]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/sparse.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-jammy-kernel.git] / mm / sparse.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d41dee36
AW
2/*
3 * sparse memory mappings.
4 */
d41dee36 5#include <linux/mm.h>
5a0e3ad6 6#include <linux/slab.h>
d41dee36 7#include <linux/mmzone.h>
97ad1087 8#include <linux/memblock.h>
3b32123d 9#include <linux/compiler.h>
0b0acbec 10#include <linux/highmem.h>
b95f1b31 11#include <linux/export.h>
28ae55c9 12#include <linux/spinlock.h>
0b0acbec 13#include <linux/vmalloc.h>
9f82883c
AS
14#include <linux/swap.h>
15#include <linux/swapops.h>
426e5c42 16#include <linux/bootmem_info.h>
3b32123d 17
0c0a4a51 18#include "internal.h"
d41dee36
AW
19#include <asm/dma.h>
20
21/*
22 * Permanent SPARSEMEM data:
23 *
24 * 1) mem_section - memory sections, mem_map's for valid memory
25 */
3e347261 26#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 27struct mem_section **mem_section;
3e347261
BP
28#else
29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 30 ____cacheline_internodealigned_in_smp;
3e347261
BP
31#endif
32EXPORT_SYMBOL(mem_section);
33
89689ae7
CL
34#ifdef NODE_NOT_IN_PAGE_FLAGS
35/*
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
39 */
40#if MAX_NUMNODES <= 256
41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42#else
43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44#endif
45
33dd4e0e 46int page_to_nid(const struct page *page)
89689ae7
CL
47{
48 return section_to_node_table[page_to_section(page)];
49}
50EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
51
52static void set_section_nid(unsigned long section_nr, int nid)
53{
54 section_to_node_table[section_nr] = nid;
55}
56#else /* !NODE_NOT_IN_PAGE_FLAGS */
57static inline void set_section_nid(unsigned long section_nr, int nid)
58{
59}
89689ae7
CL
60#endif
61
3e347261 62#ifdef CONFIG_SPARSEMEM_EXTREME
bd721ea7 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
28ae55c9
DH
64{
65 struct mem_section *section = NULL;
66 unsigned long array_size = SECTIONS_PER_ROOT *
67 sizeof(struct mem_section);
68
8a7f97b9 69 if (slab_is_available()) {
b95046b0 70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
8a7f97b9 71 } else {
7e1c4e27
MR
72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 nid);
8a7f97b9
MR
74 if (!section)
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__, array_size, nid);
77 }
28ae55c9
DH
78
79 return section;
3e347261 80}
802f192e 81
a3142c8e 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 83{
28ae55c9
DH
84 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 struct mem_section *section;
802f192e 86
ba72b4c8
DW
87 /*
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
91 *
92 * The mem_hotplug_lock resolves the apparent race below.
93 */
802f192e 94 if (mem_section[root])
ba72b4c8 95 return 0;
3e347261 96
28ae55c9 97 section = sparse_index_alloc(nid);
af0cd5a7
WC
98 if (!section)
99 return -ENOMEM;
28ae55c9
DH
100
101 mem_section[root] = section;
c1c95183 102
9d1936cf 103 return 0;
28ae55c9
DH
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108 return 0;
802f192e 109}
28ae55c9
DH
110#endif
111
91fd8b95 112#ifdef CONFIG_SPARSEMEM_EXTREME
2491f0a2 113unsigned long __section_nr(struct mem_section *ms)
4ca644d9
DH
114{
115 unsigned long root_nr;
83e3c487 116 struct mem_section *root = NULL;
4ca644d9 117
12783b00
MK
118 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
119 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
120 if (!root)
121 continue;
122
123 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
124 break;
125 }
126
83e3c487 127 VM_BUG_ON(!root);
db36a461 128
4ca644d9
DH
129 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
130}
91fd8b95 131#else
2491f0a2 132unsigned long __section_nr(struct mem_section *ms)
91fd8b95 133{
2491f0a2 134 return (unsigned long)(ms - mem_section[0]);
91fd8b95
ZC
135}
136#endif
4ca644d9 137
30c253e6
AW
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146 return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151 return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
2dbb51c4
MG
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 unsigned long *end_pfn)
d41dee36 157{
2dbb51c4 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 159
bead9a3a
IM
160 /*
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
163 */
2dbb51c4
MG
164 if (*start_pfn > max_sparsemem_pfn) {
165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn, *end_pfn, max_sparsemem_pfn);
168 WARN_ON_ONCE(1);
169 *start_pfn = max_sparsemem_pfn;
170 *end_pfn = max_sparsemem_pfn;
ef161a98 171 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn, *end_pfn, max_sparsemem_pfn);
175 WARN_ON_ONCE(1);
176 *end_pfn = max_sparsemem_pfn;
177 }
178}
179
c4e1be9e
DH
180/*
181 * There are a number of times that we loop over NR_MEM_SECTIONS,
182 * looking for section_present() on each. But, when we have very
183 * large physical address spaces, NR_MEM_SECTIONS can also be
184 * very large which makes the loops quite long.
185 *
186 * Keeping track of this gives us an easy way to break out of
187 * those loops early.
188 */
2491f0a2 189unsigned long __highest_present_section_nr;
c4e1be9e
DH
190static void section_mark_present(struct mem_section *ms)
191{
2491f0a2 192 unsigned long section_nr = __section_nr(ms);
c4e1be9e
DH
193
194 if (section_nr > __highest_present_section_nr)
195 __highest_present_section_nr = section_nr;
196
197 ms->section_mem_map |= SECTION_MARKED_PRESENT;
198}
199
c4e1be9e
DH
200#define for_each_present_section_nr(start, section_nr) \
201 for (section_nr = next_present_section_nr(start-1); \
d778015a 202 ((section_nr != -1) && \
c4e1be9e
DH
203 (section_nr <= __highest_present_section_nr)); \
204 section_nr = next_present_section_nr(section_nr))
205
85c77f79
PT
206static inline unsigned long first_present_section_nr(void)
207{
208 return next_present_section_nr(-1);
209}
210
0a9f9f62 211#ifdef CONFIG_SPARSEMEM_VMEMMAP
758b8db4 212static void subsection_mask_set(unsigned long *map, unsigned long pfn,
f46edbd1
DW
213 unsigned long nr_pages)
214{
215 int idx = subsection_map_index(pfn);
216 int end = subsection_map_index(pfn + nr_pages - 1);
217
218 bitmap_set(map, idx, end - idx + 1);
219}
220
221void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222{
223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
9a845030 224 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
f46edbd1
DW
225
226 if (!nr_pages)
227 return;
228
9a845030 229 for (nr = start_sec; nr <= end_sec; nr++) {
f46edbd1
DW
230 struct mem_section *ms;
231 unsigned long pfns;
232
233 pfns = min(nr_pages, PAGES_PER_SECTION
234 - (pfn & ~PAGE_SECTION_MASK));
9a845030 235 ms = __nr_to_section(nr);
f46edbd1
DW
236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
9a845030 238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
f46edbd1
DW
239 pfns, subsection_map_index(pfn),
240 subsection_map_index(pfn + pfns - 1));
241
242 pfn += pfns;
243 nr_pages -= pfns;
244 }
245}
0a9f9f62
BH
246#else
247void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
248{
249}
250#endif
f46edbd1 251
2dbb51c4 252/* Record a memory area against a node. */
c89ab04f 253static void __init memory_present(int nid, unsigned long start, unsigned long end)
2dbb51c4
MG
254{
255 unsigned long pfn;
bead9a3a 256
629a359b
KS
257#ifdef CONFIG_SPARSEMEM_EXTREME
258 if (unlikely(!mem_section)) {
259 unsigned long size, align;
260
68d68ff6 261 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
629a359b 262 align = 1 << (INTERNODE_CACHE_SHIFT);
eb31d559 263 mem_section = memblock_alloc(size, align);
8a7f97b9
MR
264 if (!mem_section)
265 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266 __func__, size, align);
629a359b
KS
267 }
268#endif
269
d41dee36 270 start &= PAGE_SECTION_MASK;
2dbb51c4 271 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
272 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
273 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
274 struct mem_section *ms;
275
276 sparse_index_init(section, nid);
85770ffe 277 set_section_nid(section, nid);
802f192e
BP
278
279 ms = __nr_to_section(section);
c4e1be9e 280 if (!ms->section_mem_map) {
2d070eab
MH
281 ms->section_mem_map = sparse_encode_early_nid(nid) |
282 SECTION_IS_ONLINE;
c4e1be9e
DH
283 section_mark_present(ms);
284 }
d41dee36
AW
285 }
286}
287
9def36e0 288/*
c89ab04f
MR
289 * Mark all memblocks as present using memory_present().
290 * This is a convenience function that is useful to mark all of the systems
291 * memory as present during initialization.
9def36e0 292 */
c89ab04f 293static void __init memblocks_present(void)
9def36e0 294{
c9118e6c
MR
295 unsigned long start, end;
296 int i, nid;
9def36e0 297
c9118e6c
MR
298 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
299 memory_present(nid, start, end);
9def36e0
LG
300}
301
29751f69
AW
302/*
303 * Subtle, we encode the real pfn into the mem_map such that
304 * the identity pfn - section_mem_map will return the actual
305 * physical page frame number.
306 */
307static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
308{
def9b71e
PT
309 unsigned long coded_mem_map =
310 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
311 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
312 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
313 return coded_mem_map;
29751f69
AW
314}
315
3a0aaefe 316#ifdef CONFIG_MEMORY_HOTPLUG
29751f69 317/*
ea01ea93 318 * Decode mem_map from the coded memmap
29751f69 319 */
29751f69
AW
320struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321{
ea01ea93
BP
322 /* mask off the extra low bits of information */
323 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
324 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325}
3a0aaefe 326#endif /* CONFIG_MEMORY_HOTPLUG */
29751f69 327
4e40987f 328static void __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066 329 unsigned long pnum, struct page *mem_map,
326e1b8f 330 struct mem_section_usage *usage, unsigned long flags)
29751f69 331{
30c253e6 332 ms->section_mem_map &= ~SECTION_MAP_MASK;
326e1b8f
DW
333 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
334 | SECTION_HAS_MEM_MAP | flags;
f1eca35a 335 ms->usage = usage;
29751f69
AW
336}
337
f1eca35a 338static unsigned long usemap_size(void)
5c0e3066 339{
60a7a88d 340 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
5c0e3066
MG
341}
342
f1eca35a 343size_t mem_section_usage_size(void)
5c0e3066 344{
f1eca35a 345 return sizeof(struct mem_section_usage) + usemap_size();
5c0e3066 346}
5c0e3066 347
ccbd6283
MC
348static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
349{
a9ee6cf5 350#ifndef CONFIG_NUMA
ccbd6283
MC
351 return __pa_symbol(pgdat);
352#else
353 return __pa(pgdat);
354#endif
355}
356
48c90682 357#ifdef CONFIG_MEMORY_HOTREMOVE
f1eca35a 358static struct mem_section_usage * __init
a4322e1b 359sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 360 unsigned long size)
48c90682 361{
f1eca35a 362 struct mem_section_usage *usage;
99ab7b19 363 unsigned long goal, limit;
99ab7b19 364 int nid;
48c90682
YG
365 /*
366 * A page may contain usemaps for other sections preventing the
367 * page being freed and making a section unremovable while
c800bcd5 368 * other sections referencing the usemap remain active. Similarly,
48c90682
YG
369 * a pgdat can prevent a section being removed. If section A
370 * contains a pgdat and section B contains the usemap, both
371 * sections become inter-dependent. This allocates usemaps
372 * from the same section as the pgdat where possible to avoid
373 * this problem.
374 */
ccbd6283 375 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
376 limit = goal + (1UL << PA_SECTION_SHIFT);
377 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
378again:
f1eca35a
DW
379 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
380 if (!usage && limit) {
99ab7b19
YL
381 limit = 0;
382 goto again;
383 }
f1eca35a 384 return usage;
48c90682
YG
385}
386
f1eca35a
DW
387static void __init check_usemap_section_nr(int nid,
388 struct mem_section_usage *usage)
48c90682
YG
389{
390 unsigned long usemap_snr, pgdat_snr;
83e3c487
KS
391 static unsigned long old_usemap_snr;
392 static unsigned long old_pgdat_snr;
48c90682
YG
393 struct pglist_data *pgdat = NODE_DATA(nid);
394 int usemap_nid;
395
83e3c487
KS
396 /* First call */
397 if (!old_usemap_snr) {
398 old_usemap_snr = NR_MEM_SECTIONS;
399 old_pgdat_snr = NR_MEM_SECTIONS;
400 }
401
f1eca35a 402 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
ccbd6283 403 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
48c90682
YG
404 if (usemap_snr == pgdat_snr)
405 return;
406
407 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
408 /* skip redundant message */
409 return;
410
411 old_usemap_snr = usemap_snr;
412 old_pgdat_snr = pgdat_snr;
413
414 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
415 if (usemap_nid != nid) {
1170532b
JP
416 pr_info("node %d must be removed before remove section %ld\n",
417 nid, usemap_snr);
48c90682
YG
418 return;
419 }
420 /*
421 * There is a circular dependency.
422 * Some platforms allow un-removable section because they will just
423 * gather other removable sections for dynamic partitioning.
424 * Just notify un-removable section's number here.
425 */
1170532b
JP
426 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
427 usemap_snr, pgdat_snr, nid);
48c90682
YG
428}
429#else
f1eca35a 430static struct mem_section_usage * __init
a4322e1b 431sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 432 unsigned long size)
48c90682 433{
26fb3dae 434 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
48c90682
YG
435}
436
f1eca35a
DW
437static void __init check_usemap_section_nr(int nid,
438 struct mem_section_usage *usage)
48c90682
YG
439{
440}
441#endif /* CONFIG_MEMORY_HOTREMOVE */
442
35fd1eb1 443#ifdef CONFIG_SPARSEMEM_VMEMMAP
afda57bc 444static unsigned long __init section_map_size(void)
35fd1eb1
PT
445{
446 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
447}
448
449#else
afda57bc 450static unsigned long __init section_map_size(void)
e131c06b
PT
451{
452 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
453}
454
e9c0a3f0
DW
455struct page __init *__populate_section_memmap(unsigned long pfn,
456 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
29751f69 457{
e131c06b
PT
458 unsigned long size = section_map_size();
459 struct page *map = sparse_buffer_alloc(size);
8a7f97b9 460 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
e131c06b
PT
461
462 if (map)
463 return map;
29751f69 464
09dbcf42 465 map = memblock_alloc_try_nid_raw(size, size, addr,
97ad1087 466 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
8a7f97b9
MR
467 if (!map)
468 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
469 __func__, size, PAGE_SIZE, nid, &addr);
470
8f6aac41
CL
471 return map;
472}
473#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
474
35fd1eb1
PT
475static void *sparsemap_buf __meminitdata;
476static void *sparsemap_buf_end __meminitdata;
477
ae831894
LC
478static inline void __meminit sparse_buffer_free(unsigned long size)
479{
480 WARN_ON(!sparsemap_buf || size == 0);
481 memblock_free_early(__pa(sparsemap_buf), size);
482}
483
afda57bc 484static void __init sparse_buffer_init(unsigned long size, int nid)
35fd1eb1 485{
8a7f97b9 486 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
35fd1eb1 487 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
09dbcf42
MH
488 /*
489 * Pre-allocated buffer is mainly used by __populate_section_memmap
490 * and we want it to be properly aligned to the section size - this is
491 * especially the case for VMEMMAP which maps memmap to PMDs
492 */
0ac398b1 493 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
09dbcf42 494 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
35fd1eb1
PT
495 sparsemap_buf_end = sparsemap_buf + size;
496}
497
afda57bc 498static void __init sparse_buffer_fini(void)
35fd1eb1
PT
499{
500 unsigned long size = sparsemap_buf_end - sparsemap_buf;
501
502 if (sparsemap_buf && size > 0)
ae831894 503 sparse_buffer_free(size);
35fd1eb1
PT
504 sparsemap_buf = NULL;
505}
506
507void * __meminit sparse_buffer_alloc(unsigned long size)
508{
509 void *ptr = NULL;
510
511 if (sparsemap_buf) {
db57e98d 512 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
35fd1eb1
PT
513 if (ptr + size > sparsemap_buf_end)
514 ptr = NULL;
ae831894
LC
515 else {
516 /* Free redundant aligned space */
517 if ((unsigned long)(ptr - sparsemap_buf) > 0)
518 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
35fd1eb1 519 sparsemap_buf = ptr + size;
ae831894 520 }
35fd1eb1
PT
521 }
522 return ptr;
523}
524
3b32123d 525void __weak __meminit vmemmap_populate_print_last(void)
c2b91e2e
YL
526{
527}
a4322e1b 528
85c77f79
PT
529/*
530 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
531 * And number of present sections in this node is map_count.
532 */
533static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
534 unsigned long pnum_end,
535 unsigned long map_count)
536{
f1eca35a
DW
537 struct mem_section_usage *usage;
538 unsigned long pnum;
85c77f79
PT
539 struct page *map;
540
f1eca35a
DW
541 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
542 mem_section_usage_size() * map_count);
543 if (!usage) {
85c77f79
PT
544 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
545 goto failed;
546 }
547 sparse_buffer_init(map_count * section_map_size(), nid);
548 for_each_present_section_nr(pnum_begin, pnum) {
e9c0a3f0
DW
549 unsigned long pfn = section_nr_to_pfn(pnum);
550
85c77f79
PT
551 if (pnum >= pnum_end)
552 break;
553
e9c0a3f0
DW
554 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
555 nid, NULL);
85c77f79
PT
556 if (!map) {
557 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
558 __func__, nid);
559 pnum_begin = pnum;
2284f47f 560 sparse_buffer_fini();
85c77f79
PT
561 goto failed;
562 }
f1eca35a 563 check_usemap_section_nr(nid, usage);
326e1b8f
DW
564 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
565 SECTION_IS_EARLY);
f1eca35a 566 usage = (void *) usage + mem_section_usage_size();
85c77f79
PT
567 }
568 sparse_buffer_fini();
569 return;
570failed:
571 /* We failed to allocate, mark all the following pnums as not present */
572 for_each_present_section_nr(pnum_begin, pnum) {
573 struct mem_section *ms;
574
575 if (pnum >= pnum_end)
576 break;
577 ms = __nr_to_section(pnum);
578 ms->section_mem_map = 0;
579 }
580}
581
582/*
583 * Allocate the accumulated non-linear sections, allocate a mem_map
584 * for each and record the physical to section mapping.
585 */
2a3cb8ba 586void __init sparse_init(void)
85c77f79 587{
c89ab04f
MR
588 unsigned long pnum_end, pnum_begin, map_count = 1;
589 int nid_begin;
590
591 memblocks_present();
592
593 pnum_begin = first_present_section_nr();
594 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
85c77f79
PT
595
596 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
597 set_pageblock_order();
598
599 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
600 int nid = sparse_early_nid(__nr_to_section(pnum_end));
601
602 if (nid == nid_begin) {
603 map_count++;
604 continue;
605 }
606 /* Init node with sections in range [pnum_begin, pnum_end) */
607 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
608 nid_begin = nid;
609 pnum_begin = pnum_end;
610 map_count = 1;
611 }
612 /* cover the last node */
613 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
614 vmemmap_populate_print_last();
615}
616
193faea9 617#ifdef CONFIG_MEMORY_HOTPLUG
2d070eab
MH
618
619/* Mark all memory sections within the pfn range as online */
620void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621{
622 unsigned long pfn;
623
624 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
b4ccec41 625 unsigned long section_nr = pfn_to_section_nr(pfn);
2d070eab
MH
626 struct mem_section *ms;
627
628 /* onlining code should never touch invalid ranges */
629 if (WARN_ON(!valid_section_nr(section_nr)))
630 continue;
631
632 ms = __nr_to_section(section_nr);
633 ms->section_mem_map |= SECTION_IS_ONLINE;
634 }
635}
636
9b7ea46a 637/* Mark all memory sections within the pfn range as offline */
2d070eab
MH
638void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
639{
640 unsigned long pfn;
641
642 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
27227c73 643 unsigned long section_nr = pfn_to_section_nr(pfn);
2d070eab
MH
644 struct mem_section *ms;
645
646 /*
647 * TODO this needs some double checking. Offlining code makes
648 * sure to check pfn_valid but those checks might be just bogus
649 */
650 if (WARN_ON(!valid_section_nr(section_nr)))
651 continue;
652
653 ms = __nr_to_section(section_nr);
654 ms->section_mem_map &= ~SECTION_IS_ONLINE;
655 }
656}
2d070eab 657
98f3cfc1 658#ifdef CONFIG_SPARSEMEM_VMEMMAP
030eab4f 659static struct page * __meminit populate_section_memmap(unsigned long pfn,
e9c0a3f0 660 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
98f3cfc1 661{
e9c0a3f0 662 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
98f3cfc1 663}
e9c0a3f0
DW
664
665static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
24b6d416 666 struct vmem_altmap *altmap)
98f3cfc1 667{
e9c0a3f0
DW
668 unsigned long start = (unsigned long) pfn_to_page(pfn);
669 unsigned long end = start + nr_pages * sizeof(struct page);
0aad818b 670
24b6d416 671 vmemmap_free(start, end, altmap);
98f3cfc1 672}
81556b02 673static void free_map_bootmem(struct page *memmap)
0c0a4a51 674{
0aad818b 675 unsigned long start = (unsigned long)memmap;
81556b02 676 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b 677
24b6d416 678 vmemmap_free(start, end, NULL);
0c0a4a51 679}
6ecb0fc6
BH
680
681static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
682{
683 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
684 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
685 struct mem_section *ms = __pfn_to_section(pfn);
686 unsigned long *subsection_map = ms->usage
687 ? &ms->usage->subsection_map[0] : NULL;
688
689 subsection_mask_set(map, pfn, nr_pages);
690 if (subsection_map)
691 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
692
693 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
694 "section already deactivated (%#lx + %ld)\n",
695 pfn, nr_pages))
696 return -EINVAL;
697
698 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
699 return 0;
700}
701
702static bool is_subsection_map_empty(struct mem_section *ms)
703{
704 return bitmap_empty(&ms->usage->subsection_map[0],
705 SUBSECTIONS_PER_SECTION);
706}
707
708static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
709{
710 struct mem_section *ms = __pfn_to_section(pfn);
711 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
712 unsigned long *subsection_map;
713 int rc = 0;
714
715 subsection_mask_set(map, pfn, nr_pages);
716
717 subsection_map = &ms->usage->subsection_map[0];
718
719 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
720 rc = -EINVAL;
721 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
722 rc = -EEXIST;
723 else
724 bitmap_or(subsection_map, map, subsection_map,
725 SUBSECTIONS_PER_SECTION);
726
727 return rc;
728}
98f3cfc1 729#else
030eab4f 730struct page * __meminit populate_section_memmap(unsigned long pfn,
e9c0a3f0 731 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
0b0acbec 732{
4027149a
BH
733 return kvmalloc_node(array_size(sizeof(struct page),
734 PAGES_PER_SECTION), GFP_KERNEL, nid);
0b0acbec
DH
735}
736
e9c0a3f0 737static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
7b73d978 738 struct vmem_altmap *altmap)
98f3cfc1 739{
3af776f6 740 kvfree(pfn_to_page(pfn));
0b0acbec 741}
0c0a4a51 742
81556b02 743static void free_map_bootmem(struct page *memmap)
0c0a4a51
YG
744{
745 unsigned long maps_section_nr, removing_section_nr, i;
81556b02 746 unsigned long magic, nr_pages;
ae64ffca 747 struct page *page = virt_to_page(memmap);
0c0a4a51 748
81556b02
ZY
749 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
750 >> PAGE_SHIFT;
751
0c0a4a51 752 for (i = 0; i < nr_pages; i++, page++) {
ddffe98d 753 magic = (unsigned long) page->freelist;
0c0a4a51
YG
754
755 BUG_ON(magic == NODE_INFO);
756
757 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
857e522a 758 removing_section_nr = page_private(page);
0c0a4a51
YG
759
760 /*
761 * When this function is called, the removing section is
762 * logical offlined state. This means all pages are isolated
763 * from page allocator. If removing section's memmap is placed
764 * on the same section, it must not be freed.
765 * If it is freed, page allocator may allocate it which will
766 * be removed physically soon.
767 */
768 if (maps_section_nr != removing_section_nr)
769 put_page_bootmem(page);
770 }
771}
0b0acbec 772
37bc1502 773static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
ba72b4c8 774{
37bc1502
BH
775 return 0;
776}
777
778static bool is_subsection_map_empty(struct mem_section *ms)
779{
6ecb0fc6 780 return true;
0a9f9f62
BH
781}
782
6ecb0fc6 783static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
0a9f9f62 784{
6ecb0fc6 785 return 0;
0a9f9f62 786}
6ecb0fc6 787#endif /* CONFIG_SPARSEMEM_VMEMMAP */
37bc1502 788
95a5a34d
BH
789/*
790 * To deactivate a memory region, there are 3 cases to handle across
791 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
792 *
793 * 1. deactivation of a partial hot-added section (only possible in
794 * the SPARSEMEM_VMEMMAP=y case).
795 * a) section was present at memory init.
796 * b) section was hot-added post memory init.
797 * 2. deactivation of a complete hot-added section.
798 * 3. deactivation of a complete section from memory init.
799 *
800 * For 1, when subsection_map does not empty we will not be freeing the
801 * usage map, but still need to free the vmemmap range.
802 *
803 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
804 */
37bc1502
BH
805static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
806 struct vmem_altmap *altmap)
807{
808 struct mem_section *ms = __pfn_to_section(pfn);
809 bool section_is_early = early_section(ms);
810 struct page *memmap = NULL;
811 bool empty;
812
813 if (clear_subsection_map(pfn, nr_pages))
814 return;
95a5a34d 815
37bc1502 816 empty = is_subsection_map_empty(ms);
d41e2f3b 817 if (empty) {
ba72b4c8
DW
818 unsigned long section_nr = pfn_to_section_nr(pfn);
819
8068df3b
DH
820 /*
821 * When removing an early section, the usage map is kept (as the
822 * usage maps of other sections fall into the same page). It
823 * will be re-used when re-adding the section - which is then no
824 * longer an early section. If the usage map is PageReserved, it
825 * was allocated during boot.
826 */
827 if (!PageReserved(virt_to_page(ms->usage))) {
ba72b4c8
DW
828 kfree(ms->usage);
829 ms->usage = NULL;
830 }
831 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
b943f045
AK
832 /*
833 * Mark the section invalid so that valid_section()
834 * return false. This prevents code from dereferencing
835 * ms->usage array.
836 */
837 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
ba72b4c8
DW
838 }
839
ef69bc9f
WY
840 /*
841 * The memmap of early sections is always fully populated. See
842 * section_activate() and pfn_valid() .
843 */
844 if (!section_is_early)
ba72b4c8 845 depopulate_section_memmap(pfn, nr_pages, altmap);
ef69bc9f
WY
846 else if (memmap)
847 free_map_bootmem(memmap);
d41e2f3b
BH
848
849 if (empty)
850 ms->section_mem_map = (unsigned long)NULL;
ba72b4c8
DW
851}
852
5d87255c
BH
853static struct page * __meminit section_activate(int nid, unsigned long pfn,
854 unsigned long nr_pages, struct vmem_altmap *altmap)
855{
856 struct mem_section *ms = __pfn_to_section(pfn);
857 struct mem_section_usage *usage = NULL;
858 struct page *memmap;
859 int rc = 0;
860
861 if (!ms->usage) {
862 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
863 if (!usage)
864 return ERR_PTR(-ENOMEM);
865 ms->usage = usage;
866 }
867
868 rc = fill_subsection_map(pfn, nr_pages);
ba72b4c8
DW
869 if (rc) {
870 if (usage)
871 ms->usage = NULL;
872 kfree(usage);
873 return ERR_PTR(rc);
874 }
875
876 /*
877 * The early init code does not consider partially populated
878 * initial sections, it simply assumes that memory will never be
879 * referenced. If we hot-add memory into such a section then we
880 * do not need to populate the memmap and can simply reuse what
881 * is already there.
882 */
883 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
884 return pfn_to_page(pfn);
885
886 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
887 if (!memmap) {
888 section_deactivate(pfn, nr_pages, altmap);
889 return ERR_PTR(-ENOMEM);
890 }
891
892 return memmap;
893}
894
7567cfc5 895/**
ba72b4c8 896 * sparse_add_section - add a memory section, or populate an existing one
7567cfc5
BH
897 * @nid: The node to add section on
898 * @start_pfn: start pfn of the memory range
ba72b4c8 899 * @nr_pages: number of pfns to add in the section
7567cfc5
BH
900 * @altmap: device page map
901 *
902 * This is only intended for hotplug.
903 *
95a5a34d
BH
904 * Note that only VMEMMAP supports sub-section aligned hotplug,
905 * the proper alignment and size are gated by check_pfn_span().
906 *
907 *
7567cfc5
BH
908 * Return:
909 * * 0 - On success.
910 * * -EEXIST - Section has been present.
911 * * -ENOMEM - Out of memory.
29751f69 912 */
7ea62160
DW
913int __meminit sparse_add_section(int nid, unsigned long start_pfn,
914 unsigned long nr_pages, struct vmem_altmap *altmap)
29751f69 915{
0b0acbec 916 unsigned long section_nr = pfn_to_section_nr(start_pfn);
0b0acbec
DH
917 struct mem_section *ms;
918 struct page *memmap;
0b0acbec 919 int ret;
29751f69 920
4e0d2e7e 921 ret = sparse_index_init(section_nr, nid);
ba72b4c8 922 if (ret < 0)
bbd06825 923 return ret;
0b0acbec 924
ba72b4c8
DW
925 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
926 if (IS_ERR(memmap))
927 return PTR_ERR(memmap);
5c0e3066 928
d0dc12e8
PT
929 /*
930 * Poison uninitialized struct pages in order to catch invalid flags
931 * combinations.
932 */
18e19f19 933 page_init_poison(memmap, sizeof(struct page) * nr_pages);
3ac19f8e 934
c1cbc3ee 935 ms = __nr_to_section(section_nr);
26f26bed 936 set_section_nid(section_nr, nid);
c4e1be9e 937 section_mark_present(ms);
0b0acbec 938
ba72b4c8
DW
939 /* Align memmap to section boundary in the subsection case */
940 if (section_nr_to_pfn(section_nr) != start_pfn)
4627d76d 941 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
ba72b4c8
DW
942 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
943
944 return 0;
29751f69 945}
ea01ea93 946
95a4774d
WC
947#ifdef CONFIG_MEMORY_FAILURE
948static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
949{
950 int i;
951
5eb570a8
BS
952 /*
953 * A further optimization is to have per section refcounted
954 * num_poisoned_pages. But that would need more space per memmap, so
955 * for now just do a quick global check to speed up this routine in the
956 * absence of bad pages.
957 */
958 if (atomic_long_read(&num_poisoned_pages) == 0)
959 return;
960
4b94ffdc 961 for (i = 0; i < nr_pages; i++) {
95a4774d 962 if (PageHWPoison(&memmap[i])) {
9f82883c 963 num_poisoned_pages_dec();
95a4774d
WC
964 ClearPageHWPoison(&memmap[i]);
965 }
966 }
967}
968#else
969static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
970{
971}
972#endif
973
ba72b4c8 974void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
7ea62160
DW
975 unsigned long nr_pages, unsigned long map_offset,
976 struct vmem_altmap *altmap)
ea01ea93 977{
ba72b4c8
DW
978 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
979 nr_pages - map_offset);
980 section_deactivate(pfn, nr_pages, altmap);
ea01ea93 981}
4edd7cef 982#endif /* CONFIG_MEMORY_HOTPLUG */