset] = page->freelist;
894b8788
CL
1436 page->freelist = object;
1437 page->inuse--;
1438 }
dfb4f096 1439 c->page = NULL;
7c2e132c 1440 unfreeze_slab(s, page, tail);
81819f0f
CL
1441}
1442
dfb4f096 1443static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1444{
8ff12cfc 1445 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1446 slab_lock(c->page);
1447 deactivate_slab(s, c);
81819f0f
CL
1448}
1449
1450/*
1451 * Flush cpu slab.
6446faa2 1452 *
81819f0f
CL
1453 * Called from IPI handler with interrupts disabled.
1454 */
0c710013 1455static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1456{
dfb4f096 1457 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1458
dfb4f096
CL
1459 if (likely(c && c->page))
1460 flush_slab(s, c);
81819f0f
CL
1461}
1462
1463static void flush_cpu_slab(void *d)
1464{
1465 struct kmem_cache *s = d;
81819f0f 1466
dfb4f096 1467 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1468}
1469
1470static void flush_all(struct kmem_cache *s)
1471{
15c8b6c1 1472 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1473}
1474
dfb4f096
CL
1475/*
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1478 */
1479static inline int node_match(struct kmem_cache_cpu *c, int node)
1480{
1481#ifdef CONFIG_NUMA
1482 if (node != -1 && c->node != node)
1483 return 0;
1484#endif
1485 return 1;
1486}
1487
81819f0f 1488/*
894b8788
CL
1489 * Slow path. The lockless freelist is empty or we need to perform
1490 * debugging duties.
1491 *
1492 * Interrupts are disabled.
81819f0f 1493 *
894b8788
CL
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
81819f0f 1497 *
894b8788
CL
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
81819f0f 1501 *
894b8788 1502 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1503 * we need to allocate a new slab. This is the slowest path since it involves
1504 * a call to the page allocator and the setup of a new slab.
81819f0f 1505 */
ce71e27c
EGM
1506static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1507 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1508{
81819f0f 1509 void **object;
dfb4f096 1510 struct page *new;
81819f0f 1511
e72e9c23
LT
1512 /* We handle __GFP_ZERO in the caller */
1513 gfpflags &= ~__GFP_ZERO;
1514
dfb4f096 1515 if (!c->page)
81819f0f
CL
1516 goto new_slab;
1517
dfb4f096
CL
1518 slab_lock(c->page);
1519 if (unlikely(!node_match(c, node)))
81819f0f 1520 goto another_slab;
6446faa2 1521
8ff12cfc 1522 stat(c, ALLOC_REFILL);
6446faa2 1523
894b8788 1524load_freelist:
dfb4f096 1525 object = c->page->freelist;
a973e9dd 1526 if (unlikely(!object))
81819f0f 1527 goto another_slab;
8a38082d 1528 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1529 goto debug;
1530
b3fba8da 1531 c->freelist = object[c->offset];
39b26464 1532 c->page->inuse = c->page->objects;
a973e9dd 1533 c->page->freelist = NULL;
dfb4f096 1534 c->node = page_to_nid(c->page);
1f84260c 1535unlock_out:
dfb4f096 1536 slab_unlock(c->page);
8ff12cfc 1537 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1538 return object;
1539
1540another_slab:
dfb4f096 1541 deactivate_slab(s, c);
81819f0f
CL
1542
1543new_slab:
dfb4f096
CL
1544 new = get_partial(s, gfpflags, node);
1545 if (new) {
1546 c->page = new;
8ff12cfc 1547 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1548 goto load_freelist;
81819f0f
CL
1549 }
1550
b811c202
CL
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_enable();
1553
dfb4f096 1554 new = new_slab(s, gfpflags, node);
b811c202
CL
1555
1556 if (gfpflags & __GFP_WAIT)
1557 local_irq_disable();
1558
dfb4f096
CL
1559 if (new) {
1560 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1561 stat(c, ALLOC_SLAB);
05aa3450 1562 if (c->page)
dfb4f096 1563 flush_slab(s, c);
dfb4f096 1564 slab_lock(new);
8a38082d 1565 __SetPageSlubFrozen(new);
dfb4f096 1566 c->page = new;
4b6f0750 1567 goto load_freelist;
81819f0f 1568 }
71c7a06f 1569 return NULL;
81819f0f 1570debug:
dfb4f096 1571 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1572 goto another_slab;
894b8788 1573
dfb4f096 1574 c->page->inuse++;
b3fba8da 1575 c->page->freelist = object[c->offset];
ee3c72a1 1576 c->node = -1;
1f84260c 1577 goto unlock_out;
894b8788
CL
1578}
1579
1580/*
1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1582 * have the fastpath folded into their functions. So no function call
1583 * overhead for requests that can be satisfied on the fastpath.
1584 *
1585 * The fastpath works by first checking if the lockless freelist can be used.
1586 * If not then __slab_alloc is called for slow processing.
1587 *
1588 * Otherwise we can simply pick the next object from the lockless free list.
1589 */
06428780 1590static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1591 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1592{
894b8788 1593 void **object;
dfb4f096 1594 struct kmem_cache_cpu *c;
1f84260c 1595 unsigned long flags;
bdb21928 1596 unsigned int objsize;
1f84260c 1597
89124d70 1598 might_sleep_if(gfpflags & __GFP_WAIT);
894b8788 1599 local_irq_save(flags);
dfb4f096 1600 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1601 objsize = c->objsize;
a973e9dd 1602 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1603
dfb4f096 1604 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1605
1606 else {
dfb4f096 1607 object = c->freelist;
b3fba8da 1608 c->freelist = object[c->offset];
8ff12cfc 1609 stat(c, ALLOC_FASTPATH);
894b8788
CL
1610 }
1611 local_irq_restore(flags);
d07dbea4
CL
1612
1613 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1614 memset(object, 0, objsize);
d07dbea4 1615
894b8788 1616 return object;
81819f0f
CL
1617}
1618
1619void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1620{
ce71e27c 1621 return slab_alloc(s, gfpflags, -1, _RET_IP_);
81819f0f
CL
1622}
1623EXPORT_SYMBOL(kmem_cache_alloc);
1624
1625#ifdef CONFIG_NUMA
1626void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1627{
ce71e27c 1628 return slab_alloc(s, gfpflags, node, _RET_IP_);
81819f0f
CL
1629}
1630EXPORT_SYMBOL(kmem_cache_alloc_node);
1631#endif
1632
1633/*
894b8788
CL
1634 * Slow patch handling. This may still be called frequently since objects
1635 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1636 *
894b8788
CL
1637 * So we still attempt to reduce cache line usage. Just take the slab
1638 * lock and free the item. If there is no additional partial page
1639 * handling required then we can return immediately.
81819f0f 1640 */
894b8788 1641static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1642 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1643{
1644 void *prior;
1645 void **object = (void *)x;
8ff12cfc 1646 struct kmem_cache_cpu *c;
81819f0f 1647
8ff12cfc
CL
1648 c = get_cpu_slab(s, raw_smp_processor_id());
1649 stat(c, FREE_SLOWPATH);
81819f0f
CL
1650 slab_lock(page);
1651
8a38082d 1652 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1653 goto debug;
6446faa2 1654
81819f0f 1655checks_ok:
b3fba8da 1656 prior = object[offset] = page->freelist;
81819f0f
CL
1657 page->freelist = object;
1658 page->inuse--;
1659
8a38082d 1660 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1661 stat(c, FREE_FROZEN);
81819f0f 1662 goto out_unlock;
8ff12cfc 1663 }
81819f0f
CL
1664
1665 if (unlikely(!page->inuse))
1666 goto slab_empty;
1667
1668 /*
6446faa2 1669 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1670 * then add it.
1671 */
a973e9dd 1672 if (unlikely(!prior)) {
7c2e132c 1673 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1674 stat(c, FREE_ADD_PARTIAL);
1675 }
81819f0f
CL
1676
1677out_unlock:
1678 slab_unlock(page);
81819f0f
CL
1679 return;
1680
1681slab_empty:
a973e9dd 1682 if (prior) {
81819f0f 1683 /*
672bba3a 1684 * Slab still on the partial list.
81819f0f
CL
1685 */
1686 remove_partial(s, page);
8ff12cfc
CL
1687 stat(c, FREE_REMOVE_PARTIAL);
1688 }
81819f0f 1689 slab_unlock(page);
8ff12cfc 1690 stat(c, FREE_SLAB);
81819f0f 1691 discard_slab(s, page);
81819f0f
CL
1692 return;
1693
1694debug:
3ec09742 1695 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1696 goto out_unlock;
77c5e2d0 1697 goto checks_ok;
81819f0f
CL
1698}
1699
894b8788
CL
1700/*
1701 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1702 * can perform fastpath freeing without additional function calls.
1703 *
1704 * The fastpath is only possible if we are freeing to the current cpu slab
1705 * of this processor. This typically the case if we have just allocated
1706 * the item before.
1707 *
1708 * If fastpath is not possible then fall back to __slab_free where we deal
1709 * with all sorts of special processing.
1710 */
06428780 1711static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1712 struct page *page, void *x, unsigned long addr)
894b8788
CL
1713{
1714 void **object = (void *)x;
dfb4f096 1715 struct kmem_cache_cpu *c;
1f84260c
CL
1716 unsigned long flags;
1717
894b8788 1718 local_irq_save(flags);
dfb4f096 1719 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1720 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a
TG
1721 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1722 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1723 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1724 object[c->offset] = c->freelist;
dfb4f096 1725 c->freelist = object;
8ff12cfc 1726 stat(c, FREE_FASTPATH);
894b8788 1727 } else
b3fba8da 1728 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1729
1730 local_irq_restore(flags);
1731}
1732
81819f0f
CL
1733void kmem_cache_free(struct kmem_cache *s, void *x)
1734{
77c5e2d0 1735 struct page *page;
81819f0f 1736
b49af68f 1737 page = virt_to_head_page(x);
81819f0f 1738
ce71e27c 1739 slab_free(s, page, x, _RET_IP_);
81819f0f
CL
1740}
1741EXPORT_SYMBOL(kmem_cache_free);
1742
e9beef18 1743/* Figure out on which slab page the object resides */
81819f0f
CL
1744static struct page *get_object_page(const void *x)
1745{
b49af68f 1746 struct page *page = virt_to_head_page(x);
81819f0f
CL
1747
1748 if (!PageSlab(page))
1749 return NULL;
1750
1751 return page;
1752}
1753
1754/*
672bba3a
CL
1755 * Object placement in a slab is made very easy because we always start at
1756 * offset 0. If we tune the size of the object to the alignment then we can
1757 * get the required alignment by putting one properly sized object after
1758 * another.
81819f0f
CL
1759 *
1760 * Notice that the allocation order determines the sizes of the per cpu
1761 * caches. Each processor has always one slab available for allocations.
1762 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1763 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1764 * locking overhead.
81819f0f
CL
1765 */
1766
1767/*
1768 * Mininum / Maximum order of slab pages. This influences locking overhead
1769 * and slab fragmentation. A higher order reduces the number of partial slabs
1770 * and increases the number of allocations possible without having to
1771 * take the list_lock.
1772 */
1773static int slub_min_order;
114e9e89 1774static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1775static int slub_min_objects;
81819f0f
CL
1776
1777/*
1778 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1779 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1780 */
1781static int slub_nomerge;
1782
81819f0f
CL
1783/*
1784 * Calculate the order of allocation given an slab object size.
1785 *
672bba3a
CL
1786 * The order of allocation has significant impact on performance and other
1787 * system components. Generally order 0 allocations should be preferred since
1788 * order 0 does not cause fragmentation in the page allocator. Larger objects
1789 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1790 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1791 * would be wasted.
1792 *
1793 * In order to reach satisfactory performance we must ensure that a minimum
1794 * number of objects is in one slab. Otherwise we may generate too much
1795 * activity on the partial lists which requires taking the list_lock. This is
1796 * less a concern for large slabs though which are rarely used.
81819f0f 1797 *
672bba3a
CL
1798 * slub_max_order specifies the order where we begin to stop considering the
1799 * number of objects in a slab as critical. If we reach slub_max_order then
1800 * we try to keep the page order as low as possible. So we accept more waste
1801 * of space in favor of a small page order.
81819f0f 1802 *
672bba3a
CL
1803 * Higher order allocations also allow the placement of more objects in a
1804 * slab and thereby reduce object handling overhead. If the user has
1805 * requested a higher mininum order then we start with that one instead of
1806 * the smallest order which will fit the object.
81819f0f 1807 */
5e6d444e
CL
1808static inline int slab_order(int size, int min_objects,
1809 int max_order, int fract_leftover)
81819f0f
CL
1810{
1811 int order;
1812 int rem;
6300ea75 1813 int min_order = slub_min_order;
81819f0f 1814
210b5c06
CG
1815 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1816 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1817
6300ea75 1818 for (order = max(min_order,
5e6d444e
CL
1819 fls(min_objects * size - 1) - PAGE_SHIFT);
1820 order <= max_order; order++) {
81819f0f 1821
5e6d444e 1822 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1823
5e6d444e 1824 if (slab_size < min_objects * size)
81819f0f
CL
1825 continue;
1826
1827 rem = slab_size % size;
1828
5e6d444e 1829 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1830 break;
1831
1832 }
672bba3a 1833
81819f0f
CL
1834 return order;
1835}
1836
5e6d444e
CL
1837static inline int calculate_order(int size)
1838{
1839 int order;
1840 int min_objects;
1841 int fraction;
1842
1843 /*
1844 * Attempt to find best configuration for a slab. This
1845 * works by first attempting to generate a layout with
1846 * the best configuration and backing off gradually.
1847 *
1848 * First we reduce the acceptable waste in a slab. Then
1849 * we reduce the minimum objects required in a slab.
1850 */
1851 min_objects = slub_min_objects;
9b2cd506
CL
1852 if (!min_objects)
1853 min_objects = 4 * (fls(nr_cpu_ids) + 1);
5e6d444e 1854 while (min_objects > 1) {
c124f5b5 1855 fraction = 16;
5e6d444e
CL
1856 while (fraction >= 4) {
1857 order = slab_order(size, min_objects,
1858 slub_max_order, fraction);
1859 if (order <= slub_max_order)
1860 return order;
1861 fraction /= 2;
1862 }
1863 min_objects /= 2;
1864 }
1865
1866 /*
1867 * We were unable to place multiple objects in a slab. Now
1868 * lets see if we can place a single object there.
1869 */
1870 order = slab_order(size, 1, slub_max_order, 1);
1871 if (order <= slub_max_order)
1872 return order;
1873
1874 /*
1875 * Doh this slab cannot be placed using slub_max_order.
1876 */
1877 order = slab_order(size, 1, MAX_ORDER, 1);
1878 if (order <= MAX_ORDER)
1879 return order;
1880 return -ENOSYS;
1881}
1882
81819f0f 1883/*
672bba3a 1884 * Figure out what the alignment of the objects will be.
81819f0f
CL
1885 */
1886static unsigned long calculate_alignment(unsigned long flags,
1887 unsigned long align, unsigned long size)
1888{
1889 /*
6446faa2
CL
1890 * If the user wants hardware cache aligned objects then follow that
1891 * suggestion if the object is sufficiently large.
81819f0f 1892 *
6446faa2
CL
1893 * The hardware cache alignment cannot override the specified
1894 * alignment though. If that is greater then use it.
81819f0f 1895 */
b6210386
NP
1896 if (flags & SLAB_HWCACHE_ALIGN) {
1897 unsigned long ralign = cache_line_size();
1898 while (size <= ralign / 2)
1899 ralign /= 2;
1900 align = max(align, ralign);
1901 }
81819f0f
CL
1902
1903 if (align < ARCH_SLAB_MINALIGN)
b6210386 1904 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1905
1906 return ALIGN(align, sizeof(void *));
1907}
1908
dfb4f096
CL
1909static void init_kmem_cache_cpu(struct kmem_cache *s,
1910 struct kmem_cache_cpu *c)
1911{
1912 c->page = NULL;
a973e9dd 1913 c->freelist = NULL;
dfb4f096 1914 c->node = 0;
42a9fdbb
CL
1915 c->offset = s->offset / sizeof(void *);
1916 c->objsize = s->objsize;
62f75532
PE
1917#ifdef CONFIG_SLUB_STATS
1918 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1919#endif
dfb4f096
CL
1920}
1921
5595cffc
PE
1922static void
1923init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1924{
1925 n->nr_partial = 0;
5595cffc
PE
1926
1927 /*
1928 * The larger the object size is, the more pages we want on the partial
1929 * list to avoid pounding the page allocator excessively.
1930 */
1931 n->min_partial = ilog2(s->size);
1932 if (n->min_partial < MIN_PARTIAL)
1933 n->min_partial = MIN_PARTIAL;
1934 else if (n->min_partial > MAX_PARTIAL)
1935 n->min_partial = MAX_PARTIAL;
1936
81819f0f
CL
1937 spin_lock_init(&n->list_lock);
1938 INIT_LIST_HEAD(&n->partial);
8ab1372f 1939#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1940 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1941 atomic_long_set(&n->total_objects, 0);
643b1138 1942 INIT_LIST_HEAD(&n->full);
8ab1372f 1943#endif
81819f0f
CL
1944}
1945
4c93c355
CL
1946#ifdef CONFIG_SMP
1947/*
1948 * Per cpu array for per cpu structures.
1949 *
1950 * The per cpu array places all kmem_cache_cpu structures from one processor
1951 * close together meaning that it becomes possible that multiple per cpu
1952 * structures are contained in one cacheline. This may be particularly
1953 * beneficial for the kmalloc caches.
1954 *
1955 * A desktop system typically has around 60-80 slabs. With 100 here we are
1956 * likely able to get per cpu structures for all caches from the array defined
1957 * here. We must be able to cover all kmalloc caches during bootstrap.
1958 *
1959 * If the per cpu array is exhausted then fall back to kmalloc
1960 * of individual cachelines. No sharing is possible then.
1961 */
1962#define NR_KMEM_CACHE_CPU 100
1963
1964static DEFINE_PER_CPU(struct kmem_cache_cpu,
1965 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1966
1967static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1968static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1969
1970static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1971 int cpu, gfp_t flags)
1972{
1973 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1974
1975 if (c)
1976 per_cpu(kmem_cache_cpu_free, cpu) =
1977 (void *)c->freelist;
1978 else {
1979 /* Table overflow: So allocate ourselves */
1980 c = kmalloc_node(
1981 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1982 flags, cpu_to_node(cpu));
1983 if (!c)
1984 return NULL;
1985 }
1986
1987 init_kmem_cache_cpu(s, c);
1988 return c;
1989}
1990
1991static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1992{
1993 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1994 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1995 kfree(c);
1996 return;
1997 }
1998 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1999 per_cpu(kmem_cache_cpu_free, cpu) = c;
2000}
2001
2002static void free_kmem_cache_cpus(struct kmem_cache *s)
2003{
2004 int cpu;
2005
2006 for_each_online_cpu(cpu) {
2007 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2008
2009 if (c) {
2010 s->cpu_slab[cpu] = NULL;
2011 free_kmem_cache_cpu(c, cpu);
2012 }
2013 }
2014}
2015
2016static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2017{
2018 int cpu;
2019
2020 for_each_online_cpu(cpu) {
2021 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2022
2023 if (c)
2024 continue;
2025
2026 c = alloc_kmem_cache_cpu(s, cpu, flags);
2027 if (!c) {
2028 free_kmem_cache_cpus(s);
2029 return 0;
2030 }
2031 s->cpu_slab[cpu] = c;
2032 }
2033 return 1;
2034}
2035
2036/*
2037 * Initialize the per cpu array.
2038 */
2039static void init_alloc_cpu_cpu(int cpu)
2040{
2041 int i;
2042
2043 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2044 return;
2045
2046 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2047 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2048
2049 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2050}
2051
2052static void __init init_alloc_cpu(void)
2053{
2054 int cpu;
2055
2056 for_each_online_cpu(cpu)
2057 init_alloc_cpu_cpu(cpu);
2058 }
2059
2060#else
2061static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2062static inline void init_alloc_cpu(void) {}
2063
2064static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2065{
2066 init_kmem_cache_cpu(s, &s->cpu_slab);
2067 return 1;
2068}
2069#endif
2070
81819f0f
CL
2071#ifdef CONFIG_NUMA
2072/*
2073 * No kmalloc_node yet so do it by hand. We know that this is the first
2074 * slab on the node for this slabcache. There are no concurrent accesses
2075 * possible.
2076 *
2077 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2078 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2079 * memory on a fresh node that has no slab structures yet.
81819f0f 2080 */
0094de92 2081static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2082{
2083 struct page *page;
2084 struct kmem_cache_node *n;
ba84c73c 2085 unsigned long flags;
81819f0f
CL
2086
2087 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2088
a2f92ee7 2089 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2090
2091 BUG_ON(!page);
a2f92ee7
CL
2092 if (page_to_nid(page) != node) {
2093 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2094 "node %d\n", node);
2095 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2096 "in order to be able to continue\n");
2097 }
2098
81819f0f
CL
2099 n = page->freelist;
2100 BUG_ON(!n);
2101 page->freelist = get_freepointer(kmalloc_caches, n);
2102 page->inuse++;
2103 kmalloc_caches->node[node] = n;
8ab1372f 2104#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2105 init_object(kmalloc_caches, n, 1);
2106 init_tracking(kmalloc_caches, n);
8ab1372f 2107#endif
5595cffc 2108 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2109 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2110
ba84c73c 2111 /*
2112 * lockdep requires consistent irq usage for each lock
2113 * so even though there cannot be a race this early in
2114 * the boot sequence, we still disable irqs.
2115 */
2116 local_irq_save(flags);
7c2e132c 2117 add_partial(n, page, 0);
ba84c73c 2118 local_irq_restore(flags);
81819f0f
CL
2119}
2120
2121static void free_kmem_cache_nodes(struct kmem_cache *s)
2122{
2123 int node;
2124
f64dc58c 2125 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2126 struct kmem_cache_node *n = s->node[node];
2127 if (n && n != &s->local_node)
2128 kmem_cache_free(kmalloc_caches, n);
2129 s->node[node] = NULL;
2130 }
2131}
2132
2133static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2134{
2135 int node;
2136 int local_node;
2137
2138 if (slab_state >= UP)
2139 local_node = page_to_nid(virt_to_page(s));
2140 else
2141 local_node = 0;
2142
f64dc58c 2143 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2144 struct kmem_cache_node *n;
2145
2146 if (local_node == node)
2147 n = &s->local_node;
2148 else {
2149 if (slab_state == DOWN) {
0094de92 2150 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2151 continue;
2152 }
2153 n = kmem_cache_alloc_node(kmalloc_caches,
2154 gfpflags, node);
2155
2156 if (!n) {
2157 free_kmem_cache_nodes(s);
2158 return 0;
2159 }
2160
2161 }
2162 s->node[node] = n;
5595cffc 2163 init_kmem_cache_node(n, s);
81819f0f
CL
2164 }
2165 return 1;
2166}
2167#else
2168static void free_kmem_cache_nodes(struct kmem_cache *s)
2169{
2170}
2171
2172static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2173{
5595cffc 2174 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2175 return 1;
2176}
2177#endif
2178
2179/*
2180 * calculate_sizes() determines the order and the distribution of data within
2181 * a slab object.
2182 */
06b285dc 2183static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2184{
2185 unsigned long flags = s->flags;
2186 unsigned long size = s->objsize;
2187 unsigned long align = s->align;
834f3d11 2188 int order;
81819f0f 2189
d8b42bf5
CL
2190 /*
2191 * Round up object size to the next word boundary. We can only
2192 * place the free pointer at word boundaries and this determines
2193 * the possible location of the free pointer.
2194 */
2195 size = ALIGN(size, sizeof(void *));
2196
2197#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2198 /*
2199 * Determine if we can poison the object itself. If the user of
2200 * the slab may touch the object after free or before allocation
2201 * then we should never poison the object itself.
2202 */
2203 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2204 !s->ctor)
81819f0f
CL
2205 s->flags |= __OBJECT_POISON;
2206 else
2207 s->flags &= ~__OBJECT_POISON;
2208
81819f0f
CL
2209
2210 /*
672bba3a 2211 * If we are Redzoning then check if there is some space between the
81819f0f 2212 * end of the object and the free pointer. If not then add an
672bba3a 2213 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2214 */
2215 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2216 size += sizeof(void *);
41ecc55b 2217#endif
81819f0f
CL
2218
2219 /*
672bba3a
CL
2220 * With that we have determined the number of bytes in actual use
2221 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2222 */
2223 s->inuse = size;
2224
2225 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2226 s->ctor)) {
81819f0f
CL
2227 /*
2228 * Relocate free pointer after the object if it is not
2229 * permitted to overwrite the first word of the object on
2230 * kmem_cache_free.
2231 *
2232 * This is the case if we do RCU, have a constructor or
2233 * destructor or are poisoning the objects.
2234 */
2235 s->offset = size;
2236 size += sizeof(void *);
2237 }
2238
c12b3c62 2239#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2240 if (flags & SLAB_STORE_USER)
2241 /*
2242 * Need to store information about allocs and frees after
2243 * the object.
2244 */
2245 size += 2 * sizeof(struct track);
2246
be7b3fbc 2247 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2248 /*
2249 * Add some empty padding so that we can catch
2250 * overwrites from earlier objects rather than let
2251 * tracking information or the free pointer be
2252 * corrupted if an user writes before the start
2253 * of the object.
2254 */
2255 size += sizeof(void *);
41ecc55b 2256#endif
672bba3a 2257
81819f0f
CL
2258 /*
2259 * Determine the alignment based on various parameters that the
65c02d4c
CL
2260 * user specified and the dynamic determination of cache line size
2261 * on bootup.
81819f0f
CL
2262 */
2263 align = calculate_alignment(flags, align, s->objsize);
2264
2265 /*
2266 * SLUB stores one object immediately after another beginning from
2267 * offset 0. In order to align the objects we have to simply size
2268 * each object to conform to the alignment.
2269 */
2270 size = ALIGN(size, align);
2271 s->size = size;
06b285dc
CL
2272 if (forced_order >= 0)
2273 order = forced_order;
2274 else
2275 order = calculate_order(size);
81819f0f 2276
834f3d11 2277 if (order < 0)
81819f0f
CL
2278 return 0;
2279
b7a49f0d 2280 s->allocflags = 0;
834f3d11 2281 if (order)
b7a49f0d
CL
2282 s->allocflags |= __GFP_COMP;
2283
2284 if (s->flags & SLAB_CACHE_DMA)
2285 s->allocflags |= SLUB_DMA;
2286
2287 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2288 s->allocflags |= __GFP_RECLAIMABLE;
2289
81819f0f
CL
2290 /*
2291 * Determine the number of objects per slab
2292 */
834f3d11 2293 s->oo = oo_make(order, size);
65c3376a 2294 s->min = oo_make(get_order(size), size);
205ab99d
CL
2295 if (oo_objects(s->oo) > oo_objects(s->max))
2296 s->max = s->oo;
81819f0f 2297
834f3d11 2298 return !!oo_objects(s->oo);
81819f0f
CL
2299
2300}
2301
81819f0f
CL
2302static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2303 const char *name, size_t size,
2304 size_t align, unsigned long flags,
51cc5068 2305 void (*ctor)(void *))
81819f0f
CL
2306{
2307 memset(s, 0, kmem_size);
2308 s->name = name;
2309 s->ctor = ctor;
81819f0f 2310 s->objsize = size;
81819f0f 2311 s->align = align;
ba0268a8 2312 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2313
06b285dc 2314 if (!calculate_sizes(s, -1))
81819f0f
CL
2315 goto error;
2316
2317 s->refcount = 1;
2318#ifdef CONFIG_NUMA
e2cb96b7 2319 s->remote_node_defrag_ratio = 1000;
81819f0f 2320#endif
dfb4f096
CL
2321 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2322 goto error;
81819f0f 2323
dfb4f096 2324 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2325 return 1;
4c93c355 2326 free_kmem_cache_nodes(s);
81819f0f
CL
2327error:
2328 if (flags & SLAB_PANIC)
2329 panic("Cannot create slab %s size=%lu realsize=%u "
2330 "order=%u offset=%u flags=%lx\n",
834f3d11 2331 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2332 s->offset, flags);
2333 return 0;
2334}
81819f0f
CL
2335
2336/*
2337 * Check if a given pointer is valid
2338 */
2339int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2340{
06428780 2341 struct page *page;
81819f0f
CL
2342
2343 page = get_object_page(object);
2344
2345 if (!page || s != page->slab)
2346 /* No slab or wrong slab */
2347 return 0;
2348
abcd08a6 2349 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2350 return 0;
2351
2352 /*
2353 * We could also check if the object is on the slabs freelist.
2354 * But this would be too expensive and it seems that the main
6446faa2 2355 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2356 * to a certain slab.
2357 */
2358 return 1;
2359}
2360EXPORT_SYMBOL(kmem_ptr_validate);
2361
2362/*
2363 * Determine the size of a slab object
2364 */
2365unsigned int kmem_cache_size(struct kmem_cache *s)
2366{
2367 return s->objsize;
2368}
2369EXPORT_SYMBOL(kmem_cache_size);
2370
2371const char *kmem_cache_name(struct kmem_cache *s)
2372{
2373 return s->name;
2374}
2375EXPORT_SYMBOL(kmem_cache_name);
2376
33b12c38
CL
2377static void list_slab_objects(struct kmem_cache *s, struct page *page,
2378 const char *text)
2379{
2380#ifdef CONFIG_SLUB_DEBUG
2381 void *addr = page_address(page);
2382 void *p;
2383 DECLARE_BITMAP(map, page->objects);
2384
2385 bitmap_zero(map, page->objects);
2386 slab_err(s, page, "%s", text);
2387 slab_lock(page);
2388 for_each_free_object(p, s, page->freelist)
2389 set_bit(slab_index(p, s, addr), map);
2390
2391 for_each_object(p, s, addr, page->objects) {
2392
2393 if (!test_bit(slab_index(p, s, addr), map)) {
2394 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2395 p, p - addr);
2396 print_tracking(s, p);
2397 }
2398 }
2399 slab_unlock(page);
2400#endif
2401}
2402
81819f0f 2403/*
599870b1 2404 * Attempt to free all partial slabs on a node.
81819f0f 2405 */
599870b1 2406static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2407{
81819f0f
CL
2408 unsigned long flags;
2409 struct page *page, *h;
2410
2411 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2412 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2413 if (!page->inuse) {
2414 list_del(&page->lru);
2415 discard_slab(s, page);
599870b1 2416 n->nr_partial--;
33b12c38
CL
2417 } else {
2418 list_slab_objects(s, page,
2419 "Objects remaining on kmem_cache_close()");
599870b1 2420 }
33b12c38 2421 }
81819f0f 2422 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2423}
2424
2425/*
672bba3a 2426 * Release all resources used by a slab cache.
81819f0f 2427 */
0c710013 2428static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2429{
2430 int node;
2431
2432 flush_all(s);
2433
2434 /* Attempt to free all objects */
4c93c355 2435 free_kmem_cache_cpus(s);
f64dc58c 2436 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2437 struct kmem_cache_node *n = get_node(s, node);
2438
599870b1
CL
2439 free_partial(s, n);
2440 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2441 return 1;
2442 }
2443 free_kmem_cache_nodes(s);
2444 return 0;
2445}
2446
2447/*
2448 * Close a cache and release the kmem_cache structure
2449 * (must be used for caches created using kmem_cache_create)
2450 */
2451void kmem_cache_destroy(struct kmem_cache *s)
2452{
2453 down_write(&slub_lock);
2454 s->refcount--;
2455 if (!s->refcount) {
2456 list_del(&s->list);
a0e1d1be 2457 up_write(&slub_lock);
d629d819
PE
2458 if (kmem_cache_close(s)) {
2459 printk(KERN_ERR "SLUB %s: %s called for cache that "
2460 "still has objects.\n", s->name, __func__);
2461 dump_stack();
2462 }
81819f0f 2463 sysfs_slab_remove(s);
a0e1d1be
CL
2464 } else
2465 up_write(&slub_lock);
81819f0f
CL
2466}
2467EXPORT_SYMBOL(kmem_cache_destroy);
2468
2469/********************************************************************
2470 * Kmalloc subsystem
2471 *******************************************************************/
2472
331dc558 2473struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2474EXPORT_SYMBOL(kmalloc_caches);
2475
81819f0f
CL
2476static int __init setup_slub_min_order(char *str)
2477{
06428780 2478 get_option(&str, &slub_min_order);
81819f0f
CL
2479
2480 return 1;
2481}
2482
2483__setup("slub_min_order=", setup_slub_min_order);
2484
2485static int __init setup_slub_max_order(char *str)
2486{
06428780 2487 get_option(&str, &slub_max_order);
81819f0f
CL
2488
2489 return 1;
2490}
2491
2492__setup("slub_max_order=", setup_slub_max_order);
2493
2494static int __init setup_slub_min_objects(char *str)
2495{
06428780 2496 get_option(&str, &slub_min_objects);
81819f0f
CL
2497
2498 return 1;
2499}
2500
2501__setup("slub_min_objects=", setup_slub_min_objects);
2502
2503static int __init setup_slub_nomerge(char *str)
2504{
2505 slub_nomerge = 1;
2506 return 1;
2507}
2508
2509__setup("slub_nomerge", setup_slub_nomerge);
2510
81819f0f
CL
2511static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2512 const char *name, int size, gfp_t gfp_flags)
2513{
2514 unsigned int flags = 0;
2515
2516 if (gfp_flags & SLUB_DMA)
2517 flags = SLAB_CACHE_DMA;
2518
2519 down_write(&slub_lock);
2520 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2521 flags, NULL))
81819f0f
CL
2522 goto panic;
2523
2524 list_add(&s->list, &slab_caches);
2525 up_write(&slub_lock);
2526 if (sysfs_slab_add(s))
2527 goto panic;
2528 return s;
2529
2530panic:
2531 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2532}
2533
2e443fd0 2534#ifdef CONFIG_ZONE_DMA
4097d601 2535static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2536
2537static void sysfs_add_func(struct work_struct *w)
2538{
2539 struct kmem_cache *s;
2540
2541 down_write(&slub_lock);
2542 list_for_each_entry(s, &slab_caches, list) {
2543 if (s->flags & __SYSFS_ADD_DEFERRED) {
2544 s->flags &= ~__SYSFS_ADD_DEFERRED;
2545 sysfs_slab_add(s);
2546 }
2547 }
2548 up_write(&slub_lock);
2549}
2550
2551static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2552
2e443fd0
CL
2553static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2554{
2555 struct kmem_cache *s;
2e443fd0
CL
2556 char *text;
2557 size_t realsize;
2558
2559 s = kmalloc_caches_dma[index];
2560 if (s)
2561 return s;
2562
2563 /* Dynamically create dma cache */
1ceef402
CL
2564 if (flags & __GFP_WAIT)
2565 down_write(&slub_lock);
2566 else {
2567 if (!down_write_trylock(&slub_lock))
2568 goto out;
2569 }
2570
2571 if (kmalloc_caches_dma[index])
2572 goto unlock_out;
2e443fd0 2573
7b55f620 2574 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2575 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2576 (unsigned int)realsize);
1ceef402
CL
2577 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2578
2579 if (!s || !text || !kmem_cache_open(s, flags, text,
2580 realsize, ARCH_KMALLOC_MINALIGN,
2581 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2582 kfree(s);
2583 kfree(text);
2584 goto unlock_out;
dfce8648 2585 }
1ceef402
CL
2586
2587 list_add(&s->list, &slab_caches);
2588 kmalloc_caches_dma[index] = s;
2589
2590 schedule_work(&sysfs_add_work);
2591
2592unlock_out:
dfce8648 2593 up_write(&slub_lock);
1ceef402 2594out:
dfce8648 2595 return kmalloc_caches_dma[index];
2e443fd0
CL
2596}
2597#endif
2598
f1b26339
CL
2599/*
2600 * Conversion table for small slabs sizes / 8 to the index in the
2601 * kmalloc array. This is necessary for slabs < 192 since we have non power
2602 * of two cache sizes there. The size of larger slabs can be determined using
2603 * fls.
2604 */
2605static s8 size_index[24] = {
2606 3, /* 8 */
2607 4, /* 16 */
2608 5, /* 24 */
2609 5, /* 32 */
2610 6, /* 40 */
2611 6, /* 48 */
2612 6, /* 56 */
2613 6, /* 64 */
2614 1, /* 72 */
2615 1, /* 80 */
2616 1, /* 88 */
2617 1, /* 96 */
2618 7, /* 104 */
2619 7, /* 112 */
2620 7, /* 120 */
2621 7, /* 128 */
2622 2, /* 136 */
2623 2, /* 144 */
2624 2, /* 152 */
2625 2, /* 160 */
2626 2, /* 168 */
2627 2, /* 176 */
2628 2, /* 184 */
2629 2 /* 192 */
2630};
2631
81819f0f
CL
2632static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2633{
f1b26339 2634 int index;
81819f0f 2635
f1b26339
CL
2636 if (size <= 192) {
2637 if (!size)
2638 return ZERO_SIZE_PTR;
81819f0f 2639
f1b26339 2640 index = size_index[(size - 1) / 8];
aadb4bc4 2641 } else
f1b26339 2642 index = fls(size - 1);
81819f0f
CL
2643
2644#ifdef CONFIG_ZONE_DMA
f1b26339 2645 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2646 return dma_kmalloc_cache(index, flags);
f1b26339 2647
81819f0f
CL
2648#endif
2649 return &kmalloc_caches[index];
2650}
2651
2652void *__kmalloc(size_t size, gfp_t flags)
2653{
aadb4bc4 2654 struct kmem_cache *s;
81819f0f 2655
331dc558 2656 if (unlikely(size > PAGE_SIZE))
eada35ef 2657 return kmalloc_large(size, flags);
aadb4bc4
CL
2658
2659 s = get_slab(size, flags);
2660
2661 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2662 return s;
2663
ce71e27c 2664 return slab_alloc(s, flags, -1, _RET_IP_);
81819f0f
CL
2665}
2666EXPORT_SYMBOL(__kmalloc);
2667
f619cfe1
CL
2668static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2669{
2670 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2671 get_order(size));
2672
2673 if (page)
2674 return page_address(page);
2675 else
2676 return NULL;
2677}
2678
81819f0f
CL
2679#ifdef CONFIG_NUMA
2680void *__kmalloc_node(size_t size, gfp_t flags, int node)
2681{
aadb4bc4 2682 struct kmem_cache *s;
81819f0f 2683
331dc558 2684 if (unlikely(size > PAGE_SIZE))
f619cfe1 2685 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2686
2687 s = get_slab(size, flags);
2688
2689 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2690 return s;
2691
ce71e27c 2692 return slab_alloc(s, flags, node, _RET_IP_);
81819f0f
CL
2693}
2694EXPORT_SYMBOL(__kmalloc_node);
2695#endif
2696
2697size_t ksize(const void *object)
2698{
272c1d21 2699 struct page *page;
81819f0f
CL
2700 struct kmem_cache *s;
2701
ef8b4520 2702 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2703 return 0;
2704
294a80a8 2705 page = virt_to_head_page(object);
294a80a8 2706
76994412
PE
2707 if (unlikely(!PageSlab(page))) {
2708 WARN_ON(!PageCompound(page));
294a80a8 2709 return PAGE_SIZE << compound_order(page);
76994412 2710 }
81819f0f 2711 s = page->slab;
81819f0f 2712
ae20bfda 2713#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2714 /*
2715 * Debugging requires use of the padding between object
2716 * and whatever may come after it.
2717 */
2718 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2719 return s->objsize;
2720
ae20bfda 2721#endif
81819f0f
CL
2722 /*
2723 * If we have the need to store the freelist pointer
2724 * back there or track user information then we can
2725 * only use the space before that information.
2726 */
2727 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2728 return s->inuse;
81819f0f
CL
2729 /*
2730 * Else we can use all the padding etc for the allocation
2731 */
2732 return s->size;
2733}
81819f0f
CL
2734
2735void kfree(const void *x)
2736{
81819f0f 2737 struct page *page;
5bb983b0 2738 void *object = (void *)x;
81819f0f 2739
2408c550 2740 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2741 return;
2742
b49af68f 2743 page = virt_to_head_page(x);
aadb4bc4 2744 if (unlikely(!PageSlab(page))) {
0937502a 2745 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2746 put_page(page);
2747 return;
2748 }
ce71e27c 2749 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2750}
2751EXPORT_SYMBOL(kfree);
2752
2086d26a 2753/*
672bba3a
CL
2754 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2755 * the remaining slabs by the number of items in use. The slabs with the
2756 * most items in use come first. New allocations will then fill those up
2757 * and thus they can be removed from the partial lists.
2758 *
2759 * The slabs with the least items are placed last. This results in them
2760 * being allocated from last increasing the chance that the last objects
2761 * are freed in them.
2086d26a
CL
2762 */
2763int kmem_cache_shrink(struct kmem_cache *s)
2764{
2765 int node;
2766 int i;
2767 struct kmem_cache_node *n;
2768 struct page *page;
2769 struct page *t;
205ab99d 2770 int objects = oo_objects(s->max);
2086d26a 2771 struct list_head *slabs_by_inuse =
834f3d11 2772 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2773 unsigned long flags;
2774
2775 if (!slabs_by_inuse)
2776 return -ENOMEM;
2777
2778 flush_all(s);
f64dc58c 2779 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2780 n = get_node(s, node);
2781
2782 if (!n->nr_partial)
2783 continue;
2784
834f3d11 2785 for (i = 0; i < objects; i++)
2086d26a
CL
2786 INIT_LIST_HEAD(slabs_by_inuse + i);
2787
2788 spin_lock_irqsave(&n->list_lock, flags);
2789
2790 /*
672bba3a 2791 * Build lists indexed by the items in use in each slab.
2086d26a 2792 *
672bba3a
CL
2793 * Note that concurrent frees may occur while we hold the
2794 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2795 */
2796 list_for_each_entry_safe(page, t, &n->partial, lru) {
2797 if (!page->inuse && slab_trylock(page)) {
2798 /*
2799 * Must hold slab lock here because slab_free
2800 * may have freed the last object and be
2801 * waiting to release the slab.
2802 */
2803 list_del(&page->lru);
2804 n->nr_partial--;
2805 slab_unlock(page);
2806 discard_slab(s, page);
2807 } else {
fcda3d89
CL
2808 list_move(&page->lru,
2809 slabs_by_inuse + page->inuse);
2086d26a
CL
2810 }
2811 }
2812
2086d26a 2813 /*
672bba3a
CL
2814 * Rebuild the partial list with the slabs filled up most
2815 * first and the least used slabs at the end.
2086d26a 2816 */
834f3d11 2817 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2818 list_splice(slabs_by_inuse + i, n->partial.prev);
2819
2086d26a
CL
2820 spin_unlock_irqrestore(&n->list_lock, flags);
2821 }
2822
2823 kfree(slabs_by_inuse);
2824 return 0;
2825}
2826EXPORT_SYMBOL(kmem_cache_shrink);
2827
b9049e23
YG
2828#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2829static int slab_mem_going_offline_callback(void *arg)
2830{
2831 struct kmem_cache *s;
2832
2833 down_read(&slub_lock);
2834 list_for_each_entry(s, &slab_caches, list)
2835 kmem_cache_shrink(s);
2836 up_read(&slub_lock);
2837
2838 return 0;
2839}
2840
2841static void slab_mem_offline_callback(void *arg)
2842{
2843 struct kmem_cache_node *n;
2844 struct kmem_cache *s;
2845 struct memory_notify *marg = arg;
2846 int offline_node;
2847
2848 offline_node = marg->status_change_nid;
2849
2850 /*
2851 * If the node still has available memory. we need kmem_cache_node
2852 * for it yet.
2853 */
2854 if (offline_node < 0)
2855 return;
2856
2857 down_read(&slub_lock);
2858 list_for_each_entry(s, &slab_caches, list) {
2859 n = get_node(s, offline_node);
2860 if (n) {
2861 /*
2862 * if n->nr_slabs > 0, slabs still exist on the node
2863 * that is going down. We were unable to free them,
2864 * and offline_pages() function shoudn't call this
2865 * callback. So, we must fail.
2866 */
0f389ec6 2867 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2868
2869 s->node[offline_node] = NULL;
2870 kmem_cache_free(kmalloc_caches, n);
2871 }
2872 }
2873 up_read(&slub_lock);
2874}
2875
2876static int slab_mem_going_online_callback(void *arg)
2877{
2878 struct kmem_cache_node *n;
2879 struct kmem_cache *s;
2880 struct memory_notify *marg = arg;
2881 int nid = marg->status_change_nid;
2882 int ret = 0;
2883
2884 /*
2885 * If the node's memory is already available, then kmem_cache_node is
2886 * already created. Nothing to do.
2887 */
2888 if (nid < 0)
2889 return 0;
2890
2891 /*
0121c619 2892 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2893 * allocate a kmem_cache_node structure in order to bring the node
2894 * online.
2895 */
2896 down_read(&slub_lock);
2897 list_for_each_entry(s, &slab_caches, list) {
2898 /*
2899 * XXX: kmem_cache_alloc_node will fallback to other nodes
2900 * since memory is not yet available from the node that
2901 * is brought up.
2902 */
2903 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2904 if (!n) {
2905 ret = -ENOMEM;
2906 goto out;
2907 }
5595cffc 2908 init_kmem_cache_node(n, s);
b9049e23
YG
2909 s->node[nid] = n;
2910 }
2911out:
2912 up_read(&slub_lock);
2913 return ret;
2914}
2915
2916static int slab_memory_callback(struct notifier_block *self,
2917 unsigned long action, void *arg)
2918{
2919 int ret = 0;
2920
2921 switch (action) {
2922 case MEM_GOING_ONLINE:
2923 ret = slab_mem_going_online_callback(arg);
2924 break;
2925 case MEM_GOING_OFFLINE:
2926 ret = slab_mem_going_offline_callback(arg);
2927 break;
2928 case MEM_OFFLINE:
2929 case MEM_CANCEL_ONLINE:
2930 slab_mem_offline_callback(arg);
2931 break;
2932 case MEM_ONLINE:
2933 case MEM_CANCEL_OFFLINE:
2934 break;
2935 }
dc19f9db
KH
2936 if (ret)
2937 ret = notifier_from_errno(ret);
2938 else
2939 ret = NOTIFY_OK;
b9049e23
YG
2940 return ret;
2941}
2942
2943#endif /* CONFIG_MEMORY_HOTPLUG */
2944
81819f0f
CL
2945/********************************************************************
2946 * Basic setup of slabs
2947 *******************************************************************/
2948
2949void __init kmem_cache_init(void)
2950{
2951 int i;
4b356be0 2952 int caches = 0;
81819f0f 2953
4c93c355
CL
2954 init_alloc_cpu();
2955
81819f0f
CL
2956#ifdef CONFIG_NUMA
2957 /*
2958 * Must first have the slab cache available for the allocations of the
672bba3a 2959 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2960 * kmem_cache_open for slab_state == DOWN.
2961 */
2962 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2963 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2964 kmalloc_caches[0].refcount = -1;
4b356be0 2965 caches++;
b9049e23 2966
0c40ba4f 2967 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2968#endif
2969
2970 /* Able to allocate the per node structures */
2971 slab_state = PARTIAL;
2972
2973 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2974 if (KMALLOC_MIN_SIZE <= 64) {
2975 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2976 "kmalloc-96", 96, GFP_KERNEL);
4b356be0 2977 caches++;
4b356be0 2978 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2979 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2980 caches++;
2981 }
81819f0f 2982
331dc558 2983 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2984 create_kmalloc_cache(&kmalloc_caches[i],
2985 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2986 caches++;
2987 }
81819f0f 2988
f1b26339
CL
2989
2990 /*
2991 * Patch up the size_index table if we have strange large alignment
2992 * requirements for the kmalloc array. This is only the case for
6446faa2 2993 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
2994 *
2995 * Largest permitted alignment is 256 bytes due to the way we
2996 * handle the index determination for the smaller caches.
2997 *
2998 * Make sure that nothing crazy happens if someone starts tinkering
2999 * around with ARCH_KMALLOC_MINALIGN
3000 */
3001 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3002 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3003
12ad6843 3004 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3005 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3006
41d54d3b
CL
3007 if (KMALLOC_MIN_SIZE == 128) {
3008 /*
3009 * The 192 byte sized cache is not used if the alignment
3010 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3011 * instead.
3012 */
3013 for (i = 128 + 8; i <= 192; i += 8)
3014 size_index[(i - 1) / 8] = 8;
3015 }
3016
81819f0f
CL
3017 slab_state = UP;
3018
3019 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3020 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3021 kmalloc_caches[i]. name =
3022 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3023
3024#ifdef CONFIG_SMP
3025 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3026 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3027 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3028#else
3029 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3030#endif
3031
3adbefee
IM
3032 printk(KERN_INFO
3033 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3034 " CPUs=%d, Nodes=%d\n",
3035 caches, cache_line_size(),
81819f0f
CL
3036 slub_min_order, slub_max_order, slub_min_objects,
3037 nr_cpu_ids, nr_node_ids);
3038}
3039
3040/*
3041 * Find a mergeable slab cache
3042 */
3043static int slab_unmergeable(struct kmem_cache *s)
3044{
3045 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3046 return 1;
3047
c59def9f 3048 if (s->ctor)
81819f0f
CL
3049 return 1;
3050
8ffa6875
CL
3051 /*
3052 * We may have set a slab to be unmergeable during bootstrap.
3053 */
3054 if (s->refcount < 0)
3055 return 1;
3056
81819f0f
CL
3057 return 0;
3058}
3059
3060static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3061 size_t align, unsigned long flags, const char *name,
51cc5068 3062 void (*ctor)(void *))
81819f0f 3063{
5b95a4ac 3064 struct kmem_cache *s;
81819f0f
CL
3065
3066 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3067 return NULL;
3068
c59def9f 3069 if (ctor)
81819f0f
CL
3070 return NULL;
3071
3072 size = ALIGN(size, sizeof(void *));
3073 align = calculate_alignment(flags, align, size);
3074 size = ALIGN(size, align);
ba0268a8 3075 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3076
5b95a4ac 3077 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3078 if (slab_unmergeable(s))
3079 continue;
3080
3081 if (size > s->size)
3082 continue;
3083
ba0268a8 3084 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3085 continue;
3086 /*
3087 * Check if alignment is compatible.
3088 * Courtesy of Adrian Drzewiecki
3089 */
06428780 3090 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3091 continue;
3092
3093 if (s->size - size >= sizeof(void *))
3094 continue;
3095
3096 return s;
3097 }
3098 return NULL;
3099}
3100
3101struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3102 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3103{
3104 struct kmem_cache *s;
3105
3106 down_write(&slub_lock);
ba0268a8 3107 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3108 if (s) {
42a9fdbb
CL
3109 int cpu;
3110
81819f0f
CL
3111 s->refcount++;
3112 /*
3113 * Adjust the object sizes so that we clear
3114 * the complete object on kzalloc.
3115 */
3116 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3117
3118 /*
3119 * And then we need to update the object size in the
3120 * per cpu structures
3121 */
3122 for_each_online_cpu(cpu)
3123 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3124
81819f0f 3125 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3126 up_write(&slub_lock);
6446faa2 3127
7b8f3b66
DR
3128 if (sysfs_slab_alias(s, name)) {
3129 down_write(&slub_lock);
3130 s->refcount--;
3131 up_write(&slub_lock);
81819f0f 3132 goto err;
7b8f3b66 3133 }
a0e1d1be
CL
3134 return s;
3135 }
6446faa2 3136
a0e1d1be
CL
3137 s = kmalloc(kmem_size, GFP_KERNEL);
3138 if (s) {
3139 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3140 size, align, flags, ctor)) {
81819f0f 3141 list_add(&s->list, &slab_caches);
a0e1d1be 3142 up_write(&slub_lock);
7b8f3b66
DR
3143 if (sysfs_slab_add(s)) {
3144 down_write(&slub_lock);
3145 list_del(&s->list);
3146 up_write(&slub_lock);
3147 kfree(s);
a0e1d1be 3148 goto err;
7b8f3b66 3149 }
a0e1d1be
CL
3150 return s;
3151 }
3152 kfree(s);
81819f0f
CL
3153 }
3154 up_write(&slub_lock);
81819f0f
CL
3155
3156err:
81819f0f
CL
3157 if (flags & SLAB_PANIC)
3158 panic("Cannot create slabcache %s\n", name);
3159 else
3160 s = NULL;
3161 return s;
3162}
3163EXPORT_SYMBOL(kmem_cache_create);
3164
81819f0f 3165#ifdef CONFIG_SMP
81819f0f 3166/*
672bba3a
CL
3167 * Use the cpu notifier to insure that the cpu slabs are flushed when
3168 * necessary.
81819f0f
CL
3169 */
3170static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3171 unsigned long action, void *hcpu)
3172{
3173 long cpu = (long)hcpu;
5b95a4ac
CL
3174 struct kmem_cache *s;
3175 unsigned long flags;
81819f0f
CL
3176
3177 switch (action) {
4c93c355
CL
3178 case CPU_UP_PREPARE:
3179 case CPU_UP_PREPARE_FROZEN:
3180 init_alloc_cpu_cpu(cpu);
3181 down_read(&slub_lock);
3182 list_for_each_entry(s, &slab_caches, list)
3183 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3184 GFP_KERNEL);
3185 up_read(&slub_lock);
3186 break;
3187
81819f0f 3188 case CPU_UP_CANCELED:
8bb78442 3189 case CPU_UP_CANCELED_FROZEN:
81819f0f 3190 case CPU_DEAD:
8bb78442 3191 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3192 down_read(&slub_lock);
3193 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3194 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3195
5b95a4ac
CL
3196 local_irq_save(flags);
3197 __flush_cpu_slab(s, cpu);
3198 local_irq_restore(flags);
4c93c355
CL
3199 free_kmem_cache_cpu(c, cpu);
3200 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3201 }
3202 up_read(&slub_lock);
81819f0f
CL
3203 break;
3204 default:
3205 break;
3206 }
3207 return NOTIFY_OK;
3208}
3209
06428780 3210static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3211 .notifier_call = slab_cpuup_callback
06428780 3212};
81819f0f
CL
3213
3214#endif
3215
ce71e27c 3216void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3217{
aadb4bc4
CL
3218 struct kmem_cache *s;
3219
331dc558 3220 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3221 return kmalloc_large(size, gfpflags);
3222
aadb4bc4 3223 s = get_slab(size, gfpflags);
81819f0f 3224
2408c550 3225 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3226 return s;
81819f0f 3227
ce15fea8 3228 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3229}
3230
3231void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3232 int node, unsigned long caller)
81819f0f 3233{
aadb4bc4
CL
3234 struct kmem_cache *s;
3235
331dc558 3236 if (unlikely(size > PAGE_SIZE))
f619cfe1 3237 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3238
aadb4bc4 3239 s = get_slab(size, gfpflags);
81819f0f 3240
2408c550 3241 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3242 return s;
81819f0f 3243
ce15fea8 3244 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3245}
3246
f6acb635 3247#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3248static unsigned long count_partial(struct kmem_cache_node *n,
3249 int (*get_count)(struct page *))
5b06c853
CL
3250{
3251 unsigned long flags;
3252 unsigned long x = 0;
3253 struct page *page;
3254
3255 spin_lock_irqsave(&n->list_lock, flags);
3256 list_for_each_entry(page, &n->partial, lru)
205ab99d 3257 x += get_count(page);
5b06c853
CL
3258 spin_unlock_irqrestore(&n->list_lock, flags);
3259 return x;
3260}
205ab99d
CL
3261
3262static int count_inuse(struct page *page)
3263{
3264 return page->inuse;
3265}
3266
3267static int count_total(struct page *page)
3268{
3269 return page->objects;
3270}
3271
3272static int count_free(struct page *page)
3273{
3274 return page->objects - page->inuse;
3275}
5b06c853 3276
434e245d
CL
3277static int validate_slab(struct kmem_cache *s, struct page *page,
3278 unsigned long *map)
53e15af0
CL
3279{
3280 void *p;
a973e9dd 3281 void *addr = page_address(page);
53e15af0
CL
3282
3283 if (!check_slab(s, page) ||
3284 !on_freelist(s, page, NULL))
3285 return 0;
3286
3287 /* Now we know that a valid freelist exists */
39b26464 3288 bitmap_zero(map, page->objects);
53e15af0 3289
7656c72b
CL
3290 for_each_free_object(p, s, page->freelist) {
3291 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3292 if (!check_object(s, page, p, 0))
3293 return 0;
3294 }
3295
224a88be 3296 for_each_object(p, s, addr, page->objects)
7656c72b 3297 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3298 if (!check_object(s, page, p, 1))
3299 return 0;
3300 return 1;
3301}
3302
434e245d
CL
3303static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3304 unsigned long *map)
53e15af0
CL
3305{
3306 if (slab_trylock(page)) {
434e245d 3307 validate_slab(s, page, map);
53e15af0
CL
3308 slab_unlock(page);
3309 } else
3310 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3311 s->name, page);
3312
3313 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3314 if (!PageSlubDebug(page))
3315 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3316 "on slab 0x%p\n", s->name, page);
3317 } else {
8a38082d
AW
3318 if (PageSlubDebug(page))
3319 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3320 "slab 0x%p\n", s->name, page);
3321 }
3322}
3323
434e245d
CL
3324static int validate_slab_node(struct kmem_cache *s,
3325 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3326{
3327 unsigned long count = 0;
3328 struct page *page;
3329 unsigned long flags;
3330
3331 spin_lock_irqsave(&n->list_lock, flags);
3332
3333 list_for_each_entry(page, &n->partial, lru) {
434e245d 3334 validate_slab_slab(s, page, map);
53e15af0
CL
3335 count++;
3336 }
3337 if (count != n->nr_partial)
3338 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3339 "counter=%ld\n", s->name, count, n->nr_partial);
3340
3341 if (!(s->flags & SLAB_STORE_USER))
3342 goto out;
3343
3344 list_for_each_entry(page, &n->full, lru) {
434e245d 3345 validate_slab_slab(s, page, map);
53e15af0
CL
3346 count++;
3347 }
3348 if (count != atomic_long_read(&n->nr_slabs))
3349 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3350 "counter=%ld\n", s->name, count,
3351 atomic_long_read(&n->nr_slabs));
3352
3353out:
3354 spin_unlock_irqrestore(&n->list_lock, flags);
3355 return count;
3356}
3357
434e245d 3358static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3359{
3360 int node;
3361 unsigned long count = 0;
205ab99d 3362 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3363 sizeof(unsigned long), GFP_KERNEL);
3364
3365 if (!map)
3366 return -ENOMEM;
53e15af0
CL
3367
3368 flush_all(s);
f64dc58c 3369 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3370 struct kmem_cache_node *n = get_node(s, node);
3371
434e245d 3372 count += validate_slab_node(s, n, map);
53e15af0 3373 }
434e245d 3374 kfree(map);
53e15af0
CL
3375 return count;
3376}
3377
b3459709
CL
3378#ifdef SLUB_RESILIENCY_TEST
3379static void resiliency_test(void)
3380{
3381 u8 *p;
3382
3383 printk(KERN_ERR "SLUB resiliency testing\n");
3384 printk(KERN_ERR "-----------------------\n");
3385 printk(KERN_ERR "A. Corruption after allocation\n");
3386
3387 p = kzalloc(16, GFP_KERNEL);
3388 p[16] = 0x12;
3389 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3390 " 0x12->0x%p\n\n", p + 16);
3391
3392 validate_slab_cache(kmalloc_caches + 4);
3393
3394 /* Hmmm... The next two are dangerous */
3395 p = kzalloc(32, GFP_KERNEL);
3396 p[32 + sizeof(void *)] = 0x34;
3397 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3398 " 0x34 -> -0x%p\n", p);
3399 printk(KERN_ERR
3400 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3401
3402 validate_slab_cache(kmalloc_caches + 5);
3403 p = kzalloc(64, GFP_KERNEL);
3404 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3405 *p = 0x56;
3406 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3407 p);
3adbefee
IM
3408 printk(KERN_ERR
3409 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3410 validate_slab_cache(kmalloc_caches + 6);
3411
3412 printk(KERN_ERR "\nB. Corruption after free\n");
3413 p = kzalloc(128, GFP_KERNEL);
3414 kfree(p);
3415 *p = 0x78;
3416 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3417 validate_slab_cache(kmalloc_caches + 7);
3418
3419 p = kzalloc(256, GFP_KERNEL);
3420 kfree(p);
3421 p[50] = 0x9a;
3adbefee
IM
3422 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3423 p);
b3459709
CL
3424 validate_slab_cache(kmalloc_caches + 8);
3425
3426 p = kzalloc(512, GFP_KERNEL);
3427 kfree(p);
3428 p[512] = 0xab;
3429 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3430 validate_slab_cache(kmalloc_caches + 9);
3431}
3432#else
3433static void resiliency_test(void) {};
3434#endif
3435
88a420e4 3436/*
672bba3a 3437 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3438 * and freed.
3439 */
3440
3441struct location {
3442 unsigned long count;
ce71e27c 3443 unsigned long addr;
45edfa58
CL
3444 long long sum_time;
3445 long min_time;
3446 long max_time;
3447 long min_pid;
3448 long max_pid;
3449 cpumask_t cpus;
3450 nodemask_t nodes;
88a420e4
CL
3451};
3452
3453struct loc_track {
3454 unsigned long max;
3455 unsigned long count;
3456 struct location *loc;
3457};
3458
3459static void free_loc_track(struct loc_track *t)
3460{
3461 if (t->max)
3462 free_pages((unsigned long)t->loc,
3463 get_order(sizeof(struct location) * t->max));
3464}
3465
68dff6a9 3466static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3467{
3468 struct location *l;
3469 int order;
3470
88a420e4
CL
3471 order = get_order(sizeof(struct location) * max);
3472
68dff6a9 3473 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3474 if (!l)
3475 return 0;
3476
3477 if (t->count) {
3478 memcpy(l, t->loc, sizeof(struct location) * t->count);
3479 free_loc_track(t);
3480 }
3481 t->max = max;
3482 t->loc = l;
3483 return 1;
3484}
3485
3486static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3487 const struct track *track)
88a420e4
CL
3488{
3489 long start, end, pos;
3490 struct location *l;
ce71e27c 3491 unsigned long caddr;
45edfa58 3492 unsigned long age = jiffies - track->when;
88a420e4
CL
3493
3494 start = -1;
3495 end = t->count;
3496
3497 for ( ; ; ) {
3498 pos = start + (end - start + 1) / 2;
3499
3500 /*
3501 * There is nothing at "end". If we end up there
3502 * we need to add something to before end.
3503 */
3504 if (pos == end)
3505 break;
3506
3507 caddr = t->loc[pos].addr;
45edfa58
CL
3508 if (track->addr == caddr) {
3509
3510 l = &t->loc[pos];
3511 l->count++;
3512 if (track->when) {
3513 l->sum_time += age;
3514 if (age < l->min_time)
3515 l->min_time = age;
3516 if (age > l->max_time)
3517 l->max_time = age;
3518
3519 if (track->pid < l->min_pid)
3520 l->min_pid = track->pid;
3521 if (track->pid > l->max_pid)
3522 l->max_pid = track->pid;
3523
3524 cpu_set(track->cpu, l->cpus);
3525 }
3526 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3527 return 1;
3528 }
3529
45edfa58 3530 if (track->addr < caddr)
88a420e4
CL
3531 end = pos;
3532 else
3533 start = pos;
3534 }
3535
3536 /*
672bba3a 3537 * Not found. Insert new tracking element.
88a420e4 3538 */
68dff6a9 3539 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3540 return 0;
3541
3542 l = t->loc + pos;
3543 if (pos < t->count)
3544 memmove(l + 1, l,
3545 (t->count - pos) * sizeof(struct location));
3546 t->count++;
3547 l->count = 1;
45edfa58
CL
3548 l->addr = track->addr;
3549 l->sum_time = age;
3550 l->min_time = age;
3551 l->max_time = age;
3552 l->min_pid = track->pid;
3553 l->max_pid = track->pid;
3554 cpus_clear(l->cpus);
3555 cpu_set(track->cpu, l->cpus);
3556 nodes_clear(l->nodes);
3557 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3558 return 1;
3559}
3560
3561static void process_slab(struct loc_track *t, struct kmem_cache *s,
3562 struct page *page, enum track_item alloc)
3563{
a973e9dd 3564 void *addr = page_address(page);
39b26464 3565 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3566 void *p;
3567
39b26464 3568 bitmap_zero(map, page->objects);
7656c72b
CL
3569 for_each_free_object(p, s, page->freelist)
3570 set_bit(slab_index(p, s, addr), map);
88a420e4 3571
224a88be 3572 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3573 if (!test_bit(slab_index(p, s, addr), map))
3574 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3575}
3576
3577static int list_locations(struct kmem_cache *s, char *buf,
3578 enum track_item alloc)
3579{
e374d483 3580 int len = 0;
88a420e4 3581 unsigned long i;
68dff6a9 3582 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3583 int node;
3584
68dff6a9 3585 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3586 GFP_TEMPORARY))
68dff6a9 3587 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3588
3589 /* Push back cpu slabs */
3590 flush_all(s);
3591
f64dc58c 3592 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3593 struct kmem_cache_node *n = get_node(s, node);
3594 unsigned long flags;
3595 struct page *page;
3596
9e86943b 3597 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3598 continue;
3599
3600 spin_lock_irqsave(&n->list_lock, flags);
3601 list_for_each_entry(page, &n->partial, lru)
3602 process_slab(&t, s, page, alloc);
3603 list_for_each_entry(page, &n->full, lru)
3604 process_slab(&t, s, page, alloc);
3605 spin_unlock_irqrestore(&n->list_lock, flags);
3606 }
3607
3608 for (i = 0; i < t.count; i++) {
45edfa58 3609 struct location *l = &t.loc[i];
88a420e4 3610
9c246247 3611 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3612 break;
e374d483 3613 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3614
3615 if (l->addr)
e374d483 3616 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3617 else
e374d483 3618 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3619
3620 if (l->sum_time != l->min_time) {
e374d483 3621 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3622 l->min_time,
3623 (long)div_u64(l->sum_time, l->count),
3624 l->max_time);
45edfa58 3625 } else
e374d483 3626 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3627 l->min_time);
3628
3629 if (l->min_pid != l->max_pid)
e374d483 3630 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3631 l->min_pid, l->max_pid);
3632 else
e374d483 3633 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3634 l->min_pid);
3635
84966343 3636 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3637 len < PAGE_SIZE - 60) {
3638 len += sprintf(buf + len, " cpus=");
3639 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3640 l->cpus);
3641 }
3642
84966343 3643 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3644 len < PAGE_SIZE - 60) {
3645 len += sprintf(buf + len, " nodes=");
3646 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3647 l->nodes);
3648 }
3649
e374d483 3650 len += sprintf(buf + len, "\n");
88a420e4
CL
3651 }
3652
3653 free_loc_track(&t);
3654 if (!t.count)
e374d483
HH
3655 len += sprintf(buf, "No data\n");
3656 return len;
88a420e4
CL
3657}
3658
81819f0f 3659enum slab_stat_type {
205ab99d
CL
3660 SL_ALL, /* All slabs */
3661 SL_PARTIAL, /* Only partially allocated slabs */
3662 SL_CPU, /* Only slabs used for cpu caches */
3663 SL_OBJECTS, /* Determine allocated objects not slabs */
3664 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3665};
3666
205ab99d 3667#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3668#define SO_PARTIAL (1 << SL_PARTIAL)
3669#define SO_CPU (1 << SL_CPU)
3670#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3671#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3672
62e5c4b4
CG
3673static ssize_t show_slab_objects(struct kmem_cache *s,
3674 char *buf, unsigned long flags)
81819f0f
CL
3675{
3676 unsigned long total = 0;
81819f0f
CL
3677 int node;
3678 int x;
3679 unsigned long *nodes;
3680 unsigned long *per_cpu;
3681
3682 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3683 if (!nodes)
3684 return -ENOMEM;
81819f0f
CL
3685 per_cpu = nodes + nr_node_ids;
3686
205ab99d
CL
3687 if (flags & SO_CPU) {
3688 int cpu;
81819f0f 3689
205ab99d
CL
3690 for_each_possible_cpu(cpu) {
3691 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3692
205ab99d
CL
3693 if (!c || c->node < 0)
3694 continue;
3695
3696 if (c->page) {
3697 if (flags & SO_TOTAL)
3698 x = c->page->objects;
3699 else if (flags & SO_OBJECTS)
3700 x = c->page->inuse;
81819f0f
CL
3701 else
3702 x = 1;
205ab99d 3703
81819f0f 3704 total += x;
205ab99d 3705 nodes[c->node] += x;
81819f0f 3706 }
205ab99d 3707 per_cpu[c->node]++;
81819f0f
CL
3708 }
3709 }
3710
205ab99d
CL
3711 if (flags & SO_ALL) {
3712 for_each_node_state(node, N_NORMAL_MEMORY) {
3713 struct kmem_cache_node *n = get_node(s, node);
3714
3715 if (flags & SO_TOTAL)
3716 x = atomic_long_read(&n->total_objects);
3717 else if (flags & SO_OBJECTS)
3718 x = atomic_long_read(&n->total_objects) -
3719 count_partial(n, count_free);
81819f0f 3720
81819f0f 3721 else
205ab99d 3722 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3723 total += x;
3724 nodes[node] += x;
3725 }
3726
205ab99d
CL
3727 } else if (flags & SO_PARTIAL) {
3728 for_each_node_state(node, N_NORMAL_MEMORY) {
3729 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3730
205ab99d
CL
3731 if (flags & SO_TOTAL)
3732 x = count_partial(n, count_total);
3733 else if (flags & SO_OBJECTS)
3734 x = count_partial(n, count_inuse);
81819f0f 3735 else
205ab99d 3736 x = n->nr_partial;
81819f0f
CL
3737 total += x;
3738 nodes[node] += x;
3739 }
3740 }
81819f0f
CL
3741 x = sprintf(buf, "%lu", total);
3742#ifdef CONFIG_NUMA
f64dc58c 3743 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3744 if (nodes[node])
3745 x += sprintf(buf + x, " N%d=%lu",
3746 node, nodes[node]);
3747#endif
3748 kfree(nodes);
3749 return x + sprintf(buf + x, "\n");
3750}
3751
3752static int any_slab_objects(struct kmem_cache *s)
3753{
3754 int node;
81819f0f 3755
dfb4f096 3756 for_each_online_node(node) {
81819f0f
CL
3757 struct kmem_cache_node *n = get_node(s, node);
3758
dfb4f096
CL
3759 if (!n)
3760 continue;
3761
4ea33e2d 3762 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3763 return 1;
3764 }
3765 return 0;
3766}
3767
3768#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3769#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3770
3771struct slab_attribute {
3772 struct attribute attr;
3773 ssize_t (*show)(struct kmem_cache *s, char *buf);
3774 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3775};
3776
3777#define SLAB_ATTR_RO(_name) \
3778 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3779
3780#define SLAB_ATTR(_name) \
3781 static struct slab_attribute _name##_attr = \
3782 __ATTR(_name, 0644, _name##_show, _name##_store)
3783
81819f0f
CL
3784static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3785{
3786 return sprintf(buf, "%d\n", s->size);
3787}
3788SLAB_ATTR_RO(slab_size);
3789
3790static ssize_t align_show(struct kmem_cache *s, char *buf)
3791{
3792 return sprintf(buf, "%d\n", s->align);
3793}
3794SLAB_ATTR_RO(align);
3795
3796static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3797{
3798 return sprintf(buf, "%d\n", s->objsize);
3799}
3800SLAB_ATTR_RO(object_size);
3801
3802static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3803{
834f3d11 3804 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3805}
3806SLAB_ATTR_RO(objs_per_slab);
3807
06b285dc
CL
3808static ssize_t order_store(struct kmem_cache *s,
3809 const char *buf, size_t length)
3810{
0121c619
CL
3811 unsigned long order;
3812 int err;
3813
3814 err = strict_strtoul(buf, 10, &order);
3815 if (err)
3816 return err;
06b285dc
CL
3817
3818 if (order > slub_max_order || order < slub_min_order)
3819 return -EINVAL;
3820
3821 calculate_sizes(s, order);
3822 return length;
3823}
3824
81819f0f
CL
3825static ssize_t order_show(struct kmem_cache *s, char *buf)
3826{
834f3d11 3827 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3828}
06b285dc 3829SLAB_ATTR(order);
81819f0f
CL
3830
3831static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3832{
3833 if (s->ctor) {
3834 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3835
3836 return n + sprintf(buf + n, "\n");
3837 }
3838 return 0;
3839}
3840SLAB_ATTR_RO(ctor);
3841
81819f0f
CL
3842static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3843{
3844 return sprintf(buf, "%d\n", s->refcount - 1);
3845}
3846SLAB_ATTR_RO(aliases);
3847
3848static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3849{
205ab99d 3850 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3851}
3852SLAB_ATTR_RO(slabs);
3853
3854static ssize_t partial_show(struct kmem_cache *s, char *buf)
3855{
d9acf4b7 3856 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3857}
3858SLAB_ATTR_RO(partial);
3859
3860static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3861{
d9acf4b7 3862 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3863}
3864SLAB_ATTR_RO(cpu_slabs);
3865
3866static ssize_t objects_show(struct kmem_cache *s, char *buf)
3867{
205ab99d 3868 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3869}
3870SLAB_ATTR_RO(objects);
3871
205ab99d
CL
3872static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3873{
3874 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3875}
3876SLAB_ATTR_RO(objects_partial);
3877
3878static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3879{
3880 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3881}
3882SLAB_ATTR_RO(total_objects);
3883
81819f0f
CL
3884static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3885{
3886 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3887}
3888
3889static ssize_t sanity_checks_store(struct kmem_cache *s,
3890 const char *buf, size_t length)
3891{
3892 s->flags &= ~SLAB_DEBUG_FREE;
3893 if (buf[0] == '1')
3894 s->flags |= SLAB_DEBUG_FREE;
3895 return length;
3896}
3897SLAB_ATTR(sanity_checks);
3898
3899static ssize_t trace_show(struct kmem_cache *s, char *buf)
3900{
3901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3902}
3903
3904static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3905 size_t length)
3906{
3907 s->flags &= ~SLAB_TRACE;
3908 if (buf[0] == '1')
3909 s->flags |= SLAB_TRACE;
3910 return length;
3911}
3912SLAB_ATTR(trace);
3913
3914static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3915{
3916 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3917}
3918
3919static ssize_t reclaim_account_store(struct kmem_cache *s,
3920 const char *buf, size_t length)
3921{
3922 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3923 if (buf[0] == '1')
3924 s->flags |= SLAB_RECLAIM_ACCOUNT;
3925 return length;
3926}
3927SLAB_ATTR(reclaim_account);
3928
3929static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3930{
5af60839 3931 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3932}
3933SLAB_ATTR_RO(hwcache_align);
3934
3935#ifdef CONFIG_ZONE_DMA
3936static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3937{
3938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3939}
3940SLAB_ATTR_RO(cache_dma);
3941#endif
3942
3943static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3944{
3945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3946}
3947SLAB_ATTR_RO(destroy_by_rcu);
3948
3949static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3950{
3951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3952}
3953
3954static ssize_t red_zone_store(struct kmem_cache *s,
3955 const char *buf, size_t length)
3956{
3957 if (any_slab_objects(s))
3958 return -EBUSY;
3959
3960 s->flags &= ~SLAB_RED_ZONE;
3961 if (buf[0] == '1')
3962 s->flags |= SLAB_RED_ZONE;
06b285dc 3963 calculate_sizes(s, -1);
81819f0f
CL
3964 return length;
3965}
3966SLAB_ATTR(red_zone);
3967
3968static ssize_t poison_show(struct kmem_cache *s, char *buf)
3969{
3970 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3971}
3972
3973static ssize_t poison_store(struct kmem_cache *s,
3974 const char *buf, size_t length)
3975{
3976 if (any_slab_objects(s))
3977 return -EBUSY;
3978
3979 s->flags &= ~SLAB_POISON;
3980 if (buf[0] == '1')
3981 s->flags |= SLAB_POISON;
06b285dc 3982 calculate_sizes(s, -1);
81819f0f
CL
3983 return length;
3984}
3985SLAB_ATTR(poison);
3986
3987static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3988{
3989 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3990}
3991
3992static ssize_t store_user_store(struct kmem_cache *s,
3993 const char *buf, size_t length)
3994{
3995 if (any_slab_objects(s))
3996 return -EBUSY;
3997
3998 s->flags &= ~SLAB_STORE_USER;
3999 if (buf[0] == '1')
4000 s->flags |= SLAB_STORE_USER;
06b285dc 4001 calculate_sizes(s, -1);
81819f0f
CL
4002 return length;
4003}
4004SLAB_ATTR(store_user);
4005
53e15af0
CL
4006static ssize_t validate_show(struct kmem_cache *s, char *buf)
4007{
4008 return 0;
4009}
4010
4011static ssize_t validate_store(struct kmem_cache *s,
4012 const char *buf, size_t length)
4013{
434e245d
CL
4014 int ret = -EINVAL;
4015
4016 if (buf[0] == '1') {
4017 ret = validate_slab_cache(s);
4018 if (ret >= 0)
4019 ret = length;
4020 }
4021 return ret;
53e15af0
CL
4022}
4023SLAB_ATTR(validate);
4024
2086d26a
CL
4025static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4026{
4027 return 0;
4028}
4029
4030static ssize_t shrink_store(struct kmem_cache *s,
4031 const char *buf, size_t length)
4032{
4033 if (buf[0] == '1') {
4034 int rc = kmem_cache_shrink(s);
4035
4036 if (rc)
4037 return rc;
4038 } else
4039 return -EINVAL;
4040 return length;
4041}
4042SLAB_ATTR(shrink);
4043
88a420e4
CL
4044static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4045{
4046 if (!(s->flags & SLAB_STORE_USER))
4047 return -ENOSYS;
4048 return list_locations(s, buf, TRACK_ALLOC);
4049}
4050SLAB_ATTR_RO(alloc_calls);
4051
4052static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4053{
4054 if (!(s->flags & SLAB_STORE_USER))
4055 return -ENOSYS;
4056 return list_locations(s, buf, TRACK_FREE);
4057}
4058SLAB_ATTR_RO(free_calls);
4059
81819f0f 4060#ifdef CONFIG_NUMA
9824601e 4061static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4062{
9824601e 4063 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4064}
4065
9824601e 4066static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4067 const char *buf, size_t length)
4068{
0121c619
CL
4069 unsigned long ratio;
4070 int err;
4071
4072 err = strict_strtoul(buf, 10, &ratio);
4073 if (err)
4074 return err;
4075
e2cb96b7 4076 if (ratio <= 100)
0121c619 4077 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4078
81819f0f
CL
4079 return length;
4080}
9824601e 4081SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4082#endif
4083
8ff12cfc 4084#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4085static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4086{
4087 unsigned long sum = 0;
4088 int cpu;
4089 int len;
4090 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4091
4092 if (!data)
4093 return -ENOMEM;
4094
4095 for_each_online_cpu(cpu) {
4096 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4097
4098 data[cpu] = x;
4099 sum += x;
4100 }
4101
4102 len = sprintf(buf, "%lu", sum);
4103
50ef37b9 4104#ifdef CONFIG_SMP
8ff12cfc
CL
4105 for_each_online_cpu(cpu) {
4106 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4107 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4108 }
50ef37b9 4109#endif
8ff12cfc
CL
4110 kfree(data);
4111 return len + sprintf(buf + len, "\n");
4112}
4113
4114#define STAT_ATTR(si, text) \
4115static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4116{ \
4117 return show_stat(s, buf, si); \
4118} \
4119SLAB_ATTR_RO(text); \
4120
4121STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4122STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4123STAT_ATTR(FREE_FASTPATH, free_fastpath);
4124STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4125STAT_ATTR(FREE_FROZEN, free_frozen);
4126STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4127STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4128STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4129STAT_ATTR(ALLOC_SLAB, alloc_slab);
4130STAT_ATTR(ALLOC_REFILL, alloc_refill);
4131STAT_ATTR(FREE_SLAB, free_slab);
4132STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4133STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4134STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4135STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4136STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4137STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4138STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4139#endif
4140
06428780 4141static struct attribute *slab_attrs[] = {
81819f0f
CL
4142 &slab_size_attr.attr,
4143 &object_size_attr.attr,
4144 &objs_per_slab_attr.attr,
4145 &order_attr.attr,
4146 &objects_attr.attr,
205ab99d
CL
4147 &objects_partial_attr.attr,
4148 &total_objects_attr.attr,
81819f0f
CL
4149 &slabs_attr.attr,
4150 &partial_attr.attr,
4151 &cpu_slabs_attr.attr,
4152 &ctor_attr.attr,
81819f0f
CL
4153 &aliases_attr.attr,
4154 &align_attr.attr,
4155 &sanity_checks_attr.attr,
4156 &trace_attr.attr,
4157 &hwcache_align_attr.attr,
4158 &reclaim_account_attr.attr,
4159 &destroy_by_rcu_attr.attr,
4160 &red_zone_attr.attr,
4161 &poison_attr.attr,
4162 &store_user_attr.attr,
53e15af0 4163 &validate_attr.attr,
2086d26a 4164 &shrink_attr.attr,
88a420e4
CL
4165 &alloc_calls_attr.attr,
4166 &free_calls_attr.attr,
81819f0f
CL
4167#ifdef CONFIG_ZONE_DMA
4168 &cache_dma_attr.attr,
4169#endif
4170#ifdef CONFIG_NUMA
9824601e 4171 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4172#endif
4173#ifdef CONFIG_SLUB_STATS
4174 &alloc_fastpath_attr.attr,
4175 &alloc_slowpath_attr.attr,
4176 &free_fastpath_attr.attr,
4177 &free_slowpath_attr.attr,
4178 &free_frozen_attr.attr,
4179 &free_add_partial_attr.attr,
4180 &free_remove_partial_attr.attr,
4181 &alloc_from_partial_attr.attr,
4182 &alloc_slab_attr.attr,
4183 &alloc_refill_attr.attr,
4184 &free_slab_attr.attr,
4185 &cpuslab_flush_attr.attr,
4186 &deactivate_full_attr.attr,
4187 &deactivate_empty_attr.attr,
4188 &deactivate_to_head_attr.attr,
4189 &deactivate_to_tail_attr.attr,
4190 &deactivate_remote_frees_attr.attr,
65c3376a 4191 &order_fallback_attr.attr,
81819f0f
CL
4192#endif
4193 NULL
4194};
4195
4196static struct attribute_group slab_attr_group = {
4197 .attrs = slab_attrs,
4198};
4199
4200static ssize_t slab_attr_show(struct kobject *kobj,
4201 struct attribute *attr,
4202 char *buf)
4203{
4204 struct slab_attribute *attribute;
4205 struct kmem_cache *s;
4206 int err;
4207
4208 attribute = to_slab_attr(attr);
4209 s = to_slab(kobj);
4210
4211 if (!attribute->show)
4212 return -EIO;
4213
4214 err = attribute->show(s, buf);
4215
4216 return err;
4217}
4218
4219static ssize_t slab_attr_store(struct kobject *kobj,
4220 struct attribute *attr,
4221 const char *buf, size_t len)
4222{
4223 struct slab_attribute *attribute;
4224 struct kmem_cache *s;
4225 int err;
4226
4227 attribute = to_slab_attr(attr);
4228 s = to_slab(kobj);
4229
4230 if (!attribute->store)
4231 return -EIO;
4232
4233 err = attribute->store(s, buf, len);
4234
4235 return err;
4236}
4237
151c602f
CL
4238static void kmem_cache_release(struct kobject *kobj)
4239{
4240 struct kmem_cache *s = to_slab(kobj);
4241
4242 kfree(s);
4243}
4244
81819f0f
CL
4245static struct sysfs_ops slab_sysfs_ops = {
4246 .show = slab_attr_show,
4247 .store = slab_attr_store,
4248};
4249
4250static struct kobj_type slab_ktype = {
4251 .sysfs_ops = &slab_sysfs_ops,
151c602f 4252 .release = kmem_cache_release
81819f0f
CL
4253};
4254
4255static int uevent_filter(struct kset *kset, struct kobject *kobj)
4256{
4257 struct kobj_type *ktype = get_ktype(kobj);
4258
4259 if (ktype == &slab_ktype)
4260 return 1;
4261 return 0;
4262}
4263
4264static struct kset_uevent_ops slab_uevent_ops = {
4265 .filter = uevent_filter,
4266};
4267
27c3a314 4268static struct kset *slab_kset;
81819f0f
CL
4269
4270#define ID_STR_LENGTH 64
4271
4272/* Create a unique string id for a slab cache:
6446faa2
CL
4273 *
4274 * Format :[flags-]size
81819f0f
CL
4275 */
4276static char *create_unique_id(struct kmem_cache *s)
4277{
4278 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4279 char *p = name;
4280
4281 BUG_ON(!name);
4282
4283 *p++ = ':';
4284 /*
4285 * First flags affecting slabcache operations. We will only
4286 * get here for aliasable slabs so we do not need to support
4287 * too many flags. The flags here must cover all flags that
4288 * are matched during merging to guarantee that the id is
4289 * unique.
4290 */
4291 if (s->flags & SLAB_CACHE_DMA)
4292 *p++ = 'd';
4293 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4294 *p++ = 'a';
4295 if (s->flags & SLAB_DEBUG_FREE)
4296 *p++ = 'F';
4297 if (p != name + 1)
4298 *p++ = '-';
4299 p += sprintf(p, "%07d", s->size);
4300 BUG_ON(p > name + ID_STR_LENGTH - 1);
4301 return name;
4302}
4303
4304static int sysfs_slab_add(struct kmem_cache *s)
4305{
4306 int err;
4307 const char *name;
4308 int unmergeable;
4309
4310 if (slab_state < SYSFS)
4311 /* Defer until later */
4312 return 0;
4313
4314 unmergeable = slab_unmergeable(s);
4315 if (unmergeable) {
4316 /*
4317 * Slabcache can never be merged so we can use the name proper.
4318 * This is typically the case for debug situations. In that
4319 * case we can catch duplicate names easily.
4320 */
27c3a314 4321 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4322 name = s->name;
4323 } else {
4324 /*
4325 * Create a unique name for the slab as a target
4326 * for the symlinks.
4327 */
4328 name = create_unique_id(s);
4329 }
4330
27c3a314 4331 s->kobj.kset = slab_kset;
1eada11c
GKH
4332 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4333 if (err) {
4334 kobject_put(&s->kobj);
81819f0f 4335 return err;
1eada11c 4336 }
81819f0f
CL
4337
4338 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4339 if (err)
4340 return err;
4341 kobject_uevent(&s->kobj, KOBJ_ADD);
4342 if (!unmergeable) {
4343 /* Setup first alias */
4344 sysfs_slab_alias(s, s->name);
4345 kfree(name);
4346 }
4347 return 0;
4348}
4349
4350static void sysfs_slab_remove(struct kmem_cache *s)
4351{
4352 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4353 kobject_del(&s->kobj);
151c602f 4354 kobject_put(&s->kobj);
81819f0f
CL
4355}
4356
4357/*
4358 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4359 * available lest we lose that information.
81819f0f
CL
4360 */
4361struct saved_alias {
4362 struct kmem_cache *s;
4363 const char *name;
4364 struct saved_alias *next;
4365};
4366
5af328a5 4367static struct saved_alias *alias_list;
81819f0f
CL
4368
4369static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4370{
4371 struct saved_alias *al;
4372
4373 if (slab_state == SYSFS) {
4374 /*
4375 * If we have a leftover link then remove it.
4376 */
27c3a314
GKH
4377 sysfs_remove_link(&slab_kset->kobj, name);
4378 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4379 }
4380
4381 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4382 if (!al)
4383 return -ENOMEM;
4384
4385 al->s = s;
4386 al->name = name;
4387 al->next = alias_list;
4388 alias_list = al;
4389 return 0;
4390}
4391
4392static int __init slab_sysfs_init(void)
4393{
5b95a4ac 4394 struct kmem_cache *s;
81819f0f
CL
4395 int err;
4396
0ff21e46 4397 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4398 if (!slab_kset) {
81819f0f
CL
4399 printk(KERN_ERR "Cannot register slab subsystem.\n");
4400 return -ENOSYS;
4401 }
4402
26a7bd03
CL
4403 slab_state = SYSFS;
4404
5b95a4ac 4405 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4406 err = sysfs_slab_add(s);
5d540fb7
CL
4407 if (err)
4408 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4409 " to sysfs\n", s->name);
26a7bd03 4410 }
81819f0f
CL
4411
4412 while (alias_list) {
4413 struct saved_alias *al = alias_list;
4414
4415 alias_list = alias_list->next;
4416 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4417 if (err)
4418 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4419 " %s to sysfs\n", s->name);
81819f0f
CL
4420 kfree(al);
4421 }
4422
4423 resiliency_test();
4424 return 0;
4425}
4426
4427__initcall(slab_sysfs_init);
81819f0f 4428#endif
57ed3eda
PE
4429
4430/*
4431 * The /proc/slabinfo ABI
4432 */
158a9624 4433#ifdef CONFIG_SLABINFO
57ed3eda
PE
4434static void print_slabinfo_header(struct seq_file *m)
4435{
4436 seq_puts(m, "slabinfo - version: 2.1\n");
4437 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4438 "<objperslab> <pagesperslab>");
4439 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4440 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4441 seq_putc(m, '\n');
4442}
4443
4444static void *s_start(struct seq_file *m, loff_t *pos)
4445{
4446 loff_t n = *pos;
4447
4448 down_read(&slub_lock);
4449 if (!n)
4450 print_slabinfo_header(m);
4451
4452 return seq_list_start(&slab_caches, *pos);
4453}
4454
4455static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4456{
4457 return seq_list_next(p, &slab_caches, pos);
4458}
4459
4460static void s_stop(struct seq_file *m, void *p)
4461{
4462 up_read(&slub_lock);
4463}
4464
4465static int s_show(struct seq_file *m, void *p)
4466{
4467 unsigned long nr_partials = 0;
4468 unsigned long nr_slabs = 0;
4469 unsigned long nr_inuse = 0;
205ab99d
CL
4470 unsigned long nr_objs = 0;
4471 unsigned long nr_free = 0;
57ed3eda
PE
4472 struct kmem_cache *s;
4473 int node;
4474
4475 s = list_entry(p, struct kmem_cache, list);
4476
4477 for_each_online_node(node) {
4478 struct kmem_cache_node *n = get_node(s, node);
4479
4480 if (!n)
4481 continue;
4482
4483 nr_partials += n->nr_partial;
4484 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4485 nr_objs += atomic_long_read(&n->total_objects);
4486 nr_free += count_partial(n, count_free);
57ed3eda
PE
4487 }
4488
205ab99d 4489 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4490
4491 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4492 nr_objs, s->size, oo_objects(s->oo),
4493 (1 << oo_order(s->oo)));
57ed3eda
PE
4494 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4495 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4496 0UL);
4497 seq_putc(m, '\n');
4498 return 0;
4499}
4500
7b3c3a50 4501static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4502 .start = s_start,
4503 .next = s_next,
4504 .stop = s_stop,
4505 .show = s_show,
4506};
4507
7b3c3a50
AD
4508static int slabinfo_open(struct inode *inode, struct file *file)
4509{
4510 return seq_open(file, &slabinfo_op);
4511}
4512
4513static const struct file_operations proc_slabinfo_operations = {
4514 .open = slabinfo_open,
4515 .read = seq_read,
4516 .llseek = seq_lseek,
4517 .release = seq_release,
4518};
4519
4520static int __init slab_proc_init(void)
4521{
4522 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4523 return 0;
4524}
4525module_init(slab_proc_init);
158a9624 4526#endif /* CONFIG_SLABINFO */