]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swap.c
Merge tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
1da177e4 39
64d6519d
LS
40#include "internal.h"
41
c6286c98
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
1da177e4
LT
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
b01b2141
IM
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
a4a921aa 67#ifdef CONFIG_SMP
b01b2141 68 struct pagevec activate_page;
a4a921aa 69#endif
b01b2141
IM
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
902aaed0 74
b221385b
AB
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
920c7a5d 79static void __page_cache_release(struct page *page)
b221385b
AB
80{
81 if (PageLRU(page)) {
f4b7e272 82 pg_data_t *pgdat = page_pgdat(page);
fa9add64
HD
83 struct lruvec *lruvec;
84 unsigned long flags;
b221385b 85
f4b7e272
AR
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
309381fe 88 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 89 __ClearPageLRU(page);
fa9add64 90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
f4b7e272 91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
b221385b 92 }
62906027 93 __ClearPageWaiters(page);
91807063
AA
94}
95
96static void __put_single_page(struct page *page)
97{
98 __page_cache_release(page);
7ae88534 99 mem_cgroup_uncharge(page);
2d4894b5 100 free_unref_page(page);
b221385b
AB
101}
102
91807063 103static void __put_compound_page(struct page *page)
1da177e4 104{
822fc613
NH
105 /*
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 */
111 if (!PageHuge(page))
112 __page_cache_release(page);
ff45fc3c 113 destroy_compound_page(page);
91807063
AA
114}
115
ddc58f27 116void __put_page(struct page *page)
8519fb30 117{
71389703
DW
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
120
121 /*
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
124 */
125 return;
126 }
127
8519fb30 128 if (unlikely(PageCompound(page)))
ddc58f27
KS
129 __put_compound_page(page);
130 else
91807063 131 __put_single_page(page);
1da177e4 132}
ddc58f27 133EXPORT_SYMBOL(__put_page);
70b50f94 134
1d7ea732 135/**
7682486b
RD
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
138 *
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
141 */
142void put_pages_list(struct list_head *pages)
143{
144 while (!list_empty(pages)) {
145 struct page *victim;
146
f86196ea 147 victim = lru_to_page(pages);
1d7ea732 148 list_del(&victim->lru);
09cbfeaf 149 put_page(victim);
1d7ea732
AZ
150 }
151}
152EXPORT_SYMBOL(put_pages_list);
153
18022c5d
MG
154/*
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
161 *
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
166 */
167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
169{
170 int seg;
171
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
175
5a178119 176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 177 get_page(pages[seg]);
18022c5d
MG
178 }
179
180 return seg;
181}
182EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184/*
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
190 *
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
194 */
195int get_kernel_page(unsigned long start, int write, struct page **pages)
196{
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
200 };
201
202 return get_kernel_pages(&kiov, 1, write, pages);
203}
204EXPORT_SYMBOL_GPL(get_kernel_page);
205
3dd7ae8e 206static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
902aaed0
HH
209{
210 int i;
68eb0731 211 struct pglist_data *pgdat = NULL;
fa9add64 212 struct lruvec *lruvec;
3dd7ae8e 213 unsigned long flags = 0;
902aaed0
HH
214
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
68eb0731 217 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 218
68eb0731
MG
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 224 }
3dd7ae8e 225
68eb0731 226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 227 (*move_fn)(page, lruvec, arg);
902aaed0 228 }
68eb0731
MG
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 231 release_pages(pvec->pages, pvec->nr);
83896fb5 232 pagevec_reinit(pvec);
d8505dee
SL
233}
234
fa9add64
HD
235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
3dd7ae8e
SL
237{
238 int *pgmoved = arg;
3dd7ae8e 239
c55e8d03
JW
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
6c357848 244 (*pgmoved) += thp_nr_pages(page);
3dd7ae8e
SL
245 }
246}
247
248/*
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
251 */
252static void pagevec_move_tail(struct pagevec *pvec)
253{
254 int pgmoved = 0;
255
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
258}
259
1da177e4
LT
260/*
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 263 * inactive list.
1da177e4 264 */
3dd7ae8e 265void rotate_reclaimable_page(struct page *page)
1da177e4 266{
c55e8d03 267 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 268 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
269 struct pagevec *pvec;
270 unsigned long flags;
271
09cbfeaf 272 get_page(page);
b01b2141
IM
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
8f182270 275 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2 276 pagevec_move_tail(pvec);
b01b2141 277 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 278 }
1da177e4
LT
279}
280
96f8bf4f 281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 282{
7cf111bc
JW
283 do {
284 unsigned long lrusize;
285
286 /* Record cost event */
96f8bf4f
JW
287 if (file)
288 lruvec->file_cost += nr_pages;
7cf111bc 289 else
96f8bf4f 290 lruvec->anon_cost += nr_pages;
7cf111bc
JW
291
292 /*
293 * Decay previous events
294 *
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
299 */
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
308 }
309 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
310}
311
96f8bf4f
JW
312void lru_note_cost_page(struct page *page)
313{
314 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
6c357848 315 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
316}
317
fa9add64
HD
318static void __activate_page(struct page *page, struct lruvec *lruvec,
319 void *arg)
1da177e4 320{
744ed144 321 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572 322 int lru = page_lru_base_type(page);
6c357848 323 int nr_pages = thp_nr_pages(page);
744ed144 324
fa9add64 325 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
326 SetPageActive(page);
327 lru += LRU_ACTIVE;
fa9add64 328 add_page_to_lru_list(page, lruvec, lru);
24b7e581 329 trace_mm_lru_activate(page);
4f98a2fe 330
21e330fc
SB
331 __count_vm_events(PGACTIVATE, nr_pages);
332 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 nr_pages);
1da177e4 334 }
eb709b0d
SL
335}
336
337#ifdef CONFIG_SMP
eb709b0d
SL
338static void activate_page_drain(int cpu)
339{
b01b2141 340 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
341
342 if (pagevec_count(pvec))
343 pagevec_lru_move_fn(pvec, __activate_page, NULL);
344}
345
5fbc4616
CM
346static bool need_activate_page_drain(int cpu)
347{
b01b2141 348 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
349}
350
cc2828b2 351static void activate_page(struct page *page)
eb709b0d 352{
800d8c63 353 page = compound_head(page);
eb709b0d 354 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 355 struct pagevec *pvec;
eb709b0d 356
b01b2141
IM
357 local_lock(&lru_pvecs.lock);
358 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 359 get_page(page);
8f182270 360 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d 361 pagevec_lru_move_fn(pvec, __activate_page, NULL);
b01b2141 362 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
363 }
364}
365
366#else
367static inline void activate_page_drain(int cpu)
368{
369}
370
cc2828b2 371static void activate_page(struct page *page)
eb709b0d 372{
f4b7e272 373 pg_data_t *pgdat = page_pgdat(page);
eb709b0d 374
800d8c63 375 page = compound_head(page);
f4b7e272
AR
376 spin_lock_irq(&pgdat->lru_lock);
377 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 379}
eb709b0d 380#endif
1da177e4 381
059285a2
MG
382static void __lru_cache_activate_page(struct page *page)
383{
b01b2141 384 struct pagevec *pvec;
059285a2
MG
385 int i;
386
b01b2141
IM
387 local_lock(&lru_pvecs.lock);
388 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389
059285a2
MG
390 /*
391 * Search backwards on the optimistic assumption that the page being
392 * activated has just been added to this pagevec. Note that only
393 * the local pagevec is examined as a !PageLRU page could be in the
394 * process of being released, reclaimed, migrated or on a remote
395 * pagevec that is currently being drained. Furthermore, marking
396 * a remote pagevec's page PageActive potentially hits a race where
397 * a page is marked PageActive just after it is added to the inactive
398 * list causing accounting errors and BUG_ON checks to trigger.
399 */
400 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 struct page *pagevec_page = pvec->pages[i];
402
403 if (pagevec_page == page) {
404 SetPageActive(page);
405 break;
406 }
407 }
408
b01b2141 409 local_unlock(&lru_pvecs.lock);
059285a2
MG
410}
411
1da177e4
LT
412/*
413 * Mark a page as having seen activity.
414 *
415 * inactive,unreferenced -> inactive,referenced
416 * inactive,referenced -> active,unreferenced
417 * active,unreferenced -> active,referenced
eb39d618
HD
418 *
419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 421 */
920c7a5d 422void mark_page_accessed(struct page *page)
1da177e4 423{
e90309c9 424 page = compound_head(page);
059285a2 425
a1100a74
FW
426 if (!PageReferenced(page)) {
427 SetPageReferenced(page);
428 } else if (PageUnevictable(page)) {
429 /*
430 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 * this list is never rotated or maintained, so marking an
432 * evictable page accessed has no effect.
433 */
434 } else if (!PageActive(page)) {
059285a2
MG
435 /*
436 * If the page is on the LRU, queue it for activation via
b01b2141 437 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
438 * pagevec, mark it active and it'll be moved to the active
439 * LRU on the next drain.
440 */
441 if (PageLRU(page))
442 activate_page(page);
443 else
444 __lru_cache_activate_page(page);
1da177e4 445 ClearPageReferenced(page);
cb686883 446 workingset_activation(page);
1da177e4 447 }
33c3fc71
VD
448 if (page_is_idle(page))
449 clear_page_idle(page);
1da177e4 450}
1da177e4
LT
451EXPORT_SYMBOL(mark_page_accessed);
452
f04e9ebb 453/**
c53954a0 454 * lru_cache_add - add a page to a page list
f04e9ebb 455 * @page: the page to be added to the LRU.
2329d375
JZ
456 *
457 * Queue the page for addition to the LRU via pagevec. The decision on whether
458 * to add the page to the [in]active [file|anon] list is deferred until the
459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460 * have the page added to the active list using mark_page_accessed().
f04e9ebb 461 */
c53954a0 462void lru_cache_add(struct page *page)
1da177e4 463{
6058eaec
JW
464 struct pagevec *pvec;
465
309381fe
SL
466 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
468
469 get_page(page);
470 local_lock(&lru_pvecs.lock);
471 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472 if (!pagevec_add(pvec, page) || PageCompound(page))
473 __pagevec_lru_add(pvec);
474 local_unlock(&lru_pvecs.lock);
1da177e4 475}
6058eaec 476EXPORT_SYMBOL(lru_cache_add);
1da177e4 477
00501b53 478/**
b518154e 479 * lru_cache_add_inactive_or_unevictable
00501b53
JW
480 * @page: the page to be added to LRU
481 * @vma: vma in which page is mapped for determining reclaimability
482 *
b518154e 483 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 484 * evictability.
00501b53 485 */
b518154e 486void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
487 struct vm_area_struct *vma)
488{
b518154e
JK
489 bool unevictable;
490
00501b53
JW
491 VM_BUG_ON_PAGE(PageLRU(page), page);
492
b518154e
JK
493 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
494 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 495 int nr_pages = thp_nr_pages(page);
00501b53
JW
496 /*
497 * We use the irq-unsafe __mod_zone_page_stat because this
498 * counter is not modified from interrupt context, and the pte
499 * lock is held(spinlock), which implies preemption disabled.
500 */
0964730b
HD
501 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
502 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 503 }
9c4e6b1a 504 lru_cache_add(page);
00501b53
JW
505}
506
31560180
MK
507/*
508 * If the page can not be invalidated, it is moved to the
509 * inactive list to speed up its reclaim. It is moved to the
510 * head of the list, rather than the tail, to give the flusher
511 * threads some time to write it out, as this is much more
512 * effective than the single-page writeout from reclaim.
278df9f4
MK
513 *
514 * If the page isn't page_mapped and dirty/writeback, the page
515 * could reclaim asap using PG_reclaim.
516 *
517 * 1. active, mapped page -> none
518 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
519 * 3. inactive, mapped page -> none
520 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
521 * 5. inactive, clean -> inactive, tail
522 * 6. Others -> none
523 *
524 * In 4, why it moves inactive's head, the VM expects the page would
525 * be write it out by flusher threads as this is much more effective
526 * than the single-page writeout from reclaim.
31560180 527 */
cc5993bd 528static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 529 void *arg)
31560180 530{
fbbb602e 531 int lru;
278df9f4 532 bool active;
6c357848 533 int nr_pages = thp_nr_pages(page);
31560180 534
278df9f4 535 if (!PageLRU(page))
31560180
MK
536 return;
537
bad49d9c
MK
538 if (PageUnevictable(page))
539 return;
540
31560180
MK
541 /* Some processes are using the page */
542 if (page_mapped(page))
543 return;
544
278df9f4 545 active = PageActive(page);
31560180 546 lru = page_lru_base_type(page);
fa9add64
HD
547
548 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
549 ClearPageActive(page);
550 ClearPageReferenced(page);
31560180 551
278df9f4
MK
552 if (PageWriteback(page) || PageDirty(page)) {
553 /*
554 * PG_reclaim could be raced with end_page_writeback
555 * It can make readahead confusing. But race window
556 * is _really_ small and it's non-critical problem.
557 */
e7a1aaf2 558 add_page_to_lru_list(page, lruvec, lru);
278df9f4
MK
559 SetPageReclaim(page);
560 } else {
561 /*
562 * The page's writeback ends up during pagevec
563 * We moves tha page into tail of inactive.
564 */
e7a1aaf2 565 add_page_to_lru_list_tail(page, lruvec, lru);
5d91f31f 566 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
567 }
568
21e330fc 569 if (active) {
5d91f31f 570 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
571 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
572 nr_pages);
573 }
31560180
MK
574}
575
9c276cc6
MK
576static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
577 void *arg)
578{
579 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
9c276cc6 580 int lru = page_lru_base_type(page);
6c357848 581 int nr_pages = thp_nr_pages(page);
9c276cc6
MK
582
583 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
584 ClearPageActive(page);
585 ClearPageReferenced(page);
586 add_page_to_lru_list(page, lruvec, lru);
587
21e330fc
SB
588 __count_vm_events(PGDEACTIVATE, nr_pages);
589 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 nr_pages);
9c276cc6
MK
591 }
592}
10853a03 593
f7ad2a6c 594static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
595 void *arg)
596{
f7ad2a6c 597 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 598 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 599 bool active = PageActive(page);
6c357848 600 int nr_pages = thp_nr_pages(page);
10853a03 601
f7ad2a6c
SL
602 del_page_from_lru_list(page, lruvec,
603 LRU_INACTIVE_ANON + active);
10853a03
MK
604 ClearPageActive(page);
605 ClearPageReferenced(page);
f7ad2a6c 606 /*
9de4f22a
HY
607 * Lazyfree pages are clean anonymous pages. They have
608 * PG_swapbacked flag cleared, to distinguish them from normal
609 * anonymous pages
f7ad2a6c
SL
610 */
611 ClearPageSwapBacked(page);
612 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 613
21e330fc
SB
614 __count_vm_events(PGLAZYFREE, nr_pages);
615 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
616 nr_pages);
10853a03
MK
617 }
618}
619
902aaed0
HH
620/*
621 * Drain pages out of the cpu's pagevecs.
622 * Either "cpu" is the current CPU, and preemption has already been
623 * disabled; or "cpu" is being hot-unplugged, and is already dead.
624 */
f0cb3c76 625void lru_add_drain_cpu(int cpu)
1da177e4 626{
b01b2141 627 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 628
13f7f789 629 if (pagevec_count(pvec))
a0b8cab3 630 __pagevec_lru_add(pvec);
902aaed0 631
b01b2141 632 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
633 /* Disabling interrupts below acts as a compiler barrier. */
634 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
635 unsigned long flags;
636
637 /* No harm done if a racing interrupt already did this */
b01b2141 638 local_lock_irqsave(&lru_rotate.lock, flags);
902aaed0 639 pagevec_move_tail(pvec);
b01b2141 640 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 641 }
31560180 642
b01b2141 643 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 644 if (pagevec_count(pvec))
cc5993bd 645 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 646
b01b2141 647 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6
MK
648 if (pagevec_count(pvec))
649 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
650
b01b2141 651 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 652 if (pagevec_count(pvec))
f7ad2a6c 653 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 654
eb709b0d 655 activate_page_drain(cpu);
31560180
MK
656}
657
658/**
cc5993bd 659 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
660 * @page: page to deactivate
661 *
662 * This function hints the VM that @page is a good reclaim candidate,
663 * for example if its invalidation fails due to the page being dirty
664 * or under writeback.
665 */
cc5993bd 666void deactivate_file_page(struct page *page)
31560180 667{
821ed6bb 668 /*
cc5993bd
MK
669 * In a workload with many unevictable page such as mprotect,
670 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
671 */
672 if (PageUnevictable(page))
673 return;
674
31560180 675 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
676 struct pagevec *pvec;
677
678 local_lock(&lru_pvecs.lock);
679 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 680
8f182270 681 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd 682 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
b01b2141 683 local_unlock(&lru_pvecs.lock);
31560180 684 }
80bfed90
AM
685}
686
9c276cc6
MK
687/*
688 * deactivate_page - deactivate a page
689 * @page: page to deactivate
690 *
691 * deactivate_page() moves @page to the inactive list if @page was on the active
692 * list and was not an unevictable page. This is done to accelerate the reclaim
693 * of @page.
694 */
695void deactivate_page(struct page *page)
696{
697 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 698 struct pagevec *pvec;
9c276cc6 699
b01b2141
IM
700 local_lock(&lru_pvecs.lock);
701 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6
MK
702 get_page(page);
703 if (!pagevec_add(pvec, page) || PageCompound(page))
704 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
b01b2141 705 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
706 }
707}
708
10853a03 709/**
f7ad2a6c 710 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
711 * @page: page to deactivate
712 *
f7ad2a6c
SL
713 * mark_page_lazyfree() moves @page to the inactive file list.
714 * This is done to accelerate the reclaim of @page.
10853a03 715 */
f7ad2a6c 716void mark_page_lazyfree(struct page *page)
10853a03 717{
f7ad2a6c 718 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 719 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 720 struct pagevec *pvec;
10853a03 721
b01b2141
IM
722 local_lock(&lru_pvecs.lock);
723 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 724 get_page(page);
8f182270 725 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c 726 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
b01b2141 727 local_unlock(&lru_pvecs.lock);
10853a03
MK
728 }
729}
730
80bfed90
AM
731void lru_add_drain(void)
732{
b01b2141
IM
733 local_lock(&lru_pvecs.lock);
734 lru_add_drain_cpu(smp_processor_id());
735 local_unlock(&lru_pvecs.lock);
736}
737
738void lru_add_drain_cpu_zone(struct zone *zone)
739{
740 local_lock(&lru_pvecs.lock);
741 lru_add_drain_cpu(smp_processor_id());
742 drain_local_pages(zone);
743 local_unlock(&lru_pvecs.lock);
1da177e4
LT
744}
745
6ea183d6
MH
746#ifdef CONFIG_SMP
747
748static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
749
c4028958 750static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
751{
752 lru_add_drain();
753}
754
9852a721
MH
755/*
756 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
757 * kworkers being shut down before our page_alloc_cpu_dead callback is
758 * executed on the offlined cpu.
759 * Calling this function with cpu hotplug locks held can actually lead
760 * to obscure indirect dependencies via WQ context.
761 */
762void lru_add_drain_all(void)
053837fc 763{
6446a513
AD
764 /*
765 * lru_drain_gen - Global pages generation number
766 *
767 * (A) Definition: global lru_drain_gen = x implies that all generations
768 * 0 < n <= x are already *scheduled* for draining.
769 *
770 * This is an optimization for the highly-contended use case where a
771 * user space workload keeps constantly generating a flow of pages for
772 * each CPU.
773 */
774 static unsigned int lru_drain_gen;
5fbc4616 775 static struct cpumask has_work;
6446a513
AD
776 static DEFINE_MUTEX(lock);
777 unsigned cpu, this_gen;
5fbc4616 778
ce612879
MH
779 /*
780 * Make sure nobody triggers this path before mm_percpu_wq is fully
781 * initialized.
782 */
783 if (WARN_ON(!mm_percpu_wq))
784 return;
785
6446a513
AD
786 /*
787 * Guarantee pagevec counter stores visible by this CPU are visible to
788 * other CPUs before loading the current drain generation.
789 */
790 smp_mb();
791
792 /*
793 * (B) Locally cache global LRU draining generation number
794 *
795 * The read barrier ensures that the counter is loaded before the mutex
796 * is taken. It pairs with smp_mb() inside the mutex critical section
797 * at (D).
798 */
799 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 800
5fbc4616 801 mutex_lock(&lock);
eef1a429
KK
802
803 /*
6446a513
AD
804 * (C) Exit the draining operation if a newer generation, from another
805 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 806 */
6446a513 807 if (unlikely(this_gen != lru_drain_gen))
eef1a429
KK
808 goto done;
809
6446a513
AD
810 /*
811 * (D) Increment global generation number
812 *
813 * Pairs with smp_load_acquire() at (B), outside of the critical
814 * section. Use a full memory barrier to guarantee that the new global
815 * drain generation number is stored before loading pagevec counters.
816 *
817 * This pairing must be done here, before the for_each_online_cpu loop
818 * below which drains the page vectors.
819 *
820 * Let x, y, and z represent some system CPU numbers, where x < y < z.
821 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
822 * below and has already reached CPU #y's per-cpu data. CPU #x comes
823 * along, adds some pages to its per-cpu vectors, then calls
824 * lru_add_drain_all().
825 *
826 * If the paired barrier is done at any later step, e.g. after the
827 * loop, CPU #x will just exit at (C) and miss flushing out all of its
828 * added pages.
829 */
830 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
831 smp_mb();
eef1a429 832
5fbc4616 833 cpumask_clear(&has_work);
5fbc4616
CM
834 for_each_online_cpu(cpu) {
835 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
836
b01b2141 837 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 838 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
839 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
840 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
841 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
5fbc4616
CM
842 need_activate_page_drain(cpu)) {
843 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 844 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 845 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
846 }
847 }
848
849 for_each_cpu(cpu, &has_work)
850 flush_work(&per_cpu(lru_add_drain_work, cpu));
851
eef1a429 852done:
5fbc4616 853 mutex_unlock(&lock);
053837fc 854}
6ea183d6
MH
855#else
856void lru_add_drain_all(void)
857{
858 lru_add_drain();
859}
6446a513 860#endif /* CONFIG_SMP */
053837fc 861
aabfb572 862/**
ea1754a0 863 * release_pages - batched put_page()
aabfb572
MH
864 * @pages: array of pages to release
865 * @nr: number of pages
1da177e4 866 *
aabfb572
MH
867 * Decrement the reference count on all the pages in @pages. If it
868 * fell to zero, remove the page from the LRU and free it.
1da177e4 869 */
c6f92f9f 870void release_pages(struct page **pages, int nr)
1da177e4
LT
871{
872 int i;
cc59850e 873 LIST_HEAD(pages_to_free);
599d0c95 874 struct pglist_data *locked_pgdat = NULL;
fa9add64 875 struct lruvec *lruvec;
3f649ab7
KC
876 unsigned long flags;
877 unsigned int lock_batch;
1da177e4 878
1da177e4
LT
879 for (i = 0; i < nr; i++) {
880 struct page *page = pages[i];
1da177e4 881
aabfb572
MH
882 /*
883 * Make sure the IRQ-safe lock-holding time does not get
884 * excessive with a continuous string of pages from the
599d0c95 885 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 886 */
599d0c95
MG
887 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
888 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
889 locked_pgdat = NULL;
aabfb572
MH
890 }
891
a9b576f7 892 page = compound_head(page);
6fcb52a5 893 if (is_huge_zero_page(page))
aa88b68c 894 continue;
aa88b68c 895
c5d6c45e 896 if (is_zone_device_page(page)) {
df6ad698
JG
897 if (locked_pgdat) {
898 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
899 flags);
900 locked_pgdat = NULL;
901 }
c5d6c45e
IW
902 /*
903 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 904 * page_is_devmap_managed() do not require special
c5d6c45e
IW
905 * processing, and instead, expect a call to
906 * put_page_testzero().
907 */
07d80269
JH
908 if (page_is_devmap_managed(page)) {
909 put_devmap_managed_page(page);
c5d6c45e 910 continue;
07d80269 911 }
df6ad698
JG
912 }
913
b5810039 914 if (!put_page_testzero(page))
1da177e4
LT
915 continue;
916
ddc58f27 917 if (PageCompound(page)) {
599d0c95
MG
918 if (locked_pgdat) {
919 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
920 locked_pgdat = NULL;
ddc58f27
KS
921 }
922 __put_compound_page(page);
923 continue;
924 }
925
46453a6e 926 if (PageLRU(page)) {
599d0c95 927 struct pglist_data *pgdat = page_pgdat(page);
894bc310 928
599d0c95
MG
929 if (pgdat != locked_pgdat) {
930 if (locked_pgdat)
931 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 932 flags);
aabfb572 933 lock_batch = 0;
599d0c95
MG
934 locked_pgdat = pgdat;
935 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 936 }
fa9add64 937
599d0c95 938 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 939 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 940 __ClearPageLRU(page);
fa9add64 941 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
942 }
943
62906027 944 __ClearPageWaiters(page);
c53954a0 945
cc59850e 946 list_add(&page->lru, &pages_to_free);
1da177e4 947 }
599d0c95
MG
948 if (locked_pgdat)
949 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 950
747db954 951 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 952 free_unref_page_list(&pages_to_free);
1da177e4 953}
0be8557b 954EXPORT_SYMBOL(release_pages);
1da177e4
LT
955
956/*
957 * The pages which we're about to release may be in the deferred lru-addition
958 * queues. That would prevent them from really being freed right now. That's
959 * OK from a correctness point of view but is inefficient - those pages may be
960 * cache-warm and we want to give them back to the page allocator ASAP.
961 *
962 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
963 * and __pagevec_lru_add_active() call release_pages() directly to avoid
964 * mutual recursion.
965 */
966void __pagevec_release(struct pagevec *pvec)
967{
7f0b5fb9 968 if (!pvec->percpu_pvec_drained) {
d9ed0d08 969 lru_add_drain();
7f0b5fb9 970 pvec->percpu_pvec_drained = true;
d9ed0d08 971 }
c6f92f9f 972 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
973 pagevec_reinit(pvec);
974}
7f285701
SF
975EXPORT_SYMBOL(__pagevec_release);
976
12d27107 977#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 978/* used by __split_huge_page_refcount() */
fa9add64 979void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 980 struct lruvec *lruvec, struct list_head *list)
71e3aac0 981{
309381fe
SL
982 VM_BUG_ON_PAGE(!PageHead(page), page);
983 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
984 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
35f3aa39 985 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
71e3aac0 986
5bc7b8ac
SL
987 if (!list)
988 SetPageLRU(page_tail);
71e3aac0 989
12d27107
HD
990 if (likely(PageLRU(page)))
991 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
992 else if (list) {
993 /* page reclaim is reclaiming a huge page */
994 get_page(page_tail);
995 list_add_tail(&page_tail->lru, list);
996 } else {
12d27107
HD
997 /*
998 * Head page has not yet been counted, as an hpage,
999 * so we must account for each subpage individually.
1000 *
e7a1aaf2
YZ
1001 * Put page_tail on the list at the correct position
1002 * so they all end up in order.
12d27107 1003 */
e7a1aaf2
YZ
1004 add_page_to_lru_list_tail(page_tail, lruvec,
1005 page_lru(page_tail));
71e3aac0
AA
1006 }
1007}
12d27107 1008#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 1009
fa9add64
HD
1010static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1011 void *arg)
3dd7ae8e 1012{
9c4e6b1a
SB
1013 enum lru_list lru;
1014 int was_unevictable = TestClearPageUnevictable(page);
6c357848 1015 int nr_pages = thp_nr_pages(page);
3dd7ae8e 1016
309381fe 1017 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 1018
9c4e6b1a
SB
1019 /*
1020 * Page becomes evictable in two ways:
dae966dc 1021 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
1022 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1023 * a) do PageLRU check with lock [check_move_unevictable_pages]
1024 * b) do PageLRU check before lock [clear_page_mlock]
1025 *
1026 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1027 * following strict ordering:
1028 *
1029 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1030 *
1031 * SetPageLRU() TestClearPageMlocked()
1032 * smp_mb() // explicit ordering // above provides strict
1033 * // ordering
1034 * PageMlocked() PageLRU()
1035 *
1036 *
1037 * if '#1' does not observe setting of PG_lru by '#0' and fails
1038 * isolation, the explicit barrier will make sure that page_evictable
1039 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1040 * can be reordered after PageMlocked check and can make '#1' to fail
1041 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1042 * looking at the same page) and the evictable page will be stranded
1043 * in an unevictable LRU.
1044 */
9a9b6cce
YS
1045 SetPageLRU(page);
1046 smp_mb__after_atomic();
9c4e6b1a
SB
1047
1048 if (page_evictable(page)) {
1049 lru = page_lru(page);
9c4e6b1a 1050 if (was_unevictable)
5d91f31f 1051 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a
SB
1052 } else {
1053 lru = LRU_UNEVICTABLE;
1054 ClearPageActive(page);
1055 SetPageUnevictable(page);
1056 if (!was_unevictable)
5d91f31f 1057 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1058 }
1059
fa9add64 1060 add_page_to_lru_list(page, lruvec, lru);
24b7e581 1061 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
1062}
1063
1da177e4
LT
1064/*
1065 * Add the passed pages to the LRU, then drop the caller's refcount
1066 * on them. Reinitialises the caller's pagevec.
1067 */
a0b8cab3 1068void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1069{
a0b8cab3 1070 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 1071}
1da177e4 1072
0cd6144a
JW
1073/**
1074 * pagevec_lookup_entries - gang pagecache lookup
1075 * @pvec: Where the resulting entries are placed
1076 * @mapping: The address_space to search
1077 * @start: The starting entry index
cb6f0f34 1078 * @nr_entries: The maximum number of pages
0cd6144a
JW
1079 * @indices: The cache indices corresponding to the entries in @pvec
1080 *
1081 * pagevec_lookup_entries() will search for and return a group of up
f144c390 1082 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
1083 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1084 * reference against actual pages in @pvec.
1085 *
1086 * The search returns a group of mapping-contiguous entries with
1087 * ascending indexes. There may be holes in the indices due to
1088 * not-present entries.
1089 *
71725ed1
HD
1090 * Only one subpage of a Transparent Huge Page is returned in one call:
1091 * allowing truncate_inode_pages_range() to evict the whole THP without
1092 * cycling through a pagevec of extra references.
1093 *
0cd6144a
JW
1094 * pagevec_lookup_entries() returns the number of entries which were
1095 * found.
1096 */
1097unsigned pagevec_lookup_entries(struct pagevec *pvec,
1098 struct address_space *mapping,
e02a9f04 1099 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
1100 pgoff_t *indices)
1101{
e02a9f04 1102 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
1103 pvec->pages, indices);
1104 return pagevec_count(pvec);
1105}
1106
1107/**
1108 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1109 * @pvec: The pagevec to prune
1110 *
1111 * pagevec_lookup_entries() fills both pages and exceptional radix
1112 * tree entries into the pagevec. This function prunes all
1113 * exceptionals from @pvec without leaving holes, so that it can be
1114 * passed on to page-only pagevec operations.
1115 */
1116void pagevec_remove_exceptionals(struct pagevec *pvec)
1117{
1118 int i, j;
1119
1120 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1121 struct page *page = pvec->pages[i];
3159f943 1122 if (!xa_is_value(page))
0cd6144a
JW
1123 pvec->pages[j++] = page;
1124 }
1125 pvec->nr = j;
1126}
1127
1da177e4 1128/**
b947cee4 1129 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1130 * @pvec: Where the resulting pages are placed
1131 * @mapping: The address_space to search
1132 * @start: The starting page index
b947cee4 1133 * @end: The final page index
1da177e4 1134 *
e02a9f04 1135 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1136 * pages in the mapping starting from index @start and upto index @end
1137 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1138 * reference against the pages in @pvec.
1139 *
1140 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1141 * indexes. There may be holes in the indices due to not-present pages. We
1142 * also update @start to index the next page for the traversal.
1da177e4 1143 *
b947cee4 1144 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1145 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1146 * reached.
1da177e4 1147 */
b947cee4 1148unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1149 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1150{
397162ff 1151 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1152 pvec->pages);
1da177e4
LT
1153 return pagevec_count(pvec);
1154}
b947cee4 1155EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1156
72b045ae
JK
1157unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1158 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1159 xa_mark_t tag)
1da177e4 1160{
72b045ae 1161 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1162 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1163 return pagevec_count(pvec);
1164}
72b045ae 1165EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1166
93d3b714
JK
1167unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1168 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1169 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1170{
1171 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1172 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1173 return pagevec_count(pvec);
1174}
1175EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1176/*
1177 * Perform any setup for the swap system
1178 */
1179void __init swap_setup(void)
1180{
ca79b0c2 1181 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1182
1da177e4
LT
1183 /* Use a smaller cluster for small-memory machines */
1184 if (megs < 16)
1185 page_cluster = 2;
1186 else
1187 page_cluster = 3;
1188 /*
1189 * Right now other parts of the system means that we
1190 * _really_ don't want to cluster much more
1191 */
1da177e4 1192}
07d80269
JH
1193
1194#ifdef CONFIG_DEV_PAGEMAP_OPS
1195void put_devmap_managed_page(struct page *page)
1196{
1197 int count;
1198
1199 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1200 return;
1201
1202 count = page_ref_dec_return(page);
1203
1204 /*
1205 * devmap page refcounts are 1-based, rather than 0-based: if
1206 * refcount is 1, then the page is free and the refcount is
1207 * stable because nobody holds a reference on the page.
1208 */
1209 if (count == 1)
1210 free_devmap_managed_page(page);
1211 else if (!count)
1212 __put_page(page);
1213}
1214EXPORT_SYMBOL(put_devmap_managed_page);
1215#endif