]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/sparse.c
Merge tag 'pwm/for-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-artful-kernel.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
3b32123d 8#include <linux/compiler.h>
0b0acbec 9#include <linux/highmem.h>
b95f1b31 10#include <linux/export.h>
28ae55c9 11#include <linux/spinlock.h>
0b0acbec 12#include <linux/vmalloc.h>
3b32123d 13
0c0a4a51 14#include "internal.h"
d41dee36 15#include <asm/dma.h>
8f6aac41
CL
16#include <asm/pgalloc.h>
17#include <asm/pgtable.h>
d41dee36
AW
18
19/*
20 * Permanent SPARSEMEM data:
21 *
22 * 1) mem_section - memory sections, mem_map's for valid memory
23 */
3e347261 24#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 25struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 26 ____cacheline_internodealigned_in_smp;
3e347261
BP
27#else
28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 29 ____cacheline_internodealigned_in_smp;
3e347261
BP
30#endif
31EXPORT_SYMBOL(mem_section);
32
89689ae7
CL
33#ifdef NODE_NOT_IN_PAGE_FLAGS
34/*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39#if MAX_NUMNODES <= 256
40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#else
42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#endif
44
33dd4e0e 45int page_to_nid(const struct page *page)
89689ae7
CL
46{
47 return section_to_node_table[page_to_section(page)];
48}
49EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
50
51static void set_section_nid(unsigned long section_nr, int nid)
52{
53 section_to_node_table[section_nr] = nid;
54}
55#else /* !NODE_NOT_IN_PAGE_FLAGS */
56static inline void set_section_nid(unsigned long section_nr, int nid)
57{
58}
89689ae7
CL
59#endif
60
3e347261 61#ifdef CONFIG_SPARSEMEM_EXTREME
bd721ea7 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
28ae55c9
DH
63{
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
f52407ce
SL
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
5b760e64 70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
f52407ce 71 else
5b760e64
GS
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
bb016b84 74 section = memblock_virt_alloc_node(array_size, nid);
5b760e64 75 }
28ae55c9
DH
76
77 return section;
3e347261 78}
802f192e 79
a3142c8e 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 81{
28ae55c9
DH
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
802f192e
BP
84
85 if (mem_section[root])
28ae55c9 86 return -EEXIST;
3e347261 87
28ae55c9 88 section = sparse_index_alloc(nid);
af0cd5a7
WC
89 if (!section)
90 return -ENOMEM;
28ae55c9
DH
91
92 mem_section[root] = section;
c1c95183 93
9d1936cf 94 return 0;
28ae55c9
DH
95}
96#else /* !SPARSEMEM_EXTREME */
97static inline int sparse_index_init(unsigned long section_nr, int nid)
98{
99 return 0;
802f192e 100}
28ae55c9
DH
101#endif
102
91fd8b95 103#ifdef CONFIG_SPARSEMEM_EXTREME
4ca644d9
DH
104int __section_nr(struct mem_section* ms)
105{
106 unsigned long root_nr;
107 struct mem_section* root;
108
12783b00
MK
109 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
111 if (!root)
112 continue;
113
114 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115 break;
116 }
117
db36a461
GS
118 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119
4ca644d9
DH
120 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121}
91fd8b95
ZC
122#else
123int __section_nr(struct mem_section* ms)
124{
125 return (int)(ms - mem_section[0]);
126}
127#endif
4ca644d9 128
30c253e6
AW
129/*
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
134 */
135static inline unsigned long sparse_encode_early_nid(int nid)
136{
137 return (nid << SECTION_NID_SHIFT);
138}
139
140static inline int sparse_early_nid(struct mem_section *section)
141{
142 return (section->section_mem_map >> SECTION_NID_SHIFT);
143}
144
2dbb51c4
MG
145/* Validate the physical addressing limitations of the model */
146void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147 unsigned long *end_pfn)
d41dee36 148{
2dbb51c4 149 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 150
bead9a3a
IM
151 /*
152 * Sanity checks - do not allow an architecture to pass
153 * in larger pfns than the maximum scope of sparsemem:
154 */
2dbb51c4
MG
155 if (*start_pfn > max_sparsemem_pfn) {
156 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 *start_pfn, *end_pfn, max_sparsemem_pfn);
159 WARN_ON_ONCE(1);
160 *start_pfn = max_sparsemem_pfn;
161 *end_pfn = max_sparsemem_pfn;
ef161a98 162 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
163 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 *start_pfn, *end_pfn, max_sparsemem_pfn);
166 WARN_ON_ONCE(1);
167 *end_pfn = max_sparsemem_pfn;
168 }
169}
170
171/* Record a memory area against a node. */
172void __init memory_present(int nid, unsigned long start, unsigned long end)
173{
174 unsigned long pfn;
bead9a3a 175
d41dee36 176 start &= PAGE_SECTION_MASK;
2dbb51c4 177 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
178 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
179 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
180 struct mem_section *ms;
181
182 sparse_index_init(section, nid);
85770ffe 183 set_section_nid(section, nid);
802f192e
BP
184
185 ms = __nr_to_section(section);
186 if (!ms->section_mem_map)
30c253e6
AW
187 ms->section_mem_map = sparse_encode_early_nid(nid) |
188 SECTION_MARKED_PRESENT;
d41dee36
AW
189 }
190}
191
192/*
193 * Only used by the i386 NUMA architecures, but relatively
194 * generic code.
195 */
196unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
197 unsigned long end_pfn)
198{
199 unsigned long pfn;
200 unsigned long nr_pages = 0;
201
2dbb51c4 202 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
203 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
204 if (nid != early_pfn_to_nid(pfn))
205 continue;
206
540557b9 207 if (pfn_present(pfn))
d41dee36
AW
208 nr_pages += PAGES_PER_SECTION;
209 }
210
211 return nr_pages * sizeof(struct page);
212}
213
29751f69
AW
214/*
215 * Subtle, we encode the real pfn into the mem_map such that
216 * the identity pfn - section_mem_map will return the actual
217 * physical page frame number.
218 */
219static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
220{
221 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
222}
223
224/*
ea01ea93 225 * Decode mem_map from the coded memmap
29751f69 226 */
29751f69
AW
227struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
228{
ea01ea93
BP
229 /* mask off the extra low bits of information */
230 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
231 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
232}
233
a3142c8e 234static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
235 unsigned long pnum, struct page *mem_map,
236 unsigned long *pageblock_bitmap)
29751f69 237{
540557b9 238 if (!present_section(ms))
29751f69
AW
239 return -EINVAL;
240
30c253e6 241 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
242 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
243 SECTION_HAS_MEM_MAP;
5c0e3066 244 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
245
246 return 1;
247}
248
04753278 249unsigned long usemap_size(void)
5c0e3066 250{
60a7a88d 251 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
5c0e3066
MG
252}
253
254#ifdef CONFIG_MEMORY_HOTPLUG
255static unsigned long *__kmalloc_section_usemap(void)
256{
257 return kmalloc(usemap_size(), GFP_KERNEL);
258}
259#endif /* CONFIG_MEMORY_HOTPLUG */
260
48c90682
YG
261#ifdef CONFIG_MEMORY_HOTREMOVE
262static unsigned long * __init
a4322e1b 263sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 264 unsigned long size)
48c90682 265{
99ab7b19
YL
266 unsigned long goal, limit;
267 unsigned long *p;
268 int nid;
48c90682
YG
269 /*
270 * A page may contain usemaps for other sections preventing the
271 * page being freed and making a section unremovable while
c800bcd5 272 * other sections referencing the usemap remain active. Similarly,
48c90682
YG
273 * a pgdat can prevent a section being removed. If section A
274 * contains a pgdat and section B contains the usemap, both
275 * sections become inter-dependent. This allocates usemaps
276 * from the same section as the pgdat where possible to avoid
277 * this problem.
278 */
07b4e2bc 279 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
280 limit = goal + (1UL << PA_SECTION_SHIFT);
281 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
282again:
bb016b84
SS
283 p = memblock_virt_alloc_try_nid_nopanic(size,
284 SMP_CACHE_BYTES, goal, limit,
285 nid);
99ab7b19
YL
286 if (!p && limit) {
287 limit = 0;
288 goto again;
289 }
290 return p;
48c90682
YG
291}
292
293static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
294{
295 unsigned long usemap_snr, pgdat_snr;
296 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
297 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
298 struct pglist_data *pgdat = NODE_DATA(nid);
299 int usemap_nid;
300
301 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
302 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
303 if (usemap_snr == pgdat_snr)
304 return;
305
306 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
307 /* skip redundant message */
308 return;
309
310 old_usemap_snr = usemap_snr;
311 old_pgdat_snr = pgdat_snr;
312
313 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
314 if (usemap_nid != nid) {
1170532b
JP
315 pr_info("node %d must be removed before remove section %ld\n",
316 nid, usemap_snr);
48c90682
YG
317 return;
318 }
319 /*
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
324 */
1170532b
JP
325 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
326 usemap_snr, pgdat_snr, nid);
48c90682
YG
327}
328#else
329static unsigned long * __init
a4322e1b 330sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 331 unsigned long size)
48c90682 332{
bb016b84 333 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
48c90682
YG
334}
335
336static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
337{
338}
339#endif /* CONFIG_MEMORY_HOTREMOVE */
340
18732093 341static void __init sparse_early_usemaps_alloc_node(void *data,
a4322e1b
YL
342 unsigned long pnum_begin,
343 unsigned long pnum_end,
344 unsigned long usemap_count, int nodeid)
5c0e3066 345{
a4322e1b
YL
346 void *usemap;
347 unsigned long pnum;
18732093 348 unsigned long **usemap_map = (unsigned long **)data;
a4322e1b 349 int size = usemap_size();
5c0e3066 350
a4322e1b 351 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 352 size * usemap_count);
f5bf18fa 353 if (!usemap) {
1170532b 354 pr_warn("%s: allocation failed\n", __func__);
238305bb 355 return;
48c90682
YG
356 }
357
f5bf18fa
NA
358 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
359 if (!present_section_nr(pnum))
360 continue;
361 usemap_map[pnum] = usemap;
362 usemap += size;
363 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 364 }
5c0e3066
MG
365}
366
8f6aac41 367#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 368struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
369{
370 struct page *map;
e48e67e0 371 unsigned long size;
29751f69
AW
372
373 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
374 if (map)
375 return map;
376
e48e67e0 377 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
bb016b84
SS
378 map = memblock_virt_alloc_try_nid(size,
379 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
380 BOOTMEM_ALLOC_ACCESSIBLE, nid);
8f6aac41
CL
381 return map;
382}
9bdac914
YL
383void __init sparse_mem_maps_populate_node(struct page **map_map,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long map_count, int nodeid)
387{
388 void *map;
389 unsigned long pnum;
390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
391
392 map = alloc_remap(nodeid, size * map_count);
393 if (map) {
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 map_map[pnum] = map;
398 map += size;
399 }
400 return;
401 }
402
403 size = PAGE_ALIGN(size);
bb016b84
SS
404 map = memblock_virt_alloc_try_nid(size * map_count,
405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
406 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
9bdac914
YL
407 if (map) {
408 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
409 if (!present_section_nr(pnum))
410 continue;
411 map_map[pnum] = map;
412 map += size;
413 }
414 return;
415 }
416
417 /* fallback */
418 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
419 struct mem_section *ms;
420
421 if (!present_section_nr(pnum))
422 continue;
423 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
424 if (map_map[pnum])
425 continue;
426 ms = __nr_to_section(pnum);
1170532b 427 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
756a025f 428 __func__);
9bdac914
YL
429 ms->section_mem_map = 0;
430 }
431}
8f6aac41
CL
432#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
433
81d0d950 434#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
18732093 435static void __init sparse_early_mem_maps_alloc_node(void *data,
9bdac914
YL
436 unsigned long pnum_begin,
437 unsigned long pnum_end,
438 unsigned long map_count, int nodeid)
439{
18732093 440 struct page **map_map = (struct page **)data;
9bdac914
YL
441 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
442 map_count, nodeid);
443}
81d0d950 444#else
9e5c6da7 445static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
446{
447 struct page *map;
448 struct mem_section *ms = __nr_to_section(pnum);
449 int nid = sparse_early_nid(ms);
450
98f3cfc1 451 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
452 if (map)
453 return map;
454
1170532b 455 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
756a025f 456 __func__);
802f192e 457 ms->section_mem_map = 0;
29751f69
AW
458 return NULL;
459}
9bdac914 460#endif
29751f69 461
3b32123d 462void __weak __meminit vmemmap_populate_print_last(void)
c2b91e2e
YL
463{
464}
a4322e1b 465
18732093
WL
466/**
467 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
468 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
469 */
470static void __init alloc_usemap_and_memmap(void (*alloc_func)
471 (void *, unsigned long, unsigned long,
472 unsigned long, int), void *data)
473{
474 unsigned long pnum;
475 unsigned long map_count;
476 int nodeid_begin = 0;
477 unsigned long pnum_begin = 0;
478
479 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
480 struct mem_section *ms;
481
482 if (!present_section_nr(pnum))
483 continue;
484 ms = __nr_to_section(pnum);
485 nodeid_begin = sparse_early_nid(ms);
486 pnum_begin = pnum;
487 break;
488 }
489 map_count = 1;
490 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
491 struct mem_section *ms;
492 int nodeid;
493
494 if (!present_section_nr(pnum))
495 continue;
496 ms = __nr_to_section(pnum);
497 nodeid = sparse_early_nid(ms);
498 if (nodeid == nodeid_begin) {
499 map_count++;
500 continue;
501 }
502 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
503 alloc_func(data, pnum_begin, pnum,
504 map_count, nodeid_begin);
505 /* new start, update count etc*/
506 nodeid_begin = nodeid;
507 pnum_begin = pnum;
508 map_count = 1;
509 }
510 /* ok, last chunk */
511 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
512 map_count, nodeid_begin);
513}
514
193faea9
SR
515/*
516 * Allocate the accumulated non-linear sections, allocate a mem_map
517 * for each and record the physical to section mapping.
518 */
519void __init sparse_init(void)
520{
521 unsigned long pnum;
522 struct page *map;
5c0e3066 523 unsigned long *usemap;
e123dd3f 524 unsigned long **usemap_map;
81d0d950 525 int size;
81d0d950 526#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
81d0d950
YL
527 int size2;
528 struct page **map_map;
529#endif
e123dd3f 530
55878e88
CS
531 /* see include/linux/mmzone.h 'struct mem_section' definition */
532 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
533
ca57df79
XQ
534 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
535 set_pageblock_order();
536
e123dd3f
YL
537 /*
538 * map is using big page (aka 2M in x86 64 bit)
539 * usemap is less one page (aka 24 bytes)
540 * so alloc 2M (with 2M align) and 24 bytes in turn will
541 * make next 2M slip to one more 2M later.
542 * then in big system, the memory will have a lot of holes...
25985edc 543 * here try to allocate 2M pages continuously.
e123dd3f
YL
544 *
545 * powerpc need to call sparse_init_one_section right after each
546 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
547 */
548 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
bb016b84 549 usemap_map = memblock_virt_alloc(size, 0);
e123dd3f
YL
550 if (!usemap_map)
551 panic("can not allocate usemap_map\n");
18732093
WL
552 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
553 (void *)usemap_map);
193faea9 554
9bdac914
YL
555#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
556 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
bb016b84 557 map_map = memblock_virt_alloc(size2, 0);
9bdac914
YL
558 if (!map_map)
559 panic("can not allocate map_map\n");
18732093
WL
560 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
561 (void *)map_map);
9bdac914
YL
562#endif
563
e123dd3f
YL
564 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
565 if (!present_section_nr(pnum))
193faea9 566 continue;
5c0e3066 567
e123dd3f 568 usemap = usemap_map[pnum];
5c0e3066
MG
569 if (!usemap)
570 continue;
571
9bdac914
YL
572#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
573 map = map_map[pnum];
574#else
e123dd3f 575 map = sparse_early_mem_map_alloc(pnum);
9bdac914 576#endif
e123dd3f
YL
577 if (!map)
578 continue;
579
5c0e3066
MG
580 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
581 usemap);
193faea9 582 }
e123dd3f 583
c2b91e2e
YL
584 vmemmap_populate_print_last();
585
9bdac914 586#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
bb016b84 587 memblock_free_early(__pa(map_map), size2);
9bdac914 588#endif
bb016b84 589 memblock_free_early(__pa(usemap_map), size);
193faea9
SR
590}
591
592#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1 593#ifdef CONFIG_SPARSEMEM_VMEMMAP
85b35fea 594static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
98f3cfc1
YG
595{
596 /* This will make the necessary allocations eventually. */
597 return sparse_mem_map_populate(pnum, nid);
598}
85b35fea 599static void __kfree_section_memmap(struct page *memmap)
98f3cfc1 600{
0aad818b 601 unsigned long start = (unsigned long)memmap;
85b35fea 602 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b
JW
603
604 vmemmap_free(start, end);
98f3cfc1 605}
4edd7cef 606#ifdef CONFIG_MEMORY_HOTREMOVE
81556b02 607static void free_map_bootmem(struct page *memmap)
0c0a4a51 608{
0aad818b 609 unsigned long start = (unsigned long)memmap;
81556b02 610 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b
JW
611
612 vmemmap_free(start, end);
0c0a4a51 613}
4edd7cef 614#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 615#else
85b35fea 616static struct page *__kmalloc_section_memmap(void)
0b0acbec
DH
617{
618 struct page *page, *ret;
85b35fea 619 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
0b0acbec 620
f2d0aa5b 621 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
622 if (page)
623 goto got_map_page;
624
625 ret = vmalloc(memmap_size);
626 if (ret)
627 goto got_map_ptr;
628
629 return NULL;
630got_map_page:
631 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
632got_map_ptr:
0b0acbec
DH
633
634 return ret;
635}
636
85b35fea 637static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
98f3cfc1 638{
85b35fea 639 return __kmalloc_section_memmap();
98f3cfc1
YG
640}
641
85b35fea 642static void __kfree_section_memmap(struct page *memmap)
0b0acbec 643{
9e2779fa 644 if (is_vmalloc_addr(memmap))
0b0acbec
DH
645 vfree(memmap);
646 else
647 free_pages((unsigned long)memmap,
85b35fea 648 get_order(sizeof(struct page) * PAGES_PER_SECTION));
0b0acbec 649}
0c0a4a51 650
4edd7cef 651#ifdef CONFIG_MEMORY_HOTREMOVE
81556b02 652static void free_map_bootmem(struct page *memmap)
0c0a4a51
YG
653{
654 unsigned long maps_section_nr, removing_section_nr, i;
81556b02 655 unsigned long magic, nr_pages;
ae64ffca 656 struct page *page = virt_to_page(memmap);
0c0a4a51 657
81556b02
ZY
658 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
659 >> PAGE_SHIFT;
660
0c0a4a51 661 for (i = 0; i < nr_pages; i++, page++) {
ddffe98d 662 magic = (unsigned long) page->freelist;
0c0a4a51
YG
663
664 BUG_ON(magic == NODE_INFO);
665
666 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
857e522a 667 removing_section_nr = page_private(page);
0c0a4a51
YG
668
669 /*
670 * When this function is called, the removing section is
671 * logical offlined state. This means all pages are isolated
672 * from page allocator. If removing section's memmap is placed
673 * on the same section, it must not be freed.
674 * If it is freed, page allocator may allocate it which will
675 * be removed physically soon.
676 */
677 if (maps_section_nr != removing_section_nr)
678 put_page_bootmem(page);
679 }
680}
4edd7cef 681#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 682#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 683
29751f69
AW
684/*
685 * returns the number of sections whose mem_maps were properly
686 * set. If this is <=0, then that means that the passed-in
687 * map was not consumed and must be freed.
688 */
85b35fea 689int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
29751f69 690{
0b0acbec
DH
691 unsigned long section_nr = pfn_to_section_nr(start_pfn);
692 struct pglist_data *pgdat = zone->zone_pgdat;
693 struct mem_section *ms;
694 struct page *memmap;
5c0e3066 695 unsigned long *usemap;
0b0acbec
DH
696 unsigned long flags;
697 int ret;
29751f69 698
0b0acbec
DH
699 /*
700 * no locking for this, because it does its own
701 * plus, it does a kmalloc
702 */
bbd06825
WC
703 ret = sparse_index_init(section_nr, pgdat->node_id);
704 if (ret < 0 && ret != -EEXIST)
705 return ret;
85b35fea 706 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
bbd06825
WC
707 if (!memmap)
708 return -ENOMEM;
5c0e3066 709 usemap = __kmalloc_section_usemap();
bbd06825 710 if (!usemap) {
85b35fea 711 __kfree_section_memmap(memmap);
bbd06825
WC
712 return -ENOMEM;
713 }
0b0acbec
DH
714
715 pgdat_resize_lock(pgdat, &flags);
29751f69 716
0b0acbec
DH
717 ms = __pfn_to_section(start_pfn);
718 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
719 ret = -EEXIST;
720 goto out;
721 }
5c0e3066 722
85b35fea 723 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
3ac19f8e 724
29751f69
AW
725 ms->section_mem_map |= SECTION_MARKED_PRESENT;
726
5c0e3066 727 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 728
0b0acbec
DH
729out:
730 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
731 if (ret <= 0) {
732 kfree(usemap);
85b35fea 733 __kfree_section_memmap(memmap);
bbd06825 734 }
0b0acbec 735 return ret;
29751f69 736}
ea01ea93 737
f3deb687 738#ifdef CONFIG_MEMORY_HOTREMOVE
95a4774d
WC
739#ifdef CONFIG_MEMORY_FAILURE
740static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
741{
742 int i;
743
744 if (!memmap)
745 return;
746
4b94ffdc 747 for (i = 0; i < nr_pages; i++) {
95a4774d 748 if (PageHWPoison(&memmap[i])) {
293c07e3 749 atomic_long_sub(1, &num_poisoned_pages);
95a4774d
WC
750 ClearPageHWPoison(&memmap[i]);
751 }
752 }
753}
754#else
755static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
756{
757}
758#endif
759
4edd7cef
DR
760static void free_section_usemap(struct page *memmap, unsigned long *usemap)
761{
762 struct page *usemap_page;
4edd7cef
DR
763
764 if (!usemap)
765 return;
766
767 usemap_page = virt_to_page(usemap);
768 /*
769 * Check to see if allocation came from hot-plug-add
770 */
771 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
772 kfree(usemap);
773 if (memmap)
85b35fea 774 __kfree_section_memmap(memmap);
4edd7cef
DR
775 return;
776 }
777
778 /*
779 * The usemap came from bootmem. This is packed with other usemaps
780 * on the section which has pgdat at boot time. Just keep it as is now.
781 */
782
81556b02
ZY
783 if (memmap)
784 free_map_bootmem(memmap);
4edd7cef
DR
785}
786
4b94ffdc
DW
787void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
788 unsigned long map_offset)
ea01ea93
BP
789{
790 struct page *memmap = NULL;
cd099682
TC
791 unsigned long *usemap = NULL, flags;
792 struct pglist_data *pgdat = zone->zone_pgdat;
ea01ea93 793
cd099682 794 pgdat_resize_lock(pgdat, &flags);
ea01ea93
BP
795 if (ms->section_mem_map) {
796 usemap = ms->pageblock_flags;
797 memmap = sparse_decode_mem_map(ms->section_mem_map,
798 __section_nr(ms));
799 ms->section_mem_map = 0;
800 ms->pageblock_flags = NULL;
801 }
cd099682 802 pgdat_resize_unlock(pgdat, &flags);
ea01ea93 803
4b94ffdc
DW
804 clear_hwpoisoned_pages(memmap + map_offset,
805 PAGES_PER_SECTION - map_offset);
ea01ea93
BP
806 free_section_usemap(memmap, usemap);
807}
4edd7cef
DR
808#endif /* CONFIG_MEMORY_HOTREMOVE */
809#endif /* CONFIG_MEMORY_HOTPLUG */