]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/sparse.c
mm: remove initialization of static per-cpu variables
[mirror_ubuntu-artful-kernel.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36
AW
4#include <linux/mm.h>
5#include <linux/mmzone.h>
6#include <linux/bootmem.h>
0b0acbec 7#include <linux/highmem.h>
d41dee36 8#include <linux/module.h>
28ae55c9 9#include <linux/spinlock.h>
0b0acbec 10#include <linux/vmalloc.h>
0c0a4a51 11#include "internal.h"
d41dee36 12#include <asm/dma.h>
8f6aac41
CL
13#include <asm/pgalloc.h>
14#include <asm/pgtable.h>
2dbb51c4 15#include "internal.h"
d41dee36
AW
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
3e347261 22#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 23struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 24 ____cacheline_internodealigned_in_smp;
3e347261
BP
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 27 ____cacheline_internodealigned_in_smp;
3e347261
BP
28#endif
29EXPORT_SYMBOL(mem_section);
30
89689ae7
CL
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
25ba77c1 43int page_to_nid(struct page *page)
89689ae7
CL
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
89689ae7
CL
57#endif
58
3e347261 59#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
39d24e64 66 if (slab_is_available())
46a66eec
MK
67 section = kmalloc_node(array_size, GFP_KERNEL, nid);
68 else
69 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
28ae55c9
DH
70
71 if (section)
72 memset(section, 0, array_size);
73
74 return section;
3e347261 75}
802f192e 76
a3142c8e 77static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 78{
34af946a 79 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
82 int ret = 0;
802f192e
BP
83
84 if (mem_section[root])
28ae55c9 85 return -EEXIST;
3e347261 86
28ae55c9 87 section = sparse_index_alloc(nid);
af0cd5a7
WC
88 if (!section)
89 return -ENOMEM;
28ae55c9
DH
90 /*
91 * This lock keeps two different sections from
92 * reallocating for the same index
93 */
94 spin_lock(&index_init_lock);
3e347261 95
28ae55c9
DH
96 if (mem_section[root]) {
97 ret = -EEXIST;
98 goto out;
99 }
100
101 mem_section[root] = section;
102out:
103 spin_unlock(&index_init_lock);
104 return ret;
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109 return 0;
802f192e 110}
28ae55c9
DH
111#endif
112
4ca644d9
DH
113/*
114 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 115 * to also work for the flat array case because
4ca644d9
DH
116 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
117 */
118int __section_nr(struct mem_section* ms)
119{
120 unsigned long root_nr;
121 struct mem_section* root;
122
12783b00
MK
123 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
124 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
125 if (!root)
126 continue;
127
128 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
129 break;
130 }
131
132 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
133}
134
30c253e6
AW
135/*
136 * During early boot, before section_mem_map is used for an actual
137 * mem_map, we use section_mem_map to store the section's NUMA
138 * node. This keeps us from having to use another data structure. The
139 * node information is cleared just before we store the real mem_map.
140 */
141static inline unsigned long sparse_encode_early_nid(int nid)
142{
143 return (nid << SECTION_NID_SHIFT);
144}
145
146static inline int sparse_early_nid(struct mem_section *section)
147{
148 return (section->section_mem_map >> SECTION_NID_SHIFT);
149}
150
2dbb51c4
MG
151/* Validate the physical addressing limitations of the model */
152void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
153 unsigned long *end_pfn)
d41dee36 154{
2dbb51c4 155 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 156
bead9a3a
IM
157 /*
158 * Sanity checks - do not allow an architecture to pass
159 * in larger pfns than the maximum scope of sparsemem:
160 */
2dbb51c4
MG
161 if (*start_pfn > max_sparsemem_pfn) {
162 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
163 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
164 *start_pfn, *end_pfn, max_sparsemem_pfn);
165 WARN_ON_ONCE(1);
166 *start_pfn = max_sparsemem_pfn;
167 *end_pfn = max_sparsemem_pfn;
168 }
169
170 if (*end_pfn > max_sparsemem_pfn) {
171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn, *end_pfn, max_sparsemem_pfn);
174 WARN_ON_ONCE(1);
175 *end_pfn = max_sparsemem_pfn;
176 }
177}
178
179/* Record a memory area against a node. */
180void __init memory_present(int nid, unsigned long start, unsigned long end)
181{
182 unsigned long pfn;
bead9a3a 183
d41dee36 184 start &= PAGE_SECTION_MASK;
2dbb51c4 185 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
186 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
187 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
188 struct mem_section *ms;
189
190 sparse_index_init(section, nid);
85770ffe 191 set_section_nid(section, nid);
802f192e
BP
192
193 ms = __nr_to_section(section);
194 if (!ms->section_mem_map)
30c253e6
AW
195 ms->section_mem_map = sparse_encode_early_nid(nid) |
196 SECTION_MARKED_PRESENT;
d41dee36
AW
197 }
198}
199
200/*
201 * Only used by the i386 NUMA architecures, but relatively
202 * generic code.
203 */
204unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
205 unsigned long end_pfn)
206{
207 unsigned long pfn;
208 unsigned long nr_pages = 0;
209
2dbb51c4 210 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
211 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
212 if (nid != early_pfn_to_nid(pfn))
213 continue;
214
540557b9 215 if (pfn_present(pfn))
d41dee36
AW
216 nr_pages += PAGES_PER_SECTION;
217 }
218
219 return nr_pages * sizeof(struct page);
220}
221
29751f69
AW
222/*
223 * Subtle, we encode the real pfn into the mem_map such that
224 * the identity pfn - section_mem_map will return the actual
225 * physical page frame number.
226 */
227static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
228{
229 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
230}
231
232/*
ea01ea93 233 * Decode mem_map from the coded memmap
29751f69 234 */
29751f69
AW
235struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
236{
ea01ea93
BP
237 /* mask off the extra low bits of information */
238 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
239 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
240}
241
a3142c8e 242static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
243 unsigned long pnum, struct page *mem_map,
244 unsigned long *pageblock_bitmap)
29751f69 245{
540557b9 246 if (!present_section(ms))
29751f69
AW
247 return -EINVAL;
248
30c253e6 249 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
250 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
251 SECTION_HAS_MEM_MAP;
5c0e3066 252 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
253
254 return 1;
255}
256
04753278 257unsigned long usemap_size(void)
5c0e3066
MG
258{
259 unsigned long size_bytes;
260 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
261 size_bytes = roundup(size_bytes, sizeof(unsigned long));
262 return size_bytes;
263}
264
265#ifdef CONFIG_MEMORY_HOTPLUG
266static unsigned long *__kmalloc_section_usemap(void)
267{
268 return kmalloc(usemap_size(), GFP_KERNEL);
269}
270#endif /* CONFIG_MEMORY_HOTPLUG */
271
a322f8ab 272static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
5c0e3066 273{
51674644 274 unsigned long *usemap;
5c0e3066
MG
275 struct mem_section *ms = __nr_to_section(pnum);
276 int nid = sparse_early_nid(ms);
277
51674644 278 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
5c0e3066
MG
279 if (usemap)
280 return usemap;
281
282 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
283 nid = 0;
284
d40cee24 285 printk(KERN_WARNING "%s: allocation failed\n", __func__);
5c0e3066
MG
286 return NULL;
287}
288
8f6aac41 289#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 290struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
291{
292 struct page *map;
29751f69
AW
293
294 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
295 if (map)
296 return map;
297
9d99217a
YG
298 map = alloc_bootmem_pages_node(NODE_DATA(nid),
299 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
8f6aac41
CL
300 return map;
301}
302#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
303
304struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
305{
306 struct page *map;
307 struct mem_section *ms = __nr_to_section(pnum);
308 int nid = sparse_early_nid(ms);
309
98f3cfc1 310 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
311 if (map)
312 return map;
313
8f6aac41 314 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 315 "some memory will not be available.\n", __func__);
802f192e 316 ms->section_mem_map = 0;
29751f69
AW
317 return NULL;
318}
319
c2b91e2e
YL
320void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
321{
322}
193faea9
SR
323/*
324 * Allocate the accumulated non-linear sections, allocate a mem_map
325 * for each and record the physical to section mapping.
326 */
327void __init sparse_init(void)
328{
329 unsigned long pnum;
330 struct page *map;
5c0e3066 331 unsigned long *usemap;
e123dd3f
YL
332 unsigned long **usemap_map;
333 int size;
334
335 /*
336 * map is using big page (aka 2M in x86 64 bit)
337 * usemap is less one page (aka 24 bytes)
338 * so alloc 2M (with 2M align) and 24 bytes in turn will
339 * make next 2M slip to one more 2M later.
340 * then in big system, the memory will have a lot of holes...
341 * here try to allocate 2M pages continously.
342 *
343 * powerpc need to call sparse_init_one_section right after each
344 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
345 */
346 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
347 usemap_map = alloc_bootmem(size);
348 if (!usemap_map)
349 panic("can not allocate usemap_map\n");
193faea9
SR
350
351 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
540557b9 352 if (!present_section_nr(pnum))
193faea9 353 continue;
e123dd3f
YL
354 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
355 }
193faea9 356
e123dd3f
YL
357 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
358 if (!present_section_nr(pnum))
193faea9 359 continue;
5c0e3066 360
e123dd3f 361 usemap = usemap_map[pnum];
5c0e3066
MG
362 if (!usemap)
363 continue;
364
e123dd3f
YL
365 map = sparse_early_mem_map_alloc(pnum);
366 if (!map)
367 continue;
368
5c0e3066
MG
369 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
370 usemap);
193faea9 371 }
e123dd3f 372
c2b91e2e
YL
373 vmemmap_populate_print_last();
374
e123dd3f 375 free_bootmem(__pa(usemap_map), size);
193faea9
SR
376}
377
378#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
379#ifdef CONFIG_SPARSEMEM_VMEMMAP
380static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
381 unsigned long nr_pages)
382{
383 /* This will make the necessary allocations eventually. */
384 return sparse_mem_map_populate(pnum, nid);
385}
386static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
387{
388 return; /* XXX: Not implemented yet */
389}
0c0a4a51
YG
390static void free_map_bootmem(struct page *page, unsigned long nr_pages)
391{
392}
98f3cfc1 393#else
0b0acbec
DH
394static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
395{
396 struct page *page, *ret;
397 unsigned long memmap_size = sizeof(struct page) * nr_pages;
398
f2d0aa5b 399 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
400 if (page)
401 goto got_map_page;
402
403 ret = vmalloc(memmap_size);
404 if (ret)
405 goto got_map_ptr;
406
407 return NULL;
408got_map_page:
409 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
410got_map_ptr:
411 memset(ret, 0, memmap_size);
412
413 return ret;
414}
415
98f3cfc1
YG
416static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
417 unsigned long nr_pages)
418{
419 return __kmalloc_section_memmap(nr_pages);
420}
421
0b0acbec
DH
422static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
423{
9e2779fa 424 if (is_vmalloc_addr(memmap))
0b0acbec
DH
425 vfree(memmap);
426 else
427 free_pages((unsigned long)memmap,
428 get_order(sizeof(struct page) * nr_pages));
429}
0c0a4a51
YG
430
431static void free_map_bootmem(struct page *page, unsigned long nr_pages)
432{
433 unsigned long maps_section_nr, removing_section_nr, i;
434 int magic;
435
436 for (i = 0; i < nr_pages; i++, page++) {
437 magic = atomic_read(&page->_mapcount);
438
439 BUG_ON(magic == NODE_INFO);
440
441 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
442 removing_section_nr = page->private;
443
444 /*
445 * When this function is called, the removing section is
446 * logical offlined state. This means all pages are isolated
447 * from page allocator. If removing section's memmap is placed
448 * on the same section, it must not be freed.
449 * If it is freed, page allocator may allocate it which will
450 * be removed physically soon.
451 */
452 if (maps_section_nr != removing_section_nr)
453 put_page_bootmem(page);
454 }
455}
98f3cfc1 456#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 457
ea01ea93
BP
458static void free_section_usemap(struct page *memmap, unsigned long *usemap)
459{
0c0a4a51
YG
460 struct page *usemap_page;
461 unsigned long nr_pages;
462
ea01ea93
BP
463 if (!usemap)
464 return;
465
0c0a4a51 466 usemap_page = virt_to_page(usemap);
ea01ea93
BP
467 /*
468 * Check to see if allocation came from hot-plug-add
469 */
0c0a4a51 470 if (PageSlab(usemap_page)) {
ea01ea93
BP
471 kfree(usemap);
472 if (memmap)
473 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
474 return;
475 }
476
477 /*
0c0a4a51
YG
478 * The usemap came from bootmem. This is packed with other usemaps
479 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 480 */
0c0a4a51
YG
481
482 if (memmap) {
483 struct page *memmap_page;
484 memmap_page = virt_to_page(memmap);
485
486 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
487 >> PAGE_SHIFT;
488
489 free_map_bootmem(memmap_page, nr_pages);
490 }
ea01ea93
BP
491}
492
29751f69
AW
493/*
494 * returns the number of sections whose mem_maps were properly
495 * set. If this is <=0, then that means that the passed-in
496 * map was not consumed and must be freed.
497 */
0b0acbec
DH
498int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
499 int nr_pages)
29751f69 500{
0b0acbec
DH
501 unsigned long section_nr = pfn_to_section_nr(start_pfn);
502 struct pglist_data *pgdat = zone->zone_pgdat;
503 struct mem_section *ms;
504 struct page *memmap;
5c0e3066 505 unsigned long *usemap;
0b0acbec
DH
506 unsigned long flags;
507 int ret;
29751f69 508
0b0acbec
DH
509 /*
510 * no locking for this, because it does its own
511 * plus, it does a kmalloc
512 */
bbd06825
WC
513 ret = sparse_index_init(section_nr, pgdat->node_id);
514 if (ret < 0 && ret != -EEXIST)
515 return ret;
98f3cfc1 516 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
517 if (!memmap)
518 return -ENOMEM;
5c0e3066 519 usemap = __kmalloc_section_usemap();
bbd06825
WC
520 if (!usemap) {
521 __kfree_section_memmap(memmap, nr_pages);
522 return -ENOMEM;
523 }
0b0acbec
DH
524
525 pgdat_resize_lock(pgdat, &flags);
29751f69 526
0b0acbec
DH
527 ms = __pfn_to_section(start_pfn);
528 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
529 ret = -EEXIST;
530 goto out;
531 }
5c0e3066 532
29751f69
AW
533 ms->section_mem_map |= SECTION_MARKED_PRESENT;
534
5c0e3066 535 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 536
0b0acbec
DH
537out:
538 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
539 if (ret <= 0) {
540 kfree(usemap);
46a66eec 541 __kfree_section_memmap(memmap, nr_pages);
bbd06825 542 }
0b0acbec 543 return ret;
29751f69 544}
ea01ea93
BP
545
546void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
547{
548 struct page *memmap = NULL;
549 unsigned long *usemap = NULL;
550
551 if (ms->section_mem_map) {
552 usemap = ms->pageblock_flags;
553 memmap = sparse_decode_mem_map(ms->section_mem_map,
554 __section_nr(ms));
555 ms->section_mem_map = 0;
556 ms->pageblock_flags = NULL;
557 }
558
559 free_section_usemap(memmap, usemap);
560}
a3142c8e 561#endif